Parametric Behavior of the Density Profile in the Scrape-off Layer of ASDEX for Neutral-Beam-Heated Plasmas in the L-Regime

- K. McCormick, Z.A. Pietrzyk4, H. Murmann and G. Becker, H.S. Bosch,
- H. Brocken, A. Carlson, A. Eberhagen, G. Dodel¹, H.-U. Fahrbach,
- G. Fussmann, O. Gehre, J. Gernhardt, G. v.Gierke, E. Glock, O. Gruber, G. Haas, W. Herrmann, J. Hofmann, A. Izvozchikov², E. Holzhauer¹,
- K. Hübner3, G. Janeschitz, F. Karger, M. Kaufmann, O. Klüber, M. Kornherr,
- K. Lackner, M. Lenoci, G. Lisitano, F. Mast, H.M. Mayer, K. McCormick,
- D. Meisel, V. Mertens, E.R. Müller, J. Neuhauser, H. Niedermeyer,
- W. Poschenrieder, H. Rapp, A. Rudy, F. Schneider, C. Setzensack, G. Siller,
- E. Speth, F. Söldner, K. Steinmetz, K.-H. Steuer, N. Tsois⁵, S. Ugniewski⁶,
- O. Vollmer, F. Wagner, D. Zasche

Max-Planck-Institut für Plasmaphysik, EURATOM Association, Garching, FRG

Abstract: Characterizing the scrape-off layer (SOL) density profile by the density at the separatrix $n_{\rm S}$ and the e-folding length $\lambda_n,$ the SOL is described for a wide variety of conditions: \bar{n}_e =1-5x10 13 cm $^{-3},$ Ip=250-440 kA, Bt-22 kG, qa=2.4-4.3 for injected powers PNI-0.4-1.7 MW, which lead to Ltype discharges. Generally, λ_{n} increases with P_{NI} , these changes becoming more dramatic for lower Ip and ne. For OH and NI plasmas ns is roughly proportional to \bar{n}_e ; the constant of proportionality increases with NI and is independent of PNT over the range investigated.

Introduction: This paper is designed to furnish an initial data base for the critical evaluation of SOL models, as well as to investigate the premise that the SOL behavior during NI reflects global plasma transport properties as has been observed elsewhere /1, 2/. Statements are limited to the SOL ne profile in the outer midplane of doubly-null diverted discharges sustained by gas puffing. The ASDEX neutral lithium-beam probe /3, 4/ is used to determine λ_n and the relative changes in n_s ; previous experience gained with the edge Thomson scattering system /5/ furnishes an approximate absolute calibration of ns.

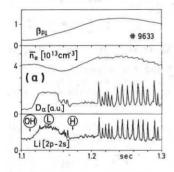
To place matters in context, fig. 1a illustrates the effect of high power (2.75 MW) $H^{0}\rightarrow D^{+}$ injection on \bar{n}_{e} , $\beta_{D,L}$ (taken from the diamagnetic loop) and Do as well as the Li-beam light signal outside the separatrix. ne decreases going into the L-phase, followed by the H-phase increase and subsequent clamping correlated with the D $_{\alpha}$ bursts. The characteristic D $_{\alpha}$ signatures are closely paralled by Li[2p-2s](- proportional to n $_{\rm e}$) /3/. The SOL n_e profiles for OH, L and H (fig. 1b) indicate that $n_s^L < n_g^{\rm H} < n_s^{\rm H}$. Further, $\lambda_n^{\rm H} + 1.95$ cm, $\lambda_n^{\rm L} - 2.8$ cm and $\lambda_n^{\rm H} - 1.1$ cm. $T_{\rm es} - 70$, 130 and 250 eV for the OH, L and H-regimes respectively /5/. R-R $_{\rm S}$ is the distance from separatrix; R_s is derived from magnetic signals and underlies an uncertainty of perhaps 1 cm. This has an important bearing on scaling statements made about n_S ; thus if R_S were in fact one cm further outwards, then $n_S^{OH} > n_S^{I} - n_S^{H}$ would be deduced.

University of Stuttgart; 2 Ioffe Institute; 3 University of Heidelberg; 4 University of Washington, Seattle, USA; 5 N.R.C.N.S. "Democritos", Athens, Greece; 6 Inst. for Nuclear Research, Swierk, Poland;

Results: Fig. 2b depicts for $H^0 \rightarrow He^{2+}$ injection, λ_{n} vs. the total absorbed input power $P_{TOT} = P_{OH} + P_{NI}^{abs}$ for $\bar{n}_{e} = 1 - 4.9 \times 10^{13}$ cm⁻³ and $I_p = 420$ kA; the energy confinement time " τ_{E} " deduced from the steady-state NI phase using β_{D} to determine the total energy W and " τ_{E} "=W/ P_{TOT} (without correction for radiation effects) is plotted vs. P_{TOT}/\bar{n}_{e} in fig. 2a.

