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Abstract
There has been rapid development of systems that yield strong interactions between freely propagating
photons in one-dimension via controlled coupling to quantum emitters. This raises interesting
possibilities such as quantum information processingwith photons or quantummany-body states of
light, but treating such systems generally remains a difficult task theoretically. Here, we describe a
novel technique inwhich the dynamics and correlations of a few photons can be exactly calculated,
based upon knowledge of the initial photonic state and the solution of the reduced effective dynamics
of the quantum emitters alone.We show that this generalized ‘input–output’ formalism allows for a
straightforward numerical implementation regardless of systemdetails, such as emitter positions,
external driving, and level structure. As a specific example, we apply our technique to showhow
atomic systemswith infinite-range interactions and under conditions of electromagnetically induced
transparency enable the selective transmission of correlatedmulti-photon states.

1. Introduction

Systems inwhich individual photons can interact strongly with each other constitute an exciting frontier for the
fields of quantumand nonlinear optics [1]. Such systems enable the generation andmanipulation of non-
classical light, which are crucial ingredients for quantum information processing and quantumnetworks [2]. At
themany-body level, it has been predicted that these systems can produce phenomena such as quantumphase
transitions of light [3–5] or photon crystallization [6, 7]. Early examples of such systemswhere strong
interactions between photons could be observed consisted of individual atoms coupled to singlemodes of high-
finesse optical cavities, within the context of cavity quantum electrodynamics (QEDs) [8, 9].More recently, a
number of systems have emerged that produce strong optical nonlinearities between freely propagating
photons, including cold atomic gases coupled to guidedmodes of tapered fibers [10, 11], photonic crystal fibers
[12] orwaveguides [13], cold Rydberg gases in free space [14], and superconducting qubits coupled to
microwavewaveguides [15, 16].

The paradigmof cavityQED admits exact analytical or numerical solutions at the few-photon (and/or few-
atom) level through the elegant ‘input–output’ formalism [17], as illustrated conceptually infigure 1(a). In this
formalism, all of the properties of thefield exiting the system (the output) can be determined based upon
knowledge of the inputfield and the dynamics of the atom-cavity system alone. For a few excitations, the latter
can be solved due to the small Hilbert space associatedwith a small number of excitations of a discrete cavity
mode. In contrast, despite rapid development on the experimental front, theoretical techniques to treat the
dynamics of freely propagating photons interacting with spatially distributed emitters are generally lacking. At
first glance, the challenge compared to the cavity case arises from the fact that a two-level system is a nonlinear
frequencymixer, which is capable of generating a continuumof new frequencies from an initial pulse, as
schematically depicted infigure 1(b).Apriori, keeping track of this continuum as it propagates and re-scatters
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fromother emitters appears to be a difficult task. An exception is theweak excitation limit, inwhich atoms can
be treated as linear scatterers and the powerful transfermatrixmethod of linear optics can be employed [18, 19].

The full quantum case has been solved exactly in a limited number of situations inwhich nonlinear systems
are coupled to 1Dwaveguides [20–30]. The formalism employed in [21] is particularly elegant, because it
establishes an input–output relation to determine the nonlinear scattering from a two-level atom.Here, we show
that this technique can be efficiently generalized tomany atoms, chiral or bi-directional waveguides, and
arbitrary atomic configurations, providing a powerful tool to investigate nonlinear optical dynamics in all
systems of interest.

This paper is organized in the followingway: first, we present a generalized input–output formalism to treat
few-photon propagation inwaveguides coupled tomany atoms.We show that the infinite degrees of freedom
associatedwith the photonicmodes can be effectively integrated out, yielding an open, interacting ‘spin’model
that involves only the internal degrees of freedomof the atoms. This open system can be solved using a number
of conventional, quantumoptical techniques. Then, we show that the solution of the spin problem can be used
to re-construct the opticalfields. In particular, we provide a prescription tomap spin correlations to S-matrix
elements, which contain full information about the photon dynamics, and give explicit closed-form expressions
for the one- and two-photon cases. Importantly, in analogywith the cavityQED case, our technique enables
analytical solutions under some scenarios, but in general allows for simple numerical implementation under a
wide variety of circumstances of interest, such as different level structures, external driving, atomic positions,
atomicmotion, etc. Finally, to illustrate the ease of usage, we apply our technique to the study of nonlinearfield
propagation through an optically dense ensemble of atomswith Rydberg-like interactions.

2.Generalized input–output formalism

In this sectionwe consider a generic system composed ofmany atoms located at positions zi along a bidirectional
waveguide.We assume that there is an optical transition between ground and excited-state levels g∣ ñand e∣ ñ to
which thewaveguide couples, but otherwisewe leave unspecified the atomic internal structure and the possible
interactions between them (e.g., Rydberg interactions), as such terms do not affect the derivation presented here.
The bareHamiltonian of the system is composed of a termdescribing the energy levels of the atomsHat, and a
waveguide part H k b bdv k v k v kph , ,

†ò w= å = , where k is thewavevector and v=± is an index for the direction
of propagation, with the plus (minus)denoting propagation towards the right (left) direction.We assume that
within the bandwidth ofmodes towhich the atoms significantly couple, the dispersion relation for the guided
modes can be linearized as c kk ∣ ∣w = . The interaction between atoms and photons is given in the rotatingwave
approximation by

Figure 1.CavityQEDversusmany-atomwaveguide (a) Schematic representation of a cavityQED system. The input–output
formalism enables the outgoing field to be calculated based on knowledge of the input field and the internal dynamics of the cavity
system. (b) System composed ofmany atoms coupled to a commonwaveguide. The nonlinearity of an atom enables the generation of
a continuumof new frequencies upon scattering of an incoming state. This property, combinedwithmultiple scattering fromother
atoms, appears tomake this systemmore complicated than the cavityQED case.
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which describes the process where excited atoms can emit photons into thewaveguide, or ground-state atoms
can become excited by absorbing a photon. The coupling amplitude g is assumed to be identical for all atoms,
while the coupling phase depends on the atomic position (e vkzi i). Here, wewill explicitly treat themore
complicated bidirectional case, although all of the results readily generalize to the case of a single direction of
propagation.

Our immediate goal is to generalize thewell-known input–output formalism of cavityQED [17] and the
more recent formalism for a single atom coupled to awaveguide [21], to the present situation ofmany spatially
distributed atoms coupled to a commonwaveguide. In short, wewill eliminate the photonic degrees of freedom
by formal integration, which reveals that the outputfield exiting the collection of atoms is completely
describable in terms of the inputfield and atomic properties alone. This formal integration also provides a set of
generalizedHeisenberg–Langevin equations that governs the atomic evolution.

TheHeisenberg equations ofmotion forσge
i and bv, k can be readily obtained by calculating the commutators

withH. To simplify the presentation of the resulting equations, we replace the spin operatorsσge
i with the

bosonic annihilation operator ai. The two-level nature of the atomic transition can be retained by introducing an
interaction energyU0 formultiple excitations, through the term (U0/2) a a a a 1i i i i i( )† †å - inHat, and by taking
the limitU0  ¥ at the end of calculations for observable quantities.

