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Abstract

For supersymmetric gauge theories with eight supercharges in four, five

and six dimensions, a conserved current belongs to the linear multiplet. In

the case of six-dimensional N = (1, 0) Poincaré supersymmetry, we present a

consistent deformation of the linear multiplet which describes chiral anomalies.

This is achieved by developing a superform formulation for the deformed linear

multiplet. In the abelian case, we compute a nonlocal effective action generating

the gauge anomaly.
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1 Introduction

For supersymmetric gauge theories with eight supercharges in four, five and six

dimensions, a conserved current belongs to the so-called linear multiplet [1]. This

multiplet is described by a real SU(2) triplet superfield, Lij = L(ij) and Lij = Lij :=

εikεjlL
kl, subject to the constraint

D(i
αL

jk) = 0 , (1.1)
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with α the four-component spinor index. Conserved current multiplets in N = 3 and

N = 4 supersymmetric field theories in three dimensions have similar structure [2].

It is well known that the four-dimensional N = 2 supersymmetric Yang-Mills

theories are non-chiral. There are no chiral fermions in five dimensions. Thus all

supersymmetric gauge theories with eight supercharges in four and five dimensions

are anomaly-free. However, in six dimensions all irreducible matter representations of

N = (1, 0) supersymmetry (the hypermultiplet, the vector multiplet and the tensor

multiplet) as well as the supergravity multiplet contain chiral fermions. Moreover, the

tensor and supergravity multiplets also contain chiral bosonic fields, which are gauge

two-forms with (anti) self-dual field strengths. These features imply the existence of

numerous chiral N = (1, 0) supersymmetric gauge theories. That is why the classi-

fication and structure of anomaly-free 6D supersymmetric theories were thoroughly

studied in the 1980s at the component level, see [3] for a review.

In the presence of anomalies, the 6D conservation equation (1.1) turns into

D(i
αL

jk) = Aijk
α , (1.2a)

for some superfield Aijk
α = A

(ijk)
α constrained by1

D
(i
(αA

jkl)
β) = 0 . (1.2b)

It was conjectured in [5] that Aijk
α has the following structure:

Aijk
α = DαlA

ijkl , D(i
αA

jklm) = 0 . (1.3)

This led the authors of [5] to conclude that the anomalous current multiplet is a 6D

relaxed hypermultiplet [6]. A decade later, this conclusion was re-considered by Howe

and Sezgin [7] who studied the N = (1, 0) Yang-Mills multiplet coupled to a tensor

multiplet. By analysing the one-loop corrected equations of motion, they found an

expression for Aijk
α that was incompatible with (1.3).

In this paper we will argue that the anomalous 6D N = (1, 0) current multiplet

Lij obeys the equation

D(i
αL

jk) = κ i εαβγδW
iβWjγWkδ , (1.4)

where W iα is the field strength of an abelian vector multiplet [8, 9], and κ a real

parameter. As we will show, it follows from this equation that there exists a current

ja at the component level satisfying ∂aj
a ∝ εabcdeffabfcdfef , with fab the component

1The superfield Aijk
α subject to the constraint (1.2b) corresponds to a closed six-form, see [4].
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gauge invariant field strength. Equation (1.4) can be shown to be superconformal

assuming Lij is a primary operator of dimension 4. On the contrary, it may be shown

that the “relaxed hypermultiplet” (1.3) does not describe a representation of the

superconformal group.

Equation (1.4) appeared in [7] in the context of the model describing the 6D

N = (1, 0) Yang-Mills multiplet coupled to the tensor multiplet.2 Here we will argue

that the constraint has a universal nature.3 The simplest anomalous N = (1, 0)

supersymmetric theory is a hypermultiplet coupled to a U(1) vector multiplet. The

hypermultiplet contains a single chiral fermion interacting with the gauge field. The

corresponding gauge anomaly is well known [10, 11, 12, 13]

∂aja = −
1

384π3
εabcdeffabfcdfef . (1.5)

It corresponds to eq. (1.4) with κ = 1
96π3 and ja a component field of Lij (defined by

eq. (2.39)).

This paper is organised as follows. Section 2 gives a superform formulation for the

anomalous current multiplet. In particular, the consistency of the constraint (1.4) is

demonstrated. In section 3 we compute the nonlocal effective action generating the

chiral anomaly. We also discuss how the problem of chiral anomalies should be ad-

dressed in the frameworks of the harmonic and the projective superspace approaches.

Section 4 is devoted to an alternative description of the anomalous current multiplet.

Concluding comments are given in section 5. The paper also includes two technical

appendices. Appendix A is devoted to a brief review of the three prepotential for-

mulations for the 6D N = (1, 0) vector multiplet. Appendix B contains the technical

details concerning the derivation of the anomalous effective action.

2 Superforms and the anomalous current multi-

plet

In this section we present a superform construction for the anomalous current. We

work in standard 6D N = (1, 0) Minkowski superspace parametrised by coordinates

2The analysis in [7] is rather inconclusive, as may be deduced from the final comments given

in that paper. The authors state that “in order to capture the full supermultiplet structure of the

equations of motion plus anomalies, one should relax the “relaxed hypermultiplet” even further.”
3In [7] Howe and Sezgin considered the non-abelian vector multiplet. Eq. (1.4) admits a straight-

forward generalisation and we leave discussion of it to section 2.
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zA = (xa, θαi ). Our 6D notation and conventions correspond to [14]. In particular,

the flat-superspace covariant derivatives are denoted by DA = (∂a, D
i
α), and the dual

basis of one-forms is denoted by EA, such that d = dzM∂M = EADA.

