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ANDERSON IMPURITY MODEL:
SLAVE-ROTOR DECOMPOSITION

In this section, we present some technical details of the
nonequilibrium DMFT solution of the Hubbard model

H = −J(t)
∑
〈ij〉,σ

(c†iσcjσ +h.c.) +U
∑
i

(ni↑− 1
2 )(ni↓− 1

2 ),

(1)
with the slave-rotor representation of the Anderson im-
purity model, generalizing Ref. [1] to the Keldysh frame-
work. Here J(t) is the time-dependent hopping ampli-
tude,and U is the Hubbard strength.

Within DMFT, the mapping of the lattice prob-
lem Eq. (1) onto the impurity model will lead us to the
action [2]

S =− i
∫
C

dtdt′c†(t)∆(t, t′)c(t′) + Sloc (2)

where

Sloc = −i
∫
C

dtU
(
n↓ −

1

2

)(
n↑ −

1

2

)
, (3)

C stands for the Keldysh contour, ∆ is the hybridization
function of electrons ∆(t, t′) = J(t)Gloc(t, t

′)J(t′), where
Gloc(t, t

′) = −i〈TCc(t)c†(t′)〉.
Using slave-rotor decomposition, we represent an im-

purity electron by c†σ = f†σe
iθ, where θ is a phase de-

fined in [0, 2π), associated with an angular momentum
L = −i∂/∂θ and fσ, is a fermionic charge-less operator
with spin σ, known as spinon. In this representation, the
the projection to the physical Hilbert space is imposed
by

L =
∑
σ

(
f†σfσ −

1

2

)
, , (4)

and the commutator relations

[L(t), θ(t′)] = −iδC(t, t′), (5)

{fσ(t), f†σ′(t
′)} = δσσ′δC(t, t

′), (6)

assure the electron statistics. It is clear from Eqs. (4, 5),
that θ is a bosonic field which carries the charge infor-
mation.

Using slave-rotor representation, we express the impu-
rity action of Eq. (2) as

S =− i
{∫
C

dtdt′fσ(t)e−iθ(t)∆(t, t′)f†σ(t′)eiθ(t
′),

+

∫
C

dtUL2 +

∫
C

dtL(t)(−∂t)θ(t)

+

∫
C

dt
∑
σ

f†σ(t)(−i∂t)fσ(t)

−
∫
C

dtλ
(
L(t)−

∑
σ

f†σ(t)fσ(t)− 1
)}
, (7)

where λ is the time-independent Lagrange-multiplier. To
achieve a L-free action, we first replace operators by their
corresponding fields and then integrate over L fields.

After introducing a quantum rotor as X = eiθ, with
the constrains as |X|2 = 1, which is imposed by a time-
dependent Lagrange-multiplier η(t), we obtain (ignoring
constant terms)

S =− i
{∫
C

dtdt′fσ(t)X∗(t)∆(t, t′)f∗σ(t′)X(t′),

+

∫
C

dt
(
− i∂t + λ

)
X(t)

1

4U

(
i∂t + λ

)
X∗(t)

+

∫
C

dt
∑
σ

f∗σ(t)(−i∂t − λ)fσ(t)

− η
∫
C

dtX(t)X∗(t)
}
, (8)

The impurity model can be solved exactly when the
spin-degeneracy N and the number of rotor flavors M is
increased from N = 2 and M = 1 to infinity, keeping
the ratio N = N/M fixed [1], and this limit provides
a qualitatively correct description of the metal-insulator
transition. (In our presented results, we fix the parameter
N = 3, for which the DMFT phase-diagram is quantita-
tively reproduced [1].)

At half-filling, we set λ to zero, and acquire the Dyson
equations of spinon and rotor fields, using Eq. (8), for

GX(t, t′) = −i〈TCX(t)X∗(t′)〉, (9)

Gf (t, t′) = −i〈TCfσ(t)f∗σ(t′)〉, (10)



2

as (
i∂t − µ

)
Gf (t, t′)− [Σf ∗Gf ](t, t′) = δC(t, t

′), (11)(−1

4U
∂2t + η

)
GX(t, t′)− [ΣX ∗GX ](t, t′) = δC(t, t

′),

(12)

where ΣX(t, t′) = iN∆(t, t′)Gf (t′, t) and Σf (t, t′) =
i∆(t, t′)GX(t′, t), are rotor and spinon self-energies.

After solving Dyson equations and computing the ro-
tor and spinon’s Green’s functions, the electron’s Green’s
function is obtained by Gloc(t, t

′) = iGf (t, t′)GX(t, t′),
closing the equations with the DMFT self-consistency.
Equations (11) and (12) are solved using the Volterra
integral techniques described in Ref. [2], and η(t) is de-
termined by a predictor-corrector procedure.

