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III. ZUSAMMENFASSUNG 

Durch Fehler entstandene tetraploide Zellen sind chromosomal instabil und können 

zu Zelltransformation führen. Die Beweise verdichten sich, dass die Propagation von 

tetraploiden Säugetierzellen durch einen p53-vermittelten Arrest eingeschränkt wird; 

jedoch ist weiterhin unklar, was die Ursache dieses p53-vermittelten Arrests ist. 

Um die Ursache des p53-vermittelten Arrests zu identifizieren, wurden individuelle 

Zellen mittels zeitraffender Mikroskopie in Echtzeit verfolgt. Neu entstandene 

tetraploide Zellen können einen Zellzyklus vollenden, aber die Mehrzahl der Zellen 

starb oder verharrte in einem Arrest in der folgenden G1-Phase, abhängig davon ob 

die vorangegangene Mitose fehlerfrei verlief oder nicht. Tochterzellen, denen eine 

fehlerhafte Mitose voranging, akkumulierten p53 im Zellkern, was zum Zelltod oder 

einem irreversiblen Zellzyklusarrest führte. Es zeigte sich durch den Anstieg von 8-

OHdG, einem Indikator für oxidative DNA Schädigung, dass tetraploide Zellen durch 

die vermehrten fehlerhaften Mitosen höheren Konzentrationen von reaktiven 

oxidativen Spezien (ROS) ausgesetzt sind. Der Anstieg von 8-OHdG korrelierte mit 

der p53-Akkumulation im Zellkern. Da keine vermehrte Phosphorylierung des Histons 

H2AX (#-H2AX), ein Marker für DNA-Strangbrüche, detektiert wurde, lässt sich 

schlussfolgern, dass ROS entscheidend für den p53 vermittelten Arrest 

verantwortlich sind. 

Mehrere p53-aktivierende Kinasen wurden mittels RNA Interferenz (RNAi) und 

chemischer Genetik untersucht, ob sie einen Einfluss auf den Zellzyklusarrest von 

tetraploiden Zellen haben. Von den getesteten Kinasen hatte nur ATM einen Einfluss 

auf die Aktivierung von p53 nach fehlerhaften tetraploiden Mitosen. Zwar wird ATM in 

der Regel durch DNA-Schäden aktiviert, jedoch wurde bereits zuvor gezeigt, dass 

ATM auch durch erhöhte ROS Konzentrationen aktiviert werden kann. 
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Um die Zusammenhänge des Zellzyklusarrests weiter aufzuklären, wurde ein 

genomübergreifender esiRNA Screen etabliert, der die Zellproliferation nach 

induzierter Tetraploidisierung analysiert. Durch Kombination der Zellzyklusanalyse an 

Hand des DNA-Gehalts zusammen mit den FUCCI-Zellzyklusindikatoren, konnten 

tetraploide und diploide Zellen nebeneinander mikroskopisch analysiert werden, 

ohne zuvor tetraploide und diploide Zellen isolieren zu müssen. Dieser neue 

experimentelle Ansatz ermöglichte die Identifikation von Genen, die spezifisch die 

Proliferation von tetraploiden Zellen verstärken oder einschränken 

Im Primärscreen wurden 1159 Gene identifiziert, deren Inhibition die Proliferation 

einschränken. Weiter wurden 431 Gene identifiziert, deren Inhibition die Proliferation 

der tetraploiden Zellen verstärken. Von den 431 Genen, deren Inhibition die 

Proliferation verstärken, wurden 371 Gene einem Konfirmationsscreen unterzogen, 

in dem 158 der identifizierten 371 Gene bestätigt wurden. Die bioinformatische 

Analyse der 158 Gene zeigte eine signifikante Anhäufung von Genen, die mit DNA-

Replikation, dem kanonischen Wnt-Signalweg oder mit Tumorsignalwegen assoziiert 

sind. Unter letzteren ist CCDC6 sehr interessant, da dessen Genprodukt durch ATM 

phosphoryliert wird und nachgeschaltet den Tumorsuppressor 14-3-3! reguliert. 

Des weiteren wurden mittels einer Meta Analyse der Ergebnisse des Primärscreens, 

zusammen mit den Daten aus dem “Project Achilles”, welches genomweit den Effekt 

von shRNA-vermittelter Geninhibition auf die Proliferation von 108 Krebszelllinien 

untersuchte, 18 Gene identifiziert, deren Inhibition sowohl die Proliferation von 

tetraploiden Zellen einschränkt, als auch die Proliferation von Zelllinien hemmt, 

welche von Krebsarten stammen, die zu meist chromosomale Instabilitäten (CIN) 

aufweisen. 

Damit bilden die präsentierten Daten nicht nur eine gute Basis zur Aufklärung des 

Zellzyklusarrests tetraploider Zellen, sondern auch für die Identifikation neuer 
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potentieller Zielmoleküle, welche benutzt werden können um Tumorerkrankungen mit 

chromosomaler Instabilität zu behandeln, welche häufig resistent gegen die bislang 

verfügbaren Behandlungen sind. 
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IV. SUMMARY 

Erroneously arising tetraploid mammalian cells are chromosomally unstable and may 

facilitate cell transformation. An increasing body of evidence suggests that the 

propagation of mammalian tetraploid cells is limited by a p53-dependent arrest, 

however, the triggers of this arrest have thus far not been identified. 

To elucidate the timing and causes of this arrest, time-lapse live cell imaging was 

performed to track the fate of individual cells immediately after tetraploidization. 

Newly formed tetraploid cells can progress through one cell cycle, but the majority of 

cells arrest or die in the subsequent G1 stage, with the fate of these tetraploid cells 

determined by the preceding mitosis. Daughter cells arising from defective mitosis 

accumulated p53 in the nucleus, which led to irreversible cell cycle arrest or death. 

Furthermore this p53 accumulation coincides and correlates with an increase of the 

oxidative DNA damage marker 8-OHdG, suggesting an increase in reactive oxygen 

species (ROS), but does not coincide with the phosphorylation of H2AX (#-H2AX), a 

marker for canonical DNA damage. 

Using RNA interference and chemical genetics, several p53 activating kinases were 

tested for their contribution to the cell cycle arrest of tetraploid cells. Of the tested 

kinases, only ATM was shown to play a role in the activation of p53 after defects in 

mitosis. ATM kinase is a DNA damage-responsive kinase, however, it has been 

shown that increased ROS levels activate ATM in a non-canonical way. 

To gain further insights into arrest of tetraploid cells, an unbiased genome-wide 

esiRNA screen was performed to analyze cell proliferation after induced 

tetraploidization. Using FUCCI cell cycle probes, combined with DNA content cell 

cycle profiling, allowed an image-based assay to examine tetraploid and diploid cells 

side-by-side. This novel approach enabled us to screen for genes that specifically 
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restricts or enhances cell proliferation after tetraploidization, if inhibited by esiRNA 

mediated knockdown. 

From the primary screen we identified 1159 genes that decreased and 431 genes 

that increased the cell proliferation after tetraploidization, if knocked down by 

esiRNA. From the 431 genes that increased proliferation upon knockdown, 374 were 

selected and subjected to a re-screen. Of these 374 genes, we were able to confirm 

the results for 158 of the genes. A bioinformatics analysis of the 158 genes for which 

the phenotype were confirmed by the re-screen revealed a significant enrichment of 

genes involved in DNA replication, the canonical Wnt signaling pathway and in 

pathways linked to cancer. Among the latter, CCDC6 is particularly interesting, 

because its gene product is a target of the ATM kinase and an upstream regulator of 

the tumor suppressor 14-3-3!. 

Moreover, by comparing the results of the primary screen with the data of the 

“Project Archilles”, which measured the proliferation in genome wide pooled-shRNA 

screens for 108 cancer cell lines, 18 genes were identified that are essential for the 

proliferation of cells after tetraploidization, as well as for the proliferation of cancer 

cell lines that derive from cancer types with a high incidence for chromosomal 

instability (CIN). 

Taken together, the presented data builds an excellent resource not only for 

elucidating how the arrest after tetraploidization is mediated, but also to identify novel 

potential therapeutic targets against tumors with CIN, which are frequently resistant 

to many of today’s anti-cancer therapies. 
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1. INTRODUCTION 

The doubling of diploid genomes, called tetraploidization, is a common phenomenon. 

Two tetraploidizations occurring rapidly after the divergence of cephalochordates but 

before the split of teleosts and tetrapods fueled the evolution of modern vertebrates 

including mammals and humans (Ohno, 1970; Dehal and Boore, 2005; Kasahara, 

2007; Putnam et al., 2008) and tetraploidization also occurs during the development 

of several human tissues (Davoli and de Lange, 2011; Lee et al., 2009). 

However, several observations raised the hypothesis that tumorigenesis could be 

promoted, or eventually even initiated, by un-scheduled tetraploidization followed by 

chromosome loss and structural rearrangements of chromosomes, known as 

numerical and structural chromosomal instability (CIN) (Shackney et al., 1989; 

Storchova and Pellman, 2004; Ganem et al., 2007). Therefore, scientists have begun 

to investigate whether cells stop proliferating after un-scheduled tetraploidization, and 

if tetraploidization itself is sufficient to trigger tumorigenesis. Chapter 1.2. reviews the 

current body of evidence suggesting that tetraploidization contributes to 

tumorigenesis, and presents possible mechanisms by which cells prevent 

proliferation after un-scheduled tetraploidization.  

Uncontrolled proliferation is a hallmark of cancer cells (Vermeulen et al., 2003); thus, 

in the following chapter (1.1) I will describe the molecular mechanisms that regulate 

cell cycle progression, thereby preventing uncontrolled cell proliferation and ensuring 

error-free propagation of genetic information during cell proliferation. Moreover, the 

molecular mechanisms controlling cell cycle progression are also the starting point 

for investigating the proliferation of cells after unscheduled tetraploidization. 
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of the cell, forming the so-called metaphase plate. As soon as all the chromosomes 

correctly attach and align, the cell transits from metaphase to anaphase, in which the 

sister chromatids are separated and pulled towards the spindle poles by the 

microtubules. Telophase marks the end of mitosis, when the chromosomes 

decondense and the nuclear envelope re-assembles.  

Cytokinesis, the separation of the cytoplasm starts with the onset of anaphase. Actin 

myosin filaments assemble a ring structure at the cell cortex where the metaphase 

plate was located. The contraction of the actin myosin ring pinches the daughter cells 

off (Morgan, 2007). 

