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Circularly polarized optical pulses have been shown to induce a breaking of 

time reversal invariance in solids, allowing for the control of magnetism 

through electronic Raman scattering. Here, we combine this principle with 

elements of magnetoelastics, and show that optical excitation of pairs of 

infrared-active optical phonons can excite coherent spin waves in the rare-earth 

orthoferrite ErFeO3. This phenomenon relies on the real-space rotations of the 

crystal-field atoms and on the resulting effective magnetic field onto the Fe3+ 

orbitals. Coherent control of lattice rotations could be used not only in magnetic 

solids, but more generally in materials with interesting topological properties.  
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Light fields at THz and mid-infrared frequencies allow for the direct excitation of 

collective modes of condensed matter, which can be driven to large amplitudes and 

into their nonlinear response regime. Amongst many examples of such mode-

selective control, coherent nonlinear phononicsi has emerged as a new means to 

manipulate the solid state. Coherent coupling between anharmonically coupled 

phonons has been used to deform the crystal structure along selected coordinates, 

and has been shown to stimulate insulator-metal transitions ii,iii, to melt magnetic 

orderiv,v and to enhance superconductivityvi,vii,viii.  

Here, we generalize the idea of nonlinear phononicsix and show that the excitation of 

pairs of non-degenerate vibrations can drive atomic rotations as well as 

displacements. This breaking of time reversal invariance through lattice rotations 

mimics the application of a magnetic field and is manifested here in the excitation of 

large amplitude spin precession in a rare-earth orthoferrite. This unusual breaking of 

time reversal invariance through the lattice can be achieved by virtue of the mutual 

coherence of these phonon modes, and is shown here to drive precession in different 

directions depending on the relative phase between the two excited phonons.  

ErFeO3 is an antiferromagnetic insulator that crystallizes in an orthorombically 

distorted perovskite structure, as shown in Fig. 1a (space group: Pbnm). Because of 

the Dzyaloshinskii-Moryiax,xi interaction, the spins are canted along the c direction 

and result in a small ferromagnetic moment along the c axis (Fig. 1b). In our 

experiments, femtosecond mid-IR pulses were tuned to drive the highest-frequency 

in-plane Bua and Bub phonons (Fig. 1c). The pump was linearly polarized and aligned at 

a variable angle with respect to the a and b crystallographic axes. Depending on this 
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alignment, only one or both phonon modes could be excited and their relative phase 

could be changed by aligning the pump pulse at +45 or -45 degrees.  

Because of the orthorhombic distortion of ErFeO3, these two modes are singly 

degenerate and exhibit different eigenfrequencies (νa and νb). Hence, when the two 

lattice vibrations are excited simultaneously (e.g. with the light polarization at 45 

degrees angle from either crystal axes), the relative phase between the two modes 

advances in time. This dephasing causes the ions to rotate about their equilibrium 

position, as shown in Fig. 1d. The lighter O2- ions, which dominate the crystal field 

applied on the high-spin Fe3+ ions, trace elliptical orbits with eccentricity that 

increases in time. This eccentricity reverses after an interval T = 1 2 !! − !!  (see 

Fig. 1e). However, because of damping, the amplitude of the two vibrational modes 

and the area of the orbit reduce in time. Hence, for certain combinations of phonon 

frequency differences and damping rates, the initial rotational direction dominates 

the coherent response	resulting	in	a	net breaking of time reversal invariance. 

To find evidence for such an effect, we measured the Faraday rotation of a linearly 

polarized near infrared (800-nm wavelength) probe pulse after transmission through 

the sample as a function of time delay following lattice excitation (see S1). As shown 

in Figure 2a, the time dependent polarization rotation oscillated in time, revealing the 

coherent excitation of a number of Raman active modes (Fig. 2b). These included 

Raman A1g + B1g and B1g (3.36 THz and 4.86 THz) phonons and, most strikingly, a 

Raman-active quasi-antiferromagnetic magnon (q-AFM, 0.75 THz)xii, associated with 

an oscillatory ferromagnetic moment along the c axis (Fig. 2c)xiii.  

