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1 Introduction

For supersymmetric gauge theories with eight supercharges in four, five and six dimensions,

a conserved current belongs to the so-called linear multiplet [1]. This multiplet is described

by a real SU(2) triplet superfield, Lij = L(ij) and Lij = Lij := εikεjlL
kl, subject to

the constraint

D(i
αL

jk) = 0 , (1.1)

with α the four-component spinor index. Conserved current multiplets in N = 3 and

N = 4 supersymmetric field theories in three dimensions have similar structure [2, 3].

It is well known that the four-dimensional N = 2 supersymmetric Yang-Mills theories

are non-chiral. There are no chiral fermions in five dimensions. Thus all supersymmetric

gauge theories with eight supercharges in four and five dimensions are anomaly-free. How-

ever, in six dimensions all irreducible matter representations of N = (1, 0) supersymmetry

(the hypermultiplet, the vector multiplet and the tensor multiplet) as well as the supergrav-

ity multiplet contain chiral fermions. Moreover, the tensor and supergravity multiplets also
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contain chiral bosonic fields, which are gauge two-forms with (anti) self-dual field strengths.

These features imply the existence of numerous chiral N = (1, 0) supersymmetric gauge

theories. That is why the classification and structure of anomaly-free 6D supersymmetric

theories were thoroughly studied in the 1980s at the component level, see [4] for a review.

In the presence of anomalies, the 6D conservation equation (1.1) turns into

D(i
αL

jk) = Aijkα , (1.2a)

for some superfield Aijkα = A
(ijk)
α constrained by1

D
(i
(αA

jkl)
β) = 0 . (1.2b)

It was conjectured in [6] that Aijkα has the following structure:

Aijkα = DαlA
ijkl , D(i

αA
jklm) = 0 . (1.3)

This led the authors of [6] to conclude that the anomalous current multiplet is a 6D

relaxed hypermultiplet [7]. A decade later, this conclusion was re-considered by Howe and

Sezgin [8] who studied the N = (1, 0) Yang-Mills multiplet coupled to a tensor multiplet.

By analysing the one-loop corrected equations of motion, they found an expression for Aijkα
that was incompatible with (1.3).

In this paper we will argue that the anomalous 6D N = (1, 0) current multiplet Lij

obeys the equation

D(i
αL

jk) = κ i εαβγδW iβWjγWkδ , (1.4)

where W iα is the field strength of an abelian vector multiplet [9, 10], and κ a real pa-

rameter. As we will show, it follows from this equation that there exists a current ja at

the component level satisfying ∂aj
a ∝ εabcdeffabfcdfef , with fab the component gauge in-

variant field strength. Equation (1.4) can be shown to be superconformal assuming Lij is

a primary operator of dimension 4. On the contrary, it may be shown that the “relaxed

hypermultiplet” (1.3) does not describe a representation of the superconformal group.

Equation (1.4) appeared in [8] in the context of the model describing the 6D N =

(1, 0) Yang-Mills multiplet coupled to the tensor multiplet.2 Here we will argue that the

constraint has a universal nature.3 The simplest anomalous N = (1, 0) supersymmetric

theory is a hypermultiplet coupled to a U(1) vector multiplet. The hypermultiplet contains

a single chiral fermion interacting with the gauge field. The corresponding gauge anomaly

is well known [11–15]

∂aja = − 1

384π3
εabcdeffabfcdfef . (1.5)

1The superfield Aijkα subject to the constraint (1.2b) corresponds to a closed six-form, see [5].
2The analysis in [8] is rather inconclusive, as may be deduced from the final comments given in that

paper. The authors state that “in order to capture the full supermultiplet structure of the equations of

motion plus anomalies, one should relax the “relaxed hypermultiplet” even further.”
3In [8] Howe and Sezgin considered the non-abelian vector multiplet. Eq. (1.4) admits a straightforward

generalisation and we leave discussion of it to section 2.
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It corresponds to eq. (1.4) with κ = 1
96π3 and ja a component field of Lij (defined by

eq. (2.39)).

This paper is organised as follows. Section 2 gives a superform formulation for the

anomalous current multiplet. In particular, the consistency of the constraint (1.4) is

demonstrated. In section 3 we compute the nonlocal effective action generating the chiral

anomaly. We also discuss how the problem of chiral anomalies should be addressed in the

frameworks of the harmonic and the projective superspace approaches. Section 4 is devoted

to an alternative description of the anomalous current multiplet. Concluding comments

are given in section 5. The paper also includes two technical appendices. Appendix A

is devoted to a brief review of the three prepotential formulations for the 6D N = (1, 0)

vector multiplet. Appendix B contains the technical details concerning the derivation of

the anomalous effective action.

2 Superforms and the anomalous current multiplet

In this section we present a superform construction for the anomalous current. We work in

standard 6D N = (1, 0) Minkowski superspace parametrised by coordinates zA = (xa, θαi ).

Our 6D notation and conventions correspond to [16]. In particular, the flat-superspace

covariant derivatives are denoted by DA = (∂a, D
i
α), and the dual basis of one-forms is

denoted by EA, such that d = dzM∂M = EADA.

