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This thesis investigates how the neural system instantiates selective attention to speech in challenging 

acoustic conditions, such as spectral degradation and the presence of background noise. Four studies 

using behavioural measures, magneto- and electroencephalography (M/EEG) recordings were 

conducted in younger (20–30 years) and older participants (60–80 years). The overall results can be 

summarized as follows. An EEG experiment demonstrated that slow negative potentials reflect 

participants’ enhanced allocation of attention when they are faced with more degraded acoustics. This 

basic mechanism of attention allocation was preserved at an older age. A follow-up experiment in 

younger listeners indicated that attention allocation can be further enhanced in a context of increased 

task-relevance through monetary incentives. A subsequent study focused on brain oscillatory 

dynamics in a demanding speech comprehension task. The power of neural alpha oscillations (~10 

Hz) reflected a decrease in demands on attention with increasing acoustic detail and critically also with 

increasing predictiveness of the upcoming speech content. Older listeners’ behavioural responses and 

alpha power dynamics were stronger affected by acoustic detail compared with younger listeners, 

indicating that selective attention at an older age is particularly dependent on the sensory input signal. 

An additional analysis of listeners’ neural phase-locking to the temporal envelopes of attended speech 

and unattended background speech revealed that younger and older listeners show a similar 

segregation of attended and unattended speech on a neural level. A dichotic listening experiment in 

the MEG aimed at investigating how neural alpha oscillations support selective attention to speech. 

Lateralized alpha power modulations in parietal and auditory cortex regions predicted listeners’ focus 

of attention (i.e., left vs right). This suggests that alpha oscillations implement an attentional filter 

mechanism to enhance the signal and to suppress noise. A final behavioural study asked whether 

acoustic and semantic aspects of task-irrelevant speech determine how much it interferes with 

attention to task-relevant speech. Results demonstrated that younger and older adults were more 

distracted when acoustic detail of irrelevant speech was enhanced, whereas predictiveness of irrelevant 

speech had no effect. All findings of this thesis are integrated in an initial framework for the role of 

attention for speech comprehension under demanding acoustic conditions.  
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1 General introduction 

Human environments are rich of sensory information that compete for limited cognitive processing 

capacities (for review, see Marois and Ivanoff, 2005). Selective attention describes the mental faculty of 

selecting currently relevant information for further processing at the expense of irrelevant distractors 

(Desimone and Duncan, 1995). Human speech is a paradigmatic case of a sensory signal that 

notoriously occurs in the presence of irrelevant information originating from environmental noise or 

competing talkers (e.g., Pichora-Fuller et al., 1995). The success of selective auditory attention depends 

on a listener’s individual attentional capacity but also on hearing acuity (Shinn-Cunningham and Best, 

2008). In the present thesis, I will report four studies with younger and older human participants to 

investigate the neural dynamics of speech comprehension in attention-demanding listening 

conditions. The goal of this research is to foster our understanding of the neural mechanisms that 

support selective attention and might thus compensate for degradations of the sensory input. 

1.1 Selective attention 

Unless stated otherwise, the present thesis is concerned with volitional (i.e., top-down) attention to 

task-relevant auditory signals. Moreover, this thesis explores the neural dynamics of selective attention 

to one auditory stimulus in an environment of potential distractors. To the contrary, this thesis does 

not investigate the automatic (i.e., bottom-up) capture of attention by unexpected and salient stimuli or 

divided attention, which describes the mechanisms of dividing and switching of attention between 

multiple stimuli. 

Research on selective attention is traditionally concerned with the question at which stage of 

information processing the cognitive system “filters out” unattended stimuli, known as the early vs late 

selection debate (Serences and Kastner, 2014). Although the question of early vs late selection is not the 

major focus of this thesis, I will briefly outline these two opposing accounts and elucidate on possible 

implications for speech processing. 

1.1.1 Early vs late selection 

The early selection account holds that sensory information is processed up to a level where basic 

physical features (e.g., pitch, location) are analysed. Based on these basic features, irrelevant 

information can be identified and filtered out to hinder it from further processing (Broadbent, 1958). 
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Importantly, this implies that irrelevant stimuli are filtered out before higher-level features such as 

semantic information are extracted. Experimental support for the early selection account came from 

dichotic listening studies, where listeners were presented with two simultaneous speech streams; one 

on the left and the other on the right ear (see also Study 3; for a review of the cognitive and neural 

bases of dichotic listening, see Hugdahl et al., 2009). When listeners were attending and verbally 

repeating (i.e., shadowing) speech from one side, they were able to report basic physical features such 

as the gender of the unattended speaker but they were unable to report the semantic content or 

individual words of the unattended speech (e.g., Cherry, 1953; Moray, 1959). This suggests that the 

unattended signal is filtered out on the level of basic feature analysis and is not processed further (for a 

more recent series of experiments in support of early selection, see Lachter et al., 2004). 

To the contrary, the late selection account asserts that attended and unattended signals are 

processed automatically and in parallel up to a level where semantic information is analysed (Deutsch 

and Deutsch, 1963). Selective attention operates on this sematic information to filter out the 

unattended signal. The late selection account received initial empirical support from the finding that 

some listeners detected their own names in the unattended stream during dichotic listening (Moray, 

1959). Later, it was found that individual differences in working memory affected the probability of 

listeners’ detection of their own names in unattended speech (Conway et al., 2001; Colflesh and 

Conway, 2007). These findings suggest that parts of unattended speech are processed up to a level of 

semantic analysis. 

Taking into account the empirical evidence for both early and late selection, Anne Treisman 

proposed an attenuation model of selective attention that implemented early and late selection 

depending on the level of internal thresholds for stimuli (Treisman, 1960, 1964). This model is a 

modification of Broadbent’s early selection model in so far as unattended stimuli are not filtered out 

but are rather attenuated on the basis of their basic physical features. After attenuation, each stimulus 

is compared against its own threshold and analysed further if this threshold is exceeded. For instance, a 

listener’s own name has a low threshold, which could explain why it is often detected even if it is 

attenuated since it is part of an unattended speech stream. 

More recent theories of selective attention suppose that the level of attentional selection (early vs 

late) is not fixed but depends on task demands and perceptual load (e.g., Huang-Pollock et al., 2002; 

Lavie et al., 2004; Yi et al., 2004; Cartwright-Finch and Lavie, 2007). Nilli Lavie (2005, 2010) proposed 

that high perceptual load (i.e., a large number of attended sensory stimuli) decreases the degree of 
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processing unattended stimuli, thereby implementing early selection. In contrast, high cognitive load 

(e.g., high working memory demand) increases processing of unattended stimuli, which is compatible 

with a late selection account of attention. 

1.1.2 What is special about selective attention in the auditory modality? 

A common assumption of all models of selective attention described above is that attended and 

unattended signals are divided into distinct “objects” on the basis of their physical features. Attention 

selects some of these objects for further processing while others are filtered out. However, what 

happens if the basic physical features of two signals overlap, such as in the case of two female speakers 

with similar pitch, loudness, and spatial location? Obviously, selective attention depends on the 

accurate definition of objects. 

In analogy to the theory of object-based attention in the visual modality (for reviews, see Scholl, 

2001; Chen, 2012), Barbara Shinn-Cunningham (2008) proposed that the concept of perceptual objects 

holds also for auditory selective attention. Simply speaking, an auditory object describes a collection of 

sounds emitted from one physical source. In a busy cafeteria, individual talkers, clinking glasses, and 

the sounds of the checkout counter would constitute separate auditory objects. Object-based attention 

asserts that attention operates on objects rather than individual features (Kubovy and Van Valkenburg, 

2001). Thus, attention to one feature of an object also increases sensitivity to other features of the same 

object (in the visual modality: Duncan, 1984; across modalities: Busse et al., 2005; in the auditory 

modality: Best et al., 2008). 

But is there a fundamental difference in the formation of visual and auditory objects? Since visual 

objects are often spatially distinct, it has been proposed that saliency maps guide visual attention (e.g., 

Itti and Koch, 2000). Furthermore, humans can shift their direction of gaze to enhance the perceptual 

encoding of relevant visual objects in the fovea (Treue, 2003). On the contrary, auditory object 

formation is particularly vulnerable to distractor interference. Auditory stimuli at each point in time 

can be characterized along several dimensions such as pitch, intensity, and location. In the human 

cochlea, however, auditory stimuli are initially represented on a one-dimensional spectral axis 

(Shamma, 2001). Since human speech has a rich spectro-temporal structure, two simultaneously 

presented speech signals likely evoke overlapping excitation patterns in the cochlea (Moore, 2008a). 

Thus, it has been proposed that temporal coherence promotes object formation in the auditory 

modality (Shamma et al., 2011). In the most extreme case, challenging listening conditions (see below) 
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can render signal and distractor inseparable, resulting in a failure of auditory object formation and 

deficient selective attention. 

If auditory object formation is successful, currently relevant objects have to be selected for further 

processing. Object selection is a top-down process, such that a listener selects an object at will, for 

instance because it is relevant for the current task. Object selection requires attentional control 

(Hopfinger et al., 2000), i.e., the prioritization of relevant objects for further processing. Object 

selection is compromised if listeners are uncertain about which auditory object to select (e.g., Kidd et 

al., 2005) or if irrelevant auditory objects are highly salient (e.g., Passow et al., 2012). In sum, selective 

attention to speech in complex acoustic environments critically depends on the successful formation 

and selection of auditory objects. 

1.1.3 Selective attention in older and hearing-impaired listeners1 

In acoustically demanding multi-talker situations, older listeners typically experience more difficulties 

compared with younger adults. It is however unclear, in how far these difficulties are caused by age-

related decline in perceptual auditory acuity (hearing loss or loss of temporal and spectral resolution; 

Fostick and Babkoff, 2013), decline of cognitive functioning with age, or both (Wingfield et al., 2005). 

Critically, both auditory perceptual and cognitive decline could lead to insufficient selective attention. 

First, compared to normal-hearing controls, listeners with hearing loss are less successful in utilizing 

spectral (Lorenzi et al., 2006), temporal (Tremblay et al., 2003), and spatial auditory cues (Neher et al., 

2009) important for the perceptual segregation of different sound sources (i.e., auditory object 

formation). Thus, attending to relevant and inhibiting irrelevant sound sources is impaired, as 

auditory features are lacking to distinguish the different sound sources in the first place (Shinn-

Cunningham and Best, 2008). Second, age negatively affects many aspects of cognitive functioning 

(Park et al., 2003), amongst it the ability to suppress irrelevant but salient auditory distractors (Chao 

and Knight, 1997; Tun et al., 2002; Passow et al., 2014). Thus, even if the perceptual segregation of 

sound sources is accomplished successfully, the insufficient inhibition of distractors may constrain 

auditory object selection. 

What is the practical significance of studying the underlying neural mechanisms of speech 

perception in older listeners? Changes in the neural dynamics of speech processing could serve as an 

                                                           
1 This section is largely adapted from the article published in Frontiers in Human Neuroscience by Strauß†, 
Wöstmann†, & Obleser (2014). † both authors contributed equally. 



General introduction 

17 

indicator of age-dependent decline in selective attention. Auditory selective attention might function 

as a compensatory mechanism as listening conditions become more demanding, for instance due to a 

decreasing signal-to-noise ratio (SNR). The study of neural dynamics could help to reveal how 

listeners of different age exert top-down attentional control to enhance processing of task-relevant 

signals and inhibit processing of interfering distractors. In particular, this line of research might foster 

the understanding of why older listeners find it more exhausting to participate in cocktail party-like 

listening situations compared to younger listeners (Pichora-Fuller, 2003b). 

1.2 Neural bases of selective attention 

To study the neural bases of attention, it is important to take into account some theoretical 

considerations. In general, it is necessary to differentiate two complementary mechanisms of attention; 

first, the enhancement of the signal, and second, the suppression of noise (e.g., Yeshurun and 

Carrasco, 1998; O'Connor et al., 2002; Gazzaley et al., 2005b). In detail, changes in brain activity 

during selective attention compared to a baseline could reflect (a) the enhancement of the attended 

signal, (b) the suppression of noise, (c) both, or (d) other brain processes not directly related to 

selective attention, such as conflict monitoring (e.g., Botvinick et al., 2004; Yeung et al., 2004). 

Importantly, suppression of noise does not exclusively refer to noise in the external stimulation but 

can as well refer to neural noise (e.g., Briggs et al., 2013), e.g., activity in task-irrelevant brain regions 

(e.g., Lawrence et al., 2003; Polk et al., 2008; Snyder and Foxe, 2010). For instance, it has been 

suggested that auditory attention involves an inhibition of activity in the visual system (e.g., Adrian, 

1944; Fu et al., 2001; Johnson and Zatorre, 2005). 

Similarly to the present thesis, research on selective attention is often not directly concerned with 

the question of signal enhancement or noise suppression. It is nevertheless useful to consider this 

distinction when it comes to the interpretation of neuroimaging results. If, however, the goal is to 

investigate signal enhancement and noise suppression independently, it is not sufficient to hold one of 

the two constant and to manipulate the other. For example, a change in brain activity when external 

noise is reduced could both reflect more thorough neural noise suppression but also more thorough 

neural signal enhancement. In order to explore these two mechanisms unambiguously, the neural 

responses to signal and noise have to be separated, which can be realized by spatial separation of signal 

and noise in dichotic listening tasks (e.g, Alho et al., 2012; see also Study 3) or by sequential 

presentation of signal and noise (e.g., Kastner et al., 1998; see also Study 4). The following section will 
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briefly summarize evidence for the structural and functional foundations of attention networks in the 

brain. Thereafter, I will outline the electrophysiological bases of selective attention to set the stage for 

the magneto-and electroencephalography (M/EEG) studies reported in this thesis. 

1.2.1 Neural attention networks 

Before the advent of the wide availability of functional magnetic resonance imaging (fMRI), 

neuroscientific research on selective attention primarily investigated activity changes within spatially 

restricted regions of the brain. Single cell recordings in monkeys revealed that attention increases the 

firing rate (e.g., Motter, 1993) and sharpens the tuning curves of neurons sensitive to attended stimuli 

(e.g., Spitzer et al., 1988; for review, see Treue, 2001). Later, modulation of sensitivity in primary 

sensory areas during attention was also evidenced through changes of the fMRI blood oxygen level 

dependent (BOLD) signal in visual (e.g., Brefczynski and DeYoe, 1999) and auditory cortex regions 

(e.g., Petkov et al., 2004). Critically, whole-brain fMRI opened up the possibility to explore whether 

also brain regions other than sensory areas underlie human selective attention. 

Indeed, major evidence for the contribution of a complex network of brain regions to attention 

comes from fMRI investigations and brain lesion studies. A number of fMRI experiments found that 

frontal and parietal brain regions (including the frontal eye field, FEF, superior parietal lobe, SPL, and 

the intraparietal sulcus, IPS) show increased levels of activation in spatial attention tasks (e.g., Corbetta 

et al., 1998; Kastner et al., 1999; Kim et al., 1999), suggesting that these areas constitute an attention 

network. It has been proposed that this attention network can be further divided into smaller, more 

specialized sub-systems (e.g., Pourtois et al., 2006; Shallice et al., 2008). For instance, a network of 

intraparietal and superior frontal cortex guides goal-directed visual attentional selection, whereas a 

network of temporoparietal and inferior frontal cortex directs attention to unexpected and salient 

events (Corbetta and Shulman, 2002). Another line of research revealed that patients with brain lesions 

in diverse brain regions exhibit an impairment of spatial attention, i.e., spatial hemineglect (Vallar, 

1998). Spatial hemineglect was found to correlate with lesions in the parietal lobe (e.g., Vallar and 

Perani, 1987), but also in the frontal (e.g., Damasio et al., 1980) and temporal lobe (Karnath et al., 

2001), supporting the contribution of widespread brain regions to the attention network. Thus, 

converging evidence from fMRI and brain lesion studies suggests that selective attention is instantiated 

within a distributed network of sensory, parietal, and frontal brain regions (for review, see Pessoa et al., 

2003). 
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But in how far is communication between distinct areas within the attention network essential to 

establish attention? To test this, it is necessary to analyse the functional connectivity among brain 

regions, involving methods of graph theory (Bullmore and Sporns, 2009). In a recent combined 

fMRI/MEG study, Baldauf and Desimone (2014) found that during attention to faces and houses, the 

inferior frontal junction exhibited functional connectivity (via gamma oscillations) with the fusiform 

face area (FFA) and the parahippocampal place area (PPA), respectively. This suggests that functional 

interactions between frontal and sensory areas underlie the control of selective attention. Critically, 

results from transcranial magnetic stimulation (TMS) studies revealed that activity in frontal cortex 

modulates activity in sensory regions during attention (Smith et al., 2009; Zanto et al., 2011a), 

suggesting that frontal regions exert top-down control to regulate sensitivity in sensory areas. In sum, 

the neural bases of attention comprise a network of frontal and parietal cortex regions that functionally 

connect with primary sensory regions (for review, see Ptak, 2012) to enhance relevant and to suppress 

irrelevant sensory information. 

1.2.2 Electrophysiological bases of selective attention 

One of the most well-known effects of attention in electroencephalography (EEG) studies is the 

increased amplitude of early event-related potential (ERP) components (Hillyard et al., 1973; Näätänen 

et al., 1978; for review, see Luck et al., 2000). Compared to a passive control condition, evoked 

responses increase when participants attend to visual (e.g., Heinze et al., 1990) and auditory stimuli 

(e.g., Woldorff et al., 1987). Larger ERP amplitude has been interpreted as an increase in attention 

orientation and facilitation of sensory processing (e.g., Luck et al., 1990). Interestingly, enhanced 

prediction of stimuli shows the opposite effect, i.e., a reduction of the neural response (e.g., Arnal and 

Giraud, 2012; Kok et al., 2012). This suggests that attention is not a self-contained neural mechanism 

but interacts with predictions to guide perception (Summerfield and Egner, 2009; Schröger et al., 

2015). 

Attention also affects the ERP prior to stimulus onset (e.g., Walter et al., 1964; Weinberg, 1972). 

Slow cortical potentials increase during the anticipation of upcoming stimuli (for review, see Van 

Boxtel and Böcker, 2004). If distraction impairs attention, the magnitude of slow cortical potentials 

decreases (e.g., McCallum and Walter, 1968; Tecce and Scheff, 1969). To the contrary, larger potential 

magnitude improves stimulus detection (e.g., Rockstroh et al., 1993; O'Connell et al., 2009), indicating 

increased selective attention. Considering the functional role of slow cortical potentials, it has been 

suggested that larger magnitudes reflect the attentional enhancement of sensitivity in task-relevant 



General introduction 

20 

cortical networks (Raichle, 2011). Important for the present thesis, slow cortical potentials are useful to 

study how situational factors such as degraded acoustics (Study 1.1) or higher levels of motivation 

(Study 1.2) affect the allocation of attention to ensuing stimuli (e.g., Rebert et al., 1967). 

Another electrophysiological correlate of selective attention that is particularly relevant to the study 

of speech stimuli with a rich temporal structure is the alignment (i.e., phase-locking) of the ongoing 

M/EEG signal to the temporal structure of stimuli (e.g., Horton et al., 2013; O'Sullivan et al., 2014). 

While the M/EEG signal aligns with the temporal envelope of attended speech, it shows a 

characteristically distinct alignment with concurrent unattended speech (e.g., Ding and Simon, 2012; 

Mesgarani and Chang, 2012; Zion-Golumbic and Schroeder, 2012; see also Study 2.2). This 

mechanism might instantiate the co-occurrence of phases of high neural excitability with most critical 

segments of attended speech and phases of low excitability with unattended speech (Giraud and 

Poeppel, 2012). Thus, differential alignment of neural responses with attended and unattended speech 

might constitute a neural mechanism to select task-relevant speech for higher order processing (Zion 

Golumbic et al., 2013). 

Besides stimulus-locked neural activity (see above), neural oscillations which are not strictly time-

locked to the stimulus reflect attentional processes (for review, see Herrmann and Knight, 2001). More 

than 70 years ago, Edward Douglas Adrian (1944) observed that the amplitude of parietal alpha 

oscillations with a frequency of approximately 10 Hz increases when participants direct attention to 

auditory stimuli. Considering that alpha amplitude also increases if participants close their eyes, 

Adrian supposed that high alpha amplitude indicates “inattention” of the visual system, which is 

“unemployed” during auditory attention. In agreement with Adrian’s observations, a large number of 

more recent studies suggest that alpha activity reflects the inhibition of task-irrelevant neural processes 

to support attention to relevant stimuli (e.g., Klimesch et al., 1999; Jensen et al., 2002; for reviews, see 

Jensen and Mazaheri, 2010; Foxe and Snyder, 2011). The inhibitory effect of alpha activity is further 

confirmed by a negative correlation with the fMRI BOLD signal (e.g., Laufs et al., 2003; Scheeringa et 

al., 2009; Yuan et al., 2010). Thus, alpha activity is a possible neural mechanism of noise suppression to 

support attention (see also Studies 2.1 & 3). Although alpha oscillations dominate measures of the 

human M/EEG, it is important to note that they co-occur and interact with oscillations in other 

frequency bands (e.g., Lakatos et al., 2005; Spaak et al., 2012; Roux and Uhlhaas, 2014). For instance, 

alpha oscillations are coupled to gamma oscillations (>30 Hz), which are thought to be involved in 

active neural processing (e.g., Palva et al., 2005; Osipova et al., 2008). Particularly relevant for the 
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present thesis, alpha oscillations reliably reflect attentional demands in speech comprehension tasks 

(e.g., Obleser et al., 2012; Becker et al., 2013; Meyer et al., 2013). 

In summary, electrophysiological measures of neural activity provide several signatures of attention 

(ERP amplitude, neural phase-locking, alpha oscillations), which are extracted from the same 

underlying M/EEG signal. The following section will outline in how far the study of these neural 

signatures of attention might answer the research questions of the present thesis. 

1.3 Research questions 

The present thesis comprises four studies which investigate behavioural responses and 

electrophysiological recordings of neural activity in an overall sample of 98 participants. This thesis 

aims at exploring the neural mechanisms that support selective attention to speech under spectral 

deterioration and the presence of background noise, i.e., acoustic degradation. A further objective is to 

understand the vulnerability of attention mechanisms in populations which experience particular 

difficulties of selective attention. Thus, three studies of this thesis compare healthy older adults (60–80 

years) to younger adults (20–30 years). 

This thesis tries to answer four major research questions: (1) Do acoustic conditions of the external 

stimulation guide listeners’ allocation of attention in demanding listening situations? Study 1 

investigates whether ERP signatures of attention reflect an increased allocation of attention when 

listeners are faced with more degraded acoustic input. To test the susceptibility of attention allocation 

in listeners with difficulties in complex acoustic situations, it is further explored whether neural 

dynamics of attention allocation are preserved at an older age. A follow-up experiment with younger 

participants (Study 1.2) examines in how far ERP signatures of attention are affected by task-relevance 

manipulated by monetary incentives. Subsequently, this thesis explores whether in addition to external 

acoustic conditions, also listeners’ formation of predictions about the upcoming speech content affect 

the neural dynamics of selective attention. Study 2 asks: (2) Do increased acoustic detail on the one 

hand and better predictions of the speech content on the other hand facilitate neural mechanisms of 

selective attention to the same degree? Study 2.1 investigates how these two factors affect the power of 

neural alpha oscillations; i.e., a neural signature that is thought to reflect the inhibition of task-

irrelevant brain processes. Behavioural responses and alpha power modulations in younger and older 

listeners are compared to test to what extent attentional control changes at an older age. In an 
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additional analysis, Study 2.2 tests whether age-differences in attentional control do also show up in 

the neural phase-locking to attended and unattended speech signals. 

After demonstrating that neural alpha oscillations are sensitive to demands on selective attention to 

speech in noise, this thesis turns to the question how alpha power dynamics support attention. Thus, 

Study 3 asks: (3) In how far do alpha power modulations implement an attentional filter to suppress 

noise and to enhance the task-relevant speech signal? To test this, Study 3 uses a dichotic listening task 

in the MEG to investigate whether modulations of neural alpha power in a network of parietal and 

auditory cortex regions reflect the attentional selection of speech in noise. In particular, this study tests 

whether the deployment of spatial selective attention adapts to the temporal structure of ongoing 

speech. After investigating the electrophysiological bases of selective attention to speech in noise in 

Studies 1-3, Study 4 examines to what extent acoustic and semantic features determine the attentional 

capture of distracting speech (i.e., noise): (4) Do acoustic detail and predictability of a distracting 

speech signal determine how effectively it can be filtered out by selective attention? To test whether 

mechanisms of noise suppression change at an older age, this behavioural experiment again compares 

younger and older adults. In summary, this thesis aims at establishing an initial framework (see section 

7.6) to explain the neural dynamics that support selective attention to speech in noise and thus 

counteract acoustic degradation. 
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2 Methodological background 

This chapter will give a brief and general overview of the speech materials and different types of speech 

degradation used in the present thesis. Furthermore, I will introduce the neurophysiological basis of 

magneto- and electroencephalography (M/EEG) and different methods used for the data analysis. 

More detailed information can be found in the methods sections of Studies 1–4. 

2.1 Stimulus materials: spoken digits 

Stimulus materials used in the laboratory should generally fulfil two criteria. On the one hand, they 

should be of high internal validity, meaning that stimuli are well-controlled to exclude an impact of 

confounding factors on the results. On the other hand, stimuli should be of high external validity, 

meaning that they are representative of the studied phenomenon as it occurs in everyday life situations 

outside the laboratory. While it is usually difficult to meet both of these criteria, I will argue here that 

spoken digits are of high internal and external validity for the study of the neural dynamics of speech 

processing. 

First, considering acoustic properties, spoken digits have a very regular temporal structure. For 

instance, German digits between 21 and 99 (used in Studies 1–3) all consist of four syllables uttered 

within approximately one second. Thus, spoken digits have a consistent length and a stable ~4 Hz 

syllable rate. Since M/EEG recordings have a high temporal resolution (see below), inconsistencies in 

the temporal structure of stimuli could increase the variance of neural activity measures. In contrast, 

the use of spoken digits as stimuli reduces measurement variability. 

Second, considering the semantics of spoken digits, listeners have to understand several syllables of 

a single digit to process the numeric value correctly. For instance, in order to understand the German 

digit “ein-und-vier-zig” (one-and-four-ty), listeners have to understand at least the first and the third 

syllable. Thus, spoken digits possess an important property of natural speech, namely that information 

unfolds in time and that single units of information (i.e., syllables) have to be combined in order to 

derive meaning. 

Third, all digits can be placed on the number line (Dehaene et al., 1998), which means that they are 

interrelated to each other: For each pair of digits, a listener can be asked whether the second digit was 

smaller or larger than the first (Studies 1&2). This is a simple question if the two digits are understood 
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correctly. However, what happens if one of the two digits is missed or only partly understood due to 

presence of distracting background noise? In such a case, listeners can use partial information to derive 

the most probable relationship between digits. For instance, if the first digit was very small, listeners 

might infer that the second digit was likely larger. Thus, spoken digits can be used to study an 

important cognitive mechanism for speech understanding in complex listening situations, i.e., the use 

of prior knowledge to infer the most likely meaning of an utterance (Study 2.1). 

2.2 Speech degradation 

Listening conditions in everyday life are rarely ideal. Speech can be degraded in several ways, ranging 

from poor acoustics on phone lines to complex multi-talker situations. This section will introduce two 

methods of speech degradation used in the present thesis, i.e., masking of speech by acoustic 

distractors (i.e., noise) and spectral degradation through vocoding. 

2.2.1 Masking of speech by noise2 

A characteristic feature of human sensory environments is that they are rich of information from 

relevant and irrelevant sources. Relevant and irrelevant signals are commonly referred to as target 

signals and noise/maskers, respectively. Whether a sensory signal is target or noise is often defined by 

the current goals and intentions of the perceiver. For example, a captivating audiobook can turn from 

a target signal into noise if the listener suddenly intends to listen to the lottery numbers announced on 

TV. Human speech is a paradigmatic case of a target signal that is often masked by different types of 

noises, which will be shortly described in the following. 

Generally, it can be differentiated between energetic and informational masking. Energetic masking 

describes the competition of auditory target and masker in the auditory periphery due to spectro-

temporal overlay of the two signals, causing an overlap of excitation patterns in the cochlea and 

auditory nerve (Durlach et al., 2003). One type of background signal often assumed to cause primarily 

energetic masking is white noise (e.g., Arbogast et al., 2005) which is quasi-stationary and has high 

energy in a broad frequency range (for discussion see Stone et al., 2012). Although informational 

masking is sometimes defined only negatively as all masking effects not accounted for by energetic 

masking (cf. Gutschalk et al., 2008), a more refined definition is required, especially when it comes to 

speech processing. When target speech is masked by a competing talker, it is not just the energetic 

                                                           
2 This section is partly adapted from the article published in Frontiers in Human Neuroscience by Strauß†, 
Wöstmann†, & Obleser (2014). † both authors contributed equally. 
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overlap of the two signals that causes interference. Rather, the speech masker initiates phonetic and 

semantic processing that interferes with the linguistic processing of the target (Schneider et al., 2007). 

Thus, informational masking describes the interference of target and masker at a more central, 

cognitive level, whereas energetic masking refers to energetic overlap in the auditory periphery. In this 

thesis, noise was primarily implemented by competing talkers, which cause energetic as well as 

informational masking. 

2.2.2 Spectral degradation through vocoding 

Like any other sound, human speech sounds are pressure waves propagated through air. In the human 

inner ear, these pressure waves cause vibrations of the basilar membrane in the cochlea. Hair cells 

transform these mechanical signals into electrical signals, which are then propagated to the brain via 

the auditory nerve. Since different frequencies are represented at different places on the basilar 

membrane, the inner ear can be modelled as a bank of filters that decomposes complex sounds into 

different frequency bands (Dau et al., 1997). Below, I describe a similar processing scheme as 

implemented in the human auditory system that is used as a basis for spectral degradation of speech 

through vocoding. 

Figure 2.1. Decomposition of a speech sound into temporal and spectral information. Left: speech waveform of a 
German spoken digit (“61”). Middle: frequency subbands of the speech signal were derived by applying a bank of 
bandpass filters with logarithmically spaced center frequencies (CFs; 0.1, 0.4, 1.9, 8 kHz) to the speech signal (using a 
gammatone filterbank). Right: decomposition of one frequency subband into its slow temporal content (i.e., temporal 
envelope) and spectral content (i.e., temporal fine structure) using the Hilbert transform. 

Figure 2.1 shows the schematic decomposition of a speech sound into four frequency subbands 

(centered at 0.1, 0.4, 1.9, and 8 kHz) using a bank of bandpass filters. Each frequency subband can be 

further decomposed into its temporal and spectral content (e.g., by using the Hilbert transform; Smith 

et al., 2002).The temporal structure of the signal is described by the temporal envelope, which 

characterizes the slow amplitude fluctuations in the signal. The spectral content is described by the 

temporal fine structure, which captures the fast fluctuations in the signal (e.g., pitch information; 

Rosen, 1992). 
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In general, vocoding discards the temporal fine structure information while the temporal envelope 

remains largely preserved. To this end, the temporal envelope in each frequency subband is used to 

modulate an artificially generated carrier signal (Xu et al., 2005). For noise-vocoding (Study 4), the 

carrier is random noise filtered with the bandpass filter of the respective frequency subband. For tone-

vocoding (Studies 1&2), the carrier is a pure tone at the filter center frequency. Summation over all 

vocoded subbands results in a signal with degraded spectral information but preserved temporal 

information (Shannon et al., 1995). 

In order to parametrically vary the degree of spectral degradation, two methods were applied in this 

thesis. In Studies 1&2, the number of frequency subbands was fixed but the signal was degraded in a 

variable number of these subbands through tone-vocoding (Hopkins et al., 2008). In Study 4, the 

number of subbands varied parametrically and noise-vocoding was used to degrade spectral 

information in all subbands (Erb et al., 2012). Vocoding reduces spectral information in a controlled 

way, which has been found to increase the difficulty of speech understanding (e.g., Faulkner et al., 

2001; Obleser et al., 2008; Sheldon et al., 2008), especially in the presence of background noise (e.g., 

Hopkins and Moore, 2009). 

2.3 Magneto- and Electroencephalography 

A characteristic feature of human speech signals is their rich temporal structure. Thus, the 

investigation of the neural dynamics of speech understanding requires neuroimaging methods with a 

high temporal resolution. Magneto- and electroencephalography (M/EEG) record brain activity 

noninvasively with a temporal resolution at the order of milliseconds (Vrba and Robinson, 2001; 

Malmivuo, 2012; Jackson and Bolger, 2014). In this section, I will describe the neurophysiological basis 

of M/EEG, as well as different methods for the analysis of M/EEG recordings. 

2.3.1 Neurophysiological basis of EEG and MEG 

The EEG measures electric potentials with electrodes placed on the scalp surface. The first EEG 

recordings in humans date back to the 1920s (Berger, 1931). The MEG measures magnetic fields with 

highly sensitive sensors placed close to the scalp. Human MEG was first recorded in 1968 (Cohen, 

1968). The main sources of the human M/EEG are postsynaptic potentials of cortical pyramidal cells. 

The M/EEG signal does not directly reflect spiking activity of nerve cells but rather a smoothened 

version of the local field potential (Buzsaki et al., 2012)  
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Since cortical pyramidal cells are organized in a parallel fashion, postsynaptic potentials of huge 

cells assemblies can sum up, which eventually results in measureable signals in the M/EEG (Hillebrand 

and Barnes, 2002). The intracellular (i.e., primary) currents generate extracellular (i.e., secondary) 

currents which are deflected by the surrounding tissue. While the EEG measures these secondary 

currents, the MEG directly measures the magnetic fields perpendicular to the primary currents (Lopes 

da Silva, 2013). The EEG signal is further spread (i.e., smeared) by the limited tissue conductivity of 

skull and scalp. Contrary, the magnetic signal in the MEG is largely unaffected when it passes the head 

tissue (Leahy et al., 1998). Compared to the EEG, MEG signals are thus more focal and less spread in 

space, which allows for a more precise localization of the underlying neural generators (for details, see 

also Study 3). 

The folding of the cortex in sulci and gyri affects the direction of the electric currents generated by 

the cortical pyramidal cells. The EEG is sensitive to sources that are oriented radially and tangentially 

with respect to the scalp. The MEG is only sensitive to tangential sources (Ahlfors et al., 2010). 

Another important difference between EEG and MEG is their sensitivity to deep and shallow sources. 

In principle, the EEG is also sensitive to deeper sources whereas MEG recordings from planar 

gradiometer sensors suppress activity from distant sources and are only sensitive to shallow sources in 

the cortex directly below them (Hämäläinen, 1995). 

2.3.2 Analysis of evoked and induced activity 

Detailed descriptions of EEG and MEG recording protocols and analysis techniques can be found in 

the methods sections of Studies 1–3. Here I describe a general division into two different methods used 

to analyse M/EEG data in the present thesis, namely the analysis of evoked and induced activity. 

Evoked and induced activity do not refer to different types of data, but rather to different ways of 

analysing the same data (for a comprehensive description of evoked and induced activity, see also 

Tallon-Baudry and Bertrand, 1999). 

Figure 2.2 contrasts the analysis of evoked and induced activity for EEG data of a single participant 

recorded in a listening task. In general, evoked activity is phase- and time-locked across individual 

trials. The most common way to analyse evoked activity is the event-related potential (ERP; e.g., Kutas 

and Hillyard, 1980; see also Study 1), which is calculated by averaging across single trial time-domain 

data. Activity that is not strictly phase- and time-locked across trials is considered noise and gets 

suppressed in the ERP analysis. The signal to noise ratio (SNR) increases with the square root of the 
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number of trials. Two more sophisticated methods used for the analysis of evoked activity in the 

present thesis are inter trial phase coherence (ITPC; Lachaux et al., 1999; see also Study 3) and cross-

correlation of EEG signal and the stimulus (e.g., Horton et al., 2013; see also Study 2.2). An important 

limitation in the analysis of evoked activity is the fact that all activity that is not strictly consistent 

across trials is cancelled out. 

Figure 2.2. Analysis of evoked and induced activity. Left side: analysis of evoked activity of EEG data from a single 
participant. Single trials are averaged in the time-domain to calculate the event-related potential (ERP). Three 
representative trials out of 47 trials used for the analysis of the ERP are shown. Time-frequency transformation (TFT) of 
time-domain data yields oscillatory power (convolution of the ERP with a family of morlet wavelets, using the Fieldtrip 
toolbox (Oostenveld et al., 2011) for Matlab; wavelet width: 7 cycles; frequencies: 1–15 Hz in steps of 0.1 Hz; time: 1.6 
seconds in steps of 0.01 s). Right side: analysis of induced activity for the same dataset. Time frequency transformations of 
individual trials were performed and averaged across trials. Note the striking difference in the time frequency 
representations of evoked (bottom left) and induced activity (bottom right). The analysis of evoked activity emphasizes 
phase- and time-locked activity in lower frequencies (~2–4 Hz), whereas the analysis of induced activity emphasizes non-
phase-locked activity that is strongest in the alpha frequency range (~10 Hz) in this dataset. Blue colors indicate low, red 
colors indicate high oscillatory activity. 

The main rationale in the analysis of induced activity is that voltage fluctuations that are not phase-

and time-locked across trials are not considered noise but meaningful signal (e.g., Klimesch et al., 

1998). To analyse induced activity, the time-frequency transformation (TFT) of time-domain data 

yields oscillatory power for each trial (e.g., by convolution of the time-domain signal with a family of 

morlet wavelets; for details, see Studies 2&3). Figure 2.2 shows strong activity in the alpha frequency 
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range (~10 Hz) in single trials. Since alpha activity is not phase- and time-locked across trials, it gets 

cancelled out in the analysis of evoked activity (Figure 2.2, bottom left) but is preserved in the analysis 

of induced activity (Figure 2.2, bottom right). 



 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

  

 



Study 1: Allocation of attention in the face of degraded acoustics 

31 

3 Study 1: Allocation of attention in the face of degraded acoustics 

This study investigates event-related potential (ERP) signatures of attention allocation to speech in 

background noise. Study 1.1 compares neural mechanisms of attention in younger and older listeners 

in an auditory number comparison task. Study 1.2 further explores in how far increasing task-

relevance through monetary incentives affects listeners’ allocation of attention. 

3.1 Study 1.1: Acoustic detail guides attention allocation in a selective listening 

task3 

3.1.1 Introduction 

Listening to one talker despite distracting speakers ("cocktail party problem"; Cherry, 1953) requires 

selective attention, that is, preferential processing of a specific signal at the expense of distractor signals 

(Kerlin et al., 2010). The demand on selective auditory attention is particularly high if listening 

conditions are compromised because of hearing loss (Tun et al., 2009) or signal degradation (Wild et 

al., 2012). It is unknown how and to what extent listeners of different age retain the ability to flexibly 

allocate attention to changing stimulus acoustics. Here, the electroencephalogram (EEG) was recorded 

in order to trace neural signatures of selective attention deployment, while younger (20–30 years) and 

older (60–70 years) healthy listeners performed an effortful selective listening task, in which varying 

degrees of acoustic degradation implicitly signalled task difficulty. 

