arXiv:1509.08285v1 [cs.CG] 28 Sep 2015

The Continuous 1.5D Terrain Guarding Problem:
Discretization, Optimal Solutions, and PTAS*

Stephan Friedrichs,! Michael Hemmer,* and Christiane Schmidt®

Abstract

In the NP-hard [30] continuous 1.5D Terrain Guarding Problem (TGP) we are given
an x-monotone chain of line segments in R? (the terrain T), and ask for the minimum
number of guards (located anywhere on T') required to guard all of T. We construct
guard candidate and witness sets G, W C T of polynomial size, such that any feasible
(optimal) guard cover G* C G for W is also feasible (optimal) for the continuous TGP.
This discretization allows us to: (1) settle NP-completeness for the continuous TGP;
(2) provide a Polynomial Time Approximation Scheme (PTAS) for the continuous TGP
using the existing PTAS for the discrete TGP by Gibson et al. [22]; (3) formulate the
continuous TGP as an Integer Linear Program (IP). Furthermore, we propose several
filtering techniques reducing the size of our discretization, allowing us to devise an
efficient IP-based algorithm that reliably provides optimal guard placements for terrains
with up to 10° vertices within minutes on a standard desktop computer.

1 Introduction

In the 1.5D Terrain Guarding Problem (TGP), we are given an x-monotone chain of line
segments in R?, on which we have to place a minimum number of point-shaped guards, such
that they cover the entire terrain. This—admittedly theoretical—problem is a close relative
of the Art Gallery Problem (AGP) and traditionally motivated by the optimal placement
of antennas for line-of-sight communication networks, or the placement of street lights or
security cameras along roads [I].

The authors would like to revive a motivation stemming from their AGP background [10),
15, [16], B1] that was already mentioned in [I]: A natural application for the AGP is the
placement of sensors or communication devices w.r.t. obstacles, for example placing laser
scanners in production facilities in order to acquire a precise mapping of the facility [31].
While the AGP properly models most indoor environments, it cannot capture many outdoor
scenarios like placing cell phone towers in an urban environment, because it does not take
height information into account. To remedy this shortcoming essentially means working on

*This work extends and subsumes the extended abstracts that appeared in the Proceedings of the 26th
Canadian Conference on Computational Geometry (CCCG 2014), pages 367-373, 2014 [18], and in the 31st
European Workshop on Computational Geometry (EuroCG 2015), pages 212-215, 2015 [19].

fMax Planck Institute for Informatics, Saarbriicken, Germany, sfriedri@mpi-inf .mpg.de

1TU Braunschweig, IBR, Algorithms Group, Braunschweig, Germany, mhsaar@gmail .com

$Communications and Transport Systems, ITN, Linkdping University, Sweden. Supported by grant 2014-
03476 from Sweden’s innovation agency VINNOVA. christiane.schmidt@liu.se

two dimensions and height, a 2.5D AGP. In order to develop techniques useful for dealing
with height information in a geometric covering problem, we first examine one dimension
and height, the 1.5D TGP. We show in this paper that the “height dimension” is much
more benevolent than the “second dimension” in the AGP: It allows a finite discretization,
whose existence in the AGP is, to the best of our knowledge, still unknown, and poses one
of the key challenges w.r.t. software solving the AGP [I0]. We hope that our contribution
helps tackling the 2.5D AGP.

1.1 Our Contribution

1. Our core contribution is to show that the Continuous Terrain Guarding Problem
(CTGP), where guards can be freely placed on the terrain, has a polynomial-size
discretization (Section . We then infer two results:

(a) While the CTGP is known to be NP-hard [30], we also conclude that it is a
member of NP, and hence NP-complete (Section [3)).

(b) It follows from the Polynomial Time Approximation Scheme (PTAS) for the dis-
crete TGP from Gibson et al. [22] that there is a PTAS for the CTGP (Section[d).

2. We present several filtering techniques reducing the size of our discretization (Sec-
tion . These are of theoretical interest as well as a key ingredient of our implemen-
tation.

3. Discretization and filtering techniques allow us to formulate the CTGP as Integer
Linear Program (IP). We present an efficient algorithm which is able to find optimal
solutions for instances with up to 10° vertices of the CTGP as well as the Terrain
Guarding Problem with Vertex Guards (VITGP) within minutesﬂ on a standard desk-
top computerﬂ We thoroughly test our algorithm and the effect of each filtering
technique (Sections |§| and @

1.2 Related Work

The TGP is closely related to the well known and studied AGP where given a polygon P, we
seek a minimum cardinality guard set that completely covers P. Potential guards can, e.g.,
be located on the vertices only (vertexr guards), on arbitrary points in P (point guards), or
patrol along edges (edge guards) or diagonals (diagonal guards) of P. Many polygon classes
have been considered for the AGP, including simple polygons, polygons with holes, and
orthogonal polygons (where all edges are axis-aligned). Moreover, the guards’ task can be
altered, e.g. Laurentini [32] required visibility coverage only for the edges of P, but not for
the interior.

The first result in the context of the AGP was obtained by Chvatal [5], who proved the
Art Gallery Theorem, answering a question posed by Victor Klee in 1973 (see [34]): |%]
guards are always sufficient and sometimes necessary to guard a polygon of n vertices. A
simple and elegant proof of the sufficiency was later given by Fisk [I7]. Related results were

'Less than 10 minutes on a single core.
2Standard as of 2015: An Intel Core i7-3770 CPU with 3.4 GHz with 14 GB of main memory.

obtained for various polygon classes, Kahn et al. [26] established a tight bound of | %] for
orthogonal polygons with n vertices.

The work of Chvatal and its variants focused on upper bounds on the number of guards
sufficient for all polygons in a specific class. However, the AGP also is an optimization
problem (given a polygon, find the minimum number of guards needed to cover it), and it
was shown to be NP-hard for various problem versions [35] [37], even the allegedly easier
problem of finding a minimum cardinality vertex guard set in simple polygons is NP-hard
as established by Lee and Lin [33]. Eidenbenz et al. [I3] gave bounds on the approximation
ratio: For polygons with holes a lower bound of Q(logn) holds, for vertex, edge and point
guards in simple polygons they showed the problem to be APX-hard.

In search of optimal guard set for specific polygons, Chwa et al. [6] considered witness-
able polygons, in which a finite set of witness points exists, such that coverage of these
witnesses guarantees complete coverage of the polygon. For detailed surveys on the AGP
see O’Rourke [34] and Shermer [38] for classical results, and de Rezende et al. [I0] for more
recent computational developments.

Motivation for terrain guarding is traditionally given by the placement of street lights
or security cameras along roads, or the optimal placement of antennas for line-of-sight
communication networks [I]. For the TGP, research first focused on approximation algo-
rithms, because NP-hardness was generally assumed, but had not been established. The
first constant-factor approximation was given by Ben-Moshe et al. [I]. They presented a
combinatorial constant-factor approximation for the discrete vertex guard problem version
TGP(V, V)E| where only vertex guards are used to cover only the vertices, and were able
to use it as a building block for an O(1)-approximation of TGP (7T,T'), where guards on
arbitrary locations on 7" must guard all of 7. The approximation factor of this algorithm
was never stated by the authors, but was claimed to be 6 in [29] (with minor modifications).

Another constant-factor approximation based on e-nets and Set Cover (SC) was given
by Clarkson and Varadarajan [7]. King [29] presented a 4-approximation (which was later
shown to actually be a 5-approximation [28]), both for the discrete TGP(V,V) and the
continuous TGP(T,T) problem. The most recent O(1)-approximation was presented by
Elbassioni et al. [I4]: For non-overlapping discrete subsets of the terrain 7' as guard can-
didates and witnesses (G,W C T) LP-rounding techniques lead to a 4-approximation (5-
approximation if GNW #) for TGP (G, W) as well as for the continuous case (TGP (T, T)).
This approximation is also applicable for the more general weighted TGP: Weights are as-
signed to the guards and a minimum weight guard set is to be identified.

Finally, in the 2009 conference version of [22], Gibson et al. showed that the discrete
TGP allows a PTAS based on local search. They present PTAS’s for two problem variants:
for two (not necessarily disjoint) finite subsets of the terrain T of guard candidates G' and
witnesses W (TGP(G,W)) and for the variant with a finite guard candidate set G that
covers the complete terrain (TGP(G,T)). For the continuous case, i.e., TGP(T,T), they
claim that the local search works as well, but that they were not yet able to limit the number
of bits needed to represent the guards maintained by the local search. Thus, to the best of
our knowledge, no PTAS for TGP(T,T') has been established until now.

Only after all these approximation results the TGP was shown to be an NP-hard prob-

3With TGP(G, W) we refer to the version of the TGP where guards have to be placed on points in G
such that they guard all points in W, compare Definition

Figure 1: The visibility region V(p) of p € T' (blue) consists of O(n) subterrains.

lem. King and Krohn [30] proved both the discrete and the continuous case to be NP-hard by
a reduction from PLANAR 3SAT in 2010 (the conference version of [30] appeared in 2010).
Whether the CTGP is a member of NP remained, to the best of our knowledge, an open
problem. We answer this question positively in Section

Problem variants of the TGP include, for example, guards that are allowed to “hover”
over the terrain (Eidenbenz [12]), guarding vertices of an orthogonal terrain (Katz and
Roisman [27]), or, recently, guarding the vertices of an orthogonal terrain under directed
visibility (Durocher et al. [I1]).

Not only the TGP has been considered for 1.5D terrains: Hurtado et al. [25] gave a sweep
line algorithm for the computation of visibility regions, i.e., the set of points on the terrain
visible to a point p on the terrain. Haas and Hemmer [24] presented an implementation
for an extended version of this algorithm as well as a very fast variant incorporating ideas
of the Triangular Expansion Algorithm for visibility computations in polygons by Bungiu
et al. [3]. Our implementation uses that of Haas and Hemmer [24].

