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Parallel Metric Tree Embedding
based on an Algebraic View on Moore-Bellman-Ford
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Abstract

A metric tree embedding of expected stretch o maps a weighted n-node graph G = (V, E,w)
to a weighted tree T = (Vp, Ep,wr) with V' C Vr such that dist(v, w,G) < dist(v,w,T) and
E[dist(v, w,T)] < adist(v,w, G) for all v,w € V. Such embeddings are highly useful for design-
ing fast approximation algorithms, as many hard problems are easy to solve on tree instances.
However, to date the best parallel polylogn depth algorithm that achieves an asymptotically
optimal expected stretch of a € O(logn) requires Q(n?) work and requires a metric as input.

In this paper, we show how to achieve the same guarantees using (~)(m1+€) work, where m
is the number of edges of G and ¢ > 0 is an arbitrarily small constant. Moreover, one may
reduce the work further to O(m + n'*<), at the expense of increasing the expected stretch o
to O(e~tlogn). Our main tool in deriving these parallel algorithms is an algebraic charac-
terization of a generalization of the classic Moore-Bellman-Ford algorithm. We consider this
framework, which subsumes a variety of previous “Moore-Bellman-Ford-flavored” algorithms,
to be of independent interest.
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1 Introduction

In many fundamental graph problems the objective is closely related to distances in the graph.
Prominent examples are shortest path problems, minimum weight spanning trees, a plethora of
Steiner-type problems [22], the traveling salesman, finding a longest simple path, and many more.
The hardness of such problems ranges from P over NP-complete to APX-hard.

If approximation is viable or mandatory, a successful strategy is to approximate the distance
structure of the weighted graph G = (V, F,w) by a simpler graph G’, where “simpler” can mean
fewer edges, smaller degrees, being from a specific family of graphs, or any other constraint making
the considered problem easier to solve. One then proceeds to solve a related instance of the problem
on the simpler graph and maps the solution back, yielding an approximate solution to the original
instance. Naturally, this requires a mapping between solutions in G and G’ with bounded impact
on the objective value.

A standard tool are metric embeddings, mapping G to G' = (V' E',w'), such that V' C V' and
dist(v, w, G) < dist(v, w,G") < adist(v,w, G) for some a > 1 referred to as stretchl] An especially
convenient class of metric embeddings are metric tree embeddings, plainly because very few problems
are hard to solve on trees. The utility of tree embeddings originates in the fact that, despite their
extremely simple topology, it is possible to randomly construct an embedding of any graph G
into a tree T so that the expected stretch o = max{Er[dist(v,w,T)]/dist(v,w,G) | v,w € V}
satisfies a € O(logn) [I8]. By linearity of expectation, for most problems this ensures an expected
approximation ratio of O(logn), and by repeating the process log(¢~!) times and taking the best
result, one obtains an O(logn)-approximation with probability at least 1 — e.

A substantial advantage lies in the simplicity of applying the machinery once the tree embedding
is computed: Translating the instance on GG to one on 7', solving the instance on T, and translating
the solution back tends to be extremely efficient and highly parallelizable, compare Appendix [Bl
Note also that the embedding can be computed as a preprocessing step, which is highly useful for
online approximation algorithms [18]. Hence, a low-depth small-work parallel algorithm construct-
ing a tree embedding in the vein of Fakcharoenphol et al. [I8], henceforth FRT embedding, would
give rise to fast and efficient parallel approximations for a large class of graph problems. Unfortu-
nately, the degree of concurrent parallelism and efficiency, i.e., trade-off between depth and work,
that is achieved by state-of-the-art parallel algorithms for this purpose is suboptimal. Concretely,
all algorithms of polylogn depth use Q(n?) work, whereas we are not aware of any stronger lower
bound than the trivial Q(m) work bound

Our Contribution Reducing the amount of work to obtain an FRT embedding in graphs with
m < n? without sacrificing the depth bound of polylogn is the primary motivation of this paper.
We present the following results.

e For any constant € > 0, there is a randomized parallel algorithm of depth polylogn and work
O(m!*) that computes a metric tree embedding of expected stretch O(logn) w.h.p.

e The work can be reduced to O(m + n'tO®)) when stretch O(¢~!logn) is acceptable, by
applying the spanner construction of Baswana and Sen [§] as a preprocessing step.

!By dist(v, w, G) we refer to the distance between v and w in G; dist(-, -, G) gives rise to a metric space.

ZPartition V = AU B evenly, and add spanning trees of A and B consisting of edges of weight 1. Connect A and
B with m —n — 2 edges, either all of weight W > n (w.p. 1/2), or all of weight W but one uniformly chosen weight-1
edge. To approximate the distance between a € A and b € B better than factor W/n >> logn with probability
substantially larger than 1/2, any algorithm must examine Q(m) edges in expectation.



e A key tool in achieving this goal is an algebraic interpretation of “Moore-Bellman-Ford-like”
(MBF-like) algorithms. Since our framework subsumes a large class of previous algorithms
and explains them from a different perspective, we consider it to be of independent interest.

o We illustrate the utility of our main results by providing efficient approximation algorithms
for k-median and buy-at-bulk network design in Appendix [Bl

e Furthermore, our techniques allow to improve over previous distributed algorithms computing
tree embeddings in the Congestﬁ model [33]; this is detailed in Appendix [Cl

Our Approach Khan et al. show how to compute an FRT embedding by a distributed algo-
rithm [25] in the Congest model [33]. Their algorithm gives rise to an O(SPD(G)) depth par-
allel algorithm, where the shortest-path diameter (SPD) is the maximum over all pairs of nodes
v,w € V of the minimum hop length of a path p from v to w with w(p) = dist(v,w,G). Intu-
itively, SPD(G) captures the number of iterations of MBF-like algorithms: Each iteration updates
distances (see below), so the (SPD(G) + 1)-th iteration does not yield new information. Unfortu-
nately, SPD(G) = n — 1 is possible, so applying this algorithm naively results in poor performance.

A natural idea is to reduce the number of iterations the algorithm by Khan et al. requires by
adding “shortcuts” to the graph. Cohen [I3] provides an algorithm of depth polylogn and work
mtOE) that computes a (d,e)-hop set with d € polylogn: a set of n1tO) additional edges E' such
that dist(v, w, G) < dist(v,w,G’) < dist?(v,w,G") < (14 ¢)dist(v, w, G) for all v,w € V, where G’
is G augmented with E’ and distd(v,w, G') is the minimum weight of a v-w-path with at most d
edges in G’. In other words, Cohen computes a metric embedding with the additional property that
polylogarithmically many MBF-like iterations suffice to determine (1 + ¢)-approximate distances.
The course of action might now seem obvious: Run Cohen’s algorithm, then run the algorithm by
Khan et al. on the resulting graph for d € polylog n rounds, and conclude that the resulting output
corresponds to a tree embedding of the original graph G of stretch O((1 + ¢)logn) = O(logn).

Alas, this reasoning is flawed: The FRT construction crucially relies on the fact that the dis-
tances form a metric, i.e., satisfy the triangle inequality. An approximate triangle inequality for
approximate distances is insufficient, since the FRT construction relies on the subtractive form of
the triangle inequality, i.e., dist(v, w,G") — dist(v,u, G") < dist(w,u, G") for arbitrary v,w,u € V.
We overcome this obstacle by embedding G’ into a complete graph H on the same node set that
(1 4 o(1))-approximates distances in G but fulfills SPD(H) € polylogn. In other words, where
Cohen preserves distances exactly and ensures existence of approrimately shortest paths with few
hops, we preserve distances approximately, but guarantee that we obtain exact shortest paths with
few hops. Unfortunately, this introduces a new obstacle: As H is complete, we cannot explicitly
compute H without incurring Q(n?) work.

MBF-like Algorithms This is where our novel perspective on MBF-like algorithms comes into
play. It is well-known [2} [35] that distance computations can be performed by multiplication with
the (weighted) adjacency matrix A over the min-plus semiringﬁ Smin + = (R>pU{oo}, min, +). For
instance, if B = A" with h > SPD(G), then b, = dist(v, w, G).

In an iteration of an MBF-like algorithm, (1) the information stored at each node is propagated
to its neighbors, (2) each node aggregates the received information, and (3) optionally filters out

3In the Congest model, the nodes of the graph perform the computation, communicating over the graphs edges
in synchronous rounds. Nodes initially know their neighborhood in the graph and need to determine the local part
of the output only. Local computation is free; the main limitation is that messages are of size O(logn).

1A semiring is a ring without inverse elements w.r.t. the semiring’s “addition” (here min).



uninteresting parts. For example, in order for each node to determine the k£ nodes closest to it, each
node stores vertex/distance pairs (initially only themselves at distance 0), (1) communicates them
to its neighbors (distances uniformly increased by the corresponding edge weight), (2) aggregates
the received values by picking the vertex-wise minimum, and (3) discards all but the pairs but the
k corresponding to the closest sources.

In terms of the semiring, propagation is the “multiplication” with an edge weight, and ag-
gregation is “summation.” The (i 4+ 1)-st iteration results in z0*tD = rV Az(®) where 7 is the
(vertex-wise) filter, A as above, and € MY the node values. Both M and M" form semimodulesd]
over Spin,+-

In other words, in an h-iteration MBF-like algorithm each node determines its part of the
output based on its h-hop distances to all other nodes. However, for efficiency reasons, various
algorithms [3] 6] [7, 24) 27, 28] 29] compute only a subset of these distances. The role of the filter
is to remove the remaining values to allow for better efficiency. The core feature of an MBF-
like algorithm is that filtering is compatible with propagation and aggregation: If a node discards
information and then propagates it, the discarded parts must be “uninteresting” at the receiving
node as well. We model this as equivalence classes of node states; filters simply pick suitable
(efficiently encodable) representatives of such classes, and the equivalence relation has to be a
congruence relation on the semimodule of possible node states.

This helps us to determine an FRT embedding as follows. First, we observe that acquiring the in-
formation required to represent an FRT embedding can be done by an MBF-like algorithm. Second,
we can simulate any MBF-like algorithm on H, without explicitly storing H, using polylogarithmic
overhead and MBF-iterations on G’: Due to the way H is constructed, we can rewrite its adjacency
matrix as Ay = @ﬁ\\zo P,\AiPA, where @ is the “addition” of functions induced by the semimodule,
P, is a simple projection, A) is essentially the adjacency matrix of G', and A € O(logn). Because
we are interested in rV A% 2(®) we may compute (r" @ﬁ\\zo Py(rV APz instead: Y is a
projection that preserves equivalence classes, so we may apply it to intermediate results. Note
that applying (TVA)\)d basically means to iterate d times on G’, and the repeated application of
rV keeps the intermediate results small, ensuring that we can perform multiplication with Ay with
O(|E| + |E')) € O(m!'*¢) work. As d, h € polylogn, this yields a highly efficient parallel algorithm
of depth polylog n and work O(m!+%).

1.1 Related Work

We confine the discussion to undirected graphs.

Classic Algorithms for Distance Computation The earliest—and possibly also most basic—
algorithms for single-source shortest paths (SSSP) computation are Dijkstra’s algorithm [I7] and
the Moore-Bellman-Ford (henceforth MBF) algorithm [9] [19] [32]. From the perspective of parallel
algorithms, Dijkstra’s algorithm performs excellent in terms of work, requiring O(m) computational
steps, but suffers from being inherently sequential, processing one vertex at a time.

While the MBF algorithm also has depth Q(n) in the worst case and may require Q(nm) work,
it can perform substantially better. Concretely, the MBF algorithm can be interpreted as a fixpoint
iteration Azt = Az where A is the adjacency matrix of the graph G and “multiplication”
and “addition” are replaced by + and min, respectively (compare Section [[.2]). From this point of
view, the shortest path diameter (SPD) of G, SPD(G), is the number of iterations until a fixpoint

5A semimodule supports scalar multiplication (propagation) and provides a semigroup (representing aggregation).



is reached. More precisely, MBF thus has depth O(SPD(G)) and work O(m SPD(G)), and it is
possible that SPD(G) € O(1).

