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We provide background details on non-equilibrium dynamical mean-field theory and the setup that
we study in the main text, and present the formulae needed for implementing the single-impurity
Anderson model with qubits and on measuring the single-particle non-equilibrium Green function.
We further elucidate the non-interacting system where we studied reducing the effects of a noisy
bath.

I. NON-EQUILIBRIUM DYNAMICAL
MEAN-FIELD THEORY

One of the simplest models to capture essential phe-
nomena in strongly-correlated electron materials is the
single-band Hubbard Hamiltonian

ĤHubbard =−
∑
〈i,j〉σ

vij(t)
(
ĉ†i,σ ĉj,σ + h.c.

)
+ U(t)

∑
i

(
n̂i,↑ −

1

2

)(
n̂i,↓ −

1

2

)
, (1)

where vij(t) is the tunnelling (‘hopping’) matrix element
between nearest-neighbour sites i and j, and U(t) is the
on-site Coulomb repulsion. Here, we have assumed gen-
eral time-dependent parameters due to the driving of
material via, e.g., intense laser pulses1. Furthermore,
ĉ†i,σ (ĉi,σ) is the creation (annihilation) operator for an
electron with spin projection σ =↑, ↓ at site i, while
n̂i,σ = ĉ†i,σ ĉi,σ is the corresponding number operator.

Despite its apparent simplicity, the Hubbard model (1)
is notoriously difficult to solve, even numerically, and
especially in two dimensions where it may be relevant
to high-Tc superconductivity. Fortunately, dynamical
mean-field theory (DMFT)2 and its extension to non-
equilibrium problems3 provide a means to compute local
observables by circumventing the necessity of dealing di-
rectly with the Hubbard Hamiltonian. This is achieved
by mapping it onto an impurity model, the solution of
which is usually easier to obtain, albeit still a highly
non-trivial computational task. The mapping is justi-
fied in the limit of infinite spatial dimensions, d → ∞,
(or infinite coordination, z → ∞) by the collapse of the
irreducible self-energy of the Hubbard model to only con-
tributions emerging from strictly local skeleton diagrams
which are identical to those of an impurity model. The
collapse of the skeleton diagrams follows from the neces-
sity to scale the hopping parameters as vij(t) = v∗/

√
z

to avoid a diverging average kinetic energy per lattice
site and from simple power counting arguments. While
describing the full Hubbard Hamiltonian with a single-
impurity model is only an approximation in finite dimen-

sions, it often relatively accurate already in three dimen-
sions for certain lattice types.

The solution of the impurity model means essentially
computing the local Green function

Gσ(t, t′) = −i〈ĉσ(t)ĉ†σ(t′)〉Ŝloc

= −i
Tr
{
TC
[
exp(Ŝloc)ĉσ(t)ĉ†σ(t′)

]}
Tr
{
TC
[
exp(Ŝloc)

]} , (2)

where TC is the contour-ordering operator on an ‘L-
shaped’ Keldysh time-contour C (see Fig. 1). The local
action Ŝloc is given by4

Ŝloc

= −i
∫
C
dt

[
U(t)

(
n̂↑(t)−

1

2

)(
n̂↓(t)−

1

2

)
− µ

∑
σ

n̂σ(t)

]

− i
∫
C
dt

∫
C
dt′
∑
σ

Λσ(t, t′)ĉ†σ(t)ĉσ(t′). (3)

Here, µ is the chemical potential and Λσ is the a priori
unknown hybridization function, or Weiss function, that
describes the exchange of electrons between the impurity
site with a bath of non-interacting electrons. The essen-
tial step in DMFT is the self-consistent determination of
Λσ. For a Bethe lattice, which corresponds to a semi-
elliptical density of states D(ε) =

√
4v2 − ε2/(2πv2), the

DMFT self-consistency condition obtains a simple closed
form. For time-dependent hoppings v, this reads

Λσ(t, t′) = v(t)Gσ(t, t′)v(t′). (4)

The impurity action (3) can also be represented in
a Hamiltonian form which permits the application of
Hamiltonian-based numerical methods4,5 to compute the
local Green function. It also makes it possible to use the
trapped-ion scheme for quantum simulations6. The im-
purity model that we address here is the single-impurity
Anderson model (SIAM) given by

ĤSIAM = Ĥloc + Ĥbath + Ĥhyb, (5)
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FIG. 1: Keldysh time-contour C. It consists of two real-time
branches between an initial time t0 to final time tmax, and
an imaginary-time branch from t0 to t0 − iβ, where β is the
inverse temperature.

