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We propose a non-linear, hybrid quantum-classical scheme for simulating non-equilibrium dynam-
ics of strongly correlated fermions described by the Hubbard model in a Bethe lattice in the ther-
modynamic limit. Our scheme implements non-equilibrium dynamical mean field theory (DMFT)
and uses a digital quantum simulator to solve a quantum impurity problem whose parameters are
iterated to self-consistency via a classically computed feedback loop where quantum gate errors can
be partly accounted for. We analyse the performance of the scheme in an example case.

Next generation scalable quantum devices1,2 promise a step change in our ability to do computations. Direct
quantum simulation3–5 using highly controllable quantum systems6–8 has already led to numerous insights into many-
body quantum physics, despite limitations in the size of the simulated system.

Recently, quantum computer simulations of strongly correlated fermion models have been proposed9,10. We suggest
a hybrid quantum-classical scheme to simulate non-equilibrium dynamics of the Hubbard model in a Bethe lattice
directly in the thermodynamic limit. Our scheme implements the non-equilibrium extension of the well-established
dynamical mean-field theory (DMFT) method (for extensive reviews of DMFT, see, e.g., Refs.11,12). Instead of the
traditional all-classical method, the proposed scheme uses a digital quantum simulator to efficiently solve the DMFT
impurity problem, the parameters of which are iterated to self-consistency via a classically computed feedback loop.
This setup promises an exponential speed-up over the best currently-known Hamiltonian-based classical algorithms.
We show how quantum gate errors can be partly accounted for in the feedback loop, improving simulation results.
The scheme also avoids the sign problem in classical quantum Monte Carlo methods and works for all interaction
strengths, unlike classical methods based on perturbation theory. Presently, non-equilibrium DMFT is one of the
most promising methods to study time-dependent phenomena in high-dimensional correlated lattice models, and
could thus be of interest for current efforts to develop scalable quantum technologies1,6,13,14. Examples of applications
of non-equilibrium DMFT include the dielectric breakdown of Mott insulators15, damping of Bloch oscillations16, and
thermalization after parameter quenches17,18.

Further to this, driven strongly correlated quantum materials are now being extensively investigated experimentally.
A large motivation for this is the possibility of manipulating correlated phases of matter with strong pulses of light,
such as photodoping of Mott insulators19 or inducing superconductivity20. The underlying physical mechanisms are,
however, still poorly understood. Even the dynamical behaviour of conceptually simple and commonly used quantum
lattice models is yet not fully grasped. Solving these model systems could elucidate physical phenomena underlying
currently unexplained experimental results. A standard example of this kind of idealised model for non-equilibrium
problems is the time-dependent Hubbard Hamiltonian

Ĥ(t) = −v(t)
∑
〈i,j〉σ

(
ĉ†i,σ ĉj,σ + H.c.

)
+ U(t)

∑
i

(
n̂i,↓ −

1

2

)(
n̂i,↑ −

1

2

)
. (1)

In this model, electrons with spin projections σ =↓, ↑ move only between adjacent lattice sites i and j with time-
dependent ‘hopping’ energy v(t), where t denotes time. This process is described in the first sum, which is over all
nearest-neighbour sites, with fermionic creation and annihilation operators ĉ†i,σ and ĉj,σ, respectively. The electrons
interact with Coulomb repulsion U(t) only if they occupy the same lattice site i, given in the latter term by the
product of the number operators n̂i,↓ = ĉ†i,↓ĉi,↓ and n̂i,↑ = ĉ†i,↑ĉi,↑.

This and similar models are extremely challenging to study numerically due to the exponential growth of the Hilbert
space with system size. One thus often resorts to mean field approximations which typically consider only a single
lattice site and replace interactions with its neighbourhood by a mean field Λ. This turns a linear quantum problem in
an exponentially large Hilbert space into a much smaller but non-linear problem where Λ needs to be determined self-
consistently. Such mean field approximations become increasingly accurate with the number of nearest neighbours.
A classic example of this approach is the Weiss theory of ferromagnetism21. For mean field theory to be applicable
to strongly correlated Fermi systems in thermal equilibrium, the mean field Λσ(t) has to be dynamical to account
for correlations between interactions with the environment that are separated by t in time, as schematically shown in
Figs. 1a,b.
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This highly successful approach is called DMFT11. DMFT can be extended to non-equilibrium systems12 by letting
Λσ(t, t′), which is often called hybridization function, depend on two interaction times t and t′ explicitly. Note that
non-local spatial fluctuations can be included in DMFT by going beyond the single-site approximation and considering
a cluster of isolated sites22,23, but this is beyond the scope of this work.

In general, it is a complex task to determine Λσ(t, t′) and the related local single-particle Green’s function Gσ(t, t′) =
−i〈T ĉσ(t)ĉ†σ(t′)〉 (where T is the time-ordering operator), describing the response of the many-body system after a
localized removal and addition of a particle at times t and t′. Commonly used numerical methods for solving the non-
equilibrium DMFT problem include continuous-time quantum Monte Carlo, which suffers from a severe dynamical
sign problem, and perturbation theory which can only address the weak and strong coupling regimes12.

In infinite dimensions, the system can also be explicitly mapped onto a single impurity Anderson model (SIAM)24

ĤSIAM(t) = Ĥloc(t) + Ĥbath(t) + Ĥhyb(t), (2)

Ĥloc(t) = U(t)

(
n̂↑ −

1

2

)(
n̂↓ −

1

2

)
− µ

∑
σ

n̂σ, (3)

Ĥhyb(t) =
∑
p

(
Vpσ(t)ĉ†σ ĉpσ + H.c.

)
, (4)

Ĥbath(t) =
∑
p,σ

[εpσ(t)− µ] ĉ†pσ ĉpσ. (5)

where the selected lattice site is represented by an impurity, with the creation (annihilation) operator ĉ†σ (ĉσ) and
number operator n̂σ = ĉ†σ ĉσ, whose interaction with Λσ(t, t′) is mimicked by a collection of N non-interacting bath
sites with on-site energies εpσ(t), as shown in Fig. 1c. The time-dependent hybridization energy Vpσ(t) describes
the amplitude for exchange of fermions between the impurity site and bath site p. These must be determined self-
consistently: for given Vpσ(t) the quantum dynamics of the SIAM is solved and its Green’s function and corresponding
hybridization function Λσ(t, t′) are determined. From Λσ(t, t′) a new set of Vpσ(t) is worked out which is then fed
back into the SIAM. These steps are repeated until convergence is achieved24. The dynamics of the SIAM is usually
worked out with exact diagonalization (ED)24 for small systems or with tensor network theory (TNT) methods25.
However, the dynamical generation of entanglement in these problems has severely hampered the efficiency of TNT
methods25,26. Furthermore, the required number of bath sites increases with the maximum simulation time tmax.
This makes solving the SIAM the exponentially difficult bottleneck24,25,27 in purely classical DMFT solvers.