TheHeisenberg equations for bv, k can be formally integrated and Fourier transformed, to obtain the real-
spacewave equation

b z t b t vz c
g

c
v z z a t

v z z

c
,

i 2
. 2v v

j

N

j j

j

,in
1

( )( ) ( )
( ) ( ) ( )å

p
q= - - - -

-

=

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Here bv,in is the homogeneous solution, physically corresponding to the freely propagating field in the
waveguide, while the second termon the right consists of the part of the field emitted by the atoms. Inserting
equation (2) into the equation for ai, we obtain

a H a g b t vz c
g

c
a t z z ci , i 2

2
. 3i i

v
v i

j

N

j i jat ,in

2

1
( )( )˙ ( )å åp

p
= - - - - -

= =

⎡⎣ ⎤⎦

In realistic systems, time retardation can be neglected, resulting in theMarkov approximation

a t z z c a t ej i j j
z z ci i jin( ∣ ∣ ) ( )- - » w - . Here, inw is a central frequency aroundwhich the atomic dynamics is

centered (typically the atomic resonance frequency). This approximation is validwhen the difference in free-
space propagation phases L c 1wD  is small across the characteristic system size L and over the bandwidth of
photonsΔω involved in the dynamics. As a simple example, the characteristic bandwidth of an atomic system is
given by its spontaneous emission rate, corresponding to a fewMHz, which results in a significant free-space
phase difference only over lengths L 1 mmuch longer than realistic atomic ensembles. Amore general theory
which does not require theMarkov approximation is presented in [31].

We have thus obtained the generalizedHeisenberg–Langevin equation

a H a
c

b t vz c ai , i
2 2

e , 4i i
v

v i
j

N

j
z z c

at
1D

,in
1D

1

i i jin( )˙ ( )å å= -
G

- -
G w

= =

-⎡⎣ ⎤⎦

wherewe have identifiedΓ1D= 4πg2/c as the single-atom spontaneous emission rate into thewaveguidemodes.
If we keep separated the terms proportional to aj coming from the right and left-going photonicfields, we can
find easily that the Lindblad jumpoperators corresponding to the decay of the atoms into thewaveguide are
O a4 ej j

z c
1D

i jin= G å w


 , in terms of whichwe canwrite themaster equation for the atomic densitymatrix

H O O O O O Oi , 2v v v v v v vat˙ [ ] [ ] † † †r r r r r r= º - + å - -= .We also see thatwe can derive equation (4)
from a non-Hermitian effectiveHamiltonian

H H a a
i

2
e , 5

ij
i j

z z c
eff at

1D i i jin ( )†å= -
G w -

which can be used for a quantum jumpdescription of the atomic dynamics. The resulting infinite-range
interaction between a pair of atoms i, j intuitively results from the propagation of amediating photon between
that pair, with a phase factor proportional to the separation distance.

Within the same approximations employed above to derive theHeisenberg–Langevin equationswe can
obtain a generalized input–output relation of the form b z t b t vz c,v v,out ,in( ) ( )= - ci 2 i

N
1D 1( )- G å =

a t ei
v z z ci iin( ) ( )w - , where the outputfield is defined for z z zmaxR i[ ]> º (z z zminL i[ ]< º ) for right(left)-

goingfields. However, since the right-going outputfield propagates freely after zR, it is convenient to simply
define b t b z t,R,out ,out( ) ( )= ++ + as thefield immediately past the right-most atom (where ò is an
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infinitesimal positive number), and similarly for the left-going output. The derived relation shows that the out-
goingfield properties are obtainable from those of the atoms alone.

The emergence of infinite-range interactions between emittersmediated by guided photons, and input–
output relationships between these emitters and the outgoing field, have been discussed before in a number of
contexts [19, 21, 32], but the idea that such concepts could be used to study quantum interactions of photons in
extended systems has not been fully appreciated. In the remaining sections, wewill demonstrate the effectiveness
of this approach to quantumnonlinear optics. In particular, the infinite-dimensional continuumof the photons

is effectively reduced to aHilbert space of dimension
n

k
dim i

n
0[ ] = å = ⎜ ⎟⎛
⎝

⎞
⎠where n is themaximumnumber of

atomic excitations (for n=Nwehave dim 2N[ ] = ). The atomic dynamics, on the other hand, having been
reduced to standardHeisenberg–Langevin equations, quantum jump, ormaster equations, are solvable by
conventional prescriptions [33]. It is also possible to derive generalizedmaster equations describing the atomic
dynamics in response to arbitrary (e.g., non-classical) incident states of light, as detailed in appendix C.

3. Relation to S-matrix elements

The S-matrix characterizes how an incoming state ofmonochromatic photons evolves via interactionwith
atoms into a superposition of outgoingmonochromatic photons. Becausemonochromatic photons form a
complete basis, the S-matrix thus contains all information about photon dynamics.Here, wewill show that
S-matrix elements can be calculated from the dynamics of the atoms evolving under the effective spinmodel.

Formally, the S-matrix for the interaction of an n-photon state with an arbitrary system is defined as

S S

b p b p b k b k

FT b t b t b t b t

p k

0 .. .. 0

0 .. .. 0 , 6

n

n n

n
n n

p k;

out 1 out in 1 in

2
out 1 out in 1 in

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

∣ ∣

∣ ∣

∣ ∣ ( )

( )

† †

( ) † †

=á ñ

= á ñ

= á ¢ ¢ ñ

where the input and output creation operators respectively create freely propagating incoming and outgoing
photonic states. The vectors p and k denote the outgoing and incoming frequencies of the n photons. The input
and output operators can be any combination of+ and− propagation directions (wehave omitted this index
here for simplicity). In the last linewe have used a global Fourier transformation
FT t t2 d d en n

i
n

i i
c t p t k2

1
i i i i i( )( )( ) òp=  ¢-

=
- ¢ , to express the S-matrix in time.

