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Photosensitivity is a heritable abnormal cortical response to flickering light, manifesting as particular electroencephalographic

changes, with or without seizures. Photosensitivity is prominent in a very rare epileptic encephalopathy due to de novo CHD2

mutations, but is also seen in epileptic encephalopathies due to other gene mutations. We determined whether CHD2 variation

underlies photosensitivity in common epilepsies, specific photosensitive epilepsies and individuals with photosensitivity without

seizures. We studied 580 individuals with epilepsy and either photosensitive seizures or abnormal photoparoxysmal response on

electroencephalography, or both, and 55 individuals with photoparoxysmal response but no seizures. We compared CHD2 se-

quence data to publicly available data from 34 427 individuals, not enriched for epilepsy. We investigated the role of unique

variants seen only once in the entire data set. We sought CHD2 variants in 238 exomes from familial genetic generalized epilepsies,

and in other public exome data sets. We identified 11 unique variants in the 580 individuals with photosensitive epilepsies and 128

unique variants in the 34 427 controls: unique CHD2 variation is over-represented in cases overall (P = 2�17 � 10�5). Among

epilepsy syndromes, there was over-representation of unique CHD2 variants (3/36 cases) in the archetypal photosensitive epilepsy

syndrome, eyelid myoclonia with absences (P = 3�50 � 10�4). CHD2 variation was not over-represented in photoparoxysmal

response without seizures. Zebrafish larvae with chd2 knockdown were tested for photosensitivity. Chd2 knockdown markedly

enhanced mild innate zebrafish larval photosensitivity. CHD2 mutation is the first identified cause of the archetypal generalized

photosensitive epilepsy syndrome, eyelid myoclonia with absences. Unique CHD2 variants are also associated with photosensitivity

in common epilepsies. CHD2 does not encode an ion channel, opening new avenues for research into human cortical excitability.
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Introduction
Photosensitivity is a heritable abnormal cortical response

to flickering light, often manifesting as EEG changes called

a photoparoxysmal response (Walter et al., 1946).

Photoparoxysmal response may occur with seizures, and in

normal subjects, or with neuropsychiatric disorders (So et al.,

1993). The photoparoxysmal response is age-dependent:

prevalence in healthy children is between 1.4 and 8.3%, drop-

ping to 51% in adults (Gregory et al., 1993; Quirk et al.,

1995; Kasteleijn-Nolst Trenite et al., 2003; Verrotti et al.,

2012). Photosensitive epilepsy is a reflex epilepsy, with seiz-

ures triggered by visual stimuli. A population-based study in

Great Britain determined that the annual incidence of epilepsy

with photoparoxysmal response was 1.1 per 100 000 in the

overall population, and 5.7 per 100 000 between 7 and 19

years of age (Quirk et al., 1995). About 40% of people with

photosensitive epilepsy only have seizures on exposure to

visual stimuli. Photosensitive seizures also feature in specific

epilepsy syndromes, with other seizure types, and in non-

syndromic epilepsies. Examples include juvenile myoclonic

epilepsy (Tauer et al., 2005; Koeleman et al., 2013; Taylor

et al., 2013), other genetic generalized epilepsies (GGE)

(Taylor et al., 2013), idiopathic photosensitive occipital

epilepsy, and other focal (Taylor et al., 2004; Lu et al.,

2008), symptomatic occipital, and progressive myoclonic, epi-

lepsies. The archetypal photosensitive syndrome is eyelid myo-

clonia with absences (EMA), a GGE characterized by rapid

eyelid jerks and upward eyeball deviation on eye closure:

photosensitivity is an essential feature (Sadleir et al., 2012).

The photoparoxysmal response is highly heritable (Waltz

and Stephani, 2000; Tauer et al., 2005; Taylor et al.,

2013). The genetics are complex: no single gene has been

implicated despite linkage to several loci and formal meta-

analysis (Tauer et al., 2005; De Kovel et al., 2010; Verrotti

et al., 2012). Photosensitive epilepsies also have complex

genetic architecture (Sadleir et al., 2012; Taylor et al.,

2013), with several linked loci (De Kovel et al., 2010).

Photosensitivity is a trait found in many syndromes, inher-

itable separately from epilepsy (Newmark and Penry,

1979). It is unclear whether isolated photoparoxysmal re-

sponse is a risk factor for epilepsy (De Kovel et al., 2010;

Verrotti et al., 2012).

