Supporting Information

Two-State Intramolecular Charge Transfer (ICT) with 3,5-Dimethyl-4-(Dimethylamino)benzonitrile (MMD) and Its Meta-Isomer mMMD. Ground State Amino Twist Not Essential for ICT

Sergey I. DRUZHININ,^{*,a,§} Victor A. GALIEVSKY,^{a,†} Attila DEMETER,^b Sergey A. KOVALENKO,^{*,c} Tamara SENYUSHKINA,^a Srinivas R. DUBBAKA,^{d,‡} Paul KNOCHEL,^d Peter MAYER,^d Christian GROSSE,^e Dietmar STALKE,^e Klaas A. ZACHARIASSE^{*,a}

^aMax-Planck-Institut für biophysikalische Chemie, Spektroskopie und Photochemische Kinetik,

37070 Göttingen, Germany

^bInstitute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1519 Budapest, P.O.Box 286, Hungary

^cInstitut für Chemie, Humboldt Universität zu Berlin, Brook-Taylor Strasse 2,

12489 Berlin, Germany

^dDepartment Chemie und Biochemie, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, Haus F,

81377 München, Germany

^eInstitut für Anorganische Chemie, Georg-August Universität, Tammannstrasse 4,

37077 Göttingen, Germany

Email: kzachar@gwdg.de

CCDC Numbers for the crystal structures:

CBQ: 1423222; DTABN: 1427925; mMMD: 1423148.

Synthesis Procedure¹ of 2,4-dimethyl-3-(dimethylamino)benzonitrile (mMMD)

i-PrMgCl•LiCl (0.79 mL, 1.1 mmol, 1.39 M in THF) was cooled to 0 °C and 3-Bromo-2,4dimethylbenzonitrile 1 (210 mg, 1.0 mmol) was added. The mixture was stirred at 0 °C for 3 h to produce the Grignard reagent 2. The Br/Mg-exchange was completed after 3 h as determined by GC-analysis of reaction aliquots. CuCl•2LiCl (1.2 mL, 1.2 mmol, 1.0 M in THF) was added to the Grignard reagent 2 at -50 °C and the mixture was stirred for 45 min. To the resulting any loop reagent 3, the N-lithium dimethylamide 4 (2.0 mmol; prepared by adding n-BuLi (2.0 mmol) to a 1.0 M of dimethylamine in THF (2.0 mL, 2 mmol) at -78 °C in THF, stirring the mixture for 20 min at -78 °C and then 15 min at 0 °C) was added dropwise and the mixture was further stirred for 90 min at -50 °C. The reaction mixture was cooled to -78 °C, then a solution of chloranil 6 (295 mg, 1.2 mmol) in anhydrous THF (7 mL) was added slowly over a period of 45 min. The mixture was allowed to warm up to -50°C and was further stirred for 12 h. Diethyl ether (DEE, 10 mL) was added to the crude reaction mixture, which was then filtered through Celite and the residue was thoroughly washed with DEE (ca. 150 mL). The filtrate (organic phase) was washed with NH₄OH (aq., 2.0 M, 2 x 20 mL) and the combined aqueous phases were extracted with DEE. The combined organic layers were dried over MgSO₄ and concentrated in vacuo. Purification by flash chromatography using gradient increase of DEE in *n*-pentane gave **mMMD** (97 mg, 55 %).

(1) del Amo, V.; Dubbaka, S. R.; Krasovskiy, A.; Knochel, P. General Preparation of Primary, Secondary and Tertiary Arylamines via the Oxidative Coupling of Polyfunctional Aryl and Heteroaryl Amidocuprates *Angew. Chem.*, *Int. Ed.* **2006**, *45*, 7838-7842.

¹**H-NMR (300 MHz, CDCl₃):** δ = 7.30 (d, ³*J*(H,H) = 7.9 Hz, 1H, H5), 7.06 (d, ³*J*(H,H) = 7.9 Hz, 1H, H4), 2.83 (s, 6H, H1), 2.50 (s, 3H, H9), 2.35 (s, 3H, H8). ¹³**C-NMR (75 MHz, CDCl₃):** δ = 150.4 (C2), 143.3 (C7), 141.2 (C3), 129.4 (C4), 128.9 (C5), 118.8 (C10), 111.7 (C6), 42.2 (C1), 19.6 (C9), 17.2 (C8).