The S-matrix has been calculated exactly before in a limited number of situations [20, 21, 27, 30]. Here, we
provide a general prescription to numerically obtain the S-matrix starting from the input–output formalism.
One can alsofind a similar set of conclusions that was derived simultaneously and independently in [34]. First, it
should be noted that the operators bin and bout correspond to the input and output operators defined in the
previous section [21]. On the other hand, the input–output relation enables the correlator of equation (6) to be
written purely in terms of atomic operators. For notational simplicity, we give a derivation for a single spin and a
monodirectional waveguide, but its generalization to the bidirectional waveguide andmany atoms is
straightforward. For our purpose it is enough to have an input–output relation of the form

b b ai , 7out in ( )g= -

where a is in our case the spin operatorσge.
We summarize themain idea of the derivation here, while the details can be found in appendix A.1.We begin

by noting that equation (7) enables one to replace output operators by a combination of system and input
operators, or input operators by system and output operators. Selectively using these substitutions, one can
exploit favorable properties of either the input or output field, in order to gradually time order all of the system
operators (where operators at later times appear to the left of those at earlier times), while removing input and
output operators from the correlation. The favorable properties that can be used are that (1) system and input
operators commute [a(t), bin(t′)]= 0, when t′> t, and likewise [a(t), bout(t′)]= 0 for t′< t, (2) input annihilation
operators at different times commute amongst themselves, as do output annihilation operators, and (3) the
correlator can be reduced in size using b t b t t t,in in[ ( ) ( )] ( )† d¢ = - ¢ , ormade to vanish using b t 0 0in ( )∣ ñ = or

b t0 0out∣ ( )†á = . Through this procedure, the S-matrix can be expressed as a Fourier transformof a sumof terms
involving only time-ordered atomic operators (indicated by the operatorT). These functions generally have the
form

T a t a t a t a t0 .. .. 0 , 8m m1 1( ) ( ) ( ) ( )∣ ∣ ( )† †á ¢ ¢ ñ⎡⎣ ⎤⎦
with m n , multiplied by n−m delta functions in time.
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Moreover, using the general expression for theHeisenberg–Langevin equation and the quantum regression
theorem, it can be proven that when externalfields driving the systemdo not generate waveguide photons, the
correlation function of equation (8) can be evaluated by evolving a(t) as ae eH t H ti ieff eff- (see appendix A.2 for a
formal derivation). Here,Heff is the effectiveHamiltonian from equation (5) that contains only the spin
operators. Although such a form for a(t) is not true in general due to quantumnoise, these noise terms have no
influence on the correlation. A similar procedure as above enables one to express other important observables of
thefield, such as the second-order correlation function g(2)(t), in terms of correlation functions involving atoms
alone.

While the discussion has thus far been completely general, the case of S-matrix elements involving only one
or two photons can be formally reduced to particularly simple expressions. For example, in appendix B, we show
that the transmission coefficientTk for themany-atom, bi-directional waveguide case is related to the S-matrix
by S b p b k T0 0p k k pk;

1
,out ,in∣ ( ) ( )∣( ) † dº á ñ º+ + + + . Furthermore, it can be expressed in terms of a known∼N×N

matrix corresponding to the single-excitationGreen’s functionG0 (whose formvaries depending on the system
details)

T G k1
i

2
e . 9k

ij
ij

k z z1D
0

i i jin ( )( ) ( )å= -
G - -⎡⎣ ⎤⎦

Similarly, the two-photon S-matrix in transmission is generally given by

S T T

W T W p pi
8

, 10

p p k k k k p k p k

p p k k
iji j

ij ij i j i j

, ; ,
2

1D
2

, ; 1 2

1 2 1 2 1 2 1 1 2 2

1 2 1 2 ( ) ( )

( )

å

d d

p
d

=

-
G

+ «

+ + + +

+ +
¢ ¢

¢ ¢ ¢ ¢

where thefirst and second terms on the right describe the linear and nonlinear contributions, respectively. The
latter term can be expressed in terms ofmatricesW related to the single-excitationGreen’s function, and a
known∼N2×N2matrixT characterizing atomic nonlinearities and interactions.

4. Electromagnetically induced transparency

In this section, we apply our formalism to a specific example involving three-level atoms under conditions of
electromagnetically induced transparency (EIT) andwithRydberg-like interactions between atoms [14]. The
linear susceptibility for a two-level atomwith states g∣ ñand e∣ ñ, in response to aweak probefieldwith detuning
δ=ωp−ωeg from the atomic resonance, is shown infigure 2(b). It can be seen that the response on resonance is
primarily absorptive, as characterized by the imaginary part of the susceptibility (χ″, red curve). In contrast, the
response can become primarily dispersive near resonance if a third level s∣ ñ is added, and if the transition
e s∣ ∣ñ - ñ is driven by a control field (characterized by Rabi frequencyΩ and single photon detuning

L L esd w w= - ). Specifically, via interference between the probe and control fields, themedium can become

Figure 2. (a)EIT level scheme. The atomic ground ( g∣ ñ) and excited states ( e∣ ñ) interact with the quantumpropagating field b of the
waveguide. An additional classicalfieldwithRabi frequencyΩ couples state e∣ ñ to ametastable state s∣ ñ. The total single-atom
linewidth of the excited state is given byΓ. (b)The real (χ′) and imaginary (χ″) parts of the linear susceptibility for a two-level atom
(upper panel) and three-level atom (lower panel), as a function of the dimensionless detuning δ/Γof thefield b from the resonance
frequency of the g∣ ñ– e∣ ñ transition. For the three-level atom, the parameters used are δL= 0 andΩ/Γ= 1/3.
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transparent to the probe field (χ″= 0)when two-photon resonance is achieved, δ− δL= 0, realizing EIT [35]. In
this process, the incoming probefield stronglymixes with spinwave excitationsσsg to create ‘dark-state
polaritons’. Themedium remains highly transparent within a characteristic bandwidthΔEIT around the two-
photon resonance, which reduces to D2EIT

2 ( )D ~ W G , when δL= 0.Herewe have introduced the total
single-atom linewidthΓ (see below) and the optical depthD, corresponding to the opacity of themedium in the
absence of EIT and defined in terms of input and output intensity as Iout(Ω= 0)/Iin(Ω= 0)= Dexp( )- . These
dark-state polaritons propagate at a strongly reduced group velocity v cg  , which is proportional to the control
field intensity [35], as indicated by the steep slope of the real part of the susceptibilityχ′ infigure 2(b).

Taking si to be the annihilation operator for the state si∣ ñ, EIT is describedwithin our spinmodel by the
effective spinHamiltonian

H a a a s s a a ai
2

i
2

e , 11L
j

j j
j

j j j j
j l

k z z
j l

1D

,

i j lin( ) ( )† † † †å å åd= - +
G¢

- W + -
G -⎛

⎝⎜
⎞
⎠⎟

where thefirst two terms represents the explicit formofHat in equation (5) for the EIT three-level atomic
structure. In addition to thewaveguide coupling, herewe have added an independent atomic decay rateΓ′ into
other channels (e.g., unguidedmodes), yielding a total single-atom linewidth ofΓ=Γ′+Γ1D.

Our theoreticalmodel nearly ideally describes experiments inwhich atoms are coupled to one-dimensional
waveguides such as nanofibers [10] or photonic crystals [11], in which the interaction probability of a single
photon and atomΓ1D/Γ∼ 0.1 can be significant and up toN∼ 103 atoms are trapped.One consequence of the
large interaction probability is that even a single atom can yield a significant reflectance for single photons [11].
In free-space experiments, the atom–photon interaction probability ismuch smaller, while amuch larger
number of atoms is used to induce a significant optical response.While this large number cannot be
implemented numerically with ourmodel, our system can nonetheless be used to reproducemacroscopic
observables, thusmaking our approach an excellent description for atom-light interfaces in general.

