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Significance statement

It is widely appreciated that turbulence is one of the main challenges of modern theoretical
physics. While up to now, most work in this area has been dedicated to the study of Navier-
Stokes flows, there exist numerous examples of systems which exhibit similar types of spatio-
temporal chaos but are described by more complex nonlinear equations. One such problem
of quickly growing scientific interest is turbulence in active fluids. We find that such systems
can exhibit power law energy spectra with non-universal exponents as a result of nonlinear
self-organization, defining a new class of turbulent flows.

Abstract

Turbulence is a fundamental and ubiquitous phenomenon in nature, occurring from as-
trophysical to biophysical scales. At the same time, it is widely recognized as one of the key
unsolved problems in modern physics, representing a paradigmatic example of nonlinear
dynamics far from thermodynamic equilibrium. While in the past, most theoretical work
in this area has been devoted to Navier-Stokes flows, there is now a growing awareness
of the need to extend the research focus to systems with more general patterns of energy
injection and dissipation. This includes various types of complex fluids, plasmas, as well
as active systems consisting of self-propelled particles, like dense bacterial suspensions.
Recently, a continuum model has been proposed for such “living fluids” which is based
on the Navier-Stokes equations, but extends them to include some of the most general
terms admitted by the symmetry of the problem (see [Wensink et al., PNAS 109:14308
(2012)]). This introduces a new cubic nonlinearity, related to the Toner-Tu theory of
flocking, which can interact with the quadratic Navier-Stokes nonlinearity. We show that
as a result of the subtle interaction between these two terms, the energy spectra at large
spatial scales exhibit power laws which are not universal, but depend on both finite-size
effects and physical parameters. Our combined numerical and analytical analysis reveals
the origin of this effect and even provides a way to understand it quantitatively. Turbu-
lence in active fluids, characterized by this kind of nonlinear self-organization, defines a
new class of turbulent flows.



1 Introduction

Despite several decades of intensive research, turbulence — the irregular motion of a fluid, gas,
or plasma — still defies a thorough understanding. It is a paradigmatic example of nonlinear
dynamics and self-organization far from thermodynamic equilibrium, also closely linked to fun-
damental questions about irreversibility [1] and mixing.[2] The classical example of a turbulent
system is a Navier-Stokes flow, with a single quadratic nonlinearity, well-separated drive and
dissipation ranges, and an extended intermediate range of purely conservative scale-to-scale
energy transfer.[3] However, many turbulent systems of scientific interest involve more gen-
eral patterns of energy injection, transfer, and dissipation, and their systematic investigation
has only just begun. A fascinating example of this kind of generalized turbulent dynam-
ics can be observed in dense bacterial suspensions.[4] Although the motion of the individual
swimmers in the background fluid takes place at Reynolds numbers well below unity, the
coarse-grained dynamics of these self-propelled particles displays spatio-temporal chaos, i.e.,
turbulence.[5, 6, 7] Here, the correlation functions of the velocity and vorticity fields display
some essential differences compared to their counterparts in classical fluid turbulence.[8, 9]
Moreover, the collective motion of bacteria in such suspensions exhibits long-range correlations
[10], appears to be driven by internal instabilities [11] and depends strongly also on physical
parameters like the large-scale friction.[12] Such results challenge the orthodox understanding
of turbulent motion and call for a detailed theoretical investigation. This point is reinforced
by the fact that there exist many other systems with similar characteristics, including flows
generated by space-filling fractal square grids [13], turbulent astrophysical [14] and laboratory
[15] plasmas, as well as chemical reaction-diffusion processes.[16]

In the present work, we study — numerically as well as analytically — the spectral properties
of a continuum model which has recently been suggested as a minimal phenomenological
model to describe the collective dynamics of dense bacterial suspensions [4, 17, 18]. A basic
assumption of the model is that at high concentrations the dynamics of bacterial flow may be
described as an incompressible fluid obeying the following equation of motion for the velocity
field v(x,t):

g—: + (V- V)V + Vp = —ToAv — THA%v — p(v)v, (1)
where 1(v) = a+ B|v|?. In addition to the advective nonlinearity, (v-V)v, and pressure term,
Vp, familiar from the Navier-Stokes model, the equation also accounts for internal drive and
dissipation processes. Interestingly, apart from the last term on the right hand side and the
pressure term, Eq. (1) amounts to a straightforward multi-dimensional generalization of the
Kuramoto-Sivashinsky (KS) equation. The one-dimensional version of the latter was first
put forward for studying turbulence in magnetized plasmas [19, 20] and subsequently proved
useful for the description of chemical reaction-diffusion processes [21, 22] and flame front
propagation.[23] It is widely regarded as a prototypical example of “phase turbulence.”[24] As
a hallmark, if both kinetic parameters are positive (I'g, I'y > 0), the KS equation is linearly
unstable for a band of wave vectors k, similar to other paradigmatic models of nonlinear
dynamics like, e.g., the Swift-Hohenberg model.[25] For active systems this feature is supposed
to emulate energy input into the bacterial system through stress-induced instabilities [11].
This represents a fundamentally different situation compared to Navier-Stokes turbulence
with external forcing where the characteristics of the latter can be changed at will and have
been shown to influence the statistics of the velocity field.[26, 27] In order for the system



to be stable there must be nonlinear and dissipative terms which limit the growth of these
linearly unstable modes. While in the KS equation dissipation is only due to the fourth-order
derivative of the velocity field, Eq. (1) contains an additional dissipation mechanism mediated
through the cubic nonlinearity on the right hand side, —p(v)v. The latter term was originally
introduced by Toner and Tu to account for a propensity of self-propelled rod-like objects
to exhibit local polar order (“flocking”).[28, 29] Taken together, the hydrodynamic model
comprises some of the key features common to systems exhibiting meso-scale turbulence: The
dynamics of the system results from the interplay between energy input due to a band of
linearly unstable modes with the advective Navier-Stokes nonlinearity as well as with terms
modeling flocking behavior and dissipation. These generic features are shared with more
elaborate hydrodynamic models of active matter recently reviewed in Ref. [30]. Therefore,
Eq. (1) serves as a simple but generic test case to address some of the fundamental questions
in the field of active turbulence. By choosing the parameters in the equation differently one
can reproduce several distinctive physical systems as explained in more detail in the table in
Section S.1 in the Supplementary Material. First and foremost, the similarities and differences
between low and high Reynolds number turbulence remain to be elucidated. In particular,
there is still a lack of understanding of the energy flow between different length scales.

