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Magnetohydrodynamic (MHD) turbulence is of key importance in many high-energy astro-

physical systems, including black-hole accretion disks, protoplanetary disks, neutron stars,

and stellar interiors. MHD instabilities can amplify local magnetic field strength over very

short time scales 1–3, but it is an open question whether this can result in the creation of a

large scale ordered and dynamically relevant field. Specifically, the magnetorotational insta-

bility (MRI) has been suggested as a mechanism to grow magnetar-strength magnetic field

(& 1015 G) and magnetorotationally power the explosion 4–8 of a rotating massive star 9, 10.

Such stars are progenitor candidates for type Ic-bl hypernova explosions that involve rel-
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ativistic outflows (e.g. 11, 12) and make up all supernovae connected to long gamma-ray

bursts (GRBs) 13, 14. We have carried out global 3D general-relativistic magnetohydrody-

namic (GRMHD) turbulence simulations that resolve the fastest growing mode (FGM) of the

MRI. We show that MRI-driven MHD turbulence in rapidly rotating protoneutron stars pro-

duces a highly efficient inverse cascade of magnetic energy. This builds up magnetic energy

on large scales whose magnitude rivals the turbulent kinetic energy. We find a large-scale

ordered toroidal field along the rotation axis of the protoneutron star that is consistent with

the formation of bipolar magnetorotationally driven outflows. Our results demonstrate that

rapidly rotating massive stars are plausible progenitors for both type Ic-bl supernovae 12, 15, 16

and long GRBs, present a viable formation scenario for magnetars, and may account for

potentially magnetar-powered superluminous supernovae 17.

A magnetised fluid is unstable to weak-field shearing modes in the presence of a negative

angular velocity gradient that is not compensated for by compositional or entropy gradients of the

fluid 3. For rotating stellar collapse, it was demonstrated that the general conditions for the MRI to

activate hold 9 and studying the MRI in this context has been a very active topic of investigation.

Doing so numerically, however, is challenging since capturing the FGM of the instability requires

high resolution (∼ 10 grid zones per MRI FGM wavelength λMRI,FGM ∝ |B|). For protoneutron

stars formed after the collapse of an iron core of a massive star, this requires linear resolutions of

dx ∼ 10 − 100 m for precollapse magnetic fields of 109 − 1010 G. Current state of the art 3D

adaptive mesh-refinement (AMR) simulations reach typical resolution of dx ∼ 750 − 1000 m in

the shear layer near the protoneutron star (e.g. 8) and obtain the field strength to power a magne-
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torotational explosion (& 1015 G) by flux-compression (B ∝ ρ2/3, amplification by a factor∼ 103)

from unrealistically high seed fields (|B| ≥ 1012 G precollapse). The MRI has been studied with

local 18 or semi-global 19 high-resolution shearing box simulations in 3D or with global 2D simula-

tions 20. The effects of neutrino viscosity and drag on the MRI have also been studied, e.g. 21. All

of these simulations were either not able to capture the inherently 3D saturation behaviour of the

MRI since their assumed symmetries or domain sizes prevent secondary parasitic instabilities 22, 23

or only studied local effects. Large-scale dynamo action 24, 25 has been suggested as a means of

building up large scale magnetic field in rapidly rotating protoneutron stars, thereby providing a

formation scenario for magnetars 26, 27. Direct numerical simulations of this process have mostly

been carried out in the context of simplified scenarios in dynamo theory with an explicit driving of

turbulence at specific scales (e.g. 28 and references therein).

Here, we study MHD turbulence in the shear layer around a rapidly rotating protoneutron

star using high-resolution (∼ 10 times higher than previous simulations) global 3D GRMHD sim-

ulations. We take initial conditions from a full 3D GRMHD AMR simulation of stellar collapse

in a rapidly spinning progenitor star (initial spin period of the fusion core P0 = 2.25 s before col-

lapse, spin period of the protoneutron star after core bounce PPNS = 1.18 ms) at tmap = 20 ms

after core bounce. The initial maximum poloidal magnetic field of 1010 G is amplified during

and after collapse to a maximum ' 7 · 1014 G at the time of mapping and linear winding 29

builds up maximum toroidal field of ' 7 · 1014 G close to the rotation axis of the protoneutron

star and ' 3 · 1014 G in the equatorial region. We carry out simulations in four resolutions,

dx = {500 m, 200 m, 100 m, 50 m}, adopt a domain size of 66.5 km in x and y direction and
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133 km in z direction (rotation axis), and employ a 90◦ rotational symmetry in the xy-plane (no

symmetry in z). This allows us to study the MRI-unstable layer surrounding the core of the pro-

toneutron star with unprecedented resolution with fully self-consistent global 3D simulations of