Fluctuations in cortical excitability have been proposed to regulate auditory selective attention 

(Schroeder and Lakatos, 2009; Lakatos et al., 2013b), by lowering sensory thresholds for relevant 

stimuli. Cortical excitability is enhanced by the depolarization of pyramidal neurons, causing slow 

cortical potentials of negative amplitude in the EEG (He and Raichle, 2009). One well-studied slow 

potential is the contingent negative variation (CNV; Walter et al., 1964) which occurs after a warning 

signal during the anticipation of an imperative stimulus (e.g., Zanto et al., 2011b; Chennu et al., 2013). 

The CNV magnitude is lowered when participants’ selective attention to task-relevant stimuli is 

impaired by distractors (McCallum and Walter, 1968; Tecce and Scheff, 1969; Travis and Tecce, 1998). 

In turn, larger CNV magnitudes at stimulus onset improve detectability of visual (O'Connell et al., 

                                                           
3 This section is adapted from the article published in the Journal of Cognitive Neuroscience by Wöstmann, 
Schröger, & Obleser (in press). 
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2009) and auditory targets (Rockstroh et al., 1993). These findings suggest that CNV magnitude 

correlates with selective attention, possibly through an enhancement of excitability in task-relevant 

cortical neural networks (Raichle, 2011). It is thus a timely endeavour to exploit the CNV for a refined 

understanding of selective auditory attention in younger and older listeners. 

To study the CNV in a well-controlled, nonetheless ecologically valid selective listening situation, 

participants performed an auditory number comparison task (Moyer and Landauer, 1967) masked by 

a distracting talker. To vary the effort of selective attention (Shinn-Cunningham and Best, 2008), 

perceptual separability of digits and masker was altered by parametrically degrading temporal fine 

structure (TFS; Moore, 2008b); an acoustic feature found highly relevant for listening against 

fluctuating maskers (Hopkins and Moore, 2009, 2010). Critically, the onset of the masker served as a 

warning stimulus in the present design, since the degree of acoustic degradation in the masker 

implicitly signalled task difficulty and allowed a graded allocation of attention to compensate for 

unfavourable acoustic conditions. Thus, the dependent neural measure in the present study was the 

CNV evoked by the onset of the speech masker. 

In this attention-demanding selective listening task, we expected improved performance with more 

preserved acoustic detail. Decreased CNV magnitude with more acoustic detail would indicate that 

participants adaptively allocate less attention as the signal quality improves. To further tighten the link 

between the CNV and mechanisms of auditory attention, we anticipated, first, absent or reduced CNV 

modulation in a control experiment when acoustic detail would not cue task difficulty, and second, a 

correlation between CNV magnitude and a behavioural marker of individual attentional capacity. 

Through careful adjustments of stimulus intensities to participants’ individual requirements, we were 

able to investigate the neural mechanisms of auditory attention allocation independent of age-

differences in signal audibility or overall performance level. We asked whether healthy aging would 

affect the flexible allocation of attention to changing acoustic conditions. 

3.1.2 Materials and methods 

3.1.2.1 Participants 

Twenty younger (age range, 20–30 years; mean age, 25.7; 9 females) and twenty older (age range, 60–

70 years; mean age, 64; 11 females) healthy, right-handed German native speakers participated in the 

main experiment. Data of 38 participants were included in the final analysis (see below). Participants 
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gave informed consent and were financially compensated for participation. Procedures were approved 

by the local ethics committee of the University of Leipzig Medical faculty. 

3.1.2.2 Speech materials 

German spoken digits from 21 to 99 (excluding multiples of ten) were recorded from a trained female 

speaker (sampling rate, 44.1 kHz). All digits contained four syllables and had an average length of 

1.125 s (SD = 0.056 s). The distracting masker was extracted from a German audiobook (Oscar Wilde, 

“Der junge König”) spoken by a female talker (sampling rate, 44.1 kHz). To increase the energetic 

overlap of masker and spoken digits, silent periods longer than 70 ms were removed automatically 

from the masker (using a customised Matlab script R2013a; MathWorks). The resulting audio file had 

a length of 29’52’’, from which we extracted 1000 random snippets with a length of six seconds. 

For each stimulus, two spoken target digits (referred to as S1 and S2) and one masker snippet 

(referred to as masker) were selected randomly. Intensities of digits and masker were modified to 

realise different Target-to-Masker Ratios (TMRs; which were individually titrated, see below). For this 

purpose, root-mean-squared (RMS) masker intensity was fixed at –30 dB full-scale (dBFS) while digit 

intensity was further reduced (using the AttenuateSound function from the psychoacoustics toolbox 

for Matlab). For example, for a TMR of –15 dBFS, and given the masker intensity of –30 dBFS, 

intensities of S1 and S2 were set to root-mean-squared –45 dBFS. Lastly, digit and masker signals were 

combined. 

To modify the amount of acoustic detail (temporal fine structure, TFS), the combined signal 

(composed of masker and digits) was divided in frequency space into 16 overlapping channels (using a 

gammatone filterbank implemented in the auditory toolbox for Matlab; Slaney, 1993). Channel centre 

frequencies increased exponentially from 0.08 to 10 kHz. TFS was preserved in all channels below and 

including six TFS preservation cut-offs (0, 0.11, 0.21, 0.4, 0.76, and 1.45 kHz) and degraded above 

(Figure 3.1A). Thus, TFS was always degraded in channels above 1.45 kHz but was systematically 

degraded across conditions in channels at and below 1.45 kHz. We did not preserve TFS above 1.45 

kHz, as we observed the largest performance increase up to this frequency in a behavioural pretest (n = 

12). All channels below and including the TFS preservation cut-off were left unchanged (i.e., "intact"; 

Lorenzi et al., 2006). In channels above a given TFS preservation cut-off, the speech envelope was 

extracted using the Hilbert transform (Smith et al., 2002). The envelope was used to modulate a 

sinusoidal tone with random starting phase at the channel centre frequency. The resulting signal was 
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filtered again with the initial filters to remove out-of-channel frequency components (Lunner et al., 

2012). The RMS amplitude of the signal in each channel was equalized to this channel’s RMS after 

initial filtering. Finally, intact and modified channels were combined, yielding six different TFS 

preservation levels. Note that a TFS preservation of 0 kHz meant that TFS was entirely degraded in all 

16 channels (Figure 3.1A, top panel) whereas a TFS preservation of 1.45 kHz meant that TFS was 

preserved in channels below and including 1.45 kHz and was degraded in all channels above (Figure 

3.1A, bottom panel). 

In essence, our manipulation substantially degraded the fast spectro-temporal fluctuations in 

higher frequencies, while leaving the slow temporal envelope fluctuations largely intact (Shamma and 

Lorenzi, 2013). Lower levels of TFS preservation made the signal sound tinny and artificial, rendering 

perceptual segregation of masker and digits perceptually more demanding. Importantly, speech with 

degraded TFS in all channels (“vocoded speech”) is intelligible if presented in quiet, provided the 

number of channels is sufficiently high (Shannon et al., 1995; Obleser et al., 2007; Obleser et al., 2008). 

3.1.2.3 Hearing acuity 

To assess an objective measure of hearing acuity, participants’ pure-tone air-conduction audiometric 

thresholds (at frequencies: 0.25, 0.5, 1, 2, 3, 4, 6, and 8 kHz) were assessed by a trained audiologist 

separately for both ears in steps of 5 dB HL using a clinical audiometer (according to the procedures 

described in: British Society for Audiology, BSA, 2011). Participants did not show interaural 

asymmetries (≥ 20 dB difference between both ears at more than two frequencies). Hearing thresholds 

of younger and older participants are shown in Figure 3.1B. Notably, none of the participants were 

using a hearing aid, nor were any of them subjectively aware of significant hearing impairments. 

3.1.2.4 Individual adjustments of materials 

One of the main rationales of the present study was to investigate the effect of acoustic signal or age on 

attention allocation while controlling for potentially confounding between-subject differences in signal 

audibility or overall task performance level. Prior to the actual experiment, we thus adjusted stimulus 

intensities to individual requirements to assure a comparable level of task performance across 

(younger and older) participants on stimulus materials under the most severe degradation (TFS 

preservation of 0 kHz). In the EEG experiment, we then systematically enhanced the degree of 

preserved TFS in stimulus materials. We explored in how far younger and older participants’ 
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behavioural responses and neural markers of attention allocation were sensitive to these changes in the 

degree of TFS preservation. 

Figure 3.1. Manipulation of acoustic detail and hearing thresholds. (A) Schematic illustration of temporal fine 
structure (TFS) manipulation. TFS was preserved in channels at lower frequencies and replaced by sinusoidal tones at 
higher frequencies. The TFS preservation level (highest channel with intact TFS) varied over six levels (0, 0.11, 0.21, 0.4, 
0.76, and 1.45 kHz). Amplitudes in all channels are equalised for illustration purpose only. (B) Pure-tone air-conduction 
audiometric thresholds averaged over both ears for 18 younger (black) and 20 older (magenta) participants. Thick lines 
show average thresholds for the two age groups. (C) Trial design of the auditory number comparison task. Two spoken 
digits (S1 and S2) were presented against a distracting speech masker. Task difficulty was hypothesised to increase with 
lower levels of TFS preservation. 

First, to equate audibility of materials despite considerable inter-individual differences in hearing 

thresholds (Figure 3.1B), overall stimulus intensity was adapted to hearing abilities. To this end, a 

frequency-specific amplification based on hearing thresholds from 0.25 to 6 kHz was applied to all 

materials using the CAMEQ procedure (Moore et al., 1998). In essence, this procedure raises signal 

intensities at frequencies that showed elevated hearing thresholds. 

Second, since performance levels in auditory tasks cannot be matched between age groups by 

controlling for pure-tone audiometric thresholds alone (see Pichora-Fuller et al., 1995), we 

individually adjusted the Target-to-Masker Ratio (TMR; Schneider et al., 2000). To this end, we varied 

the TMR systematically while participants performed the auditory number comparison task on 

materials without preserved TFS (“0 kHz”) in an adaptive tracking procedure (two-down one-up 
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procedure; targeting approx. 71 % accuracy; Levitt, 1971). Testing started at a favourable TMR of +10 

dB. This made it rather easy for all participants to perform the number comparison task initially. After 

two successive correct trials, TMR was decreased (two-down), reducing intelligibility of digits. After 

one incorrect trial, TMR was increased (one-up). Younger participants performed three and older 

participants four sessions of adaptive tracking. The individual TMR used in the actual experiment was 

estimated from the average results of all tracking sessions. 

3.1.2.5 Processing speed 

Processing speed was assessed with a standard visual test for attentional capacities (d2–R; 

Brickenkamp et al., 2010). Participants had to mark target letters in twelve lists containing targets and 

highly similar non-targets. They were instructed to perform the task “as fast and as accurately as 

possible” and were given 20 s to work on each list, after which they were prompted to switch 

immediately to the subsequent list. As a test score, we calculated the sum of processed targets on all 

lists (“BZO” score; possibly ranging between 0 and 308) with high scores indicating high processing 

speed (Bates and Lemay, 2004). 

3.1.2.6 Working memory 

Working memory capacity was assessed with the auditory backward digit span test (subtest of the 

Wechsler Adult Intelligence Scale-Revised; Wechsler, 1984). On each trial, participants were presented 

a list of spoken digits between one and nine. Digits were spoken by a female voice at a rate of 

approximately one digit per second and presented at ~75 dB SPL. Participants’ task was to repeat the 

digits in reverse order. The test had seven levels with list lengths increasing from two to eight digits. 

Each level comprised two items. Participants’ responses were marked as correct only if all digits were 

repeated in the correct order. Testing stopped when participants performed incorrectly on both items 

for a particular list length. The individual backward digit span score (also referred to as “BSpan”) was 

calculated as the sum of correctly completed items, possibly ranging between 0 and 14. 

3.1.2.7 Experimental procedure 

Participants were instructed to perform the number comparison “as fast and as accurately as possible”. 

Each trial started with the presentation of the two response options (“kleiner”, smaller; “größer”, 

larger) on a computer screen. Auditory stimulation with the manipulated speech masker started after 

1.5 s. Spoken digits (S1 and S2) were placed 0.5 s and 3.125 s after masker onset, respectively, resulting 

in an average delay interval of 1.5 s between S1 offset and S2 onset. All audio files ended 
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simultaneously with S2 offset and had a length of ~4.25 s (Figure 3.1C). Participants indicated via 

button press on a response box whether the second digit was smaller (left button pressed with left 

thumb) or larger (right button pressed with right thumb) than the first. Next, they rated their 

confidence in this response on a three-point scale (1 = unconfident; 3 = confident). The next trial 

started self-paced with an additional button press. Behavioural data were recorded by Presentation 

software (Neurobehavioral Systems). 

Each participant performed 300 trials, 50 for each TFS preservation level. For each trial, it was 

determined randomly whether the second digit was in fact smaller or larger than the first. The 

experiment was divided in five blocks. Each block contained ten trials for each TFS preservation level 

in random order, meaning that the level of TFS preservation changed from trial to trial. Blocks were 

separated by short breaks. The experiment lasted approximately 70 minutes. 

3.1.2.8 Behavioural data analysis 

Data from two younger participants were excluded from all analyses because of technical problems 

during data acquisition and below-chance performance (38 % correct), respectively. 

To analyse differences in the individual adjustments of materials between age groups, the effect of 

Age group on individually-titrated TMR was analysed with an independent-samples t-test. The 

relationship between Working memory and TMR was analysed using a Pearson’s correlation (Figure 

3.2B). 

To quantify participants’ performance in the auditory number comparison task, accuracy on each 

trial (correct vs incorrect) was weighted by confidence ratings to get a more fine grained measure of 

task performance (Kitayama, 1991). As a result, correct responses were transformed to 100 % weighted 

accuracy in case of high confidence ratings, to 80 % in case of medium confidence, and to 60 % in case 

of low confidence. Similarly, incorrect responses yielded 40 % weighted accuracy for low confidence 

ratings, to 20 % for medium confidence, and to 0 % for high confidence ratings. In the remainder of 

this paper we use, for simplicity, the term ‘accuracy’ to refer to accuracy weighted by confidence 

ratings. As a second measure of task performance, we analysed participants’ response times in the 

number comparison task. In detail, response times corresponded to the time interval between the 

onset of the second digit and participants’ button press to indicate whether the second digit was 

smaller or larger than the first. 
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For statistical analyses, we calculated linear coefficients characterizing the linear change (slope) of 

accuracy and response times over the six levels of TFS preservation for each participant (predictor 

values: –2.5, –1.5, –0.5, 0.5, 1.5, 2.5; using the polyfit function in Matlab). In order to test for significant 

effects of TFS preservation on performance measures, the distribution of linear coefficients was tested 

against zero (using a one-sample t-test). To test for effects of Age group, we compared younger and 

older participants’ linear coefficients, overall (condition-independent) accuracy measures, and overall 

response times (using independent-samples t-tests). 

3.1.2.9 EEG recording and analyses 

Electroencephalography (EEG) was recorded at a 500-Hz sampling rate with a DC–135 Hz pass band 

(TMS international, Enschede, The Netherlands). Twenty-eight electrodes (Ag/Ag-Cl) were placed at 

the following positions (Easycap, Herrsching, Germany): Fpz, Fp1, Fp2, Fz, F3, F4, F7, F8, FC3, FC4, 

FT7, FT8, Cz, C3, C4, T7, T8, CP5, CP6, Pz, P3, P4, P7, P8, O1, O2, left mastoid (A1), and right 

mastoid (A2). The reference electrode was placed at the tip of the nose and the ground electrode at the 

sternum. The electrooculogram was recorded from vertical and horizontal bipolar montages. All 

electrode resistances were kept below 5 kΩ. 

Offline, data were analysed using Matlab and the Fieldtrip toolbox (Oostenveld et al., 2011). Epochs 

were extracted from the continuous signal around masker onset (–2 to 6.5 s). Epochs were low-pass 

filtered at 100 Hz and baseline corrected by subtracting the mean amplitude in the time interval –0.1 to 

0 s. An independent component analysis (ICA) was performed on the epoched data. Components 

corresponding to eye blinks, saccadic eye movements, muscle activity, electrode drifts, and heartbeat 

were identified and rejected by inspection of the components’ topographies, frequency spectra, and 

time courses. Remaining artifact-contaminated trials were deleted after visual inspection of EEG 

waveforms at all electrodes. On average, 7 ± 1 % (SE) of trials were rejected from further analyses. 

Prior to statistical analyses, data were further low-pass filtered at 20 Hz (fourth-order Butterworth 

filter, zero phase shift). 

To calculate the event-related potential (ERP), the time-locked average over all artifact-free trials 

(irrespective of whether the number comparison was performed correctly or incorrectly) was 

computed separately for the six TFS preservation levels for each participant. To detect significant 

effects of TFS preservation on ERP amplitude, a two-level statistical analysis was applied (cf. Obleser et 

al., 2012; Wilsch et al., 2014). On the first (individual) level, EEG recordings from all trials at 28 scalp 
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electrodes and between 0 and 4.25 s (relative to masker onset) were submitted to a parametric 

regression t-test for independent samples (implemented in the ft_timelockstatistics function in 

Fieldtrip). For this regression, we used linearly spaced zero-centered predictor values (–2.5, –1.5, –0.5, 

0.5, 1.5, 2.5), to model the monotonic change of ERP amplitude over six levels of TFS preservation. For 

each participant, we obtained an electrode–time matrix of linear coefficients characterizing the linear 

change (slope) of ERP amplitude with increasing TFS preservation. 

On the second (group) level, individual matrices of linear coefficients were tested for significant 

differences from zero using a cluster-based permutation dependent samples t-test (Maris and 

Oostenveld, 2007). First, this test clustered t-values of adjacent points in electrode–time space with a p-

value < 0.05, considering a minimum of three neighbouring electrodes as a cluster. Next, the summed 

t-value of each cluster was computed and compared against the distribution of 1000 iteratively and 

randomly drawn clusters from permuted-labels data. The cluster p-value resulted from the proportion 

of Monte Carlo iterations in which the summed t-statistic of the observed cluster was exceeded. As we 

performed this analysis as a two-sided test (for clusters exhibiting positive and negative effects), 

clusters with p < 0.025 were considered significant. Linear coefficients significantly larger than zero 

would indicate that ERP amplitude became more positive with higher levels of TFS preservation. The 

analysis revealed one extensive significant cluster (Figure 3.3). 

To test whether the effect of TFS preservation on ERP amplitude in the significant cluster differed 

between age groups, individual linear coefficients were averaged over electrodes and time points of the 

significant cluster and submitted to an independent samples t-test with the between-subjects factor 

Age group (Figure 3.3C). To directly compare the two Age groups in their exhibited ERP amplitude 

change with higher levels of TFS preservation during the entire trial (not only in the significant 

cluster), younger and older participants’ individual matrices of linear coefficients were submitted to 

another cluster-based permutation independent samples t-test (between-subject factor: Age group). 

To test whether CNV magnitude in individual trials was related to accuracy in the number 

comparison task, we performed a median split on single trial CNV magnitude in the significant cluster. 

We calculated the mean accuracy for trials with a small and large CNV magnitude for each participant 

and level of TFS preservation (Figure 3.4). For statistical analysis, a repeated-measures ANOVA 

(within-subject factors: TFS preservation & CNV magnitude; between-subjects factor: Age group) was 

applied to these data. 
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We analysed whether the magnitude of the CNV would correlate with neuropsychological markers 

of individual attentional capacity. To this end, we focused on the early CNV (0.1–0.5 s) prior to S1 

onset, which was independent of processing task-relevant digits but thought to reflect the preparatory 

allocation of attention for the ensuing number comparison task. We correlated overall early CNV 

magnitude (i.e., averaged over all electrodes of the significant cluster and over all conditions) with d2–

R scores for processing speed. To control for a possible confound of entering two different groups of 

participants (younger and older) in one correlation analysis, we also controlled for the effect of Age 

group in a partial correlation (Figure 3.6). Effects of Age group on overall early CNV magnitude and 

d2–R scores were analysed with independent-samples t-tests. 

3.1.2.10 Control experiment 

In a control experiment, we slightly altered the acoustic processing scheme to obtain masker signals 

identical to the main experiment, but to preserve the temporal fine structure of the spoken target 

digits. Masker and target digits were submitted to the TFS manipulation (Figure 3.1A) separately, such 

that acoustic detail (TFS) was only manipulated in the speech masker (over the same six levels as 

before) but was always preserved up to 1.45 kHz (i.e., maximally intact) in spoken digits. 

We hypothesised that task difficulty would be unaffected by these varying masker signals since the 

task-relevant digits were always maximally intact. Thus, changing acoustic detail in the masker was 

expected to be no longer an indicative cue on task difficulty in the control experiment. All other 

experimental and analysis procedures, however, were identical to the main experiment. Importantly, 

the acoustic stimulation prior to S1 onset was physically identical in the main and in the control 

experiment. Therefore, we restricted the analysis of ERP data to the time interval of the early CNV 

prior to S1 (0.1–0.5 s). We re-invited six (three younger, three older) participants 8–12 months after 

participating in the main experiment. All six had shown a prominent CNV effect in the main 

experiment (Figure 3.5A). 

For statistical analysis, we computed average linear coefficients for the monotonic change in CNV 

amplitude with higher levels of TFS preservation before S1 onset at electrode Fz in the main and 

control experiment for each participant. This allowed us to quantify precisely the effect of acoustic 

detail on CNV in the individual, which allows for compelling within-subject comparisons despite the 

comparably low number of participants re-invited for the control experiment. Lastly, distributions of 
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linear coefficients from main and control experiment were tested against zero (using one sample t-

tests) and compared between main and control experiment (using a paired t-test). 

3.1.3 Results 

3.1.3.1 Individual adjustments of speech materials 

Figure 3.2A shows younger and older participants’ average Target-to-Masker Ratio (TMR) resulting 

from the individual adjustments of speech materials. As expected, average TMR was significantly lower 

for younger compared with older participants (t36 = 3.60; p = 0.001), showing that younger participants 

were able to perform the number comparison task under more compromised acoustic conditions. 

Figure 3.2B shows individual TMRs as a function of working memory capacity measured with the 

backward digit span test. The correlation was significant (r = –0.49; p = 0.002; controlling for Age 

group: p = 0.018), indicating that participants with a smaller working memory capacity required a 

higher TMR in the auditory number comparison task. When the correlation was computed separately 

for the two age groups, it reached significance only for older (r = –0.52; p = 0.018) but not for younger 

participants (r = –0.03; p = 0.903), showing that the relationship between TMR and working memory 

capacity was mainly driven by the group of older participants. Generally, younger participants 

performed significantly better in the working memory test compared with older participants (t36 = 

2.19; p = 0.035). 

Figure 3.2. Stimulus adjustments and task performance. (A) Average Target-to-Masker Ratio (TMR) used for the 
individual stimulus adjustments for younger and older participants. (B) Scatterplot of TMR as a function of working 
memory capacity (auditory backward digit span score; BSpan) for younger (black) and older (magenta) participants. Note 
that only 33 of 38 data points are visible as some points overlap. (C) Accuracy increased and response times decreased in 
the auditory number comparison with higher levels of TFS preservation (both p < 0.001). Accuracy was weighted by 
confidence ratings. (D) Bars show linear coefficients, which quantify the change in accuracy (left panel) and response 
times (right panel) with each level of TFS preservation. The speed-up of response times with higher levels of TFS 
preservation was significantly stronger in older participants. *p < 0.05; ** p < 0.01. Error bars show ±1 SE. 
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3.1.3.2 Performance profits from acoustic detail 

Figure 3.2C shows response times and accuracy in the number comparison task for younger (black) 

and older (magenta) participants. Across age groups, participants showed significantly increasing 

accuracy (t37 = 17.81; p < 0.001) and decreasing response times (t37 = –6.95; p < 0.001) as more acoustic 

detail (TFS) was preserved. The TFS-induced improvement in accuracy did not differ significantly 

between age groups (Figure 3.2D; t36 = 1.35; p = 0.186). Contrary, response times decreased 

significantly stronger with more TFS in older compared with younger participants (t36 = 2.53; p = 

0.016). Although Figure 3.2C indicates an overall higher accuracy for older participants, this main 

effect only approached significance (t36 = 1.95; p = 0.059). When we analysed age effects on 

performance measures separately for un-weighted accuracy values and confidence ratings, we found 

that better performance in older adults was driven by higher overall un-weighted accuracy (t36 = 2.47; p 

= 0.018) rather than higher confidence ratings (t36 = 1.27; p = 0.211). Overall response times did not 

differ significantly between age groups (t36 = 0.28; p = 0.783). 

3.1.3.3 Contingent negative variation (CNV) magnitude is modulated by acoustic detail 

Figure 3.3A shows the grand average event-related potential (ERP) for six levels of acoustic detail (i.e., 

TFS preservation). The onset of the speech masker triggered a sustained negative voltage deflection 

(contingent negative variation, CNV), which was smaller in magnitude for higher levels of TFS 

preservation. Notably, this CNV magnitude difference was sustained over the entire trial duration and 

declined after the offset of the acoustic stimulation. 

Statistical analysis revealed one significant electrode–time cluster capturing the effect of decreasing 

CNV magnitude with more acoustic detail in speech materials (p < 0.001; Figure 3.3B). The cluster 

comprised a large number of mainly fronto-central electrodes and was significant from ~0.1 s up to 

~3.8 s after masker onset (Figure 3.3A, grey shaded area). This cluster exhibited a positive effect, 

indicating that CNV magnitude decreased (i.e., it became more positive in amplitude) with higher 

levels of TFS preservation. Linear coefficients in Figure 3.3B and C quantify the change in CNV 

magnitude (in µv) as TFS preservation was enhanced by one level. The effect of TFS preservation on 

CNV magnitude did not differ significantly between younger and older participants (t36 = 0.47; p = 

0.639; Figure 3.3C). 

One additional positive cluster approached significance (p = 0.036; with α = 0.025 for two-sided 

testing). This cluster showed a topography similar to the significant cluster (Figure 3.3B) and appeared 
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in the end of the trial after the significant cluster (3.85–4.25 s). This cluster was not considered in 

further analyses. No significant clusters exhibiting a significant effect of Age group on ERP amplitude 

change with higher levels of TFS preservation were found (p > 0.1 for all clusters). 

Figure 3.3. Contingent negative variation (CNV) changes with acoustic detail. (A) Schematic trial procedure and 
grand average event-related potentials (ERPs) at electrode Fz, averaged over all participants for six levels of TFS 
preservation. ERP waveforms are low-pass filtered at 5 Hz for illustration purpose only. The grey area highlights the time 
period of the significant increase in ERP amplitude with lower levels of TFS preservation, as revealed by the cluster test 
(see text). (B) Topography shows average linear coefficients (quantifying the change in ERP amplitude with each level of 
TFS preservation) for significant electrode–time points in the cluster. Positive linear coefficients indicate that ERP 
amplitude became larger (i.e., less negative) with higher levels of TFS preservation. Black circles indicate electrodes 
belonging to the significant cluster (22 of 28 scalp electrodes). (C) Average linear coefficients in the significant cluster did 
not differ between age groups. n.s., not significant. Error bars show ±1 between-subjects SE. 

3.1.3.4 CNV magnitude predicts task performance 

Figure 3.4 shows participants’ accuracy in the number comparison task separately for trials exhibiting 

a small or a large CNV magnitude at electrodes and time points of the significant cluster. Across all six 

levels of TFS preservation, average accuracy was higher in those trials that showed a large CNV 

compared to trials with a small CNV. Statistical analysis revealed a significant main effect of CNV 

magnitude on accuracy (F(1, 36) = 6.67; p = 0.014). This main effect was also significant when we 

analysed the impact of CNV amplitude on un-weighted accuracy measures (F(1, 36) = 7.89; p = 0.008) 
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and confidence ratings (F(1, 36) = 8.24; p = 0.007) separately. There were no significant two-way or 

three-way interactions between Age group, TFS preservation, and CNV magnitude (all p > 0.05). 

Figure 3.4. Larger CNV amplitude was associated with better task performance. Accuracy in the number comparison 
task across levels of TFS preservation was higher in trials with large (black bars) compared to small (white bars) CNV 
magnitude. The inset highlights this main effect of CNV magnitude on accuracy. Accuracy was weighted by confidence 
ratings. *p < 0.05. 

3.1.3.5 Early CNV dynamics and cued task difficulty 

An important finding in the present study was that the significant cluster capturing the CNV effect 

became significant well before the onset of the first digit (S1; Figure 3.3A, grey shaded area). A critical 

question was whether this early CNV (0.1–0.5 s) was a marker of cued task difficulty or just of the 

acoustic detail in speech materials. In a control experiment, we thus tested to what degree the early 

CNV was modulated when acoustic detail was manipulated but cued task difficulty was held constant. 

To this end, acoustic detail varied only in the masker but was fixed in the target digits. Thus, varying 

acoustic detail in the masker should not cue task difficulty as task-relevant digits were always 

maximally intact. For the six participants tested in the control experiment, accuracy did not change 

with the degree of TFS preservation in the masker (t5 = –0.34; p = 0.75; average accuracy = 54 %; 

average un-weighted accuracy: 61 %) indicating constant task difficulty across conditions. 

For the analysis of the early CNV it was critical that the acoustic stimulation prior to S1 was 

identical in main and control experiment. Thus, any difference in early CNV modulation between 

main and control experiment could not be due to differences in the acoustic stimulation. Figure 3.5A 

& B show average CNVs (n = 6) for the main and the control experiment, respectively. In the main 

experiment, early CNV (0.1–0.5 s) magnitude at electrode Fz decreased (i.e., amplitude became more 

positive) when more TFS was preserved in the speech materials (t5 = 12.49; p < 0.001). Crucially, even 



Study 1: Allocation of attention in the face of degraded acoustics 

45 

in the control experiment, where task demands were constant over conditions, early CNV amplitude 

decreased with more preserved TFS (t5 = 4.85; p = 0.005). This finding suggests that the early CNV is 

sensitive to varying degrees of preserved TFS in the masker even if varying acoustics do not cue task 

difficulty. Most important for the present study however, the early CNV modulation in the main 

experiment, where preserved TFS cued task difficulty, was significantly stronger compared to the 

control experiment (t5 = 2.92; p = 0.033; Figure 3.5C). In sum, the early CNV is sensitive to acoustic 

manipulations as such, but it is even stronger modulated if these acoustic manipulations implicitly cue 

task difficulty. 

Figure 3.5. Early CNV in main and control experiment (n = 6). (A) Average ERPs of six participants relative to masker 
onset (0 s) for six levels of TFS preservation in the main experiment, where the acoustic detail in the masker cued task 
difficulty. (B) ERPs in the control experiment, where acoustic detail in the masker was uninformative about task difficulty. 
ERP waveforms are low-pass filtered at 5 Hz for illustration purpose only. Grey shaded areas indicate the time interval in 
which the acoustic stimulation in main and control experiment was identical. This time interval of the early CNV (0.1–0.5 
s) was used for statistical analyses. (C) Average linear coefficients capturing the change of early CNV magnitude with 
higher levels of TFS preservation in the main (black) and control (grey) experiment. Error bars show ±1 SE. (D) Scatterplot 
of linear coefficients from individual participants in the main and control experiment. Points below the diagonal show 
that the effect of TFS preservation on the early CNV was stronger in the main compared to the control experiment. **p < 
0.01; ***p < 0.001. 

Figure 3.5D shows mean linear coefficients, quantifying the change in early CNV amplitude at 

electrode Fz with higher levels of TFS preservation, for each of the six participants in the main 

experiment contrasted with the control experiment. The fact that all points fall below the diagonal 

demonstrates that all six participants showed a stronger CNV modulation in the main compared to the 

control experiment, indicating the high consistency of this effect across participants. 
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3.1.3.6 Early CNV magnitude and individual attentional capacity 

Lastly, we reasoned that the magnitude of the early CNV reflecting participants’ attentional 

preparation for the ensuing number comparison task should be directly related to individual 

attentional capacity. Figure 3.6 shows overall (condition-independent) early CNV magnitude (0.1–0.5 

s) in the main experiment as a function of d2–R scores for processing speed, an established 

neuropsychological marker for attentional capacity. The correlation was significant (r = 0.49; p = 

0.002; controlling for Age group: p = 0.002), indicating that participants with higher processing speed 

showed smaller (i.e., more positive) early CNV magnitudes. As is discernible from the scatterplot in 

Figure 3.6, younger and older participants overlapped largely in both, measures of early CNV 

magnitude and d2–R scores. Statistical analyses revealed no significant difference of early CNV 

magnitude between age groups (t36 = 0.58; p = 0.568) but a tendency for higher d2–R scores in younger 

participants (t36 = 1.92; p = 0.063). 

Figure 3.6. Processing speed predicts early CNV magnitude. Scatterplot of overall (i.e., condition-independent) early 
CNV magnitude (0.1–0.5 s; averaged over all electrodes of the significant cluster) as a function of individual d2–R scores 
for processing speed for younger (black) and older (magenta) participants. As the CNV is a negative scalp potential, 
smaller µv values on the y-axis indicate higher CNV magnitude. **p < 0.01. 

3.1.4 Discussion 

How flexibly can changing acoustics trigger the allocation of attention in a selective listening situation, 

and how is this attention allocation process affected by healthy aging? Here, we tested the hypothesis 

that variations in the instantaneous acoustic conditions would signal task difficulty and implicitly cue 

the allocation of attention in younger (20–30 years) and older (60–70 years) participants. EEG 

recordings of the contingent negative variation (CNV) served as an index of auditory selective 

attention. 
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3.1.4.1 Acoustic detail guides the allocation of attention 

The most important finding was a strong dependence of CNV magnitude on preserved acoustic detail 

(temporal fine structure, TFS) in speech materials. This is a new observation extending previous 

knowledge on the CNV as a marker of attention allocation: It demonstrates, first, that CNV magnitude 

is directly and parametrically dependent on the temporal fine structure of the acoustic signal; second, 

however, this dependency is modulated by the task-relevance of this acoustic cue itself (see control 

experiment and in-depth discussion below). 

As acoustic detail was parametrically preserved from the low frequencies, participants’ task 

performance improved (Figure 3.2C) and CNV magnitude decreased (Figure 3.3). These findings 

suggest that when the perceptual segregation of digits and masker became less effortful due to more 

preserved TFS (Hopkins et al., 2008; Moore, 2008b; Hopkins and Moore, 2009, 2010), the task was less 

attention demanding as reflected in smaller CNV magnitude (McCallum and Walter, 1968; Tecce and 

Scheff, 1969; Wilkinson and Ashby, 1974; Tecce et al., 1976; Travis and Tecce, 1998; Zanto et al., 

2011b; Chennu et al., 2013). On a neuronal level, enhanced CNV magnitude in conditions with less 

acoustic detail could reflect a lowering of perceptual thresholds through an enhanced cortical 

excitability in task-relevant cortical networks (Rockstroh et al., 1993; He and Raichle, 2009; O'Connell 

et al., 2009; Raichle, 2011). In line with this interpretation, combined EEG–fMRI (functional magnetic 

resonance imaging) studies revealed a positive relationship between blood oxygenation level 

dependent (BOLD) activity and CNV magnitude (Nagai et al., 2004; Hinterberger et al., 2005; Scheibe 

et al., 2010), suggesting an enhanced information flow between thalamus and cortex during the CNV 

period. Our finding of improved task performance in trials with a large CNV magnitude (Figure 3.4) 

further supports the view that a larger CNV indicates increased selective attention, which, in turn, 

leads to improved processing of auditory targets embedded in a speech masker. 

Figure 3.3A shows that the significant modulation of the event-related potential (ERP) started as 

early as 0.1 s after masker onset, covering the time range of early auditory evoked potentials (N1, P2; 

Picton and Hillyard, 1974). Statistical analysis revealed only a single electrode–time cluster exhibiting a 

significant effect of acoustic detail covering almost the entire trial (foreperiod, target encoding, and 

retention), as it is typical for slow cortical potentials like the CNV. This finding suggested that the 

CNV was superimposed on early ERP components and hence, we did not analyse these early evoked 

potentials in isolation. Instead, we focused largely on the early CNV, emerging right after the onset of 

the speech masker but before the onset of the first digit (S1). Critically, the early CNV was independent 
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of processing task-relevant digits, but thought to solely reflect participants’ preparation for the number 

comparison task. In trials with minimal preserved acoustic detail, the speech masker before S1 onset 

implicitly cued a high task difficulty. Listeners could take advantage of this implicit cue and allocate 

more selective attention to overcome the unfavourable acoustic conditions. We presumed that the 

early CNV modulation (0.1–0.5 s) reflected participants’ graded allocation of auditory attention as the 

speech masker implicitly signalled task difficulty. 

However, this interpretation implies that the early CNV modulation as a function of acoustic detail 

should be significantly reduced if acoustic detail in the masker does not cue task difficulty. To test this 

hypothesis, we conducted a control experiment (Figure 3.5) in which acoustic detail of the masker did 

not cue task difficulty. In the control experiment, performance did not improve with more acoustic 

detail showing that task difficulty was unaffected by acoustic detail. Most importantly, the early CNV 

effect was significantly stronger when acoustic detail cued task difficulty (main experiment), compared 

to a setting where acoustic detail was uninformative about task difficulty (control experiment). The 

fact that this pattern of results was consistent over all participants tested in the control experiment 

(Figure 3.5D), justifies the relatively small sample of six participants in the control experiment. In 

general, this finding corroborates our conjecture that the early CNV is an indicator of preparatory 

selective attention allocation triggered by expected task difficulty. 

In the control experiment where acoustic detail varied but did not cue task difficulty, the early CNV 

effect was decreased but not entirely absent. It is thus conceivable, in line with previous research, that 

degraded acoustic conditions automatically increase the allocation of attention (Obleser and Weisz, 

2012; Obleser et al., 2012) even if the degradation applies only to task-irrelevant materials (Winkler et 

al., 2003). Note that in everyday listening situations, acoustic degradations resulting from 

reverberations, background noise, or phone lines apply to all transmitted signals (target and masking 

signals). Therefore, an automatic increase in the allocation of auditory selective attention in adverse 

acoustic conditions is an effective mechanism to compensate for compromised acoustic conditions. 

One important point in our study is to consider whether the observed negative voltage deflection 

(Figure 3.3) can indeed be considered a CNV. In most classical CNV paradigms, a warning stimulus 

triggers a negative-going CNV that peaks at the expected time point of a later occurring target 

stimulus. In our study however, the warning stimulus (masker onset) was followed by two consecutive 

target stimuli (S1 & S2). The early occurrence of the first target stimulus 0.5 s after masker onset is a 

possible reason why our negative voltage deflection did not considerably increase in magnitude after 
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S1 onset. Besides, although the CNV in its narrow sense varies with changing “attention to” or 

“anticipation of” a target stimulus, our negative voltage deflection was also sensitive to changes of 

acoustic detail alone (control experiment, Figure 3.5). As described above, we consider it likely that 

more adverse listening conditions automatically enhanced the allocation of attention, reflected in a 

stronger negative voltage deflection. Finally, our negative voltage deflection shows a number of 

properties of typical CNVs since it (1) shows up as a sustained negative voltage deflection strongest 

over fronto-central electrode sites, (2) is associated with improved task performance if its higher in 

magnitude (Figure 3.4), and (3) could be directly linked to markers of selective attention (Figure 3.6). 