2.1 The vector multiplet

In this subsection we review the superspace formulation for the 6D N = (1, 0) Yang-Mills

supermultiplet following [7]. To describe a non-abelian vector multiplet, the covariant

derivative DA has to be replaced with a gauge covariant one,

DA := DA + iVA . (2.1)

Here the gauge connection one-form V = EAVA takes its values in the Lie algebra of the

Yang-Mills gauge group GYM. The covariant derivative algebra is

[DA,DB} = TAB
CDC + iFAB , (2.2)

where the only non-vanishing torsion is

T iα
j
β
c = −2iεij(γc)αβ (2.3)

and FAB corresponds to the gauge covariant field strength two-form. The covariant deriva-

tives and field strength may be written in a coordinate-free way as follows

D = d + iV , F = dV − iV ∧ V , (2.4)

where

D := dzADA , V := dzAVA , F :=
1

2
dzB ∧ dzAFAB . (2.5)
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The field strength FAB satisfies the Bianchi identity

DF = dF + iV ∧ F − iF ∧ V = 0 ⇐⇒ D[AFBC} − T[AB
DF|D|C} = 0 . (2.6)

The Yang-Mills gauge transformation acts on the gauge covariant derivatives DA and a

matter superfield U (transforming in some representation of the gauge group) as

DA → eiτDAe−iτ , U → U ′ = eiτU , τ † = τ , (2.7)

where the Hermitian gauge parameter τ(z) takes its values in the Lie algebra of GYM. This

implies that the gauge connection and field strength transform as follows

V → eiτ V e−iτ − ieiτ de−iτ , F → eiτ F e−iτ . (2.8)

Some components of the field strength have to be constrained in order to describe an

irreducible multiplet. Upon constraining the lowest mass dimension component of the field

strength tensor as

F iα
j
β = 0 , Fajβ = (γa)βγWjγ , (2.9a)

the remaining component is completely determined to be

Fab = − i

8
(γab)β

αDkαW
β
k , (2.9b)

where the superfield W iα obeys the Bianchi identities

DkγW
γ
k = 0 , D(i

αWj)β =
1

4
δβαD(i

γWj)γ . (2.10)

The vector indices of Fab can be converted into spinor ones as follows:

Fαβ := −1

4
(γab)α

βFab = − i

4

(
DkαW

β
k −

1

4
δβαDkγW

γ
k

)
= − i

4
DkαW

β
k . (2.11)

It is convenient to introduce the following superfield:

Xij :=
i

4
D(i
γWj)γ . (2.12)

The superfields W iα, Xij and Fαβ satisfy the useful identities:

DiαWjβ = −iδβαX
ij − 2iεijFαβ , (2.13a)

DiαFβγ = −DαβW iγ − δγαDβδW iδ +
1

2
δγβDαδW

iδ , (2.13b)

DiαXjk = 2εi(jDαβWk)β . (2.13c)

The above identities indicate how to define the independent component fields contained

in W iα. They may be defined as follows:

λiα :=W iα| , fα
β := Fαβ | , yij := Xij | , (2.14)
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where the bar projection of a superfield U(z) = U(x, θ) is defined by the standard rule

U | := U(x, θ)|θ=0. The component gauge field is defined by va := Va| and is related to the

component field strength fab as follows

fab = 2∂[avb] + i
[
va, vb

]
. (2.15)

It is seen that the vector multiplet consists of the following component fields: λiα, va
and yij .

The supersymmetry transformations of the fields λiα, va and yij may be obtained by

evaluating the component projection of the identities (2.13). This gives

δξλ
iα = −iξαj y

ij + 2iξβifβ
α , (2.16a)

δξy
ij = −2ξα(iDαβλj)β , (2.16b)

δξva = ξβj F
j
βa| = −ξ

α
j (γa)αβλ

jβ , (2.16c)

where we have used Da to mean its projection, Da| = ∂a+iva, when acting on a component

field.

2.2 The superform formulation for the linear multiplet

The linear multiplet can be described using a four-form gauge potential B = 1
4!dz

D∧dzC ∧
dzB ∧ dzABABCD possessing the gauge transformation

δB = dρ , (2.17)

where the gauge parameter ρ is an arbitrary three-form.4 The corresponding field

strength is

H = dB =
1

5!
dzE ∧ dzD ∧ dzC ∧ dzB ∧ dzAHABCDE , (2.18)

where

HABCDE = 5D[ABBCDE} − 10T[AB
FB|F |CDE} . (2.19)

The field strength must satisfy the Bianchi identity

dH = 0 ⇐⇒ D[AHBCDEF} −
5

2
T[AB

GH|G|CDEF} = 0 . (2.20)

In order to describe the linear multiplet we need to impose some covariant constraints

on the field strength H. We choose the constraint

Habc
i
α
j
β = −2i(γabc)αβL

ij , Lij = Lji , (2.21)

and require all lower mass-dimension components to vanish. We can now solve for the

remaining components of H in terms of Lij . The solution is

Habcd
i
α = −1

6
εabcdef (γef )α

βDβjL
ij , (2.22)

Habcde = − i

24
εabcdef (γ̃f )αβDk

αD
l
βLkl , (2.23)

4The construction here is a straightforward generalisation of the ones given in [17].

– 5 –



J
H
E
P
0
2
(
2
0
1
6
)
1
3
2

where Lij satisfies the constraint for the linear multiplet

D(i
αL

jk) = 0 . (2.24)

We defer the definition of the component fields and the explicit form of their super-

symmetry transformations to the next subsection.

2.3 Chern-Simons couplings to the linear multiplet

Unlike in lower dimensions, the linear multiplet in six dimensions permits a deformation

with the use of a non-abelian vector multiplet. The deformed multiplet we will refer to as

the deformed linear multiplet. To deform the linear multiplet we now introduce a gauge

four-form B = 1
4!dz

D ∧ dzC ∧ dzB ∧ dzABABCD and its five-form field strength defined by

H := dB + κ tr

(
V ∧ F ∧ F +

i

2
V ∧ V ∧ V ∧ F − 1

10
V ∧ V ∧ V ∧ V ∧ V

)
, (2.25)

where V and F are the Yang-Mills connection and two-form field strength of a non-abelian

vector multiplet, respectively. Here B is understood to be a gauge singlet, DB = dB. The

infinitesimal gauge-transformations are

δV = −dτ , (2.26a)

δB = dρ− κ tr

(
dτ ∧

(
V ∧ F +

i

2
V ∧ V ∧ V

))
, (2.26b)

where τ and ρ generate the gauge transformations of V and B, respectively. The field

strength H satisfies the Bianchi identity

dH = κ tr(F ∧ F ∧ F) , (2.27)

which is equivalent to

2D[AHBCDEF} − 5T[AB
GH|G|CDEF} = 30κ tr

(
F[ABFCDFEF}

)
. (2.28)

In order to construct an irreducible multiplet one should constrain the components of

H. We can make use of similar constraints as those for the linear multiplet, eq. (2.21). We

impose the constraint

Habciα
j
β = −2i(γabc)αβLij , Lij = Lji (2.29)

and require all lower components to vanish. Here Lij is a gauge singlet.