2.1 The vector multiplet

In this subsection we review the superspace formulation for the 6D N = (1, 0)

Yang-Mills supermultiplet following [6]. To describe a non-abelian vector multiplet,

the covariant derivative DA has to be replaced with a gauge covariant one,

DA := DA + iVA . (2.1)

Here the gauge connection one-form V = EAVA takes its values in the Lie algebra of

the Yang-Mills gauge group GYM. The covariant derivative algebra is

[DA,DB} = TAB
CDC + iFAB , (2.2)

where the only non-vanishing torsion is

T i
α
j
β
c = −2iεij(γc)αβ (2.3)

and FAB corresponds to the gauge covariant field strength two-form. The covariant

derivatives and field strength may be written in a coordinate-free way as follows

D = d + iV , F = dV − iV ∧ V , (2.4)

where

D := dzADA , V := dzAVA , F :=
1

2
dzB ∧ dzAFAB . (2.5)

The field strength FAB satisfies the Bianchi identity

DF = dF + iV ∧ F − iF ∧ V = 0 ⇐⇒ D[AFBC} − T[AB
DF|D|C} = 0 . (2.6)

The Yang-Mills gauge transformation acts on the gauge covariant derivatives DA and

a matter superfield U (transforming in some representation of the gauge group) as

DA → eiτDAe
−iτ , U → U ′ = eiτU , τ † = τ , (2.7)

where the Hermitian gauge parameter τ(z) takes its values in the Lie algebra of GYM.

This implies that the gauge connection and field strength transform as follows

V → eiτ V e−iτ − ieiτ de−iτ , F → eiτ F e−iτ . (2.8)
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Some components of the field strength have to be constrained in order to describe

an irreducible multiplet. Upon constraining the lowest mass dimension component of

the field strength tensor as

F i
α
j
β = 0 , Fa

j
β = (γa)βγW

jγ , (2.9a)

the remaining component is completely determined to be

Fab = −
i

8
(γab)β

αDk
αW

β
k , (2.9b)

where the superfield W iα obeys the Bianchi identities

Dk
γW

γ
k = 0 , D(i

αW
j)β =

1

4
δβαD

(i
γ W

j)γ . (2.10)

The vector indices of Fab can be converted into spinor ones as follows:

Fα
β := −

1

4
(γab)α

βFab = −
i

4

(
Dk

αW
β
k −

1

4
δβαD

k
γW

γ
k

)
= −

i

4
Dk

αW
β
k . (2.11)

It is convenient to introduce the following superfield:

X ij :=
i

4
D(i

γ W
j)γ . (2.12)

The superfields W iα, X ij and Fα
β satisfy the useful identities:

Di
αW

jβ = −iδβαX
ij − 2iεijFα

β , (2.13a)

Di
αFβ

γ = −DαβW
iγ − δγαDβδW

iδ +
1

2
δγβDαδW

iδ , (2.13b)

Di
αX

jk = 2εi(jDαβW
k)β . (2.13c)

The above identities indicate how to define the independent component fields

contained in W iα. They may be defined as follows:

λiα := W iα| , fα
β := Fα

β| , yij := X ij | , (2.14)

where the bar projection of a superfield U(z) = U(x, θ) is defined by the standard

rule U | := U(x, θ)|θ=0. The component gauge field is defined by va := Va| and is

related to the component field strength fab as follows

fab = 2∂[avb] + i
[
va, vb

]
. (2.15)

It is seen that the vector multiplet consists of the following component fields: λiα, va

and yij.
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The supersymmetry transformations of the fields λiα, va and yij may be obtained

by evaluating the component projection of the identities (2.13). This gives

δξλ
iα = −iξαj y

ij + 2iξβifβ
α , (2.16a)

δξy
ij = −2ξα(iDαβλ

j)β , (2.16b)

δξva = ξβj F
j
βa| = −ξαj (γa)αβλ

jβ , (2.16c)

where we have used Da to mean its projection, Da| = ∂a + iva, when acting on a

component field.

2.2 The superform formulation for the linear multiplet

The linear multiplet can be described using a four-form gauge potential B =
1
4!
dzD ∧ dzC ∧ dzB ∧ dzABABCD possessing the gauge transformation

δB = dρ , (2.17)

where the gauge parameter ρ is an arbitrary three-form.4 The corresponding field

strength is

H = dB =
1

5!
dzE ∧ dzD ∧ dzC ∧ dzB ∧ dzAHABCDE , (2.18)

where

HABCDE = 5D[ABBCDE} − 10T[AB
FB|F |CDE} . (2.19)

The field strength must satisfy the Bianchi identity

dH = 0 ⇐⇒ D[AHBCDEF} −
5

2
T[AB

GH|G|CDEF} = 0 . (2.20)

In order to describe the linear multiplet we need to impose some covariant con-

straints on the field strength H . We choose the constraint

Habc
i
α
j
β = −2i(γabc)αβL

ij , Lij = Lji , (2.21)

and require all lower mass-dimension components to vanish. We can now solve for

the remaining components of H in terms of Lij . The solution is

Habcd
i
α = −

1

6
εabcdef(γ

ef)α
βDβjL

ij , (2.22)

Habcde = −
i

24
εabcdef(γ̃

f)αβDk
αD

l
βLkl , (2.23)

4The construction here is a straightforward generalisation of the ones given in [15].
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where Lij satisfies the constraint for the linear multiplet

D(i
αL

jk) = 0 . (2.24)

We defer the definition of the component fields and the explicit form of their

supersymmetry transformations to the next subsection.

2.3 Chern-Simons couplings to the linear multiplet

Unlike in lower dimensions, the linear multiplet in six dimensions permits a de-

formation with the use of a non-abelian vector multiplet. The deformed multiplet we

will refer to as the deformed linear multiplet. To deform the linear multiplet we now

introduce a gauge four-form B = 1
4!
dzD ∧ dzC ∧ dzB ∧ dzABABCD and its five-form

field strength defined by

H := dB + κ tr(V ∧ F ∧ F +
i

2
V ∧ V ∧ V ∧ F −

1

10
V ∧ V ∧ V ∧ V ∧ V) , (2.25)

where V and F are the Yang-Mills connection and two-form field strength of a non-

abelian vector multiplet, respectively. Here B is understood to be a gauge singlet,

DB = dB. The infinitesimal gauge-transformations are

δV = −dτ , (2.26a)

δB = dρ− κ tr
(
dτ ∧ (V ∧ F +

i

2
V ∧ V ∧ V)

)
, (2.26b)

where τ and ρ generate the gauge transformations of V and B, respectively. The field

strength H satisfies the Bianchi identity

dH = κ tr(F ∧ F ∧ F) , (2.27)

which is equivalent to

2D[AHBCDEF} − 5T[AB
GH|G|CDEF} = 30 κ tr

(
F[ABFCDFEF}

)
. (2.28)

In order to construct an irreducible multiplet one should constrain the components

of H. We can make use of similar constraints as those for the linear multiplet, eq.