  

Figure 2: Cyclin levels during the cell cycle 

Cyclin D starts to accumulate in early G1 phase and peaks at the G1/S transition. The accumulation of 
Cyclin E follows Cyclin D, also peaking at the G1/S transition. Cyclin E accumulates with the transition 
into S phase and drives the DNA replication process. With the onset of mitosis, Cyclin A levels drop. 
The mitotic Cyclin B slowly accumulates during S phase, then rapidly increases during G2 before 
being degraded with the onset of anaphase. Adapted from Truman et al., 2012. 

To ensure error-free propagation, cells have developed a finely tuned regulatory 

network. The core of this network is built by Cyclin-dependent kinases (Cdks) and 

their activating co-factors, the Cyclin proteins, whose expression is regulated 

throughout the cell cycle, as their name suggests (Figure 2) (Truman et al., 2001; 

Morgan, 2007). The modulation of Cyclin protein levels, together with the 

post-translational regulation of Cdk activity, ensures timely transition throughout the 

cell cycle (see below). Molecular control mechanisms called checkpoints prevent 
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premature cell cycle progression at G1/S, G2/M and meta- to anaphase transition by 

inhibiting the activity of the corresponding Cdk (Morgan, 2007). 

 

1.1.1 The G1/S checkpoint 

The cellular decision to commit to DNA replication and cell division is determined by 

the molecular network of the G1/S checkpoint. To make this decision, external 

proliferation signals integrate with internal stop-signals. For example, external signals 

can derive from the JAK-STAT, MAPK/Erk or the Wnt pathway. 

 

Figure 3: Cyclin D levels are controlled by external signaling pathways 

Activated cytokine receptors activate the Cyclin D transcription factors STAT3, or STAT5 via 
JAK kinases. Growth factors signal through their specific receptor and a kinase-signaling cascade, 
and drive the transcription of Cyclin D by activating the transcription factor c-Jun. The Wnt-signaling 
pathway modulates the activity of the destruction complex, which marks its major target !-catenin by 
GSK-3 phosphorylation for degradation. Free !-catenin activates transcription factors that drive the 
expression of Cyclin D. Arrows represent activating interactions and T-shaped lines represent 
inhibitory interactions. 
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Cyclin D is the regulatory subunit of Cdk4 and Cdk6 required to drive the G1/S 

transition. Cyclin D expression can be triggered via three pathways. Cytokine 

receptors dimerize upon ligand binding and activate JAK kinases, which 

subsequently phosphorylate the STAT transcription factors. Phosphorylated STAT 

proteins form homodimers and trigger the transcription of their target genes; in the 

case of STAT3 and STAT5, Cyclin D is one of the targets (Rawlings et al., 2004; 

Klein and Assoian, 2008). Alternatively, growth factors signal through their specific 

receptor via Ras protein into a mitogen-activated protein (MAP) kinase cascade. The 

apical Raf or MAP kinase kinase kinase (MAP3K) activates a MAP kinase kinase 

(MAP2K) activating a MAP kinase (MAPK). MAPK induces Cyclin D expression via 

transcriptions factors such as c-Jun (Pearson et al., 2001; Klein and Assoian, 2008). 

Finally, activation of the Wnt-signaling pathway stops the degradation of !-catenin, 

thus enabling it to drive the expression of Cyclin D as well as other cell cycle 

regulators. The Wnt pathway modulates the activity of the destruction complex that 

marks its major target, !-catenin, for !-TrCP-dependent degradation by GSK-3 

phosphorylation. The destruction complex is formed by the APC protein (adenoma 

polyposis coli) and GSK-3" or GSK-3$ (Doble et al., 2007). Upon binding of the Wnt 

protein ligands to Frizzled-receptors, LPR5 or LPR6 is sequestered. LPR5/6, 

together with the protein Dishevelled, build the platform to inactivate the destruction 

complex via Axin, freeing !-catenin and thereby promoting Cyclin D expression 

(Huang and He, 2008) (Figure 3). 

Upon Cyclin D accumulation, Cyclin D/Cdk4/6-dependent phosphorylation of RB1 

suppresses the inhibitory function of RB1 on the E2F family of transcription factors, 

which drives the expression of Cyclin E and activates a positive feedback loop where 

Cyclin E/Cdk2 phosphorylates and thereby inhibits RB1, thus removing the growth 
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factor regulation of S phase transition. However, in the presence of genotoxic stress, 

p53-induced p21 is able to inhibit this feedback loop. Moreover, stress-activated 

INK4A family members, including p16, along with p21, are able to directly inhibit 

Cdk4/6 activity, thus blocking cell cycle progression (Figure 4). Finally, the activation 

of the E2F family drives cells into the S phase by expressing Cyclin A, which sustains 

the cell cycle progression by activating Cdk2 and/or Cdk1 (Bartek and Lukas, 2001; 

Novak et al., 2001). 

 

Figure 4: The G1/S checkpoint 

Mitogen stimuli drive the activation of Cyclin D. Cyclin D activates G1-Cdks 4 and 6, thereby releasing 
E2F transcription factors by inactivating the Rb protein. A feedback loop with Cyclin E/Cdk2 makes the 
transition into S phase growth factor-independent after reaching a certain threshold of G1-Cdk activity. 
The progression to S phase is blocked if genotoxic stress activates p53 or p16 and other members of 
the INK4A family. p16 and p21, downstream targets of p53, are Cdk inhibitors and thereby stop 
cell cycle  progression. Arrows represent activating interactions and T-shaped lines represent 
inhibitory interactions. 

Taken together, the G1/S checkpoint is the key rheostat in multicellular organisms 

regulating cell proliferation in various tissues. Thus, it is logical that several of its 

components, such as RB, p53 and Cyclin D, are mutated or de-regulated in many 

tumors contributing to their uncontrolled proliferation, which is a hallmark of cancer 

(Vermeulen et al., 2003). 
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ATR-mediated response by initiating the 5’-3’ resection, which generates 

single-stranded DNA (ssDNA). RPA coating ssDNA recruits the ATRIP/ATR complex 

(Symington and Gautier, 2011). ATM and ATR phosphorylate the histone H2AX on 

serine139. This phosphorylation is the most commonly recognized marker for DSBs 

(#-H2AX) and its dephosphorylation is involved in the termination of cell cycle arrest 

(Chowdhury et al., 2005 & 2008; Nakada et al., 2008). Chk1, which is activated by an 

ATR-, and Chk2, activated by an ATM-dependent phosphorylation, stabilize p53 by 

phosphorylating the serine20 residue. ATM and ATR also phosphorylate p53 at 

serine20, which, together with phosphorylation of the E3-ligase MDM2 that targets 

p53 for 26S-proteasomal degradation, inhibit the p53-MDM2 interaction, thus 

blocking p53 degradation. Moreover, ATM and ATR phosphorylate serine15 of p53, 

stimulating the transactivation of p53 as well as weakening the MDM2-p53 interaction 

(Abraham, 2001). The Cdk-inhibitor p21, an important downstream target of p53, and 

the inhibition of the cell cycle promoting phosphatases CDC25 by Chk1 and Chk2, 

execute the cell cycle arrest by keeping the corresponding Cyclin-Cdk complex 

inactive. 

 

1.1.3 The G2/M checkpoint 

Cells are driven from G2 into mitosis by a switch-like increase of Cdk1 activity. To 

prevent cells entering mitosis with damaged or un-replicated DNA, the 

G2/M checkpoint keeps the Cdk1 activity low as long as DNA damage is not repaired 

and the checkpoint is activated. 



1. INTRODUCTION 

 
9 

 

Figure 6: The G2/M checkpoint 

The regulatory network of the G2/M checkpoint, which controls the activity of CdK1/Cyclin B, is 
visualized. The gray background highlights the effector proteins, p53, Chk1 and Chk2 of the 
DNA damage checkpoint. Dashed lines represent transcriptional activation, arrows a direct activating 
interaction and T-shape line a direct inhibitory interaction. 

To gain the full Cdk1/Cyclin B activity necessary to enter mitosis, cells have to 

execute two regulatory processes: CDC25 phosphatases have to remove the Wee1- 

and Myt1-mediated inhibitory phosphorylation on Cdk1, and the inhibition of the 

Cdk1/Cyclin B complex by p21 has to be abrogated (Figure 6). This is only achieved, 

after the p53-mediated expression of p21 and 14-3-3" ceases and Chk1 and Chk2 

are no longer active. Further, 14-3-3" inhibits CDC25 phosphatases phosphorylated 

by Chk1 and Chk2 via cytoplasmic retention. Finally, Chk1 and Chk2 prime CDC25 

phosphatases for ubiquitin-mediated degradation. Once the trigger from the 

DNA damage checkpoint has passed, Cdk1/Cyclin B-mediated Plk1 activates CDC25 

phosphatases. This positive feedback loop leads to a switch-activation of Cdk1 and 

entry into mitosis (Stark and Taylor, 2006). 
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1.1.4 The spindle assembly checkpoint 

To safeguard the daughter cell from becoming aneuploid, the mitotic or 

spindle assembly checkpoint (SAC) stalls the mitotic progression into anaphase until 

each chromosome is attached to microtubule bundles emanating from the opposing 

spindle poles. Therefore, microtubules are anchored to the chromosomes by huge 

protein structures called kinetochores, which generate the SAC stop-signal unless 

they are properly attached to the microtubules and tension is formed between sister 

kinetochores by the forces pulling from opposite poles (Musacchio and Salmon, 

2007). 

The exact mechanism by which the SAC is established is still a matter of 

investigation, but in summary, un-attached kinetochores require MPS1 to recruit the 

RZZ complex (Rod, Zw10, Zwilch), which together with MPS1 and the Bub proteins 

(Bub1, BubR1, Bub3) recruit the Mad1-Mad2 complex (Lara-Gonzalez et al., 2012). 

Mad2 exists in two conformations: an open inactive one and a closed active one; 

Mad2 bound to Mad1 is in its closed active conformation and is capable of activating 

other Mad2 molecules that are in the inactive open conformation and not bound to 

Mad1, by converting these to the active closed conformation (Vink et al., 2006). Free 

Mad2 in its closed active conformation binds Cdc20, an activating subunit of the 

anaphase-promoting complex (also called cyclosome, APC/C). Mad2, together with 

Cdc20, BubR1 and Bub3, forms the mitotic checkpoint complex (MCC), which binds 

and inhibits the APC/C (Nezi and Musacchio, 2009; Lara-Gonzalez et al., 2012) 

(Figure 7, top panel). 

The microtubule-kinetochore interaction is stabilized when the microtubules 

emanating from opposing spindle poles attach to the sister kinetochore in a manner 

that generates both inter- and intra-kinetochore tension. Microtubule-kinetochore 

interactions that are incapable of generating tension are dissolved in an 
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Aurora B-dependent manner; and thus, generate un-attached, MCC-producing 

kinetochores (Rago and Cheeseman, 2013) (Figure 7, middle panel). 

