
BIOINFORMATICS Vol. 00 no. 00 2015
Pages 1–4

Supplemental material for MMseqs software suite for fast
and deep clustering and searching of large protein
sequence sets
Maria Hauser 2,∗, Martin Steinegger 1,2,3,∗ and Johannes Söding 1,2†

1Computational Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077
Göttingen, Germany. 2Gene Center, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str.
25, 81377 Munich, Germany. 3TUM, Department of Informatics, Bioinformatics & Computational
Biology-I12, Boltzmannstraße 3, 85748 Garching, Germany
Received on XXXXX; revised on XXXXX; accepted on XXXXX

Associate Editor: XXXXXXX

1 SENSITIVITY AND SPEED OF SEQUENCE
SEARCHES

Our goal was to compare the performance and the speed of MMseqs with
various other fast tools for protein sequence searching: SWIPE, BLAST,
UBLAST, RAPsearch2 and DIAMOND.

For tools that had a limit on the maximum number of matches report, we
increased this limit to ensure that at least five false positive will be listed for
each query. This is necessary for the calculation of ROC5 values,

All searches were made on a computer with 128 GB RAM and two 8-core
Intel Xeon E5-2680 CPUS with 2.70GHz.

MMseqs We used only the prefiltering module and the alignment module
of MMseqs for the protein search. We tested two different sensitivities in the
prefiltering module, s = 4 (default setting) and s = 7. Besides, we set the
maximum prefiltering list length to 1000 using --max-seqs 1000, and
the Z-score threshold to 10.0 using --z-score-thr 10.0 in order to
increase the length of the result lists for each query. The alignment module
is run with the maximum e-value threshold 10.0 using -e 10.0 and the
alignment coverage is switched off using -c 0.0. Both modules use all 16
cores of the machine by default.

Smith-Waterman alignments with SWIPE We use the SSSE3-, multi-
core-paralellized Smith-Waterman alignment calculation with SWIPE. In
order to get many database matches for a query, we set the e-value to 100
using -e 100.0 and the number of sequence descriptions and sequence
alignments to 1000 using -v 1000 -b 1000. Additionally, swipe is
instructed to use all the 16 cores of the machine with -a 16.

BLAST We ran BLAST using -e 10.0 and -v 1000 -b 1000 in
order to increase the number of results, and with -a 16 to parallelize the
calculation.

UBLAST We ran UBLAST with -evalue 10.0 option. Therefore,
UBLAST outputs all significant alignments regardless of the sequence
identity and alignment coverage. UBLAST uses all available cores per
default. Since UBLAST does not have an option to set the maximum number
of results shown, we presume that it does not have such a limit.

RAPsearch We ran RAPsearch with with -z 16 option to paralellize the
calculation, and with -e 10.0 and -v 1000 -b 1000 options.

∗These authors contributed equally to this work.
†to whom correspondence should be addressed: soeding@mpibpc.mpg.de

DIAMOND We ran DIAMOND with -e 10.0 option, with --threads
16 option to paralellize the calculation, and with --max-target-seqs
1000 option.

2 SEQUENCE CLUSTERING PERFORMANCE
We benchmarked the ability of MMseqs, blastclust, CD-HIT, kClust and
USEARCH to cluster sequences based on their global similarity. We
benchmarked the clustering performance with different sequence identity
thresholds in the range [0.3 : 0.7] in 0.1 increments. All tools were
instructed to only merge sequences that had an alignment covering at least a
fraction of 0.8 of the residues of both sequences.

All clustering runs (except clustering of UniProt) were made on a
computer with 128 GB RAM and two 8-core Intel Xeon E5-2680 CPUS
with 2.70GHz. The UniProt was clustered on a computer with 512 GB RAM
and four 8-cores CPUs (Intel Xeon CPU E5-4620, 2.20GHz).