Here, we address the above questions by a systematic analysis of the turbulent features of
Eq. (1) combining numerical and analytical approaches. Based on a spectral representation
adopted from the theory of classical turbulence [31] we give a comprehensive picture of the
spectral energy balance and thereby facilitate the understanding of the interactions among
different spatial scales. Furthermore, with the aid of extensive numerical simulations we
confirm the existence of a spectral power law at the largest scales of the system. The steepness
of this power law is not universal but depends on the parameters of the system (both of the
linear and nonlinear terms in Eq. (1)). The form of the energy spectrum of a turbulent
system represents one of its central features. Recent theoretical results [32] relate it to the
frictional drag between the system and the surrounding walls. This relations have also been
experimentally confirmed for two-dimensional turbulence.[33] In the present work, insight
into the remarkable feature of a variable spectral exponent is gained by analyzing the role
of the different terms in the equation for the spectral energy balance. As expected for a
two-dimensional incompressible fluid, there exists an inverse flow of energy from intermediate
to large scales.[34] Nevertheless, in contrast to the picture of classical, fully-developed two-
dimensional Navier-Stokes turbulence, there is no inertial range characterized by a constant
energy flux. Instead, we find that at large scales, the Navier-Stokes energy flux is proportional
to the product of the corresponding wave number and energy, with the proportionality factor,
having the units of frequency, being constant for the whole range characterized by spectral
self-similarity. This differs fundamentally from the classical Navier-Stokes case, where the
proportionality factor is the inverse of the nonlinear eddy turn-over time which is, in turn, a
function of wave number and energy. In the model at hand, this energy flux is balanced by a
linear dissipation/injection and a cubic dissipation term. For the latter, we derive an analytic
approximation which compares very favorably with the numerical results and allows for an
analytic closure predicting the type of dependence of the power law on the model parameters
that is also confirmed numerically.



2 Results

We have studied the two-dimensional version of the continuum model defined by Eq. (1) both
analytically and numerically. In our computational approach we have implemented a pseudo-
spectral code which computes the linear terms in Fourier space and the nonlinearities in real
space. The details of this procedure are described in Section S.1 of the Supplemental Material.
All numerical results reported in this paper employ a resolution of 1024 effective Fourier modes
in each direction, unless stated otherwise. For the following analysis it is convenient to make
a choice for the typical velocity, length and time scales, denoted as vg, £ and 7, respectively.
Those are quantities necessary for normalizing Eq. (1). We define the typical velocity as
vo := \/T3/T2. From the spectral representation (k) := —a + Iok? — I'2k* of the linear part
of Eq. (1) one reads off the wave number of the fastest growing mode, kmax = /I'o/(2I'2),
which suggests to define the characteristic length and time scale as £ = 57/ kyax and 7 = £/vy,
respectively. Accordingly, the normalized form of the parameters I'g and I's reduce to fixed
numbers, i.e., To7/¢? = 1/(5v/27) and I's/(fv3) ~ 9 - 107°. The normalization of Eq. (1)
is explained in greater detail in Section S.1 of the Supplemental Material. The parameters
B and Ay can still be chosen freely. The numerical results reported here are obtained with
Btvg = 0.5 and Ay = 3.5. The normalization units used here are the same as the ones in
Ref. [4], meaning that our parameters (with & = —1 and up to the different sign of T'y)
correspond to the bacterial suspension described there.

A snapshot of the real-space vorticity field obtained from a numerical solution of Eq. (1) in
the turbulent regime is shown in Fig. 1. It makes evident the random distribution of vortices
across the simulation domain. Moreover, the time evolution of the vortex configuration turns
out to be strongly incoherent. Due to this highly nonlinear behavior, associated with spatio-
temporal chaos, exhibited by the system, we refer to its dynamics as turbulent.

2.1 Spectral analysis

A detailed analysis of the turbulent dynamics described by Eq. (1) is facilitated by a Fourier
analysis of the velocity field (see Section S.1 in the Supplemental Material). Specifically, we
are interested in the flow of energy between different spatial scales mediated by the various
terms in Eq. (1). For brevity we shall refer to Ey := (|vi(t)[?)/2 as the energy of Fourier
mode k, where the brackets (-) denote an ensemble average, equivalent to a time average for
a statistically stationary state as discussed in Section S.1 in the Supplemental Material. The
ensuing spectral energy balance equation reads

0B = 2y(k) Bx + T + T, (2)

with the advective and cubic nonlinear terms given by

Tﬁdv =4+ Re

> Mi(k) (’Ui_kvf{_pv@] : (3a)

P
Tﬁub = —fFRe ZDw(k) (vi_kvf(_p_qvilv{,)] s (3b)

p.q
where we have employed sum convention for cartesian indices, D;;(k) := &; — k;k;/k* are
the components of the projection tensor, M, (k) := —(i/2) (k; Dpni(k) + kiDyj(k)), and we
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Figure 1: Snapshot of the two-dimensional vorticity field ( = d,v, — Oyv, right after the
onset of the turbulent regime as obtained from a numerical solution of Eq.(1) using a pseudo-
spectral code. The computation has been performed with 1024 (effective) points in each
direction under the constraint of periodic boundary conditions. The Ekman parameter equals
at = —1, implying that there are two energy sources acting at large scales - the two positive
terms in the expression for v(k). The strength of the cubic nonlinearity is set to Srvg = 0.5
and for the advective term we have used \g = 3.5. One can clearly see the highly disordered
distribution of vortices justifying the classification of the regime as turbulent.