Here, we propose and analyze a hybrid quantum-classical computing scheme for DMFT to efficiently solve the
Hubbard model in a Bethe lattice. The Bethe lattice is chosen for the simplicity of its self-consistency condition. It
is conceptually straightforward to extend the scheme to other types of lattices. A small digital quantum coprocessor
solves the SIAM evolution with the resulting Gσ(t, t′) being processed by a classical computer to complete the non-
linear feedback loop as shown in Fig. 1d. We consider a trapped ion coprocessor for concreteness, although any
other platform for quantum computing could implement the coprocessor as well. Even for imperfectly implemented
quantum gates with realistic errors of 1% we find accurate solutions to a simple model problem in small systems. In
addition, our numerical evidence suggests that gate errors mainly lead to a smearing of the bath energies, which can
be accounted for in the classical feedback loop to improve the solution.

Figure 2 shows an example coprocessor quantum network for computing a contribution to the Green’s function (see
Methods for details). The real and imaginary contributions to the impurity Green’s function are encoded as 〈σz〉 and
〈σy〉 of a probe qubit by interacting it with the impurity state at times t′ and t via controlled quantum gates28. We
decompose the unitary dynamics Û(t, t′) of the SIAM into a network of quantum gates29,30 by discretising time as
tn = n∆t, where ∆t is a small time-step. We then breakup the evolution from t = 0 to t = tn into a product of
Trotter steps Û(tn, 0) =

∏n−1
l=0 Û(l → l + 1). The Trotter steps can readily be implemented by single qubit rotations

and multi-qubit entangling Mølmer–Sørensen (MS) gates30,31 that have recently been realized in ion traps with high
fidelity13,14. The total number of MS gates per Trotter step scales only linearly with the number of bath sites.

We analyze the performance of our simulation scheme by considering a simple example system24. We study the
infinite-dimensional time-dependent Hubbard model (1) with constant onsite interaction U and tunneling matrix
element v(t). The simulation starts in the half-filled paramagnetic atomic limit with tunneling v(t = 0) = 0, which is
then dynamically ramped up to its final value v0 after quench time 1/4v0 and is kept at v0 until the final simulation
time tmax is reached24 (setting ~ = 1). Such a sudden quench is representative of experimental ultracold atom
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dynamics32,33 and also ultrafast dynamics probed in condensed matter systems19. The initial state of the system has
a singly occupied impurity site in the completely mixed state of spin ↑ and spin ↓, and one half of the bath sites
are doubly occupied and the other half empty (for explicit details, see Ref.24). In practice, we prepare the system
in two pure fermion occupational number states, where one has the impurity in state | ↑〉 and the other in state
| ↓〉, along with the bath states24. The results are then averaged over these two pure states. These initial number
states are mapped onto product states of qubits via the Jordan–Wigner transformation (see Methods). The initial
qubit configuration is that shown in Fig. 2, where ρ̂imp = 1

2 (|0, 1〉〈0, 1|+ |1, 0〉〈1, 0|). We emulate the operation of the
quantum coprocessor by classically evaluating the quantum networks, and the classical exponential scaling limits our
simulations to small systems. The self-consistency condition for the Bethe lattice calculated in the classical feedback
loop is Λσ(t, t′) = v(t)Gσ(t, t′)v(t′), from which we obtain the SIAM coupling to bath p efficiently via a Cholesky
decomposition Λσ(t, t′) =

∑
p Vpσ(t)V ∗pσ(t′), where ∗ denotes complex conjugation (see Supplementary Material for

details). The impurity site double occupancy 〈d̂〉(t) = 〈n̂↓n̂↑〉(t) obtained from the self-consistent hybrid simulation
is compared to the exact result in Fig. 3a and shows that Trotter errors do not noticeably affect our results.

Next we assume imperfect gates characterized by phase errors that are described by normally distributed ran-
dom variables with zero mean34. We choose their standard deviations consistent with current experimental
capabilities1,13,35 setting the single qubit error to σ = 10−6 and allowing MS gate errors σMS to vary between
0.1% and 10%. We obtain accurate results for the dynamics of the double occupancy even in the presence of gate
errors. As shown in Fig. 3a the double occupation differs from the exact result by only ≈ 3% for σMS = 1%. For
a smaller gate error of σMS = 0.1% the difference is insignificant up to t = 1.5/v0. In Fig. 3b we plot the error in
the imaginary part of the lesser Green’s function G<σ (t, t′) induced by imperfect gates. The diagonal values G<σ (t, t),
which determine time-local single-particle observables, are almost unaffected even for large MS gate errors. Gate
errors in general make the Green’s function decay faster with t− t′ than in the ideal case and will thus affect unequal
time correlation functions.

We further investigate the effect of imperfect gates by considering the impurity site coupled to two bath sites via
constant Vpσ(t). We find that the imaginary part of the mean field differs from the exact solution by a factor of
approximately exp(−η|t′ − t|) as shown in Fig. 4a. The decay rate η increases with σMS as displayed in the inset of
Fig. 4a. This numerical evidence suggests that gate errors have the same effect as smearing out the bath energies
εpσ(t) to a similar width η. The impurity model including errors would then be equivalent to the bath sites possessing
a finite coherence time 1/η. Since the number of gates is ∝ N we expect η to only depend weakly on N .

A bath site with coherence time 1/η can be modelled by allowing an ideal bath to incoherently exchange particles
with a reservoir at an ‘error’ rate Γ = η. This exchange of particles modifies the bath’s Green’s function from its ideal
value of gpσ(t, t′) = 1 and correspondingly modifies the relation between impurity bath couplings and mean field to24
Λσ(t, t′) =

∑
p Vpσ(t)gpσ(t, t′)V ∗pσ(t′). This relation does not necessarily allow for an exact solution for Vpσ(t) even for

large N . The effect of noise therefore limits the mean fields Λσ(t, t′) that the bath sites can model.
We investigate if the noise induced by gate errors can be partly compensated by implementing self-consistency

via this modified relation. For the non-interacting impurity with bath sites coupled to a particle reservoir we solve
numerically for the bath Green’s functions gpσ(t, t′), exploiting the super-fermion formalism36 (see Supplementary
Material). We minimize

∥∥∥∑p Vpσ(t)gpσ(t, t′)V ∗pσ(t′)− Λσ(t, t′)
∥∥∥ using the Frobenius norm over the Vpσ(t) to obtain

the hybridizations in the noisy system. This modification of the classical feedback loop significantly reduces the effect
of gate errors as demonstrated in Fig. 4b, showing the reduction in average absolute error in the mean field Λσ(t, t′).
In the hybrid simulation scheme a slight modification of the quantum network shown in Fig. 2 allows the probe qubit
to measure the bath Green’s functions, thus providing the information required for this noise-reduction scheme to be
implemented.