(2.21). We impose the constraint

Habc
i
α
j
β = −2i(γabc)αβL

ij , Lij = Lji (2.29)

and require all lower components to vanish. Here Lij is a gauge singlet.
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Upon imposing these constraints the remaining components of H are completely

determined and are found to be

Habcd
i
α = −

1

6
εabcdef (γ

ef)α
βDβjL

ij

+ κ i εabcdef(γ
e)αβ(γ

f)γδtr
(
Wβ

j W
(jγW i)δ

)
, (2.30a)

Habcde = εabcdef H̃
f , (2.30b)

where

D(i
αL

jk) = κ i εαβγδtr
(
W iβWjγWkδ

)
(2.31)

and

H̃a = −
i

24
(γ̃a)αβDk

αD
l
βLkl −

κ i

2
tr
(
Xkl(W

kγaW l)
)
+

3κ i

8
tr
(
Fbc(W

kγabcWk)
)
.

(2.32)

In deriving the components of H the following identity proves useful:

Di
αΦ

j
β = −

1

2
εijDk

[αΦβ]k −
κ

2
εαβγδtr

(
Xk

(i[Wj)γ ,Wkδ]
)
+ i∂αβL

ij

−κ (γa)αβ(γ
b)γδtr

(
FabW

(iγWj)δ
)
−

κ

4
(γabc)αβ(γ

a)γδtr
(
F bcW(iγWj)δ

)
,(2.33)

where we have defined

Φi
α =

1

3
DαjL

ij . (2.34)

It should be noted that the Bianchi identities imply that H̃a satisfies

∂aH̃
a =

κ

8
εabcdef tr

(
FabFcdFef

)
. (2.35)

Using the above results one can deduce the supersymmetry transformations. We

define the independent component fields of Lij as follows:

J ij := Lij| , ϕi
α := Φi

α| , babcd := Babcd| . (2.36)

The component projection of the field strength is related to babcd as follows

Habcde| = 5∂[aBbcde] + κ tr
(
30v[afbcfde] + 30iv[avbvcfde] + 12v[avbvcvdve]

)
. (2.37)

The supersymmetry transformations of the component fields are found with the help

of the superform H and the identity (2.33). They are

δξJ
ij = −2ξαkϕ

k
α + κ i ξβk εβγδρtr

(
λiγλjδλkγ

)
, (2.38a)

δξϕ
i
α = −ξβi(γa)βαH̃a|+ κ ξβiεβαγδtr

(
yklλ

kγλlδ
)
− 3 κ ξβiεβαγρtr

(
fδ

ρ[λkγ, λδ
k]
)
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−
κ

2
ξβj εβαγδtr

(
yk

(j [λi)γ , λkδ]
)
+ iξβj ∂βαJ

ji − κ ξβj (γ
a)βα(γ

b)γδtr
(
fabλ

(jγλi)δ
)

−
κ

4
ξβj (γabc)βα(γ

a)γδtr
(
f bcλ(jγλi)δ

)
, (2.38b)

δξbabcd = −
1

2
εabcdefξ

α
k (γ

ef)α
βϕk

β + κ i εabcdefξ
α
j (γ

e)αβ(γ
f)γδtr

(
λβ
kλ

(jγλk)δ
)

−24 κ tr
(
δξv[avbfcd] +

i

2
δξv[avbvcvd]

)
. (2.38c)

The covariant component field strength,

ja := −2H̃a| , (2.39)

transforms as follows:

δξj
a = −2(γab)α

βξαi ∂bϕ
i
β + 4iκξαi (γ

[a)αβ(γ
b])γδ∂btr

(
λβ
j λ

(jγλi)δ
)

+
3κ

2
εabcdefξαi (γb)αβtr

(
λiβfcdfef

)
. (2.40)

The supersymmetry transformations for the usual linear multiplet may be obtained

by switching off the coupling to the vector multiplet, κ = 0.

The component field ja defined by (2.39) is normalised such that the bar-projection

of (2.35) in the abelian case coincides with (1.5) upon identifying κ = 1/(96π3).

3 The anomalous effective action

Let Γ be an effective action for the abelian vector multiplet. One may think of

Γ as the functional obtained by integrating out the hypermultiplets coupled to the

vector multiplet.

3.1 Conventional superspace formulation

If the vector multiplet is described by Mezincescu’s prepotential5 [16] Mij(z), the

effective action is a functional of this superfield,

Γ = Γ[Mij ] . (3.1)

Varying Γ leads to the functional derivative Lij = Lji defined by

δΓ =

∫
d6|8z δMijL

ij , (3.2)

5See Appendix A for a brief review of the known prepotentials for the vector multiplet.

9



where the integration is performed over the full superspace. The Mezincescu prepo-

tential Mij has dimension −2, and its gauge transformation is given by eq. (A.23),

δξMij = Dk
αξ

α
ijk , (3.3)

with the gauge parameter ξαijk being unconstrained. This gauge transformation means

that the theory under consideration is a gauge theory with linearly dependent gener-

ators, following the terminology of the Batalin-Vilkovisky quantisation [17]. Indeed,

the gauge parameter in (3.3) is defined modulo arbitrary shifts ξαijk → ξαijk + δξαijk of

the form

δξαijk = Dl
βζ

αβ
ijkl , ζαβijkl = ζ

(αβ)
(ijkl) (3.4)

such that δξMij = δξ+δξMij . In its turn, the parameter ζαβijkl in (3.4) is defined modulo

arbitrary shifts ζαβijkl → ζαβijkl + δζαβijkl, where

δζαβijkl = Dm
γ ω

αβγ
ijklm , ωαβγ

ijklm = ω
(αβγ)
(ijklm) , (3.5)

and so forth. This means that the 6D N = (1, 0) supersymmetric Yang-Mills theory

formulated in conventional superspace is a gauge theory of infinite degree of reducibil-

ity, similar to the Green-Schwarz superstring.