ANDERSON MODEL WITHOUT LATTICE
SELF-CONSISTENCY

In this section we use the nonequilibrium slave rotor
impurity solver to study a fast quench in the single-
impurity Anderson model, i.e. the impurity problem of
the Hubbard model without DMFT self-consistency. The
results will confirm that the slow quasiparticle formation
in the Hubbard model, which is described in the main
manuscript, is indeed a lattice effect and not a property
of the DMFT impurity model alone. We choose an An-
derson impurity model at U = 2, with the hybridization
function ∆(t, t′) = J(t)G0(t, t′)J(t′), where G0 is the lo-
cal Green’s function of a bath with semi-elliptic density
of states of bandwidth 4 and inverse temperature β = 65,
and the coupling is ramped from J(t) = 0 for t < 0 to
J(t) = 0.4 for t > 0.25. In equilibrium (time-independent
J = 0.4), this parameter regime corresponds to a three-
peak structure of the spectral function, where the central
(Kondo) peak has a width of approximately 0.25.

In Fig. 1, we plot the electron, spinon and, rotor lesser
Green’s functions in and out of equilibrium. In contrast
to the corresponding behavior in the Hubbard model (c.f.
Fig. 3(a) of the main text), all Green’s functions are
time-translational invariant for short times t & 16. In
addition, the equilibrium results (black points) of the
electronic Green’s function lie on top of our nonequi-
librium data, indicating that the system is equilibrated.
This confirms that the spectral functions corresponding
to the Kondo peak are retrieved without any apparent
bottleneck behavior.

These results also provide a test for the slave-rotor
impurity solver, as they are consistent with previous in-
vestigations of the dynamics in the Anderson model [4],
which show that the buildup of the Kondo-peak is lim-
ited by energy-time uncertainty, i.e., the formation of the
peak is complete after a time scale tK ∼ 1/TK , where TK
is the width of the peak.
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FIG. 1. Lesser components of rotor(a), spinon(b), and elec-
tron(c) at three different times t ∈ {16, 64, 80}, as well in
equilibrium, as a function of time differences. (Anderson im-
purity model with U = 2 and β = 65, see main text.)

SOLUTION OF THE PROBLEM USING THE
NONCROSSING APPROXIMATION

In this section we analyze the quasiparticle formation
for the same setup as in the main text, but instead of
the slave-rotor decoupling we now use the lowest order
strong-coupling expansion [3] (non-crossing approxima-
tion, NCA) to solve the DMFT equations. (The imple-
mentation of the NCA is described in Ref. [3].) The NCA
is known to underestimate the critical interaction Uc of
the Mott transition, but nevertheless the method quali-
tatively reproduces the phase diagram of the Mott tran-
sition. It is therefore illustrating to see that also the dy-
namics of quasiparticle formation described in the main
text is captured by the NCA solution.

We use the same setup as in the main text, i.e., the
hopping J(t) in the Hubbard model [Eq. (1) of the main
text] is suddenly ramped from the atomic limit J = 0
to unity J = 1, and then the equilibration in a thermal
bath of temperature 1/β is studied. The coupling to the
bath is set to λ = 0.5 throughout this section. Figure
2(a) shows the spectral function in equilibrium (J = 1)
for various temperatures at U = 3.1, which is close to
the NCA value for the critical interaction of the metal-
insulator transition. The curves show the crossover from
the bad metal at high temperatures to the metal with a
quasiparticle peak at low temperatures.

Figure 2(b) shows the time-evolution of the spectral

function A(t, ω) = − 1
π Im

∫ t
0
dsGret(t− s, t)eiωs after the

ramp-on of the hopping at t = 0, which reveals a slow re-
covery of the quasiparticle peak. In Fig. 2(c) we plot the
spectral weight at ω = 0, i.e., the height of the quasipar-
ticle peak, for various temperatures 1/β of the bath. The
final equilibrium height of the quasiparticle peak is recov-
ered within the simulation time only if the temperature is
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FIG. 2. Similar as Figure 1 of the main text, but using
NCA to solve the DMFT equations: (a) Spectral function in
equilibrium for various temperatures U = 3.1 below the metal
insulator transition. (b) Time-dependent spectral function
A(t, ω) after the ramp-on of the hopping, for U = 3.1 and
inverse bath temperature β = 30. The dashed line is the
equilibrium result. (c) Spectral weight A(t, ω = 0) at ω = 0
as a function of time for U = 3 and inverse bath temperatures
β as indicated. The filled symbols correspond the the height
A(ω = 0) of the quasiparticle peak in equilibrium at the same
β. (d) Time dependent spectral weight A(t, ω = 0) at low
bath temperature for various interactions U .
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FIG. 3. a) The crossover scale τeq(U, β) as a function of
inverse temperature, obtained using Eq. (13) with the spec-
tral functions obtained within NCA. The arrows point at the
maximal or saturated value, used to define the crossover scale
τ∗(U). The resulting values are τ∗(U) = 20 (U = 2.9), 24.5
(U = 3), 31 (U = 3.1), 42 (U = 3.2), 63.5 (U = 3.3). b) Time
dependent spectral weight A(ω = 0, t) at bath temperature
β = 30 for various interactions U (same data as in Fig 2d)
plotted as a function of rescaled time t/τ∗(U), with the time
scale t/τ∗(U) taken from panel a). Additionally, the curves
are rescaled with an arbitrary factor in vertical axis.