Ĥloc = −µ
∑
σ

n̂σ + U(t)

(
n̂↑ −

1

2

)(
n̂↓ −

1

2

)
, (6)

Ĥhyb =
∑
p

(
Vpσ(t)â†σâpσ + H.c.

)
, (7)

Ĥbath =
∑
p,σ

[εpσ(t)− µ] â†pσâpσ, (8)

Here, â†σ (âσ) is the creation (annihilation) operator for
the impurity orbital, and â†pσ (âpσ) for a bath orbital
p. Further, Vpσ(t) describes the hopping of electrons be-
tween the impurity and the bath, and εpσ(t) denotes the
energy of the bath orbital p.

The SIAM Hamiltonian (5) corresponds to the correct
DMFT action (3) if the parameters Vpσ and εpσ(t) are
chosen such that the relation

ΛSIAM
σ (t, t′) = Λσ(t, t′) (9)

is valid on the whole Keldysh contour C. Here, the SIAM
hybridization function has the expression4

ΛSIAM
σ (t, t′) =

∑
p

Vpσ(t)gpσ(t, t′)Vpσ(t′)∗, (10)

where

gpσ(t, t′) = i [f(εpσ(0)− µ)−ΘC(t, t
′)] e−i

∫
C dt̄ (εpσ(t̄)−µ)

(11)

is the non-interacting Green function for an isolated bath
site, with f(ε) = 1/ (exp(βε) + 1) denoting the Fermi dis-
tribution function and ΘC(t, t

′) being the contour Heav-
iside function defined as

ΘC(t, t
′) =

{
1 if t ≥C t′

0 else.
(12)

An essential part of the Hamiltonian-based DMFT
scheme is the determination of the parameters Vpσ(t)
and εpσ(t) for a given hybridization function Λσ(t, t′).

In what follows, we will relax the spin index σ for the hy-
bridization function since below we will be dealing with a
spin-symmetric set-up where both contributions are iden-
tical.

For non-equilibrium problems, it is useful introduce
two distinct baths, with each having their own corre-
sponding hybridization function4. The first bath, with
hybridization Λ−, includes those sites that are coupled
to the impurity at t = 0. Often this first bath vanishes
as t → ∞. The second bath, Λ+, builds up as time
evolves, i.e., couples additional bath sites to the impu-
rity for times t > 0. We will consider a system with
no initial correlations (Λ− = 0) in the next section, and
focus only on the second bath, with Weiss function

Λ+(t, t′) =
∑
p

V +
p (t)gp(t, t

′)V +
p (t′)∗. (13)

Since all imaginary-time components, which account for
initial correlations, vanish for Λ+, we set V +

p (t = 0) = 0
for all bath sites that are included in Λ+. The time-
dependence of the bath energies εp(t) can be absorbed
in the time dependence of the hoppings V +

p (t), meaning
that we are free to choose the evolution4

εp(t) =

{
εp(0) for t = 0

ε(∞) for t > 0
, (14)

where ε(∞) is a constant. Moreover, since εp(0) is incor-
porated only in the Fermi functions f [±(εp(0) − µ)] for
Λ
</>
+ , we can simply choose εp(0) such that f(εp(0)−µ)

is equal to 0 or 1. This is done in order to find a repre-
sentation of the Weiss functions as

−iΛ<+(t, t′) =
∑

p∈Bocc

V +
p (t)V +

p (t′)∗, (15)

iΛ>+(t, t′) =
∑

p∈Bempty

V +
p (t)V +

p (t′)∗, (16)

in which Bocc and Bempty denote the sets of initially oc-
cupied and empty bath sites, respectively. Note that for
a particle-hole symmetric system, Λ<+(t, t′) = Λ>+(t, t′)∗,
which is satisfied if the occupied and empty bath sites
come in pairs with complex conjugate hybridizations.
Moreover, for a discretized time tn = n ×∆t ∈ [0, N ×
∆t = tmax], we have, e.g.,