 

Figure 7: The spindle assembly checkpoint 

The fundamental concepts of the SAC are visualized. The top panel shows that un-attached 
kinetochores recruit Mad1 and Mad2 in MPS1-dependent manner, the RZZ complex and the Bub 
proteins. The Mad1-Mad2 complex converts the inactive open-Mad2 into the active closed-Mad2 to 
inhibit the APC/C by forming the mitotic checkpoint complex MCC and sequestering Cdc20, the 
activating subunit of the APC/C. The panel in the middle shows the SAC activation by faulty 
tensionless kinetochore-microtubule connections, which are resolved by Aurora B and therefore 
creating un-attached kinetochores. The bottom panel visualizes how the APC/C activates Separase 
and inactivates Cdk1 by degrading Cyclin B and Securin, which leads to chromosome segregation and 
mitotic exit. The sister chromatids depicted in blue with green or red circles represent attached and 
un-attached kinetochores, respectively. Black lines emanating from the spindle poles in dark red 
represent microtubules. Arrows represent activations and T-shape lines inhibition. 

Once all kinetochores are stably attached to microtubules emanating from opposing 

spindle poles, the SAC is switched off and the Mad1-Mad2 complex is stripped from 

the kinetochore via the dynein-mediated removal of the RZZ complex. The 

Cdc20-activated APC/C drives the transition into anaphase by targeting Securin and 
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Cyclin B for proteasomal degradation. The degradation of these two proteins is a key 

event for progression into anaphase for two reasons: first, both proteins inhibit 

Separase whose activity is required to open the Cohesin ring, which holds sister 

chromatids together and prevents premature chromosome segregation. Therefore, 

Separase cleaves the Kleisin subunit Scc1 and triggers chromosome segregation. 

Secondly, Cdk1 activity drops with the degradation of Cyclin B and releases the 

daughter cells from mitosis into G1 (Figure 7, bottom panel). 

The SAC ensures that the chromosomes carrying genetic information are equally 

distributed into the daughter cells during mitosis (Foley and Kapoor, 2013). Mouse 

models demonstrate that increased CIN and tumorigenesis are the consequences of 

a compromised SAC (Schvartzman et al., 2011). Further, it has been shown that 

mosaic variegated aneuploidy (MVA), a disorder with a high risk of childhood cancer, 

is caused by a gene mutation that renders the SAC component BubR1 inactive 

(Micale et al., 2007). This convincingly shows that the SAC plays an important role in 

preventing CIN and tumorigenesis despite the fact that only a low number of human 

tumors with a compromised SAC have been found so far. 

Taken all together, the mechanisms that control the cell cycle and in particular the 

ones that are important for the faithful chromosome segregation and cell division are 

in the focus of many studies that investigate tetraploidy in context of tumorigenesis 

including the ones presented in this work. 
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1.2 The links between tumorigenesis and tetraploidization 

Aneuploidy is a hallmark of solid tumors; the chromosome numbers of most human 

tumors range between diploidy and tetraploidy. Tumors frequently contain 

hypertriploid or hypotetraploid chromosome sets (Figure 8). This observation fits the 

hypothesis that tetraploidization is a key step during tumorigenesis (Shackney et al., 

1989; Storchova and Pellman, 2004). 

 
Figure 8: Distribution of chromosome number in common cancers 

The percentage of tumors plotted against the corresponding maximum chromosome number reveals 
that diploid or near-diploid karyotypes dominate across cancer types. A high percentage of tumors 
with near-triploid or near-tetraploid chromosome numbers suggests that changes in whole 
chromosome sets are frequent in cancers. The Mitelman Database of Chromosome Aberrations in 
Cancers was used as a source of the data (http://cgap.nci.nih.gov/Chromosomes/Mitelman). Adopted 
from (Storchova and Kuffer, 2008). 

This chapter summarizes first the mechanisms leading to tetraploidization, second 

the evidence that tetraploidization drives tumorigenesis, and finally the known cellular 

mechanisms that restrict the proliferation after tetraploidization. 
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Tetraploidization may also occur due to aberrant cell division. Bulk chromatin, or 

even a single lagging chromosome trapped in the cleavage furrow can prevent cells 

from completing cytokinesis (Mullins and Biesele, 1977; Shi and King, 2005). 

Abnormal spindle positioning and movements may also interfere with cytokinesis; it 

was shown that defects in spindle anchoring or spindle assembly lead to 

tetraploidization (Reverte et al., 2006; Caldwell et al., 2007). The result of cytokinesis 

failure is a single binucleated cell with two centrosomes. 

Cells that are not able to resolve a mitotic defect that persistently activates the SAC 

will exit from mitosis without undergoing anaphase and cytokinesis; this phenomenon 

is called “mitotic slippage” (Brito and Rieder, 2006). Mitotic slippage produces 

tetraploid cells with a single nucleus accompanied by two centrosomes (Elhajouji et 

al., 1998; Lanni and Jacks, 1998). 

Tetraploid cells can be found with variable frequencies (0.5 % to 20 %) in nearly 

every human tissue (Biesterfeld et al., 1994) and list of routes leading to 

tetraploidization is growing, thus raising the the possibility that unscheduled 

tetraploidization occurs frequently in normal tissues. Therefore, it has been 

suggested spontaneous unscheduled tetraploidization might be far more frequent 

than an oncogenic gene mutation (Storchova and Kuffer, 2008). 

 

1.2.2 Tetraploidy-driven tumorigenesis 

By now a solid body of evidence suggests that tetraploidization can drive 

tumorigenesis. First, it was shown that mice overexpressing the mitotic kinesin KIF11 

(also known as Eg5) or the SAC component MAD2 accumulated tetraploid cells and 

developed tumors in various tissues (Castillo et al., 2007; Sotillo et al., 2007). In case 

of MAD2, even transient overexpression was sufficient to trigger tumorigenesis 

(Sotillo et al., 2007). Moreover, in vitro and mouse experiments showed that the 
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overexpression of the mitotic kinase Aurora A results in cytokinesis failure as well as 

in a shortened tumor-free survival of the mice (Meraldi et al., 2002; Wang et al., 

2006). In human cancers, Aurora A is frequently overexpressed and correlates with 

more aggressive tumor progression and increased CIN (Katayama et al., 2003). 

Second, the analysis of known tumor suppressor genes revealed that mutations 

leading to a loss of function may trigger tetraploidization. For example, it has been 

shown that defect in the DNA repair gene BRCA2 prompts cleavage failure at the 

end of mitosis in human cancer cells as well as mouse fibroblasts. Thus, 

BRCA2 deficiency leads to the accumulation of binucleated tetraploid cells and 

polyploid cells in vivo and in vitro (Daniels et al., 2004). 

Similar observations have been made for the well-established tumor suppressor 

gene APC, whose loss of function due to truncating mutations is an early event 

during tumorigenesis of colorectal cancers. Patients with a germline mutation in the 

APC gene suffer from familial adenomatous polyposis (FAP; earlier known as 

Gardner syndrome) and develop thousands of polyps in their intestine, quickly 

followed by the development of colorectal cancer (Kinzler and Vogelstein, 1996; 

Polakis, 1997). Although the carcinogenic potential of APC mutations is usually 

attributed to APC’s role in !-catenin-dependent Wnt signaling (Clevers, 2006), it was 

convincingly demonstrated that APC mutations also affect the anchoring of mitotic 

spindles. Affected cells subsequently fail to establish a proper cleavage plane due to 

the rotation of the mitotic spindle, causing cytokinesis failures and thereby 

tetraploidization (Caldwell et al., 2007; Dikovskaya et al., 2007). This finding is in 

concordance with the observed spontaneous tetraploidization of primary fibroblasts 

from patients diagnosed with Gardner syndrome (FAP) (Danes, 1976). 

Third, tetraploid cells are frequently found in tumors of all stages (Figure 8) and in 

pre-malignant conditions. Before gross aneuploidy, tetraploid cells are detected 
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within neoplastic lesions of Barrett’s esophagus that precede esophageal 

adenocarcinoma (Galipeau et al., 1996; Barrett et al., 2003; Maley, 2007). Similarly, 

the tetraploid cells were also detected in early stages of cervical tumorigenesis 

(Olaharski et al., 2006). Recently, the gene copy number analysis of 4934 primary 

cancer specimens across 11 cancer types revealed that 37% underwent 

tetraploidization at some point during tumorigenesis (Zack et al., 2013). 

Fourth, every virus with known human oncogenic potential (Human papilloma virus, 

Epstein–Barr virus, HTLV-1, hepatitis B and C virus) induce tetraploidization by 

cell-cell fusion (Duelli and Lazebnik, 2007; Hu et al., 2009). Indeed, transgenic mice 

that express T-antigen of the SV40 (simian virus 40) in pancreas first accumulate 

tetraploid cells before aneuploid tumors form (Ornitz et al., 1987). Another study used 

the Mason-Pfizer Monkey Virus (MPMV), which is also found in humans, but without 

cytostatic or cytotoxic effect. Tetraploid cells generated by the MPMV-triggered 

fusion of cells expressing the oncogene HRAS with cells expressing E1A displayed 

CIN and were tumorigenic in xenograft mouse models. On the other hand, did the 

combined expression of the oncogenes HRAS and E1A in diploid MPMV-infected 

cells not trigger any CIN nor tumor formation (Duelli et al., 2005 & 2007). 

Finally, the most direct experimental evidence that tetraploidization initiates 

tumorigenesis has been provided by a study that monitored tumor formation in nude 

mice comparing subcutaneous injection of p53-null mammary epithelial-gland cells 

that were either tetraploid or diploid. Ten out of 39 animals developed tumors at the 

sites where tetraploid cells had been injected, but none of the animals developed 

tumors at the injection site of isogenic diploid cells that underwent identical procedure 

as the tetraploid cells. The cells isolated from the tumors displayed near-tetraploid 

karyotypes with significant whole-chromosomal aneuploidy and several chromosomal 

rearrangements (Fujiwara et al., 2005). Similarly, intraperitoneal injections of 
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tetraploid mouse ovarian surface epithelia cells (MOSECs) that were generated by 

long-term in vitro passaging caused the development tumors, but the injection of 

short-term in vitro passaged diploid MOSECs did not (Lv et al., 2012). 

Taken all together, the data provides compelling evidence that tetraploidization plays 

a key role in development of solid tumors. However, the findings also underscore that 

tetraploidy-driven tumorigenesis requires the malfunction of a gatekeeper gene, like 

TP53 or APC. This suggests that metazoan cells have developed protection 

mechanisms against the proliferation of cells that underwent unscheduled 

tetraploidization. 