1.3 Preliminaries and Notation

A terrain T is an z-monotone chain of line segments in R? defined by its vertices V(T) =
{v1,...,v,} that has edges E(T) = {e1,...,en—1} with e; = U;u;41. Unless specified oth-
erwise, n := |V(T)|. Where T is clear from context, we occasionally abbreviate V(T')
and FE(T) by V and E, respectively. v; and v;41 are the vertices of the edge e;, and
int(e;) := e; \ {vs,viq1} is its interior. Due to monotonicity the points on T are totally
ordered w.r.t. their z-coordinates. For p,q € T, we write p < ¢ (p < q) if p is (strictly) left
of q, i.e., if p has a (strictly) smaller z-coordinate than q. We refer to a closed, connected
subset of T" as a subterrain.

A point p € T sees or covers q € T if and only if pg is nowhere below T'. V(p) is the
visibility region of p with V(p) := {q € T'| p sees ¢q}. Observe that V(p) is not necessarily
connected, and is the union of O(n) subterrains, compare Figure|l] We say that ¢ € V(p) is
extremal in V(p), if ¢ has a maximal or minimal z-coordinate within its subterrain in V(p).
For G C T we abbreviate V(G) := Uy V(9). A set G C T with V(G) = T is named a
(guard) cover of T. In this context, g € G is sometimes referred to as guard.

Definition 1.1 (Terrain Guarding Problem). In the Terrain Guarding Problem (TGP),

abbreviated TGP (G, W), we are given a terrain T and sets of guard candidates and witnesses
G,W CT. C is feasible w.r.t. TGP(G, W) if and only if C C G and W C V(C). If C is
feasible and |C| = OPT(G,W) := min{|C| | C is feasible w.r.t. TGP(G, W)}, we say that
C is optimal w.r.t. TGP(G,W). TGP(G,W) asks for an optimal guard cover C C G.

Throughout this paper, we assume W C V(G), i.e., that TGP(G, W) has a feasible solu-
tion. The Continuous Terrain Guarding Problem (CTGP)is TGP(T,T), i.e., the version of
TGP that seeks to guard the entire terrain and imposes no restrictions on where on 7' guards
may be placed. The CTGP is the primary focus of this paper. A well-established version
is the Terrain Guarding Problem with Vertex Guards (VI'GP), TGP(V(T),T), where we
seek to guard all of T, but the guard positions are restricted to the vertices. We consider it
a representative of the numerous discrete versions of the TGP; our algorithm solves both,
CTGP and VTGP, and generalizes to arbitrary discretizations.

2 Discretization

This section is our core contribution. We consider the following problem: Given a terrain T’
with n vertices, construct sets G, W C T (guard candidate and witness points) of size poly-
nomial in n, such that any feasible (optimal) solution for TGP (G, W) is feasible (optimal)
for TGP (T, T) as well. We proceed in three steps.

1. In Section [2.1| we assume that we are provided with some finite guard candidate set
G C T. We show how to construct a witness set W (G) with |W(G)| € O(n|G|), such
that any feasible solution of TGP(G, W (G)) is feasible for TGP(G,T) as well.

2. Section discusses a set of guard candidates U with |U| € O(n?), containing all
guard candidates required for minimum-cardinality coverage of T'.

3. The last step is to combine the above results. In Section we argue that optimal
solutions for TGP (T, T) can be obtained using TGP (U, W(U)). This shows member-
ship of NP, yields a Polynomial Time Approximation Scheme (PTAS), and can be
used to construct exact solutions (Sections and @ respectively).

When discretizing a problem as closely related to the Art Gallery Problem (AGP) as the
Terrain Guarding Problem (TGP), one should first consider the work of Chwa et al. who
pursued the idea of witnessable polygons [6], which allow placing a finite set of witnesses,
such that covering the witnesses with any guard set implies full coverage of the polygon.
The basic building block of Chwa et al. is the notion of wvisibility kernels: Given some point
w in a polygon, the visibility kernel of w is the kernel of its visibility polygon. Chwa et al.
show that a polygon admits a finite witness set if and only if it can be covered by a finite
set of visibility kernels. Sadly, this is not the case for general polygons.

Transferring this approach to the TGP means that the visibility kernel of w € T" becomes
VK(w) := {w’ € T | V(w) € V(w')}. Then for the terrain T and w € T in Figure [J] we have
VK(w) = {w,w',w"}, so VK(w) is finite. The same argument holds for infinitely many
w € T near w. Since no visibility kernel covers more than one such w, T cannot be covered
by finitely many visibility kernels. It follows that 1" does not admit a finite visibility kernel
cover and thus is not witnessable as defined by Chwa et al. (note that we introduce a finite

I\

~ a”f
’f‘ﬂ
~—
*-
w €

-

VK(w)

SlQl
1

Figure 2: Witness w, V(w) highlighted in red, and its finite visibility kernel VK(w) =
{w,w’,w"} marked in blue. w has equivalent properties.

set of witnesses below, but that it is different in that it is associated with a finite guard
set). In conclusion, general terrains, like general polygons, are not witnessable.

2.1 Witnesses

Suppose we are given a terrain 7" and a finite set G C T of guard candidates with V(G) =T,
and we want to cover T using only guards C' C G, i.e.,, we want to solve TGP(G,T).
G could be the set V(T') of vertices to solve the Terrain Guarding Problem with Vertex
Guards (VTGP) or any other finite set, especially our guard candidates in Equation .

G is finite by assumption but 7" is not, so we construct a finite set W(G) C T with poly-
nomially many (in n and |G|) witness points, such that feasible solutions for TGP (G, W (G))
also is feasible for TGP(G,T).

Let g € G be one of the guard candidates. V(g) subdivides T" into O(n) subterrains,
compare Figure[I[] Monotonicity of T" allows us to project those subterrains onto the z-axis
and thus to represent V(g) as a set of closed wvisibility intervals. We consider the overlay
of all visibility intervals of all guard candidates in G, see Figure [3] for an overlay of three
guard candidates. It forms a subdivision consisting of maximal intervals and end points.
Every point in a feature f (either end point or maximal interval) of the subdivision is seen
by the same set of guards

G(f)={9€eG|fCV(9)}. (1)

Observation 2.1. Let f be a feature of the guard candidates’ overlay and let g € G be a
guard. Now consider an arbitrary witness w € f. Then
@
weV(g) < fSV() <= geG(f), (2)
i.e., covering w and f are equivalent for guards in G, because every guard sees either nothing
or all of f by construction.

Observation 2.2. Let G be a finite set of guard candidates, and f a feature in the overlay
of G. Then a witness point w € f can be represented by the set G(f) of guards covering f.
We occasionally interpret w as a set and write g € w for g € G(f).

G(f) {g1} {91, 92} ;{91}{91,9%}{92}?{91,92}; {92, 93}

Figure 3: Visibility overlay of the guard candidates g1, g2, and g3. V(g1), V(g2), and V(g3)
are indicated in blue, orange, and green, respectively. Regions marked marked by altering
colors are seen be multiple guard candidates.

It follows that placing one witness in every feature of the subdivision ensures that
coverage of all these witnesses implies coverage of all features and thus of T'. This requires
O(n|G|) witnesses. However, keeping efficient algorithms in mind, we reduce the number
of witnesses, compare Section Similar to the shadow atomic visibility polygons in [§],
which is a successful strategy in AGP algorithms [I0], it suffices to only include those
features f with inclusion-minimal G(f):

Theorem 2.3. Consider a terrain T and a finite set of guard candidates G with V(G) =T.
Let Fg denote the set of features of the visibility overlay of G onT and wy € f an arbitrary
point in the feature f € Fg. Then for

W(G) :={wy | f € Fa, G(f) is inclusion-minimal} (3)

we have that if C C G is feasible w.r.t. TGP(G,W(G)), then C is also feasible w.r.t.
TGP(G,T), and
OPT(G,W(G)) = OPT(G,T). (4)

Proof. Let C' C G cover W(G) and consider some point w € T. We show that w € V(C).
By assumption, w € V(G) and thus w € f for some feature f € Fg. W(G) either contains
some witness in wy € f or a witness wy with G(f') C G(f) by construction. In the first
case, w must be covered, otherwise wy would not be covered and C' would be infeasible for
TGP(G,W(G)). In the second case wy is covered, so some guard in G(f’) is part of C,
and that guard also covers f and therefore w.

As for Equation (), observe that TGP(G,W(G)) is a relaxation of TGP(G,T), so
OPT(G,W(G)) < OPT(G,T) follows. Furthermore, if C is feasible and optimal w.r.t.
TGP(G,W(Q)), it is also feasible for TGP(G,T) as argued above. It follows that |C| =
OPT(G,W(G)) > OPT(G,T), proving (4). O

Figure 4: The set of inclusion-minimal features may still have cardinality O(n|G]).

Observation 2.4. Using the set of one witnesses per inclusion-minimal feature as in Equa-
tion may not reduce the worst-case complezity of |W(G)| € O(n|G|) witnesses.

Proof. Compare Figure 4l For |G| € ©(n) consider the terrain with ©(n) valleys with %
guards placed on the left (blue) and the right (red) slope each. In addition there is one
guard (black) placed in each valley. Thus, each of the ©(n) valleys contains ©(|G|) inclusion-
minimal intervals depicted in violet, resulting in O(n|G|) inclusion-minimal features. [

Nevertheless, using only the inclusion-minimal witnesses does speed up our implemen-
tation significantly, compare Sections and

Observation 2.5. W(G) does not contain an end point p between two mazimal intervals
I and Iy: G(p) = G(I1) U G(Is), since visibility regions are closed sets.