2.1 Parameters of tested tools
MMseqs We use the clustering workflow for calculating the clustering
of the database. We tested simple and cascaded (option --cascaded)
clustering each with sensitivity 4 and 7 (-s 4 and -s 7) respectively.
For each sensitivity, we set the target clustering sequence identity using the
option --id and values from 0.3 to 0.7 in 0.1 increments.

blastclust Blastclust is the clustering software in the BLAST package. We
set the number of used cores to 16 with the option ‘-a16‘, length coverage
threshold to 0.8 using -L 0.8 and the minimum sequence identity in the
clusters with the option -S and values from 30 to 70 in 10 increments.

CD-HIT We set the minimum alignment coverage of the longer sequence
to 80% with the -aL 0.8 option and the number of threads used for the
calculation to 16 with the -T 16 option. The minimum possible clustering
sequence identity in CD-HIT is 0.4. For the clustering down to the different
minimum sequence identities in the range [0.4 : 0.8], we used the option -c
for the sequence identity setting and adjusted the k-mer word length with
the option -n. For the sequence identity 0.4 the word length was set to 2, for
the sequence identity 0.5 to 3, for the sequence identity 0.6 to 4 and for the
sequence identity 0.7 to 5.

kClust We used the -s option to set the minimum sequence identity in
the cluster. According to kClust recommendations, we set -s to 1.12, 1.73,
2.33, 2.93, 3.53, and 4.14 for the sequence identities 0.3, 0.4, 0.5, .06,

c© Oxford University Press 2015. 1



Maria Hauser et al

#clusters #seqs
per

cluster

#corrupted
clusters

MMseqs s=4
greedy clustering

85 780 3.4 1

MMseqs s=4 set
cover

60 915 4.7 1

MMseqs s=4 3-step 41 173 7.0 3
MMseqs s=7

greedy clustering
41 572 7.0 3

MMseqs s=7 set
cover

29 801 9.7 2

MMseqs s=7 3-step 22 541 12.9 1
blastclust 21 890 13.3 1
CD-HIT 114 386 2.5 260
kClust 91 681 3.2 1

USEARCH 157 981 1.8 11

Table 1. Clustering results on the protein database consisting of SCOP25
and related UniProtKB sequences. Sequences put into the same cluster, but
stemming from different folds are considered to be false positives.

and 0.7, respectively. Since kClust is single-threaded, we did not use any
parallelization options.

USEARCH We ran USEARCH with -cluster fast option and set the
minimum sequence identity in a cluster to 50% with --id option to values
from 0.3 to 0.8 in 0.1 increments. We set the query and target sequence
coverage in USEARCH to 0.8 using the options -query_cov 0.8 and
-target_cov 0.8.

2.2 Cluster quality
We benchmarked the clustering quality by clustering the protein clustering
benchmark dataset with the clustering tools MMseqs-sens and MMseqs-fast
each with three clustering algorithms (greedy clustering as used in CD-HIT
and kClust, set cover and 3-step cascaded clustering), blastclust, CD-HIT,
kClust and USEARCH. We clustered the dataset down to 30% sequence
identity with each tool, except for CD-HIT, where we used the minimum
possible sequence identity threshold of 40%. We use the same method
to define false positive sequence pairs as in the other protein search and
clustering benchmarks. A cluster is considered as corrupt if it contains at
least one false positive sequence pair.

All methods except CD-HIT produce clusters of very high quality with a
negligible number of sequences assigned to a cluster by mistake. CD-HIT
produced 260 corrupted clusters due to an occasional error in the calculation
of the sequence identity. Cascaded clustering and default straight-forward
clustering in MMseqs uses set-cover as the default clustering algorithm. We
compared the performance of set-cover and the greedy clustering, as used by
kClust. Table 1 demonstrates that set-cover performs much better.

2.3 Clustering of the UniProt database
We clustered the UniProt database version containing 54 790 250 sequences
with MMseqs and USEARCH, the only two tools that are able to cluster
such a large database down to sequence identities of 50% or lower. MMseqs
is able to use all 32 cores for the clustering procedure, while USEARCH is
able to only use one core.

We use MMseqs cascaded clustering workflow (option --cascaded)
with default settings to evaluate the clustering procedure.