 

1.2.1 Mechanisms preventing cell proliferation after tetraploidization 

To date, only a few studies have directly addressed, which genes prevent the 

proliferation of mammalian cells after tetraploidization. Thus far, only TP53 (p53) has 

been repeatedly confirmed to be required to suppress cell proliferation after 

tetraploidization; additionally, CDKN1A (p21), CDKN2A (p16) and RB1 (Rb) have 

also been implicated (Cross et al., 1995; Andreassen et al., 2001; Meraldi et al., 

2002; Fujiwara et al., 2005). Despite the confirmed role of p53 in suppressing cell 

proliferation after tetraploidization, it has been shown that binucleated tetraploid cells 

with functional p53 pathway are capable of completing at least one tetraploid cell 

cycle as well (Uetake and Sluder, 2004). This raised the question when and how 

human cells arrest after tetraploidization. 

One possible trigger might be the time cells spend in mitosis; untransformed human 

retinal pigment epithelial (hTERT RPE-1) enter a p53-dependent post-mitotic 

G1 arrest mediated by the p38/MAPK stress kinase, if they were mitotically blocked 

by the microtubule inhibitor Nocodazole in mitosis for more than 1.5 h (Uetake and 
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Sluder, 2010). Thus, cells might enter a post-mitotic G1 arrest due to the time they 

spend in mitosis after tetraploidization, because mitosis in tetraploid hTERT RPE-1 

takes around 50 min after tetraploidization, in contrast to 20 min of diploid mitosis 

(Yang et al., 2008). 

Another possibility is that cells acquire DNA damage during or after tetraploidization 

that prevents further cell proliferation. For example, the prolonged tetraploid mitosis 

could eventually lead to such DNA damage. Human diploid cells that spend 6 h or 

more in mitosis accumulated significant amounts of DNA damage (Dalton et al., 

2007; Quignon et al., 2007). Another possibility is that after tetraploidization, an 

increased number of lagging chromosomes are damaged in the cleavage furrow due 

to the elevated missegregation after multipolar mitosis caused by the extra 

centrosomes that cells contain after tetraploidization (Ganem et al., 2009; Janssen et 

al., 2011). 

A faulty mitosis might also directly signal a cell cycle arrest. Thus, it was shown in 

mouse embryonic fibroblasts that the incidence of survival after chromosome 

missegration correlates with the expression levels of Bub1. Compared to wild-type 

MEFs, MEFs with reduced Bub1 escape p53-mediated cell death more frequently 

(Jeganathan et al., 2007). In humans, the related BubR1 proteins was found to be 

downregulated in colorectal tumors and the ectopic expression of a 

dominant-negative BubR1 mutant in cells that underwent tetraploidization lead to 

tumor growth in xenograft models (Shin et al., 2003). Furthermore, it has been 

reported that BubR1 induced the phosphorylation and stabilization of p53 (Ha et al., 

2007). 

On the other hand, a faulty mitosis could trigger cell cycle arrest indirectly. It was 

reported that the missegregation of a single chromosome in human diploid cells lead 
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to the accumulation of p53 and its target, the cell cycle inhibitor p21. The inhibition of 

p53 as well as p38 function was necessary for the accumulation of aneuploid cells 

after induced chromosome missegration. The trigger for p38-activated 

p53-stress response is still unclear; however it was hypothesized that a proteotoxic 

stress caused by the imbalanced gene copy number might activate the p38 

stress kinase (Thompson and Compton, 2010). 

Together, the data obtained from these studies suggest that passage throught the 

tetraploid mitosis is critical for the decision about the fate of cells after 

tetraploidization. 
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2. RESULTS 

2.1.1 Abnormal mitosis triggers p53-dependent cell cycle arrest in human 

tetraploid cells 

 

Kuffer, C., Kuznetsova, A.Y., and Storchova, Z. (2013). Abnormal mitosis triggers 

p53-dependent cell cycle arrest in human tetraploid cells. Chromosoma. 

 

This publication addresses the previously unanswered questions of when and why 

cells arrest in a p53-dependent manner after tetraploidization. 

By long-term live cell imaging of individual cells after tetraploidization, it was shown 

that HCT116 cells completed one cell cycle, but arrested and died in a p53-

dependent manner after exiting the first tetraploid mitosis. The main trigger for this 

arrest came from a defective mitosis caused by spindle multipolarity and massive 

chromosome missegregation. In contrast, no correlation was observed between 

length of mitosis and the arrest after tetraploidization, nor did the presence of DNA 

double strand breaks correlate with the activation of p53. However, the amount of 

oxidative DNA damage increased co-linearly with p53 within 24 h after 

tetraploidization. Moreover, the amount of oxidative DNA damage and p53 also 

correlated at an individual cell level.  

ATM has previously been show to activate p53 in situations with elevated ROS level 

and increased oxidative DNA damage due to chromosome missegregation perturbing 

the SAC (Li et al., 2010). Congruently, the inhibition of ATM reduced the activation of 

p53 and increased the proliferation of cells after tetraploidization. 
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2.2 Myocardin related transcription factors are required for coordinated 

cell cycle progression 

Shaposhnikov, D., Kuffer, C., Storchova, Z., and Posern, G. (2013). Myocardin 

related transcription factors are required for coordinated cell cycle progression. Cell 

Cycle 12, 1762–1772. 

 

This publication addresses the question, which effect MRTFs have on cell cycle 

regulation and ploidy. It shows that clonal populations raised from NIH3T3 cells 

stably depleted of Myocardin-related transcription factors A and B (MRTFs) were 

frequently tetraploid or aneuploid, despite the fact that transient depletion of MRTFs 

did not increase the number of binucleated cells. However, lead the depletion of 

MRTFs in NIH3T3 cells to an increase of cells with nuclear buds or micronuclei. 

Depletion of MRTFs increased the expression of Cyclin D1, which is linked to the cell 

cycle progression from G1 into S phase. Moreover, in the absence of growth factors, 

MRTFs-depleted cells entered S and G2 phase more frequently than control-

depleted cells. Accordingly, the expression of the cell cycle inhibitors p27Kip1, 

p18Ink4c and p19Ink4d were decreased in MRTFs-depleted cells. However, this did 

not lead to an increased proliferation of MRTFs-depleted cells, and correlates with 

the observation that the expression of the cell cycle inhibitor p21 was also increased 

in these cells. Under normal growth conditions, the MRTFs-depleted cells showed an 

impaired proliferation accompanied with a significantly shortened G1 phase and a 

slightly extended S/G2 phase. 

These results suggest an important and complex role for MRTFs in maintaining 

proper cell cycle progression and genomic stability. 
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Cells that did not express any Fucci cell cycle sensor were excluded from the 

analysis. For each of the six classes, the relative abundance was calculated and 

transformed into a Z*-score value. The Z*-score transformation was performed for 

each cell cycle class by dividing the difference between its relative abundance in a 

particular well of a plate and the median of the whole plate by the median absolute 

deviation (MAD) (Zhang, 2011). Control wells transfected with esiRNA targeting 

either TP53 or KIFC1 were excluded from the calculation of the median and MAD of 

the plate. 

The plate average or plate median can be used instead of classic non-targeting 

negative controls based on the assumption that the vast majority of the tested genes 

in a genome-wide library are not involved in the studied process (Theis and 

Buchholz, 2011). The Z*-score calculation normalizes the individual assay plates 

against each other (Figure 13) as well as the medians and variance of the different 

cell cycle classes against each other; thus all cell cycle classes have an isotropic 

variance after the calculation (Figure 14). 
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After inspecting the Z-index values of selected candidates that either have a function 

in the G1/S transition or have been reported to be involved in the arrest of tetraploid 

cells, such as RB1 or CDKN1A (p21) (Table 1) (Andreassen et al., 2001), the cutoff 

for candidates to score as a primary hit was set to 5.875.The primary screen was 

conducted in two technical replicates, thus the duplicate information can either be 

used to reduce the false positive or false negative discovery rate. We decided to use 

the duplicate information to minimize the false negative discovery rate, because false 

positive hits can easily be eliminated in subsequent confirmatory screens, if the total 

number of hits is not too big as in our case.  

    Expected Z*-score of cell number         Z-index 
Gene name Protein name phenotype Dupl. A Dupl. B   Dupl. A  Dupl. B 
CCND1 CycD1 KIFC1-like -0,724 -0,701  -14,882 -15,340 
CDK4 Cdk4 KIFC1-like -0,862 0,611  -7,542 -4,994 
CDKN1A p21 TP53-like 0,066 0,228  8,433 6,955 
KIF11 Eg5 Viability -2,762 -2,826  0,161 -1,972 
MDM2 Mdm2 KIFC1-like 0,681 0,667  -6,991 -5,568 
MYC Myc KIFC1-like 2,183 1,132  -11,318 -9,793 
PLK1 Plk1 Viability -1,371 -2,869  2,401 -5,391 
RB1 Rb TP53-like -0,005 0,492  5,879 1,638 

Table 1: Selected candidates from literature 

Table of genes and corresponding proteins used to set cutoffs due to their anticipated roles (expected 
phenotypes column). Genes that reduce the cell viability in general were classified as Viability, genes 
that have a negative impact on cell proliferation after tetraploidization were classified as KIFC1-like, 
genes that have a positive impact on cell proliferation after tetraploidization were classified as TP53-
like. Z*-score of cell number: number of detected cells in the well normalized to plate average. Z-
index: as explained in Figure 15. 

To eliminate genes that have a major negative impact on the proliferation of cells or 

cause a mitotic arrest regardless of their ploidy, we did not analyze conditions with 

the “Viability” phenotype. Genes were classified as a viability hit if one of the 

duplicates showed a value less than -2 of Z*-score of the number of cells, which 

means that the total cell number was reduced independent of the DNA content of the 

cells (Z*-score of cell number). Applying this parameter confirmed the classification 

as Viability hit for the genes KIF11 and PLK1, both of whose depletions are regularly 
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used as viability controls (Hoffman et al., 2010; Theis and Buchholz, 2011; 

Zhang, 2011; Casanova et al., 2012; Vainio et al., 2012; Fawdar et al., 2013) (Table 

1). Using the above described strategy, we identified 249 genes that reduce the 

viability in general (viability hits), 1150 genes that inhibition specifically reduces the 

proliferation of tetraploid cells (KIFC1-like hits) and 432 genes that inhibition 

specifically increases the proliferation of tetraploid (TP53-like hits) out of the 16231 

genes tested in the primary screen. 

 

2.3.4 Effective reproducibility between the duplicate runs of the primary 

screen 

To assess the technical reproducibility of the screen, we used the four Z*-score 

values of cell cycle classes, corrected Z*-score of the number of cells alive and the Z-

index of each well to test the intraclass correlation of the duplicates as a measure of 

how well the duplicates match. The median intraclass correlation coefficient of 34 of 

56 library plates was between 0.6 and 0.75, which is considered as a good match, 

and all remaining 22 library plates had a median between 0.4 and 0.6, which is still 

considered as a moderate match (Fleiss, 2011) (Figure 16). In total, over 70 % of all 

wells matched with their duplicate moderately, well or excellently (Fleiss, 2011). 

