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In the conditional approach to molecular dynamics the electron-nuclear wavefunction is ex-
actly decomposed into an ensemble of nuclear wavepackets governed by conditional time-dependent
potential-energy surfaces (C-TDPESs) [G. Albareda, et al., Phys. Rev. Lett. 105, 123002 (2014)].
Employing a one-dimensional model system we show that for strong nonadiabatic couplings the
C-TDPESs exhibit steps that bridge between piecewise adiabatic shapes. A detailed analysis of the
steps sheds light into the ultimate nature of electron-nuclear correlations and its comparison with
the discontinuities that emerge in the exact factorization of the molecular wavefunction brings us
to claim their universality in theories without Born-Oppenheimer potential-energy surfaces.

PACS numbers: 31.15.-p,31.15.X-,31.50.-x,31.15.A-

The description of correlated electron-nuclear dynam-
ics remains a formidable challenge in condensed-matter
physics and theoretical chemistry [1–6]. Relying on the
Born-Huang expansion of the full molecular wavefunc-
tion, a majority of approaches that provide a numerically
accurate description of the so-called “nonadiabatic” pro-
cesses require the propagation of a set of many-body nu-
clear wavepackets on a coupled set of Born-Oppenheimer
potential-energy surfaces (BOPESs) [7–13]. Whenever
electron-nuclear coherence effects are unimportant, ef-
ficient mixed quantum-classical propagation techniques
can be used [14–20]. However, in order to account for
strong correlations, the access to quantum features of
the nuclear motion such as spreading, tunnelling or split-
ting is crucial. Hence, a reliable description of molecular
dynamics becomes very expensive due to the calculation
of the full BOPESs, a (time-independent) problem that
scales exponentially with both the nuclear and electronic
degrees of freedom [21–23]. Towards a more efficient de-
scription of correlated electron-nuclear dynamics, avoid-
ing the computational costs of calculating the BOPESs
and non-adiabatic couplings, two alternative formally ex-
act frameworks, viz. the exact factorization (EF) [24]
and the conditional decomposition (CD) [25], have been
recently proposed.

The CD approach to molecular dynamics allows for the
decomposition of the electron-nuclear wavefunction into
an ensemble of nuclear wavefunctions effectively governed
by conditional time-dependent potential-energy surfaces
(C-TDPESs) [25]. While keeping the theory at the full
configuration level, this approach allows for the use of
trajectory-based statistical techniques to circumvent the
calculation of the BOPESs and nonadiabatic couplings.

Furthermore, this approach avoids artifacts coming from
the tracing out of the electronic degrees of freedom and,
hence, it allows to draw clear connections between dif-
ferent formally exact frameworks. In this Letter we in-
vestigate the generic features of the exact C-TDPESs in
the presence of strong nonadiabatic couplings. A ma-
jor result will be that the exact C-TDPESs exhibit dis-
continuous steps connecting different BOPESs analogous
to paradigmatic features of the effective time-dependent
potential that governs the nuclear dynamics in the EF
framework. By establishing a formal connection between
the CD and the EF frameworks we will discuss the uni-
versality of these features in theories without BOPESs.

Throughout this Letter we use atomic units, and
electronic and nuclear coordinates are collectively de-
noted by r = {r1, .., rNe} and R = {R1, ..,RNn},
where Ne and Nn are the total number of elec-
trons and nuclei. We have recently proved [25] that
the full (non-relativistic) electron-nuclear wavefunction
Ψ(r,R, t) can be exactly decomposed into an ensem-
ble of conditional nuclear wavefunctions, ψα(R, t) :=∫
δ(rα(t) − r)Ψ(r,R, t)dr, provided that the elec-

tronic trajectories {rα(t) ≡ r1,α(t), .., rNe,α(t)} explore
the electronic support of |Ψ(r,R, t)|2 at any time t
[26]. These conditional wavefunctions can be used
to reconstruct the full wavefunction (or equivalently
any observable) through Ψ(r,R, t) = D̂r[ψα], where
D̂a[f(aα)] ≡

∑∞
α=1 δ(aα − a)f(aα)/

∑∞
α=1 δ(aα − a)

when
∑∞
α=1 δ(aα − a) 6= 0 and it is zero otherwise.