Intuitively (and as canbe rigorously shown, see below), provided that free-space experiments only involve a
single transversemodeof light, one expects that the system response to light only depends on the interaction
probability andnumber of atoms via their product. This product in fact defines theoptical depth4D= 2NΓ1D/Γ.
As D 102 in free-space experiments, such systems can be evaluated using our spinmodelwith several hundred
atoms and suitably largeΓ1D/Γ. The only remaining issue is the potentially large reflectiongenerated by atoms in
themathematicalmodel, compared to free-space ensembleswhere reflection is negligible. Reflection can be
suppressed in themodel by giving the atoms a lattice constant dwhere k d m2 1 2in ( )p= + , wherem is a non-
negative integer, such that the reflection fromatomsdestructively interferes5 [36]. All subsequent numerical
calculations are performedunder this condition.

The spinmodel on a lattice describing EIT, equation (11), can be exactly solved in the linear regime using the
transfermatrix formalism [36], which correctly reproduces the free-space result and dependence on optical
depth for the group velocity vg= 2Ω2 /(nΓ1D) and transparencywindowΔEIT, where n is the (linear) atomic
density. The correspondingminimum spatial extent of a pulse that can propagate inside themediumwith high
transparency is given byσEIT= vg/ΔEIT.

A single photon propagating inside an ensemble of atoms under EIT conditions is coherentlymapped onto a
single dark polariton, corresponding to a delocalized spinwave populating the single excitation subspace of the
atomic ensemble. The polariton dynamics can be therefore visualized directly bymonitoring the excitation
probability ss

jsá ñof the atoms in the ensemble. Infigure 3, we initialize a single polariton inside themediumwith

an atomicwave function of the form f gj j sg
j N∣ ∣y sñ = å ñÄ , andwe determine numerically the time evolution

underH in equation (11) up to a final time tf. Choosing an initially Gaussian spinwave,
f k dj jdexp i exp 4 2j p pin

2 2 2 1 4( ) ( ( ) ) ( )m s ps= - - , with spatial extentσp (blue line), one sees that the
wavepacket propagates a distance v tfg · , andwith little loss provided thatσp>σEIT. Numerics (green line) show
perfect agreement with theoretical predictions (red circles) obtained via the transfermatrix formalism [36].

4
Actually the formulaD= 2NΓ1D/Γ is derived in the limit 1DG¢ G , where for a two-level atom the transmission on resonance is given by

t 1 exp1D 1D( ) ( )= - G G -G G . Such a regime of high transmission per single atom is relevant for themajority of EIT experiments and
indeed, as shown in themain text, known results of EIT are reproduced correctly. However in the opposite limit 1DG¢ G a single atom
behaves like a perfectmirror [42] (t ; 0) and the correct theoretical description requires a different expansion for the transmission
coefficient, t= 1− (Γ1D/Γ) ; Γ′/Γ1D.
5
In the complementary case where kind=mπ, reflections from atoms constructively interfere and atomicmirrors can be realized as shown

in [19].
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5. Infinite range interaction

The spinmodel formalism can be easily extended to include arbitrary atomic interactions, providing a powerful
tool to study quantumnonlinear optical effects. As a concrete example, we consider a system inwhich atoms can
interact directly over a long range, such as via Rydberg states [7, 37, 38] or photonic crystal bandgaps [39, 40].
The totalHamiltonian is given by

H a a a s s a

a a U s s s s

H

i
2

i
2

e
1

2

12

L
j

j j
j

j j j j

j l

k z z
j l

j l
jl j l l j

1D

,

i

drive

j lin

( )

( )

† † †

† † †

å å

å å

d=- +
G¢

- W +

-
G

+

+

-

¹

⎛
⎝⎜

⎞
⎠⎟

inwhichUjl represents a dispersive interaction between atoms j and lwhen they are simultaneously in state s∣ ñ. As
we are primarily interested indemonstrating the use of our technique, we take here a ‘toymodel’where atoms
experience a constant infinite-range interaction,Ujl≡C. Such a case enables thenumerical results to be intuitively
understood, althoughwenote that other choices ofUjldonot increase thenumerical complexity. In particularwe
are interested in studying the propagationof a constantweak coherent inputfield through the atomic ensemble.

The correspondingdriving then is given by H c
jdrive

2
1D = åG a e ej

k z ti ijin( † - D a e ej
k z ti ijin )+ - D , where

c

2
1D  GG  is the amplitude of the constant drivingfield,Δ= δ− δL thedetuning from twophoton resonance

condition, and the initial state is given by the global atomic ground state gi
N∣ ∣y ñ = ñÄ [41, 42].With infinite-range

interaction, one spinflip to state s j∣ ˜ñ shifts the energies of all other states s j∣ ñ by an amountC/2.A secondphoton
should thenbe able to propagatewith perfect transparency, provided it has a detuning compensating for the energy
shiftC/2, thus ensuring the two-photon resonance condition is satisfied.As a result, we expect to see a transparency
window for twophotons, whose central frequency shifts linearlywithC/2.

This predicted behavior canbe confirmedbyplotting the transmitted intensity fraction,T I I b1 in ,out
†= = á +

t b t,out
2( ) ( ) ñ+ , and also the second-order correlation functionT b t b t2 ,out ,out( ) ( )† †= á + + b t b t,out ,out

4( ) ( ) ñ+ + ,
which corresponds roughly to the two-photon transmission. Figures 4(a), (b) shows the single-photon transmission
T1 and two-photon transmissionT2 as a functionof the interaction strengthC anddetuning from twophoton
resonanceΔ. As expected,T1 shows a peak atΔ= 0 independentlyof the interaction intensityC; instead thepeak in
T2 shifts towardsΔ=C/2with increasingC. The decay ofT2 for increasingC canbe intuitivelyunderstoodby
noting thatwehave a constant coherent state input, inwhichphotons are randomly spaced, causing twophotons to
enter themediumat different times. Thus, until the secondphoton enters, thefirst photonpropagates as a single
polaritondetunedbyΔ fromthe single-photon transparency condition, getting partially absorbed in theprocess. By
increasing the interactionwe increase the detuning for this single polariton and consequently its absorption,
explaining the trendobserved forT2 infigure 4(b). A quantitative descriptionof this phenomenon is given in
appendixD.