Thus, despite the fact that our negative voltage deflection differs slightly from the classical CNV in the 

narrow sense, we still consider it appropriate to be referred to as a CNV. 

3.1.4.2 Early CNV magnitude reflects individual attentional capacities 

Evidence for a close relation between individual cognitive capacities and the magnitude of slow cortical 

potentials (see also Vogel et al., 2005) was given by the significant correlation of overall (condition-

independent) early CNV magnitude and the d2–R score for processing speed (Figure 3.6; 

Brickenkamp et al., 2010). In the d2–R test, visual target items compete with highly similar distractors 

for limited processing resources (Desimone and Duncan, 1995; Bates and Lemay, 2004). Better 

participants succeed at selectively attending to targets while ignoring distractors. They can thus 

process more target items and achieve higher d2–R scores. Here, participants with good selective 

attention abilities showed smaller (i.e., more positive) overall early CNV magnitudes. Generally, this 

finding adds weight to the interpretation of the early CNV as a direct electrophysiological index of 

preparatory selective attention allocation. In particular, this result suggests that the effort of selective 

attention in a demanding listening task was lower for participants with higher selective attention 

abilities. In conclusion, the strong link between attentional capacities and CNV magnitude emphasises 

the importance of taking into account individual cognitive capabilities for the investigation and 

treatment of subject-specific listening abilities in acoustically demanding situations. 

3.1.4.3 Age affects required acoustic conditions and response times 

In contrast to prior studies which found age differences both in CNV dynamics (Loveless and Sanford, 

1974; Zanto et al., 2011b) and in the accuracy of detecting changes in temporal fine structure (Grose 

and Mamo, 2010; Hopkins and Moore, 2011), we found age effects rather in the individual 

adjustments of speech materials required prior to experimental testing and in response times. First, for 
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several older participants, hearing acuity was reduced (especially at higher frequencies) compared to 

younger participants (Figure 3.1B). As overall stimulus intensities were adjusted to individual hearing 

thresholds (CAMEQ procedure; Moore et al., 1998), these older participants were listening to overall 

more amplified materials during the experiment. Second, older participants required on average a 

significantly higher Target-to-Masker Ratio (TMR) to reach a similar performance level as younger 

participants (Figure 3.2A). This result confirms prior research showing that older listeners usually 

require higher Signal-to-Noise Ratios (SNRs) to hear individual words in noise than do younger 

listeners (Pichora-Fuller et al., 1995; Murphy et al., 1999; Schneider et al., 2000; Pichora-Fuller, 2003a). 

The need for less attention-demanding listening conditions in older participants might speak for a 

decline in attentional control, causing difficulties in attending relevant and ignoring irrelevant sound 

sources (Passow et al., 2014). Third, the speed-up of response times with higher levels of TFS 

preservation was stronger in older compared with younger participants (Figure 3.2C&D). Thus, older 

participants show an enhanced sensitivity to changes in spectral detail (see also Schvartz et al., 2008), 

implying that older listeners’ task performance is particularly dependent on stimulus-inherent features 

in the acoustic materials. However, as we did not find concomitant differences in CNV dynamics 

between age groups, it is an open issue for future studies to relate this difference in behaviour to neural 

changes in the elderly. 

The finding that older participants performed poorer in the auditory working memory test 

(backward digit span) compared to younger participants confirms the general trajectory of decline in 

memory functioning with age (Salthouse and Kersten, 1993; Fisk and Warr, 1996). More important, 

however, individual working memory capacity significantly predicted the relative intensity of spoken 

digits (TMR) determined in the individual adjustments of stimulus materials (Figure 3.2B). 

Participants with a smaller working memory capacity required more favourable acoustic conditions 

(higher TMR) to perform the number comparison task. Research has shown that limited resources of 

the working memory system must be allocated to processing and temporary maintenance and 

manipulation of speech information (McCoy et al., 2005; Lunner et al., 2009). We presume that 

participants with fewer memory resources required more favourable encoding conditions to free 

resources needed for the retention and numerical comparison of digits. In general, this finding 

demonstrates the tight link between sensory and higher cognitive abilities (Li and Lindenberger, 2002). 

In sum, aging in and by itself is not critically affecting the ability to allocate attention in a task-adaptive 
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manner, as long as listening conditions are adjusted to individual sensory acuity and working memory 

capacity. 

3.1.4.4 Conclusions 

Dynamics of the early contingent negative variation (CNV) reveal that the instantaneous acoustic 

conditions in a selective listening task cue the adaptive allocation of auditory selective attention (Fritz 

et al., 2007) in younger and older listeners. This preparatory allocation of attention for an ensuing task 

is shown to be partly automatic (driven by characteristics of the signal), but it depends to large extents 

on the expected task difficulty conveyed by the signal itself (Figure 3.5). The effort of selective 

attention allocation during the task depended on listeners’ individual selective attention abilities 

(Figure 3.6). Listeners’ age is not critically affecting these processes, as long as listening conditions are 

adjusted to individual sensory acuity and working memory capacity, suggesting that basic mechanisms 

of preparatory attention allocation are preserved in healthy aging. 
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3.2 Study 1.2: Influence of monetary incentives on attention allocation 

3.2.1 Introduction 

In the previous chapter, we found that the magnitude of the contingent negative variation (CNV) was 

dependent on stimulus-dependent (“bottom-up”) acoustic properties of speech materials, but also on 

participants’ task-dependent (“top-down”) allocation of attention to overcome expected listening 

challenges. We concluded that under more degraded acoustics, participants put more effort in the 

allocation of attention in order to perceive spoken digits in background noise. In this follow-up 

experiment, we tested more directly whether participants’ allocation of attention is reflected in CNV 

magnitude. We thus varied monetary incentives across trials in the auditory number comparison task 

under the assumption that higher incentives would enhance participants’ deliberate allocation of 

attention, that is, attentional effort. 

In everyday listening situations, the motivation to understand a conversational partner varies as a 

function of the relevance of the transmitted message. For instance, if a gate change is announced over 

the loudspeakers at the airport, passengers of the respective flight will follow the announcement more 

attentively than other people at the airport. Critically, attention is deliberately allocated to the 

announcement as soon as passengers become aware of the high relevance of the message. Research has 

shown that attention improves perception of relevant stimuli (e.g., Okamoto et al., 2007; Cohen and 

Maunsell, 2009; Rotermund et al., 2009). Moreover, it has been shown that enhanced task-relevance 

through monetary incentive improves performance in attention-demanding tasks (Small et al., 2005; 

Engelmann and Pessoa, 2007; Zedelius et al., 2012), suggesting that monetary incentives impact 

attention. However, monetary incentives might also decrease participants’ intrinsic motivation and 

personal interest in a task (for a meta-analysis, see Edward et al., 1999). Thus, we tested whether 

behavioral performance and a well-known electrophysiological signature of selective attention – the 

CNV – would be affected by monetary incentives in an effortful listening task. 

Monetary incentives are an effective experimental tool to manipulate reward in a performance-

related manner (for a review on reward and attentional effort, see Sarter et al., 2006). Neuroimaging 

studies have revealed that both sub-cortical and cortical brain regions form a functional network that 

is crucial for the detection of past rewards and the prediction of future rewards (for review, see Schultz, 

2000; Knutson et al., 2005). Previous EEG studies revealed that reward magnitude and reward valence 

affect the amplitude of the P3 and the feedback negativity event-related potential (ERP) components, 
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respectively (e.g., Yeung and Sanfey, 2004; Sato et al., 2005). Contrary, the effect of monetary 

incentives on slow cortical potentials such as the CNV is less clear: While some studies found no effect 

of monetary incentives on CNV magnitude (e.g., Goldstein et al., 2006; Broyd et al., 2012), CNV 

magnitude was found to increase when participants’ motivation was enhanced through higher task 

difficulty or higher effort to perform a behavioural response (Rebert et al., 1967). This suggests that 

participants’ attentional effort to solve a task at hand might be reflected in the CNV. With this follow-

up experiment, we aimed at fostering an understanding of the CNV as a neural signature of attentional 

effort under varying levels of monetary incentives. 

At present, evidence for an effect of monetary incentives on speech comprehension under 

challenging acoustic conditions is sparse. One recent behavioural study found that increasing listeners’ 

motivation by asking questions concerning the presented speech materials enhanced participants’ self-

reported listening effort (Picou and Ricketts, 2014). This suggests that a listener’s mental state can 

influence the effort he or she invests to accomplish successful speech comprehension. In this follow-up 

experiment, we investigated whether monetary incentives would affect behavioural and 

electrophysiological measures of selective attention to speech under varying acoustic conditions. We 

expected that higher monetary incentives would increase participants’ attentional effort, which would 

surface in improved behavioural performance and enhanced CNV magnitude. 

3.2.2 Methods 

The present chapter describes a follow-up experiment of the main experiment discussed in the 

previous chapter (3.1). Thus, we mention here only those methodological issues that differed from the 

main experiment. 

3.2.2.1 Participants 

Nineteen younger participants (age range = 20–30 years; mean age = 24.5; 11 females) took part in this 

experiment. Participants in this follow-up experiment did not take part in the main experiment 

(chapter 3.1). The data of five additional younger participants were not used in the data analyses due to 

a large proportion of artifact-contaminated trials in the EEG recordings (> 50 %). 

3.2.2.2 EEG recording and analysis 

EEG recordings were carried out using the same EEG system used in the main experiment (chapter 

3.1). The only difference from the main experiment was that remaining artifact-contaminated trials 
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after the rejection of bad components from the independent component analysis (ICA) were not 

rejected by visual inspection of the data. Instead, all trials in which the range of 140 µv was exceeded in 

any channel were rejected automatically. 

For statistical analyses of the event-related potential (ERP), we applied analyses of variance 

(ANOVA) instead of cluster-based permutation tests used in the main experiment (chapter 3.1). 

Cluster-based permutation tests are particularly useful when hypothesis are not specific in time and 

electrode space. Thus, we used a cluster-based permutation test in the main experiment as we did not 

know precisely prior to the experiment in which time interval and at which electrodes the CNV effect 

would occur. For the follow-up experiment however, we had concrete hypotheses concerning the time 

interval and electrodes contributing to the CNV effect on the basis of the main experiment. To directly 

test these hypotheses, we applied repeated-measures ANOVAs on CNV amplitude in this follow-up 

experiment. 

3.2.2.3 Procedure 

The experimental procedure was the same compared to the main experiment (chapter 3.1) with the 

following exceptions: 

(1) Since we only tested healthy younger participants in this follow-up experiment, we did not 

expect significant differences in hearing acuity among participants. Thus, we did not adapt the overall 

stimulus intensity to participants’ hearing acuity. However, in line with the main experiment, we 

adjusted the target-to-masker (TMR) sound level ratio to realize a performance level of ~71 % on 

materials without preserved fine structure (0 kHz TFS). 

(2) Contrary to the main experiment where the preservation of temporal fine structure of speech 

materials was varied over six levels between 0 and 1.45 kHz (see chapter 3.1), it varied only over three 

levels (0, 0.4, 1.45 kHz) in the follow-up experiment. Orthogonal to the manipulation of fine structure, 

we varied the monetary incentive on each trial across three levels (1, 3, 5 euro cent). Each participant 

completed 270 trials, 30 trials for each one of nine condition in the 3 (fine structure) x 3 (monetary 

incentive) design. The order of trials was fully randomized. The entire experiment lasted 

approximately one hour. 

(3) Each trial started with a visual cue, indicating the monetary incentive (1, 3, or 5 cent) on this 

trial. This cue was presented for 1 s prior to the display of the two response options (“kleiner”, smaller; 
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“größer”, larger). 1.5 s after the onset of response options, two spoken digits in background speech 

were presented (Figure 3.7). In the end of each trial, participants received feedback indicating whether 

they performed the number comparison correctly. In case of a correct response, the incentive was 

added to participants’ balance; in case of an incorrect response, the incentive was subtracted from 

participants’ balance. After the feedback, participants’ balance (sum of acquired and lost incentives 

over the experiment) was presented on the computer screen. After the experiment, participants were 

financially compensated for their participation with 7 € per hour plus their individual balance acquired 

over the entire experiment. For participants tested in this study, the balance ranged between 300 and 

500 cents. 

Figure 3.7. Trial design in the follow-up experiment. Each trial started with the presentation of the monetary incentive 
on the computer screen (1, 3, or 5 cent). Subsequently, the two response options appeared on the screen (smaller, larger), 
followed after 1.5 s by the acoustic stimulation. Two spoken digits (S1 and S2) were presented against a speech masker. 
After the acoustic stimulation, participants had to make a decision whether S2 was smaller or larger than S1 and indicate 
how confident they were in this decision. Participants received feedback about the correctness of their decision and saw 
their balance (sum of acquired and lost incentives over the experiment) on the screen. For more details concerning the 
trial design, see also main experiment in chapter 3.1. 

3.2.2.4 Effect sizes 

To estimate effect sizes for F-statistics (ANOVAs), we calculated the partial eta-squared (K2
P). Partial 

eta-squared values of 0.01, 0.06 and 0.14 indicated small, medium, and large effects, respectively 

(Cohen, 1969). For t-statistics (dependent and independent samples t-tests), we estimated the effect 

size measure r, which is bound between 0 and 1 (Rosenthal, 1994). 

3.2.3 Results 

3.2.3.1 Effect of fine structure and monetary incentive on performance 

Figure 3.8 shows accuracy and response times in the number comparison task as a function of fine 

structure in speech materials (in main- and follow-up experiment) and monetary incentives (in the 

follow-up experiment). First, we tested whether fine structure and monetary incentives affected 

performance in the follow-up experiment. We conducted two repeated-measures ANOVAs with the 

factors fine structure (0, 0.4, 1.45 kHz) and monetary incentive (1, 3, 5 cent) on accuracy and response 

times. In line with the main experiment (chapter 3.1), the main effect fine structure was significant for 

accuracy (F(2, 36) = 75; p < 0.001;�K2
P = 0.81) and response times (F(2, 36) = 4.45; p = 0.019; ;�K2

P = 
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0.2), indicating higher accuracy and faster responses with more preserved fine structure, respectively. 

Neither the main effect monetary incentive nor the fine structure × monetary incentive interaction was 

significant for accuracy or response times (all p > 0.5; all K2
P < 0.04). 

Second, we tested whether the effect of fine structure on performance differed between main and 

follow-up experiment. To this end, we averaged across all levels of monetary incentives in the follow-

up experiment and submitted behavioural measures from both experiments to two repeated-measures 

ANOVAs for accuracy and response times (within-subject factor: fine structure; between-subject 

factor: experiment). The main effect experiment was not significant for accuracy or response times 

(both p > 0.7; both K2
P < 0.01), indicating similar overall performance in main and follow-up 

experiment. The fine structure × experiment interaction for accuracy approached significance (F(2, 70) 

= 2.95; p = 0.059; ;�K2
P = 0.08). However, post-hoc independent-samples t-tests revealed no significant 

difference between accuracy in main and follow-up experiment for any level of fine structure (all p > 

0.3; all r < 0.18). The fine structure × experiment interaction for response times was not significant 

(F(2, 70) = 0.36; p = 0.7;�K2
P = 0.01). 

Figure 3.8. Behavioural performance in main and follow-up experiment. (A) Accuracy in the auditory number 
comparison task as a function of temporal fine structure (TFS) preservation and monetary incentives. The “no incentive” 
condition shows performance for the group of younger participants (n = 18) in the main experiment, where no 
manipulation of monetary incentives was applied. The 1, 3, and 5 cent conditions show performance for a different 
sample of younger participants (n = 19) tested in the follow-up experiment, where monetary incentives were varied. 
Accuracy data were weighted by confidence ratings. (B) Response times (relative to the onset of the second digit) in the 
main experiment (no incentive, black) and follow up experiment (1 cent: blue, 3 cent: brown, 5 cent: green). Error bars 
show ± 1 SEM. 

3.2.3.2 Modulation of the contingent negative variation (CNV) 

Figure 3.9A&B show grand average waveforms of the event-related potential (ERP) at electrode Fz in 

the main and follow-up experiment, respectively. A dominant negative voltage deflection (contingent 

negative variation, CNV) was present in both experiments, starting early after the onset of the 

distracting speech masker (0.1 s) and lasting until the offset of acoustic stimulation (4.25 s) in the main 
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experiment, and even longer in the follow-up experiment. Topographic maps in Figure 3.9C show that 

the modulation of CNV amplitude with different levels of fine structure was most prominent over 

fronto-central electrodes. For statistical analyses, we calculated the average CNV amplitude (across 

time points from 0.1 to 4.25 s at electrode Fz) for all participants in main and follow-up experiment. 

Figure 3.9. CNV in main and follow-up experiment. The grand average event-related potential (ERP) at electrode Fz 
showed a pronounced negative voltage deflection (contingent negative variation, CNV) for younger participants in the 
main experiment (A, n = 18) and for a different sample of younger participants in the follow-up experiment (B, n = 19). (C) 
Topographic maps show average CNV amplitude between 0.1 s after masker onset until the offset of the acoustic 
stimulation (4.25 s) for the effect of temporal fine structure preservation as the contrast: high TFS (1.45 kHz) – low TFS (0 
kHz) and for the effect of monetary incentives as the contrast: 5 cent – 1 cent. Note that the effect of monetary incentive 
is only presented for the follow-up experiment, as monetary incentives were not manipulated in the main experiment. 
Electrode Fz used for statistical analyses (see text) is highlighted in black. (D) Average CNV amplitude (averaged across 
0.1–4.25 s at electrode Fz) as a function of temporal fine structure (TFS) preservation and monetary incentive. Error bars 
show ± 1 SEM. 

First, we tested the effects of fine structure and monetary incentive on CNV amplitude in the 

follow-up experiment. To this end, we submitted average CNV amplitudes to a repeated-measures 

ANOVA with the factors fine structure and monetary incentive. The main effect fine structure was 

significant (F(2, 36) = 14,67; p < 0.001; K2
P = 0.45), indicating larger CNV magnitude (i.e., stronger 

negativity) when less fine structure was preserved in speech materials. The main effect monetary 

incentive was not significant (F(2, 36) = 2.23; p = 0.122; K2
P = 0.11), suggesting that varying monetary 
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incentive over 1, 3, and 5 cents did not significantly impact CNV amplitude. The fine structure × 

monetary incentive interaction approached statistical significance (F(4, 72) = 2.23; p = 0.074; K2
P = 

0.11). However, in contrast to the main effect of fine structure on CNV amplitude, the fine structure × 

monetary incentive interaction was not replicable at other fronto-central electrodes. 

Second, we compared overall CNV amplitude and the impact of fine structure on CNV amplitude 

between main and follow-up experiment. To this end, we further collapsed average CNV amplitudes in 

the follow-up experiment across the three monetary incentive levels. Average CNV amplitudes were 

submitted to a repeated-measures ANOVA with the within-subject factor fine structure and the 

between-subject factor experiment. Critically, the main effect experiment was significant (F(1, 35) = 

30.54; p = 0.008; K2
P = 0.19), indicating that across experimental conditions, CNV magnitude was 

significantly larger (i.e., more negative) in the follow-up compared to the main experiment (Figure 

3.9D). The fine structure × experiment interaction was not significant (F(2, 70) = 0.24; p = 0.78; K2
P < 

0.01), indicating a similar impact of fine structure on CNV amplitude in main and follow-up 

experiment. 

3.2.4 Discussion 

In the present follow-up experiment, we tested whether monetary incentives affect behavior and an 

elecrophysiological signature of selective attention (CNV) in the auditory number comparison task. 

Our results can be summarized as follows: (1) Varying monetary incentives across 1, 3, and 5 cent in 

the follow-up experiment did not significantly affect behavioral peformance or CNV magnitude. (2) 

Critically, however, overall (condition-independent) CNV magnitude under varying monetary 

incentives in the follow-up experiment was larger compared to the main experiment (chapter 3.1) 

where monetray incentives were not manipulated. (3) CNV magnitude increased with less fine 

structure in speech materials, replicating the central finding of the main experiment (chapter 3.1) in a 

different sample of participants. 

3.2.4.1 No effect of monetary incentives in the follow-up experiment 

In the follow-up experiment, monetary incentives varied over three levels (1, 3, and 5 cent) across 

trials. We found no significant effect of monetary incentives on performance (Figure 3.8) or CNV 

magnitude in the auditory number comparison task (Figure 3.9). This null-finding agrees with prior 

studies that also found no significant change in CNV magnitude when higher monetary incentives 
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were expected in case of correct performance (Goldstein et al., 2006; Broyd et al., 2012). There are 

different explanations why varying monetary incentives were ineffective in the follow-up experiment. 

First, it might be that our participants’ attentional effort was entirely unaffected by monetary 

incentives. Thus, higher incentives did not increase the attentional effort and consequently no 

modulation of behaviour or CNV magnitude was observed. However, we consider this rather unlikely, 

since prior studies have found beneficial effects of monetary incentives on performance in attention-

demanding tasks (Small et al., 2005; Engelmann and Pessoa, 2007; Zedelius et al., 2012). Second, our 

findings could indicate that the CNV, as opposed to other ERP components (see Yeung and Sanfey, 

2004; Sato et al., 2005), does not reflect participants’ attentional effort. This way, it might be that 

participants’ attentional effort was enhanced with higher monetary incentives. However, the CNV was 

insensitive to these changes in the deliberate allocation of attention to speech in noise. We consider a 

third possible explanation most plausible. Therefore, it might be that participants’ attentional effort 

was already at maximum (ceiling) under the lowest incentive condition (1 cent), so that no further 

increase was possible under higher incentives (3 & 5 cent). The follow-up experiment was designed in 

a way to particularly emphasize monetary incentives. Thus, we provided feedback at the end of each 

trial to inform participants about whether they won or lost money on that trial. Furthermore, 

participants were instructed that they can keep the money they gain in the experiment and they were 

presented with their balance (i.e., sum over acquired and lost incentives over the experiment) after 

each trial. Thus, it is reasonable to assume that participants engaged a relatively high degree of 

attentional effort during the entire follow-up experiment, irrespective of the exact monetary incentives 

that were at stake on individual trials (see also below). 

3.2.4.2 Enlarged CNV magnitude in the follow-up experiment 

The most important finding of the present study resulted from the comparison of CNV magnitude in 

the main experiment (see also chapter 3.1) and in the follow-up experiment. We found that overall 

(condition-independent) CNV magnitude was larger in the follow-up compared to the main 

experiment (Figure 3.9). It is usually difficult to interpret the difference in overall ERP amplitude 

between experiments. This is because different laboratories typically use different hardware (e.g., EEG 

amplifiers, electrode systems) and data analysis software, which significantly affect the measured 

signal. Contrary, we used the same hard- and software for EEG recording and analysis in main and 

follow-up experiment (see Methods). Therefore, a direct comparison between CNV magnitudes in 

main and follow-up experiment was not problematic. 
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The major difference between main and follow-up experiment was the fact that monetary 

incentives were only manipulated in the latter. It is therefore reasonable to conclude that the presence 

of the manipulation of monetary incentives caused an increase in CNV magnitude (i.e., stronger scalp 

negativity). The direction of the observed effect agrees with our main hypothesis that monetary 

incentives should increase participants’ attentional effort, which in turn should surface in an enlarged 

CNV magnitude. 

Interstingly, we found no concomitant difference in behavioral measures between main and follow-

up experiment (Figure 3.8). This is somewhat surprising since larger CNV magnitude is typically 

associated with improved performance in attention-demanding tasks (Rockstroh et al., 1993; 

O'Connell et al., 2009; see also chapter 3.1). Our findings might indicate that an increase in attentional 

effort does not necessarily improve detection of auditory signals. Thus, increasing attentional effort to 

select an auditory object (here: spoken digits) from noise can only be beneficial if the formation of the 

auditory object, which depends on acoustic stimulus properties, is successfully accomplished in the 

first place (Shinn-Cunningham and Best, 2008). In other words, selective attention does not improve 

performance if the to-be-attended signal is not properly defined. 

It is important to note that also aspects of the experimental design other than the manipulation of 

monetary incentives might have driven the observed difference in CNV magnitude between main and 

follow-up experiment. Since monetary incentives were cued prior to the acoustic stimulation (Figure 

3.7), the overall duration of single trials was longer in the follow-up experiment, which might have 

affected CNV magnitude. Moreover, participants received feedback concerning the accuracy of their 

performance only in the follow-up experiment. It might be that the presence of feedback allowed for a 

better performance-monitoring and enhanced participants’ effort in the auditory number comparison 

task. This could imply that the follow-up experiment without a manipulation of monetary incentives 

but with performance feedback would have generated a similar increase in CNV magnitude. Future 

studies could investigate in detail in how far CNV magnitude is affected by trial duration, feedback, or 

monetary incentives. 

3.2.4.3 CNV magnitude decreases with more fine structure in the follow-up experiment 

With more preserved fine structure in speech materials, CNV magnitude in the follow-up experiment 

decreased (i.e., became less negative; Figure 3.9B). This is an important result since it replicates the 

major finding of the main experiment (chapter 3.1) in a different sample of young participants. Under 
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more degraded acoustic conditions, a larger CNV magnitude possibly reflects participants’ enhanced 

allocation of attention to overcome listening challenges. The present finding demonstrates that this is a 

robust effect, which also holds when an additional experimental manipulation (i.e., varying monetary 

incentives) is added to the experimental design. 

3.2.4.4 Conclusions 

Our results suggest that the CNV is sensitive to participants’ enhanced attentional effort in an 

experimental context where performance is related to monetary incentives. However, increasing 

monetary incentives from 1 to 5 cent do not further modulate CNV magnitude. Besides, our previous 

finding of enhanced CNV magnitude under more degraded acoustics (see main experiment in chapter 

3.1) could be corroborated by the replication of this effect in a different study sample. 
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4 Study 2: Acoustics and predictions drive neural mechanisms of 

attention 

This study describes two additional analyses of the same dataset of younger and older listeners 

investigated in Study 1.1. Study 2.1 analyses listeners’ brain oscillatory dynamics in the auditory 

number comparison task. Study 2.2 investigates the phase-locking of the EEG signal to the acoustic 

envelopes of attended and unattended speech. 

4.1 Study 2.1: Neural alpha dynamics in younger and older listeners reflect acoustic 

challenges and predictive benefits4 

4.1.1 Introduction 

Natural environments are rich of sensory information from both relevant (i.e., target) and irrelevant 

(i.e., noise) sources. Selective attention to relevant information enhances the neural representation of 

targets (Desimone and Duncan, 1995). According to the “functional inhibition” framework, neural 

alpha oscillations (~10 Hz) support target processing through the inhibition of task-irrelevant sensory 

modalities or brain processes (Jensen and Mazaheri, 2010). Alpha power is modulated by task-

irrelevant sensory interference (Sauseng et al., 2009), by anticipation of distracting interference (e.g., 

Bonnefond and Jensen, 2012), and by predictions about non-distracting events (e.g., van Ede et al., 

2011). The specific role of alpha oscillations in attentional processing is indicated, for example, by 

alpha power increase in parieto-occipital regions when attention shifts towards the auditory modality 

(Adrian, 1944; Foxe et al., 1998; Mazaheri et al., 2014). 

Speech perception against competing talkers is a paradigmatic example for distracting interference 

but the role of alpha oscillations in these situations is weakly explored (Kerlin et al., 2010; Strauß et al., 

2014). Alpha power increases if listening conditions become more demanding due to degradation of 

acoustic detail (Obleser et al., 2012; Becker et al., 2013), increasing syntactic complexity (Meyer et al., 

2013), and low temporal expectancy (Wilsch et al., 2014). However, it is thus far unknown whether 

cues that allow listeners to predict upcoming information impinge upon alpha oscillations in a similar 

                                                           
4 This section is adapted from the article published in the Journal of Neuroscience by Wöstmann, Herrmann, 
Wilsch, & Obleser (2015). 
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manner. Moreover, it is unclear whether listeners of different age utilize acoustic information and 

predictive cues similarly to overcome listening challenges in multi-talker situations. 

For healthy older adults, listening in multi-talker situations is particularly effortful (Pichora-Fuller 

and Souza, 2003). This effort cannot be explained by sensory hearing loss alone (Wingfield et al., 2005; 

Meister et al., 2012). Instead, attentional control changes with age (Tun et al., 2002; Gazzaley et al., 

2005a), which might involve that older listeners strongly attend to acoustic features of the stimulation 

(e.g., Passow et al., 2014) and that they are unable to ignore task-irrelevant acoustic stimuli (e.g., Chao 

and Knight, 1997). Importantly, age differences in neural responses might be driven by reduced 

sensory acuity in the elderly (Peelle et al., 2011) and therefore need rigorous experimental control. In 

the present study, stimulus intensities were individually adjusted for hearing acuity (frequency-specific 

adjustments to individual audiograms) and for speech-in-noise thresholds, in order to exclude “trivial” 

age effects in oscillatory alpha band dynamics related to decreasing stimulus audibility at an older age. 

Participants performed a numerical comparison (Moyer and Landauer, 1967), where two spoken 

digits were embedded in a continuous stream of distracting speech. Acoustic detail (temporal fine 

structure; Moore, 2008b) and the degree to which the first digit predicted the second (Scheibe et al., 

2010) varied orthogonally. Here we show that both stimulus manipulations (acoustic detail and 

predictiveness) modulate alpha power. We further provide evidence that these effects relate to 

subjective listening effort. Critically, aging affected behavioral performance as well as alpha power 

modulations by acoustic detail, suggesting that alpha power dynamics track age-related changes of 

listening behavior in challenging acoustic environments. 

4.1.2  Materials and methods 

4.1.2.1 Participants 

Eighteen younger (mean age: 25.6 years; age range: 20–30; 9 females) and twenty older (mean age: 64.0 

years; age range: 60–70; 11 females) healthy, right-handed German native speakers participated in the 

experiment. Data from two additional younger participants were recorded but excluded from the 

analysis due to technical problems during recording and overall below-chance task performance. 

Participants gave informed consent and were financially compensated for their participation. 

Procedures were in accordance with the Declaration of Helsinki and approved by the local ethics 

committee of the University of Leipzig Medical faculty. 
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4.1.2.2 Hearing acuity 

Participants’ pure-tone air-conduction audiometric thresholds (at frequencies of 0.25, 0.5, 1, 2, 3, 4, 6, 

and 8 kHz) were assessed by a trained audiologist separately for both ears in steps of 5 dB hearing level 

(HL) using a clinical audiometer (according to standardized procedures described in: BSA, 2011). 

Participants did not show interaural asymmetries (≥20 dB difference between both ears at more than 

two frequencies). Individual audiograms were used for frequency-specific adjustment of stimulus 

intensities (see below). Participants’ audiograms, details concerning the individual stimulus 

adjustments, and the analysis of the event-related potential (ERP) for the same data set have been 

published before (Wöstmann et al., in press; see Study 1.1). 

4.1.2.3 Number comparison task 

Participants performed an auditory version of a number comparison task (Moyer and Landauer, 

1967). In detail, each trial started with the visual presentation of the two response options (‘kleiner’, 

‘größer’; German for ‘smaller’ and ‘larger’, respectively) on the computer screen, followed (after 1.5 s) 

by the binaural presentation of a continuous speech masker and two sequentially presented spoken 

digits (Figure 4.1A). Following sound offset, participants indicated via button press on a response box 

whether the second digit was smaller (left button pressed with left thumb) or larger (right button 

pressed with right thumb) than the first. Subsequently, they rated their confidence in this decision on a 

three-point scale (1 = unconfident; 3 = confident). Participants were instructed to perform the number 

comparison as fast and as accurate as possible. The next trial started self-paced with an additional 

button press. To eliminate possible effects of participants’ eye closure on alpha oscillations, 

participants were instructed to keep their eyes open during the trials. Participants were monitored via 

video camera to make sure that they did not close their eyes during acoustic stimulation. Stimulation 

was controlled by Presentation software (Neurobehavioral Systems). 

4.1.2.4 Speech materials 

German spoken digits ranging from 21 to 99 (excluding integer multiples of ten) were recorded from a 

trained female speaker (sampling rate, 44.1 kHz). All digits contained four syllables (mean digit length 

± SEM: 1.125 ± 0.007 s). A distracting masker stimulus was extracted from a German audiobook 

(Oscar Wilde, “The young king”, German title: “Der junge König”) spoken by a different female talker 

(sampling rate, 44.1 kHz). To increase the energetic overlap of masker and digits, silent periods longer 

than 70 ms were removed automatically from the masker (using a customized Matlab script R2013a; 
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MathWorks Inc.). The resulting masker stimulus had a length of about 30 min, from which we 

extracted 1000 random snippets. 

For each experimental stimulus, two different target digits (referred to as S1 and S2) and one 

masker snippet (referred to as masker) were selected randomly. Digits and masker were combined by 

adding the waveforms such that S1 and S2 were presented 0.5 s and 3.125 s after masker onset, 

respectively. The interval between S1 offset and S2 onset was on average 1.5 s (depending on S1 

duration). Stimuli ended with S2 offset and had an average duration of about 4.25 s (Figure 4.1A). 

Figure 4.1. Trial design and experimental manipulation. (A) On each trial, participants listened to two spoken digits 
(S1 & S2, orange) embedded in a distracting speech masker. Their task was to indicate whether S2 was smaller or larger 
than S1, and how confident they were in this decision. (B) Acoustic detail was varied over six levels by parametrically 
preserving temporal fine structure of the signal’s low frequencies (blue color gradient). (C) The degree to which S1 was 
predictive of the numerical value of S2 was operationalized as the numerical distance between S1 and the midpoint of all 
possible numbers (60; green color gradient). 

4.1.2.5 Experimental conditions 

In the current study, stimuli were manipulated along two orthogonal dimensions: acoustic detail and 

predictiveness. For the acoustic detail manipulation, the temporal fine structure of the combined signal 

(composed of masker and digits) was manipulated. In detail, the signal was divided into 16 

overlapping frequency channels using a gammatone filterbank (implemented in the auditory toolbox 

for Matlab; Slaney, 1993). Channel center frequencies increased exponentially from 0.08 to 10 kHz. Six 

temporal fine structure conditions comprising different levels of acoustic degradation were generated. 

For a particular condition, frequency channels above one of six fine structure cut-offs (0, 0.11, 0.21, 

0.4, 0.76, and 1.45 kHz) were degraded, while channels below and including the cut-off were left 
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unchanged (Hopkins et al., 2008; Figure 4.1B). In channels above the cut-off, the speech envelope was 

extracted using the Hilbert transform (Smith et al., 2002). The envelope was used to modulate a 

sinusoidal tone with random starting phase at the channel’s center frequency. The resulting signal was 

filtered again with the initial gammatone filters to remove out-of-channel frequency components 

(Lunner et al., 2012). Finally, intact and modified channels were combined, yielding six different levels 

of temporal fine structure preservation. In sum, this manipulation of the temporal fine structure 

degraded fast spectro-temporal fluctuations, rendering the perceptual segregation of digits and masker 

more demanding. Slow temporal envelope fluctuations were left intact (Shamma and Lorenzi, 2013). 

Critically, degraded stimuli were intelligible as the number of frequency channels (16) was sufficiently 

high (Shannon et al., 1995; Obleser et al., 2007; Obleser et al., 2008). 

For the predictiveness manipulation, the degree to which the S1 digit was predictive of the S2 digit 

was operationalized as the numerical distance between S1 and the midpoint of all possible digits. In 

detail, digits in the experiment ranged between 21 and 99, meaning that 60 was the midpoint of all 

digits. When the S1 digit was considerably smaller than 60, participants could predict that the S2 digit 

would likely be larger than S1, and vice versa for S1 digits larger than 60. Contrary, if the S1 digit was 

close to 60, no prediction about whether S2 would be smaller or larger could be made. Thus, with 

increasing numerical distance between S1 and 60, participants could better predict whether S2 would 

be smaller or larger (Figure 4.1C). 

4.1.2.6 Individual stimulus adjustments 

Prior to the actual experiment, stimuli underwent a frequency-specific amplification (CAMEQ; Moore 

et al., 1998) to account for considerable differences in hearing thresholds estimated in the audiograms, 

especially between age groups. This procedure aimed at the same overall perceived stimulus loudness 

for all participants corresponding to a stimulus intensity of ~75 dB SPL for a listener with average 

normal hearing (audiometric thresholds of 0 dB HL at all test frequencies). 

Since speech-in-noise hearing thresholds cannot be matched between age groups by controlling 

only for pure-tone audiometric thresholds (see Pichora-Fuller et al., 1995) an additional adaptive 

tracking procedure (Levitt, 1971) was used to estimate the digit-to-masker sound-level ratio yielding 

70.9% correct responses in our number comparison task under the most extreme acoustic degradation 

(0 kHz fine structure cut-off). To this end, the sound level of the digits was adapted while keeping the 

masker sound level fixed at –30 dB full-scale (RMS – root mean square). Mean digit-to-masker sound-
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level ratio for young participants was –20.83 dB (±0.72 SEM) and for older participants –15.35 dB 

(±1.29 SEM), which were significantly different (t36 = 3.60; p = 0.001; r = 0.51). 

4.1.2.7 Procedure 

After the individual stimulus adjustments were applied, participants took part in the main experiment. 

Acoustic stimulation and EEG recording were carried out in an electrically-shielded and sound-

attenuated booth. Participants were seated in a comfortable chair in front of a computer screen. 

Auditory stimuli were presented via TDH39 audiometric headphones. Each participant performed 300 

trials, 50 for each temporal fine structure cut-off level. The experiment was divided into five blocks. 

Each block contained ten trials of each fine structure cut-off in random order. Predictiveness of the 

second digit was fully randomized across the 300 trials. That is, the numerical values of S1 and S2 

varied randomly across trials with the constraint that in half of the trials S2 was larger than S1 and in 

the other half smaller than S1 (S1 and S2 digits were never equal). The experiment lasted 

approximately 70 minutes. 

4.1.2.8 Statistical analysis of behavioral data 

Participants’ performance in the auditory number comparison task was quantified using weighted 

percentage correct responses (weighted accuracy). In detail, the binary response in each trial (correct 

vs incorrect) was weighted by the trial’s confidence rating to get a more fine grained (six-level) 

measure of task performance (Kitayama, 1991; Herrmann et al., 2014). To this end, a correct response 

was transformed to 100% weighted accuracy in case of a high confidence rating, to 80% in case of 

medium confidence, and to 60% in case of low confidence. Similarly, an incorrect response was 

transformed to 40% weighted accuracy for a low confidence rating, to 20% for medium confidence, 

and to 0% for high confidence. In the remainder of this paper we use, for simplicity, the term 

‘accuracy’ to refer to accuracy weighted by confidence ratings. 

As a second performance measure, we quantified participants’ response times in the number 

comparison task. Response times corresponded to the time interval between the onset of the second 

digit and participants’ button press to indicate whether the second digit was smaller or larger than the 

first. 

