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Abstract: Long-term global satellite and reanalysis soil moisture products have been 

available for several years. In this study, in situ soil moisture measurements from 2008 to 

2012 over Southwest China are used to evaluate the accuracy of four satellite-based products 

and one reanalysis soil moisture product. These products are the Advanced Microwave 

Scanning Radiometer for the Earth observing system (AMSR-E), the Advanced Scatterometer 

(ASCAT), the Soil Moisture and Ocean Salinity (SMOS), the European Space Agency’s 

Climate Change Initiative soil moisture (CCI SM), and the European Centre for Medium-Range 

Weather Forecasts (ECMWF) Interim Reanalysis (ERA-Interim). The evaluation of soil 

moisture absolute values and anomalies shows that all the products can capture the temporal 

dynamics of in situ soil moisture well. For AMSR-E and SMOS, larger errors occur, which 

are likely due to the severe effects of radio frequency interference (RFI) over the test region. 

In general, the ERA-Interim (R = 0.782, ubRMSD = 0.035 m3/m3) and CCI SM (R = 0.723, 

ubRMSD = 0.046 m3/m3) perform the best compared to the other products. The accuracy 

levels obtained are comparable to validation results from other regions. Therefore, local 

hydrological applications and water resource management will benefit from the long-term 

ERA-Interim and CCI SM soil moisture products. 
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1. Introduction 

Soil moisture (SM) plays an important role in the interactions between the atmosphere and the land 

surface, and has been identified as an essential climate variable by the Global Climate Observing System 

(GCOS) [1]. Soil moisture connects the energy and water fluxes due to its control on the partitioning of 

surface net energy into latent and sensible heat fluxes, as well as the partitioning of precipitation into 

infiltration and runoff [2,3]. Therefore, the knowledge of soil moisture dynamics is important for climate 

change research, flood and drought monitoring, weather forecasting, as well as water resource 

management [4,5]. 

Satellite remote sensing has been recognized as a powerful tool to retrieve soil moisture due to the 

improvements of sensor technologies and retrieval algorithms [6] using either active [7] or passive 

microwave [8] remote sensing observations. Until now, several global satellite-based soil moisture 

products have been released. These products include the Advanced Microwave Scanning Radiometer E 

for the Earth observing system (AMSR-E) [9], the Advanced Scatterometer (ASCAT) [10,11], the Soil 

Moisture and Ocean Salinity (SMOS) [12], and the European Space Agency’s Climate Change Initiative 

(ESA CCI) soil moisture product [13–15]. These satellite-based soil moisture products provide an 

unprecedented opportunity to investigate the interactions between land and atmosphere and their effects 

on climate change. However, comprehensive evaluations of these soil moisture products are required 

before using them. Many evaluation studies have been conducted either based on in situ measurements 

or model simulations. Most of these studies are performed either on a regional scale, for example in 

Europe [16–19], Australia [20,21], Africa [22,23], and the United States [24,25], or at the global  

scale [15,26,27]. However, few studies were conducted in China so far. In order to utilize the satellite-based 

soil moisture products for practical applications in China, it is necessary to validate them against in situ 

measurements in China. 

The objective of this research is to evaluate four satellite-based soil moisture products and one 

reanalysis product with in situ measurements over Yunnan, China (Figure 1). The validation activity is 

of great importance, because this region is very sensitive and vulnerable to climate change due to its 

unique geophysical position and climate. Over the last three decades, frequent droughts and floods 

occurred in this region, with the most extreme drought occurring from winter 2009 to spring 2010 [28,29]. 

According to the Ministry of Civil Affairs, the drought resulted in a loss of $2.5-billion due to 

agricultural damage, and about 9.65 million people have had a shortage of drinking water [30]. 

Therefore, accurate long-term satellite-based soil moisture products are urgently required to assess 

drought conditions and the links between increasing temperature, soil moisture variations, and vegetation 

productivity. The following section briefly introduces the study area, in situ measurements, and soil 

moisture products. The evaluation methods are described in Section 3. Results of the evaluation are then 

presented and discussed in Section 4. Finally, conclusions are summarized in Section 5. 
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Figure 1. Study area in Southwest China (a) and locations of in situ soil moisture stations (b). 