Throughout this work we will use quantum trajectories
defined through rξ,α(t) = rξ,α(t0) +

∫ t
t0
ṙξ,α(t′)dt′ and

Rν,α(t) = Rν,α(t0) +
∫ t
t0
Ṙν,α(t′)dt′, where electronic
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and nuclear velocities are given by ṙξ,α = ∇ξS|rα,Rα

and Ṙν,α = (∇νS)/Mν |rα,Rα , and S is the phase of the
full electron-nuclear wavefunction Ψ = |Ψ|eiS [27, 28].
For the sake of simplicity, we will omit from now on
the explicit dependence of the trajectories on time, i.e.
{rα} ≡ {rα(t)}. In the absence of time-dependent ex-
ternal fields, the molecular system is described by the
Hamiltonian Ĥ = T̂e(r) + T̂n(R) + W (r,R, t), where

T̂e = −
∑Ne
ξ=1∇2

ξ/2 and T̂n = −
∑Nn
ν=1∇2

ν/2Mν are
the electronic and nuclear kinetic energy operators, and
W (r,R, t) = Wee(r) + Wnn(R) + Wen(r,R) denotes
the internal Coulombic interactions. The wavefunctions
ψα(R, t) obey the following equations of motion [25]:

idtψα(R, t) =
{
T̂n(R) + Vα(R, t)

}
ψα(R, t), (1)

where the effective potentials Vα(R, t) = Wα(R, t) +
Kα(R, t) + Aα(R, t) are named conditional time-
dependent potential energy surfaces (C-TDPESs). Each
C-TDPES consists of three terms: the conditional
Coulombic potential Wα(R, t) = W (rα,R, t), the kinetic

correlation potential, Kα(R, t) = T̂eΨ
Ψ

∣∣
rα

, and an advec-

tive potential, Aα(R, t) = i
∑Ne
ξ=1

∇ξΨ
Ψ

∣∣
rα
·ṙξ,α. As shown

in Eq. (1), each nuclear wavefunction ψα(R, t) represents
a 3Nn-dimensional slice of the full molecular wavefunc-
tion (taken along the nuclear coordinates) whose evolu-
tion is, in general, non-unitary due to the complex nature
of the kinetic and advective potentials.

Note that the propagation of the nuclear equations
of motion in Eq. (1) does not require the calcula-
tion of the BOPESs. This makes the method particu-
larly advantageous when studying processes that involve
many BOPESs, as in laser-induced dynamics or scatter-
ing from metallic surfaces. Since the initial conditions
of a trajectory-based simulation can be generated with
importance-sampling techniques, conditional decomposi-
tions can be exploited to circumvent the problem of stor-
ing and propagating a many-particle wave function whose
size scales exponentially with the number of particles. In
this respect, let us emphasize that the conditional de-
composition of the molecular wave function in Eq. (1)
is only one case among many other possible conditional
decompositions [25, 29–32].

To analyze the C-TDPESs, we decompose Vα into real
and imaginary parts V <α = Wα(R, t) + K<α + A<α and
V =α = K=α +A=α , where

K<α =

Ne∑
ξ=1

Qeξ,α+
(∇ξS)2

2

∣∣∣
rα

; K=α =−
Ne∑
ξ=1

∇ξjξ
2|Ψ|2

∣∣∣
rα
, (2)

and

A<α =−
Ne∑
ξ=1

∇ξS
∣∣
rα
·ṙξ,α; A=α =

Ne∑
ξ=1

∇ξ|Ψ|2

2|Ψ|2
∣∣∣
rα
·ṙξ,α, (3)

are respectively the real and imaginary parts of the ki-
netic and advective correlation potentials. In Eq. (2)