(−iΛ<+)nn′ = −iΛ<+(tn, tn′) =
∑

p∈Bocc

V +
p (tn)V +

p (tn′)∗,

(17)

which has the form of a Cholesky decomposition
(−iΛ<+) = V V † where V is a lower triangular matrix,
the pth column of which gives the time-dependent hy-
bridization to the bath orbital p. The use of Cholesky
decomposition to the determine the hybridizations from
the Weiss function allows us to adopt a time-propagation
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scheme in which we do not update the whole Green and
Weiss function matrices as time evolves but only the cur-
rent time slice. In practice, since we only have a limited
number of bath sites L, we employ an approximate rep-
resentation of the Weiss function in which we obtain the
evolution of the first L time-steps from the Cholesky de-
composition, and for time steps greater than L we update
a new column and row in the Weiss function matrix in
a manner which minimizes the error in the approximate
representation4. In the next section we present a test
system and use the results of this section to determine
the Weiss field self-consistently for the Hubbard model
in an infinite-dimensional Bethe lattice.

II. THE SET-UP AND DMFT STEPS

We consider the time evolution of the infinite-
dimensional Hubbard model with constant on-site inter-
action U and time-dependent hopping v(t)4. The hop-
ping is turned on from the initial value v = 0 (i.e., the
atomic limit) to the final value v = v0 = 1, which we use
as the unit of energy, with the profile

v(t) =

{
1
2 [1− cos(ω0t)] for t < tq
1 for t ≥ tq

, (18)

where ω0 = π/tq and tq > 0 is a suitable quench time. In
our simulations we use tq = 0.25/v0. We assume a zero
temperature initial state in the paramagnetic phase in
the half-filled Bethe lattice. We then map the Hubbard
model onto a SIAM. Since v(t = 0) = 0, Λ− vanishes and
the hybridization function is given by Λ = Λ+. Since we
have a spin- and a particle-hole symmetric system, the
bath is represented with pairs of initially occupied and
empty sites. We take the total number of bath sites to
be Lbath = 2L, where L is the rank of the approximate
representations of −iΛ< and iΛ>. The initial ground
state of the SIAM has an equal number of empty and
doubly occupied bath sites with energies εpσ = 0, and
singly-occupied impurity which is spin-mixed with den-
sity matrix ρ0 = (| ↑〉〈↑ |+ | ↓〉〈↓ |) /2. To account for
occupation of the impurity site, we consider two subsys-
tems α and β, in which the impurity of the system α (β)
is initially occupied by a single ↑-electron (↓-electron).
We then compute two impurity Green functions Gαimp,σ

and Gβimp,σ the average of which yields the local lattice
Green function

Gloc,σ(t, t′) =
1

2

[
Gαimp,σ +Gβimp,σ

]
, (19)

after self-consistency has been reached. Since we are
considering the Hubbard model in the Bethe lattice, the
DMFT self-consistency condition is given by Eq. (4).

The non-equilibrium DMFT steps to compute the
single-particle lattice Green function for a maximum sim-
ulation time tmax = N ×∆t are then the following:

0. Choose an initial Green function g0. For itera-
tion n = 1, initialize the hybridization function as
Λ1(t, t′) = v(t)g0(t, t′)v(t′), for t, t′ ≤ tmax, where
v is the hopping in the Hubbard Hamiltonian.

1. Use the Cholesky decomposition for Λn to obtain
the hopping parameters Vp(t) for the nth iteration.

2. Use exact diagonalization techniques to com-
pute the impurity Green functions Gsimp,σ =

ΘC(t, t
′)Gs,>imp,σ(t, t′) + ΘC(t

′, t)Gs,<imp,σ(t, t′) for s =
α and s = β, where

Gs,>imp,σ(t, t′) = −i〈ψs0|Û(0, t)ĉ1σÛ(t, t′)ĉ†1σÛ(t′, 0)|ψs0〉,

Gs,<imp,σ(t, t′) = i〈ψs0|Û(0, t′)ĉ†1σÛ(t′, t)ĉ1σÛ(t, 0)|ψs0〉,

Û(t, t′) = T e−i
∫ t
t′ dτ ĤSIAM(τ). (20)

Here, |ψs0〉 is the initial (pure) state for system s,
and T is the (usual) time-ordering operator. Use
Eq. (19) to obtain the local lattice Green function
Gn.

3. Use the DMFT self-consistency condition for the
Bethe lattice Λn+1(t, t′) = v(t)Gn(t, t′)v(t′) to ob-
tain the hybridization function for the next itera-
tion.