Changes in behavioral performance (accuracy and response times) as a function of acoustic detail 

were tested as follows: For each temporal fine structure cut-off level, single-trial accuracy values and 

response times were averaged (ignoring predictiveness). For each participant, a linear function was 
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fitted to the averaged accuracy values and response times as a function of six linearly spaced fine 

structure cut-offs (predictor values: –2.5, –1.5, –0.5, 0.5, 1.5, 2.5). Linear spacing of cut-offs for fitting 

was used because logarithmic spacing of physical stimulus frequencies relates to linear spacing in 

auditory perception (Attneave and Olson, 1971). The estimated linear coefficients were subsequently 

tested against zero using one sample t-tests. Significant differences from zero would indicate 

modulation of behavioral performance by acoustic detail. 

Changes in behavioral performance (accuracy and response times) as a function of predictiveness 

were examined as follows: The degree to which S1 was predictive of S2 on each trial was quantified as 

the absolute numerical difference between S1 and 60 (average digit across the experiment). 

Predictiveness values across all trials were divided into six percentile bins (no overlap), and single-trial 

accuracy values and response times were averaged within each bin. Linear functions were fitted to the 

averaged accuracy values and response times for each participant as a function of percentile bins (zero-

centered predictor values: –2.5, –1.5, –0.5, 0.5, 1.5, 2.5). The estimated linear coefficients were tested 

against zero using one sample t-tests. Significant differences from zero would indicate modulation of 

behavioral performance by predictiveness. 

In order to test for differences between performance modulation by acoustic detail and 

predictiveness as well as for differences between age groups, repeated-measures ANOVAs were carried 

out. The within-subject factor was stimulus dimension (acoustic detail vs predictiveness) and the 

between-subject factor age group (younger vs older) using the estimated linear coefficients for 

accuracy and response times as dependent measures. To follow up on significant age group × stimulus 

dimension interactions, post-hoc independent samples t-tests were used to test for effects of age group 

on linear coefficients separately for the manipulation of acoustic detail and predictiveness. 

Overall performance between age groups was compared by submitting participants’ average 

accuracy and average response times (across all manipulation levels) to independent samples t-tests. 

4.1.2.9 Electroencephalography (EEG) recording 

Electroencephalograms were recorded at a 500-Hz sampling rate with a DC–135 Hz filter pass band 

(TMS international, Enschede, The Netherlands). Twenty-eight electrodes (Ag/Ag-Cl) were placed at 

the following positions (Easycap, Herrsching, Germany): Fpz, Fp1, Fp2, Fz, F3, F4, F7, F8, FC3, FC4, 

FT7, FT8, Cz, C3, C4, T7, T8, CP5, CP6, Pz, P3, P4, P7, P8, O1, O2, left mastoid (A1), and right 

mastoid (A2). The reference electrode was placed at the tip of the nose and the ground electrode at the 
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sternum. The electrooculogram was recorded from vertical and horizontal bipolar montages. All 

electrode resistances were kept below 5 kΩ. 

Data were analyzed offline using custom Matlab scripts and the Fieldtrip toolbox (Version 2013-01-

14; Oostenveld et al., 2011). Epochs were extracted from the continuous signal time-locked to masker 

onset (–1.5 to 5.5 s). Epochs were low-pass filtered at 100 Hz. An independent components analysis 

(ICA) was performed on the epoched data. Components corresponding to eye blinks, saccadic eye 

movements, muscle activity, electrode drifts, and heartbeats were identified and rejected by inspection 

of the components’ topographies, frequency spectra, and time courses. Remaining artifact-

contaminated trials were deleted after visual inspection of EEG waveforms at all electrodes. On 

average, 7 ± 1 % (SEM) trials in each participant were rejected from further analyses.  

Time–frequency representations of single trials were estimated by convolving the single-trial time 

series with a family of Morlet wavelets between 1 and 30 Hz (in steps of 0.5 Hz; width: 7 cycles) and 

from –1.5 to 5.5 s (in steps 0.02 s). Single-trial power was obtained by squaring the magnitude of the 

estimated complex wavelet transform coefficients. Power changes relative to a pre-stimulus baseline 

were computed by means of subtraction and division by the average power from –0.8 to 0 s (relative 

change baseline). 

4.1.2.10 Overall temporal dynamics of alpha power 

We analyzed the overall time course of alpha power during the number comparison task, irrelevant of 

varying acoustic detail and stimulus predictiveness (Figure 4.3). To this end, single-trial oscillatory 

power was averaged across all conditions, frequency bins in the alpha band (7–13 Hz), and five parietal 

electrodes exhibiting the strongest alpha power (CP5, P3, Pz, P4, CP6; Figure 4.3A). To test for age 

effects, time courses of alpha power were compared between age groups by contrasting average alpha 

power estimates in steps of 0.02 s with independent samples t-tests. P-values from multiple t-tests were 

adjusted to control the false discovery rate (FDR; Benjamini and Hochberg, 1995). 

4.1.2.11 Effects of experimental manipulations on EEG data 

Modulatory influences of acoustic detail and predictiveness on oscillatory power were analyzed as 

follows. For each participant, two linear functions were fitted to single-trial power values 

(independently for each time-frequency bin and electrode), first, as a function of acoustic detail and 

second, as a function of predictiveness percentile bins (using parametric regression t-tests for 

independent samples implemented in the ft_freqstatistics function in Fieldtrip; predictor values: –2.5, –



Study 2: Acoustics and predictions drive neural mechanisms of attention 

71 

1.5, –0.5, 0.5, 1.5, 2.5). This resulted in one time–frequency–electrode matrix of estimated linear 

coefficients for the acoustic detail manipulation and in one matrix for the predictiveness manipulation, 

reflecting the modulation of single-trial power for each participant. 

For the statistical analysis across participants, we focused on the alpha frequency range (~10 Hz) 

for which we hypothesized to observe power changes due to manipulations of acoustic detail and 

predictiveness (see Introduction). Furthermore, analyses were conducted including participants of 

both age groups, followed by analyses of age differences where effects for all participants (younger and 

older) were significant. To this end, estimated linear coefficients in the 7–13 Hz frequency band, the 0–

5.2 s time window, and all scalp electrodes were tested against zero using two cluster-based 

permutation one sample t-tests (Maris and Oostenveld, 2007), one for the effect of acoustic detail and 

one for the effect of predicitveness. These tests clustered t-values of adjacent bins in time–frequency–

electrode space with a p-value smaller than 0.05, considering a minimum of three neighboring 

electrodes as a cluster. The summed t-value of each cluster was computed and compared against the 

distribution of 1000 iteratively and randomly drawn clusters from data for which condition labels were 

permuted. The cluster p-value resulted from the proportion of Monte Carlo iterations in which the 

summed t-statistic of the observed cluster was exceeded. As we performed this analysis as a two-sided 

test (for clusters exhibiting positive and negative effects), clusters with p < 0.025 were considered 

significant. This analysis revealed four significant clusters, two for the effect of acoustic detail and two 

for the effect of predictiveness (Figure 4.4). 

In order to test for an effect of age group on linear coefficients in all four clusters, a repeated-

measures ANOVA (within-subject factor: cluster; between-subject factor: age group) was calculated 

for the averaged linear coefficients in the four clusters. Since task-related power suppression is known 

to depend on overall power (Doppelmayr et al., 1998; Klimesch et al., 2003), we controlled for effects 

of overall alpha power and the decrease in alpha power over the trial time course (Figure 4.3) in two 

additional ANOVAs: For the first additional ANOVA, we extracted overall alpha power (averaged 

across conditions) at those time–frequency–electrode bins of the four significant clusters, resulting in 

four covariates that were included in the repeated-measures ANOVA. For the second additional 

ANOVA, linear coefficients estimated from linear fits to the overall alpha power (averaged across 7–13 

Hz and electrodes CP5, P3, Pz, P4, CP6) as a function of time (ranging from 0.82 s to 4.88 s, that is 

from cluster A1 to A2) were included as a covariate. To follow up a significant age group × cluster 
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interaction, post-hoc independent samples t-tests were used to test for effects of age group in each 

cluster. 

To test for a possible interaction between acoustic detail and predictiveness on alpha power 

modulation, we averaged alpha power estimates of only those time–frequency–electrode power bins 

that had been part of both the acoustic detail and the predictiveness clusters in the analyses outlined 

above (Obleser et al., 2012). These average power estimates were submitted to a repeated-measures 

ANOVA (within-subject factors: acoustic detail, predictiveness; between-subject factor: age group). 

4.1.2.12 Effect sizes 

To estimate effect sizes for F-statistics (ANOVAs), we calculated the partial eta-squared (K2
P�. For t-

statistics (dependent and independent samples t-tests), we estimated the effect size measure r, which is 

bound between 0 and 1 (Rosenthal, 1994). Effect sizes for multiple t-tests (e.g., for all time–frequency–

electrode bins belonging to a significant cluster) were estimated by averaging r values across individual 

tests into a composite cluster-effect size R. 

4.1.2.13 The relation between alpha oscillations and subjective difficulty measures 

We further tested whether alpha power modulations (by acoustic detail and predictiveness) within 

observed clusters were related to participants’ subjective listening effort in background noise and 

confidence ratings. In detail, alpha power modulation was quantified as the average of the linear 

coefficients across significant time points, frequency bins, and electrodes as well as across the four 

significant clusters of acoustic detail and predictiveness. Subjective listening effort in background noise 

was quantified as the response in a post experiment inquiry where participants answered the question 

‘In general, how difficult is it for you to listen to a single speaker if several other people are talking loudly 

in the background?’ on a 5-point Likert scale (1 = easy, 5 = difficult; question translated from German). 

The Spearman correlation was obtained between ratings of subjective listening effort in noise and 

alpha power modulation (Figure 4.5A). 

To test for an impact of alpha power on participants’ subjectively experienced certainty in the 

numerical decision, we analyzed whether alpha power in trials with the same level of acoustic detail 

and predictiveness would affect participants’ confidence ratings. To this end, we averaged participants’ 

single-trial alpha power (7–13 Hz) across all scalp electrodes and in the time period of significant alpha 

power modulations, that is, between the onset of the earliest significant cluster (0.82 s) and the offset of 

the latest significant cluster (4.88 s). Subsequently, within each combination of the 6 (acoustic detail) × 
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6 (predictiveness) levels, trials were divided into three (non-overlapping) percentile bins based on 

alpha power. In detail, trials were assigned to low, medium, or high alpha power, depending on 

whether their alpha power was amongst the lowest third (0–33%), medium third (33–66%), or highest 

third (66–100%) out of all trials within a particular acoustic detail–predictiveness combination. Next, 

the average over the trial’s confidence ratings in these three percentiles was calculated. Critically, the 

sorting of single trials according to alpha power was carried out independently for each combination 

of acoustic detail and predictiveness, and average confidence ratings were thus independent of 

between-condition effects. For each participant, mean confidence ratings were subsequently averaged 

over all combinations of acoustic detail and predictiveness levels, to obtain three confidence values for 

low, medium, and high alpha power trials, respectively. For each participant, a linear function was 

fitted to confidence values as a function of alpha power bin (predictor values: –1, 0, 1). Estimated 

linear coefficients across participants were tested against zero using a one sample t-test. A significant 

difference from zero would indicate a modulation of confidence ratings by alpha power. Linear 

coefficients of younger and older participants were compared using an independent samples t-test 

(Figure 4.5B). 

4.1.3 Results 

4.1.3.1 Acoustic detail and predictiveness enhance performance 

Figure 4.2A shows mean accuracy and response times in the number comparison task as a function of 

acoustic detail and predictiveness. Parametric variations along either acoustic detail or predictiveness 

were quantified as the estimated coefficient from linear fits to accuracy and response times. Testing the 

linear coefficients against zero revealed that, with higher levels of acoustic detail, accuracy increased 

(t37 = 17.81; p < 0.001; r = 0.95) and response time decreased (t37 = –6.95; p < 0.001; r = 0.75). Similarly, 

for higher levels of predictiveness, accuracy increased (t37 = 5.92; p < 0.001; r = 0.70) and response time 

decreased (t37 = –5.31; p < 0.001; r = 0.66). The difference in overall accuracy between age groups 

approached significance (t36 = 1.95; p = 0.059; r = 0.31), indicating a slightly higher overall task 

accuracy for older participants. Overall response times relative to S2 onset did not differ between age 

groups (mean response time younger: 2.28 s, older: 2.23 s; t36 = 0.28; p = 0.783; r = 0.05). 

Differential effects of stimulus dimension (acoustic detail vs predictiveness) and age group 

(younger vs older) on linear coefficients for accuracy and response times were analyzed using 

repeated-measures ANOVAs (within-subject factor: stimulus dimension; between-subject factor: age 
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group). The main effect of stimulus dimension was significant for accuracy (F(1, 36) = 117.88; p < 

0.001, K2
P = 0.77) and for response times (F(1, 36) = 22.38; p < 0.001, K2

P = 0.38), showing that the 

modulation of performance (i.e., accuracy increase and response time decrease) was stronger for 

acoustic detail than for predictiveness (Figure 4.2B). There was no significant main effect of age group 

on linear coefficients for accuracy (F(1, 36) = 0.14; p = 0.714, K2
P = 0.004) but on linear coefficients for 

response times (F(1, 36) = 4.52; p = 0.040, K2
P = 0.11), indicating that the decrease in response times 

was stronger in older than younger participants, regardless of the stimulus dimension. 

Figure 4.2. Effects of acoustic detail and predictiveness on task performance. (A) Mean accuracy (top row) and 
response times (RT; bottom row) as a function of acoustic detail (left column) and predictiveness (right column). Solid 
lines show average accuracy and response times for younger (black) and older (magenta) participants. Dashed lines show 
the average of linear fits to accuracy and response times along parametric variations of acoustic detail and 
predictiveness. Note the different scaling of y-axes. (B) Bars indicate average linear coefficients quantifying the increase in 
accuracy and decrease in response times with each level of acoustic detail or predictiveness for younger (black) and older 
(magenta) participants. The age group × stimulus dimension (acoustic detail vs predictiveness) interaction approached 
significance for accuracy measures (p = 0.076) and reached significance for response times (p = 0.022). Error bars indicate 
± 1 SEM. 

Critically, the age group × stimulus dimension interaction on linear coefficients for accuracy 

approached statistical significance (F(1, 36) = 3.34; p = 0.076; K2
P = 0.09) and reached statistical 

significance for linear coefficients for response times (F(1, 36) = 5.69; p = 0.022; K2
P = 0.14). Figure 

4.2B indicates the direction of these interactions. Older compared with younger participants’ accuracy 

and response times were affected more strongly with more acoustic detail, whereas predictiveness 

diminished (for response times) or reversed (for accuracy) this age difference. Post-hoc tests for age 

effects revealed that the linear coefficients quantifying changes in response times with acoustic detail 

were significantly smaller for older compared to younger participants (t36 = 2.53; p = 0.016; r = 0.39). 

All remaining pairwise comparisons did not reach statistical significance (all p > 0.15; all r < 0.22). 
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4.1.3.2 Temporal dynamics of alpha oscillations 

Before testing effects of varying acoustic detail and stimulus predictiveness on alpha power, we 

analyzed temporal dynamics of overall alpha power (7–13 Hz) across all trials, that is, independent of 

experimental conditions. Alpha power was enhanced during acoustic stimulation (0–4.25 s), before 

returning to baseline at the end of the trial (Figure 4.3A). The increase in alpha power was strongest at 

parietal electrode sites. We tested whether the time course of overall alpha power (averaged across five 

parietal electrodes) differed between age groups (Figure 4.3B). Alpha power was lower in older than 

younger participants only towards the end of the trial (> 3.9 s; multiple independent samples t-tests for 

20 ms time intervals; p < 0.05, FDR-corrected; R = 0.51). 

Figure 4.3. Overall temporal dynamics of alpha power. (A) Grand average overall oscillatory power (averaged across 
both age groups and all scalp electrodes) during the auditory number comparison task. Topographical map shows alpha 
power (7–13 Hz) during acoustic stimulation (0–4.25 s). Electrodes exhibiting strongest alpha power are highlighted. (B) 
Time courses of mean alpha power (averaged across five parietal electrodes) for younger (black) and older (magenta) 
participants. P-values for the comparison of alpha power between age groups (multiple independent samples t-tests for 
20 ms time intervals; FDR-corrected) in horizontal bar indicate lower alpha power for older participants in the end of the 
trial (> 3.9 s). 

4.1.3.3 Acoustic detail and predictiveness modulate alpha power 

Figure 4.4A shows the effects of increasing acoustic detail and predictiveness on alpha power (7–13 

Hz). Both effects were quantified by linear coefficients (slopes) reflecting the change in alpha power 
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with increasing levels of acoustic detail or with increasing levels of predictiveness. Cluster-based 

permutation tests revealed two significant clusters for the effect of acoustic detail, referred to as ‘A1’ (p 

= 0.006; R = 0.41; 0.82–1.92 s) and ‘A2’ (p < 0.001; R = 0.46; 3.52–4.88 s). Similarly, two significant 

clusters were found for the effect of predictiveness, referred to as ‘P1’ (p < 0.001; R = 0.41; 1.22–2.60 s) 

and ‘P2’ (p = 0.015; R = 0.39; 2.64–3.68 s). No significant positive clusters were observed. For the 

significant negative clusters, linear coefficients were significantly smaller than zero. That is, alpha 

power decreased with increasing acoustic detail (higher temporal fine structure cut-offs) and 

increasing predictiveness (higher absolute numerical difference between S1 and 60). For all significant 

clusters these alpha power decreases were significant at a large number of electrodes (Figure 4.4B, 

topographic maps): Clusters A1, A2, and P1 spanned 26 of 28 scalp electrodes; cluster P2 spanned 20 

of 28 scalp electrodes. 

Figure 4.4. Effects of acoustic detail and predictiveness on alpha power. (A) Alpha power (7–13 Hz) decreased 
significantly with higher levels of acoustic detail (top panel; clusters A1 & A2) and higher levels of predictiveness (bottom 
panel; clusters P1 & P2) in distinct time periods. Estimated linear coefficients indicate the relative change in alpha power 
(in %) with each level of acoustic detail or predictiveness. (B) Topographical maps of clusters show a global decrease of 
alpha power with acoustic detail and predictiveness with the largest power decrease over centro-parietal electrode sites. 
Bars indicate average linear coefficients for younger (black) and older (magenta) participants. Significantly smaller linear 
coefficients for older participants in cluster A1 indicated a stronger alpha power modulation as a function of acoustic 
detail for older listeners around S1 offset (p = 0.036, uncorrected). Error bars indicate ± 1 SEM. 

Critically, the temporal occurrence of significant clusters matched precisely with the manipulations 

of acoustic detail and predictiveness. That is, alpha power decreased during and shortly after spoken 

digits (S1 and S2) when more acoustic detail facilitated the encoding of digits (clusters A1 and A2). 

When S1 was better predictive of S2, alpha power decreased significantly during the time period when 

S2 could be predicted, that is, between the presentation of S1 and S2 (clusters P1 and P2). 
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In order to test whether the effects of acoustic detail and predictiveness on alpha power interact, 

power estimates for the conjunction of clusters in time–frequency–electrode space were submitted to 

repeated-measures ANOVAs (factors: acoustic detail, predictiveness). For the two conjunctions of 

clusters in the present data (A1 ŀ P1, A2 ŀ P2) neither the two-way interaction acoustic detail × 

predictiveness, nor the three-way interaction with age group was significant (all p > 0.3; all K2
P ≤ 0.03), 

thus indicating independent influences of acoustic detail and predictiveness on alpha power. 

The effect of age group on linear coefficients in the four significant clusters was tested with a 

repeated-measures ANOVA (within-subject factor: cluster; between-subject factor: age group). 

Modeling the four clusters within one factor acknowledges that the clusters were temporally 

independent as they occurred in distinct (only partly overlapping) time intervals. The main effects of 

cluster (F(3, 108) = 1.13; p = 0.34; K2
P = 0.03; no significant violation of sphericity: Mauchly’s test, p = 

0.26) and age group (F(1, 36) = 0.08; p = 0.782; K2
P < 0.01) were not significant. However, the age 

group × cluster interaction was significant (F(3, 108) = 6.58; p < 0.001; K2
P = 0.16), indicating a 

different pattern of alpha power modulations in the four clusters for younger compared with older 

participants (Figure 4.4B; note that this interaction was also significant using overall alpha power in 

the four clusters and the linear decrease in overall alpha power during the trial as covariates; p = 0.047 

and p < 0.001, respectively). Post-hoc tests for differences between age groups in the four clusters 

revealed a significant effect of age group on linear coefficients in the A1 cluster (t36 = 2.17; p = 0.036;�r 

= 0.34, uncorrected), but not in the three remaining clusters (A2, P1, P2; all p > 0.15; all r < 0.24). That 

is, older participants’ alpha power during the encoding of S1 decreased stronger with increasing 

acoustic detail compared with younger participants. 

Corroborating this age difference, the significant A1 cluster was found only for the group of older 

participants when the cluster analysis was performed separately for the two age groups. Note that this 

finding was well in line with behavioral results (Figure 4.2) where varying acoustic detail also had a 

relative stronger impact on older participants’ task performance. 

4.1.3.4 Alpha oscillations predict subjective measures of difficulty 

An important question of the present study was whether participants’ self-rated difficulty of speech-in-

noise listening and their confidence in the numerical comparison were related to fluctuations in alpha 

power. We investigated this question with respect to subjective ratings of listening effort (self-rated 

after the experiment) and confidence ratings in the end of each experimental trial. 
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The mean estimated linear coefficients (reflecting modulation of alpha power by acoustic detail and 

predictiveness) across all clusters (Figure 4.4) were correlated with participants’ self-reported effort of 

listening to a single speaker in the presence of background noise (Figure 4.5A). We observed a 

significant positive correlation (r = 0.484; p = 0.002; df = 36), indicating that listeners who experienced 

higher subjective listening effort exhibited weaker alpha power modulations with varying acoustic 

detail and predictiveness. The correlation was also significant when calculated for both age groups 

separately (younger: r = 0.54; p = 0.021; df = 16; older: r = 0.48; p = 0.032; df = 18). 

Figure 4.5. Alpha power relates to subjective difficulty measures. (A) Alpha power modulation (reflecting mean linear 
coefficients of alpha power changes with each level of acoustic detail and predictiveness across four significant clusters) 
as a function of participants’ self-reported subjective listening effort in background noise (significant Spearman 
correlation, p = 0.002). Younger and older participants’ data are shown in black and magenta, respectively. (B, left panel) 
Bars indicate mean confidence ratings for trials with low, medium, and high alpha power. Between-condition effects 
were eliminated by binning trials according to alpha power separately for each factor combination of acoustic detail and 
predictiveness. The mean linear fit to confidence ratings is indicated by the red dashed line. Confidence ratings 
decreased with higher alpha power (p = 0.001). (B, right panel) Bars indicate the average linear coefficients (quantifying 
changes in confidence ratings with each level of alpha power) for younger (black) and older (magenta) participants. Error 
bars indicate ± 1 SEM. **p < 0.01, n.s. not significant. 

We tested whether alpha power would correlate with confidence ratings independent of variations 

in acoustic detail and predictiveness. To this end, mean alpha power (7–13 Hz) for single trials in the 

time period from the onset of the earliest significant cluster (A1, 0.82 s) until the offset of the latest 

significant cluster (A2, 4.88 s) at all scalp electrodes was determined. Single-trial confidence ratings 

within each factor combination in the 6 (acoustic detail) × 6 (predictiveness) design were binned into 

three alpha power percentiles (no overlap; low, medium, and high alpha power). Next, single-trial 

confidence ratings were averaged within each bin, and then across the 6 × 6 levels, resulting in three 

values for each participant, reflecting confidence in trials with low, medium, and high alpha power 

(Figure 4.5B). The coefficients from linear fits to changes in confidence ratings over these three levels 

of alpha power were significantly smaller than zero (t37 = –3.44; p = 0.001; r = 0.50). That is, confidence 
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ratings were higher in trials with lower alpha power. Linear coefficients did not differ significantly 

between age groups (t36 = 0.54; p = 0.59; r = 0.09; Figure 4.5B, right panel). 

4.1.4 Discussion 

We tested whether alpha oscillations track changing task demands in a multi-talker situation in 

younger and older listeners. Results can be summarized as follows: (1) Alpha power decreased with 

increasing acoustic detail and, critically, also with increasing stimulus predictiveness. (2) In older 

participants, increased acoustic detail induced a stronger behavioral benefit and a stronger alpha 

power decrease. (3) Stronger alpha power modulations with acoustic detail and predictiveness, as well 

as lower overall alpha power predicted lower subjective difficulty. 

4.1.4.1 Listening demands modulate alpha oscillatory power 

Behavioral results show that accuracy in a two-talker auditory number comparison task increased with 

more acoustic detail (temporal fine structure) in the stimulus materials and also with better numerical 

predictiveness (Figure 4.2). This agrees with previous research showing first, that preserved temporal 

fine structure facilitates perceptual segregation of competing talkers (e.g., Hopkins et al., 2008; 

Hopkins and Moore, 2010; Lunner et al., 2012) and second, that numerical predictiveness improves 

stimulus comparison (Scheibe et al., 2010). We extend previous observations by relating manipulations 

of acoustic detail and predictiveness to neural alpha oscillations. 

On the neurophysiological level, alpha power decreased in distinct time intervals with parametric 

variations along two stimulus dimensions: First, with increasing acoustic detail, alpha power decreased 

during the encoding of target digits (Figure 4.4). This is consistent with previous observations of 

reduced alpha power for less degraded speech materials (e.g., Obleser and Weisz, 2012; Obleser et al., 

2012). Although acoustic detail was manipulated during the entire trial, alpha power modulation 

occurred exclusively during the encoding of task-relevant digits. This suggests that the modulation of 

alpha power with acoustic detail is guided by attention to target signals. 

Second, with better stimulus predictiveness, alpha power decreased during the prediction of the 

second digit (i.e., between the two digits). Although alpha power modulations have been found for 

varying temporal predictions of ‘when’ a target stimulus would occur (e.g., Rohenkohl and Nobre, 

2011; Wilsch et al., 2014), evidence for the prediction of ’what’ the target stimulus will be have so far 

been rare (for review, see Arnal and Giraud, 2012). Thus, in the current study we show that alpha 

power modulations reflect the predictiveness of upcoming semantic content. Stimulus predictiveness is 
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a complementary source of information (separate from acoustic detail) that listeners can use to reduce 

the uncertainty in the numerical comparison. In highly predictive trials, participants gather 

information in favor of a ‘smaller’ or ‘larger’ decision already with the first digit. Thus, increasing 

decision certainty surfaced as a relative reduction in alpha power and reduced listening demands. 

Good performance in our number comparison task required selective attention to digits while 

ignoring the irrelevant speech masker ("cocktail party problem", Cherry, 1953). Enhanced alpha power 

at parieto-occipital sites when attention is directed towards the auditory modality is an established 

observation (Adrian, 1944; Foxe et al., 1998; Mazaheri et al., 2014). Based on previous localizations of 

alpha power effects in auditory tasks (Obleser and Weisz, 2012; Obleser et al., 2012), the current 

parietal distributions of alpha power likely originate from parietal cortex, which belongs to the “dorsal 

attention network” (Sadaghiani et al., 2010). Increased task difficulty (less acoustic detail or 

predictiveness) requires more attention to the auditory sensory input. Thus, task-irrelevant sensory 

modalities (e.g., vision) and task-irrelevant brain processes might be inhibited. Inhibition is likely 

reflected by enhanced alpha oscillations in a parietal network, which interacts with sensory areas 

during attention (Banerjee et al., 2011). 

4.1.4.2 Age-related changes in listening behavior and alpha power dynamics 

Overall alpha power was prominently enhanced during the number comparison task (see also Spitzer 

et al., 2014), but was reduced towards the end of a trial in older participants (Figure 4.3B). Critically, 

overall response times did not differ between age groups, and the stronger alpha power reduction at 

trial ending for older participants was specific to the alpha frequency band (i.e., no motor-associated 

beta-band effect in a post-hoc analysis). As a consequence, the stronger alpha power decrease towards 

the end of a trial in older listeners was unlikely driven by an earlier response preparation. Instead, the 

reduced overall alpha power might reflect decreased maintenance of selective attention in older 

listeners (Gazzaley et al., 2005a). In line with this view, decreased lateralization of alpha power in older 

participants under high cognitive load has been interpreted as less efficient sustained inhibition of 

task-irrelevant neural processing (Sander et al., 2012). 

In the behavioral results, we found that varying acoustic detail exerted a stronger relative impact on 

accuracy and response times in older adults. Thus, despite previous reports on reduced sensitivity to 

temporal fine structure variations in older adults (Grose and Mamo, 2010; Hopkins and Moore, 2011; 

Moore et al., 2012), older listeners in the current study relied relatively more on acoustic cues for their 
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performance. The strong dependence on acoustic cues in older listeners is in line with a stronger 

acoustics-driven decrease in alpha power after the presentation of the first digit in older participants 

(see also Sebastian et al., 2011). One attractive interpretation is that older listeners’ attentional focus is 

more strongly affected by acoustic features of the external signal, potentially related to their difficulty 

in ignoring irrelevant auditory distractors (Chao and Knight, 1997; Tun et al., 2002; Passow et al., 

2014). To our knowledge, there has been only one (behavioral) study that has shown a stronger 

dependence of speech recognition on spectral degradations at an older age, comparable to our 

observation (Schvartz et al., 2008). The present results thus demonstrate that age-related changes in 

listening behavior are reflected in neural alpha oscillations. 

Notably, one rationale in the current study was to equalize audibility of materials (through 

individual control for frequency-specific audiometric thresholds) and the overall performance level 

(through individual adjustment of the digit-to-masker ratio) across participants to avoid propagated 

effects of hearing acuity on brain dynamics (Tremblay et al., 2003; Peelle et al., 2011). However, 

conventional auditory threshold measures do not capture all aspects of auditory processing acuity. For 

instance, age and noise-exposure might affect the neural encoding of supra-threshold sounds (Kujawa 

and Liberman, 2009; Ruggles et al., 2012; Furman et al., 2013) and could also contribute to observed 

age differences in listening behavior and alpha dynamics. Although sensory encoding is commonly 

impeded in older listeners, it is unclear whether this affects perception (Clinard et al., 2010; but see also 

Ruggles et al., 2012) and electrophysiological measures of cortical activity. 

4.1.4.3 Alpha oscillations relate to subjective difficulty 

We here extend previous findings of alpha oscillations as a neural marker of cognitive effort (e.g., 

Klimesch, 1999; Jensen et al., 2002) to one of the most common communication situations, that is, 

comprehending speech in multi-talker situations. Participants who showed weaker alpha power 

modulations with varying task difficulty reported higher difficulties of listening to speech in noise 

(Figure 4.5A). This is compatible with the view that higher neural variability accompanies enhanced 

behavioral performance (see Garrett et al., 2011; Erb and Obleser, 2013). 

In addition to inter-individual differences in alpha power, we also found that intra-individual, trial-

to-trial variations in alpha power affected post-trial confidence ratings: Lower alpha power during a 

trial predicted higher confidence of listeners in their own decision (Figure 4.5B). While correlations 

between alpha power and behavior have been found before (e.g., Klimesch et al., 1997; Haegens et al., 
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2011a; Wilsch et al., 2014), the present changes in alpha power exerted an impact on subjective 

confidence ratings, a measure of so-called meta-cognition (Shea et al., 2014). Thus, fluctuations in 

alpha power not only reflect changes in the external stimulation, but they also constitute a change in 

brain state, which is independent of the stimulation yet can impact behavior (see Obleser and Weisz, 

2012). The direction of the observed effect – lower alpha power for higher confidence ratings – 

supports the view that decreased alpha power reflects reduced task demands. These observations 

significantly extend the current understanding of alpha oscillations as a marker of subjective difficulty 

during effortful listening. 

4.1.4.4 Conclusions 

The current study shows that alpha oscillations support auditory processing in younger and older 

listeners in noisy environments in multiple ways. First, alpha oscillations are modulated by 

stimulation-related encoding demands induced by acoustic detail, but are also sensitive to the degree 

of stimulus predictiveness. Second, task performance and alpha modulation in older listeners are 

stronger affected by varying acoustic detail. This speaks to changes in attentional control at an older 

age. Lastly, alpha oscillatory dynamics explain inter- and intra-individual differences in introspective 

task demand. In sum, alpha dynamics are a promising neural marker to elucidate on individual and 

age-related difficulties in sensation, perception, as well as decision-making. 
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4.2 Study 2.2: Phase-locking of neural responses to attended and ignored speech 

4.2.1 Introduction 

In the previous chapter (4.1), we have shown that neural alpha oscillations (~ 10 Hz) signify listeners’ 

attentional challenges in the auditory number comparison task. These alpha oscillations were however 

not phase-locked to the acoustic stimulation, meaning that there was no 10-Hz rhythm in the external 

acoustic signal that was picked up by these alpha oscillations. In the present chapter, we will present 

data from an alternative analysis of the same dataset. We will show in how far younger and older 

listeners’ EEG responses phase-lock (“entrain”) to the slow amplitude modulation (i.e., temporal 

envelope) of attended and unattended (i.e., ignored) speech signals. 

The common EEG response to the presentation of an auditory (or visual) stimulus is the generation 

of an event-related potential (ERP) with particular waveform characteristics (for an example of such an 

ERP, see also Study 1). Across multiple stimulus presentations, ERP components occur at regular time 

points relative to stimulus onset (time-locking) and show a consistent waveform morphology (phase-

locking). Thus, the ERP is a classic example for evoked (time- and phase-locked) activity in the EEG 

that can be contrasted with induced responses, which are not strictly time- or phase-locked (for a 

comprehensive illustration of evoked and induced activity, see Tallon-Baudry and Bertrand, 1999). 

While the evoked response relative to a certain time point (e.g., stimulus onset) can be calculated by 

simple averaging in time over multiple stimulus presentations, the calculation of evoked neural activity 

in response to a continuous speech signal that unfolds in time over several seconds requires more 

sophisticated analysis techniques. Critically, it requires that the entire speech signal is related to the 

EEG response recorded during the presentation of that speech signal. One straightforward approach is 

to calculate the Pearson correlation of the EEG signal and the speech envelope. However, this 

correlation would not account for the fact that the EEG signal might phase-lock to the speech envelope 

with some time lag. Thus, the correlation for multiple time lags between speech envelope and EEG 

signal has to be calculated, using cross-correlation (for possible applications of cross-correlation in the 

neurosciences, see Salinas and Sejnowski, 2001). Here, we used cross-correlation to test whether the 

EEG signal differentially phase-locks to attended and ignored speech signals in younger as well as in 

healthy older listeners. 

It has been long known that evoked responses are larger for attended compared to ignored auditory 

stimuli (e.g., Picton and Hillyard, 1974; Näätänen et al., 1981). Recently, it has been shown that also in 
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multi-talker situations, neural responses show a stronger phase-locking to the speech envelope of 

attended compared to ignored speech (e.g., Ding and Simon, 2012; Mesgarani and Chang, 2012; Zion 

Golumbic et al., 2013; O'Sullivan et al., 2014). In the cross-correlation of EEG signal and speech 

envelope, prior studies consistently found a strong phase-locking with a time lag of approximately 

100–200 ms (e.g., Hambrook and Tata, 2014; Kong et al., 2014). It has been suggested that the phase-

locking of the EEG response to the speech envelope could serve to enhance neural excitability at time 

points critical for speech comprehension, such as the onset of syllables (Giraud and Poeppel, 2012). 

This hypothesis gains further support by studies that found opposite patterns of phase-locking for 

attended and ignored speech, suggesting that neural excitability might be enhanced for attended and 

simultaneously reduced for ignored speech signals (e.g., Horton et al., 2013). 

Although EEG responses phase-lock to the slowly varying temporal envelope of speech signals, it 

has been shown that the preservation of fast fluctuations in the acoustic signal (i.e., fine structure) aids 

phase-locking to the envelope in background noise (Ding et al., 2013). This supports the often-

postulated important role of fine structure for speech comprehension against fluctuating maskers such 

as speech (for a review on the role of fine structure, see Moore, 2008b). There is evidence that older 

listeners have a reduced sensitivity to fine structure (Grose and Mamo, 2010; Hopkins and Moore, 

2011; Moore et al., 2012), which could partly explain older listeners’ difficulties of speech 

comprehension in background noise (see Pichora-Fuller, 2003b). One possible underlying mechanism 

might be that older listeners’ neural phase-locking to the speech envelope does not benefit from fine 

structure in speech. 

In the present chapter, we asked whether EEG responses would show differential phase-

locking to attended speech (i.e., spoken digits) and to the ignored speech masker in the auditory 

number comparison task. To extend findings of prior studies, we further tested to what extent phase-

locking of the EEG signal to the speech envelope depends on the preservation of fine structure for 

younger and older listeners. 

4.2.2 Methods 

For all analyses described below, we used the same EEG dataset described extensively in Studies 1.1 

and 2.1 (see sections 3.1 and 4.1). The data were recorded while 18 younger (20–30 years) and 20 older 

participants (60–70 years) performed an auditory number comparison task. 
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4.2.2.1 Phase-locking of EEG signals to speech envelopes 

To extract acoustic envelopes of speech signals, we calculated the absolute of the Hilbert transform of 

spoken target digits and the irrelevant speech masker (Figure 4.6). Envelopes were lowpass-filtered at 

25 Hz and down-sampled to the same sampling rate as the EEG signals (500 Hz). In order to 

emphasize amplitude changes in speech envelopes, the first derivative of envelopes was calculated. 

Finally, envelopes were half-wave rectified and normalized so that the summed amplitude across 

samples was equal to 1. 

Figure 4.6. Example materials used for the calculation of neural phase-locking. Top panel shows the speech 
waveform of a spoken German digit (“61”). Middle panel shows the respective processed speech envelope after lowpass-
filtering, down-sampling, calculation of the first derivative, and half-wave rectification. Note that amplitude changes in 
the speech waveform are emphasized in the processed speech envelope (e.g., syllable onsets). Bottom panel shows a 
single-channel EEG signal recorded simultaneously to the presentation of the speech signal. For the calculation of neural 
phase-locking, the cross-correlation of processed speech envelope and EEG signal was calculated. 

For each trial in the auditory number comparison task, EEG signals were extracted during the 

presentation of target digits and speech masker. As a measure of neural phase-locking to speech 

envelopes, cross-correlations of EEG signals and speech envelopes at 28 scalp electrodes were 

calculated (using the crosscorr function in the Econometrics toolbox for Matlab, R2013b). The 

resulting correlation coefficients (r) as a function of time-lags were bound between –1 and 1. Since 

acoustic detail was manipulated over six levels in the auditory number comparison task (six temporal 

fine structure cut-off frequencies: 0, 0.1, 0.2, 0.4, 0.76, 1.45 kHz), cross-correlations were subsequently 

averaged over individual trials separately for each level of acoustic detail as well as attended speech 

signals (i.e., spoken digits) and ignored speech signals (i.e., speech maskers). 
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4.2.2.2 Attentional modulation 

In order to test whether neural phase-locking to attended and ignored speech would differ, we 

calculated the difference between cross-correlations for attended and ignored speech (attended–

ignored) for all participants and all levels of acoustic detail across eight fronto-central electrodes 

showing the strongest cross-correlations. To test whether acoustic detail would impact the attentional 

modulation, we calculated the linear coefficients, quantifying the change of attentional modulation 

over the six levels of acoustic detail (zero-centered predictor values: –2.5, –1.5, –0.5, 0.5, 1.5, 2.5) for 

the two peaks found in the cross-correlation (see below). 