have omitted all time arguments for simplicity. The Ekman term (proportional to «) either
injects (a < 0) or dissipates (a > 0) energy into/from the system with the corresponding
rate being proportional to Fj. Similarly, the remaining linear terms are also responsible
for either local energy injection (I'g-term) or dissipation (I's-term). The feature making the
dynamics highly nontrivial are the nonlinear terms resulting from the advection term and
the cubic nonlinearity in Eq. (1). They couple different wave numbers and provide a flow of
energy in spectral space that (on average) balances the local injection or dissipation. The
different terms in Eq. (2), as obtained from a numerical solution of Eq. (1) using a pseudo-
spectral code, are shown in Fig. 2. Here, we have averaged over nearly 10000 time steps and
(employing spherical symmetry) summed over modes with the same absolute value (hence the
scalar form of the index k). A distinctive feature of the advective nonlinearity (green curve)
is that it is positive for small £ but negative for intermediate k, and thus transports energy
from large to small length scales. This inverse energy flow is well known for two-dimensional
turbulent settings and can be attributed to the constraint of enstrophy conservation.[35] In the
present context, it takes energy from the intermediate wave numbers where the I'g-injection
(magenta) is particularly active and transports it to larger scales where it acts as an energy
source together with the Ekman term (red) for & < 0. At large length scales, those two sources
are balanced by the cubic nonlinearity (dark blue) which acts as an energy sink for most wave
numbers. This energy sink, however, has a nonlinear character which allows it to dynamically
adjust its magnitude to the sources for a balance to be reached. Another important feature
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Figure 2: Spectral form of the different terms in Eq. (2) in the statistically stationary state
(time averaged): red - Ekman term; green - advective nonlinearity Tkad"; dark blue - cubic
interaction 7; g“b; magenta - k2-injection; light blue - k*-dissipation; black - time average of the
left-hand side. A positive contribution means that at these wave numbers the corresponding
term acts as an energy source, and a negative value indicates an energy sink. One sees that the
nonlinear terms change their character depending on the scale under consideration. At large
and intermediate scales, however, the cubic nonlinearity is always dissipative. Additionally,
the Ekman term can provide energy injection or dissipation depending on the sign of «. For
the simulation presented here the latter was set to ar = —1, i.e., it represents an additional
energy source.

of the cubic interaction is that (at large scales) its contribution to the energy flow is roughly
proportional to the energy spectrum Ej. Later in this work we will show that those two
features of the cubic nonlinearity can be derived from a closure approximation for small k.

2.2 Spectral shell decomposition

To further assess the energy transfer among different length scales, we divide the spectral
space into circular shells Sy, J = 1,2,3,... centered at k = 0 such that the set S; = {k|k €
[kj_1,ky)} fully covers the spectral space. The choice of the boundaries of the shells is
specified in Section S.2 in the Supplemental Material. Moreover, we introduce the projection
operator Pj defined as

(Prf)(x) == (f(x))s =Y fc™" (4)

keSy

Such a decomposition of the spectral space provides a useful mean for analyzing the nonlinear
terms. The latter represent, in general, interactions between different spatial scales and
computing the contributions arising from different shells will help us gain physical insight
into those interactions, e.g., we can determine the degree of locality of the energy transfer due
to the Navier-Stokes nonlinearity. Additionally, examining the symmetry of the shell-to-shell



coupling corresponding to the quadratic and cubic nonlinearity will reveal their completely
different physical character.

Applying Py on Eq. (1) leads to an evolution equation for the energy E; := [ |(v);|>dQ/(2V)
of shell S; which reads

% — 3 ‘Vk’2+z< Tadv | cub)7 (5)

keS;

with the advective and cubic nonlinear terms
T = —Aoz< k) F{v - V)(v)r}(k), (6a)
Ty = —52 Vi) - F{IvI*(v)1}(k), (6b)

where F denotes the Fourier transform as defined in Section S.1 in the Supplemental Material.
Egs. (6a) and (6b) represent an equivalent formulation of Egs. [S15a] and [S15b] in terms
of Fourier modes. Details of the derivation of the above spectral shell decomposition are
presented in Section S.2 of the Supplemental Material.

The terms TadV and TC‘“O characterize the transfer of energy between shells S7 and S;. Due
to the 1ncompr6551b1hty constraint, Tj*f]i" is antisymmetric with respect to the shell indices I
and J (see Section S.2 in the Supplemental Material), which implies that summing over
both indices gives zero. This shows that (in an incompressible system) the Navier-Stokes
nonlinearity neither injects nor dissipates energy but only redistributes it among the different
shells S. f{}i", as obtained in numerical computations, is shown in Fig. 3 (a). In addition
to verifying the antisymmetry, this also illustrates the direction of energy transfer in spectral
space. There is a combination of forward and inverse energy flows. At intermediate wave
numbers, there is mainly a forward energy cascade which is local in spectral space; see the areas
next to the diagonal in Fig. 3 (a), where, red above the diagonal and blue below it indicate a
flow from lower to larger wave numbers. Additionally, there is also a nonlocal inverse energy
flow dominating at small wave numbers, represented by the smaller side branches in Fig. 3 (a).
An additional way to view the energy transfer induced by the advective term is illustrated by
the green curve in Fig. 2. In represents the cumulative effect of the two-dimensional structures
seen in Fig. 3 (a). The Navier-Stokes nonlinearity extracts energy from the intermediate
wave numbers (negative contribution) and supplies it to both smaller (inverse cascade) and
larger (forward cascade) wave numbers. The contribution of the cubic nonlinearity, on the
other hand, is symmetric (T f}}b =T j‘}b) and, therefore, cannot be viewed as a term which
simply transfers energy from one shell to another in a conservative manner (see Section S.2
in the Supplemental Material). Since every second-rank tensor can be uniquely decomposed
into a symmetric and an antisymmetric part, TC‘“O represents physical processes which are
fundamentally distinct from a Navier—Stokes—hke energy transfer. It does not redistribute
energy between different shells. Instead, it couples different shells, say S; and Sy, in such
a way that the same amount of energy is either produced in both shells or extracted from
them. The numerical results displayed in Fig. 3 (b) clearly show that the entries of T’ C}}b are
dominated by the diagonal terms while the off-diagonal terms are negligibly small. Note that
the curve in the inset resembles closely the blue line in Fig. 2. Moreover, the diagonal entries
are negative indicating the dissipative nature of the cubic nonlinearity. This feature together
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Figure 3: Numerical computation of the shell-to-shell couplings Tf}v and Tf}}b as given in
Egs. (6); all shells have the same width of three times the minimal wave number Ak and
a time average over the statistically stationary state has been performed. (a) The coupling
term 7% due to the advective Navier-Stokes nonlinearity in units of v3/¢. It exhibits both
forward and backward energy flow in spectral space. At intermediate and large wave numbers
there is a local forward flux; see the lobes close to the diagonal. In contrast, for small k, there
is an inverse flux nonlocal in spectral space; see the side branches. (b) The coupling term
Tf}b due to the cubic nonlinearity in units of vg’ /¢; note the logarithmic scale. In contrast
to the Navier-Stokes term, Tf}}b is symmetric in the shell indices. In addition, it is almost
diagonal indicating that coupling between different shells is negligible. This shows that at
large scales the cubic interaction can be well approximated as a local dissipation term. Inset
displays only the diagonal entries on a linear scale.

with the different physical interpretation of the cubic term represent the central results that
the shell-to-shell decomposition yields. Both aspects are essential for the cubic interaction
and should be captured by a successful closure approximation.