Upon imposing these constraints the remaining components of H are completely de-

termined and are found to be

Habcdiα = −1

6
εabcdef (γef )α

βDβjLij

+κ i εabcdef (γe)αβ(γf )γδtr
(
Wβ
jW

(jγW i)δ
)
, (2.30a)

Habcde = εabcdef H̃
f , (2.30b)
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where

D(i
αLjk) = κ i εαβγδtr

(
W iβWjγWkδ

)
(2.31)

and

H̃a = − i

24
(γ̃a)αβDk

αD
l
βLkl −

κ i

2
tr
(
Xkl(WkγaW l)

)
+

3κ i

8
tr
(
Fbc(WkγabcWk)

)
. (2.32)

In deriving the components of H the following identity proves useful:

Di
αΦj

β = −1

2
εijDk

[αΦβ]k −
κ

2
εαβγδtr

(
Xk

(i[Wj)γ ,Wkδ]
)

+ i∂αβLij

−κ (γa)αβ(γb)γδtr
(
FabW(iγWj)δ

)
− κ

4
(γabc)αβ(γa)γδtr

(
F bcW(iγWj)δ

)
, (2.33)

where we have defined

Φi
α =

1

3
DαjLij . (2.34)

It should be noted that the Bianchi identities imply that H̃a satisfies

∂aH̃a =
κ

8
εabcdef tr

(
FabFcdFef

)
. (2.35)

Using the above results one can deduce the supersymmetry transformations. We define

the independent component fields of Lij as follows:

J ij := Lij | , ϕiα := Φi
α| , babcd := Babcd| . (2.36)

The component projection of the field strength is related to babcd as follows

Habcde| = 5∂[aBbcde] + κ tr
(

30v[afbcfde] + 30iv[avbvcfde] + 12v[avbvcvdve]

)
. (2.37)

The supersymmetry transformations of the component fields are found with the help of

the superform H and the identity (2.33). They are

δξJ
ij = −2ξαkϕ

k
α + κ i ξβk εβγδρtr

(
λiγλjδλkγ

)
, (2.38a)

δξϕ
i
α = −ξβi(γa)βαH̃a|+ κ ξβiεβαγδtr

(
yklλ

kγλlδ
)
− 3κ ξβiεβαγρtr

(
fδ
ρ[λkγ , λδk]

)
−κ

2
ξβj εβαγδtr

(
yk

(j [λi)γ , λkδ]
)

+ iξβj ∂βαJ
ji − κ ξβj (γa)βα(γb)γδtr

(
fabλ

(jγλi)δ
)

−κ
4
ξβj (γabc)βα(γa)γδtr

(
f bcλ(jγλi)δ

)
, (2.38b)

δξbabcd = −1

2
εabcdefξ

α
k (γef )α

βϕkβ + κ i εabcdefξ
α
j (γe)αβ(γf )γδtr

(
λβkλ

(jγλk)δ
)

−24κ tr

(
δξv[avbfcd] +

i

2
δξv[avbvcvd]

)
. (2.38c)

The covariant component field strength,

ja := −2H̃a| , (2.39)
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transforms as follows:

δξj
a = −2(γab)α

βξαi ∂bϕ
i
β + 4iκξαi (γ[a)αβ(γb])γδ∂btr

(
λβj λ

(jγλi)δ
)

+
3κ

2
εabcdefξαi (γb)αβtr

(
λiβfcdfef

)
. (2.40)

The supersymmetry transformations for the usual linear multiplet may be obtained by

switching off the coupling to the vector multiplet, κ = 0.

The component field ja defined by (2.39) is normalised such that the bar-projection

of (2.35) in the abelian case coincides with (1.5) upon identifying κ = 1/(96π3).

3 The anomalous effective action

Let Γ be an effective action for the abelian vector multiplet. One may think of Γ as the

functional obtained by integrating out the hypermultiplets coupled to the vector multiplet.

3.1 Conventional superspace formulation

If the vector multiplet is described by Mezincescu’s prepotential5 [18] Mij(z), the effective

action is a functional of this superfield,

Γ = Γ[Mij ] . (3.1)

Varying Γ leads to the functional derivative Lij = Lji defined by

δΓ =

∫
d6|8z δMijL

ij , (3.2)

where the integration is performed over the full superspace. The Mezincescu prepotential

Mij has dimension −2, and its gauge transformation is given by eq. (A.23),

δξMij = Dk
αξ

α
ijk , (3.3)

with the gauge parameter ξαijk being unconstrained. This gauge transformation means

that the theory under consideration is a gauge theory with linearly dependent generators,

following the terminology of the Batalin-Vilkovisky quantisation [19]. Indeed, the gauge

parameter in (3.3) is defined modulo arbitrary shifts ξαijk → ξαijk + δξαijk of the form

δξαijk = Dl
βζ

αβ
ijkl , ζαβijkl = ζ

(αβ)
(ijkl) (3.4)

such that δξMij = δξ+δξMij . In its turn, the parameter ζαβijkl in (3.4) is defined modulo

arbitrary shifts ζαβijkl → ζαβijkl + δζαβijkl, where

δζαβijkl = Dm
γ ω

αβγ
ijklm , ωαβγijklm = ω

(αβγ)
(ijklm) , (3.5)

and so forth. This means that the 6D N = (1, 0) supersymmetric Yang-Mills theory

formulated in conventional superspace is a gauge theory of infinite degree of reducibility,

similar to the Green-Schwarz superstring.