4.2.2.3 Auditory modelling 

Since acoustic signals are decomposed into different frequency bands in the human cochlea, the 

question arises whether EEG signals phase-lock to speech envelopes in different frequencies to the 

same extent. To approach this question, we used the Auditory Modeling Toolbox (version 0.9.6; 

Sondergaard and Majdak, 2013) for Matlab. Acoustic signals were bandpass filtered into 29 

logarithmically spaced frequency bands with centre frequencies between 60 and 6000 Hz (referred to 

as “cochlear filters” hereafter). The envelope in each of these 29 frequency bands was extracted using 

the Hilbert transform. Next, envelopes in all frequency bands were subjected to a modulation 

filterbank (Dau et al., 1997), which applied 12 logarithmically spaced bandpass filters with centre 

frequencies between 0 and 992 Hz to the data. Modulation filters capture the amplitude modulation 

(AM) of the speech envelope in different frequencies. There is evidence for the existence of modulation 

filters in the human auditory system (e.g., Langner and Schreiner, 1988; Jepsen et al., 2008; McDermott 

et al., 2013), although their neural implementation is not entirely clear (see Joris et al., 2004). Speech 

envelopes in the 29 (cochlear filters) × 12 (modulation filters) space were processed as described above 

(down-sampling, derivative, half-wave rectification) and the cross-correlation with the EEG signal was 

calculated. This analysis was purely exploratory and only performed for the EEG signal measured at a 

single frontal electrode (Fz), which showed the largest cross-correlation across experimental 

conditions. 

4.2.3 Results 

4.2.3.1 Differential phase-locking to attended and ignored speech 

Figure 4.7A shows neural phase-locking to attended and ignored speech quantified by cross-

correlation of speech envelope and the EEG signal. Cross-correlations for attended and ignored speech 
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exhibited an early positive deflection peaking at a time lag of 40 ms, and a later deflection peaking at 

170 ms, which was negative for attended and positive for ignored speech. In the following, we will refer 

to these two peaks simply as early and late peaks, respectively. For statistical analysis, we averaged 

across time windows around the early (10–70 ms) and late peak (110–230 ms), as well as across eight 

fronto-central electrodes showing the strongest cross-correlations (see topographic maps in Figure 

4.7A). 

For the early peak, the average correlation coefficient was not significantly different between 

attended and ignored speech (t37 = 0.49; p = 0.628; r = 0.08). However, the average correlation 

coefficient for the late peak was significantly more negative for attended compared to ignored speech 

(t37 = 8.37; p < 0.001; r = 0.81), indicating differential neural phase-locking to attended compared to 

ignored speech. Average correlation coefficients for both peaks as well as for attended and ignored 

speech did not differ significantly between age groups (all p > 0.13; all r < 0.25). 

Figure 4.7. Cross-correlation of EEG signals and speech envelopes. (A) Cross-correlations of EEG signals with 
envelopes of attended speech (digits; cyan) and ignored speech (masker; magenta) in the auditory number comparison 
task. Cross-correlations were averaged across all (younger and older) participants and across eight fronto-central 
electrodes highlighted in the topographic maps. Time intervals around peaks in the cross-correlation, which were used 
for statistical analyses (attended vs ignored speech), are highlighted in light grey (early peak: 10–70 ms; late peak: 110–
230 ms). Topographic maps show the average correlation coefficient for the two peaks (left: early peak; right: late peak) 
and for attended (cyan frame) and ignored speech (magenta frame). (B) Attentional modulation, calculated by 
subtracting the cross-correlation for ignored speech from attended speech. The plot shows the attentional modulation 
for six levels of acoustic detail (fine structure preservation below six frequency cut-offs: 0 (low), 0.1, 0.2, 0.4, 0.8, 1.5 kHz 
(high)). Asterisks indicate a significant linear change in attentional modulation over levels of acoustic detail. n.s., not 
significant; *** p < 0.001. 

4.2.3.2 Acoustic detail affects attentional modulation of phase-locking 

Figure 4.7B shows how attention modulated phase-locking to speech signals as a function of acoustic 

detail (temporal fine structure preservation). In detail, the attentional modulation was quantified by 

subtracting the cross-correlation for ignored from the cross-correlation for attended speech. The effect 

of acoustic detail was modelled by calculating participants’ linear coefficients quantifying the change in 

average attentional modulation in the time intervals of the early and late peak (highlighted in grey in 

Figure 4.7) over six levels of fine structure preservation. Linear coefficient for the early peak were 



Study 2: Acoustics and predictions drive neural mechanisms of attention 

88 

significantly larger than zero (t37 = 5.10; p < 0.001; r = 0.64), indicating that the difference in phase-

locking to attended and ignored speech was modulated by acoustic detail. For the late peak, linear 

coefficients were significantly smaller than zero (t37 = –6.20; p < 0.001; r = 0.71), indicating that the 

difference between phase-locking to attended and ignored speech increased with higher levels of 

acoustic detail. Linear coefficients for early and late peaks did not differ between age groups (both p > 

0.5; both r < 0.11), suggesting a similar impact of fine structure on neural phase-locking across age 

groups. 

4.2.3.3 Phase-locking to different frequencies in the speech signal 

We performed an exploratory analysis on phase-locking of the EEG signal to the speech envelope as a 

function of cochlear filters frequencies and modulation filter frequencies. In essence, the same 

approach was used to calculate cross-correlations as shown above (Figure 4.7), but this time for speech 

signals divided into 29 cochlear frequency bands and speech envelopes divided into 12 modulation 

frequency bands (for details see Methods). 

Figure 4.8. Neural phase-locking as a function of cochlear and modulation filter centre frequencies. The graph 
shows the average absolute cross-correlation across all participants, acoustic detail levels, speech materials (attended & 
ignored), and all time lags between 10 and 230 ms as a function of auditory filter frequencies (y-axis) and modulation 
filter frequencies (x-axis). The absolute correlation coefficients (|r|) were calculated to transform both positive (early peak) 
and negative correlation coefficients (late peak) into a composite positive value. Data in the lower right are missing since 
modulation filters were only applied to outputs of cochlear filters not including the centre frequency of modulation 
filters. 

Since visual inspection of the resulting cross-correlations as a function of cochlear and modulation 

filter frequencies revealed very consistent effects across acoustic detail conditions as well as for 

attended and ignored speech, we collapsed across these dimensions. In detail, we calculated the 

absolute correlation coefficients across time lags to make sure that positive (early) and negative peaks 

(late) would not cancel out. Next, we averaged across time lags from the beginning of the early until 
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the end of the time period of the late peak (10–230 ms), as well as across acoustic detail conditions, 

attended and ignored speech, and across younger and older participants. Figure 4.8 shows the average 

absolute correlation coefficients as a function of cochlear and modulation filter frequencies. 

Correlation coefficients were highest for the lowest modulation filter frequencies (< 5 Hz) across all 

cochlear frequencies, indicating a strong neural phase-locking to slow envelope modulations of the 

speech signal. Correlation coefficients were also enhanced for cochlear filter frequencies around 1436 

Hz. Above cochlear filter frequencies of 3718 Hz, phase-locking decreased. 

4.2.4 Discussion 

We investigated younger and older listeners’ neural phase-locking to attended and ignored speech 

under different levels of acoustic detail (temporal fine structure). Results can be summarized as 

follows: (1) EEG responses showed distinct patterns of phase-locking to attended and ignored speech. 

(2) Across age groups, the effect of attention on neural phase-locking was increased with more acoustic 

detail in the speech material. (3) Neural phase-locking was strongest to slow (< 5 Hz) fluctuations of 

the speech envelope. 

4.2.4.1 Neural phase-locking to attended and ignored speech 

We found two dominant peaks in the cross-correlation of EEG signal and speech envelope (Figure 

4.7A), an early one at a time-lag of 40 ms, and a late one at a time-lag of 170 ms. Latency and 

waveform characteristics of these peaks agree with prior studies analysing neural phase-locking by 

means of cross-correlation (Horton et al., 2013; Hambrook and Tata, 2014; Kong et al., 2014). Latency 

and polarity of these peaks resemble the common P1 and N1 event-related potential (ERP) 

components, respectively, occurring after the onset of acoustic events. These peaks in the cross-

correlation are likely generated by the occurrence of an amplitude increase in the speech envelope, 

which is followed by a positive deflection in the EEG after 40 ms (P1) and by a subsequent negative 

deflection after 170 ms (N1). As Figure 4.6 shows, amplitude increases in the speech envelope are 

strongest at syllable onsets. Critically, the cross-correlation takes into account the entire speech 

envelope and the simultaneously recorded EEG signal. Thus, peaks in the cross-correlation not only 

reflect evoked responses to the onset of the speech signal (i.e., onset of first syllable) but rather a 

continuous phase-locking to the entire speech signal (i.e., all syllables). However, it must be mentioned 

that also different dependencies between speech envelope and EEG signal could generate the observed 

peaks in the cross-correlation. Future studies could use longer speech segments and calculate the 
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cross-correlation in consecutive time windows throughout the trial to uncover the temporal 

dependencies between EEG signal and speech envelope. 

The late peak in the cross-correlation exhibited a strong negative correlation for attended speech, 

and a weaker positive correlation for ignored speech (Figure 4.7A). Differential neural phase-locking 

to attended and ignored speech has been shown previously using cross-correlations (e.g., Horton et al., 

2013; Hambrook and Tata, 2014; Kong et al., 2014), as well as other methods incorporating spectro-

temporal weighting of speech signals (e.g., Ding and Simon, 2012; Mesgarani and Chang, 2012; Zion 

Golumbic et al., 2013; O'Sullivan et al., 2014). One possible interpretation of our findings rests upon 

the assumption that cortical oscillations measured in the EEG reflect fluctuations in neuronal 

excitability in auditory cortex (for a review on neuronal oscillations, see Buzsaki and Draguhn, 2004; 

Lakatos et al., 2005; Schroeder and Lakatos, 2009). Thus, phase-locking of EEG signals to speech 

envelopes might indicate that neural excitability fluctuations align with the speech envelope, possibly 

in such a way that high-amplitude parts of the signal (e.g., syllables) fall into high-excitability phases 

(Giraud and Poeppel, 2012). Critically, an opposite pattern of neural phase-locking to attended and 

ignored speech suggests that excitability is enhanced for attended but also lowered for ignored speech. 

One shortcoming of the present analysis is the fact that the attended spoken digits were shorter 

(~1.13 s) compared to the ignored speech masker (~4.25 s) on each trial. Thus, more data samples 

were used to calculate the cross-correlation for the (ignored) masker compared to the (attended) digits. 

Possibly, this resulted in a better estimate of cross-correlations for ignored speech, which also explains 

the smaller standard error of the mean for the cross-correlation with ignored speech in Figure 4.7A. 

However, it is unlikely that this difference in the number of data samples was the reason for the strong 

difference in neural phase-locking to attended and ignored speech. 

4.2.4.2 Fine structure aids differential phase-locking to attended and ignored speech 

We found that the difference in neural phase-locking to attended and ignored speech (i.e., attentional 

modulation; Figure 4.7B) increased with more fine structure in speech materials. Prior work has 

shown that fine structure facilitates the perceptual segregation of acoustic signals (for review, see 

Moore, 2008b). Our finding is in line with one prior study which found more robust cortical 

entrainment to speech with more preserved fine structure (Ding et al., 2013). This is an interesting 

result since the envelope of speech, which was used for the calculation of neural phase-locking in the 

present study, is commonly thought to be largely independent of fine structure (for an opposing view, 
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see Shamma and Lorenzi, 2013). However, our results suggest that envelope and fine structure are both 

critical for neural phase-locking to speech. 

Despite evidence for reduced sensitivity to temporal fine structure at an older age (Grose and 

Mamo, 2010; Hopkins and Moore, 2011; Moore et al., 2012), we found that preservation of fine 

structure increased the attentional modulation of phase-locking to the speech envelope similarly in 

younger and older adults. It might be that sensitivity to fine structure was not critically impaired in our 

sample of older listeners or that our individual adjustments of speech materials (see section 3.1.2.4) 

compensated for a reduced sensitivity to fine structure: It is currently under debate whether age-

related cognitive decline or age-related hearing loss drives older listeners’ decreased sensitivity to fine 

structure (e.g., Hopkins and Moore, 2011; Neher et al., 2012; Füllgrabe, 2013). Importantly, older 

listeners’ preserved sensitivity to fine structure in the present study was also evidenced by their 

significant behavioural benefit from more fine structure in speech materials (see chapters 3.1 and 4.1). 

Since stimuli in the present study were carefully adapted to individual hearing acuity, speech materials 

for older listeners were amplified, especially in higher frequencies. Moreover, the digit-to-masker 

sound level ratio was higher for older participants (for details, see section 3.1.3.1). Possibly, older 

participants’ benefit from fine structure would have been reduced without these stimulus adjustments. 

Thus, it might be that our individual adjustments compensated for a reduced sensitivity to fine 

structure in older listeners in the present study. 

4.2.4.3 Neural phase-locking is strongest for slow envelope fluctuations 

Our exploratory analysis of neural phase-locking across cochlear filter frequencies and modulation 

filter frequencies revealed that phase-locking is not equally strong across different frequencies of the 

speech signal (Figure 4.8). We observed the strongest neural phase-locking to slow (< 5 Hz) 

modulations in the speech envelope. The syllable rate of normal speech is between 3 and 6 Hz. 

Specifically, spoken digits in the present study contained four syllables and had an average duration of 

1.125 sec, resulting in a syllable rate of 3.5 Hz. Thus, this finding suggests in line with prior research 

(Ahissar et al., 2001; Nourski et al., 2009; Giraud and Poeppel, 2012; Hertrich et al., 2012) that neural 

phase-locking to speech signals depends critically on the slow temporal envelope fluctuations at the 

syllable rate. Moreover, Figure 4.8 shows that neural phase-locking was strong for cochlear filter 

frequencies between 850 and 2300 Hz. This approximately matches the frequency region of strongest 

energy in human speech (~ 300-3000 Hz). Thus, unsurprisingly, neural phase-locking to speech 

depends particularly on those frequencies that dominate human speech sounds. 
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Based on these results, one might hypothesize that neural-phase locking would be most severely 

impaired by an acoustic masker with high energy between 850 and 2300 Hz as well as strong amplitude 

modulation of the envelope < 5 Hz. Future studies could directly test this hypothesis by measuring 

neural phase-locking to speech in the presence of an acoustic masker that varies systematically in its 

frequency range and envelope modulation rate. 

4.2.4.4 Conclusions 

Our results indicate robust neural phase-locking to the envelope of speech in younger as well as in 

healthy older listeners. Across age groups, temporal fine structure improves the separation of attended 

and ignored speech on a neural level. Thus, the present study shows that basic neural dynamics of 

auditory processing (i.e., phase-locking to the speech envelope) is preserved at an older age, given that 

acoustic conditions are carefully adjusted to individual hearing acuity. 
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5 Study 3: Dynamic lateralization of alpha power follows the speech 

rhythm and predicts successful attentional selection 

This study investigates younger listeners’ speech comprehension in a dichotic listening task. We asked 

in how far the hemispheric lateralization of the power of neural alpha oscillations reflects listeners’ 

spatial attention to one of two concurrent speech streams. 

5.1 Introduction 

Processing relevant signals despite the presence of distraction (i.e., noise) requires selective attention. 

Spatial separation of signal and noise is a useful research paradigm to investigate the neural dynamics 

of attention to signals and suppression of noise. Spatial attention is reflected by an increase in the 

power of neural alpha oscillations (~10 Hz) in the ipsilateral hemisphere (same side as attended object) 

and a decrease in the contralateral hemisphere (opposite side as attended object). This alpha power 

lateralization has been found across sensory modalities for attention to visual (e.g., Thut et al., 2006; 

Bauer et al., 2012), somatosensory (e.g., Haegens et al., 2011a; van Ede et al., 2011), and auditory 

stimuli (e.g., Banerjee et al., 2011; Ahveninen et al., 2013). However, spatial attention paradigms 

typically involve only a single (brief) target stimulus and investigate neural activity only in anticipation 

of this target. Thus, the oscillatory dynamics of spatial attention to an ongoing signal that unfolds in 

time – such as human speech – are largely unknown. 

According to the functional inhibition framework (Jensen and Mazaheri, 2010), alpha power 

regulates neural information flow through inhibition of task-irrelevant brain areas or processes. 

Prestimulus alpha power correlates negatively with the perception of near-threshold stimuli (e.g., 

Hanslmayr et al., 2007; van Dijk et al., 2008), suggesting that alpha power affects the degree to which 

stimuli become processed neurally. But does alpha power also regulate selective attention to ongoing 

stimuli in sensory-specific cortical areas? While alpha power modulation has been found in visual and 

somatosensory cortex regions (e.g., Haegens et al., 2011a; Spitzer et al., 2014), the existence and the 

functional significance of auditory alpha activity is unresolved (but see Lehtela et al., 1997; Müller and 

Weisz, 2012; Frey et al., 2014). In a recent perspective article, we proposed that alpha power 

modulation could serve as an attentional filter to enhance relevant and suppress irrelevant auditory 

input directly in auditory cortex regions (Strauß et al., 2014). Alpha power modulation in a parietal 
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attention network could serve the orienting of supramodal attention in space (Banerjee et al., 2011). In 

the present dichotic listening study, we used magnetoencephalography (MEG) to test whether alpha 

power lateralization indicates the direction (left vs right) of auditory selective attention to ongoing 

speech and we traced the underlying neural sources of this alpha power lateralization. 

It is a common observation that the power of parietal alpha oscillations is enhanced under effortful 

listening conditions (e.g., Obleser et al., 2012; Wilsch et al., 2014; Wöstmann et al., 2015), which might 

reflect increased attention to the auditory modality (Adrian, 1944; Mazaheri et al., 2014). Furthermore, 

there is initial evidence that alpha power lateralization during spatial attention indicates the attentional 

selection of ongoing speech (Kerlin et al., 2010). However, it is unknown whether alpha power 

lateralization aligns with the inherent temporal regularity of the speech signal to regulate selective 

attention: The strongest attentional selection should co-occur with task-relevant speech items (such as 

individual words), whereas selective attention could be reduced in uninformative time intervals 

between speech items. This would result in an oscillation between states of high and low selective 

attention. Although there is evidence that attention modulates the alignment of certain neural 

responses with speech signals (e.g., Ding and Simon, 2012; Hertrich et al., 2012; O'Sullivan et al., 2014; 

see also Study 2.2), it has not been investigated whether the lateralization of alpha power aligns with 

the speech signal to support selective attention. Here we will demonstrate that alpha power 

lateralization during spatial attention to one of two speech streams temporally aligns with the word 

rate and that this alignment predicts the success of auditory stream selection. 

5.2 Methods 

5.2.1 Participants 

Nineteen young (mean age = 27.47; age range = 23–34 years; 10 females) right-handed German native 

speakers participated in this study. Data of one additional participant were recorded but excluded from 

all analyses due to technical problems during MEG recording. Participants were financially 

compensated for participation. Procedures were approved by the local ethics committee of the 

University of Leipzig Medical faculty. 

5.2.2 Auditory materials 

We used the same recordings of German spoken digits between 21 and 99 (excluding integer multiples 

of ten) as in Studies 1.1 and 2.1 (Wöstmann et al., 2015; Wöstmann et al., in press). Digits were spoken 



Study 3: Dynamic lateralization of alpha power follows the speech rhythm and predicts successful attentional selection 

95 

by a trained female speaker and recorded at a sampling rate of 44.1 kHz. Each digit contained four 

syllables and digits were on average 1.125 s long. Intensity of digits was equalized to –30 dB FS (full 

scale). Since the temporal alignment of digits presented simultaneously to the two ears is essential in 

dichotic listening studies, we aligned the perceptual onsets of digits which are different from their 

acoustic onsets (Morton et al., 1976). To this end, we extracted the envelope of spoken digits (using the 

Hilbert transform) and applied a lowpass filter at 15 Hz. For each digit, we determined the time point 

where the envelope increase of the first syllable reached 50 % of the syllable’s maximum amplitude. 

This time point was considered the perceptual onset of the respective digit and will be referred to as 

digit onset hereafter. 

For the background noise, we generated random noise at an intensity of –40 dB FS. Thus, the 

signal-to-noise ratio (SNR) between spoken digits and background noise was +10 dB. Different 

instances of noise were generated for each experimental trial. For the spatial cue at the beginning of 

each trial, we generated a 1000-Hz pure tone of 500 ms duration at an intensity of –30 dB FS (equal 

intensity as spoken digits). 

5.2.3 Procedure of the dichotic listening task 

Each trial started with the binaural presentation of background noise and a simultaneous spatial cue 

(i.e., pure tone) either to the left side (i.e., left ear) or right side (i.e., right ear). Linear onset ramps of 

50 ms duration were applied to background noise and spatial cue. 1.8 s after cue offset, two streams of 

four spoken digits were presented simultaneously to the left and right side (Figure 5.1). Simultaneously 

presented digits were always distinct in their first (i.e., tens) and second (i.e., ones) position (e.g., 

combinations of “35” and “37” or “81” and “21” were avoided). The onset-to-onset time delay between 

subsequent digits on each side was 1.49 s, resulting in a digit presentation rate of 0.67 Hz on both sides 

(cp. Gomez-Ramirez et al., 2011; Lakatos et al., 2013a). During acoustic stimulation, participants 

fixated a centrally presented cross. Participants’ task was to attend and to retain the digits presented on 

the side where the spatial cue had appeared and to ignore digits on the other side. 

A response screen appeared 0.8–1.2 s (average 1 s) after the offset of the last digit. The response 

screen contained 12 digits, four from the attended side, four from the ignored side, and four random 

digits not presented on either side. To prevent participants’ motor preparation during the trial, digits 

were presented either in ascending or descending order (randomized). Participants used an MEG-

compatible trackball mouse (Logitech Marble Mouse) to select four digits which they thought had 
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been presented on the attended side. Individual digits disappeared from the screen after they had been 

selected. After the selection of the fourth digit, participants saw a pause screen. The next trial started 

self-paced, 1 s (randomly jittered between 0.8 and 1.2 s) after an additional mouse click. Auditory 

materials were presented via plastic ear tubes at an average intensity of ~70 dB SPL. Visual stimuli 

were shown on a back projection screen. 

Figure 5.1. Trial design of the dichotic listening task. During the cue period (0–0.5 s), a pure tone was presented either 
on the left or right side (i.e., left or right ear) to indicate which side participants should attend (right side in this example). 
After an anticipation period (0.5–2.3 s), two streams of four spoken digits each were presented simultaneously on both 
sides during the stimulation period (2.3–7.9 s). All materials were presented in broadband background noise (+10 dB SNR; 
same noise presented on both sides). After acoustic stimulation, participants had the task to select digits from the 
attended side from an array of 12 digits (grey box on the right). Each response (selected digit) could either be a hit (digit 
appeared on attended side; green), a stream confusion (digit appeared on ignored side; orange) or a random error (digit 
did not appear on either side; purple). Coloured boxes indicate response types for the example trial depicted here. In the 
experiment, digits were shown in black font in white boxes. 

Each participant performed 150 trials. The experiment was divided in 5 blocks of 30 trials each. 

Within each block, the spatial cue appeared on the left side in half of the trials and on the right side in 

the other half of trials. Trial order within each block was completely randomized. The entire 

experiment lasted approximately one hour. 

5.2.4 Behavioral data recording and analysis 

Due to technical reasons, no behavioral responses were recorded on 1.2 % (SD = 2.7 %) of trials across 

19 participants. These trials were removed from all further behavioral and MEG data analyses. On 

remaining trials, we recorded four responses (four mouse clicks to indicate which digits appeared on 

the attended side). Responses were categorized in the following manner: A response was considered a 

hit if the selected digit had appeared on the attended side, a stream confusion if the digit had appeared 

on the ignored side, and a random error if the digit had appeared on neither side (Figure 5.1). 

For statistical analyses, we calculated the proportion of different response types (hit, stream 

confusion, random error) through division by the total number of responses for each participant. To 
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ensure normal distribution of the data, we transformed the proportion data to rationalized arcsine 

units (rau), ranging between –.23 and 1.23 (Studebaker, 1985). Rau-transformed proportions of 

different response types were submitted to a repeated-measures ANOVA with the within-subject 

factor response type (hit, stream confusion, random error). Post-hoc paired t-tests were used for 

pairwise comparison between response types. 

5.2.5 MEG data recording and analysis 

Participants were seated in a magnetically shielded room (Vaccumschmelze, Hanau, Germany). A 306-

sensor Neuromag Vectorview MEG (Elekta, Helsinki, Finland) was used to measure magnetic fields at 

102 locations from 204 orthogonal planar gradiometers and 102 magnetometers. Additionally, we 

recorded the electroencephalogram (EEG) from 64 scalp electrodes (Ag/Ag-Cl). EEG data were not 

further analyzed in this study. Each participant’s head position was monitored with five head position 

indicator (HPI) coils. MEG signals were recorded at a sampling rate of 1000 Hz with a DC–330 Hz 

bandwidth. Offline, the signal space separation (SSS) method (Taulu et al., 2004) was applied to 

suppress external disturbances (i.e., noise) in the data, to interpolate bad sensors, and to transform 

individual data to a common sensor space allowing for statistical comparison across participants. 

For all subsequent MEG data analyses, we used the Fieldtrip toolbox (Oostenveld et al., 2011) for 

Matlab (R2013b) and customized Matlab scripts. For all analyses, we used only data recorded from 

gradiometer sensors. Continuous data were highpass filtered at 0.3 Hz using a causal finite impulse 

response (FIR) filter with time correction and lowpass filtered at 180 Hz using an acausal 

(bidirectional) FIR filter. Epochs from –2 to 10 s around cue onset were extracted from the continuous 

data. Data from five experimental blocks were appended and down-sampled to 500 Hz. Epochs were 

rejected when the signal at any sensor exceeded 800 pT/m. An independent component analysis (ICA) 

was performed and components corresponding to eye blinks, saccadic eye movements, muscle activity, 

heartbeats, drifts, and jumps were identified and rejected by inspection of components’ topographies, 

time courses, and frequency spectra. 

Time-frequency representations of single trials were estimated by convolving the single-trial time 

series with a family of Morlet wavelets between 1 and 20 Hz (in steps of 0.5 Hz; width: 7 cycles) and 

from –1.7 to 9 s (in steps 0.05 s). Single-trial power was obtained by squaring the magnitude of the 

estimated complex wavelet transform coefficients. Data from 204 gradiometer sensors (102 pairs of 

gradiometer sensors) were combined by summation of power estimates from the two sensors at the 
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same location. Thus, 102 (combined) gradiometer sensors were used for all subsequent sensor-space 

analyses. 

5.2.6 Alpha power lateralization 

To quantify the lateralization of alpha power as a function of participants’ attention to digits on the left 

or right side, we contrasted participants’ alpha power at 102 sensors, frequencies from 8 to 12 Hz, and 

all time points from 0 s (cue onset) until 7.9 s (last digit offset) in the following way: (attention left – 

attention right)/(attention left + attention right)(Figure 5.3). The resulting values (bound between –1 

and 1) will be referred to as alpha power lateralization in the following. Values > 0 indicate higher 

alpha power when attention was directed to the left compared to the right side, and vice versa for 

values < 0. For statistical analyses, we compared the average alpha power lateralization between all 

sensors on the left and right hemisphere in three time periods (cue: 0–0.5 s; anticipation: 0.5–2.3 s; 

stimulation: 2.3–7.9 s) using paired t-tests. Since the topographical distribution of the alpha power 

lateralization differed between individuals, we selected 20 (combined gradiometer) sensors on the left 

hemisphere showing the most positive alpha lateralization, and 20 (combined gradiometer) sensors on 

the right hemisphere showing the most negative alpha power lateralization during the time of the 

entire trial (0–7.9 s) for each participant (Figure 5.3B). These individually selected sensors were used 

for the computation of the alpha lateralization index (see below). 

5.2.7 Alpha lateralization index 

In order to contrast the alpha power lateralization between correct (0 errors) and incorrect trials (1–4 

errors), we calculated an alpha lateralization index. To this end, we contrasted alpha power at 

individually selected ipsilateral sensors (IPSI; same hemisphere as attended side) with alpha power at 

individually selected contralateral sensors (CONTRA; opposite hemisphere of attended side) in the 

following way: (ISPI – CONTRA)/(IPSI + CONTRA), separately for correct and incorrect trials 

(Figure 5.5A). Note that due to the selection of ipsi- and contralateral channels, we could aggregate 

trials across both conditions (attend left/right). For statistical analysis, we compared the average alpha 

lateralization index in three time periods (cue, anticipation, stimulation) between correct and incorrect 

trials using paired t-tests. 

Since the alpha lateralization index exhibited characteristic fluctuations during the presentation of 

spoken digits (stimulation period: 2.3–7.9 s; Figure 5.5A), we quantified these fluctuations by fitting a 

cosine function to the alpha lateralization index. The cosine function [g(t) = A × cos(2π × f × t + ϕ)] 
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had the fixed parameters time (t; 2.3–7.9 s) and frequency (f; 0–2 Hz in steps of 0.01 Hz) and the free 

parameters cosine amplitude (A) and cosine phase (ϕ). For each participant and frequencies 0–2 Hz, 

we fitted two cosine functions; one to the average lateralization index across correct trials and one to 

incorrect trials (using the lsqcurvefit function in the optimization toolbox for Matlab). Prior to fitting, 

the linear trend was removed from each participant’s lateralization index. For statistical analysis, we 

were mainly interested in the cosine amplitude parameter (A), which quantifies the strength of 

rhythmic fluctuations of the alpha lateralization index. We compared the average cosine amplitude (A) 

for correct and incorrect trials in the frequency range of the 0.67-Hz digit presentation rate (averaged 

across 0.5–0.7 Hz) with a paired t-test (Figure 5.5C). To test for a phase effect, we computed the 

average circular distance between correct and incorrect trials (across 0.5–0.7 Hz), which was tested for 

non-uniformity (using a Rayleigh test implemented in the circular statistics toolbox for Matlab). 

The number of trials was not balanced between correct (0 errors) and incorrect trials (1–4 errors; 

Figure 5.2C). In theory, this inequality in the number of trials might have affected our estimates of 

cosine amplitude (see above). However, the comparison of 95 % confidence intervals for the estimates 

of cosine amplitude at 0.67 Hz revealed no significant difference between correct and incorrect trials 

(t18 = 1.06; p = 0.303; r = 0.24). This suggested that our estimates of cosine amplitude were not 

significantly affected by the number of correct and incorrect trials. Nevertheless, we conducted an 

additional analysis in which we equalized the number of correct and incorrect trials. In detail, for a 

participant with fewer correct than incorrect trials, we selected (randomly without replacement) as 

many incorrect trials as there were correct trials, and vice versa for a participant with fewer incorrect 

than correct trials. Next, we calculated the lateralization index for these stratified samples of correct 

and incorrect trials and estimated the cosine amplitude of the alpha lateralization index (in the same 

way as described above). This procedure was repeated 1000 times for each participant. Finally, the 

mean cosine amplitude across 1000 repetitions and across frequencies 0.5–0.7 Hz was compared 

between correct and incorrect trials using a paired t-test. 

Lastly, we tested in how far the amplitude of 0.67-Hz fluctuations of the lateralization index in 

incorrect trials predicts performance. Therefore, we calculated the correlation of cosine amplitude in 

incorrect trials (averaged across 0.5–0.7 Hz) and the average number of errors in incorrect trials across 

participants (Figure 5.5D). Since both variables entered in the correlation deviated significantly from 

the normal distribution (Lilliefors test; both p < 0.05) a nonparametric Spearman correlation was used.  
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5.2.8 Source analysis 

Individual T1-weighthed MRI images were used to construct cortical surfaces and inner skull surfaces 

(using Freesurfer and MNE software). Individual cortical surfaces were used as source model and 

reduced to 10,242 vertices for each hemisphere. The inner skull surface served as volume conductor. 

The MR and the MEG coordinate systems were co-registered using 5 HPI coils and 64 digitized points 

on the head surface. Leadfields were calculated (i.e., the forward solution) on the basis of the cortical 

surfaces and inner skull (Nolte, 2003). 

For the source localization of alpha power lateralization, we applied the Dynamic Imaging of 

Coherent Sources (DICS) beamformer approach (Gross et al., 2001) implemented in the Fieldtrip 

toolbox for Matlab. In detail, a spatially adaptive filter was used to estimate alpha oscillatory activity at 

the 10,242 source locations. We calculated Fourier spectra centered at 10 Hz with ±2 Hz spectral 

smoothing (8–12 Hz) separately for attention left and attention right trials and for three time periods 

(cue: 0–0.5 s, anticipation: 0.5–2.3 s, stimulation: 2.3–7.9 s). A complex common spatial filter was 

calculated on the basis of the Fourier spectra of trials in all conditions (attention left/right) from trial 

onset (0 s) to trial offset (7.9 s). The common filter was then used for source projection of attention left 

and attention right conditions separately (in the three time periods). Alpha power lateralization was 

calculated at each source location: (attention left – attention right)/(attention left + attention right). 

The resulting maps were spatially smoothed across the surface using an approximation to a 6 mm 

FWHM Gaussian kernel (Han et al., 2006), and the individual source estimates were morphed onto the 

cortical surface of one participant (Fischl et al., 1999a; Fischl et al., 1999b). Finally, for each source 

location, alpha power lateralization was tested against zero using a one-sample t-test. For visualization, 

the resulting t-values were transformed to z-values and overlaid on the partially inflated brain surface 

(Figure 5.4). 

Furthermore, we estimated the sources of auditory activation. To this end, we determined 

participants’ evoked oscillatory activity. In detail, we calculated the Fourier spectra of the average time-

domain data across all trials (i.e., event-related fields) at the onset of the first digit (2.3–2.8 s) centered 

at 4 Hz with ±2 Hz spectral smoothing (2–6 Hz). A common spatial filter was calculated on the basis of 

the Fourier spectra from 1–7.9 s relative to cue onset. Note that the first second of trials was not used 

since the cue (0–0.5 s) appeared either on the left or right side on each trial, which could bias source 

estimation. To estimate the distribution of auditory activation, we calculated the neural activity index 
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(NAI) through division of the activation by the noise power estimate at each source location (Van 

Veen et al., 1997). 

5.2.9 Granger causal influence 

We asked whether the most central neural measure in the present study – the alpha lateralization index 

(Figure 5.5) – could be predicted from two other neural measures (in sensor-space), namely overall 

alpha power and inter trial phase coherence (ITPC). To this end, we averaged alpha power and the 

alpha lateralization index across all trials (attention left/right; correct/incorrect) within each 

participant. ITPC was computed through division of the complex wavelet coefficients obtained in the 

spectral analysis of MEG data (see above) by their absolute values and subsequent averaging across 

trials. ITPC is bound between 0 and 1 with higher values indicating a stronger phase-consistency of 

neural oscillations across individual trials. For the present analysis, we averaged each participant’s 

ITPC across frequencies from 2–8 Hz, as well as across 6 left central combined gradiometer sensors 

and 6 right central combined gradiometer sensors that showed the largest ITPC at the onsets of 

auditory events (i.e., spoken digits; Figure 5.6A). 

To investigate the directional dependence between these three neural measures (ITPC, alpha 

power, alpha lateralization index), we computed frequency-domain Granger causality (using the 

ft_connectivityanalysis function in the Fieldtrip toolbox). Linear trends were removed from ITPC, 

alpha power, and alpha lateralization index for each participant to ensure stationarity (Seth et al., 

2015). We fitted an autoregressive model to each participant’s data comprising the three neural 

measures during stimulation (2.3–7.9 s; using the bsmart toolbox for Matlab). Essentially, an 

autoregressive model explains how time domain data linearly depends on its own as well as other 

signals’ past. The model order was 10, meaning that 10 past data samples were included in the model, 

corresponding to 500 ms given our temporal resolution of 50 ms. Granger spectra were computed with 

a frequency resolution of 0.1 Hz from 0–4 Hz (Figure 5.6B). Simply speaking, high values of granger 

causal influence from data A on B indicate that past values of A predict present values of B more than 

past values of B alone. In such a scenario, A is said to “granger cause” B. For statistical analysis, we 

compared granger causal influences in both directions (AÆB; BÆA) for each pair of the three neural 

measures (ITPC, alpha power, alpha lateralization index) using Wilcoxon signed-rank tests 

(nonparametric tests were used as the data deviated significantly from the normal distribution; 

Lilliefors test, all p < 0.05). 
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5.2.10 Effect sizes 

To estimate effect sizes for F-statistics (ANOVAs), we calculated the partial eta-squared (K2
P). Partial 

eta-squared values of 0.01, 0.06 and 0.14 indicate small, medium, and large effects, respectively 

(Cohen, 1969). For t-statistics (t-tests) and z-statistics (Wilcoxon signed-rank tests), we calculated the 

effect size measure r, which is bound between 0 and 1 (Rosenthal, 1994). For circular statistics 

(Rayleigh test), we computed the resultant vector length (r; bound between 0 and 1). 

5.3 Results 

5.3.1 Performance in the dichotic listening task 

Figure 5.2A shows rau-transformed proportions of three different response types (hit, stream 

confusion, random error) in the dichotic listening task. A repeated-measures ANOVA revealed a 

significant main effect response type (F(2, 18.6) = 286.54; p < 0.001;�K2
P = 0.94; Greenhouse-Geisser 

correction applied due to violation of sphericity; Mauchly test: p < 0.001). Post-hoc tests revealed that 

the proportion of hits was higher than the proportion of stream confusions (t18 = 15.87; p < 0.001; r = 

0.97) and random errors (t18 = 18.26; p < 0.001; r = 0.97). Critically, also the proportion of stream 

confusions was higher than that the proportion of random errors (t18 = 7.05; p < 0.001; r = 0.86; Figure 

5.2B), indicating that participants erroneously reported digits on the ignored side more often than 

digits that did not appear on either side.  

Figure 5.2. Behavioural performance in the dichotic listening task. (A) Proportion of response types (hit, stream 
confusion, random error) were transformed to rationalized arcsine units (rau). Dots show data of individual participants, 
horizontal lines show the average across participants. (B) Bars indicate the average difference between the proportions of 
all pairs of response types. (C) Bars indicate the average proportion of trials as a function of the number of possible errors 
on each trial (0–4). All error bars indicate 95 % confidence intervals. *** p < 0.001. 
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Figure 5.2C shows the proportion of trials as a function of the possible number of errors (0–4) on 

each trial. For further analyses of MEG data (see below), we contrasted correct trials (0 errors) with 

incorrect trials (1–4 errors). 