Photosensitivity occurs in some epileptic encephalopa-

thies, such as Dravet syndrome due to mutation in

SCN1A and encephalopathy associated with mutation in

CHD2 (Carvill et al., 2013). Published data do not allow

determination of whether the photosensitivity in these con-

ditions is due to the underlying gene mutation or to the

epileptic encephalopathy per se. CHD2 encodes chromodo-

main helicase DNA-binding protein 2, involved in tran-

scriptional regulation. Additional attention was drawn to

CHD2 as a candidate photosensitive epilepsy gene as the

only shared gene within several reported overlapping copy

number variants of the chromosome 15q26.1 region asso-

ciated with complex phenotypes including epilepsy with

photosensitivity. Eight patients with de novo deletions of

15q26 encompassing part or all of CHD2 have been re-

ported (Veredice et al., 2009; Dhamija et al., 2011; Capelli

et al., 2012; Lund et al., 2013; Mullen et al., 2013; Chénier

et al., 2014). We and others subsequently showed 6/500

epileptic encephalopathy cases had de novo CHD2 muta-

tions (Carvill et al., 2013; Epi4K Consortium et al., 2013;

Suls et al., 2013; Lund et al., 2014), and recently showed

that clinical photosensitivity was prominent in the rare

CHD2-associated myoclonic encephalopathy (Thomas

et al., 2015).

These findings led us to hypothesize that CHD2 disrup-

tion would be associated with common forms of photo-

sensitive epilepsy or photosensitivity manifesting as a

photoparoxysmal response alone.

Materials and methods
Written informed consent was obtained from patients or
parents/guardians for minors or those with intellectual disabil-
ity. The study was approved by relevant institutional ethics
committees.

We defined photosensitive epilepsy as the presence of a
photoparoxysmal response (Kasteleijn-Nolst Trenité et al.,
2012) with a history of epilepsy, or seizures reproducibly
induced by flickering light. The photoparoxysmal response
per se was not an essential inclusion requirement in every
patient with epilepsy because age, state (e.g. sleep deprivation)
and antiepileptic medication affect its detectability. To test the
effect of CHD2 variation beyond the epileptic encephalopa-
thies alone, we included a broad range of epilepsy types.
Recruitment was from nine countries (see Supplementary
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material for details) (Tauer et al., 2005; Lu et al., 2008; Taylor
et al., 2013). The cohort included 36 patients with EMA: all
had photoparoxysmal response. We sequenced CHD2 in 580
people with photosensitive epilepsy and 55 people with photo-
paroxysmal response but no history of seizures. All patients
were of European ancestry. The phenotypic distribution is
given in Table 1.

We evaluated data from two additional exome-sequenced
cohorts of GGE patients, to determine the role of CHD2
variation in GGE per se, independent of photoparoxysmal
response. Not all patients in these cohorts had been formally
assessed for photoparoxysmal response. These two groups
were the Complex Genetics of Idiopathic Epilepsies
Consortium (CoGIE) cohort of 238 probands with familial
GGE (Supplementary material), and a published cohort of
118 patients with GGE (Heinzen et al., 2012).

Targeted sequencing of CHD2 was undertaken either using
Illumina TruSeq Custom AmpliconTM (TSCA) or molecular
inversion probes (see Supplementary material for details).
Whole exome sequencing (Supplementary material) was per-
formed on five EMA samples. Coverage data for all experi-
ments are provided in the Supplementary material. Only
variants confirmed by a second method (Sanger sequencing
or a second independent molecular inversion probe capture,
see Supplementary material) were used in analyses.

The Exome Aggregation Consortium (ExAC) formed a large
control population of disease and population genetic studies
(ExAC, Cambridge, USA; URL: http://exac.broadinstitute.org
accessed October 2014; non-Finnish European samples only
used), giving the best available population frequency of
CHD2 variants of interest. Detailed phenotypic data are not
available for these individuals; some might, if tested, have or
have had photoparoxysmal response or a history of photo-
sensitive seizures. These unselected cases are unlikely to har-
bour more than the best estimates of photoparoxysmal
response prevalence in the general population (1.4%)
(Kasteleijn-Nolst Trenite et al., 2003).