Finally, we emphasize that our scheme works directly in the thermodynamic limit and, since it does not require
a small expansion term, gives accurate results for all values of U , in particular for the challenging situation of
intermediate interactions like the example U = 2v0 considered here. The number of available qubits only limits the
number of bath sites that can be included in the simulation and hence the maximally reachable simulation time
tmax. Purely classical simulations are currently limited to approximately 25 bath sites25 and, because of fast growing
SIAM entanglement24,25, scale exponentially with tmax despite efficiently implementing the feedback loop. Therefore,
a quantum coprocessor with only about 50 qubits1 coupled to a classical feedback loop would be able to improve upon
current purely classical algorithms. Our hybrid simulation scheme thus provides an interesting scientific application
of next generation, possibly imperfect, quantum devices.
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METHODS

Implementing the single-impurity Anderson model with the digital quantum simulator

To implement the SIAM in Eq. (5) in the main text with the digital quantum simulator, we first map the creation
and annihilation operators in ĤSIAM(t) onto spin operators that act on the qubits in the coprocessor. This is achieved
via the Jordan–Wigner transformation ĉ†p↓ =

⊗2p−2
j=1 σ̂zj⊗σ̂

−
2p−1, ĉ

†
p↑ =

⊗2p−1
j=1 σ̂zj⊗σ̂

−
2p, and ĉpσ = (ĉ†pσ)† (we take p = 1

to be the impurity). Here, σ̂± = 1
2 (σ̂x ± iσ̂y), and σ̂x, σ̂y, and σ̂z are the Pauli spin operators. The transformation

maps N fermionic sites onto a string of 2N qubits such that two adjacent qubits represent one lattice site. The
correspondences between the qubit states and fermionic states are |0, 0〉 = |vac〉, |1, 0〉 = | ↓〉, |0, 1〉 = | ↑〉, and
|1, 1〉 = | ↓↑〉.

To obtain the necessary quantum gates to approximate the unitary evolution operator we use a Trotter decom-
position on the propagator Û(n → n + 1) between each time tn and tn+1 as Û(n → n + 1) = e−i∆tĤSIAM(tn) ≈∏
j e
−i∆tĤj(tn), where ĤSIAM(tn) =

∑
j Ĥj(tn). Each term e−i∆tĤj(tn) can be readily implemented using spin ro-

tations Ûrot(ϕ) where ϕ is the angle of rotation, and multi-qubit Mølmer–Sørensen (MS) gates30,31, characterized

by two phases θ and φ as Û l,mMS (θ, φ) = exp

[
−i θ4

(
cosφ Ŝx + sinφŜy

)2
]
, with Ŝx,y =

∑m
j=l σ̂

x,y
j (see Supplementary

Material). Here, the MS gate acts on qubits l, l + 1, . . . , m, and the phase θ controls the amount of entanglement,
while varying φ allows a shift between a σ̂x or a σ̂y type gate.

Measuring the impurity Green’s function with single-qubit interferometry

Using the Jordan–Wigner transformation, the lesser and greater impurity Green’s functions for each spin σ can be
written as a sum of four expectation values of products of Pauli operators and evolution operators (see Supplementary
Material). We use a single-qubit interferometry scheme28 to measure each of the expectation values F (t, t′) that
constitute the Green’s function. We introduce a probe qubit which is coupled to the string of 2N system qubits.
We assume that the probe qubit is prepared in the pure state |0〉, yielding the total system-probe density operator
ρ̂tot = ρ̂sys⊗|0〉〈0|. The combined system is then run through a Ramsey interferometer sequence, in which first a π/2
pulse (or Hadamard gate σ̂H) is applied to the probe qubit, the state of which will transform into the superposition
(|0〉+ |1〉) /

√
2. The two states in the superposition provide the necessary interference paths. Following the π/2 pulse,

we apply the unitary evolution on the system of interest up to a certain time t′. The Pauli operators are then applied
on the system as controlled quantum gates with either |0〉 or |1〉 as the control state. This is followed by evolution
up to the final time t′, another controlled application of Pauli gates, and finally another π/2 pulse is applied on the
probe qubit, bringing the interference paths together. The output state of the probe qubit at the end of the Ramsey
sequence is given by

ρ̂probe = Trsys

[
σ̂H T̂ σ̂H ρ̂totσ̂H T̂

†σ̂H

]
=

1 + Re[F (t, t′)]

2
|0〉〈0| − i Im[F (t, t′)]

2
|0〉〈1|+ i

Im[F (t, t′)]

2
|1〉〈0|+ 1− Re[F (t, t′)]

2
|1〉〈1|, (6)

where F (t, t′) = Trsys

[
T̂ †1 (t)T̂0(t, t′)ρ̂sys

]
. Here, the unitary operators T̂0(t, t′) = 〈0|T̂ |0〉 = Û(t, t′)σ̂Û(t′, 0) and

T̂1(t) = 〈1|T̂ |1〉 = σ̂′Û(t, 0), in which σ̂ and σ̂′ are Pauli operators or tensor products of Pauli operators (see
Supplementary Material), act only on the system and not on the probe qubit. Note that we can write ρ̂probe =
1
2

(
Î + Re[F (t, t′)]σ̂z + Im[F (t, t′)]σ̂y

)
, so that we have Trprobe [ρ̂probeσ̂z] = Re[F (t, t′)], and Trprobe [ρ̂probeσ̂y] =

http://arxiv.org/abs/1510.05703
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Im[F (t, t′)]. Therefore repeated measurements (which can be done in parallel) of the σ̂z and σ̂y components of
the probe qubit for all times t′ and t yields a contribution to the impurity Green’s function Gσ(t, t′). For a spin-
symmetric system, on the order of 80,000 measurements per time step are required. See Supplementary Material for
details.
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FIG. 1. a. In non-equilibrium DMFT a fermionic quantum lattice model is replaced by a single impurity site exchanging
particles via a self-consistently determined time and spin dependent mean field Λσ(t, t′). b. This exchange of particles yields
dynamical fluctuations of the impurity site occupation as a function of time shown here as | ↑〉 → | ↓↑〉 → | ↓〉 → |vac〉. The
onsite interaction U energetically penalises the doubly occupied state | ↓↑〉. c. The impurity-mean field interaction is mapped
onto a SIAM with unitary evolution Û(t, t′). The energies of the non-interacting bath sites p are chosen εpσ(t) = 0 for t > 0 and
their chemical potential is set µ = 0 in this work24. The impurity site exchanges fermions with time-dependent hybridization
energies Vpσ(t). d. Quantum-classical hybrid simulation scheme: the SIAM dynamics for a given set of parameters Vpσ(t) is
implemented on a quantum coprocessor and yields the impurity Green’s function Gσ(t, t′). The classical non-linear feedback
loop takes Gσ(t, t′) and calculates the mean field Λσ(t, t′) from which a new set of Vpσ(t) can be extracted. These parameters
are then fed back into the quantum coprocessor and the loop is repeated until self-consistency is achieved.
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FIG. 2. Coprocessor quantum network for measuring a contribution to Gσ(t, t′) in the SIAM dynamics. This example network
is given for the paramagnetic phase starting from the atomic limit, as considered in the main text and in Ref.24. A probe qubit
(top line) is prepared in a symmetric superposition (|0〉+ |1〉)/