5See appendix A for a brief review of the known prepotentials for the vector multiplet.
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Under the gauge transformation (3.3) the effective action varies as

δξΓ =

∫
d6|8z ξαijkD

(k
α L

ij) . (3.6)

For anomaly-free theories, the effective action is gauge invariant, which means that Lij

obeys the conservation equation (1.1). Therefore Lij is a linear multiplet containing a

conserved current.

In the presence of anomalies, Lij is no longer a linear multiplet. Instead it obeys the

anomalous conservation equation (1.2a). In order for the gauge variation

δξΓ =

∫
d6|8z ξαijkA

ijk
α (3.7)

to be invariant under the transformation (3.4), the anomaly superfield Aijkα must obey

the consistency condition (1.2b). Of course, it must also comply with the Wess-Zumino

consistency condition [20]. Both conditions are satisfied if the anomaly superfield is

Aijkα = iκ εαβγδW iβWjγWkδ , (3.8)

for some parameter κ.

For anomalous theories, the effective action Γ[Mij ] may be represented as the sum of

two parts,

Γ = ΓA + Γ̃ , (3.9)

where ΓA contains all information about the anomaly, while Γ̃ is a gauge-invariant

functional,

δξΓA =

∫
d6|8z ξαijkA

ijk
α , δξΓ̃ = 0 . (3.10)

Decomposition (3.9) is not unique. The anomalous part of the effective action, ΓA, may

be determined by making the ansatz

ΓA =

∫
d6|8zMijΛ

ij , (3.11)

in which Λij [Wγ
k ] is a functional of the field strength Wγ

k subject to the equation

D(k
α Λij) = Aijkα . (3.12)

In appendix B we demonstrate that Λij may be chosen in the form:

Λij =
3i

8

∂αβ

�
DkαA

ijk
β +

3

80

1

�
εαβγδDkαDlβD

(i
γ A

jkl)
δ − 3

160

∂αβ∂µν

�2
DkαDlβD

(i
µA

jkl)
ν

+
i

1152

∂αα′

�2
εαβγδεα

′β′γ′δ′DkβDlγDmδD
(i
β′D

j
γ′A

klm)
δ′

− 1

64512

1

�2
εαβγδεα

′β′γ′δ′DkαDlβDmγDnδD
(i
α′D

j
β′D

k
γ′A

lmn)
δ′ . (3.13)
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3.2 Harmonic superspace formulation

In the harmonic superspace approach, the effective action for the vector multiplet is a

functional of the analytic prepotential V ++(z, u±i ),

Γ = Γ[V ++] . (3.14)

Varying Γ with respect to V ++ leads to the functional derivative L++ defined by

δΓ =

∫
dζ(−4)δV ++L++ , D+

αL
++ = 0 . (3.15)

In particular, for the gauge variation δλV
++ = −D++λ, which is the infinitesimal form

of (A.13) in the abelian case, we have

δλΓ =

∫
dζ(−4)δλV

++L++ =

∫
dζ(−4)λD++L++ . (3.16)

If the theory is anomaly-free, the effective action is gauge invariant, δλΓ = 0, and L++

obeys the conservation equation

D++L++ = 0 . (3.17)

In the central basis, this equation is equivalent to

L++(z, u) = Lij(z)u+
i u

+
j . (3.18)

The analyticity condition D+
αL

++ = 0 means that Lij obeys the conservation equa-

tion (1.1). The conserved current multiplet, Lij , coincides with the one originating within

the conventional superspace formulation described in the previous subsection.

In the presence of anomalies, the conservation equation (3.17) is replaced with

D++L++ = A(+4) , D+
αA

(+4) = 0 , (3.19)

with the analytic superfield A(+4) containing all information about the anomaly. The

anomaly must obey the Wess-Zumino consistency condition, [δλ1 , δλ2 ]Γ = 0, which is equiv-

alent to

δλA
(+4)(ζ) =

∫
dζ̃(−4)A(4,4)(ζ, ζ̃)λ(ζ̃) , A(4,4)(ζ, ζ̃) = A(4,4)(ζ̃, ζ) , (3.20)

for some bi-analytic kernel A(4,4)(ζ, ζ̃).

3.3 Projective superspace formulation

In the projective superspace approach, the effective action for the vector multiplet is a

functional of the tropical prepotential V (z, vi),

Γ = Γ[V ] . (3.21)

Varying Γ with respect to V leads to the functional derivative L(2)(z, v), which is a weight-2

projective multiplet, defined by

δΓ =
1

2π

∮
C

(v, dv)

∫
d6xD(−4)

{
δV L(2)

}
, D(1)

α L(2) = 0 , (3.22)
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with C a closed integration contour. Here we have also introduced the fourth-order operator

D(−4) := − 1

96
εαβγδD(−1)

α D
(−1)
β D(−1)

γ D
(−1)
δ , D(−1)

α :=
ui

(v, u)
Di
α , (3.23)

which involves a constant isospinor ui constrained by the only condition (v, u) 6= 0 along

the integration contour in (3.22). The variation (3.22) may be shown to be invariant under

arbitrary projective transformations

(ui , vi) → (ui , vi)R , R =

(
a 0

b c

)
∈ GL(2,C) , (3.24)

and therefore (3.22) is independent of ui. It may also be shown that (3.22) is independent

of the superspace Grassmann variables.

