Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

An effective magnetic field from optically driven phonons

MPG-Autoren
/persons/resource/persons133847

Nova,  T. F.
Quantum Condensed Matter Dynamics, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons133839

Cartella,  Andrea
Quantum Condensed Matter Dynamics, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons133836

Cantaluppi,  Alice
Quantum Condensed Matter Dynamics, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons133775

Först,  Michael
Quantum Condensed Matter Dynamics, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons133811

Cavalleri,  Andrea
Quantum Condensed Matter Dynamics, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
University of Oxford, Clarendon Laboratory, Oxford OX1 3PU, UK;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

1512.06351.pdf
(Preprint), 5MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Nova, T. F., Cartella, A., Cantaluppi, A., Först, M., Bossini, D., Mikhaylovskiy, R. V., et al. (2017). An effective magnetic field from optically driven phonons. Nature Physics, 13(2), 132-136. doi:10.1038/nphys3925.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0029-3AF2-A
Zusammenfassung
Light fields at terahertz and mid-infrared frequencies allow for the direct excitation of collective modes in condensed matter, which can be driven to large amplitudes. For example, excitation of the crystal lattice has been shown to stimulate insulator–metal transitions, melt magnetic order or enhance superconductivity. Here, we generalize these ideas and explore the simultaneous excitation of more than one lattice mode, which are driven with controlled relative phases. This nonlinear mode mixing drives rotations as well as displacements of the crystal-field atoms, mimicking the application of a magnetic field and resulting in the excitation of spin precession in the rare-earth orthoferrite ErFeO3. Coherent control of lattice rotations may become applicable to other interesting problems in materials research—for example, as a way to affect the topology of electronic phases.