√
2 of computational basis states |0〉 and |1〉 by a Hadamard gate

σ̂H . Here, ρ̂imp = 1
2

(|0, 1〉〈0, 1|+ |1, 0〉〈1, 0|), and the initial states of the bath sites (lines below the impurity) are set to either
|0〉 or |1〉 using Jordan–Wigner transformed operators, following the standard scheme in Ref.24. After evolving the SIAM to
time t′ according to Û(t′, 0) the probe qubit interacts with the impurity via controlled Pauli gates. A second set of controlled
Pauli gates is applied after evolving the impurity to time t. The precise choice of Pauli gates selects different contributions to
the Green’s function. After another Hadamard gate this contribution is encoded in the expectation values σ̂z and σ̂y of the
probe qubit, as discussed in Methods.
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FIG. 3. Hybrid non-equilibrium DMFT simulation results when dynamically increasing the Hubbard tunneling matrix element
v(t) from 0 to v0 as described in the main text. We choose U = 2v0, Trotter steps ∆t = 0.04/v0 and couple the impurity site to
N = 2 bath sites. a. Impurity double occupation 〈d̂〉(t) as a function of time t: numerically exact solution (blue solid curve),
solution with Trotter errors (+), solutions including gate errors of σMS = 0.1% (green dashed curve), σMS = 1% (yellow solid
curve), and σMS = 10% (red solid curve). b. Absolute value of the difference εG(t, t′) between the imaginary parts of the lesser
Green’s function without gate errors and with gate errors of σMS = 1%. Results of calculations with gate errors are obtained
by averaging over 128 realizations of the setup.
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SUPPLEMENTARY MATERIAL TO: “NON-LINEAR QUANTUM-CLASSICAL
SCHEME TO SIMULATE NON-EQUILIBRIUM STRONGLY CORRELATED

FERMIONIC MANY-BODY DYNAMICS”

We provide background details on non-equilibrium dynamical mean-field theory and the setup that we study in the
main text, and present the formulae needed for implementing the single-impurity Anderson model with qubits and on
measuring the single-particle non-equilibrium Green function. We further elucidate the non-interacting system where
we studied reducing the effects of a noisy bath.

I. NON-EQUILIBRIUM DYNAMICAL
MEAN-FIELD THEORY

One of the simplest models to capture essential phe-
nomena in strongly-correlated electron materials is the
single-band Hubbard Hamiltonian

ĤHubbard =−
∑
〈i,j〉σ

vij(t)
(
ĉ†i,σ ĉj,σ + h.c.

)
+ U(t)

∑
i

(
n̂i,↑ −

1

2

)(
n̂i,↓ −

1

2

)
, (1)

where vij(t) is the tunnelling (‘hopping’) matrix element
between nearest-neighbour sites i and j, and U(t) is the
on-site Coulomb repulsion. Here, we have assumed gen-
eral time-dependent parameters due to the driving of
material via, e.g., intense laser pulses1. Furthermore,
ĉ†i,σ (ĉi,σ) is the creation (annihilation) operator for an
electron with spin projection σ =↑, ↓ at site i, while
n̂i,σ = ĉ†i,σ ĉi,σ is the corresponding number operator.

Despite its apparent simplicity, the Hubbard model (1)
is notoriously difficult to solve, even numerically, and
especially in two dimensions where it may be relevant
to high-Tc superconductivity. Fortunately, dynamical
mean-field theory (DMFT)2 and its extension to non-
equilibrium problems3 provide a means to compute local
observables by circumventing the necessity of dealing di-
rectly with the Hubbard Hamiltonian. This is achieved
by mapping it onto an impurity model, the solution of
which is usually easier to obtain, albeit still a highly
non-trivial computational task. The mapping is justi-
fied in the limit of infinite spatial dimensions, d → ∞,
(or infinite coordination, z → ∞) by the collapse of the
irreducible self-energy of the Hubbard model to only con-
tributions emerging from strictly local skeleton diagrams
which are identical to those of an impurity model. The
collapse of the skeleton diagrams follows from the neces-
sity to scale the hopping parameters as vij(t) = v∗/

√
z

to avoid a diverging average kinetic energy per lattice
site and from simple power counting arguments. While
describing the full Hubbard Hamiltonian with a single-
impurity model is only an approximation in finite dimen-
sions, it often relatively accurate already in three dimen-
sions for certain lattice types.

The solution of the impurity model means essentially

FIG. 5. Keldysh time-contour C. It consists of two real-time
branches between an initial time t0 to final time tmax, and
an imaginary-time branch from t0 to t0 − iβ, where β is the
inverse temperature.

computing the local Green function

Gσ(t, t′) = −i〈ĉσ(t)ĉ†σ(t′)〉Ŝloc

= −i
Tr
{
TC
[
exp(Ŝloc)ĉσ(t)ĉ†σ(t′)

]}
Tr
{
TC
[
exp(Ŝloc)

]} , (2)

where TC is the contour-ordering operator on an ‘L-
shaped’ Keldysh time-contour C (see Fig. 5). The local
action Ŝloc is given by4

Ŝloc

= −i
∫
C
dt

[
U(t)

(
n̂↑(t)−

1

2

)(
n̂↓(t)−

1

2

)
− µ

∑
σ

n̂σ(t)

]

− i
∫
C
dt

∫
C
dt′
∑
σ

Λσ(t, t′)ĉ†σ(t)ĉσ(t′). (3)

Here, µ is the chemical potential and Λσ is the a priori
unknown hybridization function, or Weiss function, that
describes the exchange of electrons between the impurity
site with a bath of non-interacting electrons. The essen-
tial step in DMFT is the self-consistent determination of
Λσ. For a Bethe lattice, which corresponds to a semi-
elliptical density of states D(ε) =

√
4v2 − ε2/(2πv2), the

DMFT self-consistency condition obtains a simple closed
form. For time-dependent hoppings v, this reads

Λσ(t, t′) = v(t)Gσ(t, t′)v(t′). (4)

The impurity action (3) can also be represented in
a Hamiltonian form which permits the application of
Hamiltonian-based numerical methods4,5 to compute the
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local Green function. It also makes it possible to use the
trapped-ion scheme for quantum simulations6. The im-
purity model that we address here is the single-impurity
Anderson model (SIAM) given by

ĤSIAM = Ĥloc + Ĥbath + Ĥhyb, (5)

Ĥloc = −µ
∑
σ

n̂σ + U(t)

(
n̂↑ −

1

2

)(
n̂↓ −

1

2

)
, (6)

Ĥhyb =
∑
p

(
Vpσ(t)â†σâpσ + H.c.

)
, (7)

Ĥbath =
∑
p,σ

[εpσ(t)− µ] â†pσâpσ, (8)

Here, â†σ (âσ) is the creation (annihilation) operator for
the impurity orbital, and â†pσ (âpσ) for a bath orbital
p. Further, Vpσ(t) describes the hopping of electrons be-
tween the impurity and the bath, and εpσ(t) denotes the
energy of the bath orbital p.