4. Go to step 1 and iterate the steps until convergence
is reached. The convergence variable can be, e.g.,
max |Vp(t)− Vp,prev(t)|.

From the lattice Green function we can obtain single-
particle observables. In addition to the Green function, in
the time-evolution we can calculate the time-dependent
double occupation 〈d(t)〉 = 〈n̂1↑n̂1↓〉 which is also aver-
aged over the systems α and β.

III. JORDAN–WIGNER TRANSFORMATION
APPLIED TO THE SINGLE-IMPURITY

ANDERSON MODEL

The aim of the main article is to show how such
DMFT steps as described above could be performed on
a trapped-ion quantum computer in conjunction with a
classical feedback loop. To this end, we must represent
the SIAM Hamiltonian (5) with µ = 0 and εpσ = 0
in terms of spin operators that operate on the qubits.
This is achieved via the Jordan–Wigner transformation,
in which we map a string of N fermions onto a string of
2N qubits. The relation between the fermionic creation
and annihilation operators and the spin operators reads

â†p↓ = σ̂z1 ⊗ · · · ⊗ σ̂z2p−2 ⊗ σ̂−2p−1, (21)

â†p↑ = σ̂z1 ⊗ · · · ⊗ σ̂z2p−1 ⊗ σ̂−2p, (22)

âpσ = (â†pσ)†, (23)

where σ̂± = 1
2 (σ̂x ± iσ̂y), and σ̂x, σ̂y, and σ̂z are the

Pauli spin operators.
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We apply the transformations (21)-(23) to the SIAM
Hamiltonian. The interaction term becomes

U(t)

(
n̂↑ −

1

2

)(
n̂↓ −

1

2

)
=

1

4
U(t)σ̂z1 ⊗ σ̂z2 , (24)

while the hybridization terms read

Vp↓â
†
1↓âp↓ + H.c. =

1

2
Re(Vp↓)

(
σ̂x1 ⊗ σ̂z2 ⊗ · · · ⊗ σ̂z2p−2 ⊗ σ̂x2p−1 + σ̂y1 ⊗ σ̂z2 ⊗ · · · ⊗ σ̂z2p−2 ⊗ σ̂

y
2p−1

)
+

1

2
Im(Vp↓)

(
σ̂y1 ⊗ σ̂z2 ⊗ · · · ⊗ σ̂z2p−2 ⊗ σ̂x2p−1 − σ̂x1 ⊗ σ̂z2 ⊗ · · · ⊗ σ̂z2p−2 ⊗ σ̂

y
2p−1

)
, (25)

Vp↑â
†
1↑âp↑ + H.c. =

1

2
Re(Vp↑)

(
σ̂x2 ⊗ σ̂z3 ⊗ · · · ⊗ σ̂z2p−1 ⊗ σ̂x2p + σ̂y2 ⊗ σ̂z3 ⊗ · · · ⊗ σ̂z2p−1 ⊗ σ̂

y
2p

)
+

1

2
Im(Vp↑)

(
σ̂y2 ⊗ σ̂z3 ⊗ · · · ⊗ σ̂z2p−1 ⊗ σ̂x2p − σ̂x2 ⊗ σ̂z3 ⊗ · · · ⊗ σ̂z2p−1 ⊗ σ̂

y
2p

)
. (26)

In order to implement the time-evolution operator in an
experiment, we use the Trotter decomposition

e−iδt
∑N
j=1 ĥj ≈

N∏
j=1

e−iδtĥj , (27)

in which each of the terms on the right hand side can
be implemented with the help of Mølmer–Sørensen gates
and local and global rotations, as described in the next
section.

IV. IMPLEMENTING THE SIAM
HAMILTONIAN WITH MØLMER–SØRENSEN

GATES

Each exponent that consists of tensor products of k
Pauli operators can be implemented (up to local ro-
tations) with a Mølmer–Sørensen gate acting on the k
qubits, one local gate acting on a single qubit, and the
inverse Mølmer–Sørensen gate7,8. For example, we have
the decomposition

Û = Û1,k
MS

(
−π

2
, 0
)
Û1,loc(φ)Û1,k

MS

(π
2
, 0
)