Under the gauge transformation (3.3) the effective action varies as

δξΓ =

∫
d6|8z ξαijkD

(k
α Lij) . (3.6)

For anomaly-free theories, the effective action is gauge invariant, which means that Lij

obeys the conservation equation (1.1). Therefore Lij is a linear multiplet containing

a conserved current.

In the presence of anomalies, Lij is no longer a linear multiplet. Instead it obeys

the anomalous conservation equation (1.2a). In order for the gauge variation

δξΓ =

∫
d6|8z ξαijkA

ijk
α (3.7)

to be invariant under the transformation (3.4), the anomaly superfield Aijk
α must

obey the consistency condition (1.2b). Of course, it must also comply with the Wess-

Zumino consistency condition [18]. Both conditions are satisfied if the anomaly su-

perfield is

Aijk
α = i κ εαβγδW

iβWjγWkδ , (3.8)

for some parameter κ.
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For anomalous theories, the effective action Γ[Mij ] may be represented as the sum

of two parts,

Γ = ΓA + Γ̃ , (3.9)

where ΓA contains all information about the anomaly, while Γ̃ is a gauge-invariant

functional,

δξΓA =

∫
d6|8z ξαijkA

ijk
α , δξΓ̃ = 0 . (3.10)

Decomposition (3.9) is not unique. The anomalous part of the effective action, ΓA,

may be determined by making the ansatz

ΓA =

∫
d6|8z MijΛ

ij , (3.11)

in which Λij[Wγ
k ] is a functional of the field strength Wγ

k subject to the equation

D(k
α Λij) = Aijk

α . (3.12)

In Appendix B we demonstrate that Λij may be chosen in the form:

Λij =
3i

8

∂αβ

�
DkαA

ijk
β +

3

80

1

�
εαβγδDkαDlβD

(i
γ A

jkl)
δ −

3

160

∂αβ∂µν

�2
DkαDlβD

(i
µA

jkl)
ν

+
i

1152

∂αα′

�2
εαβγδεα

′β′γ′δ′DkβDlγDmδD
(i
β′D

j
γ′A

klm)
δ′

−
1

64512

1

�2
εαβγδεα

′β′γ′δ′DkαDlβDmγDnδD
(i
α′D

j
β′D

k
γ′A

lmn)
δ′ . (3.13)

3.2 Harmonic superspace formulation

In the harmonic superspace approach, the effective action for the vector multiplet

is a functional of the analytic prepotential V ++(z, u±
i ),

Γ = Γ[V ++] . (3.14)

Varying Γ with respect to V ++ leads to the functional derivative L++ defined by

δΓ =

∫
dζ (−4)δV ++L++ , D+

αL
++ = 0 . (3.15)

In particular, for the gauge variation δλV
++ = −D++λ, which is the infinitesimal

form of (A.13) in the abelian case, we have

δλΓ =

∫
dζ (−4)δλV

++L++ =

∫
dζ (−4)λD++L++ . (3.16)

11



If the theory is anomaly-free, the effective action is gauge invariant, δλΓ = 0, and

L++ obeys the conservation equation

D++L++ = 0 . (3.17)

In the central basis, this equation is equivalent to

L++(z, u) = Lij(z)u+
i u

+
j . (3.18)

The analyticity condition D+
αL

++ = 0 means that Lij obeys the conservation equation

(1.1). The conserved current multiplet, Lij , coincides with the one originating within

the conventional superspace formulation described in the previous subsection.

In the presence of anomalies, the conservation equation (3.17) is replaced with

D++L++ = A(+4) , D+
αA

(+4) = 0 , (3.19)

with the analytic superfield A(+4) containing all information about the anomaly. The

anomaly must obey the Wess-Zumino consistency condition, [δλ1
, δλ2

]Γ = 0, which is

equivalent to

δλA
(+4)(ζ) =

∫
dζ̃ (−4)A(4,4)(ζ, ζ̃)λ(ζ̃) , A(4,4)(ζ, ζ̃) = A(4,4)(ζ̃ , ζ) , (3.20)

for some bi-analytic kernel A(4,4)(ζ, ζ̃).

3.3 Projective superspace formulation

In the projective superspace approach, the effective action for the vector multiplet

is a functional of the tropical prepotential V (z, vi),

Γ = Γ[V ] . (3.21)

Varying Γ with respect to V leads to the functional derivative L(2)(z, v), which is a

weight-2 projective multiplet, defined by

δΓ =
1

2π

∮

C

(v, dv)

∫
d6xD(−4)

{
δV L(2)

}
, D(1)

α L(2) = 0 , (3.22)

with C a closed integration contour. Here we have also introduced the fourth-order

operator

D(−4) := −
1

96
εαβγδD(−1)

α D
(−1)
β D(−1)

γ D
(−1)
δ , D(−1)

α :=
ui

(v, u)
Di

α , (3.23)
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which involves a constant isospinor ui constrained by the only condition (v, u) 6= 0

along the integration contour in (3.22). The variation (3.22) may be shown to be

invariant under arbitrary projective transformations

(ui , vi) → (ui , vi)R , R =

(
a 0

b c

)
∈ GL(2,C) , (3.24)

and therefore (3.22) is independent of ui. It may also be shown that (3.22) is inde-

pendent of the superspace Grassmann variables.