2. Study Area 

The Yunnan province is located in Southwest China (Figure 1), covering an area of roughly 394,000 km2. 

Mountainous topography and special karst geomorphology characterize this region, with an elevation 

gradually decreasing from the northwest to southeast, and an average elevation of 1980 m above sea 

level [31]. This region has a subtropical climate with dry winters and wet summers. The precipitation is 

spread unevenly over the year and the region, and is largely influenced by the Tibetan plateau, the 

tropical Indian monsoon and the eastern Asia monsoon. As a result, about half of the precipitation occurs 

between June and August. The annual precipitation ranges from 600 mm in valleys to 1700 mm in 

mountainous regions [32,33]. Due to its special climate and topographical conditions, this region suffers 

from frequent droughts. The most severe and sustained drought occurred in 2010. It started in the winter 

of 2009 and became particularly severe in the spring of 2010, leading to significant ecological and 

economic damages [34]. Numerous streams and small reservoirs dried up, which had a severe impact on 

the supply of drinking water and the agricultural production [30,35]. Therefore, long-term and spatially 

distributed soil moisture information is required for this region. 

3. Materials and Methods 

3.1. Satellite-Based and Reanalysis Products 

The satellite products used in this study include four soil moisture products as well as one 

precipitation product. In addition, one soil moisture reanalysis product is also analyzed. In the following 

subsections, these datasets are briefly introduced. 

3.1.1. AMSR-E 

The AMSR-E onboard the Aqua satellite is a passive microwave sensor. The instrument operated 

between May 2002 and October 2011. It provided measurements at six different frequencies. Data is 

available for descending (1:30 a.m.) and ascending (1:30 p.m.) orbits [36]. Several algorithms have been 

developed for retrieving soil moisture from the AMSR-E measurements. One of them is the land 

parameter retrieval model (LPRM) [9]. The corresponding soil moisture product has been developed and 
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released by Vrije Universiteit Amsterdam (VUA) together with NASA. The LPRM product provides 

global soil moisture on a regular 0.25° global grid derived from C-band and X-band observations. The 

observations from the X-band are used only for soil moisture estimation when the C-band observations 

are affected by radio frequency interference (RFI). Based on the observations from these two bands at 

two overpass times, the LPRM product contains four soil moisture products (C-band and X-band soil 

moisture in both, in descending and ascending modes). In this study, all these products were compared 

with in situ measurements to investigate their performance using the period from 2008 to 2011. The soil 

moisture data were masked if the vegetation optical depth (VOD) was higher than 0.8, as suggested by 

Rebel et al. [37] and Lei et al. [38]. 

3.1.2. ASCAT 

The ASCAT is a scatterometer onboard the Meteorological Operation-A (MetOp-A) satellite, which 

was launched in October 2006 and scans the Earth’s surface in descending (9:30 a.m.) and ascending 

(9:30 p.m.) orbits [39]. It operates in the C-band (5.3 GHz) in vertical polarization with a spatial 

resolution of 25 or 50 km [40]. The soil moisture is derived from the backscatter measurements of 

ASCAT using a change detection algorithm [11]. In this study, the soil moisture product provided by the 

European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) with the version 

of TU-Wien-WARP 5.5 was used. It provides a relative soil moisture saturation degree (using the top 2 cm 

of the soil column) with values ranging from 0% (dry) to 100% (wet) at spatial resolution of 25 km. To 

be consistent with in situ soil moisture measurements and comparable with other soil moisture products, 

the ASCAT soil moisture was rescaled into volumetric soil moisture (unit: m3/m3) using the soil porosity 

estimated from Land Data Assimilation System (LDAS) data [41]. The soil moisture products from 2008 

to 2012 in both descending and ascending modes were analyzed in this study. The soil moisture data 

were masked if the processing flags were not equal to 0 (best quality). 

