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We investigate the time-dependent reformation of the quasiparticle peak in a correlated metal near
the Mott transition, after the system is quenched into a hot electron state and equilibrates with an
environment which is colder than the Fermi-liquid crossover temperature. Close to the transition,
we identify a purely electronic bottleneck timescale, which depends on the spectral weight around
the Fermi energy in the bad metallic phase in a non-linear way. This timescale can be orders of
magnitude larger than the bare electronic hopping time, so that a separation electronic and lattice
timescales may break down. The results are obtained using nonequilibrium dynamical mean-field
theory and a slave-rotor representation of the Anderson impurity model.

PACS numbers: 71.10.Fd

When the Mott metal-insulator transition [1] is ap-
proached from the metallic side, a narrow quasi-particle
band emerges at the Fermi energy, and spectral weight
is transferred into the Hubbard bands. This behav-
ior, which is observed in a large class of materials, is a
paradigm manifestation of many-body correlations, and
its theoretical description has been a major success of
dynamical mean-field theory (DMFT) [2, 3]. By means
of photo-excitation, metallic phases in Mott insulators
can be induced on femtosecond timescales [4–6], which
provides an intriguing example for ultra-fast switching
material properties. While it is well understood that an
intense laser pulse can rapidly promote electrons to ef-
fective temperatures of several 1000K and thus lead to
a partial melting of the Mott gap [5], the equilibrium
properties of such a high-temperature state would corre-
spond to a bad metal rather than a Fermi liquid [7, 8].
It thus remains a fundamental question, with immediate
importance for understanding the transport properties
of photo-excited metallic states, how fast coherent quasi-
particles can be formed as the excitation energy is passed
from the electrons to the lattice.

Naively one may expect that the electrons in a metal
thermalize to a quasi-equilibrium state almost instantly
after the excitation, and quasiparticles are formed as soon
as the effective temperature is low enough. The rele-
vant timescale for this process would then be set by the
electron-lattice relaxation. However, while rapid ther-
malization can be understood within a quasiparticle pic-
ture (from a kinetic equation), the latter provides no clue
about the timescale for the evolution of the density of
states itself, as long as quasiparticles are not yet well-
defined. Considerable progress in describing the dynam-
ics of Mott insulators has been made using nonequilib-
rium DMFT [9], but a study of the correlated metal close
to the Mott transition has remained elusive. Although
the quasiparticle peak within DMFT corresponds to the
Kondo resonance in an effective impurity model [2], its
formation in time can be expected to show an entirely dif-

ferent dynamical behavior that the classic problem of the
buildup of Kondo screening [13–18], because the spectral
weight responsible for the Kondo screening is formed self-

consistently in DMFT. Impurity solvers such as higher-
order strong-coupling expansions [10], Monte Carlo [11],
or density-matrix renormalization group [12] have not yet
reached sufficiently long times in this parameter regime.
In equilibrium, the slave-rotor approach developed by

Florens and Georges [19, 20] provides an intuitive semi-
analytical understanding of the Mott transition, by rep-
resenting electrons in terms of a quantum rotor (charge)
and a spinful fermion. In this paper we solve the coupled
spinor and rotor equations out of equilibrium, and show
that the two partial degrees of freedom become almost
decoupled during the evolution. As a consequence, bad
metallic behavior prevails in a photo-excited state over
times which can be orders of magnitude longer than the
electron hopping, and therefore even become comparable
to the electron-phonon relaxation time.
Model: We study the particle-hole symmetric Hub-

bard model

H = −J
∑

〈ij〉,σ

(c†iσcjσ+h.c.)+U
∑

i

(ni↑−
1
2
)(ni↓−

1
2
), (1)

where J is the hopping amplitude (which will be time-
dependent), U is the on-site Coulomb repulsion, ciσ and

c†iσ are electron annihilation and creation operators for

spin σ ∈ {↑, ↓} on site i, and niσ = c†iσciσ. The
model is solved within nonequilibrium DMFT [9] on a
Bethe lattice, i.e., it is mapped onto an Anderson impu-
rity problem with self-consistently determined hybridiza-
tion function ∆(t, t′) = J(t)Gloc(t, t