MHD turbulence in stellar collapse.

The two lowest resolution simulations show no or only minor toroidal magnetic field ampli-

fication consistent with not resolving the FGM of the MRI. The toroidal field in the two highest

resolution simulations exhibits exponential growth soon after the start of our simulations (Fig. 1).

The poloidal magnetic field evolution follows the toroidal one closely (Extended Data Fig. 2). The

initial transition to exponential growth in both the global maximum toroidal field (left panel Fig. 1)

and the maximum toroidal field in a box with height 7.5 km above and below the equatorial plane

(right panel Fig. 1) is nearly identical and indicates that we resolve the FGM of the MRI with

the 100 m simulation. This is consistent with our background flow stability analysis of the AMR

simulation before mapping (see Extended Data Fig. 1). The observed growth rate of τ ' 0.5 ms

agrees well with the analytically predicted growth rate of the FGM from linear analysis. The field

evolution quickly becomes non-linear and this rapid growth reaches a fully turbulent saturated state

within 3 ms. The turbulent saturated toroidal field strength agrees to within a factor of two between

the two highest resolution simulations (100 m and 50 m). Once non-linear field strength is reached,

secondary modes and couplings between individual modes become important. The final turbulent

saturation field differs slightly between resolutions because finite resolution in this regime prevents

unstable MRI modes just away from the FGM from growing at the maximum rate. However, since

modes with wavelengths much smaller than λMRI,FGM are stable, these differences decrease with
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increasing resolution and we expect our results to hold when even higher-resolution simulations

become computationally accessible. This is supported by the fact that the local features of our

global 3D simulations are consistent with previous higher resolution (dx ' 10 m) local simula-

tions 18. The resolution dependence of the magnetic field in the turbulent state is striking (Fig.

2). While the 500 m and 200 m simulations show none to only mild turbulence, the 100 m and

50 m simulations develop a fully turbulent shear layer around the protoneutron star. We observe

radial filaments of magnetic field that oscillate from negative to positive values on a length scale of

1 km, consistent with the predicted wavelength of the FGM of the MRI (see Extended Data Fig. 1).

These structures resemble channel flow formation observed in shearing box simulations 18 but do

not stay coherent due to the background flow. Similar, non-coherent filaments were also observed

in the 2D global simulations of 20.

The turbulent kinetic and electromagnetic energy spectra calculated from our simulations

are shown in Fig. 3. Initially, the turbulent kinetic energy, which is nearly constant in time, is

several orders of magnitude larger across all scales than the electromagnetic energy. The spec-

trum is fitted well with a k−5/3 scaling dependence as expected in Kolmogorov theory. The lack

of an exponential turnoff at large k in the turbulent kinetic energy is due to the inclusion of the

nearly discontinuous density falloff at the edge of the protoneutron star core (at r ' 12 km) in the

calculation of the spectrum. In contrast, the electromagnetic energy is highly time and resolution

dependent. While the low resolution shows little evolution away from the initial spectrum, the

higher resolution calculations saturate at larger and larger energy at large k (top left panel Fig. 3).