Choosing δV in (3.22) to be an infinitesimal gauge variation (A.30) gives

δλΓ =
i

2π

∮
C

(v, dv)

∫
d6xD(−4)

{
(λ̆− λ)L(2)

}
. (3.25)

If the theory is anomaly-free, the effective action is gauge invariant, δλΓ = 0, for arbitrary

weight-0 arctic superfield λ. It turns out that this condition implies

L(2)(z, v) = Lij(z)vivj . (3.26)

Then the analyticity condition D
(1)
α L(2) = 0 means that Lij obeys the constraint (1.1). The

conserved current multiplet, Lij , coincides with those originating within the conventional

and harmonic superspace formulations described in the previous subsections. Eq. (3.26)

tells us that associated with the conserved current multiplet Lij , eq. (1.1), is the holomor-

phic tensor field L(2) over CP 1.

If the theory is anomalous, the gauge variation (3.25) does not vanish. As a conse-

quence, the projective multiplet L(2) is no longer a linear multiplet.

4 An alternative description of the anomalous current multiplet

In section 2 we have constructed the consistent deformation of the 6D N = (1, 0) linear

multiplet given by eq. (2.31). Here an alternative form for the anomalous current multi-

plet will be derived in the abelian case. We will use some harmonic superspace relations

described in subsection A.1.

We associate with the anomalous current multiplet Lij , eq. (1.4), the following har-

monic superfield:

L++ = u+
i u

+
j L

ij , D++L++ = 0 . (4.1)

Then eq. (1.4) is equivalent to

D+
αL

++ = κ i εαβγδW+βW+γW+δ , (4.2)

with the superfield W+α being defined by (A.4).
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In the anomaly-free case, the current multiplet L++ = u+
i u

+
j L

ij is analytic and holo-

morphic on CP 1,

D+
αL

++ = 0 , D++L++ = 0 . (4.3)

Eq. (4.2) tells us that the anomalous current multiplet is no longer analytic.

As a first step, we represent

i εαβγδW+βW+γW+δ = D+
αF

++ , (4.4)

for some superfield F++(z, u±) defined up to an arbitrary shift of the form

F++ → F++ +H++ , D+
αH

++ = 0 . (4.5)

A particular solution of (4.4) is

F++ = − i

2
VαβW+αW+β − i

64
εαβγδVαβVγδD

+W+ , (4.6)

where Vαβ is the vector superfield connection defined in (A.14b). In checking (4.4) the

following properties of Vαβ may be useful

D+
α Vβγ = −2εαβγδW+δ , D++Vαβ = ∂αβV

++ . (4.7)

It is seen that F++ is neither analytic nor gauge invariant. However, D++F++ proves to

be analytic,

D++F++ = − i

2
G++αβ∂αβV

++ , (4.8)

where we have defined

G++αβ =W+αW+β +
1

16
εαβγδVγδD

+W+ , D+
γ G

++αβ = 0 . (4.9)

Our second step is to introduce

L++ = L++ − κF++ . (4.10)

It follows from (4.2) and (4.4) that L++ is analytic,

D+
αL++ = 0 . (4.11)

However, unlike L++, the superfield L++ is no longer holomorphic on CP 1,

D++L++ = A(+4) , D+
αA(+4) = 0 . (4.12)

The anomaly is now encoded in the analytic superfield A(+4). It is defined modulo shifts

A(+4) → A(+4) − κD++H++ , D+
αH

++ = 0 , (4.13)

where the analytic superfield H++ is a local composite of the gauge prepotential.

For the choice of F++ given above, eq. (4.6), A(+4) is

A(+4) =
i

2
κG++αβ∂αβV

++ . (4.14)

It is an interesting problem to understand whether the functional freedom (4.13) allows one

to construct an analytic superfield A(+4) = A(+4) − κD++H++ obeying the Wess-Zumino

consistency condition (3.20).
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5 Concluding comments

In this paper we have presented the consistent deformation, eq. (2.31), of the 6D N = (1, 0)

linear multiplet which describes chiral anomalies. It is

D(i
αLjk) = κ i εαβγδ tr

(
W iβWjγWkδ

)
. (5.1)

Its consistency is guaranteed by the superform formulation for the deformed linear multiplet

developed in section 2. Equation (5.1) is superconformal assuming Lij to be a primary

superfield of dimension 4.

The consistent Chern-Simons coupling of the linear multiplet to a vector multiplet,

eq. (5.1), is a characteristic feature of 6D N = (1, 0) supersymmetry. Such a deformation

was not possible in the cases of 4D N = 2 and 5D N = 1 supersymmetry. Equation (5.1)

is analogous to the constraint describing a deformed 4D N = 1 linear multiplet L = L̄,

which is

D̄2L = 2κ tr
(
WαWα

)
, D2L = 2κ tr

(
W̄α̇W̄ α̇

)
, (5.2)

with Wα the covariantly chiral field strength of a non-abelian vector multiplet, see [21] for

a review of the Chern-Simons couplings to the 4D N = 1 linear multiplet.

In the abelian case, we have computed the nonlocal effective action ΓA, which is given

by the relations (3.11) and (3.13) and which generates the gauge anomaly (3.8). The

effective action ΓA is constructed as a functional of the Mezincescu prepotential, which

corresponds to the formulation of the 6D N = (1, 0) vector multiplet in conventional su-

perspace [9, 10]. It is known that such a formulation is not suitable (unlike, e.g., the

harmonic superspace approach) to do quantum calculations in general supersymmetric

Yang-Mills theories with eight supercharges in diverse dimensions. There are many rea-

sons for that, and the most prominent ones are the following. Firstly, the conventional

superspace approach does not offer means to describe off-shell hypermultiplets in com-

plex representations of the gauge group (see [22] for a detailed discussion). Secondly, the

Yang-Mills multiplet in this approach is a nontrivial gauge theory with linearly dependent

generators of infinite degree of reducibility. As discussed in detail in [23], the Batalin-

Vilkovisky quantisation of the theory has never been used to derive a consistent superfield

effective action.6 Both problems simply do not occur with the harmonic superspace and

the projective superspace approaches.