= exp (iφσz1 ⊗ σx2 ⊗ σx3 ⊗ · · · ⊗ σxk) , (28)

where the Mølmer–Sørensen gate is given by

Û l,mMS (θ, φ) = exp

[
−iθ

4

(
cosφ Ŝx + sinφŜy

)2
]
, (29)

with Ŝx,y =
∑m
j=l σ̂

x,y
j . The local gate in Eq. (28) reads

Ûj,loc(φ) =


exp(−iφσzj ) for k = 4n− 1

exp(iφσzj ) for k = 4n+ 1

exp(−iφσyj ) for k = 4n− 2

exp(iφσyj ) for k = 4n

, n ∈ N,

(30)

To implement a string of σ̂y gates instead of σ̂x, we use a
different Mølmer–Sørensen gate, yielding the decomposi-
tion

Û = Û1,k
MS

(
−π

2
,
π

2

)
Û1,loc(φ)Û1,k

MS

(π
2
,
π

2

)
= exp (iφσz1 ⊗ σ

y
2 ⊗ σ

y
3 ⊗ · · · ⊗ σ

y
k) , (31)

with the local gate

Ûj,loc(φ) =


exp(−iφσzj ) for k = 4n− 1

exp(iφσzj ) for k = 4n+ 1

exp(iφσxj ) for k = 4n− 2

exp(−iφσxj ) for k = 4n

, n ∈ N.

(32)

Any of the gates from Eqs. (25) and (26) can be obtained
from Eqs. (28) and (31) by applying additional local ro-
tations. For instance,
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exp
(
iφσ̂x2 ⊗ σ̂z3 ⊗ · · · ⊗ σ̂z2p−1 ⊗ σ̂x2p

)
= exp

iπ
4

2p−1∑
j=4

σ̂yj

 Û2,2p
MS

(
−π

2
, 0
)
Û3,loc(φ)Û2,2p

MS

(π
2
, 0
)

exp

−iπ
4

2p−1∑
j=4

σ̂yj

 ,

(33)

where Û3,loc(φ) = exp (−iφσ̂z3) for even p, and Û3,loc(φ) = exp (iφσ̂z3) for odd p, with φ = − 1
2δtRe(Vp↑). Similarly,

e.g.,

exp
(
iφσ̂x1 ⊗ σ̂z2 ⊗ · · · ⊗ σ̂z2p−2 ⊗ σ̂

y
2p−1

)
= exp

(
i
π

4
σ̂z1

)
exp

−iπ
4

2p−2∑
j=3

σ̂yj

 Û1,2p−1
MS

(
−π

2
,
π

2

)
Û2,loc(φ)Û1,2p−1

MS

(π
2
,
π

2

)
exp

iπ
4

2p−2∑
j=3

σ̂yj

 exp
(
−iπ

4
σ̂z1

)
,

(34)

where Û2,loc(φ) = exp (−iφσ̂z2) for even p, and Û2,loc(φ) = exp (iφσ̂z2) for odd p, with φ = 1
2δtIm(Vp↓).

V. MEASURING THE LOCAL GREEN
FUNCTION

An essential part of the scheme is the determination
of the local non-equilibrium Green function. In this sec-

tion, we propose an experimental scheme to measure it
with trapped ions. We again apply the Jordan–Wigner
transformations on the ĉ-operators and obtain the follow-
ing expressions for the different components of the Green
function

Gs,>1↑ (t, t′) =− i

4

(
〈ψs0|Û(0, t)(σ̂z1 ⊗ σ̂x2 )Û(t, t′)(σ̂z1 ⊗ σ̂x2 )Û(t′, 0)|ψs0〉 − i〈ψs0|Û(0, t)(σ̂z1 ⊗ σ̂x2 )Û(t, t′)(σ̂z1 ⊗ σ̂

y
2 )Û(t′, 0)|ψs0〉

+ i〈ψs0|Û(0, t)(σ̂z1 ⊗ σ̂
y
2 )Û(t, t′)(σ̂z1 ⊗ σ̂x2 )Û(t′, 0)|ψs0〉+ 〈ψs0|Û(0, t)(σ̂z1 ⊗ σ̂

y
2 )Û(t, t′)(σ̂z1 ⊗ σ̂

y
2 )Û(t′, 0)|ψs0〉

)
,

(35)

Gs,>1↓ (t, t′) =− i

4

(
〈ψs0|Û(0, t)σ̂x1 Û(t, t′)σ̂x1 Û(t′, 0)|ψs0〉 − i〈ψs0|Û(0, t)σ̂x1 Û(t, t′)σ̂y1 Û(t′, 0)|ψs0〉