Thus, we concluded that the technical reproducibility was sufficient throughout the 

primary screen. 
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SSMD value beneath 5 are usually repeated (Zhang, 2011). In batch 2, on average 

only 1 of the duplicates had a SSMD* above 5, and in batches 3, 4 and 5, on average 

0.3, 0.5 and 0.7 plates of each duplicate had a SSMD* above 5, respectively (Figure 

17, top panel). Thus, we concluded that the assay itself has a very good dynamic 

range in general, but problems with the cell transfection or the spiked-in controls 

occurred in session 3 to 5 and to some degree also in session 2, limiting the 

robustness of any conclusions. A repetition of all 69 plates with a SSMD* value 

beneath 5 would mean a tremendous time and financial effort; therefore, we 

addressed the question whether the bad SSMD* values arose only due to variation in 

the manually added (spiked-in) controls or whether the whole plates were affected 

and therefore have to be repeated or disregarded. An insufficient cell transfection is 

the most likely scenario that affects whole plates and not only the spiked-in controls. 

In this case the cells would not be affected by the applied esiRNAs. Moreover, 

because the hit selection based on Z-index is independent from the positive controls, 

we would expect that the number of identified hits per plate to be decreased along 

with the SSMD*. Hence, we examined the number of identified primary TP53-like hits 

per library plate against the SSMD* of its 2 duplicates. 

We did not observe any dependency of the number of primary hits per library plate 

on SSMD*, neither for library plates with only 1 good SSMD* value nor with 2 good 

SSMD* values (Figure 17, bottom left panel). Moreover, we only observed a 

non-relevant difference in the number of identified primary TP53-like hits between 

library plates with at least one duplicate with a SSMD* bigger than 5 and library 

plates with a SSMD* smaller than 5 in both duplicates (Figure 17, bottom right panel). 

Together, this data indicate that the poor SSMD* values most likely arose from the 

variation in the spiked-in controls, rather than problems across the whole assay plate. 
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Figure 17: SSMD and its impact on the number of TP53-like hits per library plate 

A: The SSMD of each plate of the primary screen. The cutoffs of the SSMD-based quality classes 
poor, inferior, good and excellent at 3, 5 and 7 are highlighted using a red, orange or a green line, 
respectively. B: A scatter plot visualized the number of primary TP53-like hits of each library plate 
encoded by the size and color of the dots versus the SSMD values of duplicate A and B. C: The 
boxplot support by a violin plot visualizes the distribution of the number of TP53-like hits per library 
plate for three different quality classes based on the best SSMD of each duplicate. 

Therefore, we moved forward and subjected a subset of 374 genes to a confirmatory 

screen. This subset consists of TP53-like hits identified in the primary screen, but 

excludes 58 genes that either were identified as hits in previous cell cycle screens 

(Neumann et al., 2006; Kittler et al., 2007), or are located on the Y chromosome 
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(which is not present in HCT116 cells), or other genes that did not rationally fit with 

known biology pathways. 

 

2.3.6 The confirmatory screen of primary TP53-like hits endorses the 

quality of the primary screen 

The confirmatory screen was performed in black 96-well glass bottom plates in four 

technical replicates. The assumption that most genes tested are not involved in the 

tested biological process is no longer valid for a confirmatory screen, therefore every 

assay plate contained four wells of renilla luciferase (R-LUC) and another 4 wells 

targeting TP53, as negative and positive controls, respectively. As negative controls, 

the R-Luc wells were used for the Z*-score transformations. The TP53 wells (positive 

controls) separated well from the R-LUC wells; 56 out of 60 TP53 wells had a Z-index 

above 5.875 and the Z-index of the R-LUC controls was between -5.875 and 5.875 

for 71 out of 72 wells, for one R-LUC well the Z-index was -6.252 (Figure 

18 left panel). The separation between the controls was considerably better than in 

the primary screen (compare Figure 15, right panel). Moreover, the replicates for 

each tested gene showed mainly excellent intraclass correlation coefficients (Figure 

18 right panel). Thus, we concluded that the quality of the confirmatory screen is well 

suited to confidently reinforce or exclude primary TP53-like hits, as well as to 

evaluate the quality of the primary screen. To confirm the primary TP53-like hits, 

every rescreened gene was tested against the R-LUC controls using the Dunnett's 

multiple comparison test; we considered a primary hit as confirmed if the p-value was 

less than 0.1. Using this approach, 157 genes out of 373 primary hits were confirmed 

as TP53-like hits; and furthermore, 6 KIFC1-like hits were identified. 
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      avg. primary avg. confirmed confirmation 
no. of  TP53- & KIFC1-like  TP53-like hits rate of 

   Batch library plates median SSMD* hits per library 
plate per library plate TP53-like hits 

      1 5 9.7 33.2 4.0 57 % 
      2 15 5.0 20.6 2.8 41 % 
      3 10 1.5 48.4 3.9 31 % 
      4 15 3.1 16.7 1.3 25 % 
      5 10.13* 4.3 36.8 3.7 42 % 

Table 2: Quality control summary 
* The last library plate of session 5 (no. 56) only contained esiRNAs targetting 40 instead of 
300 genes. 

Taken together, we believe that the primary screen as well as the confirmatory 

screen of primary TP53-like hits were successful and have identified a reasonable 

number of hits of sufficient quality that grant further analysis. 

 
2.3.7 The pathway analysis of the confirmed TP53-like hits 

To gain insight into the biological functions that regulate proliferation of tetraploids, 

we used public databases such as the Kyoto Encyclopedia of Genes and Genomes 

(KEGG), Gene Ontology (GO), or Panther database for analysis (Ramanan et al., 

2012). We used the Database for Annotation, Visualization and Integrated Discovery 

(DAVID, (Huang et al., 2009a; 2009b)) online tool to perform an enrichment analysis 

of GO biological processes (GOBP), KEGG and Panther pathways. No Panther 

annotated pathway was statistically significantly enriched among the TP53-like hits 

and the analysis of the KEGG database revealed that the annotation ‘Pathways in 

cancer’ was the only one statistically significantly enriched in our data set. 

Additionally, each of the 4 TP53-like hits from our data set was statistically 

significantly enriched to a level of about 4-fold in the ‘cell cycle arrest’ and ‘Wnt 

receptor signaling pathway’ clusters in the GOBP analysis. 
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 Term  no. of  EASE   Fold 
 TP53-like hits p-value Enrichment 
KEGG    
Pathways in cancer 7 0.042 2.6 
    GOBP    
cell cycle arrest 4 0.060 4.5 
Wnt receptor signaling pathway 4 0.078 4.0 
negative regulation of nucleobase, nucleoside, nucleotide 
and nucleic acid metabolic process 

10 0.022 2.4 

negative regulation of nitrogen compound metabolic 
process 

10 0.024 2.4 

negative regulation of cellular metabolic process 14 0.006 2.3 
positive regulation of cell proliferation 8 0.058 2.3 
negative regulation of transcription 8 0.076 2.1 
negative regulation of metabolic process 14 0.012 2.1 
negative regulation of macromolecule metabolic process 13 0.019 2.1 
DNA metabolic process 9 0.068 2.1 
negative regulation of macromolecule biosynthetic process 9 0.077 2.0 
negative regulation of cellular biosynthetic process 9 0.085 2.0 
negative regulation of biosynthetic process 9 0.095 1.9 
negative regulation of cellular process 21 0.055 1.5 
negative regulation of biological process 22 0.074 1.4 
positive regulation of cellular process 22 0.088 1.4 
regulation of nitrogen compound metabolic process 29 0.084 1.3 
regulation of cellular metabolic process 35 0.080 1.3 
regulation of macromolecule metabolic process 33 0.092 1.3 
regulation of primary metabolic process 33 0.099 1.3 
regulation of metabolic process 36 0.094 1.3 
cellular macromolecule metabolic process 52 0.076 1.2 

Table 3: Results of the enrichment analysis of GOBP and KEGG. 

EASE is a modified Fisher-Exact test, enrichment above the EASE p-value threshold 0.1 was used as 
a cutoff. 

Moreover, there was a statistically significant enrichment for annotations of metabolic 

processes that relate to DNA replication (Table 3). This finding is further supported 

by the functional annotation clustering analysis, which revealed the ‘Wnt signaling 

pathway’ and ‘DNA replication’ to be among the top 4 clusters (Table 4). 
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    no. of  EASE Fold 
    TP53-like hits p-value Enrichment 
Wnt signaling pathway Enrichment Score: 0.71    
GOBP Wnt receptor signaling pathway 4 0.078 4.0 
KEGG pathway Wnt signaling pathway 3 0.303 2.7 
PANTHER pathway Wnt signaling pathway 5 0.306 1.7 
     
DNA replication Enrichment Score: 0.71    
KEGG pathway DNA replication 3 0.040 9.2 
KEGG pathway Pyrimidine metabolism 3 0.195 3.6 
KEGG pathway Purine metabolism 3 0.372 2.3 
GOBP DNA replication 3 0.497 1.8 

Table 4: Summary of the functional annotation clustering of Wnt signaling pathway and 
DNA replication 

Thus, the bioinformatics analysis using DAVID suggests that the pathways 

‘Pathways in cancer’, ‘Wnt signaling pathway’ and ‘DNA replication’, as well as 

pathways that relate to the DNA metabolism such as ‘DNA metabolic process’ or 

‘negative regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolic 

process’ for example, might play a key role for the cell proliferation after 

tetraploidization; the genes annotated in the these pathways are summarized in 

Table 5. 

Pathway Gene name 

Pathways in cancer GLI1, HSP90AB1, FGFR2, JAK1, CCDC6, LAMC2, CDKN1A 
Wnt signaling pathway  SFRP2, GSK3A, DACT2, HMGXB4, TBL1XR1, BTRC 
DNA replication POLA1, POLA2, PRIM1 

Table 5: Genes annotated by DAVID in the three identified pathways 

 

2.3.8 Canonical Wnt signaling might support the proliferation after 

tetraploidization 

According to the DAVID pathway analysis, the confirmed TP53-like hits were 

significantly enriched in the Wnt signaling pathway. Hence, we mapped the 

confirmed TP53-like and the primary KIFC1-like hits on a simplified but up-to-date 

model of Wnt signaling pathway (Clevers and Nusse, 2012).  
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This revealed that the negative regulators of Wnt signaling sFRP2, GSK-3", $-TrCP 

were identified as confirmed TP53-like hits (Hart et al., 1999; Liu et al., 1999; 

Asuni et al., 2006; Doble et al., 2007; Anastas and Moon, 2013). 