Figure S1. MMD in *n*-hexane at 290 nm excitation (spectral range: 335-1070 nm). (a) Transient absorption spectra and (b) excited state absorption (ESA) spectra after correction for bleaching (BL) and stimulated emission (SE), at eight pump-probe delay times between 0.05 and 4.0 ps. The BL and SE (LE + ICT, cf Figure 2a) spectra are also depicted. A growing-in around 400 nm and a decay around 800 nm is observed, indicated by arrows. (c) For the band integral BI(340,450), between 400 and 500 nm in the ESA spectrum, a growing-in (negative amplitude A_2) with a time $\tau_2 = 0.18$ ps is determined. For BI(580,1064) and BI(450,580) a decay with the same $\tau_2 = 0.18$ ps is obtained. For all BIs, an additional time $\tau_C = 2.18$ ps is found, see text. The times result from a simultaneous analysis of the BIs. The amplitudes are A_2 and A_c , the offset is A_0 (eqs 4 and 5). m Δ OD is the optical density/1000.

Figure S2. MMD in *n*-hexane at 290 nm excitation (spectral range: 334-1072 nm). (a) Transient absorption spectra and (b) excited state absorption (ESA) spectra, at eight pump-probe delay times between 0.05 and 4.0 ps, after correction for bleaching (BL) and stimulated emission (SE). The BL and SE (LE + ICT, cf Figure 2a) spectra are also depicted. A growing-in around 400 nm and a decay around 800 nm is observed, indicated by arrows. (c) For the band integral BI(340,450), between 400 and 500 nm in the ESA spectrum, a growing-in (negative amplitude A_2) with a time $\tau_2 = 0.18$ ps is determined. For BI(580,1064) and BI(450,580) a decay with the same $\tau_2 = 0.18$ ps is found. For all BIs, an additional time $\tau_C = 2.18$ ps is obtained, see text. The times result from a simultaneous analysis of the BIs. The amplitudes are A_2 and A_c , the offset is A_0 (eqs 4 and 5). m Δ OD is the optical density/1000.

Figure S3. MMD in acetonitrile (MeCN) at 266 nm excitation (spectral range: 334-1072). (a) Transient absorption spectra and (b) excited state absorption (ESA) spectra after correction for bleaching (BL) and stimulated emission (SE), at eight pump-probe delay times between 0.05 and 4.0 ps,. The BL and SE (ICT, cf Figure 2b) spectra are also depicted. A growing-in around 420 nm and a decay around 700 nm is observed, indicated by arrows. (c) For the band integral BI(340,440), between 340 and 440 nm in the ESA spectrum, a growing-in (negative amplitude A_2) with a time $\tau_2 = 0.10$ ps is determined. For BI(580,1064) and BI(440,580) a decay with the same $\tau_2 = 0.10$ ps is obtained. For all BIs, an additional time $\tau_C = 0.97$ ps is found, see text. The times result from a simultaneous analysis of the BIs. The amplitudes are A_2 and A_c , the offset is A_0 (eqs 4 and 5). m Δ OD is the optical density/1000.

Figure S4. MMD in acetonitrile (MeCN) at 266 nm excitation (spectral range: 334-1072). (a) Transient absorption spectra and (b) excited state absorption (ESA) spectra, at eight pump-probe delay times between 0.05 and 4.0 ps, after correction for bleaching (BL) and stimulated emission (SE). The BL and SE (ICT, cf Figure 2b) spectra are also depicted. A growing-in around 420 nm and a decay around 640 nm is observed, indicated by arrows. (c) For the band integral BI(335,410), between 340 and 440 nm in the ESA spectrum, as well as for BI(335,410), a growing-in (negative amplitude A_2) with a time $\tau_2 = 0.10$ ps is determined. For BI(580,1064) and BI(410,540) a decay with the same $\tau_2 = 0.10$ ps is found. For all BIs, an additional time $\tau_C = 0.97$ ps is obtained, see text. The times result from a simultaneous analysis of the BIs. The amplitudes are A_2 and A_c , the offset is A_0 (eqs 4 and 5). m Δ OD is the optical density/1000.