We focused on unique variants, in our cohort and in ExAC:
this is a well-established approach (Carvill et al., 2013;
Cnossen et al., 2014; Wain et al., 2014). We hypothesized

an over-representation of unique variants in our cohort com-
pared with the phenotypically-unselected ExAC cohort.
We defined unique variants as those that occurred in one
individual only, in cases and controls (from ExAC) considered
together, that were non-synonymous, splice-site or frameshift.
We used several methods for prediction of the functional con-
sequences of unique variants in cases (Supplementary mater-
ial). We defined ‘rare’ variants as those with a minor allele
frequency 51% in the non-Finnish European ExAC samples.

We undertook functional studies. To test functional conse-
quences of Chd2 loss in zebrafish, we used the chd2 E2I2
morpholino reported previously (Suls et al., 2013). Briefly,
morpholino (12 ng) was microinjected into 1- to 2-cell-stage
embryos of the AB (wild-type) strain. Embryos were raised
in a dark incubator. At 1 day post-fertilization (dpf), embryos
were prepared using the least possible amount of light. In par-
allel, control non-injected embryos from the same clutch of
eggs were processed in the same manner. At 4 dpf, optic
tectal field recordings were performed (Suls et al., 2013)
(Supplementary material). The first 10 s of recording were
performed in minimal light in order to place the needle.
Immediately following these first 10 s, recordings were
performed in the dark for five minutes. At the end of this 5-
min period, a very bright light was switched on (‘light ON’
state; six times the standard brightness level used for needle
placement), and recording continued for 5 min. A paroxysm of
high-frequency activity (200–500 Hz) with amplitude 43
times background level, either spontaneous or evoked by
light, was defined as a polyspiking episode.

Statistics

We performed a two-tailed Fisher’s exact test to determine
whether the burden of unique variants in our case cohorts
was greater than expected compared to ExAC controls.
We examined the frequency of all rare variants in the entire
cohort, and the frequency of unique variants only separately in
patients with EMA, patients with GGE excluding EMA, and
patients with focal epilepsies. The threshold for significance
was set at P5 0�01, applying Bonferroni correction for these
five comparisons. For the single separate comparison of cases
with photoparoxysmal response without epilepsy and ExAC,
significance was set at P5 0�05. For zebrafish data, compari-
son of the parameters of spiking activity (dark versus light
condition) for each treatment group was performed using the
Mann-Whitney test.

Results
We identified 22 rare variants (Supplementary Table 1) in

the cohort of patients with photosensitive epilepsy: 11 were

unique (Table 2). There was a significant difference

(P = 2.17 � 10�5) in unique variant frequency between

cases (11/580 cases; 11/1160 alleles; 0.95%) and controls

(128/68 854 alleles; 0.19%). The unique variants in the

cases were all well covered in ExAC controls

(Supplementary material). The 11 unique variants in cases

were also absent from additional data sets: Exome Variant

Server (http://evs.gs.washington.edu/EVS/), 1000 Genomes

data set (http://www.1000genomes.org/), and dbSNP

Table 1 Distribution of cases by continental origin and

broad syndromic classification

Syndrome

Cohort GGE Focal Other PPR without

epilepsy

European 249 24 32 55

Australian 230* 35* 11 0

Total 479* 59* 43 55

European includes epilepsy cases from Germany (90), Italy (82), The Netherlands (75),

Greece (34), Serbia (17), UK (5) and Denmark (2).

GGE = genetic generalized epilepsies, including GGE for which other information was

not available, and, where classified, juvenile myoclonic epilepsy, juvenile absence epi-

lepsy, childhood absence epilepsy, early-onset absence epilepsy, epilepsy with myo-

clonic atonic seizures, epilepsy with generalized tonic-clonic seizures only, and EMA.

Focal includes all types of focal epilepsies, including idiopathic photosensitive occipital

lobe epilepsy (IPOE). *One Australian patient evolved from a GGE to a focal epilepsy.

Other includes Lennox-Gastaut syndrome, epilepsy due to tuberous sclerosis, epilepsy

with electrical status epilepticus in sleep and epilepsies otherwise unclassified: none of

these particular cases had unique CHD2 variants.
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(http://www.ncbi.nlm.nih.gov/SNP). There was no differ-

ence in the overall burden of rare CHD2 variants in

cases compared to controls [22/1160 alleles (1.90%)

versus 1236/68854 alleles (1.80%) respectively; P = 0.74].