We computed the effective action (3.11), (3.13) by integrating the gauge anomaly (3.8).

However, we did not compute the anomaly by doing supergraph calculations. Once the

structure of the anomalous current multiplet is established, it suffices to make use of the

known non-supersymmetric results [11, 12, 15]. This is exactly what was done in this paper.

It is of interest to compute the gauge anomaly by doing direct supergraph calculations in

6D N = (1, 0) harmonic superspace, however the existing literature [24–26] does not offer

any insight. We hope to report on such calculations elsewhere.

6Even the Batalin-Vilkovisky quantisation scheme [19] is literally applicable to finitely reducible gauge

theories only.
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A Prepotentials for the Yang-Mills multiplet

In the case of supersymmetry with eight supercharges in diverse dimensions, 3 ≤ d ≤ 6,

there exist three different prepotential formulations for the Yang-Mills multiplet, which

make use of the following multiplets: (i) the Mezincescu prepotential [18]; (ii) the analytic

prepotential [27]; and (iii) the tropical prepotential [28]. The Mezincescu prepotential can

be obtained from the analytic one as described in section 7.2.4 of [22]. It can also be read off

from the tropical prepotential in accordance with [29]. In its turn, the tropical prepotential

can be obtained from the analytic one by getting rid of an infinite tail of superfluous gauge

degrees of freedom [30]. In spite of these relationships, the three distinct prepotentials are

useful for different applications.

A.1 Analytic prepotential

Supersymmetric Yang-Mills theory in six-dimensional N = (1, 0) harmonic superspace was

formulated in [31, 32]. Here we briefly review this formulation following the harmonic

superspace notation of [22].

Let u+
i and u−i be standard SU(2) harmonic variables,

(
ui
− , ui

+
)
∈ SU(2),

u+i = u−i , u+iu−i = 1 , (A.1)

with u+
i = εiju

+j . Let D++, D−− and D0 be the associated harmonic derivatives defined

as in [22]. Using the harmonics we introduce U(1) projections of the gauge-covariant spinor

derivatives

D±α = u±i D
i
α = D±α + iV±α , V±α = u±i V

i
α . (A.2)

In accordance with (2.2), the operators (A.2) obey the following (anti)commutation

relations

{D+
α ,D+

β } = 0 , (A.3a)

{D+
α ,D−β } = 2i(γa)αβDa , (A.3b)

[Da,D±α ] = i(γa)αβW±β , (A.3c)

[Da,Db] = iFab , (A.3d)

where W±α are the irreducible U(1) components of the field strength W iα,

W±α = u±i W
iα . (A.4)

In the harmonic superspace setting, it is useful to combine the superspace gauge-

covariant derivatives with the harmonic ones,

DÂ = (Da,D±α ,D++,D−−,D0) := (Da,D±α , D++, D−−, D0) = DÂ + iVÂ . (A.5)
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The gauge transformation of DÂ is analogous to (2.7),

DÂ −→ DÂ = eiτDÂe−iτ . (A.6)

Since the gauge superfield parameter τ is harmonic independent, the harmonic derivatives

(D±±, D0) are gauge covariant.

The equation (A.3a) is the integrability condition for covariantly analytic superfields

to exist. This equation can be solved in terms of a bridge superfield b = b(z, u) defined by

the rule

D+
α = e−ibD+

α eib . (A.7)

The introduction of the bridge superfield leads to a new gauge freedom, in addition to the

τ -gauge transformations (2.7). The complete gauge transformation law of b is

eib′ = eiλeibe−iτ , (A.8)

where λ is a U(1) neutral analytic superfield, D+
α λ = 0.

The representation (A.5) for the gauge-covariant derivatives is called the τ -frame. The

bridge superfield allows one to introduce a new representation for the gauge-covariant

derivatives, which is defined by

DÂ −→ ∇Â = eibDÂe−ib = DÂ + iVÂ (A.9)

and is called the λ-frame. In this frame, the derivative ∇+
α is short, ∇+

α = D+
α , and hence

V +
α = 0. However, two of the three harmonic derivatives acquire gauge connections:

∇++ = D++ + iV ++ , ∇−− = D−− + iV −− . (A.10)

As follows from the commutation relation [∇+
α ,∇++] = 0, the gauge connection V ++

is analytic,

D+
α V

++ = 0 . (A.11)

The connection V −− can be expressed via V ++ as a unique solution of the zero-curvature

condition

[∇++,∇−−] = D0 ⇐⇒ D++V −− −D−−V ++ + i[V ++, V −−] = 0 . (A.12)

The explicit expression for V −− in terms of V ++ was originally found by Zupnik [33]. In

the λ-frame, no τ -gauge freedom remains. Under the λ-gauge group, the connections V ++

and V −− transform as

V ′±± = eiλV ±±e−iλ − i eiλD±±e−iλ . (A.13)

The λ-frame counterparts of the field strengths W±α will be denoted W±α. In the abelian

case, there is no difference between W±α and W±α.

The λ-frame counterparts of the (anti-)commutation relations (A.3b) and (A.3c), in

conjunction with the identity [∇−−,∇+
α ] = ∇−α , allow one to express the gauge connections
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V −α and Va and the field strength W+α in terms V −−. The explicit expressions for the

connections are

V −α = −D+
α V
−− , (A.14a)

Va =
i

8
(γ̃a)

αβD+
αD

+
β V
−− ⇐⇒ Vαβ = (γa)αβVa =

i

2
D+
αD

+
β V
−− . (A.14b)

The expression for the field strength is

W+α =
i

24
εαβγδD+

βD
+
γ D

+
δ V
−− . (A.15)

As mentioned above, V −− is uniquely expressed in terms of the analytic connection V ++.

Thus, the superfield V ++ is a single prepotential in terms of which all the connections are

determined, in complete analogy with the 4D case [27]. This prepotential is analytic, but

otherwise unconstrained.