Choosing δV in (3.22) to be an infinitesimal gauge variation (A.30) gives

δλΓ =
i

2π

∮

C

(v, dv)

∫
d6xD(−4)

{
(λ̆− λ)L(2)

}
. (3.25)

If the theory is anomaly-free, the effective action is gauge invariant, δλΓ = 0, for

arbitrary weight-0 arctic superfield λ. It turns out that this condition implies

L(2)(z, v) = Lij(z)vivj . (3.26)

Then the analyticity condition D
(1)
α L(2) = 0 means that Lij obeys the constraint

(1.1). The conserved current multiplet, Lij , coincides with those originating within

the conventional and harmonic superspace formulations described in the previous

subsections. Eq. (3.26) tells us that associated with the conserved current multiplet

Lij , eq. (1.1), is the holomorphic tensor field L(2) over CP 1.

If the theory is anomalous, the gauge variation (3.25) does not vanish. As a

consequence, the projective multiplet L(2) is no longer a linear multiplet.

4 An alternative description of the anomalous cur-

rent multiplet

In section 2 we have constructed the consistent deformation of the 6D N = (1, 0)

linear multiplet given by eq. (2.31). Here an alternative form for the anomalous

current multiplet will be derived in the abelian case. We will use some harmonic

superspace relations described in subsection A.1.

We associate with the anomalous current multiplet Lij , eq. (1.4), the following

harmonic superfield:

L++ = u+
i u

+
j L

ij , D++L++ = 0 . (4.1)

13



Then eq. (1.4) is equivalent to

D+
αL

++ = κ i εαβγδW
+βW+γW+δ , (4.2)

with the superfield W+α being defined by (A.4).

In the anomaly-free case, the current multiplet L++ = u+
i u

+
j L

ij is analytic and

holomorphic on CP 1,

D+
αL

++ = 0 , D++L++ = 0 . (4.3)

Eq. (4.2) tells us that the anomalous current multiplet is no longer analytic.

As a first step, we represent

i εαβγδW
+βW+γW+δ = D+

αF
++ , (4.4)

for some superfield F++(z, u±) defined up to an arbitrary shift of the form

F++ → F++ +H++ , D+
αH

++ = 0 . (4.5)

A particular solution of (4.4) is

F++ = −
i

2
VαβW

+αW+β −
i

64
εαβγδVαβVγδD

+W+ , (4.6)

where Vαβ is the vector superfield connection defined in (A.14b). In checking (4.4)

the following properties of Vαβ may be useful

D+
αVβγ = −2εαβγδW

+δ , D++Vαβ = ∂αβV
++ . (4.7)

It is seen that F++ is neither analytic nor gauge invariant. However, D++F++ proves

to be analytic,

D++F++ = −
i

2
G++αβ∂αβV

++ , (4.8)

where we have defined

G++αβ = W+αW+β +
1

16
εαβγδVγδD

+W+ , D+
γ G

++αβ = 0 . (4.9)

Our second step is to introduce

L
++ = L++ − κF++ . (4.10)

It follows from (4.2) and (4.4) that L++ is analytic,

D+
αL

++ = 0 . (4.11)

14



However, unlike L++, the superfield L++ is no longer holomorphic on CP 1,

D++
L
++ = A

(+4) , D+
αA

(+4) = 0 . (4.12)

The anomaly is now encoded in the analytic superfield A(+4). It is defined modulo

shifts

A
(+4) → A

(+4) − κD++H++ , D+
αH

++ = 0 , (4.13)

where the analytic superfield H++ is a local composite of the gauge prepotential.

For the choice of F++ given above, eq. (4.6), A(+4) is

A
(+4) =

i

2
κG++αβ∂αβV

++ . (4.14)

It is an interesting problem to understand whether the functional freedom (4.13)

allows one to construct an analytic superfield A(+4) = A(+4)−κD++H++ obeying the

Wess-Zumino consistency condition (3.20).

5 Concluding comments

In this paper we have presented the consistent deformation, eq. (2.31), of the 6D

N = (1, 0) linear multiplet which describes chiral anomalies. It is

D(i
αL

jk) = κ i εαβγδ tr
(
W iβWjγWkδ

)
. (5.1)

Its consistency is guaranteed by the superform formulation for the deformed linear

multiplet developed in section 2. Equation (5.1) is superconformal assuming Lij to

be a primary superfield of dimension 4.

The consistent Chern-Simons coupling of the linear multiplet to a vector multi-

plet, eq. (5.1), is a characteristic feature of 6D N = (1, 0) supersymmetry. Such a

deformation was not possible in the cases of 4D N = 2 and 5D N = 1 supersymmetry.

Equation (5.1) is analogous to the constraint describing a deformed 4D N = 1 linear

multiplet L = L̄, which is

D̄2L = 2κ tr
(
WαWα

)
, D2L = 2κ tr

(
W̄α̇W̄

α̇
)
, (5.2)

with Wα the covariantly chiral field strength of a non-abelian vector multiplet, see

[19] for a review of the Chern-Simons couplings to the 4D N = 1 linear multiplet.

In the abelian case, we have computed the nonlocal effective action ΓA, which is

given by the relations (3.11) and (3.13) and which generates the gauge anomaly (3.8).
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The effective action ΓA is constructed as a functional of the Mezincescu prepotential,

which corresponds to the formulation of the 6D N = (1, 0) vector multiplet in conven-

tional superspace [8, 9]. It is known that such a formulation is not suitable (unlike,

e.g., the harmonic superspace approach) to do quantum calculations in general super-

symmetric Yang-Mills theories with eight supercharges in diverse dimensions. There

are many reasons for that, and the most prominent ones are the following. Firstly,

the conventional superspace approach does not offer means to describe off-shell hy-

permultiplets in complex representations of the gauge group (see [20] for a detailed

discussion). Secondly, the Yang-Mills multiplet in this approach is a nontrivial gauge

theory with linearly dependent generators of infinite degree of reducibility. As dis-

cussed in detail in [21], the Batalin-Vilkovisky quantisation of the theory has never

been used to derive a consistent superfield effective action.6 Both problems simply do

not occur with the harmonic superspace and the projective superspace approaches.