The saturation value at large and intermediate k is within a factor of 3 of equipartition with the tur-
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bulent kinetic energy in the 50 m calculation. Within the first 3 ms there is a rapid transition into a

fully turbulent state at large k (top right panel, Fig. 3). This correlates well with the observed satu-

ration at t−tmap ' 3 ms of the maximum toroidal field shown in Fig. 1. After saturation is reached

at large k, we observe an inverse cascade of energy causing growth of large scale electromagnetic

energy peaked at k = 4, which corresponds to a length scale of 5 km for our domain. This is well

below the driving scale of the FGM of the MRI (k ' 20) and consistent with the structures evident

in the right lower panel of Fig. 2 and the rightmost panel of Fig. 4. The growth in the first 7 ms is

fitted well by an exponential with e-folding time τ = 3.5 ms superposed with a 2 ms modulation

that corresponds roughly to the Alfvén crossing time across the shear layer (tA,shear ∼ 2 ms). We

observe a transition away from clean exponential growth for t−tmap ≥ 7 ms, which may be caused

by the magnetic field becoming dynamically relevant. Here, the growth at k = 4 is better described

by a linear fit. In an inverse cascade the energy is expected to reach approximately the same rela-

tive saturation value (with respect to the driving turbulent kinetic energy) at all k’s with sufficiently

long evolution time 24, 25. We find evidence for this in the range 10 ≤ k ≤ 50 where the magnetic

energy spectrum begins to evolve towards a similar power-law scaling as the turbulent kinetic en-

ergy. Assuming this holds also at smaller k, we extrapolate the growth of magnetic energy based

on the linear fit (bottom panel, Fig. 3). We expect to reach saturation electromagnetic energy at

small k within t− tmap ' 60 ms. The observed difference between the 100 m and 50 m resolution

calculations in the saturation energy at large k and in the inverse energy cascade indicates that the

turbulent state is not fully captured with the 100 m simulation and that the efficiency of the inverse

cascade may still increase when going to even higher resolution than 50 m.

6



Our results indicate that the electromagnetic energy will rival the turbulent kinetic energy

and dominate the less efficient neutrino heating independent of when a gain layer is established

(t− tmap ∼ 50− 100 ms) 7, 30. Therefore MHD stresses are likely the dominant factor in reviving

the stalled shock in rapidly rotating progenitors. Furthermore, we observe formation of large-scale

structured toroidal magnetic field near the rotation axis of the protoneutron star in the later stages

of the 50 m simulation (right panel, Fig. 4). This large scale field is not present in the initial data

(left panel, Fig. 4), nor does it develop in the lower resolution cases (centre panel, Fig. 4). This

magnetar-strength toroidal field close to the rotation axis is a strong indication that hoop stresses

which favour the formation of MHD-powered outflows are present along the poles 5, 6, 29. Our find-

ings have significant implications for stellar collapse in rapidly rotating massive stars. The MRI

is a weak-field instability (i.e. its growth rate τMRI does not depend on the strength of the mag-

netic field) and the observed rapid e-folding time of τ ' 0.5 ms is short enough such that the

scenario presented here is viable even for much weaker initial seed fields. In addition, the MRI

was shown to operate efficiently in purely toroidal, mixed poloidal/toroidal and random magnetic

field configurations 3. Hence, we expect our results to hold for arbitrary precollapse magnetic field

configurations. This makes MHD-driven explosions a likely scenario in rapidly rotating progeni-

tors independent of the initial magnetisation of the star. Additionally, the large-scale build up of

magnetic field in the shear layer of the protoneutron star demonstrates that MRI-driven turbulence

poses a promising mechanism to form pulsars and magnetars in rapidly rotating stellar collapse.

This indicates that rapidly rotating massive stars can also account for potentially magnetar-powered

superluminous supernovae 17.
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Online Content Methods, along with any additional Extended Data display items and Source

Data, are available in the online version of the paper; references unique to these sections appear

only in the online paper.
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Figure 1: Evolution of the maximum toroidal magnetic field. Both panels show the maximum

toroidal magnetic field as a function of time for the four resolutions 500 m, 200 m, 100 m, and