 
Figure 20: Several core components of the canonical Wnt signaling pathway were identified as 
primary KIFC1-like hits or confirmed TP53-like hits 

The confirmed TP53-like and the primary KIFC1-like hits were mapped on a current simplified model 
of the $-catenin-depedent Wnt signaling pathway. Frizzled receptor and LRP5 or LRP6 binding Wnt 
sequesters the destruction complex, which consists of Axin, APC, Dvl, the kinases CK1 and GSK3 
and $-catenin. Sequestered destruction complexes are inactive and cannot degrade the bound 
$-catenin. Therefore, $-catenin accumulates and shuttles into the nucleus, where it activates TCF 
transcription factors and drives the expression of Wnt target genes like MYC, FOSL1 or GBX2. If 
sFRP proteins or WIF inhibits the Wnt signal, or DKK proteins inhibit LRP5/6, the destruction complex 
resides in cytoplasm and degrades $-catenin via $-TrCP. Thus, without the accumulation of 
cytoplasmic $-catenin the TCF transcription factors repress the expression of Wnt target genes. 
Confirmed TP53-like hits are represented on a green background; KIFC1-like hits on a red 
background. Genes represented on a white background were either not identified in the primary 
screen or were identified as false positives in the confirmatory screen. 

Furthermore, additional components were identified as KIFC1-like hits from the 

primary screen, including: FZD2 that encodes a Frizzled receptors, AXIN1, which is 

part of the destruction complex and is required to initiate Wnt signaling, CSNK1A1L 
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encoding a member of the casein kinase 1 family and $-catenin (Clevers and Nusse, 

2012). 

Moreover, 4 Wnt target genes, CCND1 (Cyclin D1) (Shtutman et al., 1999; Tetsu and 

McCormick, 1999), MYC (He, 1998), FOSL1 (Mann et al., 1999) and GBX2 (Li et al., 

2009) were also identified as KIFC1-like hits in the primary screen (Figure 20). 

Together, these results assemble a picture where the knockdowns of negative 

regulators promote, and positive regulators impair, the proliferation after 

tetraploidization. 

 

2.3.9 Meta-analysis of the ‘Project Achilles’ and the identified primary 

KIFC1-like hits reveal common vulnerabilities of cells CIN 

Chromosomal unstable cancers relapse frequently, probably due to their heterogenic 

cell population and intrinsic multidrug resistances (Lee et al., 2011). Hence, one 

could hypothesize that genes that are not only essential for tumors that have evolved 

from tetraploid cells, but also for cells just after tetraploidization would be ideal 

targets for the treatment of CIN cancer (Shackney et al., 1989; Ganem et al., 2009; 

Pellman, 2007; Storchova and Kuffer, 2008). We therefore attempted to identify 

these genes using four steps: First, we selected suitable cancer types that are 

frequently hypertriploid or hypotetraploid and chromosomally unstable. Second, we 

identified genes that are essential for the majority of cell lines from a chosen cancer 

type. Third, the genes that are only essential for a specific cancer type were filtered 

out, and finally, only genes were retained that had a selective negative effect on the 

proliferation of cells after tetraploization. 

To this end, we analyzed data from the ‘Project Achilles’, which provides 

genome-wide data on cell proliferation from pooled-shRNA screens from 102 cancer 
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In the case of colorectal cancer cell line, we used only cell lines that were confirmed 

to be CIN (Lee et al., 2011). In the third step, we filtered 72 genes that were identified 

in all three cancer types (Figure 22 bottom panel). 

 

Figure 22: Shared vulnerabilities of frequently CIN cancer types. 

Top panel: The density distribution of the median abundance of the shRNAs in the population for the 
three selected cancer type. Genes were selected as a hit if two independent shRNAs displayed a 
median below -2 for a given cancer type. The vertical line indicates the PMAD cutoff at -2. Bottom: A 
Venn Euler diagram illustrates the overlap of the hits for the different cancer types. 

All 72 genes that we have identified as essential for CIN cancers have also been 

included in our screen described above. Combining this data, 18 genes that are 

essential for CIN cancers were identified to be also essential for cells after 

tetraploidization (Table 6). KEGG annotation revealed that the identified genes are 

Proteasome, Ribosome, Spliceosome, RNA transport, mRNA surveillance pathway 
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and Aminoacyl-tRNA biosynthesis; 4 genes have not been annotated to any KEGG 

pathway.  

Gene name KEGG pathway 

PSMA1 Proteasome 
PSMA2 Proteasome 
PSMB2 Proteasome 
PSMB6 Proteasome 
RBM8A RNA transport, mRNA surveillance pathway, Spliceosome 
EIF4A3 RNA transport, mRNA surveillance pathway, Spliceosome 
PRPF31 Spliceosome 
SNRPD2 Spliceosome 
NUP93 RNA transport 
RPL6 Ribosome 
RPL37 Ribosome 
RPS3A Ribosome 
RPSA Ribosome 
ARCN1 

 DDX21 
 ICK 
 KARS Aminoacyl-tRNA biosynthesis 

NAPA   
Table 6: Genes essential for both cells after tetraploidization and CIN cancer cell lines. 
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3. DISCUSSION 

Upon tetraploidization mammalian cells become chromosomally unstable 

(Fujiwara et al., 2005; Ganem et al., 2009; Dewhurst et al., 2014) and may undergo 

transformation to malignancy (Shackney et al., 1989; Ganem and Pellman, 2007; 

Storchova and Kuffer, 2008). Untransformed mammalian cells with a functional 

p53-pathway are able to complete the first cell cycle after tetraploidization (Uetake 

and Sluder, 2004; Wong and Stearns, 2005), however, their proliferation is limited by 

the p53 tumor suppressor (Cross et al., 1995; Andreassen et al., 2001; Fujiwara et 

al., 2005). Thus, it remained enigmatic when and how p53 is activated after 

tetraploidization and what prevents proliferation and transformation of tetraploid cells 

given that tetraploid cells can be found in nearly very tissue with relatively high 

incidence (0.5 – 20%) (Biesterfeld et al., 1994). 
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3.1 ROS trigger a p53-mediated arrest due to chromosome segregation 

errors after tetraploidization 

The data presented in chapter 2.1.1 (Kuffer et al., 2013) addressed the question, 

when and how p53 is activated after tetraploidization. Tracking the fate of individual 

cells by live cell imaging over several days, it shows in agreement with the previous 

findings that cells with functional p53 that have completed the first cell cycle after 

tetraploidization frequently arrest in following G1 stage of the cell cycle, while cells 

without p53 sustain their cell cycle progression. Further, it provides evidence that 

mitotic abnormalities lead to the p53 accumulation in the trailing interphase and to a 

cell cycle arrest. A similar result was shown previously for diploid cells, where the 

missegregation of a single chromosomes also triggered a p53-depedent arrest that 

prevents the proliferation of aneuploidy cell; the authors showed further that the 

inhibition of the MAP kinase p38 allows proliferation of aneuploidy cells (Thompson 

and Compton, 2010). Another report showed that pharmacological prolongation of 

the prometaphase also leads to an irreversible p38- and p53-dependent arrest in 

diploid cells (Uetake and Sluder, 2010). The data presented here do support this 

finding. Even without pharmacological interference, diploid cells whose daughter cells 

did not proliferate spend in average longer time in mitosis when compared to the 

case where the daughter cells did proliferate. However, this correlation was not 

observed for tetraploid cells. Neither the inhibition of p38 by RNAi, nor treatment with 

chemical inhibitors rescued the cell cycle arrest after tetraploidization. Therefore, it 

can be concluded that for tetraploid cells the major trigger for the activation of p53-

mediated arrest is independent of p38. 

Further to this, the SAC component BubR1, and the DNA damage responsive 

kinases Chk1, Chk2 and ATM were tested, as these candidate genes have been 
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implicated in mitotic defects, and/or p53 activation due to mitotic defects 

(Vitale et al., 2007; Li et al., 2010; Stolz et al., 2010). Among the tested candidates 

only ATM enhanced the proliferation after tetraploidization. ATM plays a key role as 

an apical kinase in the repair of DNA double strand breaks (Shiloh and Ziv, 2013); 

moreover, it was shown that DNA double strand breaks with #-H2AX accumulated at 

the break sites can occur due the mitotic failures (Guerrero et al., 2010; Janssen et 

al., 2011). Thus, the accumulation of #-H2AX upon tetraploidization was analyzed. 

First, in contrast to diploid cells treated with a DNA damaging agent, the dynamics of 

the p53 levels did not follow the dynamics of #-H2AX upon induction of cytokinesis 

failures. Second, on single cell level we did not find a correlation between the nuclear 

level of #-H2AX and p53. Together, no evidence was found that p53 is activated and 

cell arrest after tetraploidization due to DNA damage. However, this finding should be 

interpreted that tetraploid cells do experience an increase of DNA double strand 

breaks, but the observed levels are not sufficient to significantly diminish the cell 

proliferation after tetraploidization. 

On the other hand, 8-OHdG, an oxidative DNA damage, increased at the same time 

as p53 accumulated, starting only 24 h after tetraploidization. Further, the nuclear 

p53 levels also tightly correlated on single cell level with the amount of the oxidative 

DNA damage 8-OHdG. Previously, it was shown that ROS activate ATM in a 

non-canonical fashion and lead to ATM-mediated phosphorylation of p53 at 

Serine 15. Accordingly, the RNAi-mediated knockdown of ATM to decreased p53 and 

phospho-serine15 p53 after tetraploidization. This finding is in agreement with a 

study demonstrating that diploid cells with a compromised SAC and high 

missegregation rates experience elevated ROS levels and ATM suppresses 

tumorigenesis by stabilizing p53 through phosphorylation of its residue serine15 (Li et 
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al., 2010). ROS are considered tumorigenic due to their mutagenic potential (Ames, 

1983; Shibutani et al., 1991) and ROS have also been implicated in increased cell 

proliferation (Pelicano et al., 2004). Additionally, it has been reported that 

oncogene-induced Nrf2 transcription contributes to tumor development by ROS 

detoxification (DeNicola et al., 2011) and that tumors evolve only from cells with 

fine-tuned ROS levels (Perera and Bardeesy, 2011). The presented findings support 

a pivotal role of ROS during tumorigenesis. 

On the other hand, it remains enigmatic how aneuploidy triggers the increase of ROS 

levels. One possible explanation is provided by the notion that genes involved in 

physical or genetical interaction have to be kept at similar ratios (Veitia, 2010). 