2.2 Guards

Throughout this section, let T" be a terrain, V = V(T) its vertices and E = E(T) its edges;
let C C T be feasible w.r.t. TGP(T,T), i.e., some finite, possibly optimal, guard cover of
T. We define U as the union of V with all z-extremal points of all visibility regions of all
vertices:

U:=Vu U {p | p is extremal in V(v)}. (5)

veV

In the remainder of this section we show that U contains all guard candidates necessary
for solving the Continuous Terrain Guarding Problem (CTGP), TGP(T,T'). Formally, we
show that OPT(U,T) = OPT(T,T).

Observation 2.6. U has cardinality O(n?), as noted by Ben-Moshe et al. [1]: n vertices
with visibility regions of O(n) subterrains each.

Ben-Moshe et al. use a similar set, but they also add an arbitrary point of 7" between
each pair of consecutive points in U. They need these points as witnesses. We, however,
keep the witnesses separate by our definition of TGP(G, W).

Figure 5: The edge e is critical w.r.t. gs and g,: The right (left) part of e;, indicated in blue
(red), is seen by gy (g,) only.

Our strategy is to show that in any cover C of T it is always possible to move a guard
in C'\ U to a carefully chosen point in U without losing coverage. This procedure preserves
cardinality and feasibility of any feasible cover, and iterating it results in a cover C' C U.
In particular, this is possible for an optimal guard cover.

First observe that losing coverage of an edge e € F that is entirely covered by a guard
g € C'\ U by moving g to one of its neighbors in U is impossible.

Lemma 2.7. Let g € C'\ U be a guard that covers an entire edge e; € E. Then ug, u,, the
U-neighbors of g with

ug =max{u €U | u < g} (6)
ur =minf{u € U | g < u} (7)

each entirely cover e;, too.

Proof. g covers e;, so v;,vi+1 € V(g), implying g € V(v;) N V(v;41). Moving g towards wuy
does not move g out of V(v;) or V(vi4+1), as the boundaries of those regions are contained
in U by construction. Hence, v;,vi11 € V(u¢) and thus e; C V(uy). Analogously, we have
ei CV(uy). O

It remains to consider the edges not entirely covered by a single guard, compare Figure
We refer to such edges as critical edges:

Definition 2.8 (Critical Edge). e € F is a critical edge w.r.t. g in the cover C if C'\ {g}
covers some part of, but not all of, int(e). We call e a critical edge, if it is a critical edge
w.r.t. some g € C.

Observe that e being critical w.r.t. g € C' is equivalent to more than one guard being
responsible for covering its interior.

Definition 2.9 (Left-Guard/Right-Guard). g € C is a left-guard (right-guard) of e; € FE
if g < (viy1 < g) and e; is critical w.r.t. g. We call g left-guard (right-guard) if it is a
left-guard (right-guard) of some e € E.

For the sake of completeness, we state and prove the following lemma, which also follows
from the well-established order claim [I]:

Lemma 2.10. Let g € C be a guard left of v; (right of vi+1) such that g covers a non-empty
subset of int(e;). Then g covers a single interval of e;, including viy1 (vi). In particular,
this holds if g is a left-guard (right-guard) of e;.

Proof. Refer to Figure[5l Obviously, g = g¢ is nowhere below the line supporting e;. Let p
be a point on e; seen by gy. It follows that ggp and pv; 11 form an z-monotone convex chain
that is nowhere below T'. Thus, the gyv; 11 is nowhere below T'. It follows that g, sees v;41
and any point on pv;;1. A symmetric argument holds for the right-guard g,. O

Corollary 2.11. For each critical edge e there is exactly one left-guard, as well as exactly
one right-guard in C.

Proof. Suppose for the sake of contradiction that g, ¢’ € C both are critical left-guards of e.
By Lemma I:=V(g)neand I' :=V(g’') Ne are single intervals on e. Assume w.l.o.g.
that I’ C I. This contradicts ¢’ being a left-guard of e, because g dominates ¢’ on e, and
thus e C V(C \ {¢'}). So e has exactly one critical left-guard and a symmetric argument
shows that e has exactly one right-guard. O

Corollary 2.12. Let e € E be a critical edge and gy, g, € C be its left- and right-guards.
Then V(ge) NeNV(g,) # 0.

Proof. For the sake of contradiction, suppose I := e\ (V(g¢) U V(g,)) # 0 and refer to
Figure[5 Since C is feasible I is covered, so some g € C' sees a point p € I. By Lemma [2.10
g sees a continuous interval containing p and w.l.o.g. the right vertex of e. It follows that
g dominates gy on e, contradicting that g, is a critical left-guard of e. O

We know from Lemma that we can move a non-critical guard g € C, i.e., one that
is only responsible for entire edges, to one of its neighbors in U without losing coverage of
T. This works because U contains a candidate point at every location, where one vertex’s
visibility region ends, so not moving across these candidate points implies still seeing all
the vertices (and thus edges). Unfortunately, the same thing is not possible if g is left-
or right-guard: We might lose coverage of some part of an edge that is critical w.r.t. g.
However, the following lemma gives us some leverage: It shows that we can move a guard
g € C'\ U to its left neighbor vertex without losing coverage of T if g is not a right-guard
(a symmetric version for a non-left-guard follows).

Lemma 2.13. Let C be some finite cover of T, let g € C'\'V be a left- but no right-guard,
and let vy = max{v € V | v < g} be the rightmost vertex left of g. Then

C" = (C\{g}) U{ve} (8)
1 a guard cover of T.

Proof. Since g is a left-guard of some critical edge e,, there must exist a corresponding
right-guard g, of e,, compare Figure[6] Let p, € {p € V(g) | p < g} be a point that g sees
to its left. We show that py, is seen by g,: Consider p,, a point in V(g) N e, N V(g;,), which
exists by Corollary Peg, 9pr, and Prg, form a convex chain (convex because g ¢ V' by
assumption and p, € V' by construction) that is nowhere below T', so p € V(g,). Thus, g is
dominated to its left by g,.

10

gﬁ, gr

Figure 6: No guard g € C is both left- and right-guard. Any point on the critical edge ey
seen by ¢ is also seen by the guard g, the critical right-guard w.r.t. e,. Hence, e, can not
be critical w.r.t. to g, contradiction

e -—-—- -

Figure 7: Moving the left-guard g to the left. Any point p that g sees to its right remains
visible while moving g towards its closest vertex vy to the left.

Moreover, g is dominated to its right by vy, see Figure |7} Let p € {p € V(g) | g < p} be
a point seen by g, which is located to the right of g. Then T7g and gp form a convex chain
nowhere below T', so p € V(vy).

In conclusion, replacing g by vy in C' yields a feasible cover because {p € V(g) | p < g}
is covered by g, and {p € V(g) | g < p} by the new guard position vy. O

Corollary 2.14. Let C be some finite cover of T, let g € C\V be a right- but no left-guard,
and let v, = min{v € V | g < v} be the leftmost vertex right of g. Then

"= (C\{g}) U{v} (9)
1 a guard cover of T'.

So far, the status is that guards in C'\ V' that are neither left- nor right-guard can be
moved to a U-neighbor. Left-guards (right-guards) that are no right-guard (left-guard) can
even be moved to the next vertex to the left (right). The only case to be dealt with is a
guard g that is both a left- and right-guard. This would indeed be a nasty scenario, since
none of the above lemmas allows us to move g. Fortunately, Lemma [2.15]| saves the day:

Lemma 2.15. Let C' be some finite cover of T. No g € C\'V is both a left- and a
right-gquard.

Proof. Refer to Figure @ We prove the claim by contradiction. Suppose that g € C'\ V is
the left-guard of some edge e, (to the right of g) and the right-guard for some e, (to the

11

left of g). Since e, is critical, there must also be a right-guard g, of e,. By Corollary
there is at least one point p, € e, that is seen by g and g,. As g € C'\'V, g € int(e) for
some edge e.

Now consider p, and any point p; € V(g), such that p, < g. Both points are not below
the line supported by e and the same holds for g and g, with respect to e,. It follows that
segments pgg, gpr, and p,g, form an z-monotone convex chain that is nowhere below T.
Hence, g, sees py. It follows that pgg, is not below T, i.e., g, sees py.

Thus, any point p € V(g) to the left of g is also seen by g,, a contradiction to g being a
right-guard. O

The next theorem connects the dots and shows that the set U as defined in Equation
contains all guard candidates necessary for a minimum-cardinality guard cover of T'. So even
if we are allowed to place guards anywhere on T, we only need the candidate points in U
and thus have discretized the CTGP.

Theorem 2.16. Let T be a terrain, and consider U from Equation . Then we have
OPT(U,T) = OPT(T,T). (10)

Proof. Let C be feasible and optimal w.r.t. TGP(T,T). We show how to replace a guard
g € C\ U by one in U, without violating V(C') = T Iterating this until C' C U maintains
the cardinality of C, thus proving the claim.

Should g be neither left- nor right-guard, it is, by definition, only responsible for entire
edges. Thus it can be moved to a neighboring point in U by Lemma [2.7] If, on the other
hand, g is only a left-, but not a right-guard (or vice versa), it can be moved to its left
(right) neighbor in V' C U as shown in Lemma (Corollary [2.14)). Lemma asserts
that the only remaining case, i.e., that g is a left- and a right-guard at the same time, does
not occur. O

2.3 Full Discretization

We formulate the key result of this section: The CTGP, i.e., finding a minimum-cardinality
guard cover C guarding an entire terrain 7', without any restriction on where on 1" the
guards can be placed, is a discrete problem. Furthermore, our discretization (U, W (U)) is
of size polynomial in n.