A.2 Mezincescu’s prepotential

The Mezincescu prepotential was used in [9, 10] to describe the 6D N = (1, 0) vector multi-

plet in Minkowski superspace. In this subsection we recall how the Mezincescu prepotential

is obtained from the analytic one following the discussion in section 7.2.4 of [22]. Only the

abelian vector multiplet is considered here.

In the harmonic superspace approach, the gauge prepotential V ++ and the gauge

parameter λ are analytic superfields, D+
α V

++ = 0 and D+
α λ = 0. The analyticity constraint

on V ++ is solved by

V ++ = (D+)4M−− , (A.16)

where

(D+)4 = − 1

96
εαβγδD+

αD
+
βD

+
γ D

+
δ (A.17)

is the analytic projection operator, and M−−(z, u) is an unconstrained superfield. Similarly,

the analyticity constraint on λ is solved by

λ = (D+)4ρ(−4) , (A.18)

where ρ(−4)(z, u) is an unconstrained superfield. The original λ-transformation of V ++

turns into the following gauge transformation of M−−:

δλM
−− = −D++ρ(−4) . (A.19)

In addition, it follows from (A.16) that M−− possesses a new gauge freedom that leaves

V ++ invariant and acts on M−− as follows:

δξM
−− = D+

α ξ
(−3)α . (A.20)

Here ξ(−3)α(z, u) is an unconstrained gauge parameter.

The superfields M−−(z, u), ρ(−4)(z, u) and ξ(−3)α(z, u) are smooth scalar fields on the

group manifold SU(2) of definite U(1) charges or, equivalently, smooth tensor fields on the
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two-sphere S2 = SU(2)/U(1). Therefore these superfields are given by convergent Fourier

series in the harmonic variables,

M−−(z, u) = M ij(z)u−i u
−
j +M ijkl(z)u+

(iu
−
j u
−
k u
−
l) + . . . , (A.21a)

ρ(−4)(z, u) = ρijkl(z)u−i u
−
j u
−
k u
−
l + . . . , (A.21b)

ξ(−3)α(z, u) =
4

3
ξijk α(z)u−i u

−
j u
−
k + . . . , (A.21c)

where the numerical coefficient in the last relation is introduced for later convenience.

Comparing the series (A.21a) and (A.21b), one can see that the gauge freedom (A.19)

allows one to gauge away all Fourier components of M−− in (A.21a) except for the lowest

one. In other words, one can impose a supersymmetric gauge

M−−(z, u) = M ij(z)u−i u
−
j , M ij = M (ij) . (A.22)

The remaining superfield M ij is exactly Mezincescu’s prepotential [18].

The gauge condition (A.22) completely fixes the ρ-gauge freedom. However, there

remains a residual ξ-invariance generated solely by the spinor gauge parameter ξijk α =

ξ(ijk)α in the series (A.21c). It acts on Mezincescu’s prepotential by the rule

δξMij = Dk
αξ

α
ijk , (A.23)

which is exactly the gauge transformation derived in [9, 10]. In order to preserve the

gauge condition (A.22), this ξ-transformation has to be accompanied by a special ρ-

transformation

ρ(−4)(z, u) =
1

3
Di
αξ

jkl α(z)u−i u
−
j u
−
k u
−
l . (A.24)

A.3 Tropical prepotential

Here we recall the definition of the tropical prepotential [28] which is used to describe the

Yang-Mills multiplet within the projective superspace approach [28, 34]. We follow the

modern presentation of this approach given, e.g., in [35].

In the projective superspace setting, one does not work with the harmonics used in

subsection A.1. Instead, one deals with homogeneous coordinates vi ∈ C2\{0} for CP 1. We

recall that CP 1 is obtained from C2 \ {0} by factorisation with respect to the equivalence

relation vi ∼ c vi, with c ∈ C∗. Supersymmetric field theories are described in terms of

the so-called weight-n projective multiplets Q(n)(z, v). By definition, such a superfield is

defined by the following conditions:

(i) Q(n)(z, v) is holomorphic over an open domain of CP 1,

∂

∂v̄i
Q(n) = 0 . (A.25)

(ii) it is a homogeneous function of vi of degree n,

Q(n)(z, c v) = cnQ(n)(z, v) , c ∈ C∗ . (A.26)
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(iii) it obeys the analyticity condition

D(1)
α Q(n) = 0 , D(1)

α = viD
i
α . (A.27)

Introduce two special points in N,S ∈ CP 1: the north pole N with homogeneous

coordinates vi ∝ (0, 1), and the south pole S labeled by vi ∝ (1, 0). Associated with

these points are two open domains, the north chart CP 1 \ {N} and the south chart CP 1 \
{S}, which cover CP 1. In the north chart, we can introduce a complex (inhomogeneous)

coordinate ζ as

vi = v1 (1, ζ) , ζ :=
v2

v1
, i = 1, 2 . (A.28)

The tropical multiplet V (z, v) is a weight-0 projective multiplet holomorphic on CP 1 \
{N ∪ S}. It is also constrained to be real under the so-called smile conjugation, see [35]

for more details. It is given by a Laurent series

V (z, v) = V (z, ζ) =

∞∑
n=−∞

Vn(z)ζn , V †n = (−1)nV−n . (A.29)

The gauge transformation law of the tropical prepotential is

eV
′

= eiλ̆eV e−iλ , (A.30)

where the gauge parameter λ(z, ζ) is a weight-zero arctic multiplet

D(1)
α λ = 0 , λ(z, ζ) =

∞∑
n=0

λn(z)ζn , (A.31)

and its smile conjugated antarctic multiplet,

λ̆(z, ζ) =

∞∑
k=0

(−1)kλ†k(z)
1

ζk
. (A.32)

By definition, a weight-n arctic multiplet is holomorphic on CP 1 \ {N}.
Modulo purely gauge degrees of freedom, the gauge-covariant derivatives can be ex-

pressed in terms of the tropical prepotential. This is explained in detail in the cases of 3D

N = 4 and 5D N = 1 vector multiplets coupled to conformal supergravity in [36] and [37]

respectively. The 6D N = (1, 0) case can be treated similarly.