The SIAM Hamiltonian (5) corresponds to the correct
DMFT action (3) if the parameters Vpσ and εpσ(t) are
chosen such that the relation

ΛSIAM
σ (t, t′) = Λσ(t, t′) (9)

is valid on the whole Keldysh contour C. Here, the SIAM
hybridization function has the expression4

ΛSIAM
σ (t, t′) =

∑
p

Vpσ(t)gpσ(t, t′)Vpσ(t′)∗, (10)

where

gpσ(t, t′) = i [f(εpσ(0)− µ)−ΘC(t, t
′)] e−i

∫
C dt̄ (εpσ(t̄)−µ)

(11)

is the non-interacting Green function for an isolated bath
site, with f(ε) = 1/ (exp(βε) + 1) denoting the Fermi dis-
tribution function and ΘC(t, t

′) being the contour Heav-
iside function defined as

ΘC(t, t
′) =

{
1 if t ≥C t′

0 else.
(12)

An essential part of the Hamiltonian-based DMFT
scheme is the determination of the parameters Vpσ(t)
and εpσ(t) for a given hybridization function Λσ(t, t′).
In what follows, we will relax the spin index σ for the hy-
bridization function since below we will be dealing with a
spin-symmetric set-up where both contributions are iden-
tical.

For non-equilibrium problems, it is useful introduce
two distinct baths, with each having their own corre-
sponding hybridization function4. The first bath, with

hybridization Λ−, includes those sites that are coupled
to the impurity at t = 0. Often this first bath vanishes
as t → ∞. The second bath, Λ+, builds up as time
evolves, i.e., couples additional bath sites to the impu-
rity for times t > 0. We will consider a system with
no initial correlations (Λ− = 0) in the next section, and
focus only on the second bath, with Weiss function

Λ+(t, t′) =
∑
p

V +
p (t)gp(t, t

′)V +
p (t′)∗. (13)

Since all imaginary-time components, which account for
initial correlations, vanish for Λ+, we set V +

p (t = 0) = 0
for all bath sites that are included in Λ+. The time-
dependence of the bath energies εp(t) can be absorbed
in the time dependence of the hoppings V +

p (t), meaning
that we are free to choose the evolution4

εp(t) =

{
εp(0) for t = 0

ε(∞) for t > 0
, (14)

where ε(∞) is a constant. Moreover, since εp(0) is incor-
porated only in the Fermi functions f [±(εp(0) − µ)] for
Λ
</>
+ , we can simply choose εp(0) such that f(εp(0)−µ)

is equal to 0 or 1. This is done in order to find a repre-
sentation of the Weiss functions as

−iΛ<+(t, t′) =
∑

p∈Bocc

V +
p (t)V +

p (t′)∗, (15)

iΛ>+(t, t′) =
∑

p∈Bempty

V +
p (t)V +

p (t′)∗, (16)

in which Bocc and Bempty denote the sets of initially oc-
cupied and empty bath sites, respectively. Note that for
a particle-hole symmetric system, Λ<+(t, t′) = Λ>+(t, t′)∗,
which is satisfied if the occupied and empty bath sites
come in pairs with complex conjugate hybridizations.
Moreover, for a discretized time tn = n ×∆t ∈ [0, N ×
∆t = tmax], we have, e.g.,

(−iΛ<+)nn′ = −iΛ<+(tn, tn′) =
∑

p∈Bocc

V +
p (tn)V +

p (tn′)∗,

(17)

which has the form of a Cholesky decomposition
(−iΛ<+) = V V † where V is a lower triangular matrix,
the pth column of which gives the time-dependent hy-
bridization to the bath orbital p. The use of Cholesky
decomposition to the determine the hybridizations from
the Weiss function allows us to adopt a time-propagation
scheme in which we do not update the whole Green and
Weiss function matrices as time evolves but only the cur-
rent time slice. In practice, since we only have a limited
number of bath sites L, we employ an approximate rep-
resentation of the Weiss function in which we obtain the
evolution of the first L time-steps from the Cholesky de-
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composition, and for time steps greater than L we update
a new column and row in the Weiss function matrix in
a manner which minimizes the error in the approximate
representation4. In the next section we present a test
system and use the results of this section to determine
the Weiss field self-consistently for the Hubbard model
in an infinite-dimensional Bethe lattice.

II. THE SET-UP AND DMFT STEPS

We consider the time evolution of the infinite-
dimensional Hubbard model with constant on-site inter-
action U and time-dependent hopping v(t)4. The hop-
ping is turned on from the initial value v = 0 (i.e., the
atomic limit) to the final value v = v0 = 1, which we use
as the unit of energy, with the profile

v(t) =

{
1
2 [1− cos(ω0t)] for t < tq
1 for t ≥ tq

, (18)

where ω0 = π/tq and tq > 0 is a suitable quench time. In
our simulations we use tq = 0.25/v0. We assume a zero
temperature initial state in the paramagnetic phase in
the half-filled Bethe lattice. We then map the Hubbard
model onto a SIAM. Since v(t = 0) = 0, Λ− vanishes and
the hybridization function is given by Λ = Λ+. Since we
have a spin- and a particle-hole symmetric system, the
bath is represented with pairs of initially occupied and
empty sites. We take the total number of bath sites to
be Lbath = 2L, where L is the rank of the approximate
representations of −iΛ< and iΛ>. The initial ground
state of the SIAM has an equal number of empty and
doubly occupied bath sites with energies εpσ = 0, and
singly-occupied impurity which is spin-mixed with den-
sity matrix ρ0 = (| ↑〉〈↑ |+ | ↓〉〈↓ |) /2. To account for
occupation of the impurity site, we consider two subsys-
tems α and β, in which the impurity of the system α (β)
is initially occupied by a single ↑-electron (↓-electron).
We then compute two impurity Green functions Gαimp,σ

and Gβimp,σ the average of which yields the local lattice
Green function

Gloc,σ(t, t′) =
1

2

[
Gαimp,σ +Gβimp,σ

]
, (19)

after self-consistency has been reached. Since we are
considering the Hubbard model in the Bethe lattice, the
DMFT self-consistency condition is given by Eq. (4).

The non-equilibrium DMFT steps to compute the
single-particle lattice Green function for a maximum sim-
ulation time tmax = N ×∆t are then the following:

0. Choose an initial Green function g0. For itera-
tion n = 1, initialize the hybridization function as
Λ1(t, t′) = v(t)g0(t, t′)v(t′), for t, t′ ≤ tmax, where
v is the hopping in the Hubbard Hamiltonian.

1. Use the Cholesky decomposition for Λn to obtain

the hopping parameters Vp(t) for the nth iteration.

2. Use exact diagonalization techniques to com-
pute the impurity Green functions Gsimp,σ =

ΘC(t, t
′)Gs,>imp,σ(t, t′) + ΘC(t

′, t)Gs,<imp,σ(t, t′) for s =
α and s = β, where

Gs,>imp,σ(t, t′) = −i〈ψs0|Û(0, t)ĉ1σÛ(t, t′)ĉ†1σÛ(t′, 0)|ψs0〉,

Gs,<imp,σ(t, t′) = i〈ψs0|Û(0, t′)ĉ†1σÛ(t′, t)ĉ1σÛ(t, 0)|ψs0〉,

Û(t, t′) = T e−i
∫ t
t′ dτ ĤSIAM(τ). (20)

Here, |ψs0〉 is the initial (pure) state for system s,
and T is the (usual) time-ordering operator. Use
Eq. (19) to obtain the local lattice Green function
Gn.

3. Use the DMFT self-consistency condition for the
Bethe lattice Λn+1(t, t′) = v(t)Gn(t, t′)v(t′) to ob-
tain the hybridization function for the next itera-
tion.