FIG. 1. Left Panel: lowest three BOPESs ε
(1)
BO in red, ε

(2)
BO in

blue, and ε
(3)
BO in green. In the inset: adiabatic populations

as a function of time. Right Panel: Squared value of the

Born-Oppenheimer states Φ
(1)
R (r) and Φ

(2)
R (r) along with the

evolution of three selected trajectories {rα(t), Rα(t)} labeled
α = 1, 2, 3. The position of these trajectories at four different
times is also show (in gray circles) for later reference.

we have respectively defined the ξ-th components of the
so-called electronic quantum potential [27, 28] and the

current probability density as Qeξ,α = − 1
2

∇2
ξ|Ψ|
|Ψ| |rα and

jξ = |Ψ|2∇ξS. While the classical kinetic potential,
(∇ξS)2/2|rα , is in general a smooth function of the nu-
clear coordinates, we expect the quantum contributions,
Qeξ,α and K=α , to be rather “discontinuous” because of
their dependence on the inverse of the conditional nuclear
probability density. Notice that these last two quanti-
ties are implicit functions of the electronic coordinates.
Specifically, the electronic quantum potential Qeξ,α ac-
counts for changes of the curvature of the full probability
density along the electronic coordinates (as a function of
the nuclear positions). Alternatively, K=α describes the
dispersion (e.g. spreading or splitting) of the full wave-
function in the electronic direction. Both contributions
become large in the vicinity of a node, and thus, they
will be important whenever the full probability density
splits apart along the electronic coordinates. The advec-
tive correlations in Eq. (3) are weighted by electronic
velocities, ṙξ,α, and hence, they will be significant only
during a fast reconfiguration of the electronic degrees of
freedom.

To study the features of the exact C-TDPESs during
nonadiabatic processes in the CD approach, we employ
the model introduced by Shin and Metiu [33], which con-
sists of three ions and a single electron. Two ions are
fixed at a distance L = 19.0a0, and the third ion and the
electron are free to move in one dimension along the line
joining the fixed ions. The Hamiltonian for this system
reads:

Ĥ(r,R)= −1

2

∂2

∂r2
− 1

2M

∂2

∂R2
+

1

|L2 −R|
+

1

|L2 +R|



3

−
erf
( |R−r|

Rf

)
|R− r|

−
erf
( |r−L2 |

Rr

)
|r − L

2 |
−
erf
( |r+L

2 |
Rl

)
|r + L

2 |
, (4)

where the symbols r and R are replaced by r and R,
and the coordinates of the electron and the movable
nucleus are measured from the center of the two fixed
ions. We choose the remaining parameters to be the
same as in reference [34], i.e. M = 1836a.u. and
Rf = 5.0a0, Rl = 4.0a0, and Rr = 3.1a0 such that the

first BOPES, ε
(1)
BO, is strongly coupled to the second, ε

(2)
BO

around Rac = −2a0. The coupling to the rest of the
BOPESs is negligible. Note that the time-independent
electronic problem is fully characterized through the so-

called electronic Hamiltonian, i.e. (T̂e + W )Φ
(j)
R (r) =

ε
(j)
BO(R)Φ

(j)
R (r). We suppose the system to be initially

excited to ε
(2)
BO and the initial nuclear wavefunction to

be a Gaussian wavepacket with σ = 1/
√

2.85, centered
at R = −4.0a0, i.e. the initial full wavefunction is

Ψ(r,R, t0) = Ae−(R+4)2/σ2

Φ
(2)
R (r) with A being a nor-

malization constant. On the left panel of Fig. 1 we show
the first three BOPESs together with the evolution of
the adiabatic populations (in the inset). The right panel
of Fig. 1 shows the first two Born-Oppenheimer states