2.3 Cubic damping term

To make progress beyond a numerical analysis, we next seek an approximate solution for
the time evolution of the energy spectrum and the ensuing stationary state. The analysis is
complicated by the fact that the right hand side of Eq. (2) involves third and fourth order
velocity correlation functions, Tf:d" and Tﬁub. Formulating evolution equations for those gives
rise to even higher-order velocity correlations on the right-hand side. One way to deal with this
‘hierarchy’ problem is to make approximations at some level (via a ‘closure relation’), leading
to a closed set of equations. Guided by the observation that the statistics of the velocity field
at large spatial separations in classical two-dimensional Navier-Stokes turbulence is very close
to Gaussian (which we also confirmed numerically for Eq. (1) as explained in Section S.3 in the
Supplementary Material), a natural way to approach the cubic damping term in Eq. (2) is via



the quasi-normal approximation [31], also known as Millionshchikov hypothesis.[36] According
to this idea, third-order correlations, e.g., <Ui_kvf<_pvf,>, are non-zero, in contrast to a purely
normal distribution, but the even-order correlations are approximately sums of products of all
possible combinations of second-order correlations (as in Wick’s theorem). Introducing the
scalar correlation function Qj(t) defined via the relation D;;(k)Qy(t) := (v’ (t)vy.(t)) and
employing homogeneity and isotropy of space, one arrives (for a two-dimensional setting) at

2
TP ~ —BQy, Z <2(1;2;’2) + 1) Qp ~ —80 Eior By, (7)
P

where E,,; denotes the total energy of the system; for details of the derivation see Section S.3
in the Supplemental Material. Hence, the cubic damping term in Eq. (2) can be approximated
by an expression that is directly proportional to the energy spectrum Ej. This resonates with
the information provided by Fig. 3 (b), namely that the diagonal terms are the dominant ones
in Tf}b. In other words, the cubic damping term is of the same form as the linear Ekman
damping, however with the important difference that the corresponding damping rate is not
constant but proportional to the total energy FEj,; of the system. This captures the nonlinear
character of the cubic damping term: It provides a dynamical response of the system at large
spatial scales, where an increase of the total energy of the system will lead to a stronger
dissipation which, in turn, will decrease E}. This nonlinear feature helps to maintain the
spectral energy balance and achieve a statistically stationary state. The latter cannot always
be attained if 5 = 0. Our investigations revealed that in this case there is a critical value for
« (necessarily positive) below which the dissipation due to friction is insufficient and cannot
balance the energy that accumulates at the large scales as a result of the inverse energy flow
in two-dimensional Navier-Stokes systems.

2.4 Advective nonlinearity

In contrast to the cubic damping term, the advective nonlinearity in Eq. (2) produces an
expression that involves third-order correlations. Thus, one cannot directly apply the quasi-
normal approximation to it. One way to tackle this problem would be to use the exact
equation of motion and obtain from it an evolution equation for the third-order correlation
in analogy to the procedure leading to Eq. (2). On the right-hand side of such an equation,
the advective nonlinearity will result in a fourth-order correlation for which the quasi-normal
approximation is applicable. However, the exact equation of motion contains also a cubic
term. In the evolution equation for the third-order correlation this term will give rise to a
fifth-order correlation which cannot be directly treated with the quasi-normal approximation.
This hierarchical scheme can, nevertheless, lead to a closed system of equations after applying
the Millionshchikov hypothesis, but due to the cubic nonlinearity in Eq. (1) the resulting
system of equations is highly complicated and tractable only numerically.
Since our goal here is to arrive at an analytical approximation for the energy spectrum at
small wave numbers, we choose a more heuristic approach. As already discussed, the advective
nonlinearity only redistributes energy among the different modes. This implies an energy flux
in spectral space, defined as sz" = — fok Tl?d"dp, which is taken to be proportional to the
energy Ej at any given scale. The energy corresponding to an eddy of size ~ 1/k scales as
k E}., which suggest the relation

szv X Wi k Ek, (8)



where wy, is a characteristic frequency which may vary with k. Since wy, is still undetermined,
the above relation merely shifts the challenge to finding the function wy. However, it suggests
a physical interpretation for it. In two- and three-dimensional Navier-Stokes turbulence this
frequency is determined by w,% ~ fok p2Epdp. [37] The physical picture behind this relation
is that 1/wy can be viewed as the characteristic distortion time at length scale 1/k. For
the energy cascade in classical turbulence wy, scales as k2/3. Thus, with respect to a given
scale 1/k, larger eddies have longer eddy-turn-over times while smaller eddies have shorter
ones. This implies that over a time period of the order of the eddy-turn-over time at scale
1/k the effects of the larger wave numbers average out due to their faster dynamics. On the
other hand, the comparatively slower dynamics of the larger length scales (compared to 1/k)
indicate that they will provide a coherent contribution to the average shear rate acting at the
scale 1/k. Given the decrease of E} with k in the cascade range of Navier-Stokes turbulence,
the main contribution to the integral comes from the part of the integrand around p ~ k.
Thus, most of the shear stems from wave numbers of a magnitude similar to k& which relates
to the locality of the classical energy cascade. Eq. (8) together with the integral expression
for wy given above simplify the equations and provide a closure which, in the limit of an
energy /enstrophy cascade, i.e., constant energy/enstrophy flux, yields the Kraichnan solution
for the energy spectrum in the energy/enstrophy inertial range [37]. As is evident in Fig. 2,
however, at large scales there is no range of wave numbers for which the advective nonlinearity
is zero, i.e., there is no inertial range. Furthermore, as shown in Fig. 4, the spectral form
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Figure 4: Numerical computation of the frequency wy as a function of k£ as defined by
Eq. (8). Owing to the positive definiteness of the denominator kE}, the sign of the function
agrees with the sign of the energy flux arising from the advective nonlinearity. Thus, there is
evidently an inverse energy flow (negative flux) at large length scales and a forward energy
flow (positive flux) at small length scales. Additionally, wy is approximately constant at small
wave numbers. The numerical simulation was performed with a7 = 1.

of the ratio H%d" /(kE}) is constant at large scales, i.e., wy = w. = const, implying that the

physics in our case is qualitatively different from what we have in classical Navier-Stokes
turbulence, both two- and three-dimensional. The result that the characteristic frequency is
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not a function of the local wave number but instead a constant over a wide range in spectral
space implies a kind of synchronization of the large-scale structures. Such a synchronization
deviates considerably from the classical wy, oc k%3 scaling and requires nonlocal interactions
involved in the inverse energy cascade at small k as seen in Fig. 3 (a). In addition, in classical
turbulence models large spatial scales are more energetic than smaller ones giving the former
the potential to shear and distort the latter. For Eq. (1), however, the energy spectrum Ej
first increases with k£ up to some maximum and then decreases again; see the red curve in
Fig. 2. Hence, for the spectral region we are interested in, the larger scales are not able shear
the smaller ones. In summary, our investigation of the advective nonlinearity in this model
shows that at small wave numbers there is a distinct constant frequency w, which controls
the energy transfer at large scales. Incorporating this insight into our analysis will provide us
with an approximate solution for the energy spectrum at those scales.