We provide data on the frequency of variants in CHD2 in

cases and controls according to various thresholds in the

Supplementary Table 2. Figure 1 shows all previously-

reported variants and all unique variants identified in our

cases.

We investigated the predicted deleteriousness of the 11

unique variants in the cases (Table 2). Eight of 11 unique

variants (73%) had scaled CADD scores 410, placing them

in the top 10% most deleterious single nucleotide variants;

as a group, the 11 variants had a mean scaled CADD score

of 32.6, ranking higher than 99.95% of all possible human

single nucleotide variants (Kircher et al., 2014).

Next, we analysed variation by epilepsy type. The arche-

typal photosensitive GGE syndrome EMA had the highest

frequency of unique variants, found in 3/36 patients, more

than expected compared to ExAC controls (3/72 alleles

versus 128/68 854 alleles) (P = 3.50 � 10�4). As a post

hoc comparison, the frequency of unique variants (4.2%)

in the small EMA group is considerably greater than in our

overall cohort excluding EMA (0.74%) (P = 0.026).

Notably, two of three EMA variants were frameshift, com-

pared to 9/128 unique variants in ExAC. One EMA variant

was shown to have arisen de novo, strengthening its role in

causation of the phenotype.

For all GGE excluding EMA, we found no significant

difference compared to ExAC (4/888 alleles versus 128/

68 854 alleles, P = 0.089). We also did not find significant

over-representation in focal epilepsies compared with ExAC

(2/118 alleles versus 128/68 854 alleles; P = 0.021). One

case was included in both GGE and focal epilepsy cohorts,

as the phenotype evolved from early-onset absence epilepsy

to idiopathic photosensitive occipital epilepsy (Patient 11,

Table 2). One of 55 (1.82%) individuals with photoparox-

ysmal response but no seizures had a unique CHD2

variant (Table 2 and Fig. 1): this did not represent over-

representation compared to ExAC (1/110 alleles versus

128/68 854 alleles; P = 0.186). This case has not developed

epilepsy by the age of 18 years. We provide 99% confi-

dence intervals (CI) (accounting for multiple comparisons)

for all these comparisons in Table 3.

To investigate whether CHD2 may be associated with the

broader phenotype of GGE rather than photosensitive

epilepsies specifically, we tested whether rare variants in

CHD2 were enriched in patients with GGE, with or

Table 2 Patients found to have unique mutations in CHD2 and their clinical phenotypes

Case

ID

Position

(NCBI.37)

Consequence cDNA change Protein

change

Computational

Analysis

Score (PolyPhen-2;

SIFTindel; SIFT;

splice-site

inference)

CADD

scores

(PHRED

scaled)

Syndromic

diagnosis

Comments

1 15:93545502 Frameshift

deletion

c.4233_4236del p.E1412Gfs*64 Deleterious (0.858) 44 GGE

2 15:93487750 Splice site c.1153 + 5G4A NA No change in donor site 8.124 Unclassified

3 15:93541780 Missense c.C3937G p.R1313G Probably damaging (0.98) 16.9 Unclassified

4 15:93543742 Missense c.G4009T p.A1337S Benign (0.001) 8.728 IPOE

5 15:93496808 Splice site c.1719 + 5G4A NA Loss of donor site 15.74 Unclassified Learning disability

6 15:93528855 Missense c.G3365C p.S1122T Benign (0.01) 4.373 GGE

7 15:93540316 Frameshift

deletion

c.3725delA p.K1245Nfs*4 Deleterious (0.858) 43 EMA Autism;

nephrolithiasis;

migraine; scoliosis
8 15:93545442 Frameshift

insertion

c.4173dupA p.Q1392Tfs*17 Deleterious (0.85) 38 EMA De novo mutation

9 15:93482909 Missense c.C653T p.P218L Probably damaging (0.99) 21.3 EMA Inherited from

unaffected

mother
10 15:93543767 Missense c.G4034A p.R1345Q Possibly damaging (0.8) 33 JME

11 15:93563244 Nonsense c.C4909T p.R1637X Probably damaging

(nonsense)

49 Phenotype

evolved

from

early-onset

absence

epilepsy

to IPOE

De novo mutation

i 15:93552396 Missense c.G4435A p.V1479M Probably damaging (0.996) 27.9 PPR; febrile

seizures

only;

no epilepsy

IPOE = idiopathic photosensitive occipital epilepsy; JME = juvenile myoclonic epilepsy; PPR = photoparoxysmal response.
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without photoparoxysmal response. Of 238 CoGIE GGE

probands (Supplementary material), none had unique

CHD2 variants (not seen in ExAC or our cases). There

were no unique mutations in CHD2 in a previously-

published cohort of 118 patients with GGE (Heinzen

et al., 2012).