+ i〈ψs0|Û(0, t)σ̂y1 Û(t, t′)σ̂x1 Û(t′, 0)|ψs0〉+ 〈ψs0|Û(0, t)σ̂y1 Û(t, t′)σ̂y1 Û(t′, 0)|ψs0〉
)
, (36)

Gs,<1↑ (t, t′) =
i

4

(
〈ψs0|Û(0, t′)(σ̂z1 ⊗ σ̂x2 )Û(t′, t)(σ̂z1 ⊗ σ̂x2 )Û(t, 0)|ψs0〉+ i〈ψs0|Û(0, t′)(σ̂z1 ⊗ σ̂x2 )Û(t′, t)(σ̂z1 ⊗ σ̂

y
2 )Û(t, 0)|ψs0〉

− i〈ψs0|Û(0, t′)(σ̂z1 ⊗ σ̂
y
2 )Û(t′, t)(σ̂z1 ⊗ σ̂x2 )Û(t, 0)|ψs0〉+ 〈ψs0|Û(0, t′)(σ̂z1 ⊗ σ̂

y
2 )Û(t′, t)(σ̂z1 ⊗ σ̂

y
2 )Û(t, 0)|ψs0〉

)
,

(37)

Gs,<1↓ (t, t′) =
i

4

(
〈ψs0|Û(0, t′)σ̂x1 Û(t′, t)σ̂x1 Û(t, 0)|ψs0〉+ i〈ψs0|Û(0, t′)σ̂x1 Û(t′, t)σ̂y1 Û(t, 0)|ψs0〉

− i〈ψs0|Û(0, t′)σ̂y1 Û(t′, t)σ̂x1 Û(t, 0)|ψs0〉+ 〈ψs0|Û(0, t′)σ̂y1 Û(t′, t)σ̂y1 Û(t, 0)|ψs0〉
)
, (38)

In Eqs. (35)-(38), all time-evolution operators Û(t, 0),
etc, correspond to a sequence of quantum gates obtained
in the previous section.

To measure each of the summands in Eqs. (35)-(38), we

introduce a probe qubit9 which we couple to the system
of interest. We assume that the probe qubit is prepared
in the pure state |0〉, yielding the total density operator
ρ̂tot = ρ̂sys ⊗ |0〉〈0|. The combined system is then run
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through a Ramsey interferometer sequence described by
a quantum circuit in which we first apply a Hadamard
gate σ̂H (π/2 pulse) on the probe qubit, followed by uni-
tary evolution of the system of interest, followed by a
controlled application of Pauli gates, evolution up to the
final time, another controlled application of Pauli gates,
and ending with another Hadamard gate on the probe
qubit (see Fig. 2 of the main text). The output state of
the qubit at the end of the Ramsey sequence is given by

ρ̂probe = Trsys

[
σ̂H T̂ σ̂H ρ̂totσ̂H T̂

†σ̂H

]
=

1 + Re[F (t, t′)]

2
|0〉〈0| − i Im[F (t, t′)]

2
|0〉〈1|

+ i
Im[F (t, t′)]

2
|1〉〈0|+ 1− Re[F (t, t′)]

2
|1〉〈1|,

(39)

where F (t, t′) = Trsys

[
T̂ †1 (t)T̂0(t, t′)ρ̂sys

]
corresponds to

one of the summands in Eqs. (35)-(38). Here, the uni-
tary operators T̂0(t, t′) = 〈0|T̂ |0〉 = Û(t, t′)σ̂Û(t′, 0) and
T̂1(t) = 〈1|T̂ |1〉 = σ̂′Û(t, 0), in which σ̂ and σ̂′ are Pauli
operators or tensor products of Pauli operators accord-
ing to Eqs. (35)-(38), act only on the system and not on
the probe qubit. For example, the network in Fig. 2 of
the main text corresponds to the case σ̂ = σ̂z1 ⊗ σ̂x2 and
σ̂′ = σ̂z1 ⊗ σ̂

y
2 . Note that

ρ̂probe =
1

2

(
Î + Re[F (t, t′)]σ̂z + Im[F (t, t′)]σ̂y

)
, (40)

where Î is the identity operator, so that we have

Trprobe [ρ̂probeσ̂z] = Re[F (t, t′)], (41)

and

Trprobe [ρ̂probeσ̂y] = Im[F (t, t′)], (42)

which are then experimentally measurable quantities.
To give a rough estimate on the number of measure-

ments required in an experiment, we consider the probe
to be in the superposition 1√