One may overcome the issue of large depth entirely by performing the fixpoint iteration on
the matrix instead: setting A := A and iterating AC+t1) := AW AG  after [log SPD] < [logn]
iterations a fixpoint is reached [15]. The final matrix then, in fact, has as entries exactly the
pairwise node distances, and the computation has polylogarithmic depth. This comes at the cost of
Q(n?) work (even if m < n?), but in dense graphs it is as efficient in terms of work as (n instances
of) Dijkstra’s algorithm for solving APSP, without having depth Q(n).

Approximate Distances As metric embeddings reproduce distances only approximately, we
may base them on approximate distance computation in the original graph. Using rounding tech-
niques and embedding the min-plus semiring Spin+ = (R>o U {oo}, min, +), see Section [[.2} into
a polynomial ring, this enables to use fast matrix multiplication to speed up the aforementioned
fixpoint iteration AU+ = A®A® [35]. This reduces the work to O(n®) at the expense of ap-
proximating distances up to factor (1 + o(1)) only, where w < 2.3729 [20] denotes the fast matrix
multiplication exponent. However, even if the conjecture that w = 2 holds true, this technique
must result in Q(n?) work, simply because 2(n?) pairwise distances are computed.

For SSSP, for a long time there was no work-efficient low-depth parallel algorithm, even when
allowing for approximation. This was referred to as the “sequential bottleneck:” matrix-matrix
multiplication was inefficient in terms of work, while exploring (shortest) paths sequentially resulted
in depth Q(SPD(G)). Klein and Subramanian [26] showed that depth O(y/n) can be achieved with
O(m\/ﬁ) work, beating the n? work barrier with sublinear depth in sparse graphs. As an aside,
similar bounds were later achieved for exact SSSP computation by Shi and Spencer [34].

In a seminal paper, Cohen [13] proved that SSSP can be approximately solved with depth
polylog n and near-optimal (N)(mH'€ ) work, for any constant choice of ¢ > 0. Her approach is based
on an efficient randomized parallel hop set construction, adding O(m”e) edges so that, for some
d € polylogn, it holds that d-hop distances are at most by factor 1 + 1/ polylogn larger (and
never smaller) than the original distances. As d MBF iterations in the augmented graph compute
these d-hop distances, this yields an efficient SSSP approximation algorithm. Perhaps surprisingly,
similar guarantees can be achieved deterministically. In a recent result, Henziger et al. [24] show
that a hop set yielding (1 + 1/ polylog n)-approximate distances for d € 20(Vlogn) = o) can be
computed with depth 20(VTogn) — po(1) and work m20(Vieen) m1+°(1)ﬁ

Metric Tree Embeddings When metrically embedding into a tree, in general it is impossible
to guarantee a small stretch. For instance, when the graph is a cycle with unit edge weights, it is
impossible to embed it into a tree without having at least one edge with stretch Q(n). However, on
average the edges in this example are stretched by a constant factor only, justifying the hope that
one may be able to randomly embed into a tree such that, for each pair of nodes, the expected stretch
is small. A number of elegant algorithms [3| [6] [7, (18] compute tree embeddings, culminating in the
one by Fakcharoenphol, Rao, and Talwar (FRT) [I8] that achieves stretch O(logn) in expectation.
This stretch bound is optimal in the worst case, as illustrated by expander graphs [7]. Mendel and
Schwob show how to sample from the FRT distribution in O(m) steps [30], matching the trivial
Q(m) lower bound up to polylogarithmic factors. However, their approach relies on a pruned
version of Dijkstra’s algorithm for distance computations and hence does not lead to a low-depth
parallel algorithm.

5The authors focus on Congest algorithms, which can be interpreted in our framework to infer the stated bounds.



Several parallel and distributed algorithms compute FRT embeddings [10} 2], 25]. These algo-
rithms and ours have in common that they (essentially) represent the embedding by least element
(LE) lists, which were first introduced in [12), 14]. In the parallel case, the state-of-the-art solution
due to Blelloch et al. [I0] achieves O(log?n) depth and O(n?logn) work. However, Blelloch et al.
assume the input to be given as an n-point metric, where the distance between two points can be
queried at constant cost. We note that our approach is more general, as we could interpret the
metric as a complete weighted graph (using the query access to determine edge weights) of shortest
path diameter 1 and then solve in a single MBF iteration; this reproduces the result by Blelloch
et al. Moreover, this point of view shows that it is necessary that the input is a (sparse) graph
to achieve subquadratic work: in case of a metric, the trivial work lower bound of Q(m) always
translates to (n?). For graph inputs, we are not aware of any algorithms achieving polylog n depth
at a non-trivial work bound, i.e., not incurring the (n3) work caused by relying on matrix-matrix
multiplication.

In the distributed setting, Khan et al. [25] show how to compute LE lists in O(SPD(G)logn)
rounds in the Congest model [33]. On the lower bound side, trivially Q(D) rounds are required,
where D is the maximum hop distance (i.e., ignoring weights) between nodes. However, even if
D € O(logn), Q(y/n) rounds are necessary [16} 21]. Extending the algorithm by Khan et al., in [21]
it is shown how to obtain a round complexity of O(min{n'/?*¢, SPD(G)} + D) for any ¢ > 0, at
the expense of increasing the stretch to O(¢~!logn). We partly build on these ideas; specifically,
the construction in Section Bl can be seen as a generalization of the key technique from [2I]. As
detailed in Appendix [C] our framework subsumes these algorithms and can be used to improve on
the result from [21]: Leveraging further recent results [24] 29], we obtain a metric tree embedding
with expected stretch O(logn) that is computed in min{n!/2+°() 4 pl+e() O(SPD(G))} rounds.

1.2 Notation and Preliminaries

We consider weighted, undirected graphs G = (V, E,w) without loops or parallel edges. Unless
specified otherwise, we set n := |[V|, m := |E|, and V = {vy,...v,}. For an edge e = {v,w} € E,
we write w(v,w) := w(e), and fix w(v,v) := 0 for v € V and w(v,w) := oo for {v,w} ¢ E. We
assume that the ratio between maximum and minimum edge weight is polynomially bounded in
n and that each edge weight and each constant can be stored with sufficient precision in a single
register!] We assume that G is given in the form of an adjacency list. W.l.o.g., we assume that
there are no isolated nodes; in particular, n € O(m).

Let p C E be a path. p has |p| hops, and weight w(p) := Zeepw(e). For the nodes v,w € V
let P(v,w, G) denote the set of paths from v to w, and Ph(v, w, @) the set of such paths using at
most h hops. We denote by dist" (v, w, G) := min{w(p) | p € P"(v,w, )} the minimum weight
of an h-hop path from v to w, where (by slight abuse of notation) min( := oo; the distance
between v and w is dist(v, w, G) := dist" (v, w, G). The shortest path hop distance between v and
w is hop(v,w,G) = min{|p| | p € P(v,w,G) ANw(p) = dist(v,w,G)}; MHSP(v,w,G) := {p €
phop(w.G) (y . Q) | w(p) = dist(v, w, G)} denotes all min-hop shortest paths from v to w. Finally,
the shortest path diameter (SPD) of G is SPD(G) := max{hop(v,w,G) | v,w € V'}.

We assume 0 € IN and denote for & € IN by [k] := {0,...,k}. For a set N and k € IN we
define (]IX ) :=={M C N | |[M| =k} and denote by id: N — N the identity function. We use weak

asymptotic notation hiding polylogarithmic factors in n: O(f(n) polylog(n)) = O(f(n)), etc.

"As we are interested in approximation algorithms, O(logn) bits suffice to encode values with sufficient precision.



Model of Computation We use an abstract model of parallel computation similar to those used
in circuit complexityﬁ The computation is represented by a directed acyclic graph (DAG) with
constantly bounded maximum indegree, where nodes represent words of memory that are given as
input (indegree 0) or computed out of previously determined memory contents (non-zero indegree).
When a word is computed, this happens with a constant number of basic instructions, e.g., addition,
multiplication, comparison, etc.; here, we also allow for the use of (independent) randomness. For
simplicity, a memory word may hold any number computed throughout the algorithm. As pointed
out earlier, for our purposes O(log n)-bit words suffice in all cases.

An algorithm defines, given the input, the DAG and how the nodes’ content is computed, as well
as which nodes represent the output. Given an instance of the problem, the work is the number
of nodes of the corresponding DAG and the depth is the longest path in the graph. Assuming
that there are no read or write conflicts, the work is thus (proportional to) the time required by
a single processor (of uniform speed) to complete the computation, whereas the depth is the time
required by an infinite number of processors. Note that the DAG may be a random graph, as the
algorithm may use randomness, implying that work and depth may be random variables. When
making probabilistic statements, we require that they hold for all instances, i.e., the respective
probability bounds are satisfied after fixing an arbitrary instance.

Probability A claim holds with high probability (w.h.p.), if it occurs with a probability of at least
1 —n~¢ for any fixed choice of ¢ € R>1; ¢ is a constant in terms of the O-notation. We use the
following basic statement frequently and implicitly throughout this paper.

Lemma 1.1. Let &, ...,&; be events occurring w.h.p., and k € polyn. & N---NE; occurs w.h.p.

Proof. We have k < an® for fixed a,b € R+, and choose that all £ occur with probability 1 —n ¢
with ¢ = ¢+ b+ log,, a for some fixed ¢ > 1. The union bound yields

k
P& N---NE < Z | < kn~=¢ = an’n=c"t"logn e — ¢, (1.1)

and £ N ---N & occurs w.h.p. as claimed. O

Hop Sets A graph G = (V, E,w), contains a (d,e)-hop set if
Yo,weV: distd(v,w,G) < (1 +¢)dist(v, w, G), (1.2)

e., if its d-hop distances are a (1 + ¢)-approximation of its distances. This definition is based on
Cohen [13], who describes how to efficiently add edges to G to establish this property.

Distance Metrics The min-plus algebra Spin+ = (R>¢ U {oco}, min, +) forms a semiring, i.e.,
a ring without additive inverses (see Definition [A.2] in Appendix [Al). For the sake of presentation,
we associate @ and ® with the addition and multiplication of the underlying ring throughout the
paper; in this case we use a @ b := min{a,b} and a © b := a + b. Observe that co and 0 are the
neutral elements w.r.t. @ and ®, respectively. We follow the standard convention to occasionally
leave out ® and give it priority over @, e.g., interpret ab@®c as (a®b) @ c for all a,b,c € R>oU{o0}.

8The goal here is to avoid being distracted by details such as read or write collisions or load balancing issues
typical to PRAM models, noting that these can be resolved with (at most) logarithmic overheads.



The min-plus algebra is a well-established tool to determine pairwise distances in a graph
via the distance product, see e.g. [2, B5]. Let G = (V,E,w) be a weighted graph and let A €
(R>p U {00})V*V be its adjacency matriz A, given by

Ay = w(V, W). (1.3)

Throughout this paper, the operations involved in matrix multiplication are induced by the ring
operations of Sy +, i.e., for square matrices A, B with row and column index set V', we have

(A® B)yyw = min{ayy, byw }, and
(AB)yy = Lrg‘g{avu + buw}-

The distance product A" corresponds to h-hop distances, i.e., (A")y, = dist"(v,w,G) [2]. In
particular, this corresponds to the exact distances between all pairs of nodes for h > SPD(G).

2 MBF-like Algorithms

The Moore-Bellman-Ford (MBF) algorithm [9, 19, B82] is both fundamental and elegant. In its
classical form, it solves the single-source shortest path (SSSP) problem: In each iteration, each
node communicates its current upper bound on its distance to the source node s (initially co at all
nodes but s) plus the corresponding edge weight to its neighbors, which then keep the minimum of
the received values and their previously stored one. Iterating h times determines all nodes’ h-hop
distances to s.

Over the years, numerous algorithms emerged that use similar iterative schemes for distributing
information [3, [6, [7, 18} 24, 27, 28, 29]. It is natural to ask for a characterization that captures
all these algorithms. In this section, we propose such a characterization: the class of MBF-like
algorithms. The common denominator of these algorithms is the following;:

e The initial state vector z(®) contains information initially known to the nodes.
e In each iteration, information is first propagated along all edges.

e All nodes then aggregate the received information. This and the previous step are precisely
the same as updating the state vector () by the matrix-vector product z(*+) = Az® over
the min-plus semiring.

e Finally, redundancies are filtered out before moving on to the next iteration.