5.3.2 Alpha power lateralization 

Figure 5.3A shows oscillatory power averaged across 102 combined gradiometer channels, 

experimental conditions (attention left/right), and 19 participants. Power in the alpha frequency band 

(8–12 Hz) was prominently enhanced, and decreased gradually toward the end of the dichotic listening 

task. Alpha power lateralization (quantified as (attention left – attention right)/(attention left + 

attention right)) revealed a distinction of alpha power over the left and right hemispheres (Figure 

5.3B): In attention left trials, alpha power was relatively higher over the left (ipsilateral) and lower over 

the right (contralateral) hemisphere compared to attention right trials. 

Figure 5.3. Alpha power lateralization in the dichotic listening task. (A) Grand average oscillatory power across 102 
combined MEG gradiometer channels, both experimental conditions (attention left/right), and 19 participants. Note 
particularly high power in the alpha frequency band (8–12 Hz). (B) Alpha power lateralization was quantified by 
contrasting the two experimental conditions in the following way: (attention left – attention right)/(attention left + 
attention right). Resulting values are bound between –1 and 1. Topographic maps show relatively higher alpha power on 
the left hemisphere and lower alpha power on the right hemisphere for attention left compared to attention right trials in 
cue, anticipation, and stimulation period. 

Alpha power lateralization showed significantly larger values on the left hemisphere than on the 

right during the cue period (t18 = 2.5; p = 0.023; r = 0.51), anticipation period (t18 = 3.56; p = 0.002; r = 
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0.64), and critically also during dichotic listening to spoken digits (i.e., stimulation period; t18 = 2.55; p 

= 0.02; r = 0.52). Thus, lateralized alpha power significantly differentiated between attention left and 

attention right trials. 

5.3.3 Neural sources of power alpha lateralization 

Figure 5.4 shows results of the beamformer source localization of oscillatory activity. As expected, 

auditory activation (2–6 Hz evoked oscillatory activity at the onset of the first digit) was localized to 

auditory cortex areas (Figure 5.4, left column). 

The three columns on the right in Figure 5.4 show the source localization of alpha power 

lateralization, quantified as (attention left – attention right)/(attention left + attention right). Similarly 

to the estimation of alpha lateralization in sensor space, the neural sources of alpha lateralization were 

analysed separately for the three time periods cue (0–0.5 s), anticipation (0.5–2.3 s), and stimulation 

(2.3–7.9 s). For visualization, we show only those source estimates of alpha power lateralization that 

differed significantly from zero (|z| > 1.96). Figure 5.4 shows that the localization of alpha lateralization 

generally matched the sensor space data (cp. Figure 5.3B), with alpha lateralization values > 0 

(attention left > attention right; red and yellow) on the left hemisphere and values < 0 (attention left < 

attention right; blue and cyan) on the right hemisphere. In the cue period, alpha lateralization was 

mainly localized to parietal cortex in the left hemisphere and to inferior parietal and parieto-occipital 

cortex in the right hemisphere (Figure 5.4, second column from left). In the subsequent anticipation 

period, inferior frontal cortex regions on the left and superior temporal as well as middle frontal cortex 

regions on the right hemisphere contributed additionally to the alpha power lateralization (Figure 5.4, 

third column from left). 

Most critical for the present study were sources of alpha power lateralization in the stimulation 

period, where participants attended spoken digits on one side while they ignored digits on the other 

side. In the stimulation period, insula and parieto-occipital cortex on the left hemisphere exhibited the 

strongest increase in alpha power in attention left compared to attention right trials. On the right 

hemisphere, the increase in alpha power in attention right compared to attention left trials was mainly 

localized to auditory cortex (superior temporal cortex) and inferior parietal cortex. Importantly, the 

localization of alpha lateralization in the stimulation period overlapped with the localization of the 

peak auditory activation in the left and particularly in the right hemisphere (Figure 5.4, white 

outlines). 
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Figure 5.4. Source localization of oscillatory activity. (Left column) Neural activity index (NAI) of 2–6 Hz evoked 
oscillatory activity at the onset of the first digit (2.3–2.8 s). Three columns on the right show source estimates of the alpha 
power (8–12 Hz) lateralization – quantified by (attention left – attention right)/(attention left + attention right) – in cue, 
anticipation, and stimulation period thresholded at a z-value of ±1.96. White outlines indicate area of peak auditory 
activation. 

5.3.4 Alpha lateralization aligns with the external stimulation 

To quantify the lateralization of alpha power (in sensor-space) independent of the contrast between 

attention left and attention right trials, we calculated the alpha lateralization index. This index 

contrasts alpha power at sensors on the same hemisphere as the side of attention (ipsilateral) with 

sensors on the opposite side (contralateral). A positive index shows higher alpha power at ipsilateral 

compared with contralateral sensors. The average alpha lateralization index for correct trials (0 errors) 

and incorrect trials (1–4 errors) is shown in Figure 5.5A. The average lateralization index did not differ 

significantly between correct and incorrect trials in the cue period (0–0.5 s; t18 = 0.27; p = 0.79; r = 

0.06), but was significantly enhanced for correct compared to incorrect trials in the anticipation period 

(0.5–2.3 s; t18 = 2.84; p = 0.011; r = 0.56). In the stimulation period, the increase of the alpha 

lateralization index for correct compared to incorrect trials approached statistical significance (t18 = 

1.84; p = 0.083; r = 0.4). 

Critically, the lateralization index was not constant over time but exhibited regular fluctuations, 

especially during the acoustic stimulation (Figure 5.5A; 2.3–7.9 s). The amplitude of these fluctuations 

at frequencies from 0 to 2 Hz was estimated by fitting cosine functions separately to the lateralization 

index in correct and incorrect trials for each participant. Figure 5.5C shows the average estimated 

cosine amplitude as a function of cosine frequency. Cosine amplitude at frequencies around the 0.67-

Hz digit presentation rate (averaged across 0.5–0.7 Hz) was significantly higher in correct compared to 

incorrect trials (t18 = 3.38; p = 0.003; r = 0.62; Figure 5.5C inset). Note that this difference was not 
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abolished when we controlled for the unbalanced number of correct and incorrect trials through 

stratified sampling (see Methods; t18 = 1.97; p = 0.064; r = 0.42). 

Figure 5.5. Fluctuating alpha lateralization index in the dichotic listening task. (A) Alpha lateralization index 
contrasts ipsi- and contralateral sensors (relative to the side of attention; left/right) in the following way: (ipsilateral – 
contralateral)/(ipsilateral + contralateral). Indices > 0 indicate larger relative alpha power at ipsi- compared to 
contralateral sensors. The graph shows the lateralization index separately for correct trials (0 errors; cyan) and incorrect 
trials (1–4 errors; magenta). Shaded areas indicate ±1 SEM. (B) Alpha lateralization index (black) and cosine function fit for 
a frequency of 0.67 Hz (red) for one exemplary participant in the stimulation period (2.3–7.9 s). (C) Fluctuations of the 
alpha lateralization index during stimulation (2.3–7.9 s) were quantified by fitting cosine functions at frequencies 0–2 Hz 
to each participant’s lateralization index in correct and incorrect trials (for details, see Methods). Cosine amplitude 
quantifies the amplitude of rhythmic fluctuations of the lateralization index, which was significantly enhanced in correct 
compared to incorrect trials (p = 0.003) at frequencies 0.5–0.7 Hz (highlighted with light grey outline) around the digit 
presentation rate of 0.67 Hz. Shaded areas indicate ±1 SEM. Error bar in the inset indicates the 95-% confidence interval 
for the difference in cosine amplitude between correct and incorrect trials. (D) Scatterplot shows the average number of 
errors in incorrect trials as a function of average cosine amplitude at the 0.67-Hz digit presentation rate (averaged across 
0.5–0.7 Hz) in incorrect trials for 19 participants (Spearman correlation; r = –0.59; p = 0.009). 

The circular distance between cosine phases of correct and incorrect trials (averaged across 

frequencies 0.5–0.7 Hz) was significantly non-uniform (Rayleigh test; z = 3.68; p = 0.023; r = 0.44). 
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This indicates that the 0.67-Hz fluctuations of the alpha lateralization index in correct trials (average 

phase; ϕ = 0.94 radians) lagged behind these fluctuations in incorrect trials (average phase; ϕ = 1.04 

radians). Note however that the average cosine phase was close to one (in correct and incorrect trials), 

indicating that peaks of the lateralization index were centered at individual digits, whereas troughs of 

the lateralization index co-occurred with time intervals in-between digits. 

In order to relate the 0.67-Hz fluctuations of the lateralization index to a more fine-grained 

measure of performance, we calculated the Spearman correlation of participants’ cosine amplitude 

(averaged across 0.5–0.7 Hz) in incorrect trials and the average number of errors in these incorrect 

trials (Figure 5.5D). The correlation showed a significant negative relationship (r = –0.59; p = 0.009), 

indicating that participants with a higher 0.67-Hz cosine amplitude in the lateralization index in 

incorrect trials made fewer errors. 

5.3.5 Granger causal influence 

Figure 5.6A shows average inter trial phase coherence (ITPC), alpha power, and alpha lateralization 

index across both experimental conditions (attention left/right) and 19 participants in the stimulation 

period (2.3–7.9 s). Each one of these three neural measures exhibited regular fluctuations with peaks 

centered at digit onset (for ITPC and alpha power) or at the mid-point of spoken digits (for the 

lateralization index). This lag called for a granger causal relationship analysis. 

Figure 5.6. Granger causal influence. (A) Grand average of three neural measures in the stimulation period (2.3–7.9 s): 
inter trial phase coherence (ITPC), alpha power, and alpha lateralization index across all experimental trials and 19 
participants. (B) Mutual granger causal influence for all pairs of neural measures at frequencies 0–4 Hz. Dashed vertical 
lines indicates the digit presentation rate (0.67 Hz). Shaded areas indicate ±1 SEM. * p < 0.05; ** p < 0.01. 

The granger causal influence of ITPC on alpha power was larger than the granger causal influence 

in the reverse direction at 0.67 Hz (Wilcoxon signed-rank test; z = 2.5; p = 0.013; r = 0.57) and at 1.43 

Hz (z = 2.66; p = 0.008; r = 0.61; Figure 5.6B left panel). Similarly, the granger causal influence of ITPC 

on alpha lateralization index at 0.67 Hz was significantly larger than the granger causal influence in the 
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reverse direction (z = 2.66; p = 0.008; r = 0.61; Figure 5.6B middle panel). The mutual granger causal 

influence between alpha power and alpha power lateralization at 0.67 Hz did not differ significantly (z 

= 0.6; p = 0.546; r = 0.14). 

5.4 Discussion 

In a dichotic listening task, we tested whether alpha power lateralization in the MEG indicates 

listeners’ direction of attention to one of two ongoing speech streams. Results can be summarized as 

follows: First, in contrast to prior studies which focused on the anticipation of upcoming stimuli, we 

found alpha power lateralization also while participants were listening to ongoing speech. Second, 

source analysis revealed that alpha power modulations in parietal cortex, but critically also in auditory 

cortex regions underlie the attentional selection of one speech stream in a two-talker situation. Third, 

alpha power lateralization was not constant during selective attention but temporally aligned with the 

word rate. 

5.4.1 Alpha lateralization in an attention-demanding dichotic listening task 

Our behavioural results show that participants confused spoken digits on the ignored side with digits 

on the attended side more often than they reported digits presented on neither side (Figure 5.2A&B). 

This demonstrates strong competition of the two speech streams for attention which implies the need 

for selection of task-relevant and suppression of task-irrelevant speech, i.e., selective attention. 

On the neural level, we observed a lateralization of alpha power while participants anticipated task-

relevant speech on the left or right side (Figure 5.3B, anticipation period), which is in agreement with 

prior work across sensory modalities (e.g., Haegens et al., 2011a; Bauer et al., 2012; Ahveninen et al., 

2013). Critically, alpha power was also lateralized while participants attended to ongoing speech on 

one side and ignored speech on the other side (for similar results in an EEG study, see Kerlin et al., 

2010). Our source localization revealed both parietal as well as auditory cortex regions as neural 

sources of this alpha power lateralization during dichotic listening (Figure 5.4, stimulation period). It 

has been proposed that alpha power impacts neural processing of stimuli through a reduction of 

sensitivity in areas exhibiting high alpha power (for review, see Jensen and Mazaheri, 2010). Similar to 

vision and somatosensation, anatomical connections in the auditory system are predominantly 

contralaterally organized (e.g., Rosenzweig, 1951; Tervaniemi and Hugdahl, 2003). Thus, left auditory 

cortex is relatively more involved in processing sounds from the right ear and vice versa for right 

auditory cortex. Our source localization results suggest that sensitivity of auditory cortex regions is 
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enhanced (i.e., low alpha power) for task-relevant speech presented on the contralateral side, whereas 

sensitivity is reduced (i.e., high alpha power) for task-irrelevant speech on the contralateral side. 

Notably, alpha power lateralization was stronger in right compared to left auditory cortex regions 

during dichotic listening which is in agreement with prior work (Müller and Weisz, 2012; Weisz et al., 

2014) and possibly reflects that right auditory cortex is involved in processing sounds in the whole 

space, whereas left auditory cortex is mainly involved in processing sounds in the right space (Zatorre 

and Penhune, 2001). In prior studies, attentional modulation of alpha power in auditory cortex regions 

was exclusively observed during the anticipation of upcoming sounds (Müller and Weisz, 2012; Frey et 

al., 2014; Weisz et al., 2014). Thus, our results provide the first demonstration of alpha power 

modulation in auditory cortex regions as an underlying neural mechanism for spatial selective 

attention to ongoing speech.  

Apart from auditory cortex regions, we found that parietal cortex regions contributed significantly 

to the alpha power lateralization during the entire trial (Figure 5.4; cue, anticipation, stimulation). 

Parietal cortex is part of a “dorsal attention network” (e.g., Sadaghiani et al., 2010), involved in 

orienting supramodal attention in space (Smith et al., 2010; Banerjee et al., 2011). Patient studies have 

shown that lesions of the inferior parietal lobe can cause distortions in the awareness of the 

contralateral space across sensory modalities (for reviews, see Driver and Mattingley, 1998; Vallar, 

1998; for similar findings after temporal lobe lesions, see Karnath et al., 2001). In sum, we presume 

that the observed alpha power modulation in parietal cortex regions reflects orienting of attention to 

the left or right side of space, whereas alpha modulation in auditory cortex regions implements an 

attentional filter mechanism to suppress processing of task-irrelevant speech and to facilitate 

processing of task-relevant speech (Strauß et al., 2014). 

5.4.2 Alpha lateralization temporally aligns with the input rate 

Our results show that participants’ deployment of high alpha power contralateral to task-irrelevant 

speech and low alpha power contralateral to task-relevant speech (alpha lateralization index; Figure 

5.5A–C) was not constant during selective attention to ongoing speech. Instead, it fluctuated at a rate 

of 0.5–0.7 Hz, close to the digit presentation rate of 0.67 Hz. This is in agreement with dynamic 

attending theory, which states that attention fluctuates in synchrony with regular sensory stimulation 

(Large and Jones, 1999). Critically, strong alpha power lateralization – which presumably indicates 

strong selective attention – co-occurred with spoken digits, whereas alpha power lateralization was 
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reduced in uninformative time periods in-between digits. It has been shown that neural oscillations 

align with the external stimulation so that most critical stimulus segments fall into phases of high 

neural excitability (e.g., Cravo et al., 2013; Lakatos et al., 2013a; Wilsch et al., 2015). Extending these 

findings, we demonstrate here that also a well-studied neural signature of spatial attention (i.e., alpha 

power lateralization) aligns with the inherent regularity of ongoing speech (i.e., the word rate).  

Importantly, our results reveal that the alignment of alpha power lateralization with the external 

stimulation is functionally significant for spatial selective attention. First, the modulation of lateralized 

alpha power at the word rate was larger in correct compared to incorrect trials (Figure 5.5C). This 

indicates that a higher intra-individual modulation of alpha power lateralization is associated with 

more successful spatial selective attention to speech. Second, participants with a larger modulation of 

alpha lateralization in incorrect trials made fewer errors in these incorrect trials (Figure 5.5D), showing 

that the alignment of alpha power lateralization with the speech signal explains inter-individual 

differences in selective attention. These results demonstrate that lateralized alpha power is a key neural 

signature for arguably one of the most relevant cognitive capabilities for speech processing in complex 

environments, i.e., selective attention. More generally, our findings support the often-proposed 

significance of alpha oscillations for effortful speech processing (Weisz et al., 2011; Obleser and Weisz, 

2012; Becker et al., 2013; Wöstmann et al., 2015). 

In agreement with one prior study (Kerlin et al., 2010), we found that alpha power lateralization 

was higher in the beginning of selective attention to one of two competing speech streams but 

decreased toward the end of a trial (Figure 5.5A). Considering our presumption that a larger alpha 

power lateralization indicates stronger spatial selective attention (see above), the decrease in alpha 

lateralization for later presented digits appears sub-optimal. However, we conjecture that alpha power 

lateralization is particularly involved in shifting attention in space. After attention has been shifted to 

task-relevant speech in the beginning of dichotic listening, alpha lateralization thus decreases (cp. 

Kerlin et al., 2010). This interpretation is in agreement with fMRI evidence for greater activity parietal 

cortex regions – which were among the sources of our alpha power lateralization – for switching 

compared to maintaining auditory spatial attention (Shomstein and Yantis, 2006). 

5.4.3 Alpha lateralization – Driven by temporal expectation or external stimulation? 

A question arising from our findings is whether regular fluctuations of the alpha lateralization index 

reflect participants’ temporal expectation of upcoming digits or whether the alpha lateralization index 
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is driven by the regular external acoustic stimulation. To provide a definite answer to this question, 

our experimental paradigm would have to be changed, for instance by including trials with an irregular 

digit presentation rate. If the alpha lateralization index would then nevertheless align with the word 

rate this would indicate that alpha power lateralization can be driven by the external stimulation alone, 

which cannot be temporally expected in irregular trials. 

One prior study in the somatosensory modality found increased lateralization of beta (15–30 Hz) 

but not alpha power at expected time points of stimulus presentation (van Ede et al., 2011). This 

suggests that neural oscillatory power lateralization can reflect participants’ temporal expectations in 

the absence of external stimulation. To the contrary, our analysis of granger causality suggests that 

alpha lateralization was driven by the regular external stimulation. While granger causality is 

commonly used to investigate directed functional connectivity between different brain regions (e.g., 

Bosman et al., 2012), we used this measure to test temporal interdependencies between ITPC, alpha 

power, and alpha lateralization index. The time course of the neural encoding of spoken digits 

(quantified by ITPC) was highly predictive of the 0.67-Hz fluctuations of the alpha power lateralization 

index (Figure 5.6), suggesting that the encoding of each pair of simultaneously presented digits was 

followed by the selection of the digit on the attended side. Moreover, ITPC granger-caused 

fluctuations of alpha power at 0.67 Hz (and also 1.43 Hz), indicating that the neural encoding of the 

external stimulation was predictive of alpha power dynamics more generally. However, granger 

causality does not prove the causal dependence of underlying time courses. Thus, it might also be that 

fluctuations of the alpha lateralization would occur in the absence of any external stimulation when 

participants anticipate the presentation of digits. Future studies could manipulate external stimulation 

and temporal expectation independently to resolve this issue. 

5.4.4 Conclusions 

Our results show that the lateralized power of alpha oscillations in a parietal attention network and in 

auditory cortex regions is informative of spatial selective attention to ongoing speech in a complex 

listening situation. Stronger alignment of alpha lateralization with the word rate predicts more 

successful attentional selection. In sum, alpha power lateralization is an important neural marker to 

understand one of the most abundant cognitive challenges in everyday life, i.e., the attentional 

selection of signals in noise. 
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6 Study 4: Acoustic detail but not predictability affects distraction from 

irrelevant speech 

This study describes a behavioural study of younger and older listeners’ memory for task-relevant 

speech items under distraction from task-irrelevant speech. We asked in how far acoustic detail and 

the predictability of task-irrelevant speech determine how much it draws attention away from task-

relevant speech. 

6.1 Introduction 

In Studies 1–3, we investigated the neural dynamics of selective attention to task-relevant speech. But 

to what degree is task-irrelevant speech drawing listeners’ attention? And more important, does the 

attentional capture of irrelevant speech impede attention to task-relevant target speech? Study 3 

provides initial hints to these questions: Participants confused irrelevant speech items with target 

speech more often than chance would predict. This suggests that irrelevant speech draws attention 

such that the semantic content (i.e., numerical values of spoken digits) captures attention at least on 

some trials, which interferes with attention to target speech. In the present study, we tested whether 

selective attention to target speech items in memory is affected by acoustic detail and predictability of 

irrelevant speech in younger and older listeners. 

Imagine someone is asked to keep a nine-digit telephone number in mind for a short while. To 

minimize the risk of forgetting the serial order of digits, the person will automatically start to rehearse 

the digits in mind. This internal articulatory rehearsal is thought to be implemented in the 

phonological loop, which is a sub-system of working memory (Baddeley and Hitch, 1974; Baddeley, 

1992). In the absence of distraction during encoding and rehearsal of digits, the person will possibly 

succeed at recalling the correct telephone number after a short while. However, what happens if the 

person simultaneously overhears a nearby conversation? Does the irrelevant speech necessarily draw 

attention away from the rehearsal of digits and impede attention to digits in memory? And in how far 

does this depend on acoustic and semantic properties of the irrelevant speech? 

This particular situation is implemented in the irrelevant speech task (e.g., Colle and Welsh, 1976; 

Baddeley and Salame, 1986; Jones and Morris, 1992). Participants are (visually or acoustically) 

presented with a number of items (e.g., digits) they have to keep in memory in serial order. After a 
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retention period, they have to report the items in serial order. The first findings from this paradigm 

constituted the by now well-known irrelevant speech effect: The presentation of irrelevant speech 

during the encoding or retention impedes serial recall more than silence or white noise (e.g., Salame 

and Baddeley, 1987). This finding suggested that irrelevant speech disrupts the internal articulation of 

target items in the phonological loop. Similar results were also found for the presentation of irrelevant 

sounds (e.g., Jones and Macken, 1993; LeCompte et al., 1997; Tremblay et al., 2001), suggesting that 

the phenomenon is not specific to speech materials but rather depends on the presentation of varying 

acoustic items. 

There is some evidence from prior research that acoustic as well as certain semantic features of 

irrelevant speech might affect the degree of interference. Thus, serial recall of target speech improves if 

the intelligibility of irrelevant speech is lowered through acoustic degradation using sine-wave speech 

(Tremblay et al., 2000) or noise-vocoding (Ellermeier et al., 2012). Moreover, serial recall is improved 

if semantics of irrelevant speech is reduced by means of presenting speech from a foreign language 

(Ellermeier et al., 2012) or random word lists (Tun et al., 2002). A shortcoming of the semantic 

manipulations used in prior studies is their low ecological validity since irrelevant speech in everyday 

listening situations is typically from the listener’s native language and linguistically well-formed (i.e., 

not composed of random word strings). In the present study, we combined a well-studied acoustic 

manipulation (noise-vocoding) with an ecologically valid semantic manipulation not tested in the 

irrelevant speech paradigm before, that is, predictability of irrelevant speech. We tested the hypothesis 

that predictable irrelevant speech would be more distracting than unpredictable irrelevant speech. If, 

however, predictability of the unattended irrelevant speech materials would not affect interference, this 

would suggest that predictability requires listeners’ attention in order to be processed. 

One particularly interesting test case for this paradigm is the ageing listener. Cognitive capabilities 

generally decline at an older age (Park et al., 2003), importantly also the ability to ignore task-

irrelevant sounds (Chao and Knight, 1997). Processing speech in noise requires attentional control, 

that is, the focus of attention on target speech and ignorance of noise. Older listeners show deficits in 

attentional control particularly if the noise is perceptually more salient than the signal (Passow et al., 

2012). Research has shown that the semantic content of irrelevant speech affects performance stronger 

in older than younger listeners (Tun et al., 2002; Bell et al., 2008), suggesting that older listeners’ 

attention is more likely drawn by semantic aspects of the irrelevant speech (for similar findings of 

visual distraction in a reading task, see Carlson et al., 1995). 
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We tested younger and older participants’ serial recall of spoken digits under distraction from 

irrelevant speech varying in acoustic detail and predictability. In line with prior research, participants’ 

recall of digits improved under stronger acoustic degradation of irrelevant speech. Predictability of 

irrelevant speech did not affect performance, suggesting that higher predictability does not increase the 

attentional capture of irrelevant speech. 

6.2 Methods 

6.2.1 Participants 

12 younger (mean age: 27.1 years; age range: 23–33; 5 females) and 10 older participants (mean age: 

67.9 years; age range: 61–78; 7 females) took part in this study. All participants were right-handed. 

They gave written consent and were financially compensated for participation.  

6.2.2 Speech materials 

Target speech comprised German digits from 1 to 9, spoken by a trained female speaker. Digits were 

recorded at a sampling rate of 44.1 kHz and were on average 0.6 sec long. All digits were equalized to 

the same root mean squared (RMS) amplitude of –30 dB full scale (FS). We generated 180 digit 

streams by concatenating the nine digits in random order with an onset-to-onset delay of 0.75 sec. The 

average length of digit streams was 6.6 sec (Figure 6.1A). 

Irrelevant speech materials were adopted from a German version of the speech in noise (SPIN) 

sentences ("GSPIN", Erb et al., 2012), which were generated in a similar way as the original English 

SPIN sentences (Kalikow et al., 1977). All GSPIN sentences were composed of five to eight words and 

nine to eleven syllables. GSPIN sentences were spoken by a trained female speaker and recorded at a 

sampling rate of 22.05 kHz. Predictability of the final word in the GSPIN sentences is either high or 

low. A complete list of GSPIN sentences, as well as more details on generation and predictability 

ratings for these sentences can be found in Erb et al. (2012). For the present study, we chose 90 pairs of 

GSPIN sentences. Each sentence pair ended on the same mono- or bisyllabic noun (e.g., “net”) which 

had a high predictability context in one sentence (e.g., “Paul caught the fish in his net.”; translated 

from German) and a low predictability context in the other sentence (e.g., “Paul was talking about the 

new net.”). Average sentence length was 2.1 sec, and did not differ significantly between high 

predictability (2.14 sec) and low predictability sentences (2.12 sec; t178 = 0.8; p = 0.43; r = 0.06). For 

simplicity, we will refer to the task-irrelevant GSPIN sentences as irrelevant speech hereafter. 
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In order to manipulate the spectral detail of irrelevant speech, all GSPIN sentences were noise-

vocoded using three numbers of frequency channels (2ch, 8ch, and 32ch). In detail, sentences were 

divided in 2, 8, or 32 logarithmically spaced frequency channels between 70 and 9000 Hz. The speech 

envelope was extracted in each frequency channel and used to modulate a carrier of random noise in 

the channel’s frequency range (for further details, see Erb et al., 2012). Finally, the signal was summed 

over all frequency channels and the amplitude was equalized to the intensity of spoken digits (–30 dB 

FS). A lower number of channels results in a more severe spectral degradation while the temporal 

information remains largely intact. Thus, fewer frequency channels significantly lower the 

intelligibility of noise-vocoded speech (e.g., Shannon et al., 1995; Obleser and Weisz, 2012). 

6.2.3 Procedure 

Participants were instructed to attend and remember spoken digits and to ignore subsequently 

presented irrelevant speech. Moreover, they were instructed to silently rehearse digits after these were 

presented. Each trial started with the binaural presentation of a stream of nine spoken digits in random 

order (Figure 6.1A). Irrelevant speech comprising three GSPIN sentences was presented 0.5 sec after 

the offset of the last digit (Figure 6.1B). The three sentences had an onset-to-onset delay of 2.67 sec. On 

each trial, three GSPIN sentences of the same predictability (high or low) and the same vocoding level 

(2ch, 8ch, or 32ch) were presented.  

Figure 6.1. Design of the irrelevant speech task. (A) Participants encoded spoken digits from 1 to 9 presented in 
random order. The task was to retain the serial order of digits in memory during the presentation of irrelevant speech 
comprising three GSPIN sentences (B). Predictability of the final word in GSPIN sentences was either high (e.g., “Paul 
caught the fish in his net”) or low (e.g., “Paul was talking about the new net”). GSPIN sentences were spectrally degraded, 
using noise-vocoding with three different numbers of frequency channels (2ch, 8ch, 32ch). (C) After acoustic stimulation, 
participants used the left mouse button to select the digits in the order of presentation from a visually presented array of 
randomly ordered digits. 

During the presentation of all speech stimuli (digits and irrelevant speech), participants saw a 

central fixation cross on a computer screen. After the offset of the irrelevant speech, participants were 

visually presented with an array of digits from 1 to 9, arranged in random order (Figure 6.1C). 

Participants used the left mouse button to select the digits in the order of presentation. To facilitate the 
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choice of digits, individual digits disappeared from the array after they were selected. The next trial 

started after an additional mouse click. 

Participants completed 120 trials, 20 for each condition in the 2 (predictability: high, low) × 3 

(vocoding: 2ch, 8ch, 32ch) design. The order of trials was completely randomized across participants. 

Individual GSPIN sentences could occur more than once (at most three times) during the experiment, 

however not more than once during a single trial. 

6.3 Results 

Figure 6.2A shows average accuracy in the serial recall of digits for younger and older participants as a 

function of digit position, as well as predictability and acoustic detail (# of vocoder channels) of the 

irrelevant speech. Accuracies in the serial recall of digits were submitted to a repeated-measures 

ANOVA with the within-subject factors digit position (1–9), predictability (high, low) and acoustic 

detail of irrelevant speech (vocoding: 2ch, 8ch, 32ch). The between-subject factor was age group 

(younger, older). The main effect digit position was significant (Greenhouse-Geisser correction of p-

value due to violation of sphericity, Mauchly’s test: p < 0.001; F(8, 160) = 67,54; p < 0.001;�K2
P = 0.77). 

This indicates that the accuracy for the recall of digits significantly varied over digit positions. 

6.3.1 Acoustic detail affects task performance  

The main effect acoustic detail was significant (F(2, 40) = 25.61; p < 0.001; K2
P = 0.56). Post-hoc paired 

t-tests revealed that accuracy was significantly higher for 2ch compared to 8ch (t21 = 5.25; p < 0.001; r = 

0.75), for 2ch compared to 32ch (t21 = 6.38; p < 0.001; r = 0.81), but not significantly different between 

8ch and 32ch (t21 = 1.62; p = 0.119; r = 0.33). Thus, participants performed better when the irrelevant 

speech was more severely degraded. Moreover, the digit position × acoustic detail interaction was 

significant (F(16, 320) = 3.08; p < 0.001;�K2
P = 0.13), indicating that the benefit from more severe 

noise-vocoding of irrelevant speech was stronger for digits presented at later positions (Figure 6.2A). 
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Figure 6.2. Accuracy in the irrelevant speech task. (A) Average accuracy of serial recall as a function of digit position for 
all conditions in the 2 (predictability: high, low) x 3 (vocoding: 2ch, 8ch, 32ch) design. Recall accuracy was highest for 
initial digits (digit positions 1–3) and the final digit in the stream (digit position 9) for younger and older participants. (B) 
Recall accuracy averaged across digit positions for younger and older participants. Recall accuracy decreased with more 
acoustic detail (higher number of vocoder channels) of the irrelevant speech. Overall performance was reduced for older 
compared with younger participants. Error bars indicate ± 1 SEM. 

6.3.2 Predictability of irrelevant speech does not impact performance 

Neither the main effect predictability (F(1, 20) = 0.18; p = 0.676; K2
P < 0.01), nor the predictability × 

acoustic detail interaction was significant (F(2, 40) = 0.93; p = 0.401; K2
P = 0.05). To assess in how far 

these null-findings indicate the absence of an effect of predictability or whether our data were just 

insensitive in finding an effect, we calculated the Bayes Factor (using R studio version 0.97.551, and the 

BayesFactor package). When comparing two models, the Bayes Factor indicates how many times more 

likely the observed data are under the alternative compared to the null-model (Dienes, 2014). The 

Bayes Factor indicates support for the alternative model when it is larger than 3 and support for the 

null model when it is smaller than 0.33. 

To compute the Bayes Factor for the main effect predictability, we compared the alternative model 

(random factor: participant, fixed factor: predictability) with the respective null-model (random factor: 

participant). The resulting Bayes Factor was < 0.2, indicating support for the null-model and 

suggesting that predictability had no effect in the present study. For the predictability × acoustic detail 

interaction, we compared the full model (random factor: participant, fixed factors: predictability, 

acoustic detail, predictability × acoustic detail) with the respective null-model containing the same 

factors except the interaction term. The resulting Bayes Factor was < 10-8, providing substantial 

support for the null model and suggesting that the predictability × acoustic detail interaction had no 

effect in the present study. 

For completeness, we also computed the Bayes Factor for the main effect acoustic detail (which was 

highly significant; see above) by comparing the alternative model (random factor: participant, fixed 
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factor: acoustic detail) with the respective null-model (random factor: participant). The resulting Bayes 

Factor was > 107 indicating substantial support for an effect of acoustic detail on accuracy. 

6.3.3 Task performance decreases with age  

The main effect age group was significant (F(1, 20) = 9,55; p = 0.006; K2
P = 0.32), indicating lower 

overall accuracy for older compared with younger participants. Moreover, the digit position × age 

group interaction was significant (F(8, 160) = 2.09; p = 0.039; ;�K2
P = 0.1). Post-hoc independent 

samples t-tests revealed that older participants showed a significantly lower accuracy than younger 

participants only at digit positions 2, 3, 4, 5, and 7 (all p < 0.05; all r > 0.42). None of the remaining 

interactions with age group were significant (all p > 0.15; all�K2
P < 0.05). 

6.4 Discussion 

We tested whether younger and older listeners’ memory for spoken target digits would be affected by 

the attentional capture of irrelevant speech varying in acoustic detail and predictability. Results can be 

summarized as follows: (1) More acoustic detail of irrelevant speech decreased serial recall of target 

speech in younger and older listeners. (2) Predictability of irrelevant speech had no significant impact 

on performance. (3) Overall, younger listeners performed better than older listeners. 

6.4.1 Distraction from irrelevant speech depends on acoustic detail 

The main finding of the present study was a decrease in the serial recall performance of target speech 

items when irrelevant speech with more acoustic detail was presented during the retention of target 

speech in memory. This result is in agreement with prior research showing that serial recall of target 

speech is negatively affected if the intelligibility of irrelevant speech is enhanced (Tremblay et al., 2000; 

Ellermeier et al., 2012). 

Noise-vocoding degrades spectral information in the acoustic signal while the temporal envelope, 

which is particularly important for speech recognition (Shannon et al., 1995), remains largely intact. 

Thus, if ≥ 8 frequency bands are used for noise-vocoding, speech in quiet is fairly intelligible for 

younger (Obleser et al., 2007; Obleser et al., 2008) as well as for older listeners (Sheldon et al., 2008). In 

the present study, irrelevant speech was unintelligibly only in the 2ch condition, but largely intelligible 

for 8ch and 32ch. It is likely that intelligibility of irrelevant speech was driving the significant effect of 

acoustic detail here since statistical analyses revealed that only the unintelligible 2ch condition differed 

significantly from the two intelligible conditions (8ch, 32ch). This is in line with results of one previous 
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study where the strongest improvement in the recall of target speech was also observed when vocoder 

bands increased from 2ch (unintelligible) to 20ch (intelligible) (Ellermeier et al., 2012). In the present 

study, irrelevant speech was presented during the retention period when participants internally 

articulated the target speech items in the phonological loop of working memory (Baddeley and Hitch, 

1974). Our results thus indicate that participants’ rehearsal in the phonological loop was impaired by 

the presence of intelligible task-irrelevant speech. 

One possible interpretation is that intelligible irrelevant speech draws participants’ attention away 

from the internal rehearsal of target speech items. Research has shown that listeners recall a significant 

amount of irrelevant speech in a surprise recognition test (Tun et al., 2002), indicating that irrelevant 

speech cannot be ignored entirely. Successful internal rehearsal of target speech requires that attention 

is focused on target speech items in working memory. If attention is drawn to irrelevant speech, it 

might partially occupy the limited capacity of working memory (Miller, 1956; Simon, 1974; Cowan, 

2001), which then impedes memory for target speech (for a review on interactions between attention 

and working memory, see Awh et al., 2006). This interpretation is also supported by neuroimaging 

data (Gisselgard et al., 2004) showing that irrelevant speech modulates activity in dorsolateral 

prefrontal cortex similarly to verbal working memory load. 

6.4.2 Predictability of irrelevant speech does not affect memory for target speech 

One unexpected result of the present study was that predictability of irrelevant speech did not 

significantly impact younger and older participants’ serial recall of target speech items. The observed 

small Bayes Factors (< 0.3) for the main effect predictability and the interaction with acoustic detail 

support the absence of an effect of predictability rather than indicating insensitivity of the data (for 

detailed information on the statistical approach, see Kruschke, 2011). This finding somewhat 

contradicts previous studies, where the semantic content of irrelevant speech affected older 

participants’ memory for target stimuli (Tun et al., 2002; Bell et al., 2008). The irrelevant speech 

materials from the present study were used previously as task-relevant speech, where predictability 

significantly improved speech comprehension under noise-vocoding with 4ch (Hartwigsen et al., 2014) 

and 8ch (for similar speech materials in English, Obleser et al., 2007). Thus, we conclude that 

predictability of speech requires attention to affect performance. Since participants in the present 

study were instructed to ignore the irrelevant speech, predictability did not affect task performance. 
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6.4.3 Older listeners show a decreased memory for target speech 

Although the overall pattern of results was similar for both age groups (Figure 6.2), older listeners 

performed generally worse compared with younger listeners. Memory capacity typically shows a 

decrease with age (Fisk and Warr, 1996; Baltes and Lindenberger, 1997; Nilsson, 2003), which likely 

affects older participants’ ability to retain nine items in serial order in memory. Moreover, hearing 

acuity is generally reduced in older listeners (Frisina, 2009). Reduced hearing acuity likely leads to a 

higher demand of encoding target speech, which causes additional load in working memory (see 

Pichora-Fuller et al., 1995; Wingfield et al., 2005; Lunner et al., 2009). Thus, a general decline in older 

listeners’ performance in the irrelevant speech task was a highly expected result. 