50 m. The left panel shows the global maximum field, the right panel the maximum field in a thin

layer above and below the equatorial plane (−7.5 km ≤ z ≤ 7.5 km). The magenta line indicates

exponential growth with an e-folding time τ = 0.5 ms

.
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Figure 2: Visualisation of the radial component of the magnetic field in 2D slices. 2D rz-slices at

azimuth φ = 45◦ for the four resolutions 500 m, 200 m, 100 m, and 50 m at t− tmap = 7.6 ms. The

colourmap ranges from positive 1015 G (yellow) to negative 1015 G (light blue).
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Figure 3: Turbulent kinetic and electromagnetic energy spectra. The top two panels show the

energy as a function of dimensionless wavenumber k. The top left panel compares the electromag-

netic energy across all four resolutions. The top right panel shows a time series of electromagnetic

energy spectra for the 50 m simulation only. In the two upper panels the turbulent kinetic energy as

computed from the 50 m simulation, a line indicating Kolmogorov scaling (k−5/3), and the initial

electromagnetic energy spectrum are shown. The bottom panel shows the electromagnetic energy

at a given wavenumber Ek versus time and an exponential and linear fit.
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Figure 4: 3D volume renderings of the toroidal magnetic field. All panels show ray-casting volume

renderings of Bφ. The rotation axis z is the vertical and the volume renderings are generated with

a varying-alpha colourmap. Yellow indicates positive field of strength 1015 G and red indicates

weaker positive field. Light blue corresponds to negative field of 1015 G, while blue indicates

weaker negative field. The left most panel shows the initial conditions for our simulations, the

middle panel the 500 m simulation at time t−tmap = 10 ms and the right panel the 50 m simulation

at t− tmap = 10 ms.
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Methods

Initial conditions: Stellar collapse simulation

We start by performing a dynamical spacetime GR ideal MHD simulation with AMR of

the 25-M� (at zero-age-main-sequence) presupernova model E25 from 31 with initial conditions

for differential rotation as in 8 (initial central angular velocity of the fusion core 2.8 rad s−1,

x0 = 500 km and z0 = 2000 km). This model could be considered as a type Ic-bl/hypernova and

long gamma-ray burst progenitor 16. At the onset of collapse, we set up a modified dipolar magnetic

field structure from a vector potential of the form Ar = Aθ = 0;Aφ = B0(r3
0)(r3 + r3

0)−1 r sin θ,

with r0 = 1000 km as in 8, but withB0 = 1010 G. This progenitor seed field is not unreasonable for

GRB supernova progenitor cores 16, 32. With the grid setup (9 levels of box-in-box AMR, finest res-

olution dx = 375 m) and methods identical to 8, 33, we follow this simulation until 20 ms after core

bounce. At this time, the initial supernova shockwave has stalled at a radius of' 130 km. Both the

protoneutron star and the post-shock region have reached a quasi-equilibrium state and the under-

lying space-time changes only very slowly and secularly, which allows us to carry out subsequent

high-resolution GRMHD simulations assuming a fixed background spacetime for ∼ 10− 20 ms.

Background flow stability analysis

At the time of mapping, the plasma in the shocked region around the protoneutron star is

locally unstable to weak-field shearing modes where CMRI ≡ (ω2
BV + r dΩ2

dr
)/Ω2 < 0 3, 18, 34. Here

ωBV is the Brunt-Väisälä frequency indicating convective stability/instability, r dΩ2

dr
characterises
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the rotational shear, and Ω is the angular velocity. We follow 9, 34 and calculate the stability crite-

rion CMRI, and the wavelength λFGM and growth rate τFGM of the FGM of the MRI in 2D xy- and

xz-slices through our 3D domain. To approximate the background flow in our 3D AMR stellar

collapse simulation (which uses refinement in time and therefore has different timesteps on differ-

ent refinement levels), before mapping, we average in space and time. We first carry out a spatial

averaging step with a 3-point stencil in every direction and calculate averaged versions of the state

variables of our simulation at every timestep, e.g. the spatially averaged density ρ̄i. Next we calcu-

late a moving time average of the form ρav,i = α · ρ̄i+(1.0−α) ·ρav,i−1, where i denotes the current

timestep and i − 1 the previous one. We choose a weight function for each dataset in the moving

average as α = 2 · (∆t/∆tcoarse · n + 1.0)−1, where ∆t is the timestep on the current refinement

level and ∆tcoarse the timestep of the coarsest level. This choice of weight function guarantees that

86% of the data in the average is comprised of the last n timestep datasets. The timestep size in

our AMR simulation on the refinement level containing the shear layer around the protoneutron

star is ∆t = 5× 10−4 ms and we choose n such that α = 2000, ensuring temporal averaging over

a timescale of ' 1 ms. We calculate CMRI, λFGM, and τFGM from the space and time averages of

the state variables in our simulation (Extended Data Fig. 1).