′)J(t′) [2], where
Gloc(t, t

′) = −i〈TCc(t)c
†(t′)〉 is the local contour-ordered

Green’s function [21].
To solve the nonequilibrium dynamics of this model,

we employ the U(1) slave-rotor representation [19]. The
impurity operators (cσ, c

†
σ) are substituted by c†σ = f †

σe
iθ,

where f †
σ is a fermion and θ ∈ [0, 2π) is a quantum rotor

variable. A constraint L =
∑

σ f
†
σfσ − 1 on the angu-
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lar momentum L = i∂θ of the rotor removes unphys-
ical states from the Hilbert space. With this, the in-
teraction Hamiltonian is determined only by the rotor,
HU = UL2/2, while fσ represents a charge-less fermion
(spinon). Furthermore, the rotor is replaced by a bosonic
field X = eiθ with the constraint |X(t)|2 = 1. The dy-
namics of the Anderson model is then analyzed in terms
of contour-ordered rotor and spinon Green’s functions

GX(t, t′) = −i〈TCX(t)X∗(t′)〉, (2a)

Gf (t, t
′) = −i〈TCfσ(t)f

∗
σ(t

′)〉, (2b)

where GX has a direct relation to the local charge sus-
ceptibility [19]. The model can be solved exactly when
the spin-degeneracyN and the number of rotor flavorsM
is increased from N = 2 and M = 1 to infinity, keeping
the ratio N = N/M fixed [19], and this limit provides
a qualitatively correct description of the metal-insulator
transition. (Below we fix the parameter N = 3, for which
the DMFT phase-diagram is quantitatively reproduced
[19].) The derivation of the resulting integral equations
for GX and Gf in real time is a straightforward reformu-
lation of the original work [19] on the Keldysh contour,
and we just state the final result: The Green’s functions
(2) satisfy Dyson equations

(

i∂t − µ
)

Gf (t, t
′)− [Σf ∗Gf ](t, t

′) = δC(t, t
′), (3)

(−1

4U
∂2
t + η

)

GX(t, t′)− [ΣX ∗GX ](t, t′) = δC(t, t
′), (4)

where ΣX(t, t′) = iN∆(t, t′)Gf (t
′, t) and Σf (t, t

′) =
i∆(t, t′)GX(t′, t), are rotor and spinor self-energies. The
time-dependent Lagrange multiplier η(t) must be de-
termined such that the constraint |X(t)|2 = 1 is sat-
isfied. The electron’s Green’s function is obtained by
Gloc(t, t

′) = iGf (t, t
′)GX(t, t′), closing the equations

with the DMFT self-consistency. Equations (3) and
(4) are solved using the Volterra integral techniques de-
scribed in Ref. [9], and η(t) is determined by a predictor
corrector procedure.
Results: In Fig. 1a, we plot the electronic density of

states for three temperatures at U/J = 4. (The metal
insulator transition endpoint is at Uc ≈ 4.69J). Below
a temperature T ∗ ≈ 0.2J , a quasiparticle peak emerges
at the Fermi energy, while for T > T ∗ the system is
in a bad metallic state with a pseudo-gap at the Fermi
energy. To study the time-dependent formation of quasi-
particles, we initially prepare the system in the atomic
limit (J = 0), and rapidly turn on the hopping to a value
J∗ > 0. (In the following, J∗ and ~/J∗ set the energy and
time unit, respectively, and the ramp-on profile is given
by J(t) = J∗(1− cos(πt/tc)

)

/2 for 0 ≤ t ≤ tc = 2.5.) At
intermediate values of U and in an isolated system, such
a quench would lead to a highly excited electronic state
which thermalizes within few 1/J∗ to an effective temper-
ature above the Fermi-liquid crossover T∗ [22], which is
also confirmed by the slave-rotor calculations. Hence this
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FIG. 1. a) Equilibrium density of state A(ω) for three dif-
ferent temperatures β = 1 (red), β = 5 (green) and β = 7
(blue) throughout the metal-insulator crossover at U = 4.
b-d) A(ω) in equilibrium (dashed line) compared to the time-
dependent spectral function A(t, ω) for λ = 0.5 at times t = 20
(blue), t = 50 (red), and t = 80 (green) and values of U
and β as indicated. e) The height of the quasiparticle peak
A(t, ω = 0) as a function of time for U = 4, bath temperatures
β = 5, 6.5, 7.5, 8, 10 (from bottom to top) and bath coupling
λ = 0.5. Symbols on the right vertical axis correspond to the
equilibrium value A(ω = 0) at the same temperatures.