2.5 Variable spectral exponent

In the statistically stationary state, time-averaging Eq. (2) will give zero on the left-hand side,
which yields

Iy

dk

where we have already incorporated the result of the quasi-normal approximation for the
cubic damping term. Discarding the term proportional to I's which is negligible at small wave
numbers and using Eq. (8) with constant wj, one arrives at a differential equation for the
energy spectrum Ej the solution of which reads

9 (a 4B B + Tok? — F2k4) By — —0, 9)

E). = Eok® exp (—ik?) , (10)
Aowe
where Ej is a constant of integration and the exponent is given by 8 = (20483 E;; )/ (Aowe)—1.
Eq. (10) shows that at small wave numbers (K — 0) the energy spectrum behaves as a
power law. However, the exponent 0 of this power law is not universal but depends (directly
and indirectly) on various system parameters. Qualitatively, a stronger dissipation, i.e., a
positive o and a higher factor of SE;,, will induce a steeper power law. An example is
shown in Fig. 5 where the numerical solution of Eq. (1) is presented for two different values
of a. In both cases, the system exhibits clear power law spectra over more than one order
of magnitude in wave number space, and it is evident that our model predicts the correct
qualitative dependence of the spectral exponents. A quantitative test of our semi-analytical
result can be undertaken by carrying out numerical simulations for different values of . We
note in passing that such a parameter scan requires that there are always enough instabilities
to drive the turbulence, and that statistical homogeneity and isotropy are ensured. The linear
growth rate of the most unstable mode equals —a + Fg /(4T'2), which gives an upper bound
on the variation of o once I'yg and I's have been set. On the other hand, the term —av in
Eq. (1) tries to destroy the statistical isotropy of the system. Thus, the energy injected by
the a-term must be considerably smaller than that injected by the I'o-term, which imposes a
lower bound on «. The result from such a parameter scan of the numerical solution of Eq. (1)
is displayed in Fig. 6 where every point is obtained by fitting a power law on the left end of
the energy spectrum. The data from our investigation show a linear dependence of the slope
6 on the parameter o which agrees with the expression for § provided by our model. Further

11



10

10—10_

By /v

10%%

5 1 "
10 10 10
k¢

Figure 5: Time-averaged energy spectrum Fj for two different values of a7 at the two ends of
the parameter domain supporting the turbulent regime, o = —1 and a7 = 4. There is a clear
power law at large scales and the effect of varying the strength of the Ekman term manifests
as a variation of its slope. In general, more intensive energy injection (via the parameter «)
leads to a less steeper slope of the power law, more energy at each scale and a peak of the
energy spectrum that occurs at smaller wave numbers.

numerical simulations indicate that the dependence of the slope on the strength of the cubic
interaction S is qualitatively the same but quantitatively much weaker. This can be due to
the factor S Fy, appearing in . Stability analysis shows that for \g =I'o =I's =0and a < 0
an ordered state arises with a constant velocity field and total system energy Fy < 1/8. If a
similar scaling applies also in the presence of the advective nonlinearity and the other linear
terms, then the product SFEy,: should exhibit only weak dependence on /.

3 Conclusion

In the present work, we have investigated the properties of a continuum model describing
the turbulent motion of active fluids, e.g., dense bacterial suspensions, driven by internal in-
stabilities. While turbulence in conventional fluids is generally associated with a substantial
scale separation between the drive and dissipation range and by the presence of a conserva-
tive energy /enstrophy cascade throughout an inertial range, active systems display turbulent
behavior and power-law spectra even when those conditions are not met. In addition to the
convective nonlinearity of Navier-Stokes type, the model contains a novel cubic interaction,
which is not energy-conserving. Analytical and numerical considerations revealed that at
large scales, it behaves like an Ekman damping with a frequency that is set by the system
self-consistently. Furthermore, our analysis suggests that the conventional view on turbulence
might not be applicable to active fluids since there the scales of turbulent motion are not gov-
erned entirely by the nonlinear terms. Instead, the energy spectrum arises from the balance
of several terms, some of which are linear. As a consequence and in contrast to conventional
Navier-Stokes turbulence, the steepness of the energy spectrum is not universal but depends
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Figure 6: Variation of the slope of the energy spectrum at small wave numbers with respect

to a. The steepness of the power law at large scales varies continuously with the driving

parameter in a nearly linear fashion as long as there is a statistically isotropic turbulent

regime. The parameter range where this applies derives from the condition that there are

enough linear instabilities to sustain the turbulence, i.e., o should not be too large, and the

energy injection from the Ekman term should not dominate over the I'p-term, i.e., o should
not be too negative.

on system parameters. These properties should be observable in laboratory experiments and
also apply to other active fluids. Overall, one can argue that the high-dimensional nonlin-
ear dynamics in such systems defines a new class of turbulence, involving a high degree of
self-organization, which is distinct from the Navier-Stokes case.
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S.1 Normalization and numerical methods