3.1.3. ESA CCI 

The ESA CCI soil moisture product is a unique 35-year (1978–2013) long satellite-based soil 

moisture record produced within the framework of the ESA Climate Change Initiative [42]. The CCI 

soil moisture was generated by merging several passive and active soil moisture products [13,43]. The 

involved soil moisture products are derived from Scanning Multichannel Microwave Radiometer 

(SMMR), Special Sensor Microwave/Imager (SSM/I), Tropical Rainfall Measuring Missions (TRMM) 

Microwave Imager (TMI), ASMR-E, scatterometers (SCAT) and ASCAT. The CCI soil moisture has 

three products, which differ in the data sources used: passive microwave only, active microwave only, 

and merged passive-active product [15]. In this study, the merged passive-active product (version 02.1) 

is analyzed for the period from 2008 to 2012. The dataset has spatial resolution of 0.25° on a daily basis. 

3.1.4. SMOS 

The SMOS satellite, launched in November 2009, is dedicated to soil moisture monitoring with an  

L-band (1.4 GHz) passive radiometer. It provides global coverage every three days for both descending 

(6:00 p.m.) and ascending (6:00 a.m.) orbits with a spatial resolution of about 40 km [44]. The advantage 
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of the L-band is that it has greater sensing depth of up to 5 cm of the soil. The soil moisture is derived 

using the L-band microwave emission of the biosphere (L-MEB) model [45,46]. In this study, the SMOS 

level 3 daily soil moisture product was obtained from the Centre Aval de Traitement des Données SMOS 

(CATDS). As is the case for AMSR-E and ASCAT, both descending and ascending soil moisture 

products were used for analysis from the years from 2009 to 2012. According to Al-Yaari et al. [47], the 

soil moisture data are masked out if the Data Quality Index (DQX) is larger than 0.06, or the DQX is 

equal to 0 (filled value), or the RFI is larger than 30%. 

3.1.5. ERA-Interim 

ERA-Interim is a global atmospheric reanalysis product produced by the ECMWF [48]. It is based 

on a sequential data assimilation scheme. It covers the period from 1979 until the present. The soil moisture 

data from ERA-Interim are provided at four depths (0–7, 7–28, 28–100, and 100–289 cm) [48]. In this 

study, the daily averaged 0.25° upper layer (0–7 cm) of soil moisture products covering the years from 

2008 to 2012 were evaluated. 

3.1.6. TRMM Precipitation Data 

The TRMM precipitation data was used in this study as an alternative to the station precipitation from 

in situ measurements, because it has been extensively validated against ground-based measurements 

around the world, including the Yunnan province [33]. Details of the TRMM precipitation dataset can 

be found in Kummerow et al. [49] and Iguchi et al. [50]. The daily 0.25° TRMM precipitation products 

(3B42 V7) were used in this study for the same period as indicated in the other dataset (2008–2012). 

3.2. In Situ Soil Moisture Measurements 

There are a total of 18 soil moisture stations used in the current study. The geographical locations and 

details of these stations are presented in Figure 1 and Table 1. The elevations of these stations range 

from 847 m to 2293 m, and the land cover types are mainly grassland (4 stations), forest (3 stations), 

cropland (7 stations), and bare soil (4 stations). The soil moisture contents over these stations were 

measured at three different depths (10 cm, 20 cm and 40 cm) using frequency domain reflectometry 

(FDR) sensors. Data was obtained from the Yunnan Hydrology and Water Resources Bureau. The 

measurements at a 10 cm depth are considered to best represent the soil layer accessible by the satellite 

observations. We therefore use this layer as a reference in this study. 

Table 1. Descriptions of the in situ soil moisture stations used in the study. 

Station Name Short Name Land Use Latitude (°) Longitude (°) Elevation (m) 

Daciping Da Cropland 25.02 99.20 1685 

Zijin Zi Bare soil 25.42 100.70 1958 

Hongqi Ho Grassland 25.53 100.67 2044 

Yingjiang Yi Bare soil 24.70 97.95 847 

Yuguopu Yu Cropland 23.45 103.32 1283 
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Table 1. Cont. 