To test functional consequences of Chd2 loss in zebra-

fish, we used the chd2 E2I2 morpholino reported previ-

ously (Suls et al., 2013). As described, chd2 morpholino-

injected larvae displayed body curvature, excessive body

pigmentation, and developmental delay (Suls et al.,

2013). This phenotype was observed after 50% knock-

down of chd2. All non-treated larvae appeared normal.

Recordings were obtained from 15 morpholino-injected

larvae and 10 sibling controls. In comparison to 7 dpf

larvae (Afrikanova et al., 2013), spikes from 4 dpf

larvae were shorter in duration and displayed a higher

frequency of oscillations in polyspike complexes. Due to

these differences, spontaneous spiking in controls was not

excluded, but also quantified. We analysed duration of

discharges, number of discharges under light conditions,

cumulative duration of spiking activity, and cumulative

discharge frequency distribution. Representative recordings

are shown in Fig. 2.

In line with the previous findings (Suls et al., 2013), the

morpholino-injected larvae showed spontaneous abnormal

burst discharges. There was a preferential occurrence

during the light ON state (17 discharges in the dark

versus 59 in the light). In the morpholino-injected group,

14/15 larvae had discharges during the light ON state; 7/15

larvae had spiking only during the 5-min light ON state,

and 10/15 showed spiking activity within the first 3–5 s

after the light ON. The average duration of any event

(spike or polyspike discharge) in the morpholino-injected

group fell during the light ON state (Fig. 3A), attributable

to the fact that morpholino-injected larvae also displayed

spontaneous polyspike discharges in the dark: the events

under light conditions were more heterogeneous (i.e. spon-

taneous polyspikes plus light-induced spiking), explaining

reduced average duration. The average number of events/

larva significantly increased in the morpholino-injected

group in the light opposed to the dark period; this was

not seen in the control group (Fig. 3B). A similar pattern

was observed for cumulative duration of spiking activity

(Fig. 3C): morpholino-injected larvae showed a steep

increase in polyspike discharges in the light ON state, not

observed for controls. The larvae from the non-injected

control group also reacted to the light ON state by display-

ing an initial locomotor response, with 7/10 displaying

short spontaneous burst activity within 2–13 s after the

light was switched on. However, the overall distribution

of event duration is different from that of morpholino-

injected larvae (Fig. 3D): the controls’ curve lies to

the left of the morpholino-injected curve, indicating that

the proportion of longer discharges is higher in the

morpholino-injected group.

Figure 1 Schematic of CHD2 illustrating its functional (chromo, DEXDc, DNA-binding and ATP helicase) domains, the lo-

cation of previously-reported variants and the unique variants in both cases and controls identified in this study.

Table 3 Odds ratio for association with unique variants

in CHD2 by phenotype, with 99% CI

P-value

(Fisher’s

exact;

2-tailed)

Odds

ratio

Lower

bound of

99% CI

Upper

bound of

99% CI

Whole photosensitive

epilepsy cohort

2.17 � 10�5 5.18 2.29 11.74

EMA alone 3.50 � 10�4 24.36 5.06 117.38

GGE excluding EMA 0.089 2.44 0.65 9.08

Focal epilepsies 0.021 9.40 1.45 61.01

Cases with PPR only 0.186 4.96 0.36 67.74

The associations with photosensitive epilepsy overall and with EMA alone are signifi-

cant, as documented in the text. PPR = photoparoxysmal response.
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Discussion
We show an enrichment of unique variants in CHD2 with

photosensitivity in the common epilepsies overall, identify-

ing CHD2 as a photosensitive epilepsy gene. We also

examined the distribution of unique variants by syndrome.