4. Go to step 1 and iterate the steps until convergence
is reached. The convergence variable can be, e.g.,
max |Vp(t)− Vp,prev(t)|.

From the lattice Green function we can obtain single-
particle observables. In addition to the Green function, in
the time-evolution we can calculate the time-dependent
double occupation 〈d(t)〉 = 〈n̂1↑n̂1↓〉 which is also aver-
aged over the systems α and β.

III. JORDAN–WIGNER TRANSFORMATION
APPLIED TO THE SINGLE-IMPURITY

ANDERSON MODEL

The aim of the main article is to show how such
DMFT steps as described above could be performed on
a trapped-ion quantum computer in conjunction with a
classical feedback loop. To this end, we must represent
the SIAM Hamiltonian (5) with µ = 0 and εpσ = 0
in terms of spin operators that operate on the qubits.
This is achieved via the Jordan–Wigner transformation,
in which we map a string of N fermions onto a string of
2N qubits. The relation between the fermionic creation
and annihilation operators and the spin operators reads

â†p↓ = σ̂z1 ⊗ · · · ⊗ σ̂z2p−2 ⊗ σ̂−2p−1, (21)

â†p↑ = σ̂z1 ⊗ · · · ⊗ σ̂z2p−1 ⊗ σ̂−2p, (22)

âpσ = (â†pσ)†, (23)

where σ̂± = 1
2 (σ̂x ± iσ̂y), and σ̂x, σ̂y, and σ̂z are the

Pauli spin operators.
We apply the transformations (21)-(23) to the SIAM

Hamiltonian. The interaction term becomes

U(t)

(
n̂↑ −

1

2

)(
n̂↓ −

1

2

)
=

1

4
U(t)σ̂z1 ⊗ σ̂z2 , (24)
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while the hybridization terms read

Vp↓â
†
1↓âp↓ + H.c. =

1

2
Re(Vp↓)

(
σ̂x1 ⊗ σ̂z2 ⊗ · · · ⊗ σ̂z2p−2 ⊗ σ̂x2p−1 + σ̂y1 ⊗ σ̂z2 ⊗ · · · ⊗ σ̂z2p−2 ⊗ σ̂

y
2p−1

)
+

1

2
Im(Vp↓)

(
σ̂y1 ⊗ σ̂z2 ⊗ · · · ⊗ σ̂z2p−2 ⊗ σ̂x2p−1 − σ̂x1 ⊗ σ̂z2 ⊗ · · · ⊗ σ̂z2p−2 ⊗ σ̂

y
2p−1

)
, (25)

Vp↑â
†
1↑âp↑ + H.c. =

1

2
Re(Vp↑)

(
σ̂x2 ⊗ σ̂z3 ⊗ · · · ⊗ σ̂z2p−1 ⊗ σ̂x2p + σ̂y2 ⊗ σ̂z3 ⊗ · · · ⊗ σ̂z2p−1 ⊗ σ̂

y
2p

)
+

1

2
Im(Vp↑)

(
σ̂y2 ⊗ σ̂z3 ⊗ · · · ⊗ σ̂z2p−1 ⊗ σ̂x2p − σ̂x2 ⊗ σ̂z3 ⊗ · · · ⊗ σ̂z2p−1 ⊗ σ̂

y
2p

)
. (26)

In order to implement the time-evolution operator in an
experiment, we use the Trotter decomposition

e−iδt
∑N
j=1 ĥj ≈

N∏
j=1

e−iδtĥj , (27)

in which each of the terms on the right hand side can
be implemented with the help of Mølmer–Sørensen gates
and local and global rotations, as described in the next
section.

IV. IMPLEMENTING THE SIAM
HAMILTONIAN WITH MØLMER–SØRENSEN

GATES

Each exponent that consists of tensor products of k
Pauli operators can be implemented (up to local ro-
tations) with a Mølmer–Sørensen gate acting on the k
qubits, one local gate acting on a single qubit, and the
inverse Mølmer–Sørensen gate7,8. For example, we have
the decomposition

Û = Û1,k
MS

(
−π

2
, 0
)
Û1,loc(φ)Û1,k

MS

(π
2
, 0
)

= exp (iφσz1 ⊗ σx2 ⊗ σx3 ⊗ · · · ⊗ σxk) , (28)

where the Mølmer–Sørensen gate is given by

Û l,mMS (θ, φ) = exp

[
−iθ

4

(
cosφ Ŝx + sinφŜy

)2
]
, (29)

with Ŝx,y =
∑m
j=l σ̂

x,y
j . The local gate in Eq. (28) reads

Ûj,loc(φ) =


exp(−iφσzj ) for k = 4n− 1

exp(iφσzj ) for k = 4n+ 1

exp(−iφσyj ) for k = 4n− 2

exp(iφσyj ) for k = 4n

, n ∈ N,

(30)
To implement a string of σ̂y gates instead of σ̂x, we use a
different Mølmer–Sørensen gate, yielding the decomposi-
tion

Û = Û1,k
MS

(
−π

2
,
π

2

)
Û1,loc(φ)Û1,k

MS

(π
2
,
π

2

)
= exp (iφσz1 ⊗ σ

y
2 ⊗ σ

y
3 ⊗ · · · ⊗ σ

y
k) , (31)

with the local gate

Ûj,loc(φ) =


exp(−iφσzj ) for k = 4n− 1

exp(iφσzj ) for k = 4n+ 1

exp(iφσxj ) for k = 4n− 2

exp(−iφσxj ) for k = 4n

, n ∈ N.

(32)

Any of the gates from Eqs. (25) and (26) can be obtained
from Eqs. (28) and (31) by applying additional local ro-
tations. For instance,

exp
(
iφσ̂x2 ⊗ σ̂z3 ⊗ · · · ⊗ σ̂z2p−1 ⊗ σ̂x2p

)
= exp

iπ
4

2p−1∑
j=4

σ̂yj

 Û2,2p
MS

(
−π

2
, 0
)
Û3,loc(φ)Û2,2p

MS

(π
2
, 0
)

exp

−iπ
4

2p−1∑
j=4

σ̂yj

 ,

(33)
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where Û3,loc(φ) = exp (−iφσ̂z3) for even p, and Û3,loc(φ) = exp (iφσ̂z3) for odd p, with φ = − 1
2δtRe(Vp↑). Similarly,

e.g.,

exp
(
iφσ̂x1 ⊗ σ̂z2 ⊗ · · · ⊗ σ̂z2p−2 ⊗ σ̂

y
2p−1

)
= exp

(
i
π

4
σ̂z1

)
exp

−iπ
4

2p−2∑
j=3

σ̂yj

 Û1,2p−1
MS

(
−π

2
,
π

2

)
Û2,loc(φ)Û1,2p−1

MS

(π
2
,
π

2

)
exp

iπ
4

2p−2∑
j=3

σ̂yj

 exp
(
−iπ

4
σ̂z1

)
,

(34)

where Û2,loc(φ) = exp (−iφσ̂z2) for even p, and Û2,loc(φ) = exp (iφσ̂z2) for odd p, with φ = 1
2δtIm(Vp↓).