Figure 3.EIT: single polariton propagation forσp<σEIT (a) and p EITs s> (b). Plotted is the population Pj ss
js= á ñof atom j in the

state s∣ ñ. The blue line corresponds to the initial state, the green line to the state evolved over a time tf, and the red circles to the
theoretically predicted evolution.Other parameters: tf vg=Nd/6,Γ′=Γ1D/2= 5Ω,N= 500 andσEIT∼ 22d, where d is the lattice
constant.
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Field correlation functions like intensity I b t,out ( )†= á + b t,out ( )ñ+ or g b2 ,out( ) †t = á + t b t b,out ,out( ) ( )† t++ +

t b t I,out
2( ) ( )t+ ñ+ can be computed according to the following strategy. First we switch fromHeisenberg

representation to Schrödinger representation, so that for the intensity we get: I b t b t,out ,out( ) ( )†= á ñ=+ +

t b b t,out ,out( )∣ ∣ ( )†y yá ñ+ + . The time evolvedwave function, t∣ ( )y ñ, is determined by numerically evolving the
initial spin state i∣y ñunderH for a time t. Then, the state immediately after detection of one photon,
b t,out ∣ ( ) ∣y fñ = ñ+ , is evaluated by expressing b+,out in terms of spin operators using the input–output

formalism: b c ae i 2 ek z
j j

k z z
,out

i
1D

iR R jin in( ) ( )= - G å+
- . Finally we obtain the intensity by computing the

probability of the one-photon detected state, I ∣f f= á ñ.
For g2(τ) an extra step is needed. Its numerator describes theprocess of detecting twophotons, thefirst at time t

and the second at time t+ τ : f t b ,out( ) †t+ = á + t b t b,out ,out( ) ( )† t++ + t b t,out( ) ( )t+ ñ+ . As beforewe can

switch to the Schrödinger picture, f t t b ,out( ) ( )∣ †t y+ = á + b be Hi
,out ,out

†t
+ + b te Hi

,out ∣ ( )y ñt-
+ , and evaluate the

state after detectionof thefirst photon, b t,out ∣ ( ) ∣y fñ = ñ+ . Thendetection of a secondphoton after a time τ
entails performing an extra evolution underH and annihilating a photon, that is: b e H

,out
i ∣fñt

+
- b ,out ∣ ( )f t= ñ+ .

Finally,we evaluate thequantity f t( ) ( )∣t f t+ = á b b,out ,out ∣ ( )† f t ñ+ + , by again expressing b+ ,out in termsof
spin operators. Infigure 4(c), weplot the numerically obtained result for g(2)(τ), for the casewhere infinite-range
interactions are turnedon (C= 1) and for aweak coherent input statewithdetuningΔ= 0. In such a situation, one
expects for the single-photon component of the coherent state to transmit perfectly,while the two-photon
component is detuned from its transparencywindowandbecomes absorbed.This nonlinear absorption intuitively
yields the strong anti-bunching dip g(2)(τ)= 0< 1.Wealso evaluate this second-order correlation functionusing
the analytical result for the two-photon S-matrix in equation (10), which showsperfect agreement as expected.

6. Conclusion

Wehave shown that the dynamics of a few photons, propagating under strong interactionsmediated by
quantum emitters, is fully and efficiently characterized by the dynamics of an open quantum spinmodel. As the

Figure 4. (a) Single-photon (circles) and two-photon (triangles) transmission spectrum for aweak probe field, for selected values
C/2= 0 andC/2= 0.2 of the infinite-range interaction strength. The linear transmission is independent ofC, while the
two-photon spectrum exhibits a shift in themaximum transmission by an amountC/2.Other parameters: N 200,=

c3 , 2 , 0, 10 2L1D 1D
6

1D ( )dG¢ = G W = G = = G- / . (b)Contour plot of the two-photon transmission spectrum
T b t b t b t b t, out2 ,out ,out ,out

4( ) ( ) ( ) ( )† † = á ñ+ + + + , as functions of interaction strengthC/2 and two photon detuningΔ= δ (δL= 0).
Cuts of the contour plot (illustrated by the dashed lines) are plotted in (a). (c)Comparison of g(2)(τ) evaluated by numerical
simulations (red dashed line) and S-matrix theory (black line). For constant infinite range interactionsC= 1 andΔ= 0, the
interactions induce photon antibunching. Other parameters:N= 20,Γ′=Γ1D,Ω=Γ1D/2, δL= 0, c10 26

1D ( ) = G- / .
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spinmodel is solvable by standard quantumoptical techniques for open systems, our approach provides an
easily implementable recipe for the exact numerical study of a large class of quantumnonlinear optical systems.
As an example, it provides an attractive alternative to numerical simulations of propagation through cold
Rydberg gases, where typically the continuous field isfinely discretized and its degrees of freedom are explicitly
kept track of [37]. Our technique can also be used to treat a number of strongly nonlinear systems based upon
atomic saturation [6], where only approximate effective theories forfield propagationwere previously available.
Furthermore, it would be interesting to explore connections wth conceptually related systems, such as quantum
emitters coupled towaveguides beyond the rotatingwave aproximation [43], and chiral [44] or other spin chains
[45].We anticipate that the availability of exact results will greatly aid in the development of effective theories for
the generally challenging problemof quantummany-body states of light, and that ourmodel will shed new
insight on conceptual links between such systems and quantum spin systems.
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AppendixA. Scattering theory

A.1. Connecting S-matrix to atomic correlation functions
Wepresent here the full derivation of the decomposition of the S-matrix elements in terms of time-ordered
atomic correlation functions. The starting point is the definition of the S-matrix in equation (6). Since the output
operators commute between themselves because of the indistinguishability of photons, they can be freely
ordered by decreasing times. Introducing the time ordering operatorT and also using equation (7), the operators
in equation (6) can bewritten as

T b t a t b t a t b t b t.. .. . A.1n n nin 1 1 in in 1 in( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )† †g g+ + ¢ ¢⎡⎣ ⎤⎦
It is natural to label the terms above by the numberm of systemoperators a present in each term. Thanks to the
fact that [a(t), bin(t′)]= 0 for t′> t, all the input operators can bemoved to the right of the spin operators. Thus,
the termof ordermwill be of the form

T a t a t b t b t b t b t0 .. .. .. 0 , A.2m m n n1 in 1 in in 1 in( ) ( ) ( ) ( ) ( ) ( )∣ ∣ ( )† †á ¢ ¢ ñ+
⎡⎣ ⎤⎦

and can be simplified using the commutation relations between input operators b t b t t t,in in[ ( ) ( )] ( )† d¢ = - ¢ .
Thismanipulation results in a sumof (n!)2/(m!)2(n−m)! terms for each original termof orderm. Each termof
the sum consists of n− m delta functionsmultiplied by a correlation function of the form

T a t a t b t b t0 .. .. 0 . A.3m m1 in 1 in( ) ( ) ( ) ( )∣ ∣ ( )† †á ¢ ¢ ñ⎡⎣ ⎤⎦
Since the a operators commutewith the bin

† operators at later times, the time ordering operator can be extended
to all the operators in the correlation function. Using again equation (7) to express the input operators one gets

T a t a t b t a t b t a t0 .. .. 0 . A.4m m m1 out 1 1 out( ) ( )( ) ( ) ( ) ( ) ( ) ( )∣ ∣ ( )† † † †g gá ¢ - ¢ ¢ - ¢ ñ⎡⎣ ⎤⎦
However, since the operators bout

† commutewith all the operators a on the left, only

T a t a t a t a t0 .. .. 0 A.5m m1 1( ) ( ) ( ) ( )∣ ∣ ( )† †á ¢ ¢ ñ⎡⎣ ⎤⎦
remains, which reproduces equation (8).