2
(|0〉+ |1〉) which is the state

with maximal uncertainty in the measurement outcome.
Thus, the measurement of the σz component yields either
-1 or +1 with probability 1

2 . This random variable then
follows a two-point distribution with parameters p = 0.5,
q = 1 − p = 0.5, and variance σ2 = 1. The mean of the
σz component in this state is zero. To obtain this mean
with a standard error of the mean ε = σ/

√
n requires

n = σ2/ε2 projective measurements for each contribution
to the Green function. For example for ε = 0.02 we would
need about 2×2×2×4×2×2 500 = 160 000 [2 systems (α
and β), 2 spins, lesser and greater Green function, 4 terms
per Green function, 2 expectation values to be measured,
and 2 500 measurements for each expectation value] mea-
surements per time step, and this number scales quadrat-
ically with the number of points in the time grid. How-
ever, if we consider a spin-symmetric system as above,

where we have the symmetries Gα(β),</>
1σ = G

β(α),</>
1σ̄ ,

we only need to measure half of the Green functions
above. Note that all measurements can be done in par-
allel.

VI. OUTLINE OF THE CLASSICAL
SIMULATIONS OF THE HYBRID DEVICE

We perform classical simulations of the single-qubit in-
terferometer described in the previous section. In the ac-
tual hybrid device, the single-qubit interferometry would
be done experimentally, and here we try to mimic the
experimental procedure.

We consider the first L time steps, where L is the
half the number of bath sites. We first obtain some
initial guess hybridization parameters V

(0)
pσ (t), where

t = 0,∆t, . . . , L∆. Using V (0)
pσ (t) we construct imperfect

quantum gates Ûrot(ϕ+ε) and Û l,mMS (θ + εMS1, φ+ εMS2),
where ε, εMS1, and εMS2 are normally distributed ran-
dom variables with zero mean and standard deviations
σ, σMS1, and σMS2, respectively. These quantum gates
yield the Trotterized unitary evolution operator Û(t, t′),
where t, t′ = 0,∆t, . . . , L∆. We use this evolution opera-
tor to compute the (t = m∆t, t′ = n∆t)-point (m,n ≤ L)
of F (t, t′) from Trprobe [ρ̂probeσ̂z] and Trprobe [ρ̂probeσ̂y] as
explained in the previous section, and we average the re-
sults over several realizations to gather error statistics.
After going through all the possible combinations of the
controlled σ̂x1 (σ̂z1 ⊗ σ̂x2 ) and σ̂

y
1 (σ̂z1 ⊗ σ̂

y
2 ) gates according

to Eqs. (35)-(38), we obtain G↓(↑)(t = m∆t, t′ = n∆t).
However, we interpret the computation of the point

(t = m∆t, t′ = n∆t) as a measurement which collapses
the state of the system, and we cannot store any infor-
mation of the state at this time instant in memory, since
we don’t want to re-use any of the obtained wave func-
tions later to avoid correlating the errors between dif-
ferent points in the Green function. We compute these
points from independent realizations instead. This way
we make our classical simulations to follow what one
would do in an experiment. This means that in order
to compute another point (t = (m + 1)∆t, t′ = n∆t) or
(t = m∆t, t′ = (n + 1)∆t), we have to propagate again
from the origin (t = 0, t′ = 0) to the desired point and
again average over several realizations. This procedure is
repeated until we have obtained all the points of Gσ(t, t′)
until (t = L∆t, t′ = L∆t). This concludes the ‘experi-
mental’, or quantum, part of the first L time steps in the
first iteration of the DMFT self-consistency loop.

The obtained Gσ(t, t′) is then used in the classi-
cal computer to produce the hybridization function
Λσ(t, t′) = v(t)Gσ(t, t′)v(t′). In the first L time
steps, we have enough parameters to do a Cholesky
decomposition of Λσ(t, t′) to obtain new hybridizations
V

(1)
pσ (t), which are used for updating Ûrot(ϕ + ε) and
Û l,mMS (θ + εMS1, φ+ εMS2). This begins the second iter-
ation of the DMFT self-consistency loop where use the
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updated quantum gates to again ‘measure’ Gσ(t, t′) us-
ing the steps described above, always starting from the
origin to compute one point in the time grid and av-
eraging over several realizations. This non-linear pro-
cess of ‘measuring’ Gσ(t, t′) and using Cholesky decom-
position of Λσ(t, t′) to update Vpσ(t) is repeated until
|V (n)
pσ (t)− V (n−1)

pσ (t)| < δ where δ is a predetermined er-
ror threshold.