Φ
(1)
R (r) and Φ

(2)
R (r) along with the evolution of three se-

lected trajectories {rα, Rα} labeled α = 1, 2, 3. Analyzed
bellow, in Fig. 2 we present four time snapshots contain-
ing relevant information about the C-TDPESs as well
as the conditional nuclear wavefunctions. For the seek
of clarity we also define approximated real and imagi-
nary components of C-TDPESs respectively as V <α,app =

Qeα +Wα and V =α,app = K=α .
At the initial time (t0 = 0fs), due to the choice of

Ψ(r,R, t0), the C-TDPESs are real, α-independent, and

by construction all equal to the first excited BOPES ε
(2)
BO:

Vα =
T̂eΦ

(2)
R (r)

Φ
(2)
R (r)

∣∣∣∣∣
rα

+Wα = V <α,app = ε
(2)
BO, ∀α (5)

where we used that Qeα(R, t0) = T̂eΦ
(2)
R (r)/Φ

(2)
R (r) when

∂rS = 0 (a more detailed analysis of the C-TDPESs
in terms of the Born-Huang expansion of the molecular
wavefunction can be found in SM A). Since Ψ(r,R, t0) is
not an eigenstate of the Hamiltonian in (4), it evolves in
time. As it is made clear in the right panels of Fig. 1,
at t = 13.44fs, the trajectories (r2, R2) and (r3, R3), as-
sociated respectively with the conditional wavefunctions
ψ2 and ψ3, are running straight (i.e. ṙ2,3 ≈ 0) from the

support of Φ
(2)
R (r) to fall in the support of Φ

(1)
R (r). For

α = 2, 3 the C-TDPESs are real (V =2,3 = 0) and satisfy

V2,3 ≈ V <2,3,app, with Qe2,3(R < Rac) ≈ T̂eΦ
(2)
R (r)/Φ

(2)
R (r)

and Qe2,3(R > Rac) ≈ T̂eΦ
(1)
R (r)/Φ

(1)
R (r). Therefore,

as can be seen from Fig. 2 (bottom left panel), the
C-TDPESs resemble diabatic potential-energy surfaces,

coinciding with ε
(2)
BO for R < Rac and smoothly going

through the avoided crossing region to follow ε
(1)
BO for

R > Rac. Conversely, trajectory (r1, R1) tunnels from
one Coulomb potential well Wα to the other, staying

most of the time in the support of Φ
(2)
R (r). The velocity

ṙ1 is now large due to the fast reconfiguration of the elec-
tronic degrees of freedom, and hence V1 shows important
advective contributions. Notice also that both V <1 and
V =1 show steep peaks that originate in the full configu-
ration space as the full probability density starts to split
up along the electronic coordinates (left panels b) and c)
of Fig. 2). At the later time t = 19.32fs, the advective
correlation and classical kinetic terms become once more
negligible, and therefore Vα ≈ V <α,app + V =α,app. While

(r1, R1) stays preferentially in the support of Φ
(2)
R (r), the

trajectories (r2, R2) and (r3, R3) are mainly sampling the

support of Φ
(1)
R (r) (see the right panel of Fig. 1). The

conditional wavefunctions ψ1, ψ2 and ψ3 are now lin-

ear combinations of Φ
(2)
R (r) or Φ

(1)
R (r) (possibly showing

contributions from higher energetic Born-Oppenheimer
states) [35]. This mixture leads to the formation of the
step observed for V1 around R = 1.5a0, and also to wig-
gles accompanying in the C-TDPESs V2 and V3. All these
features indicate the nonadiabatic nature of the condi-
tional wavefunctions and can be directly associated with
the formation of nodes in the full probability density.
Concretely, as shown in panels b) and c) of Fig. 2, the
splitting of the full probability density can be understood
as the result of the formation of dynamical nodes (origi-
nating from kinetic correlations) that move across the full
configuration space as if they were knife edges. Finally,
at time t = 31.5 fs, the full molecular wavefunction has
been split both along the electronic and nuclear direc-
tions. While the three conditional wavefunctions, ψ1, ψ2

and ψ3, still embody contributions from both Φ
(1)
R (r) and

Φ
(2)
R (r), these contributions are now very well separated

along the nuclear coordinates with a minimum at around
Rsp = 4a0 (see also Fig. 1, right panel). For nuclear coor-
dinates less than Rsp, the support of the full probability
density perfectly fits in the support of the first excited