Theorem 2.17. Let T be a terrain, and consider U and W (U) as defined in Equations ()
and (3). Then if C C U is optimal and feasible w.r.t TGP(U, W (U)), i.e., if V(C) =T and
|C| = OPT(U,W(U)), it follows that C is also an optimal solution of TGP(T,T):

OPT(T, T) = OPT(U, W (U)). (11)

Proof.
ort(r,7) @ orr(v,7) € OPT(U, W(1)). (12)
O

Observation 2.18. Observations(2.) and[2.6 yield: The set of guard candidates U and the
witness set W(U) have cardinality O(n?) and O(n3), respectively.

12

Observation 2.19. Let B be the largest number of bits that are required to represent a co-
ordinate of V.. The number of bits required to represent the coordinates of a guard candidate
g € U is polynomial in B as the coordinates of g are defined by the intersection of two lines
each defined by two vertices in V.

3 Complexity Results

For a long time NP-hardness of the Continuous Terrain Guarding Problem (CTGP) was
generally assumed, but not shown until 2010 by King and Krohn (in the conference version
of [30]). In this section we establish that the CTGP is also a member of NP, and thus
NP-complete. This is surprising, as it is a long-standing open problem for the more general
Art Gallery Problem (AGP): For the AGP it is not known whether the coordinates of an
optimal guard cover can be represented with a polynomial number of bits. This, however,
we answer for the CTGP in Theorem [2.17] and Observation [2.19} There exists a guard
candidate set with coordinates of polynomial size that can host an optimal solution.

Theorem 3.1. The Continuous Terrain Guarding Problem (CTGP) is NP-complete: Given
a terrain T with rational vertices V(T) C Q? and k € IN, it is NP-complete to decide whether
there exist k € N guards G = {g1,...,9x} C T with V(G) =T.

Proof. NP-hardness of the CTGP is established in [30], it remains to show that CTGP
is in NP: A non-deterministic Turing machine determines U (possible in polynomial time,
compare Observation and guesses k guards. It then verifies in polynomial time [25]
whether this guard set covers T O

4 Polynomial Time Approximation Scheme

In this section we combine our discretization from Section [2] with the Polynomial Time
Approximation Scheme (PTAS) for discrete TGP(G, W) with finite G,W C T by Gibson
et al. [22], who established the following theorem:

Theorem 4.1 (PTAS by Gibson et al. [22]). Let T be a terrain, and let G,W C T be finite
sets of guard candidates and witnesses such that W C V(G). Then there exists a PTAS for
TGP(G,W). That is, for every constant € > 0, there is an algorithm that returns C C G
with W C V(C), such that

|IC| < (14 ¢€) OPT(G,W). (13)

We combine our discretization from Theorem [2.17] with Theorem 4.1k

Theorem 4.2. Let T be a terrain. Then there exists a PTAS for the Continuous Terrain
Guarding Problem (CTGP), TGP(T,T). That is, for any constant e > 0, there is a poly-
nomial time algorithm which returns C C T with V(C) =T and |C| < (1 +¢) OPT(T,T).

Proof. Using Equations and (3)) we determine the sets U and W (U) for T with |U| +
W (U)| € O(n3) by Observation Given € > 0, by Theorem we can compute
C C U C T such that

IC| < (14¢) OPT(U,W(U)) =" (1+4¢€) OPT(T,T), (14)

13

where C is feasible w.r.t. TGP(T',T") by Theorem O

5 Reducing the Size of the Discretization

While O(n?) guards and O(n3) witnesses, compare Observation are satisfactory from
a theoretical point of view, it is imperative to reduce their numbers for an efficient im-
plementation. We reduce the size of our discretization and reduce the number of visibility
calculations: Although not reducing the asymptotic size of the discretization, we still remove
a large fraction—typically around 90 % of the point guards and an even larger fraction of
witnesses, compare Section [7| This is a key success factor for an implementation; switching
off the wrong filter costs several orders of magnitude w.r.t. the solvable instance size.

Given a terrain T, the problem is to find a small U’ C U (where U is defined in
Equation (f])), such that C is feasible w.r.t. TGP(U’, W (U’)) if and only if it is feasible
w.r.t. TGP(U, W (U)) and thus TGP(T,T). A core issue is that visibility calculations are
expensive in terms of both time and memory to store the results. Thus, the key challenge is
to remove guard candidates from U without determining their visibility region. The guard
filter in Section 5.2 has that feature.

We say that g € T dominates ¢’ € T if V(¢') C V(g), in which case ¢’ can be safely
discarded. Our guard filters remove dominated guards. Two guard filters are proposed in
Sections[5.1]and and Sections [5.3]and [5.4] discuss witness filtering and an open question.

5.1 Filtering Dominated Guards

Let G be a set of guard candidates and T a terrain such that V(G) = T. If we can identify
distinct g, ¢’ € G such that g dominates ¢’, then obviously OPT(G,T) = OPT(G\{¢'},T).
However, checking whether g dominates ¢’ takes O(n) time, since visibility regions may
consist of O(n) subterrains, and it requires us to calculate the visibility regions of g and ¢'.

Moreover, domination only induces a partial ordering on G. Thus, removing all domi-
nated guards from G would require O(|G|?) domination queries. Suppose we would directly
apply that strategy to U from Equation (B)): Since |U| € O(n?) by Observation this
would result in O(|U[?n) = O(n®) time which is intolerable for an efficient implementation.

Instead of removing all dominated guard candidates, we devise a heuristic using O(|G|)
domination queries and thus an acceptable O(n3) time for G = U. Suppose G is ordered
w.r.t. z-coordinates. Then the local domination filter removes all guard candidates that are
dominated by their neighbors. This heuristic is based on the observation that neighboring
guards’ visibility regions often show a remarkable resemblance. Our experiments show that
despite its O(n3) running time, this filtering strategy is beneficial in terms of both time
and, more importantly, memory consumption, see Section

5.2 Filtering Edge-Interior Guards

Lemma Corollary and Lemma [2.15] allow us to assume w.l.o.g. that all critical
guards are located at the vertices. It follows that guards in the interior of an edge are not
critical, i.e., only responsible for entire edges. We propose a filtering technique removing
edge-interior guards that are not inclusion-minimal w.r.t. entire edges.

14

N\ ’//
€1 ~~\ /’l, €6
‘x\ -7 74
\\ /’ ,[
N\ ’f /, 65
S~ -7 S
\\ - v’
Nx\ P , Y/
SS e ’ 4
~ ~So Phe 7’ 4
~ - 4 U4
e ‘\.,\\N N\\ ”’ P
~ ~ ‘
es3 \\ S o Pl o U{e}
< ~ o - — U{ea} 5
€4\ N, ~> > U{er} U{e1}
— 7
U{ez}
U{es}
{e2,e3,e4,€5,€6,e7} {e1,e2,¢3,¢e4, 65,66}

Figure 8: Edge-interior guards are only responsible for entire edges. Edges become visible
only when crossing some v € U, the arrows indicate in which direction. We only need
to keep inclusion-maximal guard candidates w.r.t. entire edges; in this case there are two
regions containing such candidates (marked in orange).

More formally, let U be the set of guard candidates from Equation . Consider all
guard candidates in the interior of an edge e, U, := UNint(e), and recall that when moving a
guard across u € U,, a vertex becomes either visible or invisible (depending on the direction)
by construction of U. Furthermore, covering an entire edge is equivalent to seeing both its
vertices. The sets of edges entirely seen by each u € Uk,

E,:={e€E|eCV(u)}={e € E|v,vit1 € V(u)}, (15)

define a partial ordering on U, w.r.t. inclusion, compare Figure 8l Most importantly, u is
inclusion-maximal if E,, 5 E, for all v’ € U,. We show that it suffices to consider the
inclusion-maximal guard candidates:

Theorem 5.1. Let U, C U, be the set that only contains inclusion-mazimal guard candi-
dates w.r.t. entire edges, as defined above. Then

U'=U\U)uU, (16)
admits covering T with the same number of guards as U and hence
OPT(U',T) = OPT(U,T). (17)

Proof. A guard cannot be left- and right-guard at the same time by Lemma Further-
more, by Lemma (Corollary , a left-guard (right-guard) can be moved to its left
(right) neighbor in V. Thus, w.l.o.g.,, u € U, is no left- or right-guard, because U, does
not contain vertices by definition. Hence, no edge is critical w.r.t. u by Definition [2.8] so u
is only responsible for covering entire edges and can be replaced by its inclusion-maximal
sibling in U] without changing the feasibility or cardinality of a feasible cover of T O

15

The implication of Theorem is that we can discard guard candidates in U\ V that are
not inclusion-maximal w.r.t. entire edges. At first glance, this might not look particularly
helpful, but it admits a very efficient implementation that does not determine the visibility
region of any candidate in U \ V, and removes up to 98 % of the guard candidates. Both
features make it a core ingredient of our implementation that removes the computational
boundary between Terrain Guarding Problem with Vertex Guards (VITGP) and Continuous
Terrain Guarding Problem (CTGP), compare Section

The filter can be implemented using an efficient sweep line algorithm. For each u € U,
store a reference to which vertex’s visibility region ends there, as well as whether it is
situated to the left or to the right of u. This allows us to decide which vertex becomes
visible or invisible when moving across u, depending on the direction, compare Figure (8| In
other words, we can determine whether or not v € V(u) for all w € U and v € V without
explicitly determining V(u). As argued above, seeing an entire edge is equivalent to seeing
both its end points, so the set of edges entirely seen can only change at points in U.