excited state is a good representation of a hot-electron
state reached after strong photo-excitation. In addition,
the system is weakly coupled to a bosonic heat bath at
low temperature T = 1/β, to cool down the electrons and
form the Fermi liquid when U/J∗ is in the metallic phase.
We treat this dissipative bath by an additional electron
self-energy Σbath(t, t

′) = λD(t, t′)G(t, t′), where D is the
noninteracting bosonic Green’s function with frequency
ω0, set to ω0 = 1, and λ is the coupling constant [23].
To track the time-evolution of the system, we com-

pute the time-dependent spectral functions A(t, ω) =

− 1
π
Im

∫ t

0
dsGret(t, t − s)eiωs. For bath temperatures

T > T ∗, A(ω, t) is almost indistinguishable from the
equilibrium spectrum A(ω) at temperature T already at
early times t = 20 (Fig. 1b). For lower temperature,
however, only the Hubbard bands are rapidly retrieved,
while the formation of the quasiparticle peak remains in-
complete even for times larger than the inverse width of
the peak (Fig. 1c). The closer U is to the critical value
Uc, the less metallic is the transient state (Fig. 1d). The
slow evolution is also clear from the time-evolution of the
spectral weight A(t, ω = 0) (Fig. 1e): For T < T ∗, the
equilibrium value A(0) strongly increases with decreas-
ing T , while the time-dependent value A(t, 0) becomes
almost independent of the bath temperature, indicating
that the dynamics is governed by a bottleneck of elec-
tronic nature.
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FIG. 2. a)-c) Spinon (f) and rotor (X) spectral functions
in equilibrium for U = 4 and temperatures in the bad metal
regime (β = 1, a), the crossover (β = 5, b) and the metallic
phase (β = 7, c). d) The spinon lifetime (inverse width of
the peak) as a function of β for different values of U . Trian-
gular points are calculated using the approximate expression
Eq.(6). Dashed lines indicate the maximum spinon lifetime
τmax during the relaxation process (see main text and Fig. 3).

In order to understand this behavior, we first an-
alyze it in terms of the rotor and spinor degrees of
freedom. Despite the well-known equilibrium physics
of the Hubbard model, the slave-rotor language ex-
hibits a nontrivial spinon response in the crossover
regime. Figure 2a-c shows the spectral functions
AX,f (ω) = − 1

π
Im

∫

dsGret
X,f (s)e

iωs in equilibrium. At
high-temperature, the rotor has spectral weight around
the Hubbard bands, and the spinon peak is broad-
ened due to the interaction with the charge fluctuations
(Fig. 2a). Below the crossover (Fig. 2c), the rotor de-
velops low-energy spectral weight, which implies the for-
mation of the quasi-particle peak [19]. In the intermedi-
ate temperature regime, however, spinon and rotor be-
come energetically decoupled, and Af (ω) develops into a
narrow Lorentzian peak (Fig. 2b). The width Γ of the
Lorentzian defines a timescale τeq(T ) = 1/Γ, which has
a clear maximum τ∗ as a function of temperature in the
metal-insulator crossover (Fig. 2d). To characterize the
time evolution, we plot Gret

f (t, t−s) as a function of time
difference s for various t (Fig. 3). A narrow peak in Af (ω)
corresponds to a slow decay of Gf as a function of s, so
that we can define a nonequilibrium spinon lifetime by