Born-Oppenheimer state Φ
(2)
R (r), while for R > Rsp it

mainly falls in the ground state Φ
(1)
R (r). As a direct

consequence, the quantum electronic potential acquires

a discontinuity, i.e. Qeα(R < Rsp) ≈ T̂eΦ
(2)
R (r)/Φ

(2)
R (r)

while Qeα(R > Rsp) ≈ T̂eΦ
(1)
R (r)/Φ

(1)
R (r). The real parts

of the C-TDPESs are therefore piecewise connecting adi-

abatic surfaces, i.e. V <α ≈ V <α,app ≈ ε
(1)
BO for R > Rsp,

and V <α ≈ V <α,app ≈ ε
(2)
BO for R < Rsp (the reader is again

referred to SM A for further discussion). In the transition
between this two regions (at around Rsp), the conditional
wave functions ψ1, ψ2 and ψ3 become linear combinations
of (at least) the lowest two adiabatic electronic states. As
a result, the C-TDPESs exhibit abrupt peaks, both real
and imaginary, mainly originating from the potentials Qeα
and K=α . In the full configuration space (left panels in
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FIG. 2. LEFT PANELS: Contour lines of the full electron-nuclear probability density (in white) together with three conditional
wavefunctions, ψ1(R, t), ψ2(R, t), and ψ3(R, t) (dotted black lines), defined along with the trajectories {rα=1,2,3, Rα=1,2,3} (in
cyan). In the background (in copper color scale), full configuration dependence of a) the electron-nuclear potential energy
W (r,R), and b) and c) respectively the real and imaginary components of the kinetic correlation potential K=(r,R, t). RIGHT
PANELS: In 1), 2) and 3) (bottom) we display the conditional probability densities |ψα=1,2,3(R, t)|2 (black solid-lines) along

with the first three BOPESs (dotted red = ε
(1)
BO, blue = ε

(2)
BO, and green = ε

(3)
BO lines) and the real part of the C-TDPESs

V <α = Wα+K<α +A<α (in magenta). For comparison we also show the potential V <α,app = Qeα+Wα (green circles). In 1), 2) and

3) (middle): Electronic quantum potential alone Qeα. In 1), 2) and 3) (top): Imaginary part of the C-TDPESs V =α = K=α +A=α
(magenta line) along with the approximated potential V =α,app = K=α alone (green circles).

Fig. 2), these features are now directly translated into
deep wells/barriers that keep the full probability density
well separated into three pieces.

Recently, the concept of the TDPES has been used
to shed light into the origins of the branching of the
nuclear probability density in nonadiabatic transitions.
In [34], Abedi et al. report properties of the TDPES
that closely match the merits that we have just de-
scribed for the ensemble of C-TDPESs: far from the
region of avoided crossings (when the nonadiabatic cou-
plings are negligible) the TDPES coincide with the adi-
abatic BOPESs, while in their neighborhood exhibits
nearly discontinuous steps that connect two different adi-
abatic BOPESs. The same behavior was also observed
for the C-TDPESs derived in this work and therefore
it is worth investigating if these discontinuities have a
common, universal origin. To this end, by virtue of the
EF theorem, we rewrite the conditional nuclear wave-
function as a direct product of conditional electronic and
nuclear wavefunctions, i.e., ψα(R, t) = ΦR(rα, t)χ(R, t).
By inserting this Ansatz into Eq. (1), equations of mo-
tion for both electronic and nuclear factors can be de-
rived. Here, the nuclear wavefunction, χ(R, t), plays a

central role in establishing a relation between the EF
and CD frameworks. For the model system studied
here [36], the equation of motion for χ(R, t) simply reads

i∂tχ(R, t) =
{
T̂n(R) + ε(R, t)