As a concrete example, consider the task of determining for each node the list of its k closest nodes.
To this end, one needs to consider all nodes as sources, i.e., run the multi-source variant of the
classic MBF algorithm with all nodes as sources. Nodes store values in (R U {oo})", so that in
iteration 4 each node v € V knows dist’(v,w, G) € Rxo U {00} for all w € V. Initially, xz(,% is 0
if v = w and oo everywhere else (the 0-hop distances). Propagating these distances over an edge
of weight w(e) means increasing all these distances by w(e). During aggregation, the vertex-wise
minimal distance is picked. This is costly due to possibly maintaining at each node non-oo distance
values for all other nodes. To increase efficiency, we filter out, in each iteration and at each node,
all source/distance pairs but the k pairs with smallest distance. This reduces the amount of work
by a factor of ©(n/k) compared to the naive approach.

The filtering step thus generalizes from classic MBF to an “MBF-like” algorithm, with the goal
of reducing work. The crucial characteristics exploited by this idea are the following.



e Propagation and aggregation are interchangeable. It makes no difference whether two pieces
of information are propagated separately or as a single aggregated piece of information.

e Filtering or not filtering after aggregation has no impact on the correctness (i.e., the output),
only on efficiency.

In this section, we formalize this approach for later use in more advanced algorithms. To this
end, we develop a characterization of MBF-like algorithms in Sections 21123l Sections 2.4l and 2.5
establish basic properties and apply our characterization to existing algorithms.

2.1 Propagation and Aggregation

Let M be the set of possible values that an MBF-like algorithm can store at a vertex. We represent
propagation of x € M over an edge of weight s € R>gU {00} by s ® x and aggregation of z,y € M
at some node by x @ y; filtering is discussed in Section Concerning aggregation of information,
we demand that &: M x M — M is associative and has a neutral element 1 € M encoding no
available information, hence (M, @) is a semigroup with neutral element LE For propagation with
®: R>p U {oo} x M — M, we require for all s, € R>oU {oo} and z,y € M:

0oz ==x (2.1)
co®xr =1 (2.2)
sOdY)=(s0z)®(sOY) (2.3)
(set)orx=(sOz)d (tO) (2.4)
(sOt)Oor=s0(tOx). (2.5)

Our requirements are quite natural: Equations (2.I]) and (2.2]) state that propagating information
over zero distance does not alter it, and that propagating it infinitely far away means losing it,
respectively. Note that 0 and oo are the neutral elements w.r.t. © and @ in Spyin,+. Equation ([23)
says that propagating aggregated information is equivalent to aggregating propagated information,
Equation (2.4]) means that propagating information over a shorter of two edges is equivalent to
moving it along both edges and then aggregating it, and Equation (2.5]) states that propagating
propagated information can be combined in one step.

Altogether, this is equivalent to demanding that M = (M, ®, ®) is a zero-preserving semimodule
over Smin,+ (see Definition [A.3lin Appendix [A]). For simplicity, in the following we fix the semiring
to always be Spin+, i.e., whenever referring to a semimodule, it is over Spyin . Moreover, we
write € M to indicate that x € M and @& and ® operations involving x are those of M.

The straightforward choice of M being the direct product of |V'| copies of R>gU{oo} is suitable
for most applications we consider.

Definition 2.1 (Distance Map). The distance map semimodule D := ((R>o U {oo})V,®,®) is
given by, for all s € R>g U {00} and z,y € (R U {oc})V,

(x @ y)o = min{wy, Yo } (2.6)
(S © .Z')v =8+ Ty

where | := (00,...,00) € (RxoU {oo})" is the neutral element w.r.t. ©.

%Note that we “overload” the symbols for @ and @, as it is clear from context which operation is meant.
10T principle, it is possible use different semirings. The generalization is straightforward.



Observation 2.2. D is a zero-preserving semimodule with zero 1 = (oo,...,00).

Distance maps can be represented by only storing those distances (and their indices from V)
that are not oo. This is of interest when there are few non-oo entries, which can be ensured by
filtering (see below). In the following, we denote by |z| the number of non-co entries of z € D.

The following lemma shows that it is possible to efficiently aggregate distance maps represented
like this.

Lemma 2.3. Suppose x1,...,x, € D are stored in lists of index/distance pairs as above. Then
D, xi can be computed with O(logn) depth and O(>""_| |z;|logn) work.

Proof. We sort |J;_; z; in ascending lexicographical order. This can be done in parallel with
O(log(>_iq |z4])) € O(logn) depth and O(3_7 |z;|logn) work [I]. Then we delete each pair for
which the next smaller pair has the same index; the resulting list hence contains, for each v € V
for which there is a non-oco value in some list x;, the minimum such value. As this operation is easy
to implement with O(logn) depth and O(>} ; |x;|logn) work, the claim follows. O

The remaining statements of this section are not specific to D, so we make them with respect
to a generic semimodule M.

2.2 Filters

MBF-like algorithms maintain efficiency by propagating only a filtered (small) representative of the
information they obtained. Our next goal is to capture the properties a suitable filter must satisfy
for the intuition of filtering being optional and not affecting output correctness. We start from a
congruence relation on M, i.e., an equivalence relation that is compatible with propagation and
aggregation. The filter r: M — M is a function that projects all members of an equivalence class
to an appropriate representative within that class, compare Definition

Definition 2.4 (Congruence Relation). Let M = (M, ®,®) be a semimodule and ~ an equivalence
relation on M. We call ~ a congruence relation on M iff

Vs € RyoU{x},Vo,2' € M: z~2' = sz~ sz’ (2.8)
Ve, o'y, e M: 2~ ANy~y =zdy~2' oy

A congruence relation induces a quotient semimodule.

Observation 2.5. Denote by [x] the equivalence class of x € M wunder the congruence relation
~ of semimodule M = (M,®,®). Set M/ := {[x] | x € M}. Then M/ = (M/,®,®) is a
semimodule with the opemtzons [z] ® [y] == [z D y] and s © [z] = [sz].

An MBF-like algorithm implicitly operates on this quotient semimodule, meaning that it op-
erates on suitable representatives of the equivalence classes that allow efficient computations. Ob-
taining such representatives is the task of the filtering step.

Definition 2.6 (Representative Projection). Let M = (M, ®,®) be a semimodule and ~ a con-
gruence relation on M. The function r: M — M is a representative projection w.r.t. ~ iff

Vee M: x~r(zx) (2.10)

Ve,ye M:  x~y=r(x)=r(y). (2.11)

Observation 2.7. A representative projection is a projection, i.e., 2 = 1.



The following lemma is useful for showing whether equivalence classes defined by a projection
yields a congruence relation, i.e., is suitable for MBF-like algorithms.

Lemma 2.8. Let r: M — M be a projection, and for all x,y € M, x ~y < r(x) =r(y). Then ~
18 a congruence relation with representative projection r if:

Vs € Ry U {x}, Vo, 2’ € M:  r(z) =r(2') = r(sx) = r(sz'), and (2.12)
Vo, o'y, e Mo r(x)=r@)Arly)=r@)=rxdy) =r@ o). (2.13)

Proof. Obviously, ~ is an equivalence relation, and r fulfills (2.10) and (ZII). Conditions (2.8))
and (2.9) follow from the preconditions of the lemma. O

An MBF-like algorithm has to behave in a compatible way for all vertices in that each vertex
follows the same propagation, aggregation, and filtering rules. This induces a semimodule structure
on the (possible) state vectors of the algorithm in a natural way.

Definition 2.9 (Power Semimodule). Given a node set V' and a zero-preserving semimodule M =
(M, ®,0), we define MV = (MY, ®,®) by applying the operations of M coordinatewise, i.e.,
Vo,we MV, s € Rsg U {00} :

(z @ y)y = 2y © Yy, and (2.14)
(8@ T)y =8O Xy (2.15)

Furthermore, by rV we denote the componentwise application of a representative projection r of
M, i.e.,
(rVx), = r(z,), (2.16)

and define the equivalence relation ~ via x ~ y iff T, ~ y, for allv e V.

Observation 2.10. MY is a zero-preserving semimodule with neutral element 1V := (L,...,L)e

MV, where L is the neutral element of M. The equivalence relation ~ induced by rV is a congruence

relation on MV with representative projection rV .

2.3 The Class of MBF-like Algorithms
The following definition connects the properties introduced and motivated above.
Definition 2.11 (MBF-like Algorithm). An MBF-like algorithm A is determined by
1. a zero-preserving semimodule M = (M,®,®) over Smin+ = (R>¢ U {oo}, min, +),
2. a congruence relation on M with representative projection r, and
3. initial values 9 € MV for the nodes,
where £ depends on the input graph. On a weighted graph G, h iterations of A determine
AMNG) = 2P = 1V ARz (2.17)
where A is the adjacency matriz of G as defined in Equation (L3)).

The i-th iteration of an MBF-like algorithm determines z() := ¥ Az(—1) (propagate, aggregate,
and filter). Thus, h iterations yield (r" A)"z(®), which we show to be identical to ¥ A"z(®) in
Section 24l We remark that after at most SPD(G) < n iterations, a fixpoint is reached, i.e.,
20+ = () Hence, we abbreviate A(G) := A™(G) for convenience.
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2.4 Manipulating the State of MBF-like Algorithms

As motivated above, an MBF-like algorithm A efficiently represents intermediate results by choosing
a compact representation by applying r"'. We show the feasibility of this approach by interpreting
the performed operations on a semiring of functions compatible with these equivalence classes.
These functions are a subset of the functions on the aforementioned quotient semimodule M/
(which we do not introduce explicitly), and the function semiring is a subset of the semiring of
linear functiond on M [~

The functions f of interest are “simple” in the sense that they map = € M" such that (f(z)),
is a linear combination of the coordinates x,,, w € V, of x.

Definition 2.12 (Simple Linear Function). Let M = (M, ®,®) be a semimodule over Syin +. A
matriz A € (R>o U {00})V*V defines a simple linear function A: MY — MV (and vice versa) by

(A(x))v = (Ax)v = @ Ay Loy - (218)

weV

Thus, each iteration of an MBF-like algorithm is an application of the simple linear function
given by the adjacency matrix, followed by application of V.

Example 2.13 (Non-simple Linear Function). We remark that not all linear functions on MY
are simple. For a counter-example, suppose V.= {1,2}, M = Smm 4+ and consider f: MYV - MV

given by ((f(z))1)1 = (z1)1 ® (z1)2 and ((f(z))y)w = oo for v # 1 orw # 1. Clearly f is linear,
but since it acts on x1 in a non-trivial way, it is not simple.

We require an intermediate lemma stating that equivalence is preserved by linear combinations.

Lemma 2.14. Let M = (M,®,®) be a semimodule and ~ a congruence relation on M. Further-
more, for some k € N, let 1,...,zx, @}, ...,z € M such that z; ~ x, for all 1 < i < k. Then for
all s1,..., 8, € R>o U {oo}, it holds that

k k
@ SiT; ~ @ ST, (2.19)
i=1 i=1

Proof. We show the claim by induction over k. For k = 1, the claim follows from Equation (2.8]).
Regarding k > 2, suppose the claim holds for £ — 1. Since xk ~ ), by ([2.8) we have that
skxy ~ SpTy. The induction hypothesis yields @Z 1 SiT; ~ @Z 1 siz}. Hence,

k

Sll‘k = Six; | DB spxp z3 sl | B spx), = 8T} (2.20)
i=1
i

O

We proceed to show important properties of simple linear functions. First of all, they map
equivalent parameters to equivalent results, which is crucial when switching between dealing with
filtered and unfiltered states. Furthermore, we show that matrix addition and multiplication are
equivalent to the addition and concatenation of simple linear function matrices. In the following, for
simple linear functions A and B, we write (A®B)(z) — A(x)®B(z), and (AoB)(x) — A(B(x)). We
denote by Ax and AB matrix-vector and matrix-matrix multiplication, respectively, and by A&® B
componentwise “addition” of matrices; as addition and concatenation of functions are associative,
the equivalence we show now justifies this notation without parenthesis.

" A linear function f on semimodule M satisfies for all z,y € M and s € R>o U {oo} that f(x ®y) = f(z) ® f(v)
and f(s©@x) =s0O f(z).

11



Lemma 2.15. Let A and B be simple linear functions and x ~ x' € M. Then

Ax ~ Ax', (2.21)
(A® B)(z) = (A® B)z, and (2.22)
(Ao B)(z) = ABz. (2.23)

Proof. Regarding (Z21)), we have for all v € V

(Azx), = @ Ay Ty 3 @ ATy, = (Az'),. (2.24)

weV weV

As for ([2.22)) and ([2.23)), observe that for all v € V|

(A® B)(x))y = @(avw @ byw)Tw = @(A @ B)ywrw = ((A® B)x),, as well as (2.25)
weV weV

(Ao B)(x))y = P avu <@ buwxw> NSS! (@ avubuw> 2w = P (AB)ywzw = (ABz),.0
ueV weV weV \ueV weV

Due to this lemma, in the following we identify simple linear functions and their matrices. We
proceed to formalize in what manner an MBF-like algorithm operates on M /..

Lemma 2.16 (Simple Linear Function Semirings). Denote by F the set of simple linear functions
on semimodule M and let ~ be a congruence relation on M with representative projection r.

1. F=(F,®,0) is a semiring.

For A € F, [A][z] := [Az] defines a simple linear function on M/...
For A,BeF, [A]®[B] =[A® B] and [A] o [B] = [AB].

Setting F/. :={[A] | A€ F}, F/v = (F/~,®,0) is a semiring.

SR

[Pz := [rVz] defines a simple linear function on F/., which in fact is the multiplicative

identity of the semiring.

Proof. We first argue that (F,@®,0) is a semiring. This readily follows from Lemma 215 which
states that addition and concatenation of simple linear functions is equivalent to addition and
multiplication of their matrices, respectively. In other words, (F,®, o) is isomorphic to the matrix
semiring ((R>o U {co})V*V, @, ).

To show the second statement, observe that for any x ~ y and all v € V', we have

(Ax)v = @ ApwTw @ @ QypwYw = (Ay)m (2'26)
weV weV

implying that [A] is well-defined as a function on M/, (i.e., [Az] does not depend on the choice of
the representant x € [y]). To see that it is linear, we compute

[Allz] @ [Ally] = [Az] © [Ay] = [Az © Ay]

[Al(sz) = [A(sx)] = [s(Az)]

Az ®y)] = [Al(x ® y), and (2.27)
s[Ax] = s[A]x. (2.28)

12



To see that it is also simple, note that

([A][z])y = [Az], = [EB awa:w] = P avwlzw]. (2.29)

wevV

The third statement follows from Lemma 2.15] immediately also implying the fourth. Finally,
by definition  ~ rVz, i.e., [r] = [rVa] for all z € M. Therefore, [rV] is the identity function,
which is the multiplicative identity of F /.. U

The following corollary is a key property used throughout the paper. It allows us to apply
filter steps, whenever convenient. We use this to simulate MBF-like iterations on an implicitly
represented graph whose edges correspond to entire paths in the original graph. This works because
intermediate filtering steps are allowed.

Corollary 2.17 (rV' ~ id). For any simple linear function A and representative projection r on
M, it holds that
VA~ A ~ A, (2.30)

where ~ extends to functions by A ~ B iff A(x) ~ B(x) for all x € M. In particular, for any
MBF-like algorithm A, we have that

AM@) = (rV A2 =V AP O), (2.31)

We stress that both the restriction to simple linear functions and the componentwise application
of r to determine " are crucial for Lemma 2.16] and Corollary 17 to hold.

Example 2.18 (Non-simple linear functions break Corollary 2.17). Consider the case where V =
{1,2}, M = S¥1n7+, and the linear function f: MYV — MY given by ((f(z))1)1 = (1)1 © (21)2

and ((f(z))p)w =L forv#1 orw#1. If r(z) = (z1,00) for all x € M, we have that

() = (V) (B2 < o (20, .32

implying that vV f & frV.

Example 2.19 (Non-component-wise filtering breaks Corollary 2.I7). Suppose f is the simple
linear function given by fr = (mf“) and rV(x) = (:il), i.e., vV is not componentwise application

of some representative projection r on M, but still a representative projection on MV . Then we

B ) I ) P ) I e o

again implying that vV f & frv.

2.5 Algorithms

For the purpose of illustration, we give some basic examples in this section. Recall that in order
to specify an MBF-like algorithm, we have to provide a zero-preserving Spin +-semimodule M,
a representative projection of a congruence relation on M, initial states z© and the number of
iterations h (compare Definition ZIT). D = ((R>¢ U {c0})V,min, +) is a valid choice of M by
Lemma 22]

13



Example 2.20 (SSSP). Single-source shortest paths (SSSP) requires to determine the h-hop dis-

tance to s € V for all v € V. It is solved by an MBF-like algorithm with M = Spin 4, r = id, and

) = 0, xz()o) = oo for all v # s. Alternatively, one may use M =D, (r(x))y, =z, if v =5 and

(0)

(r(z))y, = 0o otherwise, and (xy ')y =0 if v =w = s and (xvo Jw = 00 otherwise.

0
2l

Example 2.21 (k-SP). k-shortest paths (k-SP) requires to determine, for each node, the k closest
nodes in terms of the h-hop distance disth(-, - G). It is solved by an MBF-like algorithm, as can be
seen by choosing M =D,

r(2)s {azv if x, is among the k smallest entries of x (ties broken by index) (2.34)

oo otherwise,

and x§,°> =e, = (00,...,00,0,00,...,00).

Example 2.27] is slightly more involved, as it may not be immediately obvious that r is a
representative projection. However, by Lemma 8, it suffices to show that 72 = r, r(z @ y) ~
r(z) ® r(y), and r(sz) ~ sr(z); each of these properties is easy to verify.

Example 2.22 (APSP). All-pairs shortest paths (APSP) is the task of determining the h-hop
distance between all pairs of nodes. It is solved by an MBF-like algorithm, because we can choose
k =n in k-SSP (resulting in r = id).

Example 2.23 (Forest Fires). The goal is to detect, for each node, if there is a forest fire within
distance d, where every node initially knows if it is on fire. For an MBF-like algorithm solving it,
piCk; €.9., M = Smin,-i—;

ifx <d
rlz) = 4% Hrso (2.35)
oo otherwise,
and xg,o) = 0 if there is a fire at v and :177(,0) = 00 otherwise.

Example 2.23] can also be handled in different ways. We could use M = D, (r(x)), = z, if
Ty < Iy for all w < v, 2, < xy for all w > v and z, < d, and z, = oo in all other cases, and
a:f)o) = e, as in Example 2211 This would also reveal the closest node on fire, whereas the solution
from Example 2.23] may operate in anonymous networks. It should also be noted that one can
interpret both of these solutions as instances of SSSP with a virtual source s ¢ V' that is connected
to all nodes on fire by an edge of weight 0. However, this requires a simulation argument and, if
the closest node on fire is to be determined, additional reasoning. Therefore, we believe that our
framework provides a cleaner perspective on the problem.

Finally, we point out that more advanced distributed algorithms computing tree embeddings
based on the FRT construction have straightforward interpretations in our framework. This is
discussed in Appendix [C] alongside an improved distributed algorithm based on the other results
of this work.

3 The Simulated Graph

In order to determine the tree into which G is embedded, we need to determine LE lists (compare
Section[B]). These are the result of an MBF-like algorithm, where  ensures that |r(z(®),| € O(log n)
w.h.p. for all i € {0,...,h}. This allows for performing an iteration with O(m) work. However,
doing so on G might require h > SPD(G), which in general can be as large as n — 1.
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To resolve this problem, we seek to reduce the number of iterations of the algorithm, accepting
a slight increase in stretch. Cohen [13] shows how to efficiently compute a (d,e)-hop set, i.e., a
small number of additional (weighted) edges for G, such that for all v,w € V, distd(v,w,G’) <
(14 ¢)dist(v, w, @), where G’ is G plus the additional edges.

Her algorithm is sufficiently efficient in terms of depth, work, and number of additional edges
to suit our needs. Yet, our problem is not solved: the FRT construction critically depends on
the triangle inequality and thus the use of exact distances. In this section, we resolve this issue
by embedding G = (V, F,w) with small stretch into a complete weighted graph H on node set
V so that SPD(H) € polylogn. Note that constructing H explicitly would cause Q(n?) work; we
navigate this obstacle in Section [ with the help of the machinery developed in Section Bl Our
construction requires to first add a hop set to G. For the sake of presentation, we assume G to
already contain a (d,e)-hop set throughout this section.

We begin our construction of H by sampling levels for the vertices V: Every vertex starts at
level 0. In step A > 1, each vertex in level A — 1 is raised to level A with probability 1/2. We
continue until the first step A + 1 where no node is sampled. A(v) refers to the level of v € V', and
A(e) to the level of e € E, the minimum of its endpoints’ levels.

Lemma 3.1. W.h.p., A € O(logn).

Proof. For ¢ € R>1, v € V has A(v) < clogn with probability 1 — (%)Clog” =1-n"¢ ie., whp.
Lemma [Tl yields that all nodes have a level of less than clogn w.h.p., and the claim follows. [

The idea is to use the levels in the following way. We devise a complete graph H on V. An
edge of H with level \ is weighted with the d-hop distance between its endpoints in G (which is
a (1 + e)-approximation of their exact distance by assumption), but multiplied with a penalty of
(14¢)A*. This way, high-level edges are “more attractive” for shortest paths, because they receive
smaller penalties.

Definition 3.2 (Simulated graph H). Let G = (V, E,w) be a graph that contains a (d,e)-hop set
with levels sampled as above. We define the complete graph H as

e (1)) o)

wal{v,w}) = (1 + )220 distd (v, w, Q). (3.2)

We formalize the notion of high-level edges being “more attractive” than low-level paths: Any
min-hop shortest path between to nodes of level A is exclusively comprised of edges of level A or
higher. Therefore, all min-hop shortest paths decompose into two subpaths, the first of increasing
and the second of decreasing level.

Lemma 3.3. Consider v,w € V, A = A(v,w), and p € MHSP(v,w, H). Then all edges of p have
level at least .

Proof. The case A = 0 is trivial. Consider 1 < A < A, and, for the sake of contradiction, let ¢ be a
(non-trivial) maximal subpath of p containing edges of level strictly less than A only. Observe that
q € MHSP (v, w', H) for some v/, w’ € V with A(v'), A(w’) > X\. We have

walg) > (1 + )"~ D dist(v/, ', ). (3.3)
However, the edge e = {v/,w'} has level A(v/,w’) > X and weight

wale) < (14 )M AMdist? (v, ', G) < (1 + )2 A D dist(v/, 0, G) < wa(q) (3.4)
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by construction. Since |¢| is minimal and A(v), A(w') > A, ¢ can only be a single edge of level A or
higher, contradicting the assumption. O

Since edge levels in a min-hop shortest path are first increasing and then decreasing, the next
step is to limit the number of hops spent on each level.

Lemma 3.4. Consider vertices v and w of H with \(v) = Aw) > X. Then w.h.p. one of the
following statements holds:

hop(v,w, H) € O(logn), or (3.5)
Vp € MHSP (v, w, H) Je € p: A(e) > A+ 1.

Proof. Condition on the event &y, that V) C V is the set of nodes with level A or higher (with
level A + 1 not yet sampled). Let Hy := (V), (‘g*),w,\) with wy({v,w}) = (1 + ) dist?(v, w, G)
denote the subgraph of H spanned by V) and capped at level \.

Consider p € MHSP(v,w, Hy). Observe that P[A(u) > A+ 1 | &y,] = 1 independently for all
u € Vy, and hence P[A(e) > A+ 1| &y, ] = % for all e € p. This probability holds independently
for every other edge of p. If |p| > 2clog, s3n for some choice of ¢ € R>1, the probability that p

contains no edge of level A 4+ 1 or higher is bounded from above by (%)|p|/2 < (%)01034/3" =n"¢ so
p contains such an edge w.h.p.

We show that for all ¢ € MHSP(v,w, H), w.h.p. (8.5]) or (B.6) holds. Observe that wp(q) <
wa(p). Furthermore, ¢ uses only edges of level A or higher by Lemma B3l If ¢ contains an edge
of level A + 1 or higher, (8.6]) holds for q. Otherwise, we have wy(q) = wa(q), and distinguish two
cases:

Case |p| > 2clogy zn:  Recall that w.h.p. p has an edge of level A + 1 or higher. This yields

wa(p) < wa(p), implying )
wap) < walp) < wi () = wala), (3.7)

which contradicts ¢ € MHSP (v, w, H).
Case [p| < 2clogy/3n:  Not unlike above, we have

wa(p) < wa(p) < walg) = walg), (3.8)
s0 wa(q) = wa(p) and |¢| < |p| € O(logn) follows.

Let &, denote the event that (B.5]) or (3:6]) holds for v,w € V. We conclude that

P | Av,w) > N = D~ PlEy, | Av,w) = NP | &3] (3.9)
VaCV

= > Py [ Mv,w) 2 A PEw | &) (3.10)

{v,w}CV,\CV
> > Py | Avw) = A1 -n) (3.11)

{vw}CVACV
=(1-n"% > PlEy, | AMv,w) > A (3.12)

VACV

=1—-n"¢ (3.13)
which is precisely the statement of the lemma. O
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We argue above that any min-hop shortest path in H traverses every level at most twice.
Furthermore, Lemma [B.4] states that w.h.p. each such traversal only has a logarithmic number
of hops, and Lemma [B1] asserts that there are only logarithmic ally many levels. The following
theorem concludes this section by making the connection to the shortest path diameter of H.

Theorem 3.5. W.h.p., SPD(H) € O(log®n). Furthermore, w.h.p. for all v,w € V,
dist(v, w, G) < dist(v, w, H) < (1 + €)°18™) dist(v, w, G). (3.14)

Proof. Fix a level A. Any fixed pair of vertices of level A or higher fulfills, w.h.p., (85) or (3.6)
by Lemma B4l Since there are at most (%) such pairs, w.h.p., all of them fulfill (3F) or (36) by
Lemma [Tl

Let &og denote the event that there is no higher level than A € O(logn), which holds w.h.p.
by Lemma [3.J1 Furthermore, let £, denote the event hat all pairs of vertices of level A or higher
fulfill (3.5) or (3.6]), which holds w.h.p. as argued above. Then £ = &os NE N --- N Ep holds w.h.p.
by Lemma [I.11

Condition on &; in particular, no min-hop shortest path whose edges all have the same level has
more than O(logn) hops. Consider some min-hop shortest path p in H. By Lemma B3] p has two
parts; in the first part, the edge level increases, and in the second part, it decreases. Hence, p can
be split up into at most 2A — 1 segments, in each of which all edges have the same level. As this
holds for all min-hop shortest paths, we conclude that SPD(H) € O(Alogn) C O(log?n) w.h.p.,
as claimed.

As for Inequality (B.14]), recall that H is constructed from G = (V, E,w), and that G contains
a (d,e)-hop set. For all v,w € V, we have

dist(v, w, H) < wp(v,w) < (14 &) dist?(v,w, G) < (1 +&)A dist(v, w, G) (3.15)
by construction of H. Recalling that A € O(logn) w.h.p., this completes the proof. O

To wrap things up: Given an arbitrary weighted graph G, we can efficiently augment G with a
(d,e)-hop set using the result of Cohen [13]. After that, the d-hop distances in G approximate the
actual distances in G, but these approximations may violate the triangle inequality. We fix this by
constructing H, which uses geometrically sampled node levels and an exponential penalty on the
edge lengths with decreasing levels.

H is a complete graph, so explicitly constructing it and running even a single iteration of an
MBF-like algorithm on it is prohibitively costly in terms of work. The next section shows how to
avoid this issue by efficiently simulating MBF-like algorithms on H.

4 The Oracle

Given a weighed graph G and any € > 0, Section Bl introduces a complete graph H that (1 + ¢)-
approximates the distances of G and has, w.h.p., a polylogarithmic shortest path diameter; here
we assume that G already contains a (d,e’)-hop set for suitable € € ©(¢/logn). Throughout this
section, we denote by Ag and Apy the adjacency matrices of G and H, respectively.

We do not explicitly write H into memory, as this requires an unacceptable (n?) work. Instead,
we dedicate this section to an oracle that takes an MBF-like algorithm A, a weighted graph G,
a number of iterations h, and returns A"(H). The properties of MBF-like algorithms discussed
in Section [2] allow the oracle to internally work on G and simulate iterations of A on H using a
polylogarithmic number of matrix-vector multiplications with Ag.
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We establish this section’s results in two steps: Section 1] derives a representation of Ay in
terms of Ag, which is then used to efficiently implement the oracle in Section The oracle is
used to construct an FRT embedding with polylogarithmic depth in Section [Bl

4.1 Decomposing H

The idea is to simulate one iteration of an MBF-like algorithm A on H using d iterations on G.
This is done for each level A € [A] in parallel. For level A\, we run A for d iterations on G with edge
weights scaled up by (1 4+ €)*~*, where the initial vector is obtained by discarding all information
at nodes of level smaller than A. Afterwards, we again discard everything stored at vertices not
of level A or higher. Since (A%),, = dist?(v,w,G), this ensures that we propagate information
between nodes v,w € V with A(v,w) = A with the corresponding edge weight, while discarding any
exchange between nodes with A(v, w) < A (which is handled by the respective parallel run). While
we also propagate information between v and w if A(v,w) > A—over a too long distance, because
edge weights are scaled by (1 4+ ) > (1 4 ¢)AA®®)__the parallel run for A\(v,w) correctly
propagates values. Therefore, aggregating the results of all levels (i.e., applying @, the source-wise
minimum) and applying 7" completes the simulation of an iteration of A.

This approach resolves two complexity issues. First, we multiply (polylogarithmically often)
with Ag, which—as opposed to the dense Ay—has O(m) non-co entries only. Second, Corol-
lary 217 shows that we are free to filter using 7V at any time, keeping the entries in state vectors
small.

We formalize the above intuition. Recall that

(Af)ow = wa(v,w) = (14 )20 dist? (v, w, G) = (14 &)* ) (AL) . (4.1)
For X € [A], denote by Py the MY -projection to coordinates Vy := {v € V | A(v) > A\}:

(Prz)y = {:” i M) 2 A (4.2)

1 otherwise.

Observe that Py is a simple linear function on MY where (Py )y, = 0if v = w € Vy and (Py)yw = 00
otherwise. This gives us the tools to decompose Ay as motivated above.

Lemma 4.1. With (Ay)pw := (1 +)* 2 (Ag)pw, we have

A

Ag = @P,\AglPA. (4.3)
A=0

Proof. Since (A% )y, = dist?(v, w, G), it holds that (AY)y, = (1 + )2~ dist?(v, w, G). Therefore,

. 1+ o)A M distd(v,w,G)  if w e V)
AP\ )y = AD) e + (P + = ( T 4.4
(AL s = min {(AD) o + (P)uao {OO sherwine, (Y
and hence
. 1+e)A M dist?(v,w,G) fv,w eV,
(P)\Agl\P)\)vw = min {(P)\)vu + (ASI\P)\)uw} = {( ) ( ) X A (45)
uevV 00 otherwise.
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We conclude that

A
(EB PAAﬁ\lPA> = min {(1 + o)A A dist?(v, w, G)} (4.6)

o0 AE[A(v,w)]
= (14 e)* ) Qist? (v, w, G) (4.7)
= (Al vw- O

Having decomposed Ap, we proceed with decomposing TVAFIL{, where h is the shortest path
diameter of H, taking the freedom to apply filters intermediately. For all A € IN, we have

A h A h
Ay D (@mm) zn ( (EBPMAMPA» (19

A=0 A=0

and hence, for all h > SPD(H)

A h
A(H) = AMH) = r¥ Aly2® BLES (W (@ PA(TVAA)dPA)) V2O, (4.9)
A=0

Observe that we can choose h € O(log?n) so that h > SPD(H) w.h.p. by Theorem 5] and recall
that d € polylog n. Overall, this allows us to execute A(H) with polylogarithmic depth and O(m)
work, provided we can implement the individual steps, see below, at this complexity.

4.2 Implementing the Oracle

With the decomposition at hand, the oracle can be implemented as follows. Simulate one iteration
of A on H for edges of level ), i.e., determine yy := Py(r¥ A))4Pyz(™ as follows: (1) Discard entries
at nodes of a level smaller than ), (2) run d iterations of A with distances stretched by (1 + &)~
on G, and (3) again discard at levels smaller than A. After this procedure is run in parallel for
all A € [A], we perform the € operation and apply the filter, i.e., each node v € V determines
iﬂv(fﬂ) = T(@AE[A} Ya)-

To be able to reason about the complexity of the individual operations, the following theorem
fixes the semimodule to be the distance map D = (Sr‘rfin’ +»®,®) given in Definition LIl Given that
all our examples and applications are covered by this special case, this appears to be no substantial
restriction.

Theorem 4.2. Suppose that M = D, where we represent x € D as list of index/distance pairs
(dropping all oo values). Assume that for each intermediate state vector y = (r¥ A\) 2@ for some
feld,ieclh], and X € [A], we can compute vV Ayz with depth D and work W. Then, w.h.p.,
A(H) can be executed with O((dD + logn)log®n) depth and O((d + logn)W log®n) work.

Proof. By Lemma B and Theorem B35, w.h.p. A € O(logn) and SPD(H) < h € O(log?n).
By (@3]), we have to compute

A h
AH) =1V (EBPA(TVA)\)dP,\> V20, (4.10)
A=0

The claim readily follows if we show that the applications of Py and aggregation over A do not
affect depth and work too much.
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Concerning Py, note that we can evaluate (Pyz)ycy lazily, i.e., determine whether (P\x),
evaluates to L or to x, only if it is accessed. Thus, work and depth can increase by at most a
constant factor due to all applications of Py, A € [A].

By Lemma 23] aggregation can be performed with O(logn) depth and an overhead of factor
O(logn) in work as compared to writing the lists. The latter takes at most WA € O(W logn)
w.h.p. in each iteration of A(H). Since h € O(log?n), w.h.p. the P operation thus causes an
additive O(log®n) depth and O(W log* n) work in total. O

5 FRT Construction

We start with a weighted graph G = (V, E,w). Section Bl demonstrates how to construct a complete
graph H on V with a polylogarithmic shortest path diameter, and Section 4] shows how to simulate
A(H) on G using polylogarithmic overhead compared to iterating on G (provided the hop parameter
d of the hop set satisfies that d € polylogn). In this section, we leverage these results to construct a
metric tree embedding of H with expected logarithmic stretch, automatically yielding an according
embedding of G.

We start with a formal definition of metric tree embeddings in Section 5.l proceed to show
that the underlying algorithm is MBF-like (Section [5.2)) and that all intermediate steps are efficient
in terms of depth and work (Section [5.3)), and present our main results in Section 5.4l Section
describes how to retrieve the paths in GG that correspond to the edges of the FRT embedding.

5.1 Metric Tree Embeddings

We use this section to introduce the (distribution over) metric tree embeddings of Fakcharoenphol,
Rao, and Talwar, referred to as FRT embedding, which has expected stretch O(logn) [1§].

Definition 5.1 (Metric Embedding). Let G = (V, E,w) be a graph. A metric embedding of stretch
aof G is a graph G' = (V! E', W), such that V C V', and

Vo,w e V:  dist(v,w,G) < dist(v,w,G") < adist(v,w,G), (5.1)

where a € (R>1U{oc}). If G’ is a tree, we refer to it as metric tree embedding. For a random dis-
tribution of metric embeddings G', we require dist(v, w, G) < dist(v,w,G") and define the expected
stretch as

o= max [ (5.2)

dist(v, w, G")
vAWEV ’

dist(v, w, G)

We show how to efficiently sample from the FRT distribution for the graph H introduced in
Section Bl As H has, up to a factor of 1+ ¢ for an £ > 0 under our control, the same distances as
G, this results in a good tree embedding of G. Khan et al. [25] show that a suitable representation
of (a tree sampled from the distribution of) the FRT embedding [18] can be constructed as follows.

1. Choose § € [1,2) uniformly at random.

2. Choose uniformly at random a total order of the nodes (i.e., a uniformly random permutation).
In the following, v < w means that v is smaller than w w.r.t. to this order.

3. Determine for each node v € V' its least element (LE) list: This is the list obtained by deleting
from the list {(dist(v,w, H),w) | w € V'} all pairs (dist(v, w, H),w) for which there is some
u € V with dist(v,u, H) < dist(v,w, H) and u < w. Essentially, v learns, for every distance
d, the smallest node within distance d or less, i.e., min{w € V' | dist(v,w, G) < d}.
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4. Denote by wpin := mineeg{w(e)} and wpyax = maxeep{w(e)} the minimum and maximum
edge weight, respectively; recall that wpax /Wmin € polyn by assumption. From the LE
lists, determine for each v € V and distance 82° € [wmin/2, 2Wmax), i € Z, the node v; =
min{w € V | dist(v,w, H) < (2'}. W.lo.g., we assume that i € [k] for k € O(logn)
(otherwise, we shift the indices of the nodes v; accordingly). Hence, for each v € V, we
obtain a sequence of nodes (vg,v1,...,vk). (vo,v1,...,vt) is the leaf corresponding to v = vy
of the tree embedding, (vy,...,vy) is its parent, and so on; the root is (vg). The edge from
(Viy...,v) to (Vig1,...,v;) has weight £2°, and k € O(logn).

For a more detailed summary on how this works, we refer to [21I]. The next lemma shows that the
last step of the construction can be executed easily.

Lemma 5.2. Given LE lists of length O(logn) for all vertices v € V, the corresponding FRT
embedding can be determined using O(n log? nloglog n) work and O(lognloglogn) depth.

Proof. Determining wmax, Wmin, and the range of indices 7 is straightforward at this complexity.
For each v € V and each ¢, compute v; in parallel. This is a simple binary search on the LE list of
v, requiring O(logn) work and depth, for a total of O(knlogn) C O(nlog?n) work. Note that the
results are already sorted w.r.t. the index 4, i.e., we may readily read each suffix (v;,...,vx) of the
LE list of v from memory.

Next, we sort all O(nlogn) suffixes, which are ordered lexicographically. A comparison be-
tween two suffixes requires O(loglogn) depth and work using simple 3-valued comparisons and
binary search for the first distinct elements. Hence, this step has depth O(lognloglogn) and work
O(nlog?nloglogn) [I]. Now it is trivial to remove duplicate entries with this complexity; the
remaining suffixes encode the tree, as they reveal both the parent node and the edge weight. If
desired, it is also straightforward to extract a standard adjacency list representation of the tree
with the stated depth and work bounds. O

5.2 Determining LE Lists is M BF-like

As choosing a random order of the nodes can be easily done w.h.p. by assigning to each node a
string of O(logn) uniformly and independently random bits and picking 3 is trivial, it remains
to compute the LE lists efficiently. In the following, we use the distance map module D from
Definition 211

We establish that LE lists are the image of a representative projection r, which by the results
from Section 2 especially Definition 2.11], means that they can be computed by the corresponding
MBF-like algorithm.

Definition 5.3. For x € D, define

(2) o0 dw < v Xy < Xy (5.3)
r(x)y == :
x, otherwise, and
x~y & r(x)=r(y). (5.4)

In other words, r(z) is the LE list of v € V if x,, = dist(v,w, H), and we consider two lists
equivalent iff they result in the same LE list.

The following lemma prepares the proof that retrieving LE lists is an MBF-like algorithm. It
first states that filtering keeps the interesting information: If a node/distance pair is dominated
by an entry in a distance map (smaller vertex ID and at least as close), then the filtered distance
map also contains a (possibly different) dominating entry; in this sense, filtering keeps the relevant
information. Similar statements hold when filtering is applied before aggregation.
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Lemma 5.4. Consider arbitrary x,y € D, v €V, and s € R>o U {occ}. Then

Jw<vizy <s < Jw<v:r(z)y <s, (5.5)
Jw<v: (zBYw < (zByY)y, < Jw<v:(r(@)dry)e < (@) ®r(y)),, and (5.6)
w<v: (@Y < @Dy = @®Yo= (@) 7).

Proof. Observe that the necessity “<” in (B.0) is trivial. As for sufficiency, suppose that for given
s and v there is w < v such that z,, < s. If r(x), = xy, we are done. Otherwise, there must
be some u < w < v satisfying z,, < xz, < x,. Since |V| is finite, an inductive repetition of the
argument yields that there is some w’ < v with 7(2), = z, < s.

As for (B.6) and (5.7)), we have

Pw<v: (2DY)w < (2B Y), (5.8)
& (Pw < v: zy <min{zy,y,}) A (Fw < v: yy < min{z,,y,}) (5.9
@ (Fw < v: r(2)y < min{zy, o }) A (Fw < v: 7(y)y < min{z,, v }). (5.10)

W.lo.g. assume x, = min{z,, y, }; the other case is symmetric. Under this condition it holds that

Pw < v:r(z)y < min{x,,y,} (5.11)

& Pw<v:ir()y <z (5.12)
@ Aw < v: a2y < 2y (5.13)
& r(x)y =y, (5.14)

which due to r(y), > y, > z, entails that min{z,, y,} = min{r(x),,r(y),}; note that, in particular,
this proves (B.7). Therefore, we conclude that (B.I0) is equivalent to

(iﬂw < v () < min{r(z)y, r(y)s}) A (ﬂw <v: 1(Y)w < min{r(z)y, 7(y)y}) (5.15)
s Pw<v: (@) @r®y)e < (@) S r®)).. O

Equipped with this lemma, we now can prove that ~ is a congruence relation on D with
representative projection 7.

Lemma 5.5. The equivalence relation ~ from Definition[5.3 is a congruence relation on the zero-
preserving semimodule D. The function r from Definition[5.3is a representative projection w.r.t. ~.

Proof. D is a zero-preserving semimodule by Lemma[Z2l Clearly, r is a projection, i.e., r2(z) = r(x)
for all # € D. By Lemma 2.8 it hence suffices to show that ([212)) and (2.I3]) hold. As for all
s € R>oU{oo} we have z, < ) = s+ 2, < 5+ 2y, ([2.12) holds. Regarding (2.13]), we show that
for all x,y € D, it holds that

rlxey) =r(r(z)&r(y)), (5.16)

which readily implies ([2I3]). Let v € V be an arbitrary vertex. In case z, = y, = 00, we have
r(x)y, = r(y)y, = oo and thus

(@ ®y)y =1r(r(x) ®r(y))y = oo. (5.17)

Otherwise, we have (z @ y), < oo and distinguish two cases.
Case r(x @ y)y, =00t  As (x DY)y # r(z @ y)w, by (B.3) we have that

Jw <v: (B Y)w < (T B Y)y- (5.18)
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Using (5.6]) yields

Jw<v: (DY) < (zDyY)y = Jw<v: (r(@)dry))w < (r@)dr(y)). (5.19)
(15::>fil) r(r(z) ®r(y))y, = co. (5.20)

Case r(x ® y), < oo: By (53), this necessitates (z @ y), = r(x & y), and
dw <v: (2@ Y)w < (T DY)y (5.21)

By (5.7), this implies that (z ® y), = (r(z) ® r(y))v, and, again by (5.6]), we get

w<v:(@0Yw<(20y) = Fw<v: (@O < (@) or(y))w (5.22)
@ e rw) = (@) B ). (5.23)

Altogether, we obtain

re @yl = (@®y)e = (r(@) &r(Y))e = r(r@) & ry))o. (5.24)
O
Lemma establishes that determining LE lists can be done by an MBF-like algorithm, where

M = D and r as in Definition 5.3l This allows us to invoke the full force of the machinery developed
in Sections 2 - [l

5.3 Efficient LE List Computation

To show that the computation is efficient, we make use of Theorem To this end, it remains
to establish that we can perform the matrix-vector multiplication with Ay (a scaled version of Ag,
the adjacency matrix of G) and apply r"" efficiently.

Recall that by |z| we denote the number of non-oo entries of x € D. Our first step is Lemma [5.6],
which shows that any LE list 7(z) € D has length |z| € O(logn) w.h.p., provided that = does not
depend on the random node ordering Observe that, in fact, the lemma is quite powerful, as it
suffices that there is any y € [z] that does not depend on the random node ordering.

Lemma 5.6. Suppose that x € D 1is arbitrary, but independent of the random order on the nodes.
Then |r(z)| € O(logn) w.h.p.

Proof. Order the non-oo values of x according to ascending distance (ties broken arbitrarily, but
independently of the random node order). Denote for ¢ € {1,...,|z|} by v; € V the node satisfying
that the i-th entry x; of x w.r.t. this order is z,,. For i € {1,...,|z|}, denote by X; the indicator
variable which is 1 iff v; < v; for all j € {1,...,7 — 1}. Clearly, E[X;] = 1/i, implying for
X =Y X; that

=3 <3 cotomm (5.25)

E(X]| = - < - € ogn). .
-1 =l

Observe that X; is independent of {Xi,...X; 1}, as whether v; < v; for all j < i or not is
independent of the internal order of the set {vy,...v;—1}. This is sufficient to apply Chernoff’s

12\We remark that it is well-known that LE lists have length O(logn) w.h.p. throughout intermediate computa-
tions [21 25], and the key argument is identical to the corresponding lemmas in [21] and [25]. However, these lemmas
assume the LE lists are assembled using k-hop distances (where k increases in each iteration). Lemma [5.0] is more
general in that it makes no assumption about x except for its independence of the random node order; we need the
more general statement due to our decomposition of Ag.
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bound [13 yielding that X € ©(logn) wh.p. As P[X = k| = P[|r(x)| = k], this concludes the
proof. O

Lemma shows that intermediate lists are short w.h.p. The next lemma shows that such a
short list can be computed efficiently.

Lemma 5.7. For z € D, r(x) can be computed with depth O(|r(x)|logn) and work O(|z|(|r(z)| +
logn)).

Proof. Construct a tournament tree on the non-co elements of x and identify its leaves with their
indices v € V' (O(logn) depth and O(|z|) work). Iterate the following process until all leaves are
discarded. In iteration 4, find the element with the smallest node index v w.r.t. the random node
order whose corresponding leaf remains in the tree (O(logn) depth and O(|z|) work). Store that
r(z)y, = x,. Then, mark each leaf w for which z, < z,, as discarded, including v (O(1) depth and
O(|z|) work).

Note that for each w # v for which the corresponding node is discarded, we have r(z),, = oco.
On the other hand, by construction we have for all v for which we stored r(x), = z, that there is
no w € V satisfying both z,, < z, and w < v. Thus, the computed list is indeed r(x).

The depth and work bounds follow from the above bounds on the complexities of the individual
steps and by observing that in each iteration, we add a distinct index/value pair (with non-oco
value) to the list that after termination equals r(x). O

Based on the previous two lemmas, Lemma [5.8 now establishes that each of the intermediate
results can be computed efficiently. Any such intermediate result y € D is of the form

A h
y=(r"A) P, (TV (@ P,\(TVA,\)dPA)) Va0, (5.26)

A=0

=:z(h)

where 2" = (TVA}IL{)JJ(O) is the intermediate result of h iterations on H, and (TVAu)f P, represents
another f iterations on G used by the oracle to simulate the (h 4 1)-th iteration on H.

Lemma 5.8. Suppose (9 € DV is given by (z4)w = 0 for v=w and (), = co everywhere else
(xz(,o) is the v-th unit vector w.r.t. D). For arbitrary d,h € N, f € [d], and p € [A], suppose that

A h
y=(r"A) B, (TV (EB P,\(TVA,\)dPA>> Va0, (5.27)
A=0

Then A,y and TVAuy can be computed using O(mlog®n) work and depth O(log®n).
Proof. By (2.30) and (48], we have

A h A h
y= (TVAu)fPu <TV (@ PA(TVAA)dPA)) Ve = TVA/JjPM <@ PAA?\PA) 2O = Yy
A=0 A=0
(5.28)

13Commonly the assumption that the variables {X1,..., X|s/} are independent is made. In the standard derivation
this is used to show for fixed ¢t > 0 that BE[e'*] = H;.:l E[e*™*], which follows from the weaker condition as well.
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Since 3’ does not depend on the random order of V', we know from Lemma that, for all v € V,
lyv| € O(logn) w.h.p. We compute (A,y), in parallel for each v € V. By Lemma 23] this can be
done with depth O(logn) and work

O Z Z lyw|logn | = O Z lyw|logn | € O(mlog?n) (5.29)
veV weV {v,w}eF
{v,w}eFE

w.h.p., where we note that the cost of propagation (i.e., addition of the edge weights) is asymp-
totically dominated by the aggregation (i.e., the min operations) with respect to both depth and
work. To bound the cost of computing TVAuy, we again invoke (L8], showing that

TVAMy = rVAurVy’ = rVAuy’, (5.30)

and Lemma [5.6, showing that |(rV 4,y),| € O(logn) w.h.p. for all v € V. Applying Lemma 5.7,
we deduce that TVAMy can be computed from A,y with depth O(log® n) and work

O(D(Auy)vuogn)go S lpullogn | =0 Y lyullogn | C O(mlog*n)

veV veV weV {v,w}eFE
{vw}eFE

(5.31)
w.h.p. O

5.4 Metric Tree Embedding in Polylogarithmic Time and Near-Linear Work

Determining LE lists on H yields a probabilistic tree embedding for G with expected stretch
O(logn), see Theorem and Section [5.1] is the result of an MBF-like algorithm (Section [5.2]),
and this algorithm is efficient (Theorem and Section B.3]). We sum this up in Theorem [(.9]
which relies on the graph containing a suitable hop set. Corollaries (.10 and [E.11] remove this
assumption by invoking known algorithms to establish this property first; note that improved hop
set constructions also result in improved tree embedding algorithms based on our machinery.

Theorem 5.9. Suppose we are given the incidence list (including weights) of a graph G = (V, E,w)
satisfying for some o > 1 and d € N that dist(v, w,G) < adist?(v,w,G) for all v,w € V. Then,
w.h.p., we can compute a tree embedding of G of expected stretch O(ao(log") logn) with depth
O(dlog*n) c O(d) and work O(m(d + logn)log®n) C O(md).

Proof. By Lemma (.8, we can apply Theorem with D € O(log?n) and W € O(mlog?n),
showing that we can compute LE lists for H with depth O(dlog” n) and work O(m(d+logn)log® n).
As shown in [I8], the tree T' represented by these lists has expected stretch O(logn) w.r.t. the
distance metric of H. By Theorem B.5] this implies also that dist(v,w,G) < dist(v,w,T) and
dist(v,w, T) € O(a®U°e™) logn dist(v, w,G)) in expectation. Thus, it remains to discuss how to
map an edge in T to a path of at most the same weight in G. Recall that we compute the LE lists
for H by repeated application of the operations V', @), Py, and Ay (where A € [A]). Except for
Aj, all of these operations eliminate redundant information, i.e., distance values to nodes that do
not end up in the final lists and are therefore not relevant to routing. Ay, on the other hand, is
simply a (classic) Moore-Bellman-Ford step. Thus, we may simply store the necessary information
for backtracing the induced O(d)-hop paths at each node. O
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As mentioned above, we require G to contain a (d,e)-hop set, and we need d € polylogn in
order to achieve polylogarithmic depth. We also need to determine such a hop set using polylogn
depth and O(m) work, and that it does not increase the problem size significantly by adding too
many edges. Cohen’s hop sets [I3] meet all these requirements, yielding the following corollary.

Corollary 5.10. Suppose we are given the incidence list (including weights) of a graph G. Then,
for any constant € > 0, w.h.p. we can compule a tree embedding of expected stretch O(e~!logn)
with depth polylogn and work O(m + n'*e).

Proof. We apply the hop set construction by Cohen [13] to determine an intermediate graph G’,
which adds O(m1+€) edges to the grap for a constant € > 0 that can be chosen freely. The
algorithm ensures that dist(v, w, G) < a dist?(v, w, G) for d € polylogn and o € 1+9Q(1/ polylog n);
it has depth polylog n and work O(m!*¢). Choosing & € 14 0(1/logn) and applying Theorem [5.9]
the claim of the corollary follows. O

We stress that, in terms of stretch, the embedding is essentially as good as directly constructing
and FRT embedding of G: The difference is a factor of 1+ o(1). If we are willing to sacrifice more
on this front, we can decrease the overhead in terms of work further.

Corollary 5.11. Suppose we are given the incidence list (including weights) of a graph G. Then,
for any constant € > 0 and any k € N, w.h.p. we can compute a tree embedding of G of expected
stretch O(klogn) with depth polylogn and work O(m 4 n'*¢).

Proof. We apply the same strategy as before, except that we first reduce the number of edges by
computing a (2k — 1)-spanner of G = (V, F,w), i.e., a subgraph G' = (V, E’',w) satisfying for all
v,w € V that dist(v,w,G") < (2k — 1) dist(v, w, G). Note that dist(v, w,G) < dist(v, w,G’) holds
because G’ is a subgraph of G. Baswana and Sen [§] give an algorithm of depth polylogn and work
O(m) that computes a (2k — 1)-spanner with O(n'*/*) edges w.h.p Applying Corollary [5.10] to
G’ hence yields the stated result. O

5.5 The Data Structure Representing the Tree

There are further concerns for the data structure representing the embedding, like its size and,
e.g., the depth and work of determining all edges on the path in G corresponding to a given
tree edge. While our purpose is not to provide specifically tailored data structures, note that it is
straightforward to obtain reasonably efficient ones. As our computation has depth polylogn and we
know that the local lists after each application of 7V have size O(logn), we need to store polylogn
bits per node. This entails that if we compute for each node v € V' (in parallel) a routing tree
comprising each node w € V for which (y,), # oo in some reduced list y during the course of the
computation, each node is involved in polylogn such trees only. As trees allow for highly efficient
computations and data structures, the embeddings provided by Corollaries 510 and [5.11] can not
only be computed, but also used efficiently.

14 Although Cohen does not discuss this in her article, it is not hard to see that the new edges can be efficiently
mapped to paths in the original graph.

15The authors bound the expected number of edges as O(kn”l/k). Noting that w.l.o.g. k£ € O(logn) and applying
Chernoff’s bound, one obtains the bound that holds w.h.p.
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A Algebraic Foundations

Definitions [A ] [A.2] and[A.3]are slightly adapted from Chapters 1 and 5 of [23]. In this section, we
refer to the neutral elements of addition and multiplication as 0 and 1. Note, however, that in the
min-plus semiring Spin, + the neutral element of “addition” (min) is co, and that of “multiplication”
(+) is 1.

Definition A.1 (Semigroup). Let M # () be a set and o: M x M — M a binary operation. (M, o)
1s a semigroup if and only if o is associative, i.e.,

Vao,y,2€ M: zo(yoz)=(roy)oz. (A1)

A semigroup (M, o) is commutative if and only if
Ve,ye M: xzoy=you. (A.2)

e € M is a neutral element of (M, o) if and only if
VreM: eox=x0e=uz. (A.3)

Some authors do not require semirings to have neutral elements. We, however, need them and
work on Spin + which provides them, anyway.

Definition A.2 (Semiring). Let M # () be a set, and &,®: M x M — M binary operations. Then
(M,®,®) is a semiring if and only if

1. (M,®) is a commutative semigroup, with neutral element 0
2. (M,®) is a semigroup with neutral element 1, and

3. the distributive laws hold:

Ve,yzeM: z0(ydz) =20y & (z0=2) (A4
Ve,yze M: (y@z)0z=(yo0x)d (20x). (A.5)

Definition A.3 (Semimodule). Let S = (S,®,®) be a semiring. M = (M,®,®) with binary
operations ®: M x M — M and ©: S x M — M is a semimodule over S if and only if

1. (M,®) is a semigroup, and
2. forall s,t € S and all x,y € M:

loz==x (A.6)
sOdY)=(s0z)®(sOY) (A7)
(set)Or=(sOx)® (tOx) (A.8)
(sOt)Orx=50 (tO). (A.9)
M is zero-preserving if and only if
1. (M,®) has the neutral element 0, and
2.
VeeM: 00z=0. (A.10)
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B Sample Applications

In this section, we consider two applications of the embedding that were given by Blelloch et al. [10]
and show how their results are improved by applying our techniques. The main difference worth
emphasizing again is that Blelloch et al. assume that the metric is given by query access, whereas
we assume that the metric is given in the form of a graph. This is more general, as the metric can
be interpreted as a complete graph of shortest path diameter 1. We remark, however, that the use
of hop sets restricts us to polynomially bounded edge ratios (or our solution loses efficiency).

B.1 k-Median

In the k-median problem, the task is to determine F' C V, |F| < k, such that ) ., dist(v, F,G) is
minimized, where dist(v, F, G) := mingcp{dist(v, f,G)} is the distance of v to the set F. In [10],
an O(log k)-approximation with depth O(log?n) and work O(nk + k3) is given for k > logn; the
special case k < logn admits an O(n)-work solution with the same depth [IT].

The algorithm essentially consists of three steps:

1. Use a parallel version of a sampling technique due to Mettu and Plexton [3I] to reduce the
number of candidates for the set F' to a set of O(k) nodes.

2. Sample an FRT tree for the (sub)metric on these O(k) nodes.
3. Run an O(k3) work dynamic programming algorithm to solve the tree instance optimally.

We leave the third step as is and replace the second with our approach. To compute the embedding
only on O(k) nodes, one simply sets a:&?,) = 0 if v was sampled into the candidate set and a:g% = 00
in all other cases, and considers only the LE lists at sampled nodes when constructing the tree.

The first step requires (for O(logn/k) iterations) to sample O(k) nodes from the current candi-
date set (initially all nodes) and determine for each of them the distance to this set. In [10], this is
simply done by querying the metric O(nk) times, for each pair of a candidate and a sampled node.
Since the size of the candidate set decreases by a constant factor in each iteration, this results in
O(nk) total work for this step.

We do not have this option, as we cannot access the metric directly. However, we can bound
the work for this operation as follows. We perform the sampling after embedding into the graph H
from Section B (which costs only factor (1 +o(1)) in approximation, regardless of k). As it suffices
to determine for each (sampled) node the closest candidate, we can, by Theorem [B.5] compute
the required information with SPD(H) € O(log?n) iterations of the MBF-like algorithm given in
Example 223] (for d = o0), ensuring that the “lists” kept by the nodes always have at most one
entry. Using Cohen’s hop sets in the construction of H, we can simulate an iteration on H using
polylog n iterations on the original graph (augmented by the hop set), and arrive at the following
corollary.

Corollary B.1. For any fized constant € > 0, an expected O(log k)-approximation to k-median can
be computed with depth polylogn and work O(m!'Te + k3).

B.2 Buy-at-Bulk Network Design

In this problem, one is given a weighted graph G, demands (s;,t;,d;) € (g) X R, 7 € [k], and a
set of cable types, where the cable of type j has capacity u; and costs ¢; w(e) when purchased for
edge e. The goal is to find an assignment of cable types to edges minimizing the total cost such
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that the resulting edge capacities allow to simultaneously route d; units of (distinct) flow from s;
to t; (for all i € [k]). Andrews shows that this problem is hard to approximate better than factor
log!/27°(M) p, [4].

Blelloch et al. [10] give an expected O(log n)-approximation with polylog n depth and O(n?3logn)
work for this problem, which is a straightforward parallelization of the algorithm by Awerbuch and
Azar [5] Our tools allow for a more efficient parallelization of this algorithm, as the work of the
implementation by Blelloch et al. is dominated by solving APSP to determine the distance metric
of the graph. The approach can be summarized as follows.

1. Metrically embed G into a tree T' with expected stretch O(logn). As the objective is linear
in the edge weights, an optimal solution in G induces a solution in T" whose expected cost is
by at most a factor O(logn) larger.

2. O(1)-approximate on the tree.

3. Map the tree solution back to G of by at most a constant factor larger cost.

Using our machinery (with Cohen’s hop set), the first step has polylogn depth and O(mH'€ ) work.
For the second step, Blelloch et al. discuss a polylogn depth solution with O(n + k) work.

Concerning the third step, we note that each tree edge {v, w} maps back to a path of O(SPD(H))
hops in H as follows. First, to keep the notation simple, identify each tree node (given as tuple
(vi,...,v;)) with its “leading” node (i.e., v1); in particular, each leaf is identified with the node
in V that is mapped to it. If one of the endpoints of {v,w}, say v, is a leaf, then v has an entry
(dist(v,w, H),w) in its LE list, and we can trace the shortest path from v to w based on the LE
lists. Moreover, dist(v, w, H) < wr(v,w), i.e., we may map the tree edge back to the path without
incurring larger cost than in 7. If v and w are inner nodes, choose an arbitrary leaf u that is
a common descendant We then can trace shortest paths from u to v and from w to w in H,
respectively. The cost of their concatenation is dist(u, v, H)+dist(u,w, H) < 3/2-wp(v,w), because
the cost of tree edges decreases by factor 2 for each additional hop away from the root.