Figure S5. ICT Excited state absorption (ESA) spectra in acetonitrile (MeCN) of (a) 4-(dimethylamino)benzonitrile (DMABN) and 1-*tert*-butyl-6-cyano-1,2,3,4-tetrahydroquinoline (NTC6), (b) 3,5dimethyl-4-(dimethylamino)benzonitrile (MMD) and 2,4-dimethyl-3-(dimethylamino)benzonitrile (mMMD), (c) CBQ, and (d) 4-cyanofluorazene (FPP4C), 4-cyano-*N*-phenylpyrrole (PP4C) and *N*-(4-cyanophenyl)carbazole (NP4CN). m Δ OD is the change in optical density/1000. DMABN: ref 24. NTC6: ref 20. CBQ: ref n. FPP4C and PP4C: *J. Phys. Chem. A* **2008**, *112*, 8238-8253. NP4CN: ref 62.

Solvent	З	n	$f(\varepsilon) - \frac{1}{2}f(n^2)$
pFMCH ^a (1)	1.82	1.279	0.102
<i>n</i> -pentane (2)	1.83	1.355	0.089
3-methylpentane (3)	1.88	1.374	0.092
<i>n</i> -hexane (4)	1.88	1.372	0.092
<i>n</i> -hexadecane (5)	2.05	1.435	0.102
toluene (6)	2.37	1.493	0.126
di(<i>n</i> -pentyl) ether (7)	2.86	1.412	0.177
di(<i>n</i> -butyl) ether (8)	3.05	1.397	0.192
di(n-propyl) ether (9)	3.26	1.379	0.207
diethyl ether (10)	4.24	1.350	0.253
ethyl acetate (11)	5.99	1.370	0.292
tetrahydrofuran (12)	7.39	1.405	0.307
<i>n</i> -butyl cyanide (13)	19.8	1.395	0.366
<i>n</i> -propyl cyanide (14)	24.2	1.382	0.375
ethyl cyanide (15)	29.2	1.363	0.384
acetonitrile (16)	36.7	1.342	0.393

Table S1. Data for the Dielectric Constant and Refractive Index and the Polarity Parameter $f(\varepsilon) - \frac{1}{2}f(n^2)$ (Eqs 2 and 3) for a Series of Solvents Spanning the Polarity Scale

^aPerfluoromethylcyclohexane.

Table S2. DecayTimes τ_2 and τ_1 and Amplitude Ratios A of Double Exponential Picosecond Fluorescence Decays (eqs 6-8), ICT Rate Constants k_a and k_d , ICT and LE Lifetimes τ'_0 (ICT) and τ_0 (LE) (eqs 9-15), with the ICT Reaction Enthalpy - ΔH