Station Name Short Name Land Use Latitude (°) Longitude (°) Elevation (m) 

Mianyangchong Mi Forest 23.78 102.93 1433 

Sanduo Sa Grassland 24.64 102.67 1967 

Longwangtang Lo Forest 24.55 102.40 2099 

Heyou He Cropland 25.20 103.03 1968 

Huangjiapo Hu Grassland 25.13 103.02 2140 

Qiaotou Qi Cropland 26.77 100.27 2293 

Mayidui Ma Cropland 24.12 100.07 1344 

Bamaochong Ba Grassland 25.05 103.63 1857 

Rongfeng Ro Bare soil 26.26 104.11 1973 

Shaba Sh Forest 24.00 105.05 1415 

Dongfeng Do Bare soil 24.37 102.57 1653 

Gaocang Ga Cropland 24.32 102.52 1650 

Sankeshu Sk Cropland 27.33 103.67 1909 

3.3. Evaluation Strategies 

In order to evaluate the performances of the satellite-based and reanalysis soil moisture products, they 

were first compared directly with the in situ soil moisture. Established skill scores, like the correlation 

coefficient (R), the BIAS, the root mean square difference (RMSD), and the unbiased RMSD (ubRMSD) 

were used to quantify the differences between various soil moisture products and measured soil  

moisture [51,52]. In addition, the comparisons for soil moisture anomalies were also performed, because 

the seasonal variations of soil moisture may influence the correlation statistics [53]. The soil moisture 

anomalies were computed similar to Dorigo et al. [15], using the equation below to avoid the seasonal 

effects on correlations. The anomaly calculation is based on a sliding window of five weeks. The difference 

from the mean is calculated if there are at least five measurements available during this time window. 

𝐴𝑛𝑜𝑚(𝑡) = 𝑆𝑀(𝑡) − 𝑆𝑀(𝑡 − 17: 𝑡 + 17)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ (1) 

where SM(t) is the soil moisture at day t, the overbar indicates the temporal mean for the five weeks 

period. Based on the above equation, the soil moisture anomalies of in situ soil moisture, satellite-based, 

and reanalysis products were calculated. 

4. Results and Discussion 

4.1. Direct Comparison of Soil Moisture 

4.1.1. Pre-Selection of Best Performed AMRS-E, ASCAT, and SMOS 

From direct comparisons with in situ soil moisture, it is found that the AMSR-E X-band has better 

performance than the C-band with lower RMSD and ubRMSD values. It implies that the C-band 

observations might be influenced by the RFI in this region. Regardless of the frequency band, ascending 

and descending soil moisture products also have different accuracies due to the diurnal variations of the 

land surface conditions. On one hand, overpass times at night and in the early morning are more suitable 

for soil moisture retrieval from passive microwave satellites, because the isothermal conditions at night 
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can minimize the errors associated with surface temperature [54]. On the other hand, the soil emission 

is influenced by the diurnal variation of the water in the vegetation canopy [55]. The attenuation of soil 

emission caused by water in the vegetation canopy is minimized during the daytime due to loss of water 

through evapotranspiration [56]. Therefore, both daytime and nighttime retrievals have certain advantages. 

For AMSR-E, many studies such as Brocca et al. [17] have found that ascending soil moisture is more 

reliable than descending soil moisture. However, in other studies such as Griesfeller et al. [57], 

descending was found to be better than ascending. This demonstrates that the performance of different 

AMSR-E soil moisture products depends on the surface condition of the study area. In this study, it is 

found that ascending AMSR-E performs better than descending AMSR-E, which might be due to the heavily 

vegetated characteristics of the study area. Similar results have been reported by Lei et al. [38], who 

found that the advantage of the nighttime overpass is reduced as the vegetation cover increases and the 

AMSR-E ascending retrieval is superior over heavily vegetated areas in the United States. Therefore, 

the descending and ascending soil moisture products should be evaluated before applying them in 

different regional studies. Compared to AMSR-E, the differences between ascending and descending 

retrievals are smaller for SMOS. It may be due to the smaller soil moisture temperature differences 

between ascending/descending overpass times of SMOS than that of AMSR-E. The Faraday rotation 

effect in the ionosphere is also expected to be minimized at SMOS ascending overpass time [38]. 