Using this observation, we can map the solution on T" back to one in H whose cost is at most by
factor 3/2 larger. Assuming suitable data structures are used, this operation has depth polylogn
and requires O(min{k,n}) work w.h.p., where we exploit that SPD(H) € O(log?n) w.h.p. by
Theorem and T has depth O(logn), implying that the number of edges in 7" with non-zero flow
is bounded by O(min{k,n}logn).

Finally, we map back from H to G’ (G augmented with hop set edges) and then to G. The
specifics depend on the hop set used and, again, we assume that suitable data structures are
in place, see Section This can be handled with depth polylogn and O(SPD(G)) work for
a single edge in H. Since we deal with O(min{k,n}) edges in H, this yields a total work of
O(min{k,n} SPD(G)) C O(n?).

Corollary B.2. For any constant € > 0, an O(lgg n)-approzimation to buy-at-bulk network design
can be computed with depth polylogn and work O(min{m!*¢, n?} + min{k,n} SPD(G)) C O(n?).

C Distributed FRT Constructions in our Framework

Throughout this section we fix ~ to be the congruence relation given in Definition 5.3l Furthermore,
let G = (V, E,w) be a weighted graph with adjacency matrix Ag € (R>o U {o0})V*V. Distributed

16 Awerbuch and Azar also note that their approach gives rise to an online algorithm of the same asymptotic
approximation ratio. The adaption is straightforward, so for the sake of compactness we do not discuss it here.

17This choice can, e.g., be fixed when constructing the tree from the LE list, without increasing the asymptotic
bounds on depth or work.

32



algorithms for constructing FRT-type tree embeddings in the Congest model [33] are covered by our
framework as well. For the sake of brevity, we do not formally introduce this model of computation
here. The key aspects are the following:

e The computation proceeds by nodes exchanging O(log n)-sized messages over the edges of the
graph in synchronous rounds. Recall that edge weights, and by extension all path weights
relevant to our computations, can be encoded using O(logn) bits, i.e., one message can
basically carry one index/distance pair.

e Nodes initially know their neighbors and the weight of their incident edges. They need to
compute only “their” part of the output. As pointed out in Section [Bl, sampling a tree from
the distribution boils down to computing LE lists, so each node needs to compute its LE list.

e Local computations are free. The goal is to minimize the number of communication rounds.

Sections [C.I] and [C.2] briefly summarize the distributed FRT algorithms by Kahn et al. [25], and
Ghaffari and Lenzen [21]. Section [C.3 demonstrates how to eliminate an n® overhead of [21], using
our machinery and a distributed hop set construction due to Henziger et al. [24].

C.1 The Algorithm by Khan et al.

In our terminology, the algorithm due to Khan et al. [25] computes rVAga:(O) = (rVAg)z©,
where h = SPD(G) and z(®) € DV (see Definitions 1] and [Z9) given by 20 = ey, i€, 20 =0
iff v = w and oo otherwise. It does so in the straightforward way: One initializes z(®) as above
and iteratively computes 21 := ¥V Aoz until a fixpoint is reached, i.e., 20t =V Aqz®. As
(rVAg)'z® = rV ALz by 230), Lemma [5.6 shows that, w.h.p., |:171()2)| € O(logn) for all i € [h]
and all v € V. Therefore, v € V can transmit ng) to all of its neighbors using O(logn) messages,
and upon reception of its neighbors’ lists compute xz(,Hl) locally. Thus, each iteration takes O(logn)
rounds w.h.p., readily implying the total round complexity of O(SPD(G)logn) w.h.p. shown in [25].

C.2 The Algorithm by Ghaffari and Lenzen

The strongest lower bound for constructing a (low-stretch) metric tree embedding of G in the
Congest model is Q(v/n + D) [16, 21], where D is the hop diameter of the graph. If SPD(G) >
D + \/n, one may thus hope for a solution that runs in 6(SPD(G)) rounds. For € > 0, in [2I] a
running time of O(nl/ 2+¢ 1 D) is achieved by the following strategy.

1. Abbreviate ¢ := [/n]. For a sufficiently large constant ¢, sample [c¢/logn]| nodes uniform at
random; call this set S. Define the skeleton graph Gg = (S, Eg,wg), where for s,t € S, we set
ws(s,t) = dist’(s, t,G), ie., {s,t} € Eg iff dist’(s,t,G) # co. Then, w.h.p., dist(s,t,Gg) =
dist(s, t,G) for all s,t € S (Lemma 4.6 of [27]).

2. For k € ©(1/e), construct a (2k — 1)-spanner Gy of the skeleton that has O +1/ky C
O(n'/?*¢) edges (Lemma 4.9 of [27]). Make the spanner known to all nodes by broadcasting
it via a BFS tree of G (O(n'/?*¢ + D) rounds).

3. Define H = (V,Eg,wpy) by Ef being the union of the skeleton spanner edges with E.
Edge e € Ep has weight wy(e) := wg(e) if e is in the skeleton spanner and wpg(e) :=
(2k —1) w(e) otherwise. Note that by construction G thus embeds into H with stretch 2k —1,
ie., dist(v,w, G) < dist(v,w, H) < (2k — 1) dist(v, w, G).
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4. Choose uniform permutations of S and V'\\S. We extend these permutations to a permutation
of all nodes by ruling that for all s € S and v € V' \ S, we have s < w. The LE lists of H
corresponding to this permutation induce an embedding of H into a tree T with expected
stretch O(logn), see Lemma 4.9 of [2I]. Accordingly, G embeds into T" with expected stretch
O(klogn) = O(etlogn).

It is then shown that LE lists of H can be computed fast in the Congest model. To this end, one
exploits that (min-hop) shortest paths in H contain only a single (maximal) subpath consisting of
spanner edges, where the maximal subpaths of non-spanner edges have at most ¢ € ©(y/n) hops
w.h.p Given that s < v for all s € S and v € V'\ S, it follows that for each v € V and each entry
(w, dist(v,w, H)) of its LE list, w.h.p. there is a min-hop shortest path from v to w that consists
of a prefix of at most ¢ non-spanner edges followed by a shortest path in G'. This entails that

TVA%PD(H):E(O) = T‘VAZGQk_lAg:L:p(O) = T’VAG72]€_1 <7“VA‘5:|§$(0)) , (C.1)

where 2 is as above, A¢ is the adjacency matrix of a graph G, and Ag, is Ag with entries
multiplied by factor s € R>o U {oo}. Here, AG% is interpreted as an adjacency matrix for node
set V' by setting (Agls)vw = oo if {v,w} € S. Clearly, Agz < Agor—1x and Agz < Aglsa: for

all z (where < is to be read componentwise), while A'g,s‘:n(o) yields distances in G’y and Aézk—l

propagates information via non-spanner edges for £ hops.
Because G’ is known to all nodes, each v € V' can compute ig,o) = (A'g,‘ :L'(O))U locally. Sub-
S

sequently, nodes determine their component of rVAéQk_li(O) = (T‘VAGQk_l)EQ_S(O) via { iterations

0D .= rV A(G, k)Z". Here, one exploits that, for all i, |i£,l)| € O(logn) w.h.p. by Lemmal}'ﬂil@
and thus each iteration can be performed by sending O(log n) messages over each edge. The time
complexity of O(n'/?*%+ D) for an embedding of expected stretch O(e~" logn) shown in [21] follows.

C.3 Achieving Stretch O(logn) in Near-Optimal Time

The factor n® overhead is due to constructing and broadcasting the skeleton spanner. We can
improve on this by relying on hop sets, just as we do in our parallel construction. In recent work,
Henziger et al. [24] show how to compute an (n°),o(1))-hop set of the skeleton %1 the sense that
nodes learn their incident edges and their weights) in pt/2+o) 4 plto() rounds

The prerequisite of the algorithm is that the skeleton nodes learn their skeleton edges and their
weights. Unfortunately, this computation would require Q(n) rounds in the Congest model [29].
Instead, we (1 +o0(1/logn))-approximate dist‘(s, ¢, G) for all s, € S, which can be done in O(y/n)
rounds [29]. Here, s € S learns the approximate ¢-hop distance to each ¢ € S. This can be seen as
metrically embedding the skeleton graph with stretch 1+ o(1/logn), and the representation of the
resulting graph allows to apply the algorithm from [24]. Overall, we obtain a graph G satisfying
for all s,t € G that dist(s,t,G) < dist"o(l)(s,t, G) € (14 o(1/logn)) dist(v,w,G) w.h.p., where
nodes in S know their incident edges in this graph.

18This follows analogously to Lemma [B4] with 2 levels and a sampling probability of C:)(l/\/ﬁ) instead of 1/2.

More precisely, one applies the lemma twice, as it requires the considered module elements to be independent
of the randomness of the permutation. First, one considers the computation starting from (yu)w =0if v =w € S
and (Yv)w = 00 else. Since s < v for all s € S and v € V' \ S, this shows that the (sub)lists concerning nodes from
S have O(logn) non-oc entries w.h.p. Then one applies the lemma to (rV A(G, k))'z = rV A(G,k)'z, i € {1,...,£},
with (zy)w =0if v =w € V' \ § and (2y)w = 00 else, and argues that the sublists concerning nodes from V' \ S have
length O(log n) w.h.p., too, because they are sublists of (rV A(G, k))'z = rV A(G, k)" z for some i.

20Cohen’s approach [I3] may be of use here as well, but requires translating her construction to this setting.
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Now we can apply the machinery established for the parallel setting. First, we embed G into
Hg as in Section B, where d € n°@). To this end, nodes determine their level locally and broadcast
it over a BFS tree, which takes O(|S| + D) € O(y/n + D) rounds; thus, s € S knows the level of
{s,t} € Epg for each t € S.

We define H as in Section [C.2] but with Hg taking the role of the skeleton spanner. Since, by
Theorem B.5 for € € o(1/logn), for all s,t € V' we have that dist(s,t, Hs) € (1 + o(1)) dist(s, ¢, G)
w.h.p., it suffices to increase the weight of edges from G by factor 1+ o(1), i.e., G embeds into H
with stretch 1+ o(1).

To determine the LE lists for H, we must compute

TVA%)D(H)QS(O) _ (TVAG’I_FO(I))Z(TVAHS)SPD(HS):E(0)7 (C.2)

where Ag 14,(1) is given by multiplying each entry of Ag by a sufficiently large factor f € 1+0(1) and
Apg is extended to an adjacency matrix on the node set V' as above. Applying TVAG,1+0(1) is the
same as before, taking in total O(f) = O(y/n) rounds. Concerning Ay, we follow the same strategy
as in Theorem [.2] i.e., it suffices to show that we can efficiently perform a matrix-vector multipli-
cation Agfs x for any = that may occur during the computation (applying " is a local operation and
thus free), assuming that each node v € V knows z, and its row of the matrix. As multiplications
with AG% affect only lists at nodes s € S, this can be done by local computations once all nodes

know s for each s € S. As before, |z5] € O(logn) w.h.p., so >, g |zs| € O(|S|logn) C O(y/n)
w.h.p. We broadcast these lists over a BFS tree (of G) to all nodes, taking O(y/n + D) rounds per
matrix-vector multiplication. Overall, this results in round complexity n'/2to(t) 4 pito(l),

Theorem C.1. There is a randomized distributed algorithm computing a metric tree embedding of
expected stretch O(logn) in (v/n + D)2°W18™) rounds of the Congest model.

Proof sketch. Follows from the above discussion, noting that the n°") and D°(Y) factors from [24]
are, more precisely, ZO(VI"%") factors, SPD(Hg) € O(log?n) w.h.p. by Theorem 3.5, and multipli-
cation with A requires O(d) C 20(V1°6™) multiplications with Agy,- O

Note that by combining this result with the algorithm by Khan et al., the round complexity
can be improved to min{n!/?+°(1) 1 pl+e() O(SPD)}.
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