We computed the effective action (3.11), (3.13) by integrating the gauge anomaly

(3.8). However, we did not compute the anomaly by doing supergraph calculations.

Once the structure of the anomalous current multiplet is established, it suffices to

make use of the known non-supersymmetric results [10, 13]. This is exactly what was

done in this paper. It is of interest to compute the gauge anomaly by doing direct

supergraph calculations in 6D N = (1, 0) harmonic superspace, however the existing

literature [22, 23] does not offer any insight. We hope to report on such calculations

elsewhere.
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A Prepotentials for the Yang-Mills multiplet

In the case of supersymmetry with eight supercharges in diverse dimensions,

3 ≤ d ≤ 6, there exist three different prepotential formulations for the Yang-Mills

multiplet, which make use of the following multiplets: (i) the Mezincescu prepotential

[16]; (ii) the analytic prepotential [24]; and (iii) the tropical prepotential [25]. The

6Even the Batalin-Vilkovisky quantisation scheme [17] is literally applicable to finitely reducible

gauge theories only.
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Mezincescu prepotential can be obtained from the analytic one as described in sec-

tion 7.2.4 of [20]. It can also be read off from the tropical prepotential in accordance

with [26]. In its turn, the tropical prepotential can be obtained from the analytic

one by getting rid of an infinite tail of superfluous gauge degrees of freedom [27]. In

spite of these relationships, the three distinct prepotentials are useful for different

applications.

A.1 Analytic prepotential

Supersymmetric Yang-Mills theory in six-dimensional N = (1, 0) harmonic super-

space was formulated in [28, 29]. Here we briefly review this formulation following

the harmonic superspace notation of [20].

Let u+
i and u−

i be standard SU(2) harmonic variables,
(
ui

− , ui
+
)
∈ SU(2),

u+i = u−
i , u+iu−

i = 1 , (A.1)

with u+
i = εiju

+j. Let D++, D−− and D0 be the associated harmonic derivatives

defined as in [20]. Using the harmonics we introduce U(1) projections of the gauge-

covariant spinor derivatives

D±
α = u±

i D
i
α = D±

α + iV±
α , V±

α = u±
i V

i
α . (A.2)

In accordance with (2.2), the operators (A.2) obey the following (anti)commutation

relations

{D+
α ,D

+
β } = 0 , (A.3a)

{D+
α ,D

−
β } = 2i(γa)αβDa , (A.3b)

[Da,D
±
α ] = i(γa)αβW

±β , (A.3c)

[Da,Db] = iFab , (A.3d)

where W±α are the irreducible U(1) components of the field strength W iα,

W±α = u±
i W

iα . (A.4)

In the harmonic superspace setting, it is useful to combine the superspace gauge-

covariant derivatives with the harmonic ones,

DÂ = (Da,D
±
α ,D

++,D−−,D0) := (Da,D
±
α , D

++, D−−, D0) = DÂ + iVÂ . (A.5)
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The gauge transformation of DÂ is analogous to (2.7),

DÂ −→ DÂ = eiτDÂe
−iτ . (A.6)

Since the gauge superfield parameter τ is harmonic independent, the harmonic deriva-

tives (D±±, D0) are gauge covariant.

The equation (A.3a) is the integrability condition for covariantly analytic super-

fields to exist. This equation can be solved in terms of a bridge superfield b = b(z, u)

defined by the rule

D+
α = e−ibD+

α e
ib . (A.7)

The introduction of the bridge superfield leads to a new gauge freedom, in addition

to the τ -gauge transformations (2.7). The complete gauge transformation law of b is

eib
′

= eiλeibe−iτ , (A.8)

where λ is a U(1) neutral analytic superfield, D+
αλ = 0.

The representation (A.5) for the gauge-covariant derivatives is called the τ -frame.

The bridge superfield allows one to introduce a new representation for the gauge-

covariant derivatives, which is defined by

DÂ −→ ∇Â = eibDÂe
−ib = DÂ + iVÂ (A.9)

and is called the λ-frame. In this frame, the derivative ∇+
α is short, ∇+

α = D+
α ,

and hence V +
α = 0. However, two of the three harmonic derivatives acquire gauge

connections:

∇++ = D++ + iV ++ , ∇−− = D−− + iV −− . (A.10)

As follows from the commutation relation [∇+
α ,∇

++] = 0, the gauge connection V ++

is analytic,

D+
αV

++ = 0 . (A.11)

The connection V −− can be expressed via V ++ as a unique solution of the zero-

curvature condition

[∇++,∇−−] = D0 ⇐⇒ D++V −− −D−−V ++ + i[V ++, V −−] = 0 . (A.12)

The explicit expression for V −− in terms of V ++ was originally found by Zupnik

[30]. In the λ-frame, no τ -gauge freedom remains. Under the λ-gauge group, the

connections V ++ and V −− transform as

V ′±± = eiλV ±±e−iλ − i eiλ∇±±e−iλ . (A.13)
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The λ-frame counterparts of the field strengths W±α will be denoted W±α. In the

abelian case, there is no difference between W±α and W±α, and we will use W±α in

the main body of the paper.

The λ-frame counterparts of the (anti-)commutation relations (A.3b) and (A.3c),

in conjunction with the identity [∇−−,∇+
α ] = ∇−

α , allow one to express the gauge

connections V −
α and Va and the field strength W+α in terms V −−. The explicit

expressions for the connections are

V −
α = −D+

αV
−− , (A.14a)

Va =
i

8
(γ̃a)

αβD+
αD

+
β V

−− ⇐⇒ Vαβ = (γa)αβVa =
i

2
D+

αD
+
β V

−− . (A.14b)

The expression for the field strength is

W+α =
i

24
εαβγδD+

β D
+
γ D

+
δ V

−− . (A.15)

As mentioned above, V −− is uniquely expressed in terms of the analytic connection

V ++. Thus, the superfield V ++ is a single prepotential in terms of which all the con-

nections are determined, in complete analogy with the 4D case [24]. This prepotential

is analytic, but otherwise unconstrained.