In USEARCH, we set the lowest sequence identity of clusters to
50%, since it is the lowest recommended value corresponding to the

time #clusters
blastclust 58y ?
MMseqs 8d 17h 6 374 156
USEARCH 11d 2h 9 822 910

Table 2. UniProtKB clustering results: Time and number of clusters for
BLAST, MMseqs and USEARCH. kClust, BLAST and kClust times are
estimated.

documentation (option --id 0.5). We only want to have sequences
with pairwise global similarity in one cluster, so we set the query
and target sequence coverage in USEARCH to 0.8 using the options
-query_cov 0.8 and -target_cov 0.8.

BLAST is much too slow to cluster the UniProtKB database. We
estimated the runtime of BLAST clustering using a BLAST run with a
small query set against the whole UniProtKB database, and extrapolated the
measured runtime to the clustering of the whole UniProtKB database using
an all-against-all comparison. We extrapolated that clustering based on all-
against-all BLAST using all 32 cores would need about 58 years based on
run times for BLAST searches of the UniProt database.

MMseqs requires 8 days and 17 hours and 118 G of memory for the
clustering procedure. It produces 6 374 156 clusters, i. e. an average of 8, 5

sequences per cluster. USEARCH, on the other hand, requires, for the same
job, 11 days and 2 hours and 42 GB of memory, while it produces 9 822 910
clusters, i. e. an average of 5, 5 sequences per cluster. The results are shown
in Table 2.

Although MMseqs is parallelized and uses all 32 cores of the computer
and USEARCH is single-threaded, USEARCH runs almost as fast.
This is in part explained by the efficiency of the greedy agglomerative
clustering algorithm used by USEARCH, which reduces the total number
of comparisons from N2

seqs to NclusNseqs, where Nseqs is the number
of sequences in the database and Nclues is the number of representative
sequences, i.e., the number of clusters in the clustered database. However,
loosing a factor Nseqs/Nclues in speed over the simple greedy algorithm is
more than counterbalanced by the possibility to parallelize the set-cover
clustering and by its superior clustering performance in comparison to the
simple greedy algorithm.

3 PREFILTERING ALGORITHM DETAILS

3.1 Prefilter Z-score
Expected prefiltering scores between non-homologous sequences will be
proportional to the product of both their lengths, since there is a small but
non-negligible probability for any pair of query-target k-mers to attain a
similarity score above the k-mer cut-off score. It makes sense to correct for
the score expected from such background k-mer matches by subtracting it
from the actual score. The background score may also depend on the amino
acid distribution of the query sequence and on whether it contains regions
with strongly biased amino acid composition, as these regions can cause
many k-mer matches with unrelated sequences containing similarly biased
regions.

Instead of simply estimating the background score from the product of the
lengths of query and target sequences, we measure the expected k-mer score
of the query sequence per column of a target sequence. For that purpose, we
can assume that the overwhelming majority of the database sequences are
not homologous to a given query sequence.

For each query, perform a calibration search through a database of
100 000 randomly sampled target sequences, whose sum of lengths

sumL =
N∑
t=1

(Lt − k + 1)

2



Supplemental material

we recored. We then sum up all prefiltering scores for query sequence q with
the database,

sumS =
N∑
t=1

Sqt ,

where N is the database size, Lt is the length of the database sequence t
and Sqt is the prefiltering score of the query sequence q with a database
sequence t. Then, the expected chance prefiltering score between q and a
target database sequence t is

S0 = (Lt − k + 1)
sumS

sumL

We also correct for the lower score relative dispersion at high lengths by
dividing S0 by the estimate of its standard deviation. We assume that the
number of k-mer matches is Poisson-distributed, and the standard deviation
of the score should therefore be proportional to the square root of the number
of expected k-mer matches, which is

nmatch ≈ (Lt − k + 1)
sumS

sumL
/Smatch ,

where Smatch is the expected score per chance k-mer match. Under the
assumption that the number of k-mer matches is Poisson-distributed, the
standard deviation of the chance score of the query sequence with a database
sequence t is

σS =
√
nmatch Smatch

=

√
(Lt − k + 1)

sumS

sumL
Smatch

Therefore, the offset- and scale-corrected score Zqt for a query sequence q
and a database sequence t is

Zqt =
Sqt − S0

σS
.