V. MEASURING THE LOCAL GREEN
FUNCTION

An essential part of the scheme is the determination
of the local non-equilibrium Green function. In this sec-

tion, we propose an experimental scheme to measure it
with trapped ions. We again apply the Jordan–Wigner
transformations on the ĉ-operators and obtain the follow-
ing expressions for the different components of the Green
function

Gs,>1↑ (t, t′) =− i

4

(
〈ψs0|Û(0, t)(σ̂z1 ⊗ σ̂x2 )Û(t, t′)(σ̂z1 ⊗ σ̂x2 )Û(t′, 0)|ψs0〉 − i〈ψs0|Û(0, t)(σ̂z1 ⊗ σ̂x2 )Û(t, t′)(σ̂z1 ⊗ σ̂

y
2 )Û(t′, 0)|ψs0〉

+ i〈ψs0|Û(0, t)(σ̂z1 ⊗ σ̂
y
2 )Û(t, t′)(σ̂z1 ⊗ σ̂x2 )Û(t′, 0)|ψs0〉+ 〈ψs0|Û(0, t)(σ̂z1 ⊗ σ̂

y
2 )Û(t, t′)(σ̂z1 ⊗ σ̂

y
2 )Û(t′, 0)|ψs0〉

)
,

(35)

Gs,>1↓ (t, t′) =− i

4

(
〈ψs0|Û(0, t)σ̂x1 Û(t, t′)σ̂x1 Û(t′, 0)|ψs0〉 − i〈ψs0|Û(0, t)σ̂x1 Û(t, t′)σ̂y1 Û(t′, 0)|ψs0〉

+ i〈ψs0|Û(0, t)σ̂y1 Û(t, t′)σ̂x1 Û(t′, 0)|ψs0〉+ 〈ψs0|Û(0, t)σ̂y1 Û(t, t′)σ̂y1 Û(t′, 0)|ψs0〉
)
, (36)

Gs,<1↑ (t, t′) =
i

4

(
〈ψs0|Û(0, t′)(σ̂z1 ⊗ σ̂x2 )Û(t′, t)(σ̂z1 ⊗ σ̂x2 )Û(t, 0)|ψs0〉+ i〈ψs0|Û(0, t′)(σ̂z1 ⊗ σ̂x2 )Û(t′, t)(σ̂z1 ⊗ σ̂

y
2 )Û(t, 0)|ψs0〉

− i〈ψs0|Û(0, t′)(σ̂z1 ⊗ σ̂
y
2 )Û(t′, t)(σ̂z1 ⊗ σ̂x2 )Û(t, 0)|ψs0〉+ 〈ψs0|Û(0, t′)(σ̂z1 ⊗ σ̂

y
2 )Û(t′, t)(σ̂z1 ⊗ σ̂

y
2 )Û(t, 0)|ψs0〉

)
,

(37)

Gs,<1↓ (t, t′) =
i

4

(
〈ψs0|Û(0, t′)σ̂x1 Û(t′, t)σ̂x1 Û(t, 0)|ψs0〉+ i〈ψs0|Û(0, t′)σ̂x1 Û(t′, t)σ̂y1 Û(t, 0)|ψs0〉

− i〈ψs0|Û(0, t′)σ̂y1 Û(t′, t)σ̂x1 Û(t, 0)|ψs0〉+ 〈ψs0|Û(0, t′)σ̂y1 Û(t′, t)σ̂y1 Û(t, 0)|ψs0〉
)
, (38)

In Eqs. (35)-(38), all time-evolution operators Û(t, 0),
etc, correspond to a sequence of quantum gates obtained
in the previous section.

To measure each of the summands in Eqs. (35)-(38), we
introduce a probe qubit9 which we couple to the system
of interest. We assume that the probe qubit is prepared
in the pure state |0〉, yielding the total density operator
ρ̂tot = ρ̂sys ⊗ |0〉〈0|. The combined system is then run
through a Ramsey interferometer sequence described by
a quantum circuit in which we first apply a Hadamard
gate σ̂H (π/2 pulse) on the probe qubit, followed by uni-

tary evolution of the system of interest, followed by a
controlled application of Pauli gates, evolution up to the
final time, another controlled application of Pauli gates,
and ending with another Hadamard gate on the probe
qubit (see Fig. 2 of the main text). The output state of
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the qubit at the end of the Ramsey sequence is given by

ρ̂probe = Trsys

[
σ̂H T̂ σ̂H ρ̂totσ̂H T̂

†σ̂H

]
=

1 + Re[F (t, t′)]

2
|0〉〈0| − i Im[F (t, t′)]

2
|0〉〈1|

+ i
Im[F (t, t′)]

2
|1〉〈0|+ 1− Re[F (t, t′)]

2
|1〉〈1|,

(39)

where F (t, t′) = Trsys

[
T̂ †1 (t)T̂0(t, t′)ρ̂sys

]
corresponds to

one of the summands in Eqs. (35)-(38). Here, the uni-
tary operators T̂0(t, t′) = 〈0|T̂ |0〉 = Û(t, t′)σ̂Û(t′, 0) and
T̂1(t) = 〈1|T̂ |1〉 = σ̂′Û(t, 0), in which σ̂ and σ̂′ are Pauli
operators or tensor products of Pauli operators accord-
ing to Eqs. (35)-(38), act only on the system and not on
the probe qubit. For example, the network in Fig. 2 of
the main text corresponds to the case σ̂ = σ̂z1 ⊗ σ̂x2 and
σ̂′ = σ̂z1 ⊗ σ̂

y
2 . Note that

ρ̂probe =
1

2

(
Î + Re[F (t, t′)]σ̂z + Im[F (t, t′)]σ̂y

)
, (40)

where Î is the identity operator, so that we have

Trprobe [ρ̂probeσ̂z] = Re[F (t, t′)], (41)

and

Trprobe [ρ̂probeσ̂y] = Im[F (t, t′)], (42)

which are then experimentally measurable quantities.

To give a rough estimate on the number of measure-
ments required in an experiment, we consider the probe
to be in the superposition 1√

2
(|0〉+ |1〉) which is the state

with maximal uncertainty in the measurement outcome.
Thus, the measurement of the σz component yields either
-1 or +1 with probability 1

2 . This random variable then
follows a two-point distribution with parameters p = 0.5,
q = 1 − p = 0.5, and variance σ2 = 1. The mean of the
σz component in this state is zero. To obtain this mean
with a standard error of the mean ε = σ/

√
n requires

n = σ2/ε2 projective measurements for each contribution
to the Green function. For example for ε = 0.02 we would
need about 2×2×2×4×2×2 500 = 160 000 [2 systems (α
and β), 2 spins, lesser and greater Green function, 4 terms
per Green function, 2 expectation values to be measured,
and 2 500 measurements for each expectation value] mea-
surements per time step, and this number scales quadrat-
ically with the number of points in the time grid. How-
ever, if we consider a spin-symmetric system as above,
where we have the symmetries Gα(β),</>

1σ = G
β(α),</>
1σ̄ ,

we only need to measure half of the Green functions
above. Note that all measurements can be done in par-
allel.