Hence we can, for every e € E, sweep through U, from left to right. While encountering
u € U, with opening visibility regions, we do nothing. When at some point we reach the
first u € U, where a visibility region closes, we report u (u is inclusion-maximal w.r.t.
vertices, which is sufficient for being inclusion-maximal w.r.t. entire edges). After that we
ignore all points corresponding to closing visibility regions until the first one opens, where
we continue as above.

Observation 5.2. This sweep line algorithm needs only the visibility regions of vertices,
not those of U \ V. Deciding whether a vertex v becomes wvisible or invisible at u € U,
depends only on whether u is extremal in V(v) and on v < u, as described above.

Observation 5.3. While this filter shows great performance in our implementation, it does
not reduce the O(n?) asymptotic complexity of U: Insert a vertex below each guard on the
slopes in Figure[f), which then yields that U must contain a guard in each highlighted interval
in each valley. Fvery other interval is inclusion-mazimal w.r.t. the vertices on the slopes.

5.3 Filtering Witnesses

Let U be a possibly filtered set of guard candidates. The construction of the witness set
W(U) as in Equation already includes a filtering mechanism: As stated in Theorem [2.3
only inclusion-minimal witnesses need to be kept. Observe that a smaller, filtered, U auto-
matically yields a smaller W (U).

Additionally observe that in terms of an implementation, witnesses are far less expensive
then guard candidates: They require no visibility region or coordinates, instead they only
need to store references to the guards covering them, compare Observation

We use the geometric structure of terrains to efficiently acquire only the locally inclusion-
minimal witnesses, very much like in Section Sort the extremal points of all guard
candidates by their z-coordinates. For each of these points we know whether a visibility
region opens or closes and to which guard it belongs. Sweeping through these points, it is
straightforward to keep track of which guard candidates see the current event point. We
only report those guard sets (i.e., witnesses) corresponding to a subterrain between a closing
and an opening visibility region.

16

Observe that our approach keeps witnesses that are locally, but not necessarily globally,
inclusion-minimal. The rationale is as follows: We can efficiently exploit the underlying
geometry to identify the locally inclusion-minimal witnesses, but we do not see a way to
do the same thing for globally inclusion-minimal witnesses. Furthermore, we formulate the
problem as Integer Linear Program (IP), and use a sophisticated IP solver to solve it. This
means that we benefit from the solver’s ability to deal with redundant constraints, which
already proved to be the most successful strategy regarding witnesses in solvers for the
closely related Art Gallery Problem (AGP) [10].

5.4 Open Problem

We would like to find an optimal discretization or show that ours is optimal. The open
question is: What is an optimal discretization?

Obviously, a good discretization is small w.r.t. |G| + |W|. However, a discretization
that minimizes |G| + |W]|, is one where |G| = OPT(T,T), i.e., just as hard to find as a
minimum-cardinality guard cover of T. It thus makes sense to require a discretization to
be obtainable in polynomial time.

Our discretization for the CTGP has size |U| + |[W(U)| € O(n3). The filters prove
effective in practice by typically reducing, on average, its size by more than 90 %, and our
implementation suffers horribly when switching them off, compare Section [7/} Nevertheless,
we do not reduce the worst-case complexity of O(n?). Is there a discretization with guards
G and witnesses W, obtainable in polynomial time, such that |G|+ |[W| € o(n3)?

6 Optimal Solutions with Linear Integer Programming

We combine the discretization devised in Section 2l and the filters to reduce its size from
Section[p]to an efficient algorithm. It is capable of solving instances of the Terrain Guarding
Problem (TGP) with up to 10° vertices within roughly 1-2 minutes on a standard desktop
computer, compare Section[7] Furthermore, it is flexible enough to evaluate how our filtering
frameworks perform in practice: They can be enabled individually.

6.1 IP Formulation

Let T be a terrain and let G, W C T be finite sets of guard candidates and witnesses, such
that W C V(G). We formulate TGP(G, W) as Integer Linear Program (IP):

min Z Zg (18)

geG

s.t. ng >1 YweW (19)
gew
zg € {0,1} VgeG. (20)

A binary variable x, for every guard candidate g € G indicates whether we pick ¢g: z4 =1
if and only if g is part of the cover. For each witness w € W, a constraint ensures that w is
covered by at least one guard (recall that we interpret a witness as the set of guards able to

17

input : Terrain T'
output: Guard cover of T’
v (U W)« (V(T),0) > vertices are guard candidates in both modes

2. for u € U do
3 L determine V(u)

4. if POINTGUARDS then > as opposed to VERTEXGUARDS

5: U < UUUpevm{p | pis extremal in V(v)} > Equation
6: if EDGEFILTER then

7 L filter edge-interior guards in U by sweep > Section
8: for ue U\ V(T) do

9: L determine V(u) > after EDGEFILTER, see Section
10: if DOMINATIONFILTER then

11: L filter out guards in U dominated by a neighbor > Section
12. if WITNESSFILTER then

13: ‘ W < inclusion-minimal features from overlay of U > Equation
14: else

15: L W <« all features from overlay of U > unfiltered version of Equation

16: solve TGP (U, W) with an IP solver
Algorithm 1: Optimal solutions for the TGP.

cover it, compare Observation . The objective function is the number of guards picked
for the cover, which is minimized.

Choosing G = U (possibly filtered) and W = W (U) from Equations and (3), —
models the Continuous Terrain Guarding Problem (CTGP); picking G =V and W =
W (V') models the Terrain Guarding Problem with Vertex Guards (VIGP). In the remaining
part of this section we show how to use the techniques developed in this paper to efficiently
solve large instances of the CTGP and VTGP.

6.2 Algorithm

We cast the theory developed in this paper into Algorithm It has two modes: POINT-
GUARDS for solving TGP(T,T) and VERTEXGUARDS for TGP(V,T). Everything except
lines applies to both POINTGUARDS and VERTEXGUARDS mode, lines generate
non-vertex-guard candidates and possibly filter them.

Our filtering mechanisms can be activated individually: The local domination filter from
Section 5.1 DOMINATIONFILTER, removes all guard candidates that are dominated by one
of their neighbors. It is run after non-vertex-guard candidates have been initialized (and
possibly filtered) in lines The guard filter EDGEFILTER corresponds to the guard
filter from Section and is only available in the POINTGUARDS mode. WITNESSFILTER
determines whether only the inclusion-minimal witness shall be used, compare Equation (3]).
It is applied in lines after all guards have been initialized and filtered.

Consider the solving step at line [16| of Algorithm (1] It is interesting in several aspects.

18

First of all, it is the only subroutine which requires exponential time, owed of course to the
NP-hardness of the TGP [30]. For the randomly generated instances of the Terrain Guarding
Problem Instance Library (TGPIL) [20], it turns out that this is not the bottleneck of our
algorithm: The geometric subroutines require most time and memory, where the latter puts
a limit on what we can solve. We discuss this in-depth in Section [7.4.8

The second observation regarding the solver step is the following: Algorithm [I]essentially
transforms an instance of VTGP or CTGP into a small discretization, which is then handed
to a solver. We test with an IP solver, but a SAT solver, a Set Cover (SC) approximation
algorithm, an implementation of the Polynomial Time Approximation Scheme (PTAS) by
Gibson et al. [22], or any other solver (even one that is oblivious to the underlying geometry)
would work. This is possible because at the end of the day, TGP(G, W) is a SC instance.
Observe that the entire variety of possible solvers greatly benefits from our filtering frame-
work. However, since benchmarking the underlying solver is not our primary concern, we
restrict our experiments to using an IP solver.

6.3 Implementation

We implemented Algorithm [1}in C++11 and compiled with g++-4.8.4 [2I]. The geometric
part of our implementation heavily relies on CGAL-4.6 [4] (Computational Geometry Al-
gorithms Library); note that we have to follow the Exact Geometric Computation (EGC)
paradigm to guarantee the correctness of our solutions. Additionally, we use the terrain
visibility algorithm implementation by Haas and Hemmer [24]. We solve IPs using CPLEX-
12.6.0 [9]. Furthermore, our implementation uses various features of boost-1.58.0 [2], as well
as simple-svg-1.0.0 [39] for visualization.

7 Experiments

We evaluate our algorithm and the various filters that reduce the size of the discretization.
It turns out that our filtering techniques prove critical to success in that switching off the
wrong filters—especially EDGEFILTER and WITNESSFILTER, compare Sections [5.2] and
respectively—can cost us up to two orders of magnitude in terms of solvable instance size.

We use one subsection each to describe our instances (Section , list the tested con-
figurations of Algorithm [1| (Section , describe the experimental setup (Section , and
present our findings (Section [7.4)).

7.1 Instances

We test four classes of random terrains from the 2015-08-06 version of the Terrain Guarding
Problem Instance Library (TGPIL) [20], compare Figure [9] Every class comprises 20 in-
stances with 102, 10%, 10°, 5 - 10°, and 106 vertices each yielding 400 instances.

The basic class is WALK, see Figure An instance contains n vertices with x-
coordinates 0, 1,...,n—1, where the i-th y-coordinate is a random offset from the (i —1)-st.
SINEWALK, as in Figure is the sum of a WALK instance added to a stretched sine
wave. The PARABOLAWALK instances are the sum of a parabola and a WALK, compare
Figure SINEWALK and PARABOLAWALK pose a challenge because visibility regions

19

(a) WALK: Random walk with uniform step width.

(b) SINEWALK: Stepwise sum of sine function and random walk.

(c) PARABOLAWALK: Stepwise sum of parabola (d) CONCAVEVALLEYS: Optimal solutions require
and random walk. point guards in valley centers.

Figure 9: Four classes of randomly generated test instances available in the TGPIL [20].