CHD2 is also the first gene to be discovered for EMA, the

archetypal photosensitive epilepsy syndrome. In CHD2

encephalopathy, though published phenotypes can be diffi-

cult to interpret, the seizure type of absence seizures with

eyelid myoclonia, rather than the epilepsy syndrome, is seen

in as many as 8/23 (35%) patients with de novo CHD2

mutation or deletion (Veredice et al., 2009; Dhamija et al.,

2011; Capelli et al., 2012; Carvill et al., 2013; Chénier

et al., 2014; Lund et al., 2014). Together, these results

suggest that CHD2 is an important contributor to both

the absence seizures with eyelid myoclonia seizure type

and EMA epilepsy syndrome. For other epilepsy syn-

dromes, CHD2 variation over-representation in the photo-

sensitive GGE or the mixed cohort of photosensitive focal

epilepsies failed to meet the corrected threshold for signifi-

cance. A single unique CHD2 variant was found in one

patient with photoparoxysmal response without seizures.

In view of the comparatively small sizes of these syndrome

cohorts, we can only confidently exclude effects with odds

ratios greater than the upper limit for the 99% confidence

intervals given in Table 3. Further studies in larger cohorts

of these phenotypes would seem warranted.

Previous studies of photoparoxysmal response support a

model of significant genetic heterogeneity and an overall

complex genetic architecture (Sadleir et al., 2012; Verrotti

et al., 2012; Taylor et al., 2013): indeed, none of the

several linkage regions contain CHD2. Our findings con-

firm heterogeneity and complexity in the genetics of photo-

sensitivity, but also suggest a single gene may contribute to

photosensitivity in some cases. Two mutations we detected

are recurrent: p.Glu1412Glyfs*64, previously reported in

epileptic encephalopathy with marked photosensitivity

(Carvill et al., 2013); and p.Gln1392Thrfs*17, in Lennox-

Gastaut syndrome with photosensitivity (Lund et al., 2014).

The unique variants detected are, as a group, predicted to

be amongst the most deleterious variants possible (Kircher

et al., 2014) and CHD2 is amongst the genes least tolerant

of functional variation (Petrovski et al., 2013; Residual

Variation Intolerance Score 2.37).

CHD2 does not encode an ion channel, opening up new

avenues for research into cortical excitability. CHD2 is one

of nine genes from a highly-conserved protein family with a

unique domain combination: two N-terminal chromatin-

organization modifier (chromo), SNF2-related helicase/

ATPase and DNA-binding domains (Woodage et al.,

1997; Schuster et al., 2002; Kulkarni et al., 2008). Chd2

knockdown zebrafish have multiple developmental abnorm-

alities, abnormal movements and epileptiform discharges

(Suls et al., 2013). Disruption of Chd2 in mice causes em-

bryonic death in some heterozygote pups and a complex

phenotype including growth retardation and lordokyphosis

(Marfella et al., 2006; Kulkarni et al., 2008): epilepsy has

not yet been described. Interestingly, the reported human

mutations do not cluster to accessory domains of the pro-

tein and no obvious pattern has emerged. Recent data

demonstrated that the N-terminal region of CHD2 plays

an inhibitory role, reducing DNA affinity and ATPase ac-

tivity which may confer specificity, while the C-terminus

enhances DNA binding and stimulates ATPase activity

Figure 2 Representative tectal field recordings of 4-dpf zebrafish larvae. Background fragment of non-treated wild-type control in the

dark (A); reaction of a non-injected fish to light ON - movement artefacts (wavy background) and a very short spike were observed (B); response

to light ON of the morpholino-injected larvae: significantly more spiking activity is seen (C). The scale is the same for all three fragments.
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(Liu et al., 2015). Additional studies investigating protein

interacting partners and post-translational modifications of

CHD2 will be necessary to understand how abnormal

CHD2 leads to photosensitive epilepsy.

Our zebrafish data show that partial (50%) loss of

chd2 function causes photosensitivity. Although Suls et al.