Recently it shown that aneuploid cells down regulate 25% of the proteins encoded on 

extra chromosomes back to the wild type levels. This is most likely mediated by 

activation of the p62/SQSTM1-mediated selective autophagy and lysosomal pathway 

(Stingele et al., 2012), pathways that are energy-dependent. Thus, it is not surprising 

that aneuploid cells have an elevated metabolism (Williams et al., 2008), which might 

cause the increased ROS levels. Moreover, autophagy is essential for the turnover of 

mitochondria and the elimination of damaged mitochondria (Lemasters, 2005; Kim et 

al., 2007; Youle and Narendra, 2011; Kongara and Karantza, 2012), hence, 

autophagy-deficient cells produce increased ROS levels (Mathew et al., 2009; 

Kongara et al., 2010). Thus, keeping proteins in physical or genetical interaction at 

similar ratios via autophagy could impair the elimination of damaged mitochondria 

and thereby cause an increased production of ROS. 

Taken together, the data presented in chapter 2.1.1 (Kuffer, et al. 2013) suggest that 

ROS trigger the p53-dependent cell cycle arrest after aberrant tetraploid mitosis.   
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3.2 The effect of Myocardin-related transcription factors A and B on the 

proliferation tetraploid and chromosomally unstable cells 

The results presented in chapter 2.2 (Shaposhnikov et al., 2013) show that the stable 

depletion of MRTF-A and MRTF-B leads to the outgrowth of aneuploid and tetraploid 

clones. Despite this, the transient depletion of MRTFs did not cause a detectable 

increased formation of binucleated tetraploid cells, but an increased number of cells 

with nuclear buds or micronuclei was observed, which argues for an important role of 

MRTFs for genome stability. This notion is further supported by the fact that 

pancreatic tumors, which are usually chromosomally unstable (Storchova and Kuffer, 

2008), frequently carry mutations in one or both genes that encode the MTRFs 

(Cerami et al., 2012; Gao et al., 2013). 

Myocardin family proteins including myocardin-related transcription factors A and B 

(MRTFs) and the closely related myocardin are activated by the MAPK/Erk pathway 

as well as by Rho-GTPases upon serum stimulation (Posern and Treisman, 2006; 

Miano et al., 2007). An increasing body of evidence suggests a role of the myocardin 

family in cell cycle regulation and inhibition of uncontrolled proliferation (Tang et al., 

2008; Descot et al., 2009; Kimura et al., 2010). Under normal growth conditions, the 

MRTFs-depleted cells showed an impaired proliferation accompanied with a 

significantly shortened G1 phase and a slightly extended S/G2 phase. This 

observation can be explained by the fact that the expression of Cyclin D1 was 

increased and the expression of the cell cycle inhibitors p27Kip1, p18Ink4c and 

p19Ink4d were decreased upon MRTFs depletion. Moreover, in the absence of 

growth factors, MRTFs-depleted cells entered S and G2 phase more frequently than 

control-depleted cells. Together, this argues that MRTFs play a key role for a timely 

cell cycle progression. 
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Despite the increased number of cells entering S phase, the cell proliferation of 

MRTFs-depleted cells did not increase, but the expression level of the cell cycle 

inhibitor p21 was increased. This might be explained by a report showing that a 

premature G1/S transition decreases the cellular nucleotide pools and leads to DNA 

damage due to replication stress. The arising DNA damage leads to increased 

transcription of p21 via p53 not only in G1 but also in S and G2 phase (compare 

chapter 1.1.2). Moreover, an increased replication stress could also explain the 

increase of cells with nuclear buds and micronuclei that were observed after transient 

MRTFs depletion, as it has been previously reported (Burrell et al., 2013). 

Taken together, these results suggest an important but complex role for MRTFs in 

cell cycle regulation and eventually also in tumorigenesis. Further investigation 

should clarify the link between MRTFs and the outgrowth tetraploid and 

chromosomally unstable clones after their stable depletion. A comprehensive 

analysis of genome and transcriptome of the clones isolated after stable MRTFs 

depletion of MRTFs should provide valuable insights, which factors play a key role in 

the tetraploidy-driven tumorigenesis. 
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3.3 Genome-wide screen for genes that modulate the cell proliferation 

after tetraploidization 

Recently, it was demonstrated that the genetic alterations observed in tumors with 

CIN could be recapitulated using cell populations established by sorting of 

spontaneously arising tetraploids from chromosomally stable HCT116 colorectal 

cancer cells (Dewhurst et al., 2014). Additionally, about 37 % of all tumors have 

experienced tetraploidization in their development (Zack et al., 2013). Hence, probing 

the proliferation of HCT116 after tetraploidization provides a novel approach to 

identify genes that enhance or suppress tetraploidy-driven tumorigenesis. This 

strategy was deployed for genome-wide screen presented in chapter (2.3). 

 

3.3.1 Setup and quality 

To identify genes that enhance or suppress the proliferation after tetraploidization, 

FUCCI cell cycle probes combined with DNA content cell cycle profiling were used in 

an image-based assay that examines tetraploid and diploid cells side-by-side. 

Analyzing cells of interest and control cells side-by-side was shown to significantly 

improve the analysis of genome-wide screens by reducing technical variability 

(Krastev et al., 2011). Thus, 249 genes that have strong cytotoxic effects on diploid 

and tetraploid cells alike could be excluded directly after the primary screen without 

the need to perform a secondary assay. 

Quality control metrics of genome-wide RNAi screens are either not published or only 

a simple correlation coefficient of technical duplicates is reported (Kittler et al., 2007; 

Kwon et al., 2008; Neumann et al., 2010; Krastev et al., 2011; Kozik et al., 2012). To 

ensure an adequate quality throughout the primary screen, two metrics were 

monitored; the intraclass correlation coefficient, which determines the technical 
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reproducibility, and the strictly standardized mean difference (SSMD*) between the 

quadrant averages for the negative control and TP53 as the positive control, which is 

a measure for dynamic range of the assay. In contrast to the correlation coefficient, 

the intraclass correlation can calculate concordance of two or more replicates of 

multivariant observations. The technical reproducibility was sufficient throughout the 

primary screen.  

The SSMD* was highly heterogeneous throughout the primary screen, ranging from 

excellent to inferior. The fact that in first batch, 7 out of 10 plates had SSMD* values 

above 7, argues for a very good dynamic range for the used assay in general. 

Therefore, the question was addressed whether an insufficient cell transfection 

affected whole plates or only the spiked-in controls. In the first case the cells would 

not be affected by the applied esiRNAs. If insufficient cell transfection would affect all 

wells of the plate, the number of identified hits per plate would decrease along with 

the SSMD*. Hence, the correlation of number of identified primary TP53-like hits per 

library plate was examined against the SSMD*; however,  the number of primary hits 

did not depend on SSMD*. This suggests that the poor SSMD* values are most likely 

due to variation in the spiked-in controls, rather than caused by problems that 

affected the whole assay plate. 

In total the primary screen identified 1582 hits out of the 16231 tested genes; 

432 genes that specifically increase the proliferation of tetraploid (TP53-like hits) and 

1150 genes that specifically reduce the proliferation of tetraploid cells (KIFC1-like 

hits). The number of identified genes in the primary screen is comparable to the 

number of primary hits of published genome-wide RNAi screens (Kittler et al., 2007; 

Kwon et al., 2008; Neumann et al., 2010; Kozik et al., 2012). 



3. DISCUSSION 
 

 
54 

The confirmation screen affirmed the sufficient quality of the primary screen; the 

confirmation rate of TP53-like hits in each batch ranges between 25 % and 57 %, 

which is in the normal range for high throughput data (Gribbon et al., 2005). 

Furthermore, the cutoff chosen for the primary screen was confirmed to be suitable, 

because p-values above the cutoff value dropped from 0.90 to 0.45 in the 

confirmation screen. Moreover, the total confirmation rate of 42 % further indicates 

that the cutoff was neither too permissive nor too stringent. Taken together, this 

argues for a sufficient quality of the primary screen. 

 

3.3.2 The TP53-like hit and ATM target CCDC6 might contribute to the 

arrest after tetraploidization via the activation of 14-3-3! 

The results presented in chapter 2.1 showed that the DNA damage kinase ATM links 

the increased reactive oxygen species (ROS) with the activation of p53 

(Kuffer et al., 2013). Even though we did not identify ATM as TP53-like hit, we 

identified CCDC6, a reported downstream target of ATM, as a TP53-like hit with a 

KEGG annotation ‘Pathways in cancer’. The ATM-dependent phosphorylation 

protects CCDC6 from ubiquitination by the SCF complex, and its subsequent 

ubiquitin-dependent degradation (JunGang et al., 2012). CCDC6 is a direct binding 

partner of 14-3-3! upon insulin stimulation (Dubois et al., 2009) and is also required 

to sequester CDC25 to the cytoplasm via 14-3-3! after genotoxic stress 

(Thanasopoulou et al., 2012). Furthermore, 14-3-3! has been reported to stall cell 

cycle progression through CDC25 as well as to directly inhibit CDK1, CDK2 and 

CDK4 (Laronga et al., 2000). Taken together, CCDC6 might cooperate with 14-3-3 

proteins parallel to p53 and p21 downstream of ATM to stop cell cycle progression in 
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continue DNA synthesis. Therefore, the function of the pol-prim complex is essential 

(Loeb and Monnat, 2008) and the yeast knockout homolog of the catalytic subunit of 

DNA polymerase " is nonviable (Johnson et al., 1985; Giaever et al., 2002) due to an 

S-phase arrest (Leland H Hartwell, 1973). Thus, the identification of the pol-prim 

complex might be explained by an immediate S-phase arrest resulting in an increase 

in binucleated tetraploid cells that do not even enter the first tetraploid mitosis. 

Despite the fact that a preliminary inspection of raw images did not reveal an 

elevated number of binucleated cells, a double pulse chase experiment that monitors 

DNA synthesis using Bromodeoxyuridine (BrdU) and Ethynyldeoxyuridine (EdU) 

should be conducted as a secondary assay to confirm that the TP53-like phenotype 

of POLA1, POLA2 and PRIM1 is not an artifact of an S-phase arrest of binucleated 

cells that resulted in a high Z-index and a systematic false positive classification.  

Given that the RNAi-knockdown efficiency differs from gene to gene, and the amount 

of protein required for its function differs depending on the individual protein, it is 

likely that the total number of pol-prim complexes was decreased to a level that still 

allowed the progression through the first cell cycle after tetraploidization. However, 

the diminished levels of POLA1, POLA2 and PRIM1 may have enriched the relative 

number of cells in S, G2 or M phase in the second cell cycle after tetraploidization. 