We are interested in all sequence pairs, where Zqt > Zthr , i. e. the
prefiltering score should fulfill the condition

Sqt ≥ Zthr σS + S0

≥ Zthr

√
(Lt − k + 1)

sumS

sumL
Smatch + (Lt − k + 1)

sumS

sumL
.

Calculating the offset- and scale-corrected score threshold for each pair q,
t would slow down the retrieving of prefiltering results. Since the threshold
value Zthr σS + S0 depends only on the length of the database sequence t
for a fixed q, the database sequences are ordered by length, the threshold is
calculated once and recalculated only if the length of the next sequence falls
below 95% of the reference sequence length.

The statistical analysis of the scores gets unreliable for small databases
of fewer than 100 000 sequences, since in this case there will not be enough
sequences to calculate the expected score and the standard deviation reliably.
We use pseudo-counts to make the estimate of S0 and σS robust. We
define the size of the pseudo-database as 100 000 with an average sequence
length 350 (average sequence length in UniProtKB) and an average sequence
composition. We estimate k-mer match probability and set the score of
a chance k-mer match Smatch to be slightly above the k-mer similarity
threshold. k-mer match probability estimation is explained in detail in
section Automatic sensitivity setting. Then, we calculate nmatch, sumS

and sumL by adding the pseudo counts to the empirical counts.

3.2 Amino acid local composition bias correction
Some sequences have regions of low complexity with an amino acid
composition that differs considerably from the background amino acid
distribution assumed in the amino acid substitution matrix. Low complexity
regions of a sequence can lead to high prefiltering scores sequences
containing similarly biased low complexity regions. To alleviate this effect,
we correct for the local compositional bias in the sequences by assigning

lower scores to the matches of locally frequent amino acids. We examine
d = 20 amino acids on both sides of the the amino acid xi at position i in
the sequence. Score correction ∆Si at position i is

∆Si(xi) = −
1

2d

i+d∑
j=i−d,j 6=i

S(xi, xj) +

20∑
a=1

f(a)S(a, xi)

where S(xi, xj) is the amino acid substitution score between amino acids
xi and xj , and f(a) is the background frequency of the amino acid a. Then,
the final corrected score Sc for the match of xi with another amino acid yj
is

Sc(xi, yj) = S(xi, yj) + ∆Si(xi)

Therefore, amino acids that are less frequent in the window ±d around
the sequence position i than the background frequency of this amino acid
contribute more to the score, and the more frequent less.

4 PARALLELIZATION WITH OPENMP

Fig. 1. Parallelization scheme of the prefilter module using OpenMP.

The parallelization approach of the prefiltering and alignment modules is
shown in Fig. 1 . Parts of the query sequence set are matched against the
database in parallel. Each thread writes to its own output database. In the
end, all results are merged into one output database.

We benchmarked the multicore scaling performance of the MMseqs
prefilter module with the dataset used in the speed measurements. We tested
the run time behavior with five different threads settings 1, 2, 4, 8 and 16

3



Maria Hauser et al

shown in Fig. 2. The prefilter performance scales nearly linearly up to 4
threads. Beyond this the performance scales sublinearly because of the high
amount of random memory accesses to the loops 3 and 4 of Figure 1.

Fig. 2. Multithread scaling of the MMseqs prefilter.. Runtime in seconds
for the MMseqs prefilter to run 7616 query sequences against 54 790 250
sequences on different threads setting.

5 CLUSTERING RESULTS

Fig. 3. Cumulative cluster size distributions of blastclust, MMseqs,
kClust, CD-HIT, usearch for a clustering threshold of 0.3, corresponding
to the leftmost point in Fig. 3F.

Fig. 4. Cumulative cluster size distribution after ten updating steps
versus after a single cascaded clustering, using the parameter -s 7.

4