D/A-	solvent	T r ^o Cl	<i>t</i> ₂	τ_1	Α	τ_0	$1/\tau_2$	k_{a}	$k_{\rm d}$	$\tau_{0}(ICT)$	$k_{\rm a}/k_{\rm d}$	- <i>Д</i> Н
molecule		[°C]	[ns]	[ns]		[ns]	$[10^{10}s^{-1}]$	[10 ^{-*} s ⁻]	[10 ⁻⁵ s ⁻]	[ns]		[kJ/mol]
DMABN ^{a,b}	toluene	-90	0.297	3.92	2.40	3.61	0.337	0.23	0.088	3.88	2.61	5.9
DMABN ^{a,c}	DEE ^d	20	0.025	3.28	1.32	3.91	4.0	2.26	1.71	3.91	1.32	15
DMABN ^{a,e}	MeCN ^f	25	0.0041	3.80	516	3.41	24.4	24.0	0.047	3.80	511	27
DMABN ^{a,e}	MeCN ^f	-45	0.0076	3.53	14470	3.72	13.11	12.08	0.0009	3.53	14533	27
DPrABN ^{g,h}	toluene	20	0.018	2.76	9.5	3.65	5.56	5.0	0.53	2.70	9.4	15
DPrABN ^{i,h}	toluene	-20	0.037	2.87	22.4	3.87	2.70	2.56	0.14	2.80	23.1	15
DPrABN ^{e,c}	DEE	20	0.013	2.84	11.72	3.91	7.69	7.07	0.60	3.91	11.78	
DIABN ^{g,h}	<i>n</i> -hexane	25.5	0.003	0.94	>430	3.42	33.3	34	< 0.08	0.94	>425	
DIABN ^{g,h}	<i>n</i> -hexane	-90	0.012	0.79	>210	4.10	8.3	8	< 0.04	0.79	>200	
M4D ^{i,h}	DEE	20	0.002	0.711	1593	3.91	50.0	49.9	0.031	0.711	1599	
NTC6 ^{j,k}	<i>n</i> -hexane	25	0.0021	2.44	0.43	3.0	47.6	14.3	33.3	1.7	0.43	
NTC6 ^{j,1}	<i>n</i> -hexane	-95	0.020	3.99	1.08	3.06	5.0	2.6	2.4	5.6	1.08	
NTC6 ^{j,k}	DEE	-70	0.007	8.54	21.9	3.09	14.3	13.6	0.62	9.29	21.9	
FPP ^{m,d}	MeCN ^f	-45	0.0036	15.36	24.4	11.66	27.78	27.0	1.09	15.57	24.8	
NP4C ^{n,o}	<i>n</i> -hexane	-75	0.0155	4.19	0.38	4.5		1.8	4.7	3.55	0.38	
NP4C ^{n,o}	<i>n</i> -hexane	-95	0.0247	4.04	0.77	4.5		1.7	2.3	3.57	0.77	
CVL ^{p,q}	MeCN ^f	75	0.0081	1.58	10.7	39	12.3	11.4	1.06	1.45	10.8	19.7
CVL ^{p,q}	MeCN	-45	0.0155	0.84	273	39	6.5	6.4	0.023	0.84	280	19.7
2Py(3)2Py ^r	MCH ^s	25	7.56	151.5	94	367	0.0132	0.0128	0.00013	150	98.5	

^a4-(Dimethylamino)benzonitrile. ^bRef 5. ^cRef 18. ^dDiethyl ether. ^eRef 24. ^fAcetonitrile. ^g4-(Dipropylamino)benzonitrile. ^hRef 23. ⁱ4-(Diisopropylamino)benzonitrile. ^hRef 21. ⁱ4-(*N*-azetidinyl)-3,5dimethylbenzonitrile. ^j1-*Tert*-butyl-6-cyano-1,2,3,4-tetrahydroquinoline. ^kRef 20. ^lRef 19. ^mFluorazene. ⁿ*N*-(4cyanophenyl)carbazole. ^oRef 62. ^pCrystal Violet Lactone. ^q*J. Phys. Chem. A* **2013**, *117*, 7721-7736. ^r1,3-Di-(2pyrenyl)propane, see Ref. 71. ^sMethylcyclohexane.

D/A molecule	solvent	T[°C]	$k_{\rm f}(\rm LE)/k'_{\rm f}(\rm ICT)$	$k_{\rm f}({\rm LE})$	$k'_{\rm f}(\rm ICT)$	Ref
				$[10^9 \text{ s}^{-1}]$	$[10^9 \text{ s}^{-1}]$	
DMABN ^a	MeCN ^b	25	8.2	0.065	0.0079	ref 24
DMABN ^a	MeCN ^b	-45	12.5	0.073	0.0058	ref 24
DIABN ^d	<i>n</i> -hexane	25.5	6.7	0.06	0.009	ref 51
DIABN ^d	<i>n</i> -hexane	-90.3	6.7	0.04	0.006	ref 51
CVL ^{e,f}	MeCN	25	1.5			
NTC6 ^g	<i>n</i> -hexane	25	1.2	0.093	0.076	ref 20
NTC6 ^g	<i>n</i> -hexane	25	1.1	0.089	0.080	ref 20
NTC6 ^g	<i>n</i> -hexane	-95	1.3	0.11	0.082	ref 20
NTC6 ^g	<i>n</i> -hexane	-95	1.3	0.10	0.076	ref 20
NTC6 ^g	DEE ^c	-70	2.2	0.13	0.059	ref 19
PP ^{h,j}	PrCN ⁱ	-45	2.8			
MDB ^k	toluene	25	3.3	0.070	0.021	ref 23
EDB ¹	toluene	25	3.7	0.070	0.019	ref 23
PrDB ^m	toluene	25	2.1	0.055	0.026	ref 23
DMABN ^a	toluene	25	3.0	0.057	0.019	ref 23
DEABN ^o	toluene	25	3.9	0.062	0.016	ref 23
DPrABN ^p	toluene	25	2.0	0.040	0.020	ref 23