VI. OUTLINE OF THE CLASSICAL
SIMULATIONS OF THE HYBRID DEVICE

We perform classical simulations of the single-qubit in-
terferometer described in the previous section. In the ac-
tual hybrid device, the single-qubit interferometry would
be done experimentally, and here we try to mimic the
experimental procedure.

We consider the first L time steps, where L is the
half the number of bath sites. We first obtain some
initial guess hybridization parameters V

(0)
pσ (t), where

t = 0,∆t, . . . , L∆. Using V (0)
pσ (t) we construct imperfect

quantum gates Ûrot(ϕ+ε) and Û l,mMS (θ + εMS1, φ+ εMS2),
where ε, εMS1, and εMS2 are normally distributed ran-
dom variables with zero mean and standard deviations
σ, σMS1, and σMS2, respectively. These quantum gates
yield the Trotterized unitary evolution operator Û(t, t′),
where t, t′ = 0,∆t, . . . , L∆. We use this evolution opera-
tor to compute the (t = m∆t, t′ = n∆t)-point (m,n ≤ L)
of F (t, t′) from Trprobe [ρ̂probeσ̂z] and Trprobe [ρ̂probeσ̂y] as
explained in the previous section, and we average the re-
sults over several realizations to gather error statistics.
After going through all the possible combinations of the
controlled σ̂x1 (σ̂z1 ⊗ σ̂x2 ) and σ̂

y
1 (σ̂z1 ⊗ σ̂

y
2 ) gates according

to Eqs. (35)-(38), we obtain G↓(↑)(t = m∆t, t′ = n∆t).
However, we interpret the computation of the point

(t = m∆t, t′ = n∆t) as a measurement which collapses
the state of the system, and we cannot store any infor-
mation of the state at this time instant in memory, since
we don’t want to re-use any of the obtained wave func-
tions later to avoid correlating the errors between dif-
ferent points in the Green function. We compute these
points from independent realizations instead. This way
we make our classical simulations to follow what one
would do in an experiment. This means that in order
to compute another point (t = (m + 1)∆t, t′ = n∆t) or
(t = m∆t, t′ = (n + 1)∆t), we have to propagate again
from the origin (t = 0, t′ = 0) to the desired point and
again average over several realizations. This procedure is
repeated until we have obtained all the points of Gσ(t, t′)
until (t = L∆t, t′ = L∆t). This concludes the ‘experi-
mental’, or quantum, part of the first L time steps in the
first iteration of the DMFT self-consistency loop.

The obtained Gσ(t, t′) is then used in the classi-
cal computer to produce the hybridization function
Λσ(t, t′) = v(t)Gσ(t, t′)v(t′). In the first L time
steps, we have enough parameters to do a Cholesky
decomposition of Λσ(t, t′) to obtain new hybridizations
V

(1)
pσ (t), which are used for updating Ûrot(ϕ + ε) and
Û l,mMS (θ + εMS1, φ+ εMS2). This begins the second iter-
ation of the DMFT self-consistency loop where use the
updated quantum gates to again ‘measure’ Gσ(t, t′) us-
ing the steps described above, always starting from the
origin to compute one point in the time grid and av-
eraging over several realizations. This non-linear pro-
cess of ‘measuring’ Gσ(t, t′) and using Cholesky decom-
position of Λσ(t, t′) to update Vpσ(t) is repeated until
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|V (n)
pσ (t)− V (n−1)

pσ (t)| < δ where δ is a predetermined er-
ror threshold.

For the time steps L + 1, . . . , N with tmax = N∆t,
we adopt the ‘time slicing’ scheme of Ref.4, where we
iterate one time step M > L to self-consistency before
moving to M + 1. In the classical part of the hybrid
device, we utilize a simple minimizer step4 to update
only Vpσ(M∆t) while keeping the previously obtained
Vpσ(K∆t) (K < M) fixed. However, again when we
want to reach the Mth time step in the time grid, we
have to start propagating from the origin.

Mimicking the experiment to this level makes our clas-
sical simulation very difficult. Thus, our simulations are
limited to small system sizes and relatively short time
scales.

VII. NON-INTERACTING SYSTEM AND
ERROR CORRECTION

The non-interacting impurity system comprises of
SIAM Hamiltonian (5) with U = 0. We take each bath
site as being independently coupled to a thermal reser-
voir to which it can incoherently exchange electrons with.
This is described within the quantum master equation
approach where the density operator ρ̂(t) of the full sys-
tem obeys

d

dt
ρ̂(t) =− i[ĤSIAM, ρ̂(t)]

+
∑
p>0,σ

Γ−p [2ĉpσρ̂(t)ĉ†pσ − ρ̂(t)ĉ†pσ ĉpσ − ĉ†pσ ĉpσρ̂(t)]

+
∑
p>0,σ

Γ+
p [2ĉ†pσρ̂(t)ĉpσ − ρ̂(t)ĉpσ ĉ

†
pσ − ĉpσ ĉ†pσρ̂(t)],

where Γ±p are the rates of electron ejection (−) and in-
jection (+) to bath site p. In the case of no impu-

rity coupling Vpσ(t) = 0 the noise on each bath site
will drive their occupancies to a steady-state value of
np(∞) = Γ+

p /(Γ
−
p + Γ+

p ).
Since this model is non-interacting and has Lindblad

noise terms which are linear in the electron creation and
annihilation operators the master equation can be solved
exactly using the so-called super-fermion formalism10.
Here we use this approach to compute the impurity
single-particle Green functions

G>σ (t, t′) = iTr[ρ̂0ĉ
†
1σ(t′)ĉ1σ(t)],

G<σ (t, t′) = −iTr[ρ̂0ĉ1σ(t)ĉ†1σ(t′)],

for this system given an initial density operator ρ̂0. We
focused on a quench of the Hubbard hopping parameter
v(t) given by Eq. (18). The initial density operator ρ̂0 was
again chosen to model a T = 0 half-filled paramagnetic
phase4, where µ = 0, with the impurity being in a singly
occupied spin-mixed state 1

2 (|↑〉 〈↑|+ |↓〉 〈↓|), along with
half the bath sites were doubly occupied |↑↓〉, and the
other half empty |0〉. The dissipation in the bath was
taken to have Γ±p = Γ so that the steady-state density of
the system remains a constant unit-filling. We take the
bath energies to εpσ(t) = 0 throughout.

Using the calculated G
>
<
σ (t, t′) the non-equilibrium

DMFT self-consistency loop was solved using (i) the
standard Cholesky time-slicing proposed for a noiseless
system4, explained after Eq. (17), and (ii) using a fit-
ting procedure which attempts to correct for the effects
of the bath noise. We solve numerically for the bath
Green functions gpσ(t, t′) using the super-fermion ap-
proach10. To implement a noise-reduction scheme, we

minimize
∥∥∥∑p Vpσ(t)gpσ(t, t′)Vpσ(t′)− Λσ(t, t′)

∥∥∥2

F
(‖ · ‖F

is the Frobenius norm) over the Vpσ(t) to obtain the hy-
bridizations corresponding to a noisy system. It is of-
ten useful to include a multiplying function of the form
f(t, t′) = exp(−µ|t − t′|) in the cost function to aid the
convergence of the minimiser.
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