above some crossover scale (β = 2, 5 in Fig. 2(c). At lower
temperatures the evolution becomes basically indepen-
dent of the bath temperature 1/β, whereas the quasipar-
ticle peak in equilibrium would strongly increases with
decreasing temperature (the data for β = 10 and β = 20
in Fig. 2(c) fall almost on top of each other). Figure
2(d) shows that the evolution becomes slower as U is in-
creased. All this behavior, which indicates the existence
of an electronic bottleneck time related to the metal-
insulator crossover regime, is therefore perfectly in agree-
ment with the slave-rotor solution (c.f. Fig. 1 of the main
text), although shifted to smaller values of the interaction
due to the underestimation of the critical U within NCA.
(The second order strong-coupling approximation would
almost quantitatively yield the phase diagram in equilib-
rium, but the higher numerical effort does not allow to
reach the long simulation times needed to systematically
analyze the quasiparticle formation.)

Furthermore, we can investigate whether the slowdown
of the dynamics in the NCA solution is determined by the
electronic bottleneck time τ∗, which has been identified
from the spinon lifetime using the slave-rotor language.
Here we extract τ∗ from the electronic spectral functions,
using the approximate form given by Eq. (4) of the main
text. In Fig. 3(a) we show the time scale τeq obtained by
using Eq. (4) of the main text

τ−1eq (β) =

∫
dω

πA(ω)2

cosh(βω/2)2
, (13)

as a function of temperature 1/β, using the DMFT
self-consistency for the semi-elliptical density of states,
∆(ω)′′ = −πA(ω). The maximum or saturation value
(black arrows) defines the crossover scale τ∗(U). In Fig-
ure 3(b) we plot the data of Fig. 2(d) as a function of
rescaled time 1/τ∗(U), with an additional rescaling of the
vertical axis. We observe an approximate data collapse,
which confirms that the time-evolution of the quasipar-
ticle height A(ω = 0, t) for various values of U roughly
satisfies a functional form A(ω = 0, t) = aUf(t/τ∗(U))
with a given U -independent functional form, analogous
to the slave-rotor results represented in Fig. 1(e) of the
main text.

COMPARISON TO A PHOTO-EXCITED STATE

In this section we compare the excited state after the
J-quench protocol to a photo-excited state. Both after a
quench from the atomic limit and after an excitation with
a laser pulse (electric field) the system is in a very highly
excited state, i.e., the energy per particle corresponds to
an effective temperature far above the crossover temper-
ature T ∗ where we find the slow relaxation dynamics. At
these high energies we expect thermalization after a short
transient of the order of the bare hopping time (much
shorter than the time scales of interest to this work),
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FIG. 4. (a) Kinetic energy and double occupancy after a
hopping quench (tcut = 1) and excitaton with an electric field
pulse (see text) at frequencies ωp = 1.5, 1.75, 2. (b) Spectral
function A(ω, t) and occupied density of states A<(ω, t) at
the same parameters, evaluated after a short relaxation time,
t = 15.

so that both quench and photo-excitation would lead to
more or less the same hot-electron state. Rapid thermal-
ization after excitation with an electric field pulse has
been observed previously in simulations for the hypercu-
bic lattice [5]. To corroborate the above claim within

the Slave-Rotor method, we have simulated both the
quench and the laser excitation for the same lattice (a
two-dimensional Hubbard model with unit hopping and
bandwidth 8). The implementation of the DMFT self-
consistency is described in Ref. [5], and we use the slave-
rotor impurity solver.

We compare the spectral function A(t, ω) =

− 1
π Im

∫ t
0
dsGret(t, t− s)eiωs and the occupied density of

states A<(t, ω) = − 1
2π Im

∫
dsG<(t, t − s)eiωs for two

different setups, which are (i), a hopping quench as de-
scribed in the main text, with a ramp time tcut = 1,
and (ii), excitation with an electric field along the body
diagonal of the lattice, given by a few cycle pulse with fre-
quency ωp and gaussian envelope, E(t) = E0 sin(ωp(t −
t0)) exp(−4.6(t − t0)2/t20), where E0 = 1, t0 = 2π/ωp.
Figure 4(a) shows the time-evolution of kinetic energy
and double occupancy, and Fig. 4(b) shows the spectral
functions. The excitation density is controlled by varying
the frequency ωp. The simulation confirms that if the en-
ergy after the excitation is the same (ωp = 1.75), also the
spectral functions after the excitation relax to the same
form. As indicated by the form of the spectral function,
the final state is in the bad metallic regime far above the
onset of the quasi-particle peak. Of course, the scenario
of rapid thermalization would break down for weaker ex-
citations, i.e., if the final energy is in the crossover regime
where we observed the relaxation bottleneck.
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