20

Configuration | Mode | EDGEFILTER | DOMINATIONFILTER | WITNESSFILTER

VDEFAULT VERTEXGUARDS n/a yes yes
VNoDoMm VERTEXGUARDS n/a no yes
VNoW VERTEXGUARDS n/a yes no
PDErAULT POINTGUARDS yes yes yes
PNoOEDGE POINTGUARDS no yes yes
PNoDowMm POINTGUARDS yes no yes
PNoWwW POINTGUARDS yes yes no

Table 1: Algorithm configurations, VTGP above and CTGP below.

often are severely fragmented: Many points see a large portion on the opposite side of the
valley, but it is fragmented by the shadows of local features.

Our last instance class is CONCAVEVALLEYS, compare Figure Since preliminary
experiments revealed that the above instance classes hardly require non-vertex guards for
optimal solutions, this class is designed to encourage them. An instance starts as a WALK.
Then, we iteratively pick a random edge and replace it by a valley with concave slopes on
each side, connected by a bottom edge. The slopes are arranged in a way that there is a
point in the interior of the bottom edge that covers both slopes. An optimal solution for
such a terrain usually requires guards in bottom edges’ interiors.

Observe that none of the above classes of randomly generated test instances deliberately
provokes the NP-hardness of the Terrain Guarding Problem (TGP); they are not designed
to contain a reduction of hard instances of e.g. PLANAR 3SAT as used in the NP-hardness
proof of King and Krohn [30]. In our case, testing such instances is beside the point: We
provide and test the means to efficiently transform a terrain into a small discretization that
can be handed to some solver (Integer Linear Program (IP), Polynomial Time Approxima-
tion Scheme (PTAS), SAT, or other). Such a transformation has to be of low overhead, and
our experiments are designed to verify just that. Feeding combinatorially hard instances
into our algorithm only benchmarks the underlying solver.

7.2 Configurations

We test our implementation of Algorithm [I]in several configurations. The idea is to assess
the efficiency of each filtering technique, compare Section [5], individually. There are seven
configurations forming two groups: VDEFAULT, VNODOM, and VNOW test the VER-
TEXGUARDS mode; PDEFAULT, PNOEDGE, PNoDOM, and PNOW test the considerably
harder POINTGUARDS mode. Table [I] specifies each configuration. Recall that the EDGE-
FILTER feature only applies to the guard candidates of the Continuous Terrain Guarding
Problem (CTGP) and thus plays no role in the vertex guard configurations. Since we
test 400 instances, this results in a total of 2800 test runs.

7.3 Experimental Setup

We ran the experiments on eight identical Linux 3.13-powered machines with Intel Core
i7-3770 CPUs running at 3.4 GHz, provided with 8 MB of cache and 16 GB of main mem-
ory. Every run was limited to 15 minutes of CPU time and to 14 GB of memory; the latter

21

Configuration | Instance 103 104 #Vfgt;ces 5.10° 106
WALK 100% 100% 100% 100% 100%
VDEFAULT SINEWALK 100% 100% 100% 0% 0%
PARABOLAWALK 100% 100% 100% 0% 0%
CONCAVEVALLEYS | 100% 100% 100% 100% 100%
WALK 100% 100% 100% 100% 100%
VNoDou SINEWALK 100% 100% 100% 0% 0%
PARABOLAWALK 100% 100% 100% 0% 0%
CONCAVEVALLEYS | 100% 100% 100% 100% 100%
WALK 100% 100% 100 % 0% 0%
VNOW SINEWALK 100% 100% 0% 0% 0%
PARABOLAWALK 100% 25% 0% 0% 0%
CONCAVEVALLEYS | 100% 100% 100% 0% 0%
WALK 100% 100% 100% 100% 100%
PDEFAULT SINEWALK 100% 100% 100% 0% 0%
PARABOLAWALK 100% 100% 100% 0% 0%
CONCAVEVALLEYS | 100% 100% 100% 100% 100%
WALK 100% 100% 100% 55% 0%
PNOEDGE SINEWALK 100% 100% 0% 0% 0%
PARABOLAWALK 100% 100% 0% 0% 0%
CONCAVEVALLEYS | 100% 100% 100% 90% 0%
WALK 100% 100% 100% 100% 100%
PNODOM SINEWALK 100% 100% 100% 0% 0%
PARABOLAWALK 100% 100% 100% 0% 0%
CONCAVEVALLEYS | 100% 100% 100% 100% 100 %
WALK 100% 100% 100 % 0% 0%
PNOW SINEWALK 100% 100% 0% 0% 0%
PARABOLAWALK 100% 20% 0% 0% 0%
CONCAVEVALLEYS | 100% 100% 100% 0% 0%

Table 2: Solution rates for each configuration, instance class, and instance complexity.

ensuring fairness w.r.t. memory bottlenecks, compare Section [7.4.8] No part of our soft-
ware, except solving IPs with CPLEX, uses parallelism. Refer to Section for details on
language, compiler, required libraries, etc.

7.4 Results

The solution rates and median solution times of every combination of configuration, instance
class, and instance complexity are listed in Tables|2|and |3, We dedicate a section each to the
hardness of the instance classes (Section[7.4.1]), an overview of each mode (VERTEXGUARDS
and POINTGUARDS modes in Sections [7.4.2] and [7.4.3)), the impact of each filtering tech-
nique (EDGEFILTER, DOMINATIONFILTER, and WITNESSFILTER in Sections

and [7.4.6)), timing behavior (Section [7.4.7]), and memory consumption (Section [7.4.8)).

22

. #vertices
Configuration | Instance 103 104 105 5.10° 106
WALK 0.0s 0.2s 29s 18.0s 40.3s
VDEFAULT SINEWALK 0.0s 09s 138s n/a n/a
PARABOLAWALK 0.1s 18s 21.7s n/a n/a
CONCAVEVALLEYS | 0.2s 24s 24.2s 177.2s 337.6s
WALK 0.0s 0.3s 3.6s 21.8s 48.6s
SINEWALK 0.1s 1.3s 182s n/a n/a
VNoDou PARABOLAWALK 0.1s 25s 27.8s n/a n/a
CONCAVEVALLEYS | 0.2s 24s 243s 177.1s 411.0s
WALK 0.0s 04s 8.8s n/a n/a
SINEWALK 0.1s 6.4s n/a n/a n/a
VNow PARABOLAWALK | 04s n/a n/a n/a n/a
CONCAVEVALLEYS | 0.2s 2.7s 32.0s n/a n/a
WALK 0.0s 0.3s 4.6s 279s 624s
PDEFAULT SINEWALK 0.1s 1.7s 26.3s n/a n/a
PARABOLAWALK 0.2s 33s 451s n/a n/a
CONCAVEVALLEYS | 0.1s 0.8s 10.3s 68.2s 137.4s
WALK 0.2s 4.5s 79.7s 8333s n/a
SINEWALK 1.0s 588s n/a n/a n/a
PNOEDGE PARABOLAWALK | 4.1s 220.3s n/a n/a n/a
CONCAVEVALLEYS | 0.2s 3.2s 58.3s 652.3s n/a
WALK 0.0s 0.4s 5.0s 31.5s 70.4s
SINEWALK 0.1s 20s 3l.l1s n/a n/a
PNoDowm PARABOLAWALK 0.2s 4.0s 51.8s n/a n/a
CONCAVEVALLEYS | 0.1s 0.9s 10.7s 68.0s 145.5s
WALK 0.0s 0.6s 104s n/a n/a
SINEWALK 0.1s 7.8s n/a n/a n/a
PNOW PARABOLAWALK | 0.6s n/a n/a n/a n/a
CONCAVEVALLEYS | 0.1s 1.1s 20.8s n/a n/a

Table 3: Median solution times per configuration, instance class, and instance complexity.

23

F#£vertices
103 104 10° 5-10° 106
WALK 80.1% 86.8% 89.5% 91.0% 91.7%
SINEWALK 92.7% 97.6% 983% n/a n/a
PARABOLAWALK | 97.5% 98.8% 989% n/a n/a
CONCAVEVALLEYS | 65.8% 72.5% 77.7% 79.9% 80.6%

Configuration | Instance

PNoDowMm

Table 4: Median percentage of guard candidates removed by the EDGEFILTER.

7.4.1 Overview — Instances

A quick glance at Tables [2] and [3] reveals that SINEWALK and PARABOLAWALK instances
are harder to solve than WALK and CONCAVEVALLEYS. This is to be expected, since WALK
is contained in the form of noise in other instances, and since the sole purpose of CONCAVE-
VALLEYS is to provide an instance type that encourages the placement of non-vertex guards,
compare Section Furthermore, SINEWALK and PARABOLAWALK instances comprise
valleys facing each other, resulting in highly fragmented visibility regions. The result is
that the visibility overlays consist of numerous tiny subterrains, and a larger portion of the
O(n?) guards and O(n?) witnesses, compare Observation cannot be eliminated. This
induces time and memory intensive calculations and a complex IP, making SINEWALK and
PARABOLAWALK challenging instance classes.

7.4.2 Overview — Vertex Guards

VDEFAULT and VNODOM solve all instances of WALK and CONCAVEVALLEYS, and the
SINEWALK and PARABOLAWALK instances of up to 10° vertices; VNOW can only solve
instances which are roughly one order of magnitude smaller, see Table [2| From this point it
is already clear that WITNESSFILTER is crucial to a successful implementation. VDEFAULT
and VNODOM have comparable running times, with a slight advantage for VDEFAULT,
compare Table [3| where VNOW is slower w.r.t. the instances that it can solve.

7.4.3 Overview — Point Guards

In terms of percentage of solved instances, compare Table [2, PDEFAULT and PNoDoOM are
the strongest configurations; both solve all WALK and CONCAVEVALLEYS instances as well
as the SINEWALK and PARABOLAWALK instances with up to 10° vertices. PNOW and
PNOEDGE are considerably weaker. Considering the median solution times in Table |3 one
can observe that PDEFAULT is slightly faster than PNoDoM. Furthermore, PNOEDGE
performs horribly as compared to PDEFAULT.