Although SMOS ascending performs slightly better than descending, the sample days of SMOS 

ascending soil moisture are less than descending soil moisture in the current study. Therefore, the SMOS 

descending soil moisture is used for the following analyses. Compared to AMSR-E and SMOS, the 

ASCAT presents quite similar performance for ascending and descending soil moisture. This is partly 

because the scatterometer-based ASCAT does not require accurate estimates of surface temperature [38]. 

It is worth noting that the ASCAT descending soil moisture has slightly better correlation values than 

ascending soil moisture in the current study area. The statistics of the above comparisons are provided 

in Appendix Figure A1. In the following analyses, only the best performed AMSR-E ascending X band 

(AMSR-E_A_X), ASCAT descending (ASCAT_D), and SMOS descending (SMOS_D) are considered 

in comparisons with in situ measurements. 

4.1.2. Temporal Evolution of Soil Moisture and Precipitation 

Figure 2 shows the time series patterns of all the soil moisture products, in situ measurements and 

rainfall for the average values over all stations. All the products except for AMSR-E and SMOS 

correspond well with rainfall, with the soil moisture increasing during rainfall events and decreasing 

after rainfall events. Additionally, the temporal dynamics of in situ soil moisture are captured well by 

CCI SM and ERA-Interim. It can also be seen that CCI SM and ERA-Interim, which are in line with in 

situ measurements, capture the spring droughts in 2010. Compared to in situ soil moisture, the ASCAT 

has higher seasonal variability. The poor performance of AMSR-E and SMOS might be due to the effects 

of RFI over this region, because both AMSR-E and SMOS are reported to correlate well with ground-

based measurements over other regions, such as America, West Africa, and Europe [23,25,26]. 
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Figure 2. Temporal evolution of the averaged in situ measurements, soil moisture products, 

and precipitation at network scale: in situ mean soil moisture (black solid line) and its  

inter-quartile range (grey shaded areas); European Space Agency’s Climate Change Initiative 

(CCI), Interim Reanalysis (ERA), Soil Moisture and Ocean Salinity (SMOS), Advanced 

Microwave Scanning Radiometer for the Earth observing system (AMSR-E)_A_X and 

Advanced Scatterometer (ASCAT)_D (points with different color); and precipitation (top of 

each panel). The soil moisture has the unit of m3/m3 (left y-axis), while precipitation has the 

unit of mm (right y-axis). 

4.1.3. Validation of the Soil Moisture against in Situ Measurements 

To quantitatively evaluate these soil moisture products, Figure 3 shows the comparison statistics 

between different soil moisture products and in situ measured soil moisture at each station. In general, 

the ASCAT, CCI SM, and ERA-Interim have similar R values. However, in terms of RMSD and 

ubRMSD, the best performance was found with the ERA-Interim, followed by CCI SM and ASCAT. It 

can also be seen that the accuracies of AMSR-E and SMOS are much worse than the expected accuracy 

of 0.06 m3·m−3 for AMSR-E and 0.04 m3·m−3 for SMOS. In theory, the SMOS should provide reliable 

soil moisture product due to the use of L-band measurements. As stated before, the poor performance 
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found here might be caused by the effects of RFI. Similar results have been reported by Cho et al. [58] 

and Zeng et al. [59]. 

 

Figure 3. Bar plots of the comparison results between soil moisture products and in situ 

measurements at each station. 

In addition to the validation at each individual station, the comparisons between averaged in situ soil 

moisture over all stations and corresponding averaged soil moisture products were also conducted. This 

comparison method is expected to reduce the uncertainties introduced by scale differences between the 

in situ point and satellite pixel [60]. Table 2 presents the statistical scores of the comparison results at 

the network scale. Compared to the results at station scale, the comparisons at the network scale 

generally show the same tendency but better scores. The ERA-Interim outperforms other soil moisture 

products with lowest RMSD and ubRMSD. 

Table 2. Statistics of comparisons between averaged in situ soil moisture and soil moisture 

products at network scale. 