}
χ(R, t), where the exact

TDPES, ε(R, t), effectively governs the nuclear dynamics
and can be written in terms of the C-TDPESs as:

ε(R, t) =

∫
D̂r[|ψα|2Vα]dr∫
D̂r[|ψα|2]dr

+O(M−1
n ) + εgd(R, t). (6)

The third term on the r.h.s of Eq. (6), εgd(R, t), depends
on the specific choice of the gauge, while the second term,
O(M−1

n ), it is most of the time negligible because it de-
pends on the inverse of the nuclear mass (see SM B). We
are left with the first term on the r.h.s of Eq. (6), which
establishes a direct connection between the TDPES con-
cept, i.e., a single function of the nuclear coordinates
and time, and the C-TDPESs, which are, one-by-one,
functions of the nuclear coordinates and time that de-
pend parametrically on the electronic degrees of freedom
through the trajectories {rα}. As stated in Eq. (6), in
the TDPES of the EF approach, discontinuities can be
understood to emerge through an ensemble average of C-
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TDPESs, Vα, which are integrated along the conditional
probability densities |ψα|2 and weighted afterwards by
the nuclear probability density,

∫
D̂r[|ψα|2]dr =

∫
|Ψ|2dr.

Hence, the main difference between the BOPESs and
the effective time-dependent potentials that arise in the
EF and CD frameworks, is that the first are defined
independently from the nature and the position of the
total electron-nuclear wavefunction, while in the time-
dependent case, the effective potentials have a direct de-
pendence on the full wavefunction (either through the
first term in the r.h.s of Eq. (6) in the EF framework
or through the quantum potential in Eq. (2) in the CD
framework), which can induce discontinuities. Within
the Born-Oppenheimer picture, the nuclear wavepacket
can populate different BOPESs and reproduce in this
way coherent wavepacket branching during a nonadia-
batic process. In the EF or in the CD discussed here the
same physics seems to be universally described by abrupt
steps in the effective time-dependent potentials that drive
the nuclear wavepacket dynamics. These steps connect
different portions of the underlying BOPESs, splitting
the support of the nuclear wavepacket into subsets that
are associated, piecewise, to different portions of the cor-
responding BOPESs.

To summarize, we have reported discontinuities in the
exact C-TDPESs for the specific situation where, accord-
ing to the standard Born-Oppenheimer picture, the nu-
clear wavepacket splits at the avoided crossing of two
BOPESs. The C-TDPESs are the only potentials that
govern the dynamics of the conditional nuclear wavefunc-
tions and, therefore, provide us with an alternative way of
visualizing and interpreting nonadiabatic processes with-
out the need of BOPESs or nonadiabatic couplings. Our
study reveals that the shape and position of discontinu-
ous steps connecting different BOPESs is mainly dictated
by the electronic quantum potential, Qeα, which can be
understood as a clear-cut signature of the ultimate quan-
tum nature of electron-nuclear correlations. In our anal-
ysis we have also identified a very close correspondence
between the C-TDPESs and the effective potentials that
arises in the EF approach, both showing the same kind
of steps during the branching of the nuclear probabil-
ity density. A formal connection between the CD and
the EF frameworks brought us to discuss on the uni-
versality of these discontinuities in molecular dynamics
theories without BOPESs. In this respect, it is worth
mentioning that other attempts to reduce the complex-
ity of the time-dependent Schrödinger equation, such as
in time-dependent density-functional theory, also lead to
the emergence of striking discontinuities in the effective
time-dependent potentials that govern the reduced vari-
ables of interest. This is the case, e.g., in the field of
electron-electron correlated dynamics, where the nature
of such discontinuities is currently under study [37–39].
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