Table S3. Ratio of the LE and ICT Radiative Rate ConstantsDecayTimes $k_{\rm f}(\rm LE)/k'_{\rm f}(\rm ICT)$ for Aminobenzonitriles

^a4-(Dimethylamino)benzonitrile. ^bMeCN: acetonitrile. ^cDiethyl ether. ^d4-(Diisopropylamino)benzonitrile. ^eCrystal Violet Lactone. ^fJ. *Phys. Chem. A* **2013**, *117*, 7721-7736. ^g1-*Tert*-butyl-6-cyano-1,2,3,4-tetrahydroquinoline (NTC6). ^hN-Phenylpyrrole. ⁱn-Propylcyanide. ^jJ. *Phys. Chem. A* **2006**, *110*, 12760-12768. ^k4-Dimethylamino-2,6-dimethyl-benzonitrile. ⁱⁱ4-Diethylamino-2,6-dimethyl-benzonitrile. ⁱⁱ4-Diethylamino)benzonitrile. ^p4-(Di-*n*-propylamino)benzonitrile.

Table S4. Decay Times τ_2 from Femtosecond Transient Absorption Spectra (Eqs 4 and 5) at 22 °C.
DecayTimes τ_1 from Single Exponential Picosecond Fluorescence Decays (Eqs 6-8), ICT Rate Constants k_a
and k_d , ICT and LE Lifetimes τ'_0 (ICT), τ_0 (LE) (Scheme 1), and Fluorescence Quantum Yield Ratios
$\Phi(LE)/\Phi'(ICT)$ (Eq 16) at 25 °C for MMD in <i>n</i> -hexane. Variation of $\tau_0(LE)$ and k_t/k_t . See Table 8

$\Psi(LE)$	Ψ (ICI)(Eq 1	0 at 23 C		$J \prod n$ -nexa	ane. varia	$uon on u_0($	LL) and $\kappa_{\rm i}$	f/k f. See	Table o
τ_2	τ_1	τ_0	Φ(LE)/ Φ(ICT)	$\frac{1/\tau_2}{[10^{10}s^{-1}]}$	$\frac{1/\tau_1}{[10^{10}s^{-1}]}$	k_{a} [10 ¹⁰ s ⁻¹]	$\frac{k_{\rm d}}{[10^{10}{\rm s}^{-1}]}$	$\tau'_{o}(ICT)^{a}$	$k_{\rm a}/k_{\rm d}$	$k_{\rm f}/k_{\rm f}$
0.18	1.17	3.4	0.078	555	0.0855	549.7	5.3	1.17	103.7	8
0.18	1.17	1.0	0.078	555	0.0855	549.6	5.3	1.17	103.7	8
0.18	1.17	3.4	0.078	555	0.0855	547.9	7.0	1.17	78.3	6
0.18	1.17	3.4	0.078	555	0.0855	544.4	10.5	1.17	51.8	4
0.18	1.17	3.4	0.078	555	0.0855	531.0	14.0	1.17	37.9	3
0.18	1.17	3.4	0.078	555	0.0855	524.2	20.8	1.17	25.2	2
0.18	1.17	3.4	0.078	555	0.0855	514.9	40.1	1.17	12.8	1

^aApproximate value, see text.