Products R BIAS (m3/m3) RMSD (m3/m3) ubRMSD (m3/m3) Sample Days 

CCI 0.723 0.019 0.050 0.046 1621 

ERA 0.782 0.014 0.037 0.035 1692 

AMSR-E_A_X 0.086 0.067 0.152 0.136 965 

ASCAT_D 0.778 −0.053 0.096 0.080 1686 

SMOS_D 0.443 −0.074 0.096 0.062 657 

4.2. Comparison of Soil Moisture Anomalies 

4.2.1. Temporal Evolution of Soil Moisture and Precipitation 

The above results give an overview of the evaluation of soil moisture absolute values. To remove the 

influences of the seasonal cycle in the comparison, the soil moisture anomalies were calculated based 
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on Equation (1). Figure 4 shows the anomaly time series of the soil moisture and rainfall products. The 

CCI SM, ASCAT, and ERA-Interim generally represent the variations of in situ measurements. As 

expected, AMSR-E and SMOS have large variations compared to in situ soil moisture. Together with 

the analysis of the absolute soil moisture time series, these results suggest that in situ soil moisture 

temporal variations can be well represented by the satellite-based soil moisture and reanalysis datasets. 

 

Figure 4. Temporal evolution of the anomalies from averaged in situ measurements, soil 

moisture products, and precipitation at the network scale: in situ mean soil moisture (black 

solid line) and its inter-quartile range (grey shaded areas); CCI, ERA, SMOS, AMSR-E_A_X, 

and ASCAT_D (points with different colors); and precipitation (top of each panel). The soil 

moisture has the unit of m3/m3 (left y-axis), while precipitation has the unit of mm (right y-axis). 

4.2.2. Validation of the Soil Moisture Anomalies 

Figure 5 presents the bar plots of the comparison of soil moisture anomalies at each station. Similar 

to the results from the comparison of absolute soil moisture, the CCI SM, ASCAT, and ERA-Interim have 

similar performance in terms of R values. As expected, the R values are smaller than that of absolute 

comparison due to the removal of seasonal cycles. Similar results have been reported by Albergel et al. [16] 

and Brocca et al. [17]. However, the RMSD, ubRMSD, and BIAS values of anomaly comparisons are 

smaller than that of the absolute comparisons. The ERA-Interim has the smallest RMSD, ubRMSD, and 

BIAS. Similar performance was found with CCI SM, followed by ASCAT. The AMSR-E and SMOS 

have the worst performance. 
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The statistic scores of the comparison of soil moisture anomalies at a network scale are summarized 

in Table 3. Due to the decreasing of uncertainties of scale difference, the scores of network scale are improved 

compared to that of the station scale. In comparison to the scores of absolute soil moisture (Table 2), the 

correlations of all the products worsen, while RMSD, ubRMSD, and BISA get smaller. In general, the 

ERA-Interim has the smallest RMSD and ubRMSD, which indicates that the ERA-Interim agrees best with 

in situ soil moisture. The performance of CCI SM is comparable with the ERA-Interim soil moisture. 

 

Figure 5. Bar plots of the results from anomalies comparison between soil moisture products 

and in situ soil moisture at each station. 

Table 3. Statistics of the anomalies comparison between averaged in situ soil moisture and 

soil moisture products at network scale. 

Products R BIAS (m3/m3) RMSD (m3/m3) ubRMSD (m3/m3) Sample Days 

CCI 0.480 −0.002 0.030 0.030 1621 

ERA 0.634 −0.003 0.023 0.023 1692 

AMSR-E_A_X 0.222 −0.007 0.101 0.101 962 

ASCAT_D 0.564 −0.004 0.044 0.044 1686 

SMOS_D 0.303 −0.004 0.054 0.054 656 

4.2.3. Seasonal and Land Cover Analysis 

Furthermore, the seasonal analysis was conducted to identify any seasonal variations of the dataset 

accuracies. The study period is separated into four seasons September/October/November (autumn), 

December/January/February (winter), March/April/May (spring), and June/July/August (summer) 

respectively. It can be seen from Figure 6 that all products have small variations over different seasons 

in terms of R, RMSD, and ubRMSD values. This indicates that the accuracy of these soil moisture 

products is stable in different seasons. 