Following [29], the Mezincescu prepotential is introduced by the rule

Mij(z) =
1

2π

∮
C

(v, dv) vivj U
(−4)(z, v) , (v, dv) = vkdvk , (A.33)

where U (−4)(z, v) is related to the tropical prepotential as follows:

V (z, v) = D(4)U (−4)(z, v) , D(4) = − 1

96
εαβγδD(1)

α D
(1)
β D(1)

γ D
(1)
δ . (A.34)
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B Derivation of the anomalous effective action

To find the functional generating the anomalous effective action (3.11) it suffices to find

a particular solution of the equation (3.12) which we denote by Λij . In this appendix

we will demonstrate that a particular solution of this equation can be represented in the

form (3.13).

Given the superfields Λij and Aijkα it is convenient to deal with their harmonic

projections

Λ++ = u+
i u

+
j Λij , A(+3)

α = u+
i u

+
j u

+
k A

ijk
α . (B.1)

Then the equation (3.12) is equivalent to

D+
αΛ++ = A(+3)

α , (B.2)

where D+
α = u+

i D
i
α. Note that, by construction, the superfield Λ++ obeys

D++Λ++ = 0 . (B.3)

We also point out that A
(+3)
α satisfies

D+
(αA

(+3)
β) = 0 =⇒ (D+)4A(+3)

α = 0 , (B.4)

as a consequence of (1.2b).

We look for a solution of the equation (B.2) in the form of the sum of the following terms

Λ++ =

9∑
i=1

ciΛ
++
i , (B.5)

where ci are some coefficients and

Λ++
1 =

i

2

∂αβ

�
D−αA

+++
β , (B.6a)

Λ++
2 = i

∂αβ

�
D−−D+

αA
+++
β , (B.6b)

Λ++
3 =

1

�
εαβγδD−αD

−
βD

+
γ A

+++
δ , (B.6c)

Λ++
4 =

1

�
D−−εαβγδD−αD

+
βD

+
γ A

+++
δ , (B.6d)

Λ++
5 =

1

�
D−−D−−εαβγδD+

αD
+
βD

+
γ A

+++
δ , (B.6e)

Λ++
6 =

∂αβ∂µν

�2
D−αD

−
βD

+
µA

+++
ν , (B.6f)

Λ++
7 = i

∂αα′

�2
εαβγδD−βD

−
γ D
−
δ ε

α′β′γ′δ′D+
β′D

+
γ′A

+++
δ′ , (B.6g)

Λ++
8 = i

∂µν

�2
D−−D−µD

−
ν ε

αβγδD+
αD

+
βD

+
γ A

+++
δ , (B.6h)

Λ++
9 =

1

�2
εαβγδ(D−)4D+

αD
+
βD

+
γ A

+++
δ . (B.6i)
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The equation (B.3) is satisfied on the condition that

c1 + 8c2 + 8c3 + 16c6 = 0 , (B.7a)

c3 + 2c4 +
1

3
c6 − 6c7 = 0 , (B.7b)

c4 + 10c5 − 8c8 = 0 , (B.7c)

3c7 + 8c8 −
1

2
c9 = 0 . (B.7d)

Imposing the equation (B.2) we find the following constraints for the coefficients ci:

c1 = 1 ,

c1 + 4c2 + 16c6 = 0 , (B.8a)

c1 − 16c3 = 0 , (B.8b)

c2 − 6c4 = 0 , (B.8c)

2

3
c3 + c4 − 12c7 = 0 , (B.8d)

c4 + 8c5 − 16c8 = 0 , (B.8e)

c6 + 18c7 = 0 , (B.8f)

4c8 + 3c7 − c9 = 0 . (B.8g)

The solution of the system of equations (B.7) and (B.8) reads

c1 = 1 , c2 = −1

8
, c3 =

1

16
, c4 = − 1

48
, c5 =

1

576
,

c6 = − 1

32
, c7 =

1

576
, c8 = − 1

2304
, c9 =

1

288
. (B.9)

Note that different terms in (B.5) depend on different harmonic monomials. Neverthe-

less, the equation (B.3) guarantees that the full expression (B.5) is quadratic in harmonics

in agreement with (B.1). Therefore, we can restore Λij from Λ++ by the rule

Λij = 3

∫
duu−iu−jΛ++ . (B.10)

The harmonic integral is computed according to the formula [38]∫
duu+i1 . . . u+inu−j1 . . . u

−
jn

=
1

n+ 1
δi1(j1 . . . δ

in
jn) . (B.11)

Applying this rule to all terms in the sum (B.5) we find

Λij = 3
9∑

k=1

ck

∫
duu−iu−jΛ++

k

=
3i

8

∂αβ

�
DkαA

ijk
β +

3

80

1

�
εαβγδDkαDlβD

(i
γ A

jkl)
δ − 3

160

∂αβ∂µν

�2
DkαDlβD

(i
µA

jkl)
ν

+
i

1152

∂αα′

�2
εαβγδεα

′β′γ′δ′DkβDlγDmδD
(i
β′D

j
γ′A

klm)
δ′

− 1

64512

1

�2
εαβγδεα

′β′γ′δ′DkαDlβDmγDnδD
(i
α′D

j
β′D

k
γ′A

lmn)
δ′ . (B.12)

Note that the terms Λ++
2 , Λ++

4 , Λ++
5 and Λ++

8 do not contribute to this expression owing

to the identity [27]
∫

duD−−F++ = 0, for any smooth field F++(u).
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