(2013) showed chd2 knockdown could cause seizures,

photosensitivity was not studied. Although normal zebra-

fish show complex sensitivity to light (Moore and

Whitmore, 2014), and untreated larvae show minor sensi-

tivity to sudden exposure to light, morpholino-injected

larvae show significantly more spiking activity on sudden

light exposure. Photosensitivity on constant, rather than

only flickering, light exposure has been described in

humans (Oguni et al., 2001). The functional consequences

of each of the human mutations we detected is not known,

but some at least very probably lead to loss of function, as

caused by partial chd2 knockdown that results in markedly

enhanced photosensitivity in zebrafish. Together, these data

strongly suggest that some human CHD2 mutations cause

photosensitivity.

There are potential limitations of our work. Different

sequencing platforms were used for the various studied

groups. However, we note that all unique variants in

cases were confirmed by a second method, whereas for

ExAC controls we used a liberal threshold to maximize

sensitivity to unique variants, such that a proportion of

variants selected from ExAC will be false positive: the net

result of this overall conservative approach is only to

reduce study power. The ExAC cohort is also the biggest

relevant control data set available, and the most likely of

any existing data set to provide an accurate estimate of the

Figure 3 Electrographic activity of zebrafish larvae with chd2 knockdown and light ON stimulus. Zebrafish larvae (4 dpf) were kept

in the dark (or darkened environment, if not possible otherwise) for all groups in Danieau’s medium. Tectal field recordings were performed for

the first 5 min in the dark and subsequently in light ON state for the following 5 min in morpholino-injected larvae (n = 15) and non-injected larvae

(n = 10). A spiking episode, either spontaneous or evoked by light, was defined as a paroxysm of high-frequency (200–500 Hz) activity with the

amplitude exceeding three times the background. Average duration of spiking events � SEM detected per condition is shown in A. Average

number of events per fish � SEM is shown in B. Cumulative duration of spiking activity per fish as seconds � SEM is shown in C. Cumulative

frequency distribution of spiking episodes is shown in D: morpholino-injected larvae show more activity than any of the non-injected controls, and

a higher photosensitivity (curve shift to the right in the light compared to the dark recordings). *P5 0.05 and **P5 0.01 Mann-Whitney test.
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true frequency of unique variation in CHD2 in a popula-

tion not enriched for photosensitive epilepsy. Taking all

these factors into account, the use of different platforms

is very unlikely to have generated false positive results—

indeed, we are more likely to have underestimated unique

variant numbers in cases. It is also possible that our choice

of statistical test may have missed a true association

between rare variation in CHD2 and GGE (irrespective

of photoparoxysmal response or photosensitivity), and we

did not test whether CHD2 variation contributes to

epilepsy more broadly: we therefore cannot exclude the

possibility that rare CHD2 variation contributes to epilepsy

per se. Lack of parental samples meant we could only con-

firm variants were de novo in two patients. Family samples

were only available in one other case (Case 9): the variant

was inherited from a clinically-unaffected mother in whom

no EEG studies had been carried out.

Our results provide evidence for a specific gene in a par-

ticular trait in epilepsy. Understanding the genetic basis of

the photosensitivity trait is a first step to elucidating the

biology that underlies photoparoxysmal response and its

relation to epilepsy. Human photosensitive epilepsy para-

digms have facilitated epilepsy treatment discoveries

(French et al., 2014): understanding photoparoxysmal

response biology may increase the value of these para-

digms. Our findings may also provide new directions for

understanding human cortical excitability.
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Kasteleijn-Nolst Trenité D, Rubboli G, Hirsch E, Martins da Silva A,

Seri S, Wilkins A, et al. Methodology of photic stimulation revisited:

updated European algorithm for visual stimulation in the EEG la-

boratory. Epilepsia 2012; 53: 16–24.

1206 | BRAIN 2015: 138; 1198–1208 E. C. Galizia et al.

 by guest on January 4, 2016
http://brain.oxfordjournals.org/

D
ow

nloaded from
 

http://exac.broadinstitute.org/about
http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/awv052/-/DC1
http://brain.oxfordjournals.org/


Kasteleijn-Nolst Trenite D, Silva L, Maureza M. Prevelance of photo-

paroxysmal EEG responses in normal children and adolescents in

Teofile Otoni, Brazil; 2001-2002. Epilepsia 2003; 44 (Suppl 8): 48.

Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM, Shendure J.

A general framework for estimating the relative pathogenicity of

human genetic variants. Nat Genet 2014; 46: 310–5.

Koeleman BPC, de Kovel CGF, Kasteleijn-Nolst Trenité DGA.
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