6.4.4 Conclusions 

Our results suggest that the attentional capture of irrelevant speech increases with higher speech 

intelligibility. Contrary, predictability of speech requires attention to be processed and thus did not 

affect distraction from ignored irrelevant speech. While memory for speech generally declines at an 

older age, the degree of distraction from more intelligible or more predictable irrelevant speech does 

not increase at an older age. Future studies could use electrophysiological measures described in 

previous chapters (e.g., alpha power dynamics, neural phase-locking) to foster an understanding of the 

underlying brain mechanisms of auditory distraction in the irrelevant speech paradigm (Kopp et al., 

2004; Schlittmeier et al., 2011). 
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7 General Discussion 

The present thesis comprises four studies which investigate the behavioural and neural dynamics of 

selective attention to speech under demanding listening conditions. A major objective of this thesis is 

to develop an initial framework to explain in how far mechanisms of selective attention might 

counteract acoustic degradation to support speech comprehension (see section 7.6). Since this research 

goal requires also to understand to what extent attention mechanisms are limited in populations that 

experience particular difficulties in attention-demanding situations, three studies of this thesis 

compare younger with older listeners. Detailed discussions of all experimental results can be found in 

the discussion sections of Studies 1-4. In the present chapter, I will adopt a broader perspective to 

integrate results of individual studies into a common framework of the neural dynamics of selective 

attention to speech in demanding listening situations. The following section summarizes the major 

results and their interpretations as answers to the research questions in section 1.3. 

7.1 Summary of experimental results 

The present thesis started out with an electroencephalography (EEG) study of the event-related 

potential (ERP) in response to degradation of the temporal fine structure in speech materials. Study 1 

revealed that acoustic degradation guides listeners’ allocation of attention in an auditory number 

comparison task. In detail, larger amplitudes of the contingent negative variation (CNV) indicated that 

the allocation of attention increased when listeners were faced with more degraded acoustics. The 

reliability of this result was approved by replication in a different sample of participants in Study 1.2. 

Important for the framework proposed below (see section 7.6), speech comprehension decreased with 

acoustic degradation but increased with the amplitude of the CNV, showing that neural mechanisms 

of attention counteract acoustic degradation. Considering age effects, the acoustics-driven modulation 

of the CNV was preserved in older listeners, speaking for a robust allocation of attention, at least when 

overall acoustic conditions are carefully adapted to older listeners’ requirements. In a follow-up 

experiment, Study 1.2 manipulated task-relevance by offering monetary incentives on each trial. 

Increasing incentives from 1 to 5 cent did not affect CNV amplitude but the CNV was larger in this 

follow-up experiment compared to the main experiment where no incentives were offered (Study 1.1). 

Larger CNV amplitude thus speaks for the enhanced allocation of attention in a context of high task-

relevance. 
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In Study 2.1, we analysed brain oscillatory mechanisms in the same dataset used in Study 1.1. Study 

2.1 found that increased acoustic detail but also better predictions (i.e., of the numerical size of the 

second digit in the auditory number comparison task) led to reduced power of neural alpha 

oscillations. Interestingly, acoustic detail affected behavioural responses and neural alpha power 

dynamics stronger in older listeners, indicating that attention to speech in the presence of distraction 

is particularly dependent on acoustic conditions at an older age. Across age groups, stronger alpha 

power modulation predicted lower subjective difficulty in everyday listening situations, suggesting that 

neural attention mechanisms compensate for acoustic challenges. 

In an additional analysis of the same dataset, Study 2.2 showed that listeners’ neural responses 

exhibited a characteristically different neural phase-locking to the temporal envelopes of attended 

speech (i.e., spoken digits) vs unattended speech (i.e., background masker). Thus, attention modulates 

neural responses to basic acoustic features, possibly to segregate attended and unattended speech 

signals. Reliability of results from Studies 2.1 and 2.2 was further established by replication of the 

prediction-effect on neural alpha power as well as the neural phase-locking to attended and 

unattended speech in a similar paradigm in a different sample of older listeners (unpublished data; 

analysed by Dunja Kunke from the research group “Auditory Cognition” at the MPI in Leipzig, 

Germany). 

Study 3 investigated in a magnetoencephalography (MEG) experiment in how far the power of 

neural alpha oscillations reflects which auditory stream is in the listeners’ current focus of attention. In 

a dichotic listening paradigm, Study 3 found that recording sites over the hemisphere ipsilateral to the 

attended speech signal show a relative increase of alpha power, whereas contralateral recording sites 

show a relative decrease of alpha power. The sources of this alpha power lateralization were found in 

parietal, frontal, and auditory cortex regions. Considering the functional inhibition framework of 

alpha oscillations (Jensen and Mazaheri, 2010), these results suggest that neural activity in supramodal 

(i.e., parietal) and primary sensory (i.e., auditory cortex) regions is regulated to attain spatial selective 

attention. In other words, these findings indicate that alpha power modulations implement an 

attentional filter mechanism that enhances neural processing of the signal and suppresses processing of 

the noise. Interestingly, alpha power lateralization was not constant during selective attention to 

ongoing speech but fluctuated at the word rate. Larger amplitudes of these fluctuations predicted 

better recall of attended speech items, suggesting that fluctuating alpha power lateralization at the 

word rate supports selective attention to speech in noise. 
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Finally, Study 4 explored in a behavioural experiment which features of an irrelevant speech signal 

determine how much it interferes with memory for target speech. Using an irrelevant speech paradigm, 

Study 4 found that more acoustic detail (i.e., a larger number of vocoder bands) but not higher 

predictability of irrelevant speech impairs task performance. Although overall performance decreased 

in older listeners, the relative increase of distraction from task-irrelevant speech with more acoustic 

detail was unchanged at an older age. These results indicate that the degree to which irrelevant speech 

captures attention increases with higher intelligibility through more preserved acoustic detail. To the 

contrary, predictable irrelevant speech does not capture attention more than unpredictable irrelevant 

speech. 

Taken together, the four studies of this thesis revealed behavioural and neural signatures of 

selective attention to speech in noise. In the following section, I will integrate the observed neural 

signatures to draw a more coherent picture of how neural dynamics reflect the attentional selection of 

relevant signals despite noise. 

7.2 Integrating the various neural signatures of selective attention 

In the present thesis, we found three neural signatures reflecting demands on attention; namely the 

contingent negative variation (CNV, Study 1), the power of neural alpha oscillations (Studies 2.1&3), 

and the neural phase-locking to the temporal envelope of speech (quantified by the cross-correlation 

method, Study 2.2). But in how far are these neural signatures interrelated or do even reflect the same 

underlying brain process? A first approach to answer this question is to test for statistical dependencies 

among these neural signatures. Studies 1.1, 2.1, and 2.2 are all based on the same dataset of eighteen 

younger and twenty older participants. Thus, I conducted a post-hoc analysis to test for correlations 

among neural signatures observed in these studies. In detail, I extracted the linear coefficients (i.e., 

slopes) quantifying the effect of increasing acoustic detail on (1) CNV magnitude (in the significant 

cluster in Study 1.1), (2) alpha power (averaged across clusters A1 and A2 in Study 2.1), and (3) neural 

phase-locking to the envelope of attended speech (averaged across cross-correlation time-lags 110–230 

ms in Study 2.2). There was no significant relation among linear coefficients from different studies 

(pairwise linear Pearson’s correlations; all r < 0.21; all p > 0.2). Although this analysis does not prove 

that these neural signatures are entirely independent, it at least suggests that CNV, alpha power, and 

neural phase-locking do not reflect the very same underlying brain process. Thus, a more nuanced 

discussion of these neural signatures is required, which follows below. 
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An important dimension on which CNV, alpha power, and neural phase-locking diverge is their 

temporal occurrence. Study 1 has shown that the CNV is triggered by the onset of the distracting 

speech masker. With more severe acoustic degradation, the CNV increases already before task-relevant 

digits are presented in the auditory number comparison task. Thus, we interpreted larger CNV 

magnitude to reflect increased allocation of attention in anticipation of higher listening demands. This 

is in agreement with prior studies that found task-related modulations of the CNV prior to the onset of 

target stimuli (e.g., Rebert et al., 1967; McCallum and Walter, 1968; Rockstroh et al., 1993). Thus, the 

most critical time period for the CNV is before the onset of (speech) stimuli. It is in this time period 

where the CNV indicates the degree of attention allocation. To the contrary, neural phase-locking to 

the temporal envelope of speech cannot take place in anticipation but only in response to a speech 

stimulus. Study 2.2 has shown that the EEG signal differentially phase-locks to the temporal envelope 

of attended and unattended speech with a time-lag of ~170 ms. Obviously, the attentional selection of 

an auditory object cannot take place before the object is presented. Thus, in contrast to the CNV which 

reflects the allocation of attention prior to target speech onset, neural phase-locking reflects whether 

an ongoing speech signal is attentionally selected (with a temporal delay commonly ranging between 

100 and 200 ms; see also Ding and Simon, 2012; Zion Golumbic et al., 2013; Hambrook and Tata, 

2014; Kong et al., 2014). 

The CNV and neural phase-locking are measures of evoked activity, which means that they are 

strictly time- and phase-locked to the acoustic stimulation (for a more detailed comparison of evoked 

and induced activity, see section 2.3.2). In contrast, induced alpha oscillations are not necessarily time-

locked to sensory events. This becomes most obvious in memory paradigms, where alpha power 

modulations are observed in a delay interval that is free of any sensory stimulation (e.g., Jensen et al., 

2002; Sauseng et al., 2009; Obleser et al., 2012). In Study 2.1, alpha power modulations were observed 

during the encoding of task-relevant digits and also in the absence of task-relevant speech during the 

prediction of the second digit. In Study 3, alpha power modulations were observed both during the 

anticipation and during the actual presentation of speech stimuli. These observations demonstrate that 

opposed to the CNV and neural phase-locking, alpha power modulations can be detached from the 

external acoustic stimulation. Based on this and other observations (for direct neural evidence, see e.g., 

Buffalo et al., 2011; van Kerkoerle et al., 2014), it has been proposed that alpha oscillations do not 

directly reflect perceptual processing, but rather a top-down mechanism to regulate the processing of 

relevant and irrelevant information (e.g., Jensen et al., 2012; Klimesch, 2012). 
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But what are the underlying brain physiological mechanisms of these three neural signatures of 

selective attention? Generally, fluctuations in the M/EEG signal arise from changes in the excitability 

of the underlying neural tissue (e.g., Buzsaki and Draguhn, 2004; Lakatos et al., 2005). Regarding the 

CNV, it has been proposed that slow cortical potentials of negative polarity are likely generated by the 

depolarization of cortical pyramidal cells (Raichle, 2011), indicating a state of enhanced neuronal 

excitability. Thus, a larger CNV possibly indicates enhanced excitability, which might support selective 

attention to barely perceptible stimuli. Following this line of argumentation, phase-locking of 

fluctuations in the M/EEG signal to the speech envelope reflects the alignment of phases of high and 

low excitability to the temporal structure of speech. In particular, neural phase-locking to the speech 

signal might indicate that phases of high excitability align to critical parts of the attended speech signal, 

whereas phases of low excitability align to acoustic events of unattended speech (Ahissar et al., 2001; 

Nourski et al., 2009; Giraud and Poeppel, 2012). This interpretation is in agreement with studies 

showing that neural oscillations align with the external stimulation so that most critical stimulus 

segments fall into phases of high excitability (e.g., Henry and Obleser, 2012; Cravo et al., 2013; Lakatos 

et al., 2013a; Wilsch et al., 2015). Finally, in how far does alpha power capture fluctuations in neuronal 

excitability? It has been shown that neuronal excitability varies over the course of an alpha cycle (e.g., 

Dugue et al., 2011). Excitability is highest in the trough of an alpha cycle, evidenced by increased 

neuron firing rates (e.g., Haegens et al., 2011b) and improved stimulus detection (e.g., Busch et al., 

2009; Strauß et al., 2015). If oscillations at the alpha frequency are shallow (i.e., low alpha power) the 

high-excitability phases are prolonged. To the contrary, large amplitudes of alpha oscillations (i.e., 

high alpha power) reflect reduced high-excitability phases and thus decreased neural activity (e.g., 

Klimesch et al., 2007; Haegens et al., 2011b). In consequence, alpha power has been proposed to 

support selective attention, through inhibition (vs enhancement) of activity in brain regions that are 

task-irrelevant (vs task-relevant) (Jensen and Mazaheri, 2010; Foxe and Snyder, 2011; Klimesch, 2012). 

Taken together, CNV, alpha power, and neural phase-locking reflect temporally and functionally 

distinct mechanisms of attention. The CNV is triggered before the onset of task-relevant speech and 

reflects the anticipatory allocation of attention. Neural phase-locking follows the speech signal with a 

time-lag of a few hundred milliseconds and segregates attended and unattended speech on a neural 

level. Alpha power is not necessarily temporally bound to the sensory stimulation and reflects the 

inhibition of task-irrelevant brain areas and processes. 
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7.3 Revisiting early vs late selection 

All four studies in the present thesis used experimental paradigms requiring participants’ to 

comprehend one speech signal despite acoustic distraction (i.e., noise). One conjecture of this thesis is 

that selective attention supports speech comprehension, presumably through signal enhancement and 

noise suppression. To understand how attention selects task-relevant speech from the plethora of 

sounds arriving at the ear, it is crucial to consider at which level of processing the noise is filtered out 

and the target speech signal is selected for further processing. Thus, in this section, I will integrate the 

results from this thesis into the early and late selection theories of attention (see also section 1.1.1). 

Early selection theory states that the unattended signal is filtered out on the basis of fundamental 

physical features such as pitch or location (Broadbent, 1958). With respect to brain imaging, it follows 

from early selection theory that attention modulates neural responses to basic sensory features (e.g., 

temporal structure) at “early” processing stages (e.g., in auditory cortex). To the contrary, late selection 

theory holds that the unattended signal is filtered out after higher-level features such as the semantic 

information are extracted (Deutsch and Deutsch, 1963). Thus, it follows from late selection theory that 

attention modulates neural responses to higher-level features at “late” (i.e., non-primary) processing 

stages (Serences and Kastner, 2014). 

Studies 1 and 2.1 do not lend unequivocal support to either early or late selection theory. In Study 

1, larger amplitudes of the contingent negative variation (CNV) in the EEG indicated increased 

allocation of attention under more degraded acoustic conditions. This result demonstrates that basic 

acoustic features guide the preparatory allocation of attention in anticipation of a demanding listening 

task. However, this finding does not reveal whether the attentional selection of the signal is 

accomplished on the basis of fundamental or higher-level features. In Study 2.1, stronger modulations 

of neural alpha power indicated that acoustic detail and also predictions about upcoming speech 

content facilitated neural mechanisms of selective attention. Again, these results can however not 

provide any evidence whether selective attention is implemented at early or late processing stages. 

Study 2.2 provides more explicit support for the early selection theory. The main result of this study 

was the differential phase-locking of the neural response to the temporal envelopes of attended and 

unattended speech (for similar results, see e.g., Ding and Simon, 2012; Hambrook and Tata, 2014; 

Kong et al., 2014). The temporal envelope constitutes a basic physical feature of the speech signal that 

can be extracted from the sound waveform (Smith et al., 2002). Findings of Study 2.2 thus demonstrate 

that attention modulates in how far basic acoustic features are processed neurally, which is in 
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agreement with early selection theory. Furthermore, also Study 3 supports early selection theory by 

showing that attention modulates the power of alpha oscillations at comparably early stages of 

processing, i.e., in auditory cortex regions. In detail, this study revealed that listeners’ direction of 

spatial selective attention in a dichotic listening task modulates alpha power in parietal, frontal, and 

importantly also in auditory cortex regions. This is in agreement with evidence from fMRI studies that 

found attentional modulations of neural activity in early visual areas (V1, Gandhi et al., 1999; LGN, 

O'Connor et al., 2002). Results of Study 3 thus suggest that attention enhances acoustic features of the 

speech signal and suppresses acoustic features of the noise in auditory cortex regions, possibly to 

reduce noise-interference on subsequent processing stages (for a more nuanced discussion of these 

results, see section 5.4). Taken together, electrophysiological results from Studies 2.2&3 indicate that 

the attentional selection of target speech sets in at early processing stages where basic acoustic features 

(e.g., temporal envelope, spatial location) are analysed, which is in line with the early selection theory. 

In addition to the electrophysiological evidence (see above), Study 4 provides behavioural support 

for the early selection theory. In this study, basic acoustic features (i.e., number of vocoder bands) but 

not semantic features (i.e., final-word predictability) of unattended speech had an impact on listeners’ 

memory for attended speech. Basic acoustic features of the unattended signal affected task 

performance, showing that they were processes. In contrast, semantic features of the unattended signal 

had no impact on task performance, suggesting that unattended speech was “filtered out” before 

semantic features were processed. Although results of this thesis are in agreement with early rather 

than late selection theory, it is important that they do not show that late selection does not take place at 

all. It is likely that in different task settings, attentional modulation of neural activity would occur also 

at later processing stages (e.g., Vogel et al., 1998). Moreover, brain imaging findings of attentional 

modulations at early processing stages (e.g., in auditory cortex in Study 3) might be driven by feedback 

from later processing stages at which semantic features of attended and unattended signal are 

processed. Thus, it is conceivable that attentional selection of speech in noise is implemented at early 

and also late processing stages. However, based on our results, I consider it unlikely that selective 

attention to speech in noise is realized by late selection alone (see also Serences and Kastner, 2014). 

7.4 Revisiting selective attention in younger and older listeners 

Hearing acuity (Brant and Fozard, 1990) and cognitive capabilities (Park et al., 2003) show a negative 

trajectory with age, which might explain listening difficulties of the elderly (Humes, 1996; Pichora-
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Fuller and Souza, 2003; Wingfield et al., 2005). In this regard, it might be surprising that this thesis 

found only few age-differences in behavioural and neural responses in speech comprehension tasks. In 

Studies 1.1 and 2, individual adjustments of stimulus materials systematically equalized younger and 

older listeners’ overall task accuracy to the same level. In detail, stimulus intensity was adapted to 

participants’ audiometric thresholds (Moore et al., 1998) and an adaptive tracking procedure was 

applied to estimate the signal to noise ratio (SNR) required to perform at ~71 % correct (Levitt, 1971). 

Important for the present thesis, older participants’ individual acoustic adjustments were predictable 

from their cognitive capabilities (i.e., working memory capacity; see Figure 3.2). Older listeners with 

larger working memory capacities were able to perform the auditory number comparison task at lower 

SNRs. In line with other studies, this result demonstrates that speech comprehension in demanding 

listening conditions does not only depend on hearing acuity, but also on cognitive functioning (e.g., 

Pichora-Fuller, 2003a; Lunner et al., 2009; Neher et al., 2009). One interpretation is that working 

memory is required to fill in or to infer missing information of degraded acoustic input in order to 

match it to a phonological representation in long term memory (Rönnberg et al., 2013). In 

consequence, it is likely that our individual acoustic adjustments compensated not only for decreased 

hearing acuity but also for the decline in cognitive capabilities at an older age. This has two important 

implications: First, this might explain why this thesis found relatively few age-differences in 

behavioural and neural responses. Second, this demonstrates the tight interdependencies between 

cognitive functioning and acoustic input degradation, which are further elucidated on in the 

framework proposed below (see section 7.6). 

But how are similarities and differences between age groups in Studies 1.1, 2, and 4 interpreted? 

Study 1.1 found that acoustic conditions guide the preparatory allocation of attention similarly in 

younger and older listeners. Across age, listeners increase the allocation of attention if degraded 

acoustics indicate high demands on attention for speech comprehension. Our control experiment 

(section 3.1.3.5) has shown that this allocation of attention is partly automatic and partly driven by 

expected task difficulty. Based on the same dataset, Study 2.2 found no age-effect on listeners’ neural 

phase-locking to the temporal envelope speech. Preserved acoustic detail improved the segregation of 

the temporal envelopes of attended and unattended speech on a neural level. Taken together, results of 

Studies 1.1 and 2.2 suggest that the preparatory allocation of attention and the attentional modulation 

of neural phase-locking to speech can be preserved at an older age, given that acoustic conditions are 

carefully adapted to individual requirements. 
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In Study 2.1, older compared with younger listeners’ demands on attention were reduced more 

strongly with increasing acoustic detail, evidenced through a larger behavioural benefit and a larger 

decrease in neural alpha power. But how substantial are these age-effects in comparison to other 

studies on differences between age groups in the area of neuropsychology? To arrive at an initial 

answer to this question, I compared effect sizes of age-effects in Study 2.1 to effect sizes of six studies 

from different groups, which also report significant two-way interactions with age group on 

behavioural and/or neuroimaging data (Tun et al., 2002; Gazzaley et al., 2007; Gazzaley et al., 2008; 

Zanto et al., 2010; Meister et al., 2012; Passow et al., 2014). Partial eta-squared effect sizes in Study 2.1 

(ranging between 0.085 and 0.444) were comparable or even larger than effect sizes in these other 

studies (ranging between 0.0446 and 0.303). Partial eta-squared values of 0.01, 0.06 and 0.14 indicate 

small, medium, and large effects, respectively (Cohen, 1969). In sum, although this effect size 

comparison has by far not the status of a systematic meta-analysis, it at least suggests that the observed 

age-effects in Study 2.1 are of medium to large size and considerable in the field of neuropsychology. 

Thus, age-effects in Study 2.1 require a thorough interpretation. Prior work has shown that older 

listeners experience difficulties in ignoring salient task-irrelevant sounds (Chao and Knight, 1997; Tun 

et al., 2002; Passow et al., 2012), which indicates a decline in attentional control at an older age. In this 

regard, findings of Study 2.1 might reflect that older listeners are generally more dependent on the 

external acoustic input, whereas younger listeners are less driven by acoustic features and relatively 

more by listening strategies such as the prediction of upcoming speech content. Anecdotal evidence 

for this interpretation comes also from our participants’ subjective reports after accomplishing the 

auditory number comparison task (Studies 1&2). Most of the older participants expressed their 

interest in the audiobook which served as the task-irrelevant speech masker. In particular, they asked 

the experimenter about the content and narrator of the audiobook. In contrast, younger participants 

did not show any interest in the task-irrelevant audiobook. Although this observation provides no 

empirical evidence, it is in agreement with the interpretation that older listeners’ focus of attention is 

particularly dependent on the acoustic input, which is dominated by the task-irrelevant audiobook in 

our auditory number comparison task. Interestingly, older listeners’ dependence on the acoustic 

stimulation can lead to decrements or improvements of speech comprehension, depending on the task 

setting. If the acoustic stimulation draws attention to salient but task-irrelevant stimuli, task 

performance decreases at an older age (Passow et al., 2012; Passow et al., 2014). However, if salient 

acoustic cues such as preserved temporal fine structure support speech comprehension, task 
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performance increases particularly strong at an older age (Study 2.1). Future studies could test the 

same group of younger and older adults in both of these task settings to examine the validity of our 

conjecture that older listeners are more dependent on the acoustic stimulation. 

In contrast to Studies 1.1 and 2, Study 4 did not include individual adjustments of acoustic 

conditions to younger and older listeners’ requirements. In the irrelevant speech task, overall 

performance was thus lower for older compared with younger adults. This finding was likely due to 

reduced working memory capacity in older adults (e.g., Salthouse and Kersten, 1993; Fisk and Warr, 

1996), which impairs the serial recall of digits in the irrelevant speech task. In addition, it might be that 

older listeners were more distracted from irrelevant speech, which interfered with attention to the 

mental rehearsal of digits. Critically, increases in performance with acoustic degradation were 

unaffected by listeners’ age. Thus, although the general distraction from irrelevant speech might 

increase at an older age (Bell et al., 2008), acoustic and semantic features of irrelevant speech do not 

necessarily increase the degree of distraction in an age-specific manner (however, see Tun et al., 2002). 

7.5 Limitations of the present research 

It is important to note some limitations of the experimental work of this thesis. First, our analysis of 

age-effects was limited to the contrast of two groups of younger (20–30 years) and older adults (60–80 

years) in Studies 1.1, 2, and 4. Thus, this thesis does not reveal the underlying trajectory of attention 

mechanisms as a function of age. Other studies found that attentional control increases from middle to 

late childhood (Passow et al., 2013) and decreases again from young to late adulthood (Passow et al., 

2012), suggesting an inverted u-shape function of attentional control with age. However, in how far 

does hearing loss affect this change in attention mechanisms with age? Hearing loss often starts in the 

4th decade of life (Bhatt et al., 2001; Jennings and Jones, 2001); an age group not examined in this 

thesis. Thus, this thesis does not reveal in how far age-related changes in neural dynamics are driven 

by hearing loss itself, hearing loss-induced structural and functional reorganization of the auditory and 

neural system (e.g., Syka, 2002; Tremblay and Ross, 2007; Peelle et al., 2011), cognitive decline (Park et 

al., 2003), or an interaction among these factors (Wingfield et al., 2005). Furthermore, younger and 

older listeners in this thesis were not matched for educational and socioeconomic status, which 

complicates the interpretation of the underlying mechanisms driving the observed age-effects. One 

desirable solution to these limitations would be the study of longitudinal changes of neural 

mechanisms for speech comprehension from middle to late adulthood. 
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Second, in Studies 1.1 and 2 we made a great effort to carefully adapt the listening conditions (i.e., 

overall stimulus intensity and SNR) to younger and older listeners’ requirements. Adjustments were 

necessary from a practical point of view, since fixed acoustic conditions across participants would 

exceed the relatively narrow dynamic range in which acoustic stimuli modulate common accuracy 

measures in speech comprehension tasks. That is, if acoustic conditions are too poor or too favourable, 

listeners perform at chance level (i.e., 50 % correct in case of two response options) or at ceiling (i.e., 

100 % correct), respectively. This would abolish effects of independent variables on response accuracy. 

However, the disadvantage of individual adjustments is that they might obscure existing age-effects 

that could be observed without these adjustments (see also Schneider et al., 2000). For instance, it 

might be that sensitivity to temporal fine structure decreases due to a decline of auditory acuity at an 

older age (e.g., Grose and Mamo, 2010; Lunner et al., 2012; Moore et al., 2012). If acoustic conditions 

are carefully adjusted to compensate for inter-individual differences in auditory acuity, it might be that 

also age-effects on sensitivity to temporal fine structure are reduced. In order to understand the effects 

of individual adjustments on study results, it would thus be desirable to conduct experiments with and 

without these adjustments in the same participants in two separate sessions (although this necessitates 

control of possible learning effects between the two test sessions). 

Third, the present thesis tested participant’s neural and behavioural dynamics of attention 

mechanisms exclusively in auditory (speech) paradigms. It is thus an open question how specific the 

observed results are to the auditory modality. For instance, it might be that similar alpha power 

modulations as in Study 2.1 would also be observed for the degradation of visual or somatosensory 

stimuli. Since alpha power modulations have been observed across modalities (somatosensation: van 

Ede et al., 2011; audition: Weisz et al., 2011; vision: Bauer et al., 2012), it is likely that they constitute a 

general neural mechanism to control attention in different sensory modalities. A thorough 

differentiation of neural signatures in the M/EEG between different modalities would benefit from the 

combination with neuroimaging methods with a higher spatial resolution such as fMRI (e.g., Debener 

et al., 2006; Walz et al., 2013; Scharinger et al., 2014). Thus, combined M/EEG-fMRI studies could 

reveal whether neural signatures of attention are functionally similar across modalities, but localized to 

sensory-specific brain regions depending on the stimulus modality. 
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7.6 A framework for the role of attention for speech comprehension under 

demanding acoustic conditions 

Put simply, acoustic degradation decreases speech comprehension, whereas enhanced attention might 

improve speech comprehension. In the present thesis, we found that neural signatures in the M/EEG 

reflect demands on attention, as well as the use of acoustic and predictive cues to overcome acoustic 

degradation. Importantly, modulation of neural activity also predicts the success of speech 

comprehension in demanding listening tasks (Studies 1.1, 2.1, & 3). In this section, I will argue that 

acoustic degradation and attention not only have opposing effects speech comprehension, but that 

enhanced attention can compensate for the detrimental effects of acoustic degradation. 

Figure 7.1 illustrates the proposed framework for the role of attention for speech comprehension 

under acoustic degradation. The major presumption of this framework is that speech comprehension 

depends on the ratio between acoustic degradation and attentional control (x-axis in Figure 7.1B: 

attentional control/acoustic degradation). Attentional control describes the volitional (i.e., top-down) 

selection of a task-relevant signal and the suppression of task-irrelevant noise (e.g., Hill and Miller, 

2010). Attentional control can vary both on a broader time scale as a function of age (e.g., Chao and 

Knight, 1997; Passow et al., 2012) but also from one moment to the next due to e.g., lapsing attention 

(O'Connell et al., 2009). Acoustic degradation in the present thesis refers to the deterioration of an 

acoustic input signal through masking with noise (e.g., Brungart et al., 2001) or through the distortion 

of spectral features (e.g., Shannon et al., 1995). The proposed framework applies to listening situations 

involving some kind of acoustic degradation but not directly to ideal listening conditions in a silent 

acoustic background. 

In general, three areas concerning the ratio of attentional control and acoustic degradation can be 

differentiated. First, if acoustic degradation dominates over attentional control, speech comprehension 

is poor (red area in Figure 7.1). Second, speech comprehension is most dynamic in contexts where 

acoustic degradation and attentional control counterbalance each other (yellow area in Figure 7.1). 

Third, if attentional control dominates over acoustic degradation, speech comprehension is effortless 

and attention resources are eventually available for other tasks (green area in Figure 7.1). In the 

following, I will outline in how far experimental results from the present thesis support this 

framework. 
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Figure 7.1B assigns results from this thesis to the three areas of the proposed framework. It is 

obvious that most of our research targeted the area where speech comprehension is most dynamic, i.e., 

the area where the negative effects of acoustic degradation and the compensatory mechanisms of 

attentional control are relatively balanced (yellow area in Figure 7.1). This has mainly practical reasons 

since experimental manipulations in this area most likely lead to observable effects on speech 

comprehension. But to what extent do our results support the opposing effects of acoustic degradation 

and attentional control in this area? Three studies of this thesis found evidence that stronger 

modulations of neural attention mechanisms correlate with improved speech comprehension. First, 

larger magnitude of the contingent negative variation (CNV) predicted better performance in the 

auditory number comparison task (see Figure 3.4). Second, listeners with stronger alpha power 

modulations as a function of acoustics and predictiveness of speech reported lower effort of speech 

comprehension in demanding listening situations in everyday life (see Figure 4.5A). Third, listeners 

who showed stronger modulations of alpha power lateralization at the presentation rate of two 

concurrent speech streams made fewer errors in the report of task-relevant speech in a dichotic 

listening task (see Figure 5.5D). Taken together, these findings demonstrate that neural attention 

mechanisms can counteract acoustic degradation to support speech comprehension. 

Figure 7.1. Framework of the role of attention for speech comprehension under demanding acoustic 
conditions.(A) An initial framework explaining how the ratio of attentional control and acoustic degradation shapes 
speech comprehension. See text for a thorough explanation of this framework. (B) Assignment of experimental results 
from the present thesis to the three areas of the framework. 

However, what happens to the neural dynamics of attention in the case of a significant disbalance 

between acoustic degradation and attentional control (i.e., in the red and green areas in Figure 7.1)? In 

a recent collaborative study with researchers at the Eriksholm research centre in Denmark, we found 
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initial evidence for a breakdown of neural attention mechanisms if acoustic degradation exceeds a 

certain “breakpoint” (Petersen et al., 2015). In detail, older hearing-impaired listeners had to 

remember a variable number of spoken digits under varying levels of background noise. In the highest 

memory load condition (i.e., six digits to be remembered), alpha power increased with the severity of 

hearing loss for lower levels of background noise. However, in the strongest background noise 

condition, alpha power increased only up to intermediate levels of hearing loss but then decreased for 

listeners with the most severe hearing loss. This result might indicate that neural mechanisms of 

attention compensate for acoustic degradation up to a certain point (i.e., the “breakpoint”). But if 

acoustic degradation becomes too strong, neural mechanisms of attention break down (see also 

Reuter-Lorenz and Cappell, 2008). It is important to note that evidence for this breakdown of 

attentional mechanisms for speech comprehension is limited at present. Future studies should further 

investigate the relationship between the breakdown of neural attention mechanisms and behavioural 

measures of speech comprehension. 

What are the dynamics of speech comprehension in a favourable listening situation, where 

attentional control dominates over acoustic degradation (green are in Figure 7.1)? Studies 1&2 

revealed that under most favourable listening conditions (high level of preserved temporal fine 

structure), objective measures (% correct and RTs) and subjective measures of performance 

(confidence ratings) indicated improved speech comprehension. Thus, speech comprehension benefits 

from a higher ratio between attentional control and acoustic degradation. However, more preserved 

acoustic detail also enhances the attentional capture of task-irrelevant speech which might 

compromise attention to task-relevant speech (Study 4). This is in agreement with the theory that 

under reduced perceptual load (e.g., less degraded acoustics), processing of task-irrelevant distractors 

increases (Lavie et al., 2004; Lavie, 2005). In general, there is at present a lack of research on the 

mechanisms of attention for speech comprehension in more favourable listening conditions where 

attentional control outweighs acoustic degradation (green area in Figure 7.1). One possibility is that 

attention resources otherwise deployed to support speech comprehension become available for other 

tasks when the ratio between attentional control and acoustic degradation increases (for a simillar 

theory on working memory resources, see Mishra et al., 2014; Rudner and Lunner, 2014). 

How does the proposed framework account for the increase in listening difficulties for older adults 

with progressive hearing loss (Pichora-Fuller and Souza, 2003)? Age-related hearing loss increases 

degradation of the acoustic input which in turn enhances the need for attentional control (Shinn-
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Cunningham and Best, 2008). Thus, older listeners have to upregulate attention mechanisms more 

than younger listeners to ensure speech comprehension(see also Erb and Obleser, 2013). However, 

since attentional control declines at an older age (Chao and Knight, 1997; Passow et al., 2012), 

compensation for acoustic degradation might fail. Thus, both hearing loss and cognitive decline foster 

the dominance of acoustic degradation over attentional control, causing decreased speech 

comprehension in the elderly. Our framework suggests a general tendency that older listeners with 

impaired hearing end up at lower ratios between attentional control and acoustic degradation (i.e., in 

the red are in Figure 7.1). 

Finally, I would like to outline predictions arising from the proposed framework which could be 

tested in future studies. I will here explain three testable hypotheses, one for each of the three areas in 

the framework. First, our framework asserts that if acoustic degradation outweighs the compensatory 

function of attentional control, neural mechanisms of attention break down (red area in Figure 7.1). 

Future studies could investigate in how far the breakpoint of neural attention mechanisms depends on 

acoustic conditions and individual capabilities of attentional control. In an attention demanding 

listening task with varying levels of task difficulty, our framework hypothesizes that acoustic 

degradation moves the breakpoint to lower levels of task-difficulty. In contrast, the breakpoint should 

move to higher levels of task difficulty for listeners with better attentional control (quantifiable 

through neuropsychological markers such as the d2-R test, see section 3.1.2.5). 

Second, the present thesis provides good evidence that stronger modulations of neural attention 

mechanisms (e.g., CNV and alpha power) support speech comprehension and compensate for 

degraded acoustics (yellow area in Figure 7.1). Critically, our framework implies that this principle 

does not only hold in laboratory settings but also in everyday life communication situations which are 

arguably more dynamic. This could be tested with a mobile EEG system, which assesses well-defined 

neural signatures while the listener is engaged in an effortful listening situation. For instance, EEG 

measures could assess listeners’ current attentional effort (reflected by e.g., CNV and alpha power) as 

well as listeners’ current focus of attention in a multi-talker environment (reflected by e.g., alpha 

power lateralization). Our framework supposes that an active manipulation of the acoustic conditions 

would affect neural signatures of attention and also speech comprehension. In detail, acoustic 

conditions could be manipulated in a way that neural signatures indicate decreasing demands on 

attention. This should be accompanied by improved speech comprehension. For instance, if lateralized 

alpha power indicates a rightward shift of the listener’ focus of attention, amplification of the acoustic 
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input to the right ear should reduce demands on attention and improve speech comprehension. This 

could be realized through bilateral hearing aids which are connected to the EEG system. Future 

research could thus implement such a “closed loop” between EEG recordings and adjustable hearing 

aids. In general, our framework predicts that whenever adjustments of hearing aids cause a decrease in 

neural signatures of demands on attention, speech comprehension should improve. 

Third, if high attentional control (e.g., in a younger healthy listeners) dominates over a mild 

acoustic degradation, our framework predicts that attention capacities are not entirely exploited by the 

listening task but can be used for other tasks (green area in Figure 7.1). This hypothesis could be 

investigated in a between-subject study using a dual-task paradigm. It has been shown that individuals 

differ in the extent to which speech comprehension in noise benefits from temporal fine structure (e.g., 

Hopkins et al., 2008; Lunner et al., 2012; Neher et al., 2012). One possible interpretation might be that 

listeners who profit strongly from temporal fine structure consume fewer attention capacities for 

speech comprehension if fine structure is preserved (for a nuanced discussion of the role of temporal 

fine structure for speech comprehension, see Study 1.1). According to our framework, these spare 

attention capacities could potentially improve performance on concurrent attention-demanding tasks. 

To test this, participants could perform a speech comprehension task under varying levels of temporal 

fine structure. Concurrently, they would have the task to count randomly presented brief tones. Our 

framework hypothesizes a positive relationship between participants’ benefit from temporal fine 

structure in the speech comprehension task and accuracy in the tone counting task. That is, listeners 

who benefit a lot from fine structure in the speech comprehension task free more attention capacities 

and thus improve performance also in the concurrent tone counting task. In contrast, listeners who do 

not profit from more preserved fine structure cannot free attention capacity and exhibit no 

performance increase in the tone counting task. This would demonstrate that attention capacities 

spared under a high ratio between attentional control and acoustic degradation can be exploited for 

other attention-demanding tasks. 

Taken together, the framework proposed here accounts for the results of this thesis and generates 

testable hypotheses for future studies. In order to test this framework and to foster our understanding 

of how neural mechanisms shape speech comprehension, I consider it inevitable to directly investigate 

the relationship between neural mechanisms and behavioural measures of speech comprehension. 

Unfortunately, neural dynamics and behavioural outcomes are often analysed in isolation or in parallel 

without using the great potential of relating these two to one another. Thus, I would finally like to 
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make the point here that a thorough understanding of how neural dynamics support speech 

comprehension can best be achieved by relating these neural dynamics to listeners’ behavioural 

performance of speech comprehension. 
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8 Conclusions 

This thesis used behavioural and electrophysiological measures to investigate the neural dynamics of 

selective attention to speech under demanding acoustic conditions, such as spectral degradation and 

the presence of background noise. In the following, I will conclude that findings of this thesis (1) foster 

our understanding of how the neural system implements selective attention to speech in noise, (2) 

provide insights in the neural bases of inter-individual differences in listening difficulties, particularly 

at an older age, and (3) set the stage for future interventions to support speech comprehension under 

attention-demanding acoustic conditions. 

Results of this thesis indicate that selective attention to speech in noise is not implemented by a 

single but rather by several neural mechanisms that complement each other. Slow cortical potentials 

reflect the anticipatory allocation of attention under acoustic degradation; neural phase-locking to the 

acoustic envelope segregates attended and unattended speech on a neural level; and alpha oscillations 

indicate the inhibition of irrelevant brain regions and processes to support processing to task-relevant 

speech. Our results thus emphasizes that humans’ remarkable ability to volitionally select one speech 

stream from the plethora of sounds arriving at the ear in a complex listening situation depends on 

temporally and functionally distinct neural mechanisms. Since these neural mechanisms not only 

reflect demands on attention but also explain listeners’ success of attentional selection, they provide a 

functionally significant neural basis of speech comprehension under demanding acoustic conditions. 