A.2. Evolution under the effectiveHamiltonian
In equation (8) the vacuum state 0∣ ñ stands for g0 b

N∣ ∣ñ ñÄ , i.e., the vacuum state offieldmodes and the ground
state of all the atoms. The atomic operators are in theHeisenberg picture, a t ae eHt Hti i( ) = - , andH is the
Hamiltonian of thewhole systemwithout the drivingfield. By taking the termwith t1> t2> ...> tm> t′1>
t t... m2¢ > > ¢ as an example (our argument holds for any time ordering), we shownow that equation (8) can be
evaluated by effectively evolving systemoperators as a t ae eH t H ti ieff eff( ) = - . The quantum regression theorem is
applied here to eliminate the bath or photonic degree of freedom, and results in
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g a t a t a t a t g Tr ae a a e a0 ... ... 0 ... 0 , A.6b
N

m m b
N t t t t

1 1
m m1 2 1( ) ( ) ( ) ( ) ( ) ( )∣ ∣ ∣ ∣ ( ) ( )† † † †  rá á ¢ ¢ ñ ñ =Ä Ä - --⎡⎣ ⎤⎦

where g N g N0 0 0b( ) ∣ ∣ ∣ ∣r = ñ á ñ áÄ Ä and  is the Lindblad super-operator of the system, defined in themain
text.  contains a deterministic part, which generates an evolution driven byHeff andwhich conserves the
number of excitations, and a jump part, which reduces the number of atomic excitations. Because of the formof
the correlators, which contain an equal number of atomic creation and annihilation operators, the jumppart of
the evolution of the operators gives a vanishing contribution to the correlation function, provingwhat was stated
above.

Appendix B. Examples of S-matrix elements

In this section of the appendixwe provide explicit examples of how to use the results derived above to calculate
specificmatrix elements. In particular we present the case of the scattering of (1)n photons on a two-level atom
coupled to a one-directional waveguide and (2) one and twophotons scattering on aRydberg-EIT system.

B.1.nphotons scattering on a single two-level atom
The S-matrix element S( n) for the scattering of n photons can be in general decomposed in a part that is a series of
products of lower-order elements and a part that cannot be expressed in such away. The latter is called the fully
connected part of thematrix element and physically corresponds to a n-body interaction, and is denoted by
i n( ) . Thus, knowing how to decompose the S-matrix, one has to calculate i j( ) with j n1   to construct
S( n). Furthermore, it can be shown that the fully connected part in an element of order n can be obtained by the
system correlation function of order n.We showhere how to calculate such elements using the results presented
above, for the case of a single two-level atom coupled to a one-directional waveguide. It will be possible to
appreciate the simplicity of our formalism compared themore cumbersomemethod used in [30] to obtain the
same result.

We start from the relation between the connected part of thematrix element and the correlation function of
atomic operators

t t T t t t ti
2

d d e ... ... , B.1n
n

n
i

n

i i
p t k t

n np k;
1

i
1 1i i i i ( ) ( ) ( ) ( )( )( )

( )
˜ ˜ ˜ ˜ ( )[ ]

( ) ò p
s s s s=

-G ¢ á ¢ ¢ ñ
=

- ¢
- - + +

where t e eH t H ti ieff eff˜ ( )s s=- -
- , with H i 2eg eeeff ( )w s= - G . The time ordering in the correlator gives (2n)!

possible orderings, but it is easy to arrive to the conclusion that only orderings which start on the left with a
σ− operator and alternateσ+ andσ− give a non-zero contribution. It is also immediate to see that the number of
this possible orderings is (n!)2. A possible ordering is for instance

t t t t.. , B.2n n 1 1( ) ( ) ( ) ( )˜ ˜ ˜ ˜ ( )s s s sá ¢ ¢ ñ- + - +

which, expressing explicitly the time dependence, is equal to

e .. e . B.3H t t H t ti in neff eff 1 1( ) ( ) ( )s s s sá ñ-
- - ¢

+ -
- - ¢

+

SinceHeff is diagonal in the g e,∣ ∣ñ ñbasis, we can insert identity operators between theσ operators in the formof
g g e e∣ ∣ ∣ ∣ñá + ñá in order to evaluate theHamiltonians in the exponents.We immediately end upwith

ei
n t t

1
i i i( ) a

=
- - ¢ wherewe have definedα=ωeg− iΓ/2. Inserting this result in equation (B.1)we get

t t ti
2

d d ... d e e perms. , B.4n
n

n n

t

n

t

i

n
p t k t

p k; 1
1

i i
n

i i i i
1 ( ) ( )( )

( )
( )[ ]

( ) ò ò ò p
=

-G ¢ ¢ +a a

-¥

+¥

-¥ -¥ =

- - - ¢
⎡
⎣⎢

⎤
⎦⎥

where the permutations are over the two sets of incoming and outgoing photon frequencies ki and pi. The
integral gives

ki 2 i
2

perms.

, B.5

n
n

l

n

i

l

i
m

n

m
i

m

i

i

n

i

p k;
1

1

1

1

1 1

1 1

1

( )

[ ]  å  å

å

p
p

a

d

=-
G

D - + D +

´ D

=

-

=

-

= =

- -

=

⎜ ⎟
⎪

⎪

⎪

⎪
⎛
⎝

⎞
⎠

⎧
⎨
⎩

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎫
⎬
⎭

⎛
⎝⎜

⎞
⎠⎟

where k pi i iD = - , which coincides with the result of [30].
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B.2.One and two-photon scattering on aRydberg-EIT system
The effectiveHamiltonian of the Rydberg-EIT system is given by

H H H U s s s s
1

2
, B.6

ij
ij i j j ieff 0 HC ( )† †å= + +

whereH0 is given by equation (11), and the hardcore interaction is

H
U

a a s s a a s s
2

1 B.7
j

j j j j j j j jHC
0 ( )( ) ( )† † † †å= + + -

withU0  ¥ corresponding to the three-level atom.
For the single incident rightmoving photonwithmomentum k, it follows from equations (6) and (8) that the

S-matrix element is

S
t t

O t O t
d d

e 0 0 , B.8p k pk
pt kt

;
1 i( ) ∣ ˜ ( ) ˜ ( )∣ ( )( ) †

òd
p

= -
¢

á ¢ ñ+ +
-¥

+¥
- ¢

+ +

with

O a
4

e . B.9
j

j
k z1D i jin ( )å=

G
+

-

This element describes the amplitude of a single transmitted photonwithmomentum p, using the time ordered
correlation function of the systemoperator.We set for notational simplicity the speed of light c= 1. The second
termof Sp k;