For the time steps L + 1, . . . , N with tmax = N∆t,
we adopt the ‘time slicing’ scheme of Ref.4, where we
iterate one time step M > L to self-consistency before
moving to M + 1. In the classical part of the hybrid
device, we utilize a simple minimizer step4 to update
only Vpσ(M∆t) while keeping the previously obtained
Vpσ(K∆t) (K < M) fixed. However, again when we
want to reach the Mth time step in the time grid, we
have to start propagating from the origin.

Mimicking the experiment to this level makes our clas-
sical simulation very difficult. Thus, our simulations are
limited to small system sizes and relatively short time
scales.

VII. NON-INTERACTING SYSTEM AND
ERROR CORRECTION

The non-interacting impurity system comprises of
SIAM Hamiltonian (5) with U = 0. We take each bath
site as being independently coupled to a thermal reser-
voir to which it can incoherently exchange electrons with.
This is described within the quantum master equation
approach where the density operator ρ̂(t) of the full sys-
tem obeys

d

dt
ρ̂(t) =− i[ĤSIAM, ρ̂(t)]

+
∑
p>0,σ

Γ−p [2ĉpσρ̂(t)ĉ†pσ − ρ̂(t)ĉ†pσ ĉpσ − ĉ†pσ ĉpσρ̂(t)]

+
∑
p>0,σ

Γ+
p [2ĉ†pσρ̂(t)ĉpσ − ρ̂(t)ĉpσ ĉ

†
pσ − ĉpσ ĉ†pσρ̂(t)],

where Γ±p are the rates of electron ejection (−) and in-
jection (+) to bath site p. In the case of no impu-

rity coupling Vpσ(t) = 0 the noise on each bath site
will drive their occupancies to a steady-state value of
np(∞) = Γ+

p /(Γ
−
p + Γ+

p ).

Since this model is non-interacting and has Lindblad
noise terms which are linear in the electron creation and
annihilation operators the master equation can be solved
exactly using the so-called super-fermion formalism10.
Here we use this approach to compute the impurity
single-particle Green functions

G>σ (t, t′) = iTr[ρ̂0ĉ
†
1σ(t′)ĉ1σ(t)],

G<σ (t, t′) = −iTr[ρ̂0ĉ1σ(t)ĉ†1σ(t′)],

for this system given an initial density operator ρ̂0. We
focused on a quench of the Hubbard hopping parameter
v(t) given by Eq. (18). The initial density operator ρ̂0 was
again chosen to model a T = 0 half-filled paramagnetic
phase4, where µ = 0, with the impurity being in a singly
occupied spin-mixed state 1

2 (| ↑〉 〈↑ |+ | ↓〉 〈↓ |), along with
half the bath sites were doubly occupied | ↑↓〉, and the
other half empty | 0〉. The dissipation in the bath was
taken to have Γ±p = Γ so that the steady-state density of
the system remains a constant unit-filling. We take the
bath energies to εpσ(t) = 0 throughout.

Using the calculated G
>
<
σ (t, t′) the non-equilibrium

DMFT self-consistency loop was solved using (i) the
standard Cholesky time-slicing proposed for a noiseless
system4, explained after Eq. (17), and (ii) using a fit-
ting procedure which attempts to correct for the effects
of the bath noise. We solve numerically for the bath
Green functions gpσ(t, t′) using the super-fermion ap-
proach10. To implement a noise-reduction scheme, we

minimize
∥∥∥∑p Vpσ(t)gpσ(t, t′)Vpσ(t′)− Λσ(t, t′)

∥∥∥2

F
(‖ · ‖F

is the Frobenius norm) over the Vpσ(t) to obtain the hy-
bridizations corresponding to a noisy system. It is of-
ten useful to include a multiplying function of the form
f(t, t′) = exp(−µ|t − t′|) in the cost function to aid the
convergence of the minimiser.
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