In addition, the influence of land use on the statistical scores was also examined. The stations are 

divided into four land use groups: bare soil (4), cropland (7), forest (3), and grassland (4). The results were 

shown in Figure 7. In general, different land use categories have similar performance in terms of statistical 
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scores for all the products except SMOS. SMOS has very low R value over cropland. These results suggest 

that the performance of soil moisture products is generally insensitive to land use. 

 

Figure 6. Bar plots of the comparison results between soil moisture products and in situ 

measurements over different seasons. 

 

Figure 7. Bar plots of the comparison results between soil moisture products and in situ 

measurements over different land cover types. 
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4.3. Discussion 

This study examined the ability of several soil moisture products to represent the surface soil moisture 

conditions over Yunnan, China. The results highlight the performance of ERA-Interim and CCI SM. 

From the time series analysis of both absolute values and anomalies, it is found that ERA-Interim and 

CCI SM can capture the variations of in situ soil moisture and respond well to the rainfall events. From 

quantitative comparison with in situ measurements, the ERA-Interim has the lowest RMSD and 

ubRMSD. The CCI SM has comparable performance to ERA-Interim. The accuracy levels are also 

similar to that reported by validation studies over other regions [59,61,62]. Additionally, the seasons and 

land use have little effect on the performance of these products. This indicates that both ERA-Interim 

and CCI SM have the potential to benefit the local hydrological applications such as drought monitoring, 

and water planning and management. 

The unfavorable results of AMSR-E and SMOS are very likely due to the affects of RFI. The RFI 

disturbs the natural microwave emission observed by SMOS, leading to the unreliable estimation of soil 

moisture. The impacts of RFI on SMOS and AMSR-E have been found in Western Europe, Northeast 

Asia, and Middle East [58,63]. The present study further indicates the strong impacts of RFI on SMOS 

and AMSR-E in Southwest China. 

Although most of the soil moisture can represent the surface soil moisture, there are still several issues 

that need to be addressed in future studies: (I) the scale mismatch between satellite pixel and in situ 

point; (II) the mismatch between the satellite penetration depth and in situ measurement depth; (III) the 

inaccuracies of the input data (such as land surface temperature and soil texture) for the soil moisture 

retrieval; and (IV) the improvement of the retrieval algorithms. 

In addition to the improvement of soil moisture retrieval accuracy, there is also a need to improve the 

spatial resolution of the soil moisture product. The current global soil moisture products normally have 

spatial resolutions of tens of kilometers. However, many regional hydrological applications require a 

spatial resolution of 1–10 km [64,65]. The optical/thermal infrared (TIR) sensors can provide 

complementary information of soil moisture at higher spatial resolutions. Therefore, the synergistic use 

of microwave and optical/thermal data to estimate soil moisture at high spatial resolution should be 

another direction in future study. 

5. Conclusions 

Validation of satellite-based soil moisture products is essential at both the regional and global scale. 

The present study evaluated four satellite-based and one reanalysis soil moisture product over an 

intensive soil moisture network in Southwest China. The results show that these products can capture 

well the seasonal variations of in situ soil moisture. Larger deviations were observed in particular for 

AMSR-E and SMOS products. The SMOS underestimates soil moisture, while AMRS-E overestimates 

soil moisture. The biases of AMSR-E and SMOS are very likely due to the strong radio frequency 

interference (RFI) that affects the measurements in this region. Quantitative validations show that  

ERA-Interim (R = 0.782, ubRMSD = 0.035 m3/m3) and CCI SM (R = 0.723, ubRMSD = 0.046 m3/m3) 

outperform the other products. In addition, these soil moisture products were found to provide similar 

performance across the year and for different landcover types. No systematic differences in soil moisture 
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accuracy could be identified throughout the different seasons. Due to their long-term coverage  

(1978–2013 for CCI SM, 1979—present for ERA-Interim), the CCI SM and ERA-Interim dataset have 

the potential to provide valuable information for hydrological applications and water resource 

management applications in the future. 
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(c) 

Figure A1. Bar plots of the comparison results between in situ measurements and soil 

moisture products: (a) AMSR-E; (b) ASCAT; (c) SMOS. 
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