Normalization. For the sake of completeness, we discuss here briefly the normalization
of the quantities used, and describe the numerical implementation of the continuum model.
Written in dimensional units, Eq. (1) reads

ov 1 9 9

g + Xo(v-V)v = —;Vp— (o + Blv|?)v — ToAv — 'y A%v, (S1)
where p denotes density of the fluid and shall be considered constant. In contrast to Ref. [1],
we have omitted the term \;V|v|? since, for constant A, it is obsolete. Being a gradient
of a scalar function, it is of the same type as the pressure term and can be absorbed in it.
Additionally, our definition for I'g is such that positive values correspond to linear instabilities.
Due to the nature of the problem, we only need to specify a velocity and a length scale, v
and ¢ respectively, with the resulting time scale being 7 = ¢/vg. The parameters I'y and
I’y controlling the linear instability and dissipation give rise to a velocity scale defined as
vy = \/Fg /Ty, For the determination of the length scale, we consider the linear growth rate
7 of the spectral modes given by (k) = —a + I'gk? — I'sk*. It has a maximum located at
kmax = /L'0/(2I2) after which it decreases and eventually becomes negative, meaning that
the short wavelength modes are linearly stable. Thus, the linear instability is most prominent
at the spatial scale of 7/kmax. Proper resolution of the physical processes involved demands
that the size of the system is much larger than 7 /ky.x. Hence, we define our normalization
length scale as ¢ = 57 /kpax = 5m4/2'9/To. The physical quantities and operators map to
their dimensionless forms as

v—)vvo;t—>t7;p—>pv8p;a—>a/7; (S2)
1
B — eﬁ : Ty — Dolvg ; Ty — TolPvg and V — ZV‘ (S3)
Vo

Using the velocities and length scales defined above sets the normalized values of the param-
eters I'g and I'y as T'g = 1/(5v/27) ~ 0.045 and I'y = Fg ~ 9-107°. The normalization units



chosen above are the same as those used in Ref. [1] which facilitates comparison. All the
numerical results presented here were obtained with A\g = 3.5 and a normalized value for £
of 8 =0.5. Given that = —1 and the different sign convention for I'y, the parameters used
in this paper correspond to the experimental values characterizing the bacterial suspension
described in Ref. [1].

Eq. (1) possesses five different parameters which makes a thorough investigation of its com-
plete parameter space a very tedious task. In order to bring some structure into this highly
dimensional parameter space, we present some limit cases in the table below. It is important
to note that for 5 < 0 the dynamics represented by Eq. (1) does not reach a stationary state
and the kinetic energy of the velocity field grows without a limit. Thus, this case is of no
physical relevance.

Ao « 15} Ty Iy limit case
1. |1 0 0| Tg<O 0 Classical Navier-Stokes equation

Navier-Stokes equation with hyperviscos-

2.1 1 0 0 0 I'2>0 ity of the second order

Navier-Stokes equation with large-scale

3.1 1 |a>010)To<0 0 friction, i.e., Ekman damping

Straightforward multi-dimensional gener-
4.1 1 0 0| Tp>0]T2>0]| alization of the Kuramoto-Sivashinsky
equation for incompressible velocity fields

Table 1: Classification of the different limit cases for Eq. (1) depending on the choice of
parameters.

Numerical methods. Numerical solutions of Eq. (1) have been obtained via the pseudo-
spectral approach [2], which is common in Computational Fluid Dynamics. According to it
spatial derivatives are computed in Fourier space where they reduce to simple multiplication.
The nonlinear terms, on the other hand, are computed in real space since they correspond
to a convolution in Fourier space which is a computationally expensive procedure. Thus, the
pseudo-spectral approach relies heavily on the fast Fourier transform algorithms as the one
developed by Cooley and Tukey.[3] (Cooley and Tukey actually independently rediscovered
an algorithm that has been known before with the earliest records dating back to a work
of Gauss.[4]) The time evolution is computed numerically by the exponential time differenc-
ing scheme first developed in Ref. [5] and later improved in Ref. [6] where a fourth-order
Runge-Kutta method has been employed. The underdetermined system of equations (1) is
completed by the incompressibility condition V - v = 0 and solved on the quadratic domain
[0, L] x [0,L,] with L, = L, = L and periodic boundary conditions. The decomposition in

Fourier series is achieved as .
vir,t) = 3 vi)elkT, (s4)
k

where the components of the wave number vector k = (k;, k) are related to the system size
by kzy = n2m/L,, with n € Zg. For the ease of notation we omit the traditional = symbol.
It should be clear from the corresponding argument if we mean the real-space function or



the Fourier component. According to the definition given above, the Fourier coefficients are

determined as
Ly Lac

1 —ik-r _. v
O/O/V(r,t)e dedy =: F{v}(k,t), (S5)

L.L,

vi(t) =

where the real-space coordinate vector is given by r = (z,y). Note that the pseudo-spectral
approach introduces the so-called aliasing errors when computing the nonlinear term. In order
to avoid that in numerical simulations of Navier-Stokes flows, one uses the 3/2 dealiasing rule.
It consists in neglecting the higher 1/3 of the Fourier modes, i.e., the ‘effective’ Fourier modes
are only 2/3 of the numerical ones. However, such a 3/2 rule can be applied only in the
case of quadratic nonlinearities. For a cubic nonlinearity as in Eq. (1) the 3/2 dealiasing
rule, standard in Navier-Stokes simulations, is insufficient. Instead, one should set to zero the
upper half of the Fourier components.[7]

The solution of Eq. (1) in the part of parameter space we are interested in exhibits rapid
fluctuations as typical for turbulent systems. The same applies also for quantities like the
energy of a given mode or the total energy of the system. In the turbulence literature one
defines the so-called ‘ensemble average’ which corresponds to an average over many possible
realizations of the flow due to different initial conditions. However, such an average procedure
is computationally extremely demanding. In the case of a system that reaches a statistically
stationary regime one uses a time average instead, denoted by (-), which is performed over a
time window that starts after the onset of the statistically stationary state. In mathematical
terms, for an arbitrary function f(¢) we have that

t1+T

) = = / f(t)dt. (36)

For a discrete time variable ¢ the integral becomes a sum. Under the assumption of ergodicity
the definition above yields the same result as an ensemble average.

In Ref. [1], where the continuous model we study here has been introduced, the main goal
has been to compare its results with experimental measurements and with the findings based
on more basic SPR (self-propelled rods) models. This determined the size of the real-space
domain used in the simulations. In this article, however, we aim for a more fundamental
examination of the turbulent dynamics produced by Eq. (1). Since we are interested in
the spectral range at small wave numbers, we investigate the convergence of the numerical
results when the box size becomes larger. The latter is inversely proportional to the smallest
nonzero wave number we have, meaning that a larger real-space domain allows for a better
representation of the small-k part of the energy spectrum. Numerical simulations of Eq. (1) for
different domain sizes yield the energy spectra displayed in Fig. 1. The box size and number
of points representing numerically the real-space domain that have been used for obtaining
the red curve are nearly the same as those used in Ref. [1] and the slope of k°/3 given by
the upper black line is the one reported there. Due to the parameters of the simulation the
smallest wave number is still rather large and close to the peak of the spectrum. Considering
that there are only three points before the peak, it is hard to justify a power law in that
region. Note that for obtaining an one-dimensional spectrum from a two-dimensional spectral
representation one has to group together modes with similar |k|. For the first few k-points



such a grouping can lead to notable ambiguity in the value of k assigned to the whole group
and, thereby, influence the form of the curve. Therefore, the slope of a power law calculated by
using only the first few points will be very sensitive to such numerical details. The blue curve,
on the other hand, has been obtained with a much larger domain size and number of points
(effectively 1024 x 1024 or 2048 x 2048 including dealiasing) and represents the simulation
parameters used for all the numerical results reported here. It is evident that, in this case,
there is a much larger (over one order of magnitude) domain at small k£ with a prominent
power law of nearly E(k) oc k? for this set of parameters (given by the lower black line) which,
in addition, is also more robust. Thus, our analysis shows that the form of the power law