Fig. 3a displays the pump wavelength dependence of the total magnetization 

change, extracted from the raw data by normalizing against the difference in 
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penetration depth between the pump and the probe pulses (see S5). The coherent 

magnon amplitude, small in the polariton regime at frequencies above the LO 

phonon resonances (i.e. above 20 THz), was strongly enhanced for wavelengths 

within the Reststrahlen band. Note that in this spectral region the real part of the 

dielectric permittivity of the material becomes negative, and light couples coherently 

to an evanescent mechanical wave. The ions oscillate to screen the incoming light, 

and to linear order no absorption or dissipation takes place.  

The maximum lattice-induced precession amplitude for excitation within the 

Reststrahlen band corresponds here to a 1.5% change of the saturation 

magnetization, comparable to what was achieved by off-resonant excitation with 

circularly polarized lightxiv.  

We also measured the pump-field dependence of the coherent magnetization 

dynamics (Fig. 3b).  The magnon amplitude was found to scale quadratically with the 

electric field strength of the pump. Hence, the response is proportional to the 

product of two phonon coordinates.  

Coherent magnon oscillations were only observed for pump pulses polarized at +45 

or – 45 degrees, in between the crystallographic a and b axes (Fig. 4a, red and orange 

lines). When the pump electric field was directed along either of the crystallographic 

axes, only Raman phonons were detected (Fig. 4a, blue and grey lines). We thus 

conclude that the magnetic response is observed only when both phonon modes are 

excited. Furthermore, the phase of the magnon oscillations switches sign when the 

pump polarization is rotated from +45 degrees to – 45 degrees, revealing a 

dependence on the relative phase of the two driven phonons (Fig. 4a, red and orange 

lines).  
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Finally, the phase of the measured magnon oscillations did not change when the 

static magnetization was reversed (Fig. 4b), indicating that the direction of the 

magnetic oscillations was independent from the initial canting of the spins.  

These observations indicate that the mixing of pairs of phonons results in an effective 

magnetic field. Let us consider the physical situation depicted in Figure 1d, where the 

oxygen ions perform rotational motions. Qualitatively, this dynamics is expected to 

modify the crystal field felt by the Fe3+ ion at the centre of the octahedron. This effect 

mixes the ground state t2g
3 eg

2  electronic wavefunctionxv at each Fe3+ ion, which has 

negligible spin orbit interaction, with excited states, for which spin-orbit coupling is 

enhanced. Thus, the electric field of the moving ions promptly perturbs the angular 

momentum of the t2g
3 eg

2 , effectively activating spin-orbit interactions in the ground 

state and hence triggering a magnetic excitation.   

In analogy with what has been discussed in the case of electronic Raman excitation of 

magnons xvi , xvii , xviii , xix  , our results can be described by considering an effective 

Hamiltonian of the form !!"" = !!!"#!!"!!"∗ !! . In this expression, !!"#  is the 

magneto-elastic susceptibility, antisymmetric over the first pair of indices !!"# =

−!!"#  , !!"  and !!"∗  are the phonon eigenvectors and !!  is the static magnetization. 

Hence, the circularly polarized lattice motion behaves as an effective magnetic field 

−!!!"" !!!
= −!!!"#!!"!!"∗  directed perpendicular to the rotation plane. 

Furthermore, the sign of the field depends on the rotation direction of the ions. This 

explains why a 90 degrees change in the pump polarization, that is a sign change in 

the initial phase of one of the two IR-active phonons, results in a π phase shift in the 
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magnon (Fig. 4b). In fact, the initial phase of the phonons determines the initial 

helicity of the ionic loops (Fig. 1e) and therefore the sign of the effective field.  

In general, the spin precession is expected to be impulsively excited in all cases in 

which the initial rate of change of the effective magnetic field is prompt compared to 

the period of the magnon.  

However, note also that for specific wavelengths throughout the Reststrahlen band 

(e.g. near the TOs frequency), the two phonons can be excited with a frequency 

difference ∆!!" = 17.03 !"# − 16.17 !"# = 0.86 !"#  that matches that of the 

magnon !!"#$%$ = 0.75 !"# thus resulting in a resonant driving of the latter by the 

effective magnetic field. This suggests a scenario in which magnetism can be excited 

using pairs of continuous wave mid-infrared pumps, extending our results to quasi-

static experimental conditions.  

We also note that due to the nonlinear nature of the excitation mechanism, which 

depends on the product of the driven phonon coordinates, a moderate increase in 

the field strength may drive the magnetic amplitude beyond the few percent 

observed here, into the nonlinear response and possibly toward magnetic switching. 

Although the response is of similar magnitude as that observed when using near-

infrared optical pulses, the current principle may allow for smaller dissipation. Optical 

experiments performed even in the transparency region and below gap, are prone to 

dissipation due to multi-photon absorption, whereas the mechanical coupling 

achieved here is expected to scale better with high fields. Importantly, the 

mechanism exploited here relies on the application of effective magnetic fields but 

does not require pre-existing multiferroicity xx,xxi,xxii, and may even be used to control 

the properties of non-magnetic oxides. Finally, beyond the applications to 
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magnetism discussed here, we note that control of ionic loops can be viewed as a 

perturbation of the Berry connectionxxiii,xxiv, and in appropriate circumstances may be 

used to manipulate the topological properties of materialsxxv. 

 

  



	 8	

FIGURES 

 

 

	
Figure 1 (a) Crystal structure of ErFeO3, an orthorombically distorted perovskite (Pbnm). (b) Magnetic 
ordering. The spins of the iron ions order antiferromagnetically along a. Due to the Dzyialoshinkii-Moryia 
interaction, a canting is induced out of the ab plane resulting in a small ferromagnetic component along c. 
(c) Phonons excited by the pump pulse. Singly degenerate infrared active Bua and Bub phonons polarized 
along a and b axes, respectively (calculated eigenvectors for YFeO3). (d) The motion of the ions results in a 
circularly polarized phononic field due to the non-degenerate nature of the excited IR-active phonons. (e) 
The oscillatory decaying displacement around the equilibrium position of one of the excited Bu phonons 
(blue curve).  The initial phase of the IR-active phonons determines the initial direction  of rotation.  When 
excited with identical phases (pump at +45 degrees, Bub+Bua) the ioinic motion goes from linear to circular 
clockwise (CW) to linear (-45 degrees) and then to circular counterclockwise (CCW). The decreasing 
amplitude of the phonon causes the area of the loop to reduce in time. When the phonons are excited with 
opposite phases (pump at -45 degrees, Bub-Bua) the initial rotation is CCW. 
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Figure 2 (a) Pump-induced changes in the polarization of the probe as a function of pump-probe delay. The 
slow varying component has been subtracted. Multi-component fast oscillations (grey) can be filtered out 
by a low pass filter (1.5 THz cut-off) to reveal the slow oscillation associated with the magnon (red). The 
sample was kept at 100 K while the fluence of the pump pulse was 17.6 mJ/cm2. (b) Power spectrum of the 
oscillatory signal. The three peaks correspond to: 0.75 THz, quasi-antiferromagnetic magnon (red); 3.36 
THz and 4.85 THz, Raman phonons of symmetry A1g+B1g (orange) and B1g (blue), respectively. (c) Cartoon of 
the spin motion. The small ferromagnetic component along the c axis oscillates in amplitude at the 
magnon frequency.  
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 Figure 3 (a) Pump wavelength dependence of the magnetization change. The blue dots are the values of 
the coherent magnon amplitude derived from a fit of the oscillations and extrapolated to zero time delay.  
The data are corrected for the difference in penetration depth between the pump and the probe (see S5). 
The solid red curve is the static sample reflectivity measured by Fourier transform infrared spectroscopy 
(FTIR). The dashed line is a fit to the measured reflectivity. (b) Amplitude dependence on the pump field 
measured at 19.5 THz.  The magnon amplitude scales quadratically with the pump electric field.  
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Figure 4 (a) Pump polarization dependence. Upper curve: pump polarization directed along one 
crystallographic axis. Only the phonon oscillations (grey) can be detected while the magnon vanishes 
(blue). Middle curve: pump polarization in between a and b. The two IR-active phonons are excited with the 
same initial positive phase (Bub + Bua). In addition to the Raman phonon oscillations (grey), the magnon 
appears (red). Lower curve: pump polarization rotated by 90 degrees, in between -a and b. The two IR-
active phonons are excited with phases of opposite signs (Bub - Bua). The magnon experiences a π phase 
shift (orange). (b) External magnetic field dependence. The phase of the magnon does not depend on the 
initial orientation of the magnetic order.  
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