1( )
+ +, i.e., the Fourier transformof the correlator

t t
O t O t G k

d d
e 0 0

i

4
e B.10pt kt

pk
ij

k k z z

ij

aa
i 1D i

0
i jin( ) ( )( )∣ ˜ ( ) ˜ ( )∣ ( ) ( )†

ò åp p
d

¢
á ¢ ñ =

G
-¥

+¥
- ¢

+ +
- + - ⎡⎣ ⎤⎦

can be obtained from theGreen’s function G 10 1( ) ( )w w= - with the single-particleHamiltonian

i
2

i
2

e

0

. B.11
L ij

k z z
ij

ij

1

1D i i jin

( )
d d d

d
=

- -
G¢

-
G

W

W

-
⎛

⎝
⎜⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞

⎠
⎟⎟⎟

Here, we have expressed 1 in the basis a s,i i{ }, and G k ij0[ ( )]ss¢ denotes the element G ki j0 ( )s s¢ with

a s, ,s s¢ = . The element S Tp k k pk;
1( ) dº+ + gives rise to the transmission coefficient

T G k1 i
2

e . B.12k
ij

ij

aa
k z z1D

0
i i jin ( )( ) ( )å= -

G - -⎡⎣ ⎤⎦

For two right-going incident photonswithmomenta k1 and k2, the two-photon S-matrix element
Sp p k k, ; ,

2
1 2 1 2

( )
+ + + + describes the amplitude to afinal state with two transmitted photons ofmomenta p1 and p2. By

equations (6) and (8) in themain text, wefind that

S T T

G p p k k
4 2

e , ; , e , B.13

p p k k k k p k p k p k p k

i i j j

k z z
i i j j
aa aa k z z

, ; ,
2

1D
2

2
i

;
;

1 2 1 2
ii i j j

1 2 1 2 1 2 1 1 2 2 1 2 2 1

1 2 1 2

in 1 2
1 2 1 2

in 1 2

( )
( )( ) ( )

( )
( )

( )

åå

d d d d

p

= +

+
G

+ + + +

- + +

with

G p p k k

t t t t a t a t a t a t

, ; ,

d d d d e B.14

i i j j
aa aa

p t p t k t k t
i i j j

c

;
;

1 2 1 2

1 2 1 2
i

1 2 1 2

1 2 1 2

1 1 2 2 1 1 2 2
1 2 1 2

( )
( ) ( ) ( ) ( )( ) ˜ ˜ ˜ ˜ ( )† †ò= ¢ ¢ ¢ ¢¢+ ¢- -

Here, a t a t a t a ti i j j
c

1 2 1 21 2 1 2
˜ ( ) ˜ ( ) ˜ ( ) ˜ ( )† † ¢ ¢ denotes the connected four-point Green’s function, which involves an

interaction between the two excitations in the system. The S-matrix also contains terms arising from

disconnected correlation functions, e.g., a t a t a t a ti j i j1 1 2 21 1 2 2
˜ ( ) ˜ ( ) ˜ ( ) ˜ ( )† † ¢ ¢ describing the linear propagation of

each excitation separately, which yields the term in (B.14) proportional toT Tk k1 2
.

The interaction between two excitations under theHamiltonian H U s s s s 2ij ij i j j iHC
† †+ å can be

represented by the ladder diagram shown infigure B1. This diagram is representedmathematically by the two-
bodyT-matrix,T(E), which satisfies the Lippmann–Schwinger equation

E E ET U U T . B.150( ) ( ) ( ) ( )= + P
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Here,E= k1+ k2 is the total energy, the vacuumbubble E E0 2
1( ) ( )P = - - is given in terms of

H I IN N2 1 2 2 1 = Ä + Ä , and the interactionmatrix U has the diagonal elementU U U Uij
aa

ij
as

ij
sa

0= = =

andU Uij
ss

ij= in the basis a a a s s a s s, , ,i j i j i j i j{ }. The solution of equation (B.15) is
E ET U1 1

0( ) ( ( ))= - P- . The S-matrix can then bewritten as

S T T

w p p E w k k

p p

T

i
8

, ,

, B.16

p p k k k k p k p k p p k k

ij i j ij
ij i j

i j

, ; ,
2 1D

2

,

; ;
1 2 ;

;
1 2

1 2

1 2 1 2 1 2 1 1 2 2 1 2 1 2

1 1 2 2

1 1
1 1 2 2

2 2( ) ( )
( )

[ ( )]

( )

( )

*å å

d d
p
d= -

G

´

+ «

s s s s

s s s s s s s s

+ + + + + +

¢ ¢ ¢ ¢

¢

¢ ¢
¢ ¢

¢ ¢

¢⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

where

w k k G k G k, e . B.17
i j j j

k z z

i j

a

j j

a

1 2
i

0 1 0 2
j j

1 2

in 1 2

1 2

( ) ( ) ( )( ) ( )å=
ss s s

¢ ¢

¢
+

¢ ¢

¢⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

The Fourier transformof Sp p k k, ; ,
2
1 2 1 2

( )
+ + + + results in thewavefunction

x x
p p

S

T T kx F x

E w
E

k
E

kT

,
d d

2
e

e

2
2 cos i

4

2
,

2
, B.18
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;
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⎬
⎭

of two transmitted photons, where the relativemomentum k= (k1−k2)/2, the center ofmass coordinate
xc= (x1+ x2)/2, and the relative coordinate x= x1−x2. The symmetric function

F x
E

a a

x x

x x

i
e

e e

B.19

ij
i i

k z z

l l ll
l i l i

l i l j
x x

i

i i

i i

E
l

E
l

1 2

in 1 2
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å åe e
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c s c s q q

=-
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´ ¢ + -
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ss

e e

¢
- +

¢ ¢
¢

¢
- - -¢⎡⎣ ⎤⎦

is defined by the eigenstates lc and lc̃ of 1 and 1
† with the corresponding eigenenergies le and

, withl i l l i( )*e s c c s= and i l l i˜ ˜ ( )s c c s= . Knowledge of thewave function (B.18) in the case where the
two incident photons have the samemomentum, k1= k2= E/2, enables one to calculate the second-order

correlation function for the outgoing field, g x x x T,c E
2

2
2 2( ) ( )( ) py= .

We compare the result of g(2)(x) from the scattering theory and that fromnumerically solving the effective
spinmodel (12)with theweak driving field infigure 4(c) in themain text, which shows that they agreewith each
other perfectly.

