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We provide an introduction to the theory of Eisenstein series and automorphic forms
on real simple Lie groups G, emphasising the role of representation theory. It is useful
to take a slightly wider view and define all objects over the (rational) adeles A, thereby
also paving the way for connections to number theory, representation theory and the
Langlands program. Most of the results we present are already scattered throughout
the mathematics literature but our exposition collects them together and is driven
by examples. Many interesting aspects of these functions are hidden in their Fourier
coefficients with respect to unipotent subgroups and a large part of our focus is to
explain and derive general theorems on these Fourier expansions. Specifically, we
give complete proofs of Langlands’ constant term formula for Eisenstein series on
adelic groups G(A) as well as the Casselman–Shalika formula for the p-adic spherical
Whittaker vector associated to unramified automorphic representations of G(Qp).
Somewhat surprisingly, all these results have natural interpretations as encoding
physical effects in string theory. We therefore introduce also some basic concepts of
string theory, aimed toward mathematicians, emphasising the role of automorphic
forms. In addition, we explain how the classical theory of Hecke operators fits into the
modern theory of automorphic representations of adelic groups, thereby providing a
connection with some key elements in the Langlands program, such as the Langlands
dual group LG and automorphic L-functions. Our treatise concludes with a detailed
list of interesting open questions and pointers to additional topics where automorphic
forms occur in string theory.
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Note to the reader

These notes have grown out of our endeavour to understand the theory of automorphic
representations and the structure of Fourier expansions of automorphic forms with a
particular emphasis on adelic methods and Eisenstein series. Our intention is also to open
a path of communication between mathematicians and physicists, in particular string
theorists, interested in these topics. Most of the results in these notes exist already in the
literature and we benefitted greatly from [57,80,130–132,218,294,308,309]; our exposition
differs, however, at places from the standard one. A few new results and examples are
included as well, in particular we provide many techniques for working out aspects of the
Fourier expansion of Eisenstein series. We intend to expand the material of these notes in
the future and we would be very grateful to learn of any omissions and mistakes that we
have made unintentionally.

Sections that are more advanced or explore topics beyond the main focus of the notes
are marked with an asterisk.
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Jakob Palmkvist, Christoffer Petersson, Siddhartha Sahi, Per Salberger, Gordan Savin,
Oliver Schlotterer, Philippe Spindel, Stefan Theisen, Pierre Vanhove, Roberto Volpato,
Peter West and Martin Westerholt-Raum.

i



Contents

Contents

1 Motivation and background 1
1.1 Automorphic forms and Eisenstein series . . . . . . . . . . . . . . . . . . 2
1.2 Why Eisenstein series and automorphic forms? . . . . . . . . . . . . . . . 4

1.2.1 A mathematician’s possible answer . . . . . . . . . . . . . . . . . . 5
1.2.2 A physicist’s possible answer . . . . . . . . . . . . . . . . . . . . . 5

1.3 Analysing automorphic forms and adelisation . . . . . . . . . . . . . . . . 6
1.3.1 Fourier expansion of the SL(2,R) series . . . . . . . . . . . . . . . 6
1.3.2 Adelisation of Eisenstein series . . . . . . . . . . . . . . . . . . . . 7

1.4 Reader’s guide and main theorems . . . . . . . . . . . . . . . . . . . . . . 9

2 String theory scattering and automorphic forms 13
2.1 String theory concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Four-graviton scattering amplitudes . . . . . . . . . . . . . . . . . . . . . 16
2.3 Physical interpretation of Fourier expansion . . . . . . . . . . . . . . . . . 20
2.4 Computing the four-graviton tree level amplitude* . . . . . . . . . . . . . 22

3 Preliminaries on p-adic and adelic technology 27
3.1 p-adic numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 p-adic integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 Characters and the Fourier transform . . . . . . . . . . . . . . . . . . . . 32
3.4 p-adic Gaussian and Bessel function . . . . . . . . . . . . . . . . . . . . . 37
3.5 Adeles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.6 Adelisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.7 Adelic analysis of the Riemann zeta function . . . . . . . . . . . . . . . . 41

3.7.1 The completed Riemann zeta function . . . . . . . . . . . . . . . . 41
3.7.2 The functional relation . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Basic notions from Lie algebras and Lie groups 45
4.1 Real Lie algebras and real Lie groups . . . . . . . . . . . . . . . . . . . . 45

4.1.1 Split real simple Lie algebras and root systems . . . . . . . . . . . 45
4.1.2 Split real Lie groups and highest weight representations . . . . . . 48
4.1.3 Borel and parabolic subgroups . . . . . . . . . . . . . . . . . . . . 50
4.1.4 Chevalley group notation and discrete subgroups . . . . . . . . . . 52

4.2 p-adic and adelic groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2.1 p-adic groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

ii



Eisenstein series and automorphic representations

4.2.2 Adelisation and strong approximation . . . . . . . . . . . . . . . . 55
4.2.3 Strong approximation for SL(2,R) . . . . . . . . . . . . . . . . . . 57

5 Automorphic forms and representation theory 61
5.1 From classical modular forms to (adelic) automorphic forms . . . . . . . . 61

5.1.1 Holomorphic modular forms . . . . . . . . . . . . . . . . . . . . . 61
5.1.2 Modular forms for congruence subgroups* . . . . . . . . . . . . . . 63
5.1.3 From holomorphic modular forms to automorphic forms on SL(2,R) 64
5.1.4 Maass forms and non-holomorphic Eisenstein series . . . . . . . . . 67
5.1.5 Maass forms of non-zero weight* . . . . . . . . . . . . . . . . . . . 69
5.1.6 Adelisation of non-holomorphic Eisenstein series . . . . . . . . . . 70

5.2 Adelic automorphic forms . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.2.1 Adelic lift of a holomorphic modular form with Hecke character* . 73

5.3 Eisenstein series and multiplicative characters . . . . . . . . . . . . . . . . 75
5.3.1 Adelic multiplicative characters . . . . . . . . . . . . . . . . . . . . 75
5.3.2 Eisenstein series . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.4 Automorphic representations . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.4.1 Automorphic forms and representation theory: a first glance . . . . 79
5.4.2 Formal definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.4.3 Principal series representation . . . . . . . . . . . . . . . . . . . . 85
5.4.4 Eisenstein series and induced representations . . . . . . . . . . . . 86
5.4.5 Classifying automorphic representations . . . . . . . . . . . . . . . 87

5.5 Embedding of the discrete series in the principal series . . . . . . . . . . . 89
5.5.1 Eisenstein series for arbitrary standard sections . . . . . . . . . . . 89
5.5.2 Representation theoretic interpretation . . . . . . . . . . . . . . . 91

5.6 Eisenstein series for non-minimal parabolics* . . . . . . . . . . . . . . . . 94
5.6.1 Multiplicative characters . . . . . . . . . . . . . . . . . . . . . . . 95
5.6.2 Parabolically induced representations . . . . . . . . . . . . . . . . 96

6 Whittaker vectors and Fourier coefficients 101
6.1 Preliminary example: SL(2,R) Whittaker vectors . . . . . . . . . . . . . 101
6.2 Fourier expansions and unitary characters . . . . . . . . . . . . . . . . . . 105

6.2.1 Unitary characters . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.2.2 Fourier coefficients vs. Whittaker vectors . . . . . . