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Abstract
Using parametric and nonparametric techniques, our study investigated the presence of single locus
and pairwise effects between 20 markers of the Genetic Analysis Workshop 15 (GAW15) North
American Rheumatoid Arthritis Consortium (NARAC) candidate gene data set (Problem 2),
analyzing 463 independent patients and 855 controls. Specifically, our work examined the
correspondence between logistic regression (LR) analysis of single-locus and pairwise interaction
effects, and random forest (RF) single and joint importance measures. For this comparison, we
selected small but stable RFs (500 trees), which showed strong correlations (r~0.98) between their
importance measures and those by RFs grown on 5000 trees. Both RF importance measures
captured most of the LR single-locus and pairwise interaction effects, while joint importance
measures also corresponded to full LR models containing main and interaction effects. We
furthermore showed that RF measures were particularly sensitive to data imputation. The most
consistent pairwise effect on rheumatoid arthritis was found between two markers within
MAP3K7IP2/SUMO4 on 6q25.1, although LR and RFs assigned different significance levels.

Within a hypothetical two-stage design, pairwise LR analysis of all markers with significant RF single
importance would have reduced the number of possible combinations in our small data set by 61%,
whereas joint importance measures would have been less efficient for marker pair reduction. This
suggests that RF single importance measures, which are able to detect a wide range of interaction
effects and are computationally very efficient, might be exploited as pre-screening tool for larger
association studies. Follow-up analysis, such as by LR, is required since RFs do not indicate high-
risk genotype combinations.
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Background
The analysis of genetic association studies for complex
diseases requires the identification of significant single
marker and interaction signals among a vast background
of noise. In the presence of epistatically interacting loci,
exhaustive searches of all possible two-marker combina-
tions using the classic logistic regression (LR) approach
have been shown to be more powerful than single-marker
analysis in simulations [1], even when correcting for mul-
tiple testing. Alternatively, nonparametric tree-based pre-
dictive models, such as random forests (RFs) [2,3] have
been suggested for the detection of unknown interactions,
and were recommended as a pre-screening tool for large-
scale association studies [4].

RFs consist of a collection of classification or regression
trees grown from a random selection of variables on boot-
strapped samples (bagging). The importance of a variable
(average importance, AvImp) can be estimated by the
increase in misclassification for the left-out (out-of-bag)
samples when using a data vector containing the original
variable values and a vector with randomly permuted val-
ues. It has been shown by simulation studies that RF
importance measures are able to simultaneously detect
single-locus heterogeneity models and multiplicative
interaction models [4]. RF can also capture joint variable
effects by a recently introduced joint-importance measure
[5], which extends the concept of single importance by
jointly permuting the values of variables of interest. How-
ever, the correspondence between LR interaction effects,
defined as deviation from multiplicativity, and RF impor-
tance measures has not been explored yet.

Our study investigated the extent to which LR single-locus
and pairwise interaction effects correspond to RF single-
and joint-importance measures on a small data set of 20
markers (Genetic Analysis Workshop 15 (GAW15) rheu-
matoid arthritis (RA) candidate gene data set). Because
RFs analysis cannot handle missing data [3], we also
examined the sensitivity of both LR and RF analyses to dif-
ferent methods of data imputation. Finally, we investi-
gated the efficacy of RFs as screening tool within a
hypothetical two-stage design in which significant RF
markers within our data set would be followed up by LR
analysis.

Methods
Data selection
For our study we choose the GAW15 North American
Rheumatoid Arthritis Consortium (NARAC) candidate
gene data set (Problem 2) consisting of 20 biallelic mark-
ers (0 ≤ r2 ≤ 0.66) from at least 13 RA candidate genes
residing within at least 10 different chromosomal loca-
tions; with on average one or two markers per gene.
Because some cases within this data set originated from

the same pedigree, independent individuals were selected
at random to give 463 (out of the original 839) cases and
855 independent controls, all of Caucasian origin. Hardy-
Weinberg equilibrium (HWE) was tested in the complete
sample and in the controls. One rare single-nucleotide
polymorphism (SNP), HugotSNP8ms2 (minor allele fre-
quency <0.05), showed nominally significant deviations
from HWE in the controls (p = 0.008) and in the full sam-
ple (p = 0.006) due to an overrepresentation of rare
homozygotes, which might be the result of chance or gen-
otyping error. This would have greatest effect on genotypic
or haplotype analysis, neither of which was carried out
within this study. All tests for HWE were non-significant
after correction for multiple testing (20 markers).

Imputation of missing values
Since RFs cannot handle missing values [3], data imputa-
tion was performed. Missing values in the original data set
were either replaced by a RF strategy choosing the median
of all marker alleles in the class of the missing value
(median-replaced), or by imputation according to
'pseudo'-diplotype frequencies (imputed). Those frequen-
cies were based on haplotype frequencies in the combined
case-control sample, derived by an Expectation-maximi-
zation algorithm such as implemented in UNPHASED
(v.2) [6]. Imputed marker genotypes were randomly
selected from a multivariate uniform distribution. We
included HugotSNP8ms2 in the imputation process since
we observed low frequencies for haplotypes carrying the
rare allele (<0.05), which are unlikely to affect the multi-
variate uniform distribution of diplotypes. Nine individu-
als with more than 50% missing genotypes were excluded
as well as rs2240340, which had more than 65.4% drop-
outs. Missing values for the remaining markers ranged
between less than 0.01% and 16.65%. In total, five
imputed data sets were generated.

Single-marker and pairwise interaction analysis using LR
Marker genotypes were recoded in terms of additive com-
ponents [7] and single marker allelic effects and pairwise
marker interactions investigated with LR, using the R pro-
gram suite (v.2.4) [8]. LR models with large SEs (>3) were
excluded. Adjustment for multiple testing of interaction
terms was made by permutation tests (1000 permuta-
tions). For imputed data sets, LR estimates (based on
Wald tests) were combined respectively as outlined by
Rubin [9]; analyses of the full interaction model were
combined using average differences in deviance between
the model containing main and interaction effects, and
the null model (χ2-test, 3 df).

RF analysis of single- and joint-marker importance
The predictive importance of single markers [3] and
marker pairs [5] was measured by Z-scores and signifi-
cance levels. Z-scores can be inferred from AvImp meas-
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ures through division by their associated standard error
(SE), which is determined by the AvImp measure and the
number of trees grown [3]. AvImp measures increase with
the number of trees and their rank becomes stable, pro-
vided the number of trees is sufficiently large, such as
observed by Lunetta et al. [4]. The associated Z-scores and
their significance, however, also continue to increase with
increasing number of trees, even when the RF reaches sta-
bility (see Figure 1). We investigated the correlation
between AvImp measures for RFs with 5000 trees and RFs
with 50, 100, 200, 300, 400, 500, and 1000 trees, respec-
tively (median-replaced data); and in a similar way, the
correlation between Z-scores (Spearman rank correla-
tion). We observed high correlations (rAvImp-5000 ≥ 0.98,
rZscore-5000 ≥ 0.96) for RFs with ~500 trees and more, for
both single and joint AvImp measures (see Figure 1),
implying a) a stable rank among their most important
markers and b) that significant markers identified by these
RFs remain significant when analyzed using RF grown on
5000 trees. We therefore selected stable but small RFs
(500 trees), which give similar AvImp ranks as RFs grown
on 5000 trees.

Joint-importance analysis was implemented in the RF pro-
gram (v.5.1) [3] based on the original Fortran code pro-
vided by A. Bureau (personal communication).
Genotypes were coded as outlined for LR analysis. When
trees were grown, the best split at each node was selected,
which most efficiently reduced the out-of-bag error (bal-
anced for cases and controls). Importance measures for
imputed data sets were combined using AvImp estimates
and pooled variances.

Results
In the following section, the most significant nominal p-
values for the median-replaced data set are reported in the
text. In addition, nominal p-values for both median-
replaced and imputed data are represented within Figure
2.

Single-marker and pairwise interaction analysis using LR
Single-marker analysis showed highly significant disease
association with rs2476601 (p = 2 × 10-8), and nominally
significant effects for rs237025 (p = 0.003) and CT60 (p =
0.038) in both the median-replaced and the imputed data
sets (see Figure 2a and 2c). The most significant pairwise
interactions were found between the markers rs237025–
rs577001 (r2 = 0.62, p = 0.002), IGR3138ms1-rs2073838
(r2 = 0.044, p = 0.008), IGR2096ms1–IGR3138ms1 (r2 =
0.27, p = 0.008) and rs237025–rs1248696 (r2 < 0.01, p =
0.009) using both median-replaced and imputed data
(see Figure 2A and 2C). The LR models for the low-fre-
quency markers HugotSNP12ms3-HugotSNP8ms2 and
HugotSNP12ms3-Hugot_SNP13ms2 were excluded due
to large SEs. In total, 12 pairs with nominally significant
interactions (10 in imputed data) were identified, repre-
senting 6% of all marker combinations. This did not
include the rare SNP HugotSNP8ms2, which showed
deviations from HWE. Single marker and interaction anal-
ysis of the original data set with missing values showed
similar results (data not shown). None of the interactions
remained significant after correction for multiple testing
using permutation tests (data not shown). Nominally sig-
nificant full interaction models were observed for 47–
53% of all marker combinations (median-replaced vs.
imputed data) (see Figure 2A and 2C).

RF analysis of single- and joint-marker importance
The average out-of-bag error for RFs was 44% (44–45% in
imputed data) for both cases and controls. RF analysis
identified 11 SNPs (12 in imputed data) with significant
single importance (see Figure 2b and 2d), of which 8
markers (9 in imputed data) also showed nominally sig-
nificant LR single locus effects or pairwise interactions:
rs2476601 (pRF ≤ 1 × 10-16) and rs237025 (pRF = 4.6 × 10-

10) corresponded to LR single marker and interaction
effects. IGR3084ms1, IGR3138ms1, rs2073838,
rs2243250, rs577001, rs2268277, and in imputed data
sets also IGR2096ms1 (5.6 × 10-14 ≤ pRF ≤ 0.014), were
involved in pairwise LR interactions (see Figure 2A and
2b; C and 2d). The remaining markers with significant
single importance showed no correspondence to LR
effects. Also, the allelic association with CT60 or interac-
tions with rs1248696 were not reflected by the single-
importance measure.

Large numbers of significant joint importance measures
for SNP pairs were identified using both median-replaced

Performance of RFs grown with different numbers of treesFigure 1
Performance of RFs grown with different numbers of 
trees. Performance of single (A) and joint (B) importance 
measures for RFs grown on 50, 100, 200, 300, 400, 500, 
1000, and 5000 trees, respectively (median-replaced data). r 
AvImp-5000, Correlation of AvImps of each RF compared to 
RFs based on 5000 trees; r Zscore-5000, Correlation of Z-
scores of each RF compared to RFs based on 5000 trees; r 
AvImp-Zscore, Correlation between AvImp and Z-score for 
each RF; %sig p, Percentage of significant AvImps. All RF fea-
tures apart from the tree number were held constant.
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Comparison between LR analysis and RF importance measuresFigure 2
Comparison between LR analysis and RF importance measures. a/A, Single marker additive (a) and pairwise interac-
tion effects (A) by LR using the median-replaced data. Upper left of A depicts the interaction-specific analysis, lower right the 
full LR interaction model. b/B, RF single (b) and joint (B) marker importance analysis based on 500 trees using the median-
replaced data. Both triangles of B are identical. c/C, same as a/A using five imputed data sets (rs2240340 was excluded). d/D, 
same as b/B using five imputed data sets (rs2240340 was excluded). Markers with p ≤ 10-8 were truncated to p = 10-8; All pre-
sented p-values are uncorrected for multiple testing.
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(73%) and imputed data sets (70%) and represented pre-
dominantly markers with significant single-importance
measures (see Figure 2B and 2C). The detected joint
importance measures comprised all nominally significant
LR interaction pairs (see Figure 2A and 2B; C and 2D) and
82 to 87% (median-replaced vs. imputed data) of the
nominally significant full models.

Discussion
Our study explored the comparability of parametric (LR)
with nonparametric (RFs) analysis techniques when
investigating the presence of single-locus and pairwise
effects between 20 markers of the NARAC candidate gene
data set. Both RF single- and joint-importance measures
selected most of the markers for which nominally signifi-
cant allelic or pairwise interaction effects by LR were
detected. RF joint variable importance measures also cap-
tured most of the nominally significant full LR models,
containing both main (i.e., multiplicative) and interac-
tion effects (i.e., deviations from multiplicativity). This
correspondence between LR and RFs was improved when
analysis was performed with imputed instead of median-
replaced data sets, which agrees with the results of Bureau
et al. [5], and could probably be further increased if data
imputation were based only on multiple markers from the
same genomic region. However, because data imputation
based on diplotype frequencies can be biased by devia-
tions from HWE, the underlying marker genotype distri-
bution needs to be carefully investigated.

The most consistent pairwise effect was obtained between
the 6q25.1 markers rs237025 and rs577001, for which
nominally significant interactions were found by LR as
well as significant single and joint RF importance meas-
ures. rs237025 also showed nominally significant single-
locus effects. Both rs237025 and rs577001 reside within
the intronic region of MAP3K7IP2, but rs237025 also
causes a non-synonymous change (M55V) within the
reverse transcribed SUMO4 [10]. Although statistical
interaction does not imply biological interaction, our
results could implicate an epistatic effect between SUMO4
and MAP3K7IP2, which might increase susceptibility for
RA. The significance of the statistical effect remains to be
evaluated. Whereas LR permutation tests did not indicate
the presence of any overall significant interaction, model-
free RF analyses, which are robust to noisy variables and
overfitting [2,3], provided evidence for highly significant
single locus and joint effects.

The number of markers/marker pairs selected by RF meas-
ures was considerably larger than the number of pairs
with significant LR interactions (6%) or significant LR full
models (47–53%). Some of these might be false positives.
However, it might also reflect the ability of RFs to detect a
wide range of interaction models including multiplicative

or heterogeneity effects [4], which might be accumulated
in a candidate gene data set such as investigated in this
study, whereas LR interaction analyses test the contribu-
tion of loci to disease risk specifically as departures from a
multiplicative model.

Model-free analysis by RFs requires further investigation
in order to identify high-risk allele or genotype combina-
tions, and parametric follow-up analysis by LR represents
one of several follow-up options. Choosing a hypothetical
two-stage design, pairwise LR analysis of variables with
significant RF single importance would have detected
90% of all nominally significant LR interactions in our
small data set while analyzing only 39% of all possible
marker combinations. LR analysis of all marker pairs with
significant joint importance measures would have
detected all nominally significant LR interaction effects
while analyzing 70% of all possible combinations. This
suggests that RF single-importance measures, which are
able to detect a wide range of interaction effects [4] and
are computationally very efficient [2], might be exploited
as pre-screening tool for larger association studies, which
aim for exhaustive two locus searches [1], although the
minimum number of trees required for a RF to be a stable
screening tool in those studies remains to be investigated.
Joint RF importances showed even higher power to detect
interactions effects, including combined LR main (multi-
plicative) and interaction effects, and might have
increased power to detect disease-associated SNPs in dis-
crete pre-specified subsets of data [5]. However, as
observed by Bureau et al. [5] they require more computa-
tional time and might be less applicable as a screening
tool.

In contrast to the approach suggested by Lunetta et al. [4],
the efficacy of a Z-score based RF screening will be affected
by selection of RFs with inflated numbers of trees, as these
RFs show an increased number of significant signals (see
Figure 1). If as suggested by Lunetta et al. [4], SNP ranking
is used to select markers, the number of trees used to con-
struct the RF is less important; though ranking of SNPs
does not provide a measure of significance, which can be
used for selection, whereas Z-scores do.

Conclusion
Our study found a strong correspondence between RF
importance measures and LR interaction effects, which
was improved when data imputation was based on
genetic data. The most consistent pairwise effect on RA
was observed between two markers within MAP3K7IP2/
SUMO4 on 6q25.1, although both LR and RFs assigned
different significance levels. RF single-importance meas-
ures, which are able to detect a wide range of interaction
effects and are computationally very efficient, might be
also exploited as pre-screening tool for larger association
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studies, which aim for exhaustive two-locus searches.
Joint-importance measures, although very powerful,
might be less suitable for screening as they require more
computational time. The approach of selecting markers
based on their significance level using small but stable RFs
(500 trees) was sufficient for the analysis of this small data
set, but needs to explored for larger studies.

Competing interests
The author(s) declare that they have no competing inter-
ests.

Acknowledgements
We thank A. Bureau for providing the original joint importance Fortran 
code.

This article has been published as part of BMC Proceedings Volume 1 Sup-
plement 1, 2007: Genetic Analysis Workshop 15: Gene Expression Analysis 
and Approaches to Detecting Multiple Functional Loci. The full contents of 
the supplement are available online at http://www.biomedcentral.com/
1753-6561/1?issue=S1.

References
1. Marchini J, Donelly P, Cardon LR: Genome-wide strategies for

detecting multiple loci that influence complex disease.
Nature 2005, 37:413-417.

2. Breiman L: Random forests.  Machine Learn 2001, 45:5-32.
3. Breiman L, Cutler A: Random Forests.   [http://www.stat.berke

ley.edu/users/breiman/RandomForests/].
4. Lunetta KL, Hayward LB, Segal J, Van Eerdewegh P: Screening

large-scale association studies: exploiting interactions using
random forests.  BMC Genet 2004, 5:32.

5. Bureau A, Dupuis J, Falls K, Lunetta KL, Hayward B, Keith TP, Van
Eerdewegh P: Identifying SNPs predictive of phenotype using
random forests.  Genet Epidem 2005, 28:171-182.

6. Dudbridge F: Pedigree disequilibrium tests for multilocus hap-
lotypes.  Genet Epidemiol 2003, 25:115-221.

7. Cordell HJ: Epistasis: What it means, what it doesn't mean,
and statistical methods to detect it in humans.  Hum Mol Genet
2002, 11:2463-2468.

8. The Comprehensive R Archive Network   [http://cran.r-
project.org/]

9. Rubin DB: Multiple Imputation for Nonresponse in Surveys New York: J.
Wiley & Sons; 1987. 

10. UCSC Genome Browser   [http://www.genome.ucsc.edu]
Page 6 of 6
(page number not for citation purposes)

http://www.biomedcentral.com/1753-6561/1?issue=S1
http://www.biomedcentral.com/1753-6561/1?issue=S1
http://www.stat.berkeley.edu/users/breiman/RandomForests/
http://www.stat.berkeley.edu/users/breiman/RandomForests/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15588316
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15588316
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15588316
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12916020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12916020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12351582
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12351582
http://cran.r-project.org/
http://cran.r-project.org/
http://www.genome.ucsc.edu
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