10°

1070

10 10
Kl

Figure 1: Numerical computation of the energy spectrum for different domain sizes: red -
Q = [0,1.257¢] x [0, 1.257¢]; magenta - Q = [0,2.57¢] x [0,2.57¢]; brown - = [0, 3.757¢] X
[0,3.757l]; green - Q = [0,5.0m¢] x [0,5.07¢]; cyan - Q = [0,7.57¢] x [0,7.57/]; blue - Q =
[0,10.07¢] x [0,10.07¢]. The numerical resolution was kept constant in all simulations. A
rather large box size is needed for the manifestation of an unambiguous power law at small
wave numbers. The numerical simulations were performed with ar = —1.

is sensitive to finite-size effects of the simulation domain. With increasing the box size and
keeping all physical parameters constant, it converges to a value that is different from the one
presented in Ref. [1].

S.2 Symmetry of the nonlinear transfer terms

Generally speaking, nonlinear terms tend to play a key role in determining the behavior of
complex systems. This is also true here. In the main part of the paper, these terms were
studied quantitatively by introducing specific projection operators in spectral space as defined
in Eq. (4). One can easily verify that Py is idempotent and, thus, indeed a projection operator.
In addition, Pj is self-adjoint with respect to the usual scalar product in L?(2) and commutes



with temporal and spatial derivatives. This definition of Py is still rather general and we have
the freedom to choose the boundaries k; of the individual shells. In the turbulence literature
the shells are usually chosen such that kji11/k; = const > 1. For analysing the spectral
region of small wave numbers, however, this is rather inconvenient, since we want to have as
many shells as possible in this spectral range. Thus, we construct the shells to be of equal
width which will not change the results of our analysis. The numerical results reported in this
work are obtained with the width of the circular bands being 3Ak, where Ak is the difference
between two adjacent modes along the z- or y-axis. This ensures that every shell contains an
appreciable number of modes and thereby reduces statistical fluctuations.

Applying Py on Eq. (1) gives us an evolution equation for the filtered velocity field (v) .
Multiplying with (v) s, integrating over space and taking into account that the energy of each
spectral shell is given by E; = [ |(v);|?dQ/(2V) we arrive at

OFE;

W:_QQEJ_)\OE/V . V-VV>JdQ—

— B— / Av|Av),dQ — FO—/ v);dQ — rz—/ v),dQ. (S7)

Due to the periodic boundary conditions and the incompressibility constraint, the contribution
of the pressure term vanishes , i.e.,

/<V>J Vip)sd2 = (p)s(v)y -do| - /<p>J<v V)9 = 0, (S8)
Q Q

where do is an infinitesimal oriented surface element on the boundary of the domain € with
a direction normal to the boundary and pointing outwards. In a similar way integration by
parts leads to

/<v>J AN D = — / (V{0a)y - V{va)s + V{vy)s - Vv,)s)d0 (S9)
Q Q
and
/<V>J.A2<V>Jd9 _ /A<V>J-A<V>Jd9. (S10)
Q

The self-adjointness of Pj allows us to drop the filter operator in the second factor in the
scalar products representing the nonlinear contributions in Eq. (S7), i.e

/(v> (v -V)v)dQ = /(v> (v - V)vdQ, (S11)

Q

/<> (Iv[2v) 0 = / (vPv)de. (s12)

With the aid of the decomposition of the velocity field into contributions from different spectral
shells the nonlinear terms can be rewritten even further with the goal to facilitate interpreta-
tion. The Navier-Stokes nonlinearity can be represented as

v/ (v-V)vdQ = Z / v)rdQ = — Z T3y, (S13)



The summand in the equation above contains the contribution from two shells, S; and S},
and can be interpreted as the interaction between shell S; and shell S;. The picture of the
Navier-Stokes term that arises in Fourier space is that of a three-wave coupling, i.e., a triadic
interaction. The third mode/shell comes from the advective term v - V. Here, we have not
introduced a third index for it, i.e., we compute the interaction between the shells S; and S;
mediated by all possible shells.

Applying the velocity decomposition on the term stemming from the cubic nonlinearity in
Eq. (1) leads to

/|v| V) -vd = Z /|v| v)rdQ = BZ o, (S14)

which, in analogy to the Navier-Stokes nonlinearity, can be interpreted as the interaction
between shells S; and S; due to the cubic term. In this case the third ‘leg’ mediating the
interaction is |v|?, i.e., the local energy density in real space. One can also look at it as two
‘legs’, namely one for each velocity field v. In this case we have summed over two ‘legs’ in
order to obtain a shell-to-shell interaction. From the summands in Egs. (S13) and (S14) one
can read off the corresponding the shell-to-shell coupling terms, namely

T — —)\0—/ (v)rdQ and (S1b5a)
o = 5= / V> (v) s - (v)dQ. (S15b)

The equations above are equivalent to Egs. (6a) and (6b) in the main text representing merely
their real-space formulation.