7.4.4 Impact of Filtering Edge-Interior Guards

Filtering edge-interior guards corresponds to the EDGEFILTER feature, which is only avail-
able in POINTGUARDS mode, not in VERTEXGUARDS mode. For a detailed description
of EDGEFILTER, refer to Section Table [4] depicts the percentage of guards removed
by EDGEFILTER in the PNODOM configuration, and Figure [10]illustrates the effectiveness
of EDGEFILTER using a 10°-vertex PARABOLAWALK instance as example. Observe that

24

(a) Unfiltered guards. (b) Filtered guards.

Figure 10: The effect of our filtering techniques (excerpt of a 105-vertex PARABOLA WALK
instance). Each white circle represents a guard candidate. @ is unfiltered, @ filtered.

PNoDoM is the only configuration where we can properly obtain these numbers, since all
the others filter guards in an incompatible way.

EDGEFILTER proves to be our most effective guard filter by removing roughly 90 %
(80 %) of the guard candidates in the 10° vertex WALK (CONCAVEVALLEYS) instances,
and well above 95% in the largest solved SINEWALK and PARABOLAWALK instances. As
pointed out in Section [7.4.3] it is obvious from Tables 2 and [3| that EDGEFILTER massively
improves performance in terms of both, solution rates and median solution times.

Recall that EDGEFILTER works with an efficient sweep line algorithm that does not
obtain any non-vertex-guards’ visibility regions, thus saving a crucial amount of both time
and memory. EDGEFILTER clearly is a key success factor when solving the CTGP, i.e., in
POINTGUARDS mode: Without it, PNOEDGE would be the state of the art, meaning that
we could solve 10° to 10 vertex instances of the Terrain Guarding Problem with Vertex
Guards (VTGP), but only instances at least one order of magnitude smaller for the CTGP,
and that we would require much more time to do so. EDGEFILTER essentially removes the
barrier between VI'GP and CTGP.

7.4.5 Impact of Filtering Dominated Guards

Refer to Section for a detailed description of how DOMINATIONFILTER works. Table
displays the percentage of guard candidates that DOMINATIONFILTER filtered out in the
VDEFAULT and PNOEDGE configurations. Observe that we need to obtain these figures in
configurations where no other filter is active.

In both, VERTEXGUARDS and POINTGUARDS mode, DOMINATIONFILTER has no im-
pact on the solution rates within the limits specified in Section However, VDEFAULT

25

F#£vertices

Configuration | Instance 103 104 105 5. 10 106
WALK 65.8% 64.1% 63.6% 63.5% 63.5%
SINEWALK 585% 63.0% 63.6% n/a n/a
VDEFAULT

PARABOLAWALK | 59.9% 63.3% 63.6% n/a n/a
CONCAVEVALLEYS | 13.4% 131% 133% 133% 133%
WALK 929% 94.7% 95.6% 95.8% n/a
SINEWALK 88.1% 96.7% n/a n/a n/a
PARABOLAWALK | 93.2% 98.0% n/a n/a n/a
CONCAVEVALLEYS | 77.1% 80.5% 83.9% 85.0% n/a

PNOEDGE

Table 5: Median percentage of guard candidates removed by the DOMINATIONFILTER.

. #vertices

Configuration | Instance 10 10* 105 5. 10° 106
WALK 91.9% 94.3% 954% 96.1% 96.4%

VDEFAULT SINEWALK 95.8% 988% 99.3% n/a n/a
PARABOLAWALK | 98.6% 99.4% 99.5% n/a n/a
CONCAVEVALLEYS | 76.5% 80.5% 83.7% 851% 855%
WALK 91.9% 94.3% 95.5% 96.1% 96.4%

PDEFAULT SINEWALK 96.3% 98.9% 99.3% n/a n/a
PARABOLAWALK | 98.7% 99.5% 99.5% n/a n/a
CONCAVEVALLEYS | 80.3% 84.2% 87.4% 88.7% 89.1%

Table 6: Median percentage of witnesses removed by the WITNESSFILTER.

and PDEFAULT are slightly faster than VNoDoM and PNoDoM, respectively. But observe
that the key advantage of DOMINATIONFILTER is not that it saves some seconds, but rather
that it saves memory by removing dominated guard candidates. This is important, since
memory consumption is the bottleneck of our implementation, compare Section

7.4.6 Impact of Filtering Witnesses

The WITNESSFILTER, i.e., the feature of only using inclusion-minimal witnesses as described
in Section [5.3land Theorem[2.3] is one of the success factors. Table[f]shows which percentage
of witnesses it removed in the VDEFAULT and PDEFAULT configurations.

Throughout our instances, WITNESSFILTER removes the vast majority of witnesses,
often more than 95 % of them. Furthermore, Table [2| clearly shows that switching off WiT-
NESSFILTER has a drastic effect on the solution rates: The size of solvable instances goes
down by two orders of magnitude. Since WITNESSFILTER allows for an efficient sweep line
implementation, see Section it is both fast and useful.

7.4.7 Timing Behavior

We examine how much CPU time our configurations spend in which part of the algorithm.
In order to obtain a meaningful comparison, we pick a combination of instance class and
complexity that is large, but was still solved by every configuration: WALK with 10° vertices.

26

vertex guards, walk, n=100000 point guards, walk, n=100000

90 90—
I Visibility I Visibility
80| Guard Filters , 80}/ Guard Filters
Il \Witnesses Il \Witnesses
70! | A [P . 70; | |P
Il Other I Other
60} g 60}
E 50t E 50}
Q ()
€ €
S 40f S 40}
30} . 30}
20+ g 20}
101 g 10+ i
o = = l o B
VDefault VNoDom VNoW PDefault PNoDom PNow PNoEdge

(a) VERTEXGUARDS mode, WALK, 10° vertices. (b) POINTGUARDS mode, WALK, 10° vertices.

Figure 11: Median CPU time spent by each configuration in each part of the algorithm.

The timing charts for other combinations are left out, as they permit the same interpre-
tation. Figure 11| contains these charts, where Figure displays the measurements for
VERTEXGUARDS mode and Figure those for POINTGUARDS mode.

The strongest impact comes from EDGEFILTER (it is disabled in the PNOEDGE con-
figuration in the rightmost bar in Figure , switching it off has a catastrophic impact
on the running time. EDGEFILTER essentially closes the gap between POINTGUARDS and
VERTEXGUARDS mode. Without it the time spent calculating visibility regions of un-
needed guards drastically increases up to the point where it dominates the total running
time. Paradoxically, guard filtering time also increases which is owed to the fact that the
other guard filter, DOMINATIONFILTER, still is active and has more guards to compare.

WITNESSFILTER has the second-most important impact. Without it, IP solution times
roughly double in both VERTEXGUARDS mode and POINTGUARDS mode. Again paradox-
ically, the time for generating all these witnesses does not change drastically, but instead
the time for solving the IP does. This happens because the non-inclusion-minimal wit-
nesses form constraints in the IP that are dominated by the inclusion-minimal witnesses’
constraints. This in turn increases the workload of the IP solver which typically discards
many dominated constraints in a preprocessing phase.

The timing behavior is only mildly influenced by the DOMINATIONFILTER feature. As
described above, it has only a small advantage in terms of time, but it does not increase
solution times and it is beneficial in w.r.t. memory consumption.

A general observation is that our implementation with all features enabled, i.e., VDE-
FAULT and PDEFAULT, reduces the computational overhead in terms of time so far that

27

a significant part of the time is spent solving the IP. This means that our filters allow
the algorithm to spend its time solving the underlying instance of the NP-complete Set
Cover (SC). We emphasize this, because it is not to be taken for granted; even the best
solvers for the closely related Art Gallery Problem (AGP) have a much more significant
overhead for geometric subroutines [10].

7.4.8 Memory Consumption

Within our hardware setup and using the PDEFAULT mode, even the largest instances with
108 vertices are solved within minutes, those that are not solved run out of memory, not
time. That is, as long as the instances are not specifically designed to reveal the NP-hardness
of the TGP, the limiting factor is memory.

There are two phases in Algorithm [1| that generate a significant amount of data which
persists in memory. The first phase is the computation of all visibility regions of all vertices
V in line 3| the extremal points of which define the unfiltered guard candidate set U. In
PDEFAULT mode, EDGEFILTER removes the vast majority of candidates from U. The
second phase determines all visibility regions of the points in U \ V' that were not discarded,
generating the largest chunk of data (even when filtered) in line@ It is used for determining
the witnesses, which requires to compute and simultaneously hold the extremal points of
all visibility regions of all remaining guard candidates in memory. We conjecture that this
cannot be avoided since a guard at the far right of the terrain may still see a region at its
very left, and we thus do not see how a way to apply the WITNESSFILTER before knowing
all extremal points.

We remark that the memory bottleneck is amplified by the fact that we follow the
Exact Geometric Computation (EGC) paradigm, which ensures a correct and consistent
representation of all visibility regions and a correct order of all visibility events. Specifically,
we do not store coordinates of points using double floating point arithmetic. We also do
not use the other extreme, which would be an exact representation using arbitrary precision
rationals as they are, e.g., provided by the GMP [23] library.

Instead, we rely on Computational Geometry Algorithms Library (CGAL) [4], more
precisely on CGAL: :Exact_predicates_exact_constructions_kernel, which provides lazy
constructions: The idea is that each coordinate is initially represented by two doubles that
represent an interval that contains the actual coordinate. In many cases this is sufficient
to provide all necessary decisions, for instance, a comparison with another coordinate.
However, in cases in which this is not enough the exact coordinates are computed with
GMP. Compared to the pure exact approach this usually gives an significant advantage
regarding speed but also regarding memory [36].