Fig. 2b demonstrates that during OH (corresponding to the points at the left as in fig. 2a) λ_n is about constant for $\bar{n}_e{>}1.9{\times}10^{13}~{\rm cm}^{-3}$, and is much larger for lower \bar{n}_e , as has been previously reported /6/. Auxiliary heating leads to an increase in λ_n , the changes becoming more apparent for lower \bar{n}_e and higher PTOT, τ_E decreases with PTOT/ \bar{n}_e . Thus, at $\bar{n}_e=4{\times}10^{13}~{\rm cm}^{-3}$ (1.9 ${\times}10^{13}~{\rm cm}^{-3}$), over the power range λ_n increases by -10% (22%) and τ_E goes from -100 to 50 ms (63+45 ms). $n_{\rm S}$ exhibits the interesting behavior that it is described by an offset-linear law of the form $n_{\rm S}{=}a\bar{n}_e{+}b$, the constants depending only on the type of heating (OH or NI). No parametrical dependence of $n_{\rm S}$ on $P_{\rm NI}$ is evident; however, for higher $P_{\rm NI}$ a relationship must exist, as documented in fig. 1b where $n_{\rm S}$ is reduced rather than increased in the L-phase for $P_{\rm NI}=2.85$ MW.

The ${\rm H^{O} \! + \! D^{+}}$ series of fig. 3 involve a ${\rm q_a} \! - \! ({\rm I}_{\rm p} \! = \! 270 \! - \! 420$ kA) and ${\rm \bar{n}_e} \! - \! {\rm scan}$ (2.2, 3.5x10¹³ cm⁻³). For any given ${\rm q}_a$ the NI-induced changes in λ_n (see fig. 3b) have the same qualitative behavior as for He: lower ${\rm \bar{n}_e}$ and higher ${\rm P_{NI}}$ are both conducive to large alterations in λ_n . The slope of the λ_n vs. ${\rm q}_a$ curves is about the same for all conditions. With respect to ${\rm \tau_E}$, for injection with 4 sources ${\rm \tau_E}$ is the same for ${\rm \bar{n}_e} \! = \! 2.2$ or 3.5x10¹³ cm⁻³, whereas λ_n increases by 25% (${\rm \bar{n}_e} \! = \! 2.2 \! + \! 3.5 \! {\rm x} 10^{13}$ cm⁻³), demonstrating that λ_n does not necessarily mirror changes only in ${\rm \tau_E}$.


In fig. 3c there is no convincing dependence of n_{S} on $q_{a};$ also, the largest absolute δn_{S} is small, of the order ~0.15x10^13 cm 3 . Nevertheless, a plot of n_{S} vs. \bar{n}_{e} (not shown here) also reveals an offset-linear relationship, switching from one slope to another as with He, depending on the type of heating used.

Discussion and Summary: It is a common feature of NI-heated plasmas in the L-regime that λ_n increases with P_{NI} , the increase being less pronounced for higher \bar{n}_e , and possibly higher I_p . In any case for both OH and NI, λ_n is augmented with q_a : The OH λ_n - q_a scaling of fig. 3b agrees well with previous results /6/, whereas λ_n^{OH} of fig. 4b and 4d is anomalously large for a D+ plasma. This may be indicative of a deviant wall-conditioning of the divertor. Also, " τ_E " for the series of fig. 4 is noticibly lower. Hence, this series should be regarded in a more qualitative manner. Whereas it is true that a degradation in τ_E is accompanied by larger λ_n , the reverse conclusion that larger λ_n are synonymous with lower τ_E cannot

be universely drawn. It appears that the NI-induced degradation in the

cross-field diffusion coefficient D_ also extends into the SOL, but that this is only one component in determining $\lambda_n.$ With respect to $\tau_E,$ plotting vs $P_{TOT}/\bar{\eta}_e$ leads to a surprisingly orderly unification of the OH and NI values, at least for this limited data set. Further, the τ_E scalings for He++ of fig. 2a and D+ of fig. 3a are virtually identical, and of the form τ_E - $\alpha(P_{TOT}/\bar{\eta}_e)^{-\beta}$ msec (α = 31-32.3, β =0.48, 0.51).

For ns vs. ne, a very clear feature which emerges is that the OH offsetlinear scaling switches promptly to a steeper gradient upon initiation of NI, but beyond that shows no dependence on the magnitude of PNI. Higher In might bring the OH and NI scalings closer together (compare fig. 2c and 4e): the data base is too small to allow definitive conclusions. As a comment, one of the quantities which should determine ns for high recycling is the specific heat flux q. into the divertor /7/, which is related to P_{TOT} , λ_n and λ_{Te} . λ_{Te} decreases ~10% /5/ over the P_{NI} range studied here, in contrast to the moderate (at low ${\rm q}_a$ and high $\bar{\rm n}_e)$ 10-20% enhancement in λ_n ; therefore q, should increase almost proportionately to PTOT. No Thomson data was available to calibrate the relative Li-beam determinations of ns; to obtain ns absolutely, experience from cross-calibrations of other series were used. Hence, strictly speaking, all absolute ng values are provisional including the ns vs. ne scalings. Definitive conclusions can be drawn only with respect to the relative behavior of the switch in scaling between OH and NI discharges. λ_n is generally measured to an accuracy of ±0.1 cm .

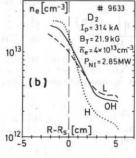


Fig.1 (a) Time behavior of $\beta_{p,1}$, \bar{n}_e , D_α radiation in the divertor and the Li[2p-2s] light intensity several cm outside the separatrix, (b) n_e profiles for the OH, L and H-phases.

References

- /1/ F. Wagner, Nucl. Fusion 25 (1985) 525.
- /2/ F. Wagner, O. Gruber, et al. 12th EPS (Budapest 1985) 335.
- /3/ K. McCormick, H. Murmann and El Shaer, J. Nucl. Mater. 121 (1984) 48.
- /4/ K. McCormick, Rev. Sci. Instr. 56 (1985) 1063.
- /5/ H. Murmann and M. Huang, Plasma Phys. 27 (1985) 103.
- /6/ K. McCormick, Z.A. Pietrzyk, et al., J. Nucl. Mater. 145-147 (1987) 215.
- /7/ J. Neuhauser and R. Wunderlich, in ref. /6/ (1987) 877.

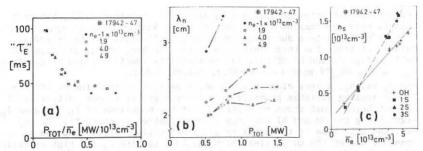


Fig.2 ${\rm H^0} \rightarrow {\rm He^2}^+$ with ${\rm P_{NI}} = 0.41$, 0.88, 1.24 MW (1, 2 and 3 NI sources), ${\rm I_p} = 1/20$ kA, ${\rm B_t} = 21.7$ kG: (a) energy confinement time " ${\rm I_E}$ " vs. ${\rm P_{TOT}}/{\bar{n}_e}$, (b) density e-folding length λ_n in the SOL vs. ${\rm P_{TOT}}$ with \bar{n}_e as a parameter. (c) Separatrix density ${\rm n_S}$ vs. \bar{n}_e during OH and NI.

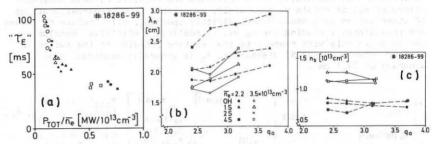


Fig.3 ${\rm H^{O} + D^{+}}$ with ${\rm P_{NI}}$ =0.41, 0.83, 1.67 MW (1, 2 and 4 sources), ${\rm \bar{n}_{e}}$ =2.2, $\overline{\rm 3.5x10^{13}}$ cm⁻³, ${\rm B_{t}}$ =21.8 kG: (a) " ${\rm \tau_{E}}$ " vs. ${\rm P_{TOT}}/{\rm \bar{n}_{e}}$, (b) ${\rm \lambda_{n}}$ vs. ${\rm q_{a}}$ (${\rm I_{p}}$ =270, 320, 370, 420 kA) with ${\rm \bar{n}_{e}}$ as a parameter, (c) ${\rm n_{S}}$ vs. ${\rm q_{a}}$, symbols as in (b).

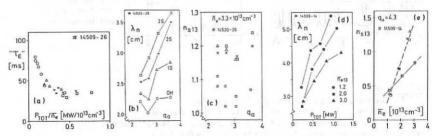


Fig.4 HO+D+ with PNI=0.42, 0.87, 1.3 MW (1, 2 and 3 sources), Bt=22 kG: (a) "TE" vs. PTOT/ \bar{n}_e , (b) λ_n vs. q_a (Ip=290, 340, 390, 440kA) with PNI as a parameter, \bar{n}_e -3.3x10¹3cm⁻³, (c) n_s vs. q_a for shots of (b); (d) λ_n vs. PTOT with \bar{n}_e as a parameter, q_a =4.3 (250 kA), (e) corresponding n_s vs. \bar{n}_e plot.