A.2 Mezincescu’s prepotential

The Mezincescu prepotential was used in [8, 9] to describe the 6DN = (1, 0) vector

multiplet in Minkowski superspace. In this subsection we recall how the Mezincescu

prepotential is obtained from the analytic one following the discussion in section 7.2.4

of [20]. Only the abelian vector multiplet is considered here.

In the harmonic superspace approach, the gauge prepotential V ++ and the gauge

parameter λ are analytic superfields, D+
αV

++ = 0 and D+
αλ = 0. The analyticity

constraint on V ++ is solved by

V ++ = (D+)4M−− , (A.16)

where

(D+)4 = −
1

96
εαβγδD+

αD
+
β D

+
γ D

+
δ (A.17)

is the analytic projection operator, and M−−(z, u) is an unconstrained superfield.

Similarly, the analyticity constraint on λ is solved by

λ = (D+)4ρ(−4) , (A.18)
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where ρ(−4)(z, u) is an unconstrained superfield. The original λ-transformation of

V ++ turns into the following gauge transformation of M−−:

δλM
−− = −D++ρ(−4) . (A.19)

In addition, it follows from (A.16) that M−− possesses a new gauge freedom that

leaves V ++ invariant and acts on M−− as follows:

δξM
−− = D+

α ξ
(−3)α . (A.20)

Here ξ(−3)α(z, u) is an unconstrained gauge parameter.

The superfields M−−(z, u), ρ(−4)(z, u) and ξ(−3)α(z, u) are smooth scalar fields on

the group manifold SU(2) of definite U(1) charges or, equivalently, smooth tensor

fields on the two-sphere S2 = SU(2)/U(1). Therefore these superfields are given by

convergent Fourier series in the harmonic variables,

M−−(z, u) = M ij(z)u−
i u

−
j +M ijkl(z)u+

(iu
−
j u

−
k u

−
l) + . . . , (A.21a)

ρ(−4)(z, u) = ρijkl(z)u−
i u

−
j u

−
k u

−
l + . . . , (A.21b)

ξ(−3)α(z, u) =
4

3
ξijk α(z)u−

i u
−
j u

−
k + . . . , (A.21c)

where the numerical coefficient in the last relation is introduced for later convenience.

Comparing the series (A.21a) and (A.21b), one can see that the gauge freedom (A.19)

allows one to gauge away all Fourier components of M−− in (A.21a) except for the

lowest one. In other words, one can impose a supersymmetric gauge

M−−(z, u) = M ij(z)u−
i u

−
j , M ij = M (ij) . (A.22)

The remaining superfield M ij is exactly Mezincescu’s prepotential [16].

The gauge condition (A.22) completely fixes the ρ-gauge freedom. However, there

remains a residual ξ-invariance generated solely by the spinor gauge parameter ξijk α =

ξ(ijk)α in the series (A.21c). It acts on Mezincescu’s prepotential by the rule

δξMij = Dk
αξ

α
ijk , (A.23)

which is exactly the gauge transformation derived in [8, 9]. In order to preserve the

gauge condition (A.22), this ξ-transformation has to be accompanied by a special

ρ-transformation

ρ(−4)(z, u) =
1

3
Di

αξ
jkl α(z)u−

i u
−
j u

−
k u

−
l . (A.24)
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A.3 Tropical prepotential

Here we recall the definition of the tropical prepotential [25] which is used to

describe the Yang-Mills multiplet within the projective superspace approach [31, 25].

We follow the modern presentation of this approach given, e.g., in [32].

In the projective superspace setting, one does not work with the harmonics used

in subsection A.1. Instead, one deals with homogeneous coordinates vi ∈ C2 \ {0}

for CP 1. We recall that CP 1 is obtained from C2 \ {0} by factorisation with respect

to the equivalence relation vi ∼ c vi, with c ∈ C∗. Supersymmetric field theories

are described in terms of the so-called weight-n projective multiplets Q(n)(z, v). By

definition, such a superfield is defined by the following conditions:

(i) Q(n)(z, v) is holomorphic over an open domain of CP 1,

∂

∂v̄i
Q(n) = 0 . (A.25)

(ii) it is a homogeneous function of vi of degree n,

Q(n)(z, c v) = cnQ(n)(z, v) , c ∈ C
∗ . (A.26)

(iii) it obeys the analyticity condition

D(1)
α Q(n) = 0 , D(1)

α = viD
i
α . (A.27)

Introduce two special points in N, S ∈ CP 1: the north pole N with homogeneous

coordinates vi ∝ (0, 1), and the south pole S labeled by vi ∝ (1, 0). Associated

with these points are two open domains, the north chart CP 1 \ {N} and the south

chart CP 1 \ {S}, which cover CP 1. In the north chart, we can introduce a complex

(inhomogeneous) coordinate ζ as

vi = v1 (1, ζ) , ζ :=
v2

v1
, i = 1, 2 . (A.28)

The tropical multiplet V (z, v) is a weight-0 projective multiplet holomorphic on

CP 1 \{N ∪S}. It is also constrained to be real under the so-called smile conjugation,

see [32] for more details. It is given by a Laurent series

V (z, v) = V (z, ζ) =
∞∑

n=−∞

Vn(z)ζ
n , V †

n = (−1)nV−n . (A.29)

The gauge transformation law of the tropical prepotential is

eV
′

= eiλ̆eV e−iλ , (A.30)
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where the gauge parameter λ(z, ζ) is a weight-zero arctic multiplet

D(1)
α λ = 0 , λ(z, ζ) =

∞∑

n=0

λn(z)ζ
n , (A.31)

and its smile conjugated antarctic multiplet,

λ̆(z, ζ) =

∞∑

k=0

(−1)kλ†
k(z)

1

ζk
. (A.32)

By definition, a weight-n arctic multiplet is holomorphic on CP 1 \ {N}.