On the other hand, the depletion of the pol-prim nucleotide substrates caused 

replication stress, genomic instability and increased cell transformation 

(Bester et al., 2011). Moreover, it was reported that the reduction of fired origins 

rescued the replication stress phenotype (Jones et al., 2013). Given the essential 

role of the pol-prim complex in replication initiation, the cell proliferation after 

tetraploidization might increase after depletion of pol-prim subunits by reducing the 

number of active replication forks. Together, this suggests a link between un-
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scheduled tetraploidization and genome instability due to the DNA replication stress. 

Therefore, it will be important to test, first, whether cell experience replication stress 

after tetraploidization, second whether the knockdown of pol-prim subunits also 

decreases the replication stress and third, whether the exogenous supply of 

nucleotides could increase the cell proliferation of tetraploids immediately after 

tetraploidization. 

 

3.3.4 Wnt signaling activation enhances the proliferation after 

tetraploidization 

The pathway analysis of confirmed TP53-like hits using DAVID identified the 

Wnt signaling pathway. Aberrant Wnt signaling plays an important role for 

tumorigenesis of many solid tumors and is intensively studied as potential for 

anti-cancer therapy (MacDonald et al., 2009; Clevers and Nusse, 2012; Anastas and 

Moon, 2013). Hence, we mapped the confirmed TP53-like and the primary 

KIFC1-like hits on a simplified but up-to-date model of Wnt signaling pathway 

(Clevers and Nusse, 2012). Together, these results assemble a picture where the 

knockdowns of negative regulators promote, and positive regulators impair the 

proliferation after tetraploidization. Despite this strong evidence, the results have to 

be confirmed using an independent assay, for example using a BrdU incorporation 

assay. Moreover, several questions have to be answered to further elucidate the role 

of Wnt signaling in proliferation after tetraploidization. First, is an overexpression of 

$-catenin sufficient to increase the proliferation after tetraploidization or, alternatively, 

does the expression of available TCF dominant-negative mutants decrease the 

proliferation after tetraploidization (van de Wetering et al., 2002)? Second, which 

Frizzled receptors and Wnt ligands are expressed, and which combinations mediate 
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a sufficient Wnt signal? Finally, what role does AXIN1 play in the proliferation after 

tetraploidization, given its role as tumor suppressor in hepatocellular carcinomas, 

which frequently have near-tetraploid karyotypes (Satoh et al., 2000; Storchova and 

Kuffer, 2008). Answering these questions will help to understand how 

tetraploidization and $–catenin dependent Wnt signaling interact during 

tetraploidy-driven tumorigenesis.  

 

3.3.5 Identifying novel anti-cancer drug targets using a meta-analysis of 

the ‘Project Achilles’ and the primary KIFC1-like hits 

Chromosomally unstable cancers relapse frequently, probably due to their 

heterogenic cell population and intrinsic multidrug resistances (Lee et al., 2011). 

Hence, one could hypothesize that the patients with CIN tumors might relapse less 

often, if during their treatment the factors would be targeted that are essential not 

only for evolved cancer clones, but also for cells after tetraploidization that initiated 

tumorigenesis (Shackney et al., 1989; Pellman, 2007; Ganem et al., 2009; Storchova 

and Kuffer, 2008). Therefore, genes were selected from the primary KIFC1-like hits 

(gene suppressing cell proliferation after tetraploidization) that showed also a 

negative effect on the proliferation of cancer cell line with CIN. This selection 

contained four genes that encode subunits of the 20S proteasome; 74 out of 316 

ovarian cancer tumors and 24 out 212 colorectal cancer tumors carry one or more 

gene amplifications of genes that encode subunits of the 20S proteasome (Cancer 

Genome Atlas Network, 2011 & 2012; Cerami et al., 2012; Gao et al., 2013). This 

hints that cells with CIN require an increased proteasome activity and in fact, despite 

the central cellular function of 20S proteasome, proteasome inhibitors are being 

developed as anti-cancer drugs, with Bortezomib being the first one approved for the 
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clinical use by the Food and Drug Administration (FDA) but they are approved 

against cancer that is not linked to CIN (Shen et al., 2013). 

Moreover, the majority of the identified genes are associated with the KEGG 

annotations Ribosome, RNA transport, Spliceosome and mRNA surveillance 

pathway, which are related to the protein translation and its control. The hypothesis 

that aberrant protein translation contributes to tumorigenesis is currently one of the 

major ideas of cancer research (Ruggero and Pandolfi, 2003). 

Taken together, the present results provide a proof of concept that the designed 

strategy is capable to identify novel genes that might contribute to tumorigenesis and 

therefore should be further evaluated as targets for anti-cancer therapy. 
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3.4 Future directions 

In vivo cell transformation and neoplastic growth is strongly influenced by cellular 

microenvironment, which provides a complex signaling network formed by cell-cell 

interactions and paracrine signals to maintain tissue homeostasis (De Wever and 

Mareel, 2003; Hanahan and Weinberg, 2011; Levayer and Moreno, 2013; Wagstaff 

et al., 2013). The assays chosen to characterize the p53-mediated arrest after 

tetraploid as well as for the genome-wide screen avoid the isolation of tetraploid cells 

and  therefore the tetraploid proliferation is analyzed in an environment similar to the 

in vivo situation, where the arrising tetraploid cells are surrounded by diploid cells. 

Experimental setups such as presented in this work are likely to provide more 

physiological relevance than experiments with isolated tetraploid cells. In this context 

the hits found in the Wnt signaling pathway are particularly interesting, because 

Wnt singalling has been implied to function in cell competition, a phenomenon that 

describes the short-range elimination of viable cells by cells with superior fitness 

(Levayer and Moreno, 2013; Wagstaff et al., 2013). Therefore, future investigations 

should clarify the role of cell competition in preventing tetraploidy-driven 

tumorigenesis. 
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4. MATERIAL & METHODS OF UNPUBLISHED DATA 

4.1.1 HCT116 Fucci 

HCT116 Fucci was generated in a 2-step protocol. First, FucciG1 cDNA was 

transfected with FugeneHD (Roche) into HCT116 (ATCC No. CCL-247) according to 

the manufacturer’s protocol. Transfected cells were cultured in selection medium 

(G418. 500 %g/ml) and after 6 weeks cells were FucciG1 positive cells were sorted 

using FACSAria I. Second, HCT116 carrying the FucciG1 construct were transfected 

with FucciG2 cDNA. Every 10 days cells expressing the FucciG2 construct were 

selected via FACS. 

4.1.2 Experimental procedures of the primary and confirmatory screen 

HCT116 Fucci cells were transfected as described previously (Krastev et al., 2011). 

In brief, 4000 cells were reversely transfected in black 384-well glass-bottom plates 

(Greiner Bio-One) with 25 ng esiRNA and 0.25 µl Oligofectamine (LifeTechnologies) 

in 10 µl OptiMem (LifeTechnologies). One day after transfection cells were treated 

with 0.75 %M Cytochalasin D (DCD, inhibitor of actin polymerization, Sigma) for 18 h. 

Subsequently the cells were washed 4 times with medium using a BioTek plate 

washer and placed into a drug-free medium. Cells were fixed with 12 % 

formaldehyde in PBS (final concentration formaldehyde 4 %) for 20 min followed by 3 

PBS washes. Cells were stained with DAPI and stored a 4 °C until image acquisition. 

Four images per well were acquired using a ScanR screening station (Olympus) 

equipped with a 10x objective. The number of cells in each cell cycle stage as well as 

the total cell number of each well was exported with the ScanR analysis software. 

The primary screen was conducted in 2 replicates and the confirmatory screen in 4 

replicates. Each plate of the primary screen contained 4 control wells that positively 

affected cell proliferation after tetraploidization (esiRNA targeting TP53) and 4 control 
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wells that negatively affected cell proliferation after tetraploidization (esiRNA 

targeting KIFC1). For each plate we calculated the average of 4 plate quarters 

serving as negative controls. In the confirmatory screen, each plate contained 4 

positive control wells (esiRNA targeting TP53) and 4 negative control wells (esiRNA 

targeting renilla luciferase – R-LUC). 

 

4.1.3 Data evaluation and hit selection for the primary screen 

For each well the total cell number and the percentage of cells in each cell cycle 

stage were plate-wise Z-transformed according the formula:  

!!! ! !
!!! ! ! !!

!!
 

(z: Z-transformed value, !!: plate median without control wells, !!: plate median 

absolute deviation (MAD) without control wells). The total cell number was corrected 

with a linear model for systematic errors caused by automatic liquid handling 

(8-channel dispenser and 96-channel washer) as well as by the edge effect for each 

batch, using the R correction formula: 

x ~ Batch / ((as.factor(8-channel dispenser) + as.factor(96-channel washer)) + (I(line^2) * I(column^2)) 

A viability phenotype was assigned to each esiRNA, if the corrected z-score of total 

cell number was lower than -2 in any of the technical replicates of the screen. 

The Z-index was calculated as sum of the z-scores of 4CG2 and 8CG2 minus the 

sum of the z-scores of 2CG1 and 4CG1; esiRNAs with Z-indices in any of the two 

technical replicates above 5.875 were considered as TP53-like hits and esiRNAs with 

Z-indices below -5.875 were considered as KIFC1-like hits. 
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4.1.4 Statistical analysis of the confirmatory screen and evaluation of 

biological pathways 

For each well the percentage of cells in each cell cycle stage were plate-wise 

Z-transformed according the formula:  

!!! ! !
!!! ! ! !!!!!"#

!!!!"#$
 

(z: Z-transformed value, !!! !"#$: median of R-Luc control wells from each plate, 

!!! !"#$: MAD of  R-Luc control wells from each plate. The Z-index of each well was 

calculated as described above. In the confirmatory screen, each esiRNA was 

compared by an ANOVA-test against R-Luc controls using Dunnett’s correction for 

multiple comparisons. Hits were considered as confirmed for p-values smaller 0.1. 

The Ensembl gene identifier (ENSG) of the confirmed TP53-like hits was pasted as 

gene list into the web interface of DAVID as well as the ENSG identifier of all genes 

tested in the primary screen as background. The pathways were visualized with 

Pathvisio (van Iersel et al., 2008).  

 

4.1.5 Meta-analysis of KIFC1-like primary hits and ‘Project Achilles’ 

The PMAD normalized ‘Project Achilles’ data was downloaded from the data portal of 

the Broad institute (http://www.broadinstitute.org/achilles). The data was processed 

as described above. To merge the data set with the results of our screen converted 

the EntrezGene indentifier to the ENSG identifier by merging with an ENSG 

EntrezGene lookup table download from Ensembl BioMart web interface 

(http://www.ensembl.org/biomart/martview) first. 
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4.1.6 Data processing and visualization 

All data processing was done using R and Rstudio (R Core Team, 2012; Rstudio, 

2013). Data was visualized using the R package ggplot2 (Wickham, 2009). 
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