8 Conclusion

We construct a discretization of polynomial size for the continuous 1.5D Terrain Guarding
Problem (TGP). This settles two prominent open questions: (1) The continuous TGP is
a member of NP and, since NP-hardness is known [30], NP-complete, and (2) it admits
a Polynomial Time Approximation Scheme (PTAS), because the PTAS for the discrete
TGP [22] applies to our discretization.

28

We propose an algorithm finding optimal solutions for the TGP; our implementation
solves instances with up to 10° vertices within minutes. A key success factor are filtering
techniques reducing the size of our discretization: Our experiments show that reducing
the geometric overhead is critical w.r.t. solving large instances. Furthermore, our filters
essentially remove the computational barrier between the continuous and the discrete TGP.

References

[1] Boaz Ben-Moshe, Matthew J. Katz, and Joseph S. B. Mitchell. A constant-factor
approximation algorithm for optimal 1.5D terrain guarding. SIAM Journal on Com-
puting, 36(6):1631-1647, 2007.

[2] boost C++ libraries. http://www.boost.org/.

[3] Francisc Bungiu, Michael Hemmer, John Hershberger, Kan Huang, and Alexander
Kroller. Efficient computation of visibility polygons. CoRR, abs/1403.3905, 2014.

[4] CGAL (Computational Geometry Algorithms Library). http://www.cgal.org/.

[5] Vasek Chvatal. A combinatorial theorem in plane geometry. Journal of Combinatorial
Theory, Series B, 18(1):39 — 41, 1975.

[6] Kyung-Yong Chwa, Byung-Cheol Jo, Christian Knauer, Esther Moet, Ren van Oost-
rum, and Chan-Su Shin. Guarding art galleries by guarding witnesses. In Rudolf
Fleischer and Gerhard Trippen, editors, Algorithms and Computation, volume 3341 of
Lecture Notes in Computer Science, pages 352—-363. Springer, 2005.

[7] Kenneth L. Clarkson and Kasturi R. Varadarajan. Improved approximation algorithms
for geometric set cover. Discrete & Computational Geometry, 37(1):43-58, 2007.

[8] Marcelo C. Couto, Pedro J. de Rezende, and Cid C. de Souza. An exact algorithm for
minimizing vertex guards on art galleries. International Transactions in Operational
Research, 18(4):425-448, 2011.

[9] IBM ILOG CPLEX Optimization Studio. http://www.ibm.com/software/
integration/optimization/cplex-optimizer/.

[10] Pedro J. de Rezende, Cid C. de Souza, Stephan Friedrichs, Michael Hemmer, Alexander
Kroller, and Davi C. Tozoni. Engineering art galleries. Submitted for publication, 2014.

[11] Stephane Durocher, Pak Ching Li, and Saeed Mehrabi. Guarding orthogonal terrains.
In Proceedings of the 27th Canadian Conference on Computational Geometry, pages
220-227, 2015.

[12] Stephan Eidenbenz. Approximation algorithms for terrain guarding. Information Pro-
cessing Letters, 82(2):99-105, 2002.

[13] Stephan Eidenbenz, Christoph Stamm, and Peter Widmayer. Inapproximability results
for guarding polygons and terrains. Algorithmica, 31(1):79-113, 2001.

29

http://www.boost.org/
http://www.cgal.org/
http://www.ibm.com/software/integration/optimization/cplex-optimizer/
http://www.ibm.com/software/integration/optimization/cplex-optimizer/

[14]

[15]

23]
[24]

[25]

Khaled M. Elbassioni, Erik Krohn, Domagoj Matijevic, Julidn Mestre, and Domagoj
Severdija. Improved approximations for guarding 1.5-dimensional terrains. Algorith-
mica, 60(2):451-463, 2011.

Maximilian Ernestus, Stephan Friedrichs, Michael Hemmer, Jan Kokemdiller, Alexan-
der Kroller, Mahdi Moeni, and Christiane Schmidt. Algorithms for art gallery illumi-
nation. In Submitted for publication, 2015.

Sandor P. Fekete, Stephan Friedrichs, Alexander Kroller, and Christiane Schmidt.
Facets for art gallery problems. Algorithmica, pages 1-30, 2014.

Steve Fisk. A short proof of Chvatal’s watchman theorem. Journal of Combinatorial
Theory, Series B, 24(3):374, 1978.

Stephan Friedrichs, Michael Hemmer, and Christiane Schmidt. A PTAS for the contin-
uous 1.5D terrain guarding problem. In Proceedings of the 26th Canadian Conference
on Computational Geometry, pages 367-373, 2014.

Stephan Friedrichs, Michael Hemmer, and Christiane Schmidt. Exact solutions for the
continuous terrain guarding problem. In 31st Furopean Workshop on Computational
Geometry, BuroCG, pages 212-215, 2015.

Stephan Friedrichs, Michael Hemmer, and Christiane Schmidt. Terrain guarding
problem instance library. |http://resources.mpi-inf.mpg.de/tgp/index.html#
instances, August 2015. Version 2015-08-06.

The GNU compiler collection. http://gcc.gnu.org/.

Matt Gibson, Gaurav Kanade, Erik Krohn, and Kasturi R. Varadarajan. Guarding
terrains via local search. Journal of Computational Geometry, 5(1):168-178, 2014.

The GNU multiple precision arthmetic library. https://gmplib.org/.

Andreas Haas and Michael Hemmer. Efficient Algorithms and Implementations for
Visibility in 1.5D Terrains. In FuroCG, pages 216-219, 2015.

Ferran Hurtado, Maarten Loffler, Inés Matos, Vera Sacristdn, Maria Saumell, Ro-
drigo I. Silveira, and Frank Staals. Terrain visibility with multiple viewpoints. Inter-
national Journal of Computational Geometry € Applications, 24(4):275-306, 2014.

Jeff Kahn, Maria Klawe, and Daniel Kleitman. Traditional art galleries require fewer
watchmen. SIAM Journal on Algebraic and Discrete Methods, 4(2):194-206, 1983.

Matthew J. Katz and Gabriel S. Roisman. On guarding the vertices of rectilinear
domains. Computational Geometry Theory and Applications, 39(3):219-228, 2008.

James King. Errata on “a 4-approximation for guarding 1.5-dimensional terrains”.
http://www.cs.mcgill.ca/~jking/papers/4apx_latin.pdf. Visited on August 20,
2015.

30

http://resources.mpi-inf.mpg.de/tgp/index.html#instances
http://resources.mpi-inf.mpg.de/tgp/index.html#instances
http://gcc.gnu.org/
https://gmplib.org/
http://www.cs.mcgill.ca/~jking/papers/4apx_latin.pdf

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

James King. A 4-approximation algorithm for guarding 1.5-dimensional terrains. In
Jos R. Correa, Alejandro Hevia, and Marcos A. Kiwi, editors, LATIN, volume 3887 of
Lecture Notes in Computer Science, pages 629—640. Springer, 2006.

James King and Erik Krohn. Terrain guarding is NP-hard. SIAM Journal on Com-
puting, 40(5):1316-1339, 2011.

Alexander Kroller, Tobias Baumgartner, Sandor P. Fekete, and Christiane Schmidt.
Exact solutions and bounds for general art gallery problems. Journal of Fxperimental
Algorithms, 2012.

Aldo Laurentini. Guarding the walls of an art gallery. The Visual Computer, 15(6):265—
278, 1999.

Der-Tsai Lee and Arthur K. Lin. Computational complexity of art gallery problems.
IEEE Transactions on Information Theory, 32(2):276-282, 1986.

Joseph O’Rourke. Art Gallery Theorems and Algorithms. International Series of Mono-
graphs on Computer Science. Oxford University Press, New York, NY, 1987.

Joseph O’Rourke and Kenneth Supowit. Some NP-hard polygon decomposition prob-
lems. IEEE Transactions on Information Theory, 29(2):181-190, Mar 1983.

Sylvain Pion and Andreas Fabri. A generic lazy evaluation scheme for exact geometric
computations. Science of Compututer Programming, 76(4):307-323, 2011.

Dietmar Schuchardt and Hans-Dietrich Hecker. Two NP-hard art-gallery problems for
ortho-polygons. Mathematical Logic Quarterly, 41:261-267, 1995.

Thomas C. Shermer. Recent results in art galleries. In Proceedings of the IEEE,
volume 80, pages 1384-1399, 1992.

simple-svg. http://code.google.com/p/simple-svg/.

31

http://code.google.com/p/simple-svg/

	1 Introduction
	1.1 Our Contribution
	1.2 Related Work
	1.3 Preliminaries and Notation

	2 Discretization
	2.1 Witnesses
	2.2 Guards
	2.3 Full Discretization

	3 Complexity Results
	4 Polynomial Time Approximation Scheme
	5 Reducing the Size of the Discretization
	5.1 Filtering Dominated Guards
	5.2 Filtering Edge-Interior Guards
	5.3 Filtering Witnesses
	5.4 Open Problem

	6 Optimal Solutions with Linear Integer Programming
	6.1 IP Formulation
	6.2 Algorithm
	6.3 Implementation

	7 Experiments
	7.1 Instances
	7.2 Configurations
	7.3 Experimental Setup
	7.4 Results
	7.4.1 Overview – Instances
	7.4.2 Overview – Vertex Guards
	7.4.3 Overview – Point Guards
	7.4.4 Impact of Filtering Edge-Interior Guards
	7.4.5 Impact of Filtering Dominated Guards
	7.4.6 Impact of Filtering Witnesses
	7.4.7 Timing Behavior
	7.4.8 Memory Consumption

	8 Conclusion