Due to the symmetry of the scalar product (v) ;- (v)s, it is clear that Tf}}b is also symmetric
with respect to the interchange of I and J, i.e., Tf}b = Tj}‘b. On the other hand, for an
incompressible velocity field and periodic boundary conditions Tla}’d is antisymmetric with
respect to I and J. Denoting for brevity (v); by a, (v); by b and setting Ao = 1, we have
after integration by parts

v 1 1 0by, 0by, oby oby
T = V/a-(v-V)bdQ:V/<amvm8 + azv v oy +ayve o Y + q, ya >dQ:
Q Q

1 0(azvy) J(azvy) 0(ayvz) 0(ayvy) B

= boundary terms / < + b, By + by I + by By dQ =

=0
:——/ (v- V)adQ——/a b) (V- v)dQ = —T5%. (S16)
——

=0

S.3 Derivation of Eq. (7) from the Millionshchikov hypothesis

As discussed in the main text, the quasi-normal approximation rests on the Millionshchikov
hypothesis [8] according to which the velocity correlations of odd order are still nonzero, but



the even-order correlations can be expressed approximately as the sum of all possible products
of second-order correlations. Thus, for the fourth-order correlation in Eq. (2) we can write

(W k()i p_q(t)vg ()] (1)) =
= (V1 (8) ke _p—q (D) (v ()uh (1))
+ (03 (H)vg (D) (Ve _p g ()05(2))
+ (014 (V] (1)) (Vie_p_q (t)vg(2). (S17)

Assuming that the system is statistically homogeneous and isotropic, the three terms on the
right-hand side of the above equation can be further simplified as

(Ve (£) vk p—q (D) (VG (O)0h (1)) = Dir (k) D (p) Q1 (1)Qyp(£)0q,—p

(VL1 (B0 (D) (Vi—p—q (D)0h(£)) = D (k) Dji(p)Qk(£)Qp(1)dq 1

(W1 (00 (1)) (Vie—p—q (D)0g (£)) = Dij (k) Dur(@)Qk (£) Qg (£)p 1 (518)
where Jy , equals one if k = p‘and zero otherwise. The equal-time scalar correlation func-
tion Q(t) is defined as (v (t)v”, (t)) =: D;;(k)Qx(t) which also requires statistical isotropy.
Substituting the above expressions into the term in the energy balance equation that arises

from the cubic nonlinearity, we can now perform the summation over the Cartesian indices 7,
j and [. A preliminary computation, that proves to be useful in this regard, yields

ZDjj(k) =1, (S19a)

Z D;j(k)Du(k) = Dji(k), (S19b)
RV
> D) = B (s194)

for a two-dimensional setting. With the aid of the above results one can easily derive the
first part of Eq. (7). For the second part of the equation, one needs to relate the scalar
correlation function Q(t) to the energy spectrum Ey(t) and perform the summation over the
wave number p. The former follows directly from the definition of the quantities and in two
dimensions gives Ey(t) = Q(t)/2. Note that, despite the vector notation of the argument, in
the isotropic case Ex(t) depends only on the absolute value of the wave number. Analogously,
one derives that ), Qx(t) = 2E(t). The contribution involving the scalar product k - p can
be computed analytically in the limit of an infinitely large system, i.e., L — oo, in which the
wave number becomes a continuous variable. Denoting the angle between k and p as 6, one
can write

27T 00
> (I;Czpz Q1) = 3 co0)0p(0) | [eost @)@ (0maipas -
p 00
o] 27 00
=52 [p@,(0dp =5 [ [Qultipapds = %;Qp(t) — By (520)
0 0 0



Taking this into account, one can easily derive the end result in Eq. (2).

In the turbulence literature one often tests how close the statistics of the velocity field is to
the Gauss distribution by means of the two-point velocity increments §v. The latter represent
the difference in velocity at two different points separated by the vector r. One distinguishes
between longitudinal (||) and transverse (L) velocity increments which are given by the pro-
jection of dv on the separation vector r and on its orthogonal complement, respectively. In
mathematical terms we have that

r r
dv(x,r,t) = v - — = (v(x,t) = v(x +r,1)) - = (S21)

r r
vy (x,r,t) =0v-er = (v(x,t) —v(x+r,t))-er, (S22)
where ey is a unit vector that is perpendicular to the separation vector r and in terms of the
unit vectors in the plane, i.e., e; and ey, it is given by er = ((r - es)e; — (r - e1)eq)/r. For
statistically homogeneous systems the statistical properties of the velocity increments do not

depend on the particular choice of the reference point x. In addition, in the case of statistical
isotropy dv will depend only on the distance r between the two points, i.e., ov = ov(r,t). In
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Figure 2: Numerically computed probability density function (blue circles) for the longitudinal
(first row) and transverse (second row) velocity increments for three different separations: L /2
(first column), L/8 (second column) and L/16 (third column), where L denotes the box size
of 10w¢ and the Ekman parameter is set to ar = —1. The red line gives the closest fit of
a Gauss distribution. Hence, the statistics of the velocity field at large scales is indeed very
close to Gaussian.

the time series of dv(r,t) and v (r,t) some values will be obtained more often than others
which gives us the probability distribution P of the velocity increments. (Strictly speaking,
this gives us the probability density function.) A numerical computation of P (blue circles) for



the case of a7 = —1 is shown in Fig. 2 in a semi-logarithmic representation for three different
separation vectors with the first row displaying P(év)) and the second one P(év1). The red
line gives the closest fit to a Gauss distribution P(év) ) = Aexp(—&vﬁ’L/az) with A and o
being the fit parameters. As seen in the figure, the distribution of velocity increments is very
close to a Gaussian at large scales which supports the use of the quasi-normal approximation.
In addition, note that all the distributions in Fig. 2 have nearly the same parameters A and o.
In order to connect the results shown here to the energy spectra in wave-number space let us
remark that the separations displayed in Fig. 2 correspond to k¢ ~ 0.2, kf ~ 0.8 and k{ ~ 1.6,
respectively. They all belong to the low-k range studied in this work, since, for comparison,
the peak of the energy spectrum lies around k¢ ~ 7 for ar = —1 and kf =~ 15 for ar = 4.
Fig. 3 displays the same probability distributions but for a different value of the constant in
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Figure 3: Numerically computed probability density function (blue circles) for the longitudinal
(first row) and transverse (second row) velocity increments for three different separations: L/2
(first column), L/8 (second column) and L/16 (third column), where L denotes the box size
of 10m¢. Here the Ekman parameter equals ar = 3. The red line gives the closest fit of a
Gauss distribution. The statistics of the velocity field at large scales is again very close to
Gaussian.

front of the Ekman term: a7 = 3 which lies close to the other end of the parameter range
considered here. The data leads to the same conclusion regarding the statistics of the velocity
field as in the previous case for a7 = —1. The only difference appears to be the corresponding
value of 0. Here it is considerably lower meaning that the width of the distribution is smaller.
The reason for that lies in the fact that for a7 = —1 the Ekman term acts as an energy source
while for ar = 3 it dissipates energy. Thus, in the first case the total energy of the system,
proportional to the integral of |v|?> over the whole domain, is considerably higher making
larger velocity increments more probable. In conclusion, the data represented in Figs. 2 and
3 support the quasi-normal approximation we used in our analysis.
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