This thesis uncovers in how far changes in neural dynamics might explain the listening difficulties 

experienced at an older age. Our findings demonstrate that the anticipatory allocation of attention and 

the differential neural phase-locking to attended and unattended speech are preserved at an older age, 

given that acoustic conditions are carefully adapted to individual requirements. This emphasizes the 

need for dynamic and individualized approaches to adapt acoustic conditions to hearing acuity and 

cognitive functioning. However, even with these individual adjustments, older compared with younger 

listeners are stronger driven by bottom-up acoustic features of the external stimulation. This might 

explain why older listeners experience particularly strong interference from task-irrelevant 

background noise in multi-talker situations. 

Finally, results of this thesis provide a basis for an initial framework which holds that neural 

mechanisms of attention support speech comprehension and thus counteract the detrimental effects of 
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acoustic degradation (for details, see section 7.6). Critically, the interdependence between the 

degradation of the acoustic input and neural mechanisms of attention opens up the possibility to 

understand how the acoustic input could be manipulated to reduce listeners’ demands on attention. In 

detail, manipulations of sound processing procedures in hearing aids could be correlated with neural 

signatures of attention to find those hearing aid parameters that minimize demands on attention and 

thus improve speech comprehension. It is therefore a timely endeavour to utilize neural signatures of 

attention to speech in noise for interventions that aim at improving the individual listener’s abilities of 

speech comprehension under demanding acoustic conditions. 
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Summary 

Introduction 

A key feature of human environments is that they are rich in sensory information from relevant and 

irrelevant sources. Human speech is a paradigmatic example of a sensory signal that often occurs in 

the presence of acoustic interference, resulting from environmental noise or concurrent speakers. 

There is thus a great research interest in humans’ remarkable ability to select relevant speech from the 

plethora of sounds arriving at the ear (i.e., the "cocktail-party problem", Cherry, 1953). Selective 

attention describes the mental faculty of selecting currently relevant information for further processing 

at the expense of distractors (Desimone and Duncan, 1995). Despite the abundance of 

neuropsychological research on selective attention across sensory modalities, the neural bases of 

selective attention to speech in noise are not entirely clear. The present work comprises four studies 

which record listeners’ behavioural responses and neural activity using magneto- and 

electroencephalography (M/EEG) in different speech comprehension tasks. This thesis first identifies 

complementary neural signatures of selective attention to speech in noise; second, it demonstrates that 

modulations of neural activity predict listeners’ success of speech comprehension; and third, it 

integrates findings in an initial framework to explain the significance of neural attention mechanisms 

for speech comprehension under demanding acoustic conditions. 

A particularly interesting test case for the neural dynamics of selective attention to speech in noise 

is the ageing listener. Hearing acuity (Brant and Fozard, 1990) and also cognitive capabilities (Park et 

al., 2003) show a negative trajectory with age. This might explain listening difficulties of the elderly in 

complex multi-talker situations (Pichora-Fuller et al., 1995). Although prior behavioural work has 

shown that speech comprehension in noise decreases at an older age (e.g., Pichora-Fuller and Souza, 

2003), it is unresolved in how far these age-differences are explained by changes in older listeners’ 

neural dynamics of selective attention. This thesis compares listeners of different age (younger, 20–30 

years; older, 60–80 years) in speech comprehension tasks. In order to contrast neural dynamics 

between age groups, it is necessary to control for age-differences in sensory hearing acuity which might 

affect results. Therefore, two studies of this thesis apply careful individual adjustments of acoustic 

conditions to equalize stimulus audibility and overall task difficulty across age groups. In general, this 
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thesis asks to what extent neural signatures of attention change at an older age and in how far this 

explains older listeners’ difficulties of speech comprehension in noise. 

In three different experimental paradigms, we test the comprehension of spoken digits under 

acoustic degradation in an overall sample of 98 participants. Acoustic degradation is implemented by 

concurrent task-irrelevant speech and spectral degradation of the temporal fine structure, an acoustic 

feature found highly relevant for listening against noise (Hopkins and Moore, 2009, 2010). The high 

temporal resolution of the M/EEG allows us to study temporally distinct neural mechanisms of 

attention to speech in noise: We explore stimulus-locked activity in the EEG to investigate listeners’ 

allocation of attention as well as the segregation of attended and unattended speech on a neural level. 

We analyse brain oscillatory dynamics to investigate age-differences in the use of acoustic and 

predictive cues to reduce demands on attention. Furthermore, the adequate spatial resolution of MEG 

allows us to identify brain regions implementing the attentional selection of speech in noise. In the 

following, I will summarize experiments and results of this thesis. 

Experiments and results 

The present thesis started out with an electroencephalography (EEG) study of the event-related 

potential (ERP) in response to degradation of the temporal fine structure in speech materials. Younger 

(20–30 years) and older participants (60–70 years) performed a numerical comparison of two spoken 

digits in the presence of task-irrelevant speech. Overall stimulus intensity and the signal-to-noise ratio 

(SNR) were adjusted to equalize stimulus audibility and overall task difficulty across participants. The 

results demonstrate that acoustic degradation guides listeners’ allocation of attention. In detail, larger 

amplitudes of the contingent negative variation (CNV) in the EEG indicated that the allocation of 

attention increased when listeners were faced with more degraded acoustics. This acoustics-driven 

modulation of the CNV was unchanged in older listeners. This speaks for preserved neural dynamics 

of attention allocation to speech, at least if overall acoustic conditions are carefully adapted to older 

listeners’ individual requirements. 

In a follow-up experiment, we investigated in how far increasing task-relevance affects these neural 

dynamics of attention allocation in a sample of only younger participants. To this end, correct 

performance in the auditory number comparison task was rewarded by varying monetary incentives 

(1, 3, or 5 euro cent). The expectation of higher incentives was thought to enhance task-relevance. 

Increasing incentives did not affect CNV amplitude or behavioural performance. However, CNV 
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amplitude was significantly larger in this follow-up experiment compared to the main experiment 

where no incentives were offered (see above). Larger CNV amplitude thus suggests that the allocation 

of attention can be increased in a context of high task-relevance. 

Subsequently, we analysed brain oscillatory mechanisms of younger and older listeners in the 

auditory number comparison task. Across age groups, the power of alpha oscillations (~10 Hz) 

decreased with more acoustic detail but interestingly also when the numerical value of the first digit 

was better predictive of the second digit. Decreasing alpha power indicates reduced demands on 

selective attention with more acoustic detail and better predictiveness. Critically, acoustic detail 

affected behavioural responses and neural alpha power dynamics stronger in the elderly. In agreement 

with related work (e.g., Passow et al., 2012), this might speak for a decline in attentional control at an 

older age. Across age groups, alpha power modulations with acoustic detail and predictiveness in the 

experiment were predictive of listeners’ subjectively experienced difficulty in everyday multi-talker 

situations. This demonstrates that the modulation of neural alpha power explains individual 

differences in the attentional selection of speech in noise. 

In a further analysis of the same dataset, we explored in how far listeners’ ongoing EEG signals 

aligned (i.e., phase-locked) to the acoustic envelopes of the attended spoken digits and the unattended 

background speech. Younger and older listeners’ EEG signals significantly phase-locked to attended 

and unattended speech, indicating that both speech signals were processed on a neural level. Most 

importantly, however, substantially different patterns of neural phase-locking were observed for 

attended and unattended speech. Thus, attention modulates neural responses to acoustic features (i.e., 

speech envelopes), possibly to segregate task-relevant speech from noise. 

In an MEG study, we aimed at investigating how neural oscillations support selective attention to 

speech in noise. In a dichotic listening paradigm, younger participants were attending to four spoken 

digits on one ear, while four task-irrelevant digits were presented simultaneously on the other ear. 

Recording sites over the hemisphere ipsilateral to the attended digits showed a relative increase of 

alpha power, whereas contralateral recording sites showed a relative decrease of alpha power. This 

alpha power lateralization was thus indicative of listener intent, i.e., a listener’s focus of attention to 

one of two concurrent speech streams. The sources of this alpha power lateralization were found in 

parietal, frontal, and critically also in auditory cortex regions. Considering the functional inhibition 

framework of alpha oscillations (Jensen and Mazaheri, 2010), our results suggest that neural activity in 

supramodal (i.e., parietal) and primary sensory (i.e., auditory cortex) regions is regulated to attain 
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selective attention to speech in noise. In other words, alpha power modulations implement an 

attentional filter mechanism that enhances the neural processing of spatial and acoustic features of the 

task-relevant signal and suppresses processing of the noise. Interestingly, alpha power lateralization 

was not constant during selective attention to ongoing speech but fluctuated at the digit presentation 

rate (0.67 Hz). Larger amplitudes of these fluctuations predicted better recall of attended digits, 

suggesting that fluctuating alpha power lateralization at the word rate supports spatial selective 

attention to speech in noise. 

In a final behavioural study, we explored which features of an irrelevant speech signal determine 

how much it draws attention away from task-relevant speech. In an irrelevant speech paradigm, 

younger and older participants listened to nine spoken digits which they had to maintain in memory 

in a retention period. During retention, participants were presented with task-irrelevant speech that 

was manipulated along two orthogonal dimensions: First, we degraded the acoustic detail (using noise-

vocoding) and second, we manipulated final-word predictability (high vs low). We found that more 

acoustic detail but not higher predictability of irrelevant speech impaired the serial recall of digits after 

the retention period. Although overall performance decreased in older listeners, the relative increase of 

distraction from task-irrelevant speech with more acoustic detail was unchanged at an older age. These 

results indicate that the degree to which task-irrelevant speech draws attention away from task-

relevant speech increases with higher intelligibility through more preserved acoustic detail. In contrast, 

predictable irrelevant speech does not capture attention more than unpredictable irrelevant speech. 

Discussion 

Our findings demonstrate that selective attention to speech in noise is not implemented by a single 

brain process but rather by temporally and functionally complementary neural dynamics: The CNV 

component reflects listeners’ allocation of attention in anticipation of a demanding listening task. 

Differential phase-locking of neural activity to the temporal envelopes of attended and unattended 

speech constitutes a possible mechanism to segregate a task-relevant acoustic signal from noise. The 

power of alpha oscillations indicates the inhibition of neural processing of task-irrelevant speech 

features (i.e., spatial location) in order to reduce noise-interference. 

Importantly, neural dynamics are not only modulated by our experimental conditions but they are 

furthermore indicative of how successfully listeners accomplish the attentional selection of speech in 

noise. This way, larger amplitude of the CNV, stronger modulation of alpha power with 
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acoustic/predictive cues, and more pronounced alignment of lateralized alpha power with the word 

rate all predict improved performance in our speech comprehension tasks. Taken together, our results 

thus support an initial framework stating that speech comprehension in demanding listening 

situations depends on whether neural attention mechanisms can compensate for the negative effects of 

acoustic degradation. 

This framework also explains why especially older listeners experience difficulties in multi-talker 

situations. Adult aging is typically accompanied by a loss of hearing acuity, which increases the 

degradation of the acoustic input. Thus, older listeners have to upregulate neural attention 

mechanisms to ensure speech comprehension in noise. But since also attention mechanisms decline at 

an older age, neural compensation cannot be further enhanced and eventually breaks down. Indeed, 

this interpretation receives initial support from a recent collaborative study where we could show that 

older listeners’ neural alpha power increases for listeners with mild hearing loss but declines again (i.e., 

it breaks down) for listeners with moderate hearing loss in an effortful listening task (Petersen et al., 

2015). 

From a different perspective, this thesis has also implications for interventions to support listeners’ 

speech comprehension in noise. In general, restoration of degraded acoustic input (e.g., with hearing 

aids) should reduce the need for compensation via neural attention mechanisms. Spare attention 

capacity could then be used for other currently relevant mental operations. Most importantly, in line 

with other research (Lunner et al., 2009) our findings imply that interventions to restore impaired 

hearing could benefit from taking into account neural mechanisms of the user. Future hearing aids 

could assess neural activity via recordings of electrophysiological data from a few electrodes connected 

to the hearing aid. If electrophysiological recordings indicate high listening effort (e.g., high alpha 

power) or a shift of the users’ focus of attention to one side (e.g., strong alpha power lateralization), 

hearing aids could increase the automatic noise-cancellation or adjust the directional microphone to 

amplify the attended speech signal, respectively. This would offer a way to dynamically adjust the 

acoustic input according to the neural dynamics of the listener in an individualized way in order to 

support speech comprehension in complex listening situations. 
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Zusammenfassung 

Einleitung 

Unsere Umwelt ist reich an sensorischen Informationen, welche von relevanten aber auch irrelevanten 

Quellen stammen. Die menschliche Sprache ist häufig maskiert durch akustische Störsignale wie 

Umgebungslärm oder Gespräche im Hintergrund. Es ist daher von großem wissenschaftlichem 

Interesse zu verstehen, wie Menschen ein relevantes Sprachsignal trotz erheblicher Störgeräusche 

verstehen können (häufig beschrieben als das sogenannte "Cocktail-Party Problem"; Cherry, 1953). 

Selektive Aufmerksamkeit beschreibt die kognitive Fähigkeit, relevante Informationen zu selektieren 

und irrelevante Informationen zu ignorieren (Desimone and Duncan, 1995). Trotz ausgiebiger 

Erforschung selektiver Aufmerksamkeitsprozesse in den verschiedenen sensorischen Modalitäten ist 

die neurale Grundlage der aufmerksamkeitsgesteuerten Selektion von Sprache im Störschall unklar. 

Diese Arbeit umfasst vier Studien, welche Verhaltensdaten und Hirnaktivität mittels der Magnet-

/Elektroenzephalographie (M/EEG) messen, während Probanden verschiedene 

Sprachverständnisaufgaben lösen. Zunächst identifiziert diese Arbeit neurale Mechanismen der 

selektiven Aufmerksamkeit beim Sprachverstehen. Darüber hinaus wird gezeigt, dass die Modulation 

neuraler Aktivität das erfolgreiche Verstehen von Sprache im Störschall vorhersagt. Letztlich werden 

die Ergebnisse dieser Arbeit in ein Modell integriert, welches die entscheidende Rolle neuraler 

Aufmerksamkeitsmechanismen für das Sprachverstehen in akustisch anspruchsvollen Situationen 

erklärt. 

Besonders interessant für die Erforschung neuraler Mechanismen des Sprachverstehens im 

Störschall sind ältere Menschen. Es ist bekannt, dass sowohl die Hörfähigkeit als auch die allgemeine 

kognitive Leistungsfähigkeit im Alter beeinträchtigt sind (Brant and Fozard, 1990; Park et al., 2003). 

Dies könnte erklären, warum gerade ältere Menschen oft Sprachverständnisprobleme in komplexen 

Hörsituationen mit mehreren Sprechern haben (Pichora-Fuller et al., 1995). Verhaltensstudien haben 

gezeigt, dass das Sprachverständnis im Störschall im Alter beeinträchtigt ist (z.B., Pichora-Fuller and 

Souza, 2003). Es ist allerdings unklar, inwiefern dieser Alterseffekt durch veränderte neurale 

Mechanismen bedingt ist. Diese Arbeit vergleicht Probanden unterschiedlichen Alters (jünger: 20–30 

Jahre, älter: 60–80 Jahre) bei verschiedenen Sprachverständnisaufgaben. Um neurale Mechanismen 

zwischen Altersgruppen zu vergleichen, ist es nötig, Altersunterschiede in der Hörfähigkeit zu 

kontrollieren, welche ebenfalls die Ergebnisse beeinflussen können. Daher verwenden zwei Studien 
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dieser Arbeit sorgfältige Anpassungen der akustischen Stimuli mit dem Ziel, die Hörbarkeit und die 

Aufgabenschwierigkeit für Probanden unterschiedlichen Alters anzugleichen. Diese Arbeit erforscht, 

inwiefern altersbedingte Veränderungen neuraler Aufmerksamkeitsmechanismen die 

Sprachverständnisprobleme älterer Menschen erklären können. 

In drei unterschiedlichen Paradigmen untersuchen wir das Sprachverständnis gesprochener 

Zahlenwörter unter akustisch reduzierten Bedingungen in einer Gesamtstichprobe von 98 Probanden. 

Die Reduzierung des akustischen Signals wird implementiert durch Maskierung mit Störschall und die 

Reduzierung spektraler Anteile im Sprachsignal, welche besonders wichtig für das Sprachverstehen im 

Störschall sind (Hopkins and Moore, 2009, 2010). Die hohe zeitliche Auflösung des M/EEG erlaubt die 

Analyse zeitlich getrennter neuraler Mechanismen selektiver Aufmerksamkeit: Wir analysieren 

Stimulus-gekoppelte neurale Aktivität um die Aufmerksamkeitszuweisung und die neurale Trennung 

relevanter und irrelevanter Sprachsignale zu untersuchen. Oszillationen im M/EEG werden 

quantifiziert, um mögliche Altersunterschiede in der Verwendung akustischer Information und der 

Vorhersagbarkeit der Sprachstimuli zu erforschen. Außerdem ermöglicht die gute räumliche 

Auflösung des MEG die Bestimmung der Hirnregionen, welche die aufmerksamkeitsgesteuerte 

Selektion von Sprache implementieren. Im Folgenden werden Experimente und Ergebnisse dieser 

Arbeit kurz zusammengefasst. 

Experimente und Ergebnisse 

Die erste Studie dieser Arbeit untersuchte den Effekt reduzierter Akustik (Reduzierung der zeitlichen 

Feinstruktur im Sprachsignal) auf das ereigniskorrelierte Potential (EKP) im EEG. Jüngere (20–30 

Jahre) und ältere Probanden (60–70 Jahre) hatten die Aufgabe, zwei gesprochene Zahlen trotz der 

Störung durch ein gleichzeitig abgespieltes Hörbuch zu verstehen und numerisch zu vergleichen. Die 

Gesamtlautstärke der Sprachstimuli und das Signal-zu-Rausch Verhältnis wurden individuell 

angepasst, um die Hörbarkeit der Stimuli und die Aufgabenschwierigkeit für alle Probanden 

anzugleichen. Die Ergebnisse zeigten, dass die akustischen Bedingungen die 

Aufmerksamkeitszuweisung der Probanden beeinflussten. Eine größere Amplitude der Contingent 

negative variation (CNV) im EEG zeigte eine erhöhte Zuweisung selektiver Aufmerksamkeit an, wenn 

die Zuhörer mit stärker reduzierten akustischen Bedingungen konfrontiert waren. Diese Akustik-

induzierte Modulation der CNV war unverändert in der Gruppe der älteren Probanden. Dies spricht 

für die Erhaltung grundlegender neuraler Mechanismen der Aufmerksamkeitszuweisung im Alter, 
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zumindest wenn die akustischen Bedingungen sorgfältig an die individuellen Bedürfnisse der 

Probanden angepasst sind. 

In einer Folgestudie untersuchten wir, inwiefern eine erhöhte Relevanz der 

Sprachverständnisaufgabe die neuralen Mechanismen der Aufmerksamkeitszuweisung beeinflusst. 

Eine Gruppe jüngerer Probanden führte dazu den auditiven Zahlenvergleich (siehe oben) durch, 

wobei der korrekte numerische Vergleich der beiden Zahlen in jedem Durchgang finanziell belohnt 

wurde (mit 1, 3, oder 5 Eurocent). Die Aussicht auf eine höhere finanzielle Belohnung sollte die 

Relevanz der Sprachverständnisaufgabe erhöhen. Die finanzielle Belohnung hatte keinen Einfluss auf 

die CNV Amplitude oder auf die Leistung der Probanden. Allerdings war die CNV Amplitude in 

dieser Folgestudie insgesamt größer verglichen mit dem Hauptexperiment, in dem keine finanzielle 

Belohnung dargeboten wurde. Die erhöhte CNV Amplitude in dieser Folgestudie deutet somit darauf 

hin, dass neurale Mechanismen der Aufmerksamkeitszuweisung in einem Kontext hoher 

Aufgabenrelevanz verstärkt werden können. 

Anschließend analysierten wir neurale Oszillationen im EEG jüngerer und älterer Probanden beim 

auditiven Zahlenvergleich. In beiden Altersgruppen verringerte sich die Power der Alpha 

Oszillationen (~10 Hz) wenn die Akustik weniger stark reduziert war, aber auch wenn der numerische 

Wert der ersten Zahl eine bessere Vorhersage der zweiten Zahl ermöglichte. Verringerte Alpha Power 

deutet darauf hin, dass die Anforderung an die aufmerksamkeitsgesteuerte Selektion der gesprochenen 

Zahlen mit besserer Akustik und besserer Vorhersagbarkeit des Sprachsignals abnahm. Entscheidend 

bei diesen Ergebnissen war, dass sowohl die Leistung als auch die Alpha Power älterer Probanden 

stärker abhängig von dem Grad der akustischen Reduzierung war. Im Einklang mit anderen Studien 

(z.B., Passow et al., 2012) sprechen unsere Ergebnisse daher für eine verminderte Kontrolle von 

Aufmerksamkeitsprozessen im Alter. Unabhängig vom Alter sagten die Alpha Power Modulationen 

im Experiment voraus, wie schwer den Probanden das Sprachverstehen in alltäglichen Hörsituationen 

im Störschall fällt. Zusammenfassend demonstriert diese Studie, dass Modulationen der neuralen 

Alpha Oszillationen individuelle Unterschiede selektiver Aufmerksamkeitsprozesse erklären. 

In einer weiteren Analyse derselben Daten wurde untersucht, inwieweit Fluktuationen im EEG 

Signal die Amplitudenmodulationen des Sprachsignals abbilden. Zu diesem Zweck berechneten wir 

die Kreuzkorrelation zwischen Amplitudenmodulationen (der sogenannten Einhüllenden) der 

gesprochenen Zahlen und des störenden Hörbuches mit dem EEG Signal. Interessanterweise 

korrelierte das EEG Signal sowohl mit der Einhüllenden der Zahlen als auch mit der Einhüllenden des 
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störenden Hörbuches. Dies belegt, dass beachtete aber auch ignorierte Sprachsignale neural verarbeitet 

werden. Entscheidend jedoch war, dass die Kreuzkorrelation eine negative Korrelation mit der 

Einhüllenden der beachteten Zahlen und eine positive Korrelation mit der Einhüllenden des 

ignorierten Hörbuches zeigte. Somit moduliert Aufmerksamkeit die neurale Verarbeitung gleichzeitig 

präsentierter Sprachsignale, möglicherweise um relevante Sprache vom Störschall zu trennen. 

In einer MEG Studie untersuchten wir die Funktion neuraler Oszillationen für die 

aufmerksamkeitsgesteuerte Selektion von Sprache im Störschall. In einer dichotischen Höraufgabe 

richteten jüngere Probanden ihre Aufmerksamkeit auf vier gesprochene Zahlen, welche entweder auf 

dem rechten oder auf dem linken Ohr präsentiert wurden. Gleichzeitig wurden auf dem anderen Ohr 

vier irrelevante Zahlen präsentiert. Richteten die Probanden ihre Aufmerksamkeit auf die Zahlen auf 

der linken Seite, so stieg die Alpha Power in der linken Hemisphäre an und nahm in der rechten 

Hemisphäre ab. Diese Alpha Lateralisierung kehrte sich um, wenn Probanden ihre Aufmerksamkeit 

auf die Zahlen auf der rechten Seite richteten. Die lateralisierte Power der Alpha Oszillationen zeigte 

somit an, welches von zwei gleichzeitig präsentierten Sprachsignalen vom Zuhörer beachtet wurde. 

Die neuralen Quellen der Alpha Lateralisierung umfassten frontale und parietale Regionen, wie auch 

Regionen des auditiven Cortex. Diese Ergebnisse zeigen, dass neurale Aktivität in supramodalen 

(parietalen) und auch sensorischen (auditiven) Hirnregionen moduliert wird um die 

aufmerksamkeitsgesteuerte Selektion von Sprache im Störschall zu ermöglichen. Es ist anzumerken, 

dass die Alpha Lateralisierung mit der Präsentationsrate der Zahlen fluktuierte (0.67 Hz). Waren diese 

Fluktuationen stärker ausgeprägt, so verbesserte sich auch die korrekte Wiedergabe der beachteten 

Zahlen durch die Probanden. 

Letztlich führten wir eine Verhaltensstudie durch, um zu testen, welche Eigenschaften eines 

störenden Sprachsignals beeinflussen, wie gut dieses von jüngeren und älteren Probanden ignoriert 

werden kann. Die Probanden hörten neun gesprochene Zahlen, welche sie sich in der präsentierten 

Reihenfolge merken sollten. Anschließend waren drei störende Sätze zu hören, bevor die Probanden 

die Zahlen in der Reihenfolge ihrer Präsentation auswählen mussten. Das störende Sprachsignal wurde 

orthogonal in zwei Dimensionen verändert: Erstens reduzierten wir die Akustik durch Verminderung 

der spektralen Information (durch noise-vocoding). Zweitens war die Vorhersagbarkeit des letzten 

Wortes in den störenden Sätzen entweder hoch oder gering. Die Ergebnisse zeigten, dass eine bessere 

Akustik des störenden Sprachsignals, nicht aber eine höhere Vorhersagbarkeit des störenden 

Sprachsignals, die Erinnerung an die korrekte Reihenfolge der Zahlen negativ beeinflusste. Trotz 
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insgesamt schlechterer Leistungen war dieses Verhaltensmuster bei älteren Probanden unverändert. 

Unsere Ergebnisse sprechen dafür, dass ein störendes Sprachsignal die Aufmerksamkeit für relevante 

Sprache besonders stark einschränkt, wenn es von akustisch besserer Qualität und damit besser 

verständlich ist. 

Diskussion 

Die Ergebnisse dieser Arbeit zeigen, dass die aufmerksamkeitsgesteuerte Selektion von Sprache im 

Störschall nicht durch einen einzelnen, sondern durch mehrere zeitlich und funktionell 

unterschiedliche neurale Mechanismen realisiert wird: Die CNV zeigt die Zuweisung der 

Aufmerksamkeit in Erwartung einer schwierigen Höraufgabe an. Entgegengesetzte Korrelationen des 

EEG Signals mit der Einhüllenden von beachteter und ignorierter Sprache stellen einen möglichen 

Mechanismus zur neuralen Trennung relevanter Sprache vom Störschall dar. Die Power der Alpha 

Oszillationen reflektiert die Inhibition der neuralen Verarbeitung von Eigenschaften eines störenden 

Sprachsignals (z.B., räumliche Position), um das Sprachverstehen relevanter Sprache zu unterstützen. 

Es ist zu beachten, dass neurale Aktivität nicht nur durch unsere experimentellen Konditionen 

beeinflusst wurde. Darüber hinaus erklärt die Stärke der neuralen Aktivitätsveränderung den Erfolg 

der Probanden beim Verstehen von Sprache im Störschall. Größere CNV Amplitude, stärkere Alpha 

Power Modulation mit besserer Akustik/Vorhersagbarkeit des Sprachsignals und erhöhte 

Fluktuationen der Alpha Lateralisierung mit der Präsentationsrate der Sprache korrelierten alle mit 

besserer Leistung in unseren Sprachverständnisaufgaben. Unsere Ergebnisse lassen sich daher in 

einem Modell vereinen, welches besagt, dass das Sprachverständnis im Störschall davon abhängt, 

inwiefern neurale Aufmerksamkeitsmechanismen die negativen Effekte akustischer Reduzierung 

kompensieren. 

Dieses Modell erklärt auch, warum besonders ältere Menschen Schwierigkeiten in Hörsituationen 

mit mehreren Sprechern haben. Im Alter setzt häufig eine Verringerung der Hörfähigkeit ein, welche 

dazu führt, dass akustische Signale reduziert wahrgenommen werden. Somit müssen ältere Menschen 

ihre Aufmerksamkeitsmechanismen verstärken, um die akustische Reduzierung durch erhöhte 

Aufmerksamkeit zu kompensieren. Jedoch kommt es im Alter auch zu einer Verringerung der 

Kontrolle von Aufmerksamkeitsprozessen, was dazu führt, dass die Kompensation für reduzierte 

Akustik nicht aufrechterhalten werden kann und schließlich zusammenbricht. Diese Interpretation 

wird unterstützt durch eine kürzlich veröffentlichte kollaborative Studie (Petersen et al., 2015), in der 
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wir zeigen konnten, dass die Alpha Power bei einer anspruchsvollen Höraufgabe mit mäßigem 

Hörverlust ansteigt, jedoch mit stärkerem Hörverlust zusammenbricht. 

Betrachtet man diese Arbeit aus einem anderen Blickwinkel, bietet sie Ansätze für 

Interventionsmöglichkeiten um das Sprachverstehen im Störschall zu erleichtern. Generell sollte die 

Wiederherstellung des akustischen Signals (z.B. mithilfe von Hörgeräten) die Anforderungen an 

neurale Aufmerksamkeitsmechanismen verringern. Im Einklang mit anderen Studien (Lunner et al., 

2009) implizieren unsere Ergebnisse, dass Interventionen zur Verbesserung des Sprachverstehens im 

Störschall von der Berücksichtigung neuraler Aufmerksamkeitsmechanismen profitieren können. 

Zukünftige Hörgeräte könnten neurale Aktivität zum Beispiel mithilfe integrierter EEG Elektroden 

messen. Zeigen diese Messungen eine erhöhte Höranstrengung an (z.B. große CNV Amplitude oder 

erhöhte Alpha Power), so könnte das Hörgerät die automatische Rauschunterdrückung verstärken. 

Zeigen die EEG Messungen an, dass der Zuhörer seine Aufmerksamkeit auf ein Sprachsignal auf einer 

Seite richtet (z.B. deutliche Alpha Lateralisierung), so könnte das Hörgerät das Richtmikrofon 

demensprechend einstellen, um das beachtete Signal zu verstärken. Somit wäre es möglich, das 

akustische Signal individuell und dynamisch an die neuralen Aufmerksamkeitsprozesse des Zuhörers 

anzupassen, um das Sprachverstehen in komplexen Hörsituationen zu unterstützen. 
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 Incremental Argument Interpretation in Turkish Sentence Comprehension

95 Henning Holle
 The Comprehension of Co-Speech Iconic Gestures: Behavioral, Electrophy-  
 siological and Neuroimaging Studies

96 Marcel Braß
 Das inferior frontale Kreuzungsareal und seine Rolle bei der kognitiven  
 Kontrolle unseres Verhaltens

97 Anna S. Hasting
 Syntax in a blink: Early and automatic processing of syntactic rules as  
 revealed by event-related brain potentials

98 Sebastian Jentschke
 Neural Correlates of Processing Syntax in Music and Language – Influ- 
 ences of Development, Musical Training and Language Impairment

99 Amelie Mahlstedt
 The Acquisition of Case marking Information as a Cue to Argument  
 Interpretation in German
 An Electrophysiological Investigation with Pre-school Children

100 Nikolaus Steinbeis
 Investigating the meaning of music using EEG and fMRI

101 Tilmann A. Klein
 Learning from errors: Genetic evidence for a  central role of dopamine in  
 human performance monitoring 

102 Franziska Maria Korb
 Die funktionelle Spezialisierung des lateralen präfrontalen Cortex:  
 Untersuchungen mittels funktioneller Magnetresonanztomographie 

103 Sonja Fleischhauer
 Neuronale Verarbeitung emotionaler Prosodie und Syntax: die Rolle des  
 verbalen Arbeitsgedächtnisses

104 Friederike Sophie Haupt
 The component mapping problem: An investigation of grammatical  
 function reanalysis in differing experimental contexts using eventrelated  
 brain potentials

105 Jens Brauer
 Functional development and structural maturation in the brain‘s neural  
 network underlying language comprehension

106 Philipp Kanske
 Exploring executive attention in emotion: ERP and fMRI evidence

107 Julia Grieser Painter
 Music, meaning, and a semantic space for musical sounds

108 Daniela Sammler
 The Neuroanatomical Overlap of Syntax Processing in Music and  
 Language - Evidence from Lesion and Intracranial ERP Studies

109 Norbert Zmyj
 Selective Imitation in One-Year-Olds: How a Model‘s Characteristics  
 Influence Imitation

110 Thomas Fritz
 Emotion investigated with music of variable valence – neurophysiology  
 and cultural influence 

111 Stefanie Regel
 The comprehension of figurative language: Electrophysiological evidence  
 on the processing of irony 

112 Miriam Beisert
 Transformation Rules in Tool Use

113 Veronika Krieghoff
 Neural correlates of Intentional Actions

114 Andreja Bubić
 Violation of expectations in sequence processing



115 Claudia Männel
 Prosodic processing during language acquisition: Electrophysiological  
 studies on intonational phrase processing

116 Konstanze Albrecht
 Brain correlates of cognitive processes underlying intertemporal choice for  
 self and other

117 Katrin Sakreida
 Nicht-motorische Funktionen des prämotorischen Kortex:
 Patientenstudien und funktionelle Bildgebung

118 Susann Wolff
 The interplay of free word order and pro-drop in incremental sentence  
 processing: Neurophysiological evidence from Japanese

119 Tim Raettig
 The Cortical Infrastructure of Language Processing: Evidence from  
 Functional and Anatomical Neuroimaging

120 Maria Golde
 Premotor cortex contributions to abstract and action-related relational  
 processing

121 Daniel S. Margulies
  Resting-State Functional Connectivity fMRI: A new approach for asses-
 sing functional neuroanatomy in humans with applications to neuroa-
 natomical, developmental and clinical questions

122 Franziska Süß
 The interplay between attention and syntactic processes in the adult and  
 developing brain: ERP evidences

123 Stefan Bode
 From stimuli to motor responses: Decoding rules and decision mecha- 
 nisms in the human brain

124 Christiane Diefenbach 
 Interactions between sentence comprehension and concurrent action:  
 The role of movement effects and timing

125 Moritz M. Daum
 Mechanismen der frühkindlichen Entwicklung des Handlungsverständ-
 nisses

126 Jürgen Dukart
 Contribution of FDG-PET and MRI to improve Understanding, Detection  
 and Differentiation of Dementia

127 Kamal Kumar Choudhary
 Incremental Argument Interpretation in a Split Ergative Language:  
 Neurophysiological Evidence from Hindi

128 Peggy Sparenberg
 Filling the Gap: Temporal and Motor Aspects of the Mental Simulation of  
 Occluded Actions

129 Luming Wang
 The Influence of Animacy and Context on Word Order Processing: Neuro- 
 physiological Evidence from Mandarin Chinese

130 Barbara Ettrich
 Beeinträchtigung frontomedianer Funktionen bei Schädel-Hirn-Trauma

131 Sandra Dietrich
 Coordination of Unimanual Continuous Movements with External Events 

132 R. Muralikrishnan
 An Electrophysiological Investigation Of Tamil Dative-Subject Construc- 
 tions

133 Christian Obermeier
 Exploring the significance of task, timing and background noise on  
 gesture-speech integration

134 Björn Herrmann
 Grammar and perception: Dissociation of early auditory processes in the  
 brain

135 Eugenia Solano-Castiella
 In vivo anatomical segmentation of the human amygdala and parcellati- 
 on of emotional processing

136 Marco Taubert
 Plastizität im sensomotorischen System – Lerninduzierte Veränderungen  
 in der Struktur und Funktion des menschlichen Gehirns

137 Patricia Garrido Vásquez
 Emotion Processing in Parkinson’s Disease:
 The Role of Motor Symptom Asymmetry

138 Michael Schwartze
 Adaptation to temporal structure

139 Christine S. Schipke
 Processing Mechanisms of Argument Structure and Case-marking in
  Child Development: Neural Correlates and Behavioral Evidence

140 Sarah Jessen
 Emotion Perception in the Multisensory Brain

141 Jane Neumann
 Beyond activation detection: Advancing computational techniques for  
 the analysis of functional MRI data

142 Franziska Knolle
 Knowing what’s next: The role of the cerebellum in generating  
 predictions 

143 Michael Skeide
 Syntax and semantics networks in the developing brain

144 Sarah M. E. Gierhan
 Brain networks for language
 Anatomy and functional roles of neural pathways supporting language  
 comprehension and repetition

145 Lars Meyer
 The Working Memory of Argument-Verb Dependencies
 Spatiotemporal Brain Dynamics during Sentence Processing

146 Benjamin Stahl
 Treatment of Non-Fluent Aphasia through
 Melody, Rhythm and Formulaic Language

147 Kathrin Rothermich
 The rhythm’s gonna get you: ERP and fMRI evidence on the interaction  
 of metric and semantic processing

148 Julia Merrill
 Song and Speech Perception – Evidence from fMRI, Lesion Studies and  
 Musical Disorder

149 Klaus-Martin Krönke
 Learning by Doing?
 Gesture-Based Word-Learning and its Neural Correlates in Healthy  
 Volunteers and Patients with Residual Aphasia

150 Lisa Joana Knoll 
 When the hedgehog kisses the frog
 A functional and structural investigation of syntactic processing in the  
 developing brain
  
151 Nadine Diersch 
 Action prediction in the aging mind 

152 Thomas Dolk 
 A Referential Coding Account for the Social Simon Effect

153 Mareike Bacha-Trams
 Neurotransmitter receptor distribution in Broca’s area and the posterior
 superior temporal gyrus

154 Andrea Michaela Walter 
 The role of goal representations in action control



155 Anne Keitel
 Action perception in development: The role of experience

156 Iris Nikola Knierim 
 Rules don’t come easy: Investigating feedback-based learning of   
 phonotactic rules in language.

157 Jan Schreiber 
 Plausibility Tracking: A method to evaluate anatomical connectivity  
 and microstructural properties along fiber pathways

158 Katja Macher 
 Die Beteiligung des Cerebellums am verbalen Arbeitsgedächtnis

159 Julia Erb
 The neural dynamics  of perceptual adaptation to degraded speech

160 Philipp Kanske
 Neural bases of emotional processing in affective disorders

161 David Moreno-Dominguez
 Whole-brain cortical parcellation: A hierarchical method based on
 dMRI tractography

162 Maria Christine van der Steen
 Temporal adaptation and anticipation mechanisms in sensorimotor  
 synchronization  

163 Antje Strauß
 Neural oscillatory dynamics of spoken word recognition

164 Jonas Obleser
 The brain dynamics of comprehending degraded speech

165  Corinna E. Bonhage
 Memory and Prediction in Sentence Processing  

S 2 Tania Singer, Bethany E. Kok, Boris Bornemann, Matthias Bolz, and  
 Christina A. Bochow
 The Resource Project
 Background, Design, Samples, and Measurements

166 Anna Wilsch
 Neural oscillations in auditory working memory

167 Dominique Goltz
 Sustained Spatial Attention in Touch: Underlying Brain Areas and
 Their Interaction

168 Juliane Dinse
 A Model-Based Cortical Parcellation Scheme for High-Resolution
 7 Tesla MRI Data

169 Gesa Schaadt
 Visual, Auditory, and Visual-Auditory Speech Processing in School
 Children with Writing Difficulties

170 Laura Verga
 Learning together or learning alone: Investigating the role of social
 interaction in second language word learning

171 Eva Maria Quinque
 Brain, mood and cognition in hypothyroidism