Modulo purely gauge degrees of freedom, the gauge-covariant derivatives can be

expressed in terms of the tropical prepotential. This is explained in detail in the cases

of 3D N = 4 and 5D N = 1 vector multiplets coupled to conformal supergravity in

[33] and [34] respectively. The 6D N = (1, 0) case can be treated similarly.

Following [26], the Mezincescu prepotential is introduced by the rule

Mij(z) =
1

2π

∮

C

(v, dv) vivj U
(−4)(z, v) , (v, dv) = vkdvk , (A.33)

where U (−4)(z, v) is related to the tropical prepotential as follows:

V (z, v) = D(4)U (−4)(z, v) , D(4) = −
1

96
εαβγδD(1)

α D
(1)
β D(1)

γ D
(1)
δ . (A.34)

B Derivation of the anomalous effective action

To find the functional generating the anomalous effective action (3.11) it suffices

to find a particular solution of the equation (3.12) which we denote by Λij. In this

Appendix we will demonstrate that a particular solution of this equation can be

represented in the form (3.13).

Given the superfields Λij and Aijk
α it is convenient to deal with their harmonic

projections

Λ++ = u+
i u

+
j Λ

ij , A(+3)
α = u+

i u
+
j u

+
k A

ijk
α . (B.1)

Then the equation (3.12) is equivalent to

D+
αΛ

++ = A(+3)
α , (B.2)

where D+
α = u+

i D
i
α. Note that, by construction, the superfield Λ++ obeys

D++Λ++ = 0 . (B.3)
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We also point out that A
(+3)
α satisfies

D+
(αA

(+3)
β) = 0 =⇒ (D+)4A(+3)

α = 0 , (B.4)

as a consequence of (1.2b).

We look for a solution of the equation (B.2) in the form of the sum of the following

terms

Λ++ =
9∑

i=1

ciΛ
++
i , (B.5)

where ci are some coefficients and

Λ++
1 =

i

2

∂αβ

�
D−

αA
+++
β , (B.6a)

Λ++
2 = i

∂αβ

�
D−−D+

αA
+++
β , (B.6b)

Λ++
3 =

1

�
εαβγδD−

αD
−
β D

+
γ A

+++
δ , (B.6c)

Λ++
4 =

1

�
D−−εαβγδD−

αD
+
β D

+
γ A

+++
δ , (B.6d)

Λ++
5 =

1

�
D−−D−−εαβγδD+

αD
+
β D

+
γ A

+++
δ , (B.6e)

Λ++
6 =

∂αβ∂µν

�2
D−

αD
−
β D

+
µA

+++
ν , (B.6f)

Λ++
7 = i

∂αα′

�2
εαβγδD−

β D
−
γ D

−
δ ε

α′β′γ′δ′D+
β′D

+
γ′A

+++
δ′ , (B.6g)

Λ++
8 = i

∂µν

�2
D−−D−

µD
−
ν ε

αβγδD+
αD

+
β D

+
γ A

+++
δ , (B.6h)

Λ++
9 =

1

�2
εαβγδ(D−)4D+

αD
+
β D

+
γ A

+++
δ . (B.6i)

The equation (B.3) is satisfied on the condition that

c1 + 8c2 + 8c3 + 16c6 = 0 , (B.7a)

c3 + 2c4 +
1

3
c6 − 6c7 = 0 , (B.7b)

c4 + 10c5 − 8c8 = 0 , (B.7c)

3c7 + 8c8 −
1

2
c9 = 0 . (B.7d)

Imposing the equation (B.2) we find the following constraints for the coefficients ci:

c1 = 1 ,

c1 + 4c2 + 16c6 = 0 , (B.8a)

c1 − 16c3 = 0 , (B.8b)
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c2 − 6c4 = 0 , (B.8c)
2

3
c3 + c4 − 12c7 = 0 , (B.8d)

c4 + 8c5 − 16c8 = 0 , (B.8e)

c6 + 18c7 = 0 , (B.8f)

4c8 + 3c7 − c9 = 0 . (B.8g)

The solution of the system of equations (B.7) and (B.8) reads

c1 = 1 , c2 = −
1

8
, c3 =

1

16
, c4 = −

1

48
, c5 =

1

576
,

c6 = −
1

32
, c7 =

1

576
, c8 = −

1

2304
, c9 =

1

288
. (B.9)

Note that different terms in (B.5) depend on different harmonic monomials. Nev-

ertheless, the equation (B.3) guarantees that the full expression (B.5) is quadratic in

harmonics in agreement with (B.1). Therefore, we can restore Λij from Λ++ by the

rule

Λij = 3

∫
du u−iu−jΛ++ . (B.10)

The harmonic integral is computed according to the formula [35]

∫
du u+i1 . . . u+inu−

j1
. . . u−

jn
=

1

n + 1
δi1(j1 . . . δ

in
jn)

. (B.11)

Applying this rule to all terms in the sum (B.5) we find

Λij = 3

9∑

k=1

ck

∫
du u−iu−jΛ++

k

=
3i

8

∂αβ

�
DkαA

ijk
β +

3

80

1

�
εαβγδDkαDlβD

(i
γ A

jkl)
δ −

3

160

∂αβ∂µν

�2
DkαDlβD

(i
µA

jkl)
ν

+
i

1152

∂αα′

�2
εαβγδεα

′β′γ′δ′DkβDlγDmδD
(i
β′D

j
γ′A

klm)
δ′

−
1

64512

1

�2
εαβγδεα

′β′γ′δ′DkαDlβDmγDnδD
(i
α′D

j
β′D

k
γ′A

lmn)
δ′ . (B.12)

Note that the terms Λ++
2 , Λ++

4 , Λ++
5 and Λ++

8 do not contribute to this expression

owing to the identity [24]
∫
duD−−F++ = 0, for any smooth field F++(u).
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