τ−1
ne (t) = −∂sG

ret
f (t, t− s)/Gret

f (t, t− s)|s=s0 (5)

for some fixed time s0. (For a Lorentzian peak, τ is the
inverse width). The time τne first increases with t and
then decreases, tracking the evolution of τeq(T ) a func-
tion of temperature (Fig. 3b). We then find that the
maximum of τne(t) as a function of time (τmax) coincides
with the crossover scale τ∗ (dashed lines in Fig. 2d), and
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FIG. 3. a) Retarded spinon Green’s function Gret

f (t, t−s) as a
function of relative time s for various different times t (U = 4,
β = 10, λ = 0.5), and in equilibrium (dashed line). The slope
decreases for t . 32 and increases for t & 32. b) Inverse of the
slope [Eq. (5)] as a function of t for λ = 0.5, β = 10, s0 = 16
and various values U below the metal-insulator transition. c)
Crossover time tmax plotted against τmax, where (tmax, τmax)
corresponds to the maximum of the curves τne(t) in panel b).

moreover, this value is reached at a time tmax propor-
tional to τ∗ (Fig. 3c). This demonstrates that the long
lifetime of the spinor provides a bottleneck time for he
relaxation in the crossover regime.

Although properties of Af (ω) are not simply reflected
in the equilibrium single-particle properties, one can ap-
proximately express the timescale τ∗ in terms of the elec-
tronic degrees of freedom. The width of a sharp reso-
nance in Af (ω) is given by the imaginary part of the
self-energy Σf , which depends on GX and ∆. In the
crossover regime, we can, to a first approximation, re-
late the rotor GX to the electronic Green’s function by
A(ω) = 1

2
A′′

X(ω) coth(βω/2), by setting Af (ω) = δ(ω) in
the convolution Gloc(t, t

′) = iGf (t, t
′)GX(t, t′) [24]. An-

alytic continuation of Σf (t, t
′) = i∆(t, t′)GX(t′, t) then

gives

τ−1
eq (T ) = −Σ′′

f(ω = 0) ≈ −

∫

dω
∆′′(ω)A(ω)

cosh(ω/2T )2
, (6)

and τ∗ = τeq(T∗), which agrees well with the numerical
result (Fig. 2d). For the Bethe lattice ∆ = J2Gloc, so
that ∆′′(ω) = −πJ2A(ω). Equation (6) implies a rather
nontrivial relation between the nonequilibrium relaxation
and the electronic properties. At T∗, the hyperbolic co-
sine function restricts the integral to values close to the
pseudo-gap, where A(ω) is small. Since the endpoint of
the metal-insulator transition temperature in the Hub-
bard model is remarkably small compared to the bare
energy scales, τ∗ becomes much longer than the bare hop-
ping close to the transition U = Uc.
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X(ω, t)/G<
X(ω, t) = eβeffω at t = 80 for U = 4, 4.2, 4.3

(λ = 0.75, β = 10). b) Integrated spectral weight I(t) =∫
0.5

0
dωAX(t, ω) of the rotor at low energy. Square half-filled

points at t = 80 correspond to the equilibrium values. Arrows
indicate the tmax (Fig. 3c).

To further analyze the relaxation, we investigate
whether rotor reaches a quasi-equilibrium state while the
spinon is slowly evolving. One can check this by testing
the fluctuation-dissipation G>

X(ω, t)/G<
X(ω, t) = eβeffω is

satisfied, which would imply that an effective temper-
ature Teff = 1/βeff can be assigned to charge fluctua-
tions (using the the time-dependent Fourier transforms
G>,<(ω, t) =

∫

dsG>,<(t, t− s)eiωs). Figure 4a however
shows that a single charge temperature cannot be defined
on the timescale of the simulation. While the occupa-
tion of high-energy fluctuations (the Hubbard bands) is
small, the low energy part, which is more strongly influ-
enced by the nonequilibrium spinor, remains at an appar-
ent higher temperature, i.e., high-energy and low-energy
charge fluctuations are not thermalized with each other.
Because of the coupling between the spinon and the rotor,
the low-energy spectral weight of the rotor also reflects
the non-monotonous evolution of the spinor (Fig. 4b):
The increase of the spinon bandwidth for t > tmax leads
to the transfer of rotor spectral weight to higher energies,
so that the integrated spectral weight of the rotor in the
low energy region 0 < ω < 0.5 has a maximum around
t = tmax.
Conclusion and Discussion: In conclusion, we have

investigated how the electronic state close to the Mott
transition in the Hubbard model relaxes from an excited
hot-electron state towards the Fermi liquid. We found a
bottleneck time of purely electronic nature, before which
charge and electronic degrees of freedom remain in a non-
thermal state and cannot be characterized by an effec-
tive temperature, and the formation of the quasiparticle
band is incomplete. The electronic relaxation is related
to the spinon lifetime τ∗, and a simple estimate [Eq. (6)]
in terms of the density of states around ω = 0 at the

crossover temperature T∗ (the onset of quasiparticle for-
mation) shows that this time can be much longer than the
femtosecond hopping time. The absence of quasiparticles
implies long-lived bad metallic behavior, and should thus
be observable also in optical experiments on materials
like LiV2O4, which are metals close to the paramagnetic
Mott transition [25, 26]. We note that slow (or absent)
formation of a quasiparticle band was also observed in
simulations of a photo-doped Mott-insulator [23], but in
this case the origin of the behavior is less clear because
the final low temperature state is insulating.

It is important to note that the τ∗ characterizes the
slow dynamics of the system around the crossover regime,
but not necessarily the subsequent reshaping of the quasi-
particle peak. Times larger than tmax cannot be stud-
ied systematically due to the increase of the numerical
cost with the simulated time. This prevents a systematic
study of the final formation of the quasiparticle peak,
which might bring in another slow timescale related to
the build-up of low energy spectral weight of the ro-
tor. Furthermore, after quasiparticles are formed, slow
dynamics can arise also from an ineffective coupling of
heavy electrons to phonons [27].

The observed dynamical behavior arrises from the
DMFT self-consistency and is thus a lattice effect, en-
tirely different from the build-up of the Kondo peak after
a quench in the Anderson model, which is limited only
by energy-time uncertainty [13]. A natural question for
future studies is thus whether a similar electronic bottle-
neck time may appear in multi-band Hubbard models or
the Kondo lattice model for heavy fermions, where local-
ized f or d orbitals interacting with delocalized electrons
giving rise to the emergence of massive quasiparticles. In
this context it is also interesting whether one can identify
the small energy scale related to the spinor in numerically
exact equilibrium calculations.

The authors would like to acknowledge fruitful discus-
sions with A. Rosch, D. Golez, and Ph. Werner.
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Rev. B 90, 235131 (2014).
[13] P. Nordlander, M. Pustilnik, Y. Meir, N. S. Wingreen,

and D. C. Langreth, Phys. Rev. Lett. 83, 808 (1999).
[14] F. B. Andres and A. Schiller, Phys. Rev. Lett. 95, 196801

(2005).
[15] D. Roosen, M. R. Wegewijs, and W. Hofstetter, Phys.

Rev. Lett. 100, 087201 (2008).
[16] G. Cohen, E. Gull, D. R. Reichman, A. J. Millis, and E.

Rabani, Phys. Rev. B 87, 195108 (2013).
[17] G. Cohen, E. Gull, D. R. Reichman, and A. J. Millis,

Phys. Rev. Lett. 112, 146802 (2014).

[18] A. E. Antipov, Q. Dong, E. Gull, arXiv:1508.06633
(2015).

[19] S. Florens and A. Georges, Phys. Rev. B 66, 165111
(2002).

[20] S. Florens and A. Georges, Phys. Rev. B 70, 035114
(2004).

[21] For an introduction and notation concerning nonequilib-
rium Green’s functions, see Ref. [9].

[22] M. Eckstein and Ph. Werner, Phys. Rev. B 84, 035122
(2011).

[23] M. Eckstein and Ph. Werner, Phys. Rev. Lett. 110,
126401 (2013).

[24] For the analytic continuation of the slave-rotor equations
to the real-frequency axis, see Ref. [19].

[25] J Matsuno, K Kobayashi, A Fujimori, L.F Mattheiss, Y
Ueda, Physica B 28, 281-282 (2000).

[26] R. Arita, K. Held, A. V. Lukoyanov, and V. I. Anisimov,
Phys. Rev. Lett. 98, 166402 (2007).

[27] J. Demsar, R. D. Averitt, K. H. Ahn, M. J. Graf, S. A.
Trugman, V. V. Kabanov, J. L. Sarrao, and A. J. Taylor,
Phys. Rev. Lett. 91, 027401 (2003).