Mapping to high-resolution computational domain

Next, we map the configuration to a 3D domain with uniform spacing of the form x, y, z =

[−66.5 km, 66.5 km] for four resolutions h = {500 m, 200 m, 100 m, 50 m}. To guarantee divergence-

free initial data for the magnetic field, we carry out a constraint projection step after we have inter-
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polated the magnetic field to the new domain. This is technically challenging as we have to make

sure that all operators used in the projection are consistent in their definition with the discrete form

of the divergence operator maintained in our specific implementation of constrained transport 33.

We use a discrete analog of the Helmholtz decomposition 35 to decompose the magnetic field into

a discrete curl curlh and a discrete gradient gradh,

B = curlhA + gradh Φ , (1)

where Φ is a discrete scalar field. The discrete divergence divh of (1) leads to a discrete Poisson

equation

divhB = 4hΦ , (2)

where 4h is the discrete Laplace operator. We solve (2) augmented with homogeneous Dirichlet

boundary conditions to machine precision for Φ using the conjugate gradient solver provided by the

PETSc 36 library in combination with the parallel algebraic multi-grid preconditioner HYPRE 37.

We then obtain a divergence free field B′ from the projection

B′ = B− gradhΦ . (3)

Finally, we recompute divhB
′ to check that it is zero to floating point precision.

High-resolution turbulence simulations

We perform ideal, fixed background spacetime, GRMHD simulations using the open-source

Einstein Toolkit 33, 38 with WENO5 reconstruction 39, 40, the HLLE Riemann solver 41 and

constrained transport 42 for maintaining divB = 0. We employ the K0 = 220 MeV variant of
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the finite-temperature nuclear equation of state of 43 and the neutrino leakage/heating approxima-

tions described in 44 and 45 with a heating scale factor fheat = 1.0. We perform simulations on

a domain with uniform spacing of the form x, y = [0 km, 66.5 km] and z = [−66.5 km, 66.5 km]

for four resolutions h = {500 m, 200 m, 100 m, 50 m} in quadrant symmetry 3D (90-degree ro-

tational symmetry in the xy-plane). We keep all variables at the boundary fixed in time, which

is justified by the fact that the boundary flow changes on timescales longer than those simulated.

To prevent spurious oscillations in the magnetic field at the outer boundary without affecting the

solution in the shear layer around the protoneutron star, we apply diffusivity at the level of the in-

duction equation for the magnetic field via a modified Ohm’s law. We choose E = −v×B + ηJ,

where J = ∇×B is the 3-current density and set η = η0 · (0.5 + 0.5 tanh ((r − rdiff) b−1)) with

η0 = 10−2, rdiff = 40 km and b = 3 km. That is, we apply diffusivity only in a region outside of

radius rdiff and transition smoothly over a blending zone with width b to no diffusivity inside rdiff .
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Extended Data Figure 1: Background flow stability analysis. The top two panels show the sta-

bility criterion CMRI 20 ms after core bounce for the initial stellar collapse simulation. The top left

panel shows a 2D xy-slice through the 3D domain, the top right panel a xz-slice. Yellow and red

indicate regions, which are stable to shearing modes, while dark and light blue colours indicate

unstable regions. The bottom left panel shows the wavelength of the FGM of the MRI λFGM, the

bottom right panel the growth rate of the FGM τFGM. Both lower panels are zoomed in on the

shear layer around the protoneutron star.
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Extended Data Figure 2: Evolution of the maximum poloidal magnetic field. Both panels show

the maximum poloidal magnetic field as a function of time for the four resolutions 500 m, 200 m,

100 m, and 50 m. The left panel shows the global maximum field, the right panel the maximum

field in a thin layer above and below the equatorial plane (−7.5 km ≤ z ≤ 7.5 km). The magenta

line indicates exponential growth with an e-folding time τ = 0.5 ms.
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