AppendixC.Generalizedmaster equation

In this section, we extend our derivation of the atomicmaster equation, in order to calculate the response of the
system to an arbitrary few-photon input state (as opposed to a classical or coherent state). The initial state is
generally written as in in iny j c= Ä , where inc is the initial state of the system, and

Figure B1.The Feynman diagram for theT-matrix.
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describes an arbitrary state of incident photons in the Fock state basis by thewavefunction nkin ({ })j . By the
relation
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between the Fock state n∣ ñand the coherent state J J n nn
n∣ ∣ !ñ = å ñ , we rewrite Jv kin ,{ }j = by the

operator
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acting on the coherent state Jk{ } .
The evolution of the reduced densitymatrix ρs(t)=Trb t t0[ ( ) ( ) ( )]† r is determined by

t sH sexp i d ,
t

0
( ) ( )  ò= -

⎡
⎣⎢

⎤
⎦⎥

where 0 in in( )r y y= is the densitymatrix of the initial state, andH(t) is the totalHamiltonian in the rotating
framewith b b ev k v k

vkt
, ,

i - . By the relation Jv kin ,{ }j = , the reduced densitymatrix reads

t t J J tTr 0 , C.4s b v k v k s, ,{ } { }( ) ( ) ( ) ( ) ( )†*   r r= ⎡⎣ ⎤⎦
where 0s in in( )r c c= is the initial densitymatrix of the system. The displacement transformation

V J e 0k
J

d v k v k
1
2 , ,

2{ } ∣= ñå leads to

t te , C.5s

J

Jv k
v k

,
,

2

( ) ( ) ( )* r r=
å

and the generating densitymatrix

t t tTr 0 0 0 , C.6J b sd d( ) ( )∣ ∣ ( ) ( ) ( )† r r= ñá⎡⎣ ⎤⎦
where the unitary transformation

t sH sexp i d C.7
t

d
0

d( ) ( ) ( )  ò= -
⎡
⎣⎢

⎤
⎦⎥

is given by H s V H s Vd d d( ) ( ) †= . TheHamitonian H s H s H sJd ( ) ( ) ( )= + is obtained by replacing the operator
bv, k by bv, k+ Jv, k in theHamiltonianH(s), whereHJ(s)describes the systemunder the driving fields Jv, k. In the
densitymatrix ρJ(t), the initial state becomes the vacuum state due to the displacement transformation, thus the
evolution of ρJ(t) satisfies themaster equation

t t H t ti , , C.8t J J J J( ) ( ) ( ) ( ) ( )r r r¶ = - ⎡⎣ ⎤⎦
where  is the Lindblad super-operator of the systemwithout HJ .

In conclusion, equation (C.5) establishes the relation bewteen the evolution of the reduced densitymatrix
ρs(t) for a few incident photons (which could be a non-classical state) and the evolution of the reduced density
matrix ρJ(t) for the systemwith classical (coherent state) driving fields Jv, k. As a result, the few photon scattering
problem can be understood as the perturbation expansion of the driving strength Jv,k.

AppendixD. Properties of twophoton transmissionT2

In this section of the appendixwe provide an intuitive explanation based on linear optics of the behavior of the
two-photon transmissionT2 depicted infigures 4(a), (b). By indicatingwith x and y the coordinates of the first
and second photons, we can divide the space into four regions according to their positions: both photons outside
the atomicmedium, one photon inside and one outside, and both photons inside themedium, see figureD1 . As
we are studying an infinite-range interaction, within each region the evolution is effectively linear. The different
dispersion relations in each region, however, lead to non-trivial boundary conditions at their edges. Relevant to
our discussion is the value of the two-photonwave function at the boundaries 0< x< L and 0< y< L. In
particular, evolution in the region 0< x, y< Lwith these boundary conditions dictates the two-photon
transmission, which is proportional to the value of the two-photonwave function at (x, y)= (L, L).

We study the case where the two photons have detuningsΔ=C/2. In this case, infinite-range interactions
cause these two photons to satisfy the EIT transparency conditionwhen both photons are inside themedium.
Then, there are two qualitatively different regimes for the boundary values of the two-photonwave function,
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depending on the detuning from two-photon resonance δ (for simplicity we assume δL= 0, so thatΔ= δ−
δL= δ): the small detuning regime, δ<ΔEIT, inwhich a single photon can travel with high transmission through
themedium and reach the detection point; and the large detuning regime, δ>ΔEIT, inwhich a single photon is
absorbed and cannot reach the detection point.

Small detuning regime.Within thefirst regime δ=C/2<ΔEIT, a single polariton stillfits within the EIT
transparencywindow and exhibits high transmission through themedium. In the case where the input field is
constant, the atomic excitation population ss

jsá ñ, which in the slow light regime corresponds to the distribution
of polaritons, is largely uniform throughout the atomicmedium, as illustrated by the black curve infigureD2.
Now,we consider the two-excitationmanifold. Because of the uniformdistribution of single polaritons in the
atomicmedium and the random spacing of photons in the coherent input, a second photon entering the
mediummay be separated from the first by any distance between 0 and Nd . On average, the photons then travel
a distance Nd 2 together in themedium, experiencingminimal loss, and Nd 2 experiencing loss as single
photonswould. Therefore we expectT k Nd Texp i 22

2
1∣ ( ( ) )∣d= - = . The predicted behavior is in good

agreementwith full simulations results as shown infigureD3 for small detuning.
Large detuning regime. In this regime a single photon is strongly absorbed. This is illustrated by the red curves

infigureD2, where one observes a strong decay of the single-polariton probability and field intensity inside the

FigureD1.An intuitive explanation of how the two-photonwave function evolves within the atomicmedium (located in the region
0< x, y< L) can be found by considering a larger space, wherefirst the two photons are both outside themedium (x, y< 0) andwhere
one photon enters themedium first.We specifically consider the casewhere infinite-range interactions cause the two photons to align
with the EIT transparency conditionwhen they are both inside themedium, as discussed further in themain text.When the
transparency for two photons is detuned from the transparency for individual photons, thewave function decays when only one
photon is inside the atommedium, as illustrated by the red curves. In this case the two-photon input into the system is localized
around x= y= 0. The resulting two-photon transmission is proportional to the value of the two-photonwave function at x, y= L.

FigureD2.Atomic excitation population P c2j ss
j

1D
2( )s= G á ñ (scaled by the strength of the coherent input) as a function of atomic

position j for asymptotically large time in the small detuning regime 0.1 1DdD = = G (black curve) and in the large detuning regime
1 1DdD = = G (red curve). Other parameters: N c80, 2 , 3 , 10 2 .1D 1D

6
1D ( )= W = G G¢ = G = G-
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medium.Within the context offigureD1, this localized single excitation serves as the boundary condition on the
segments 0< x< L and 0< y< L. Furthermore, the evolution in the region 0< x, y< L is effectively linear.
Thus, the effect of this boundary condition at the detection point (a two-particle problem) can bemapped onto a
simpler problem,wherein one studies how a single excitation, initialized in the shape of the localized photon
given by the red curve, transmits through themedium. In this regime, we therefore can estimate thatT2 is twice
the value of themaximum transmission associatedwith this single localized photon, whose evolutionwe
calculate numerically.

The good agreement of our simplified estimates with full simulations is demonstrated infigureD3, inwhich
T2 as a function ofC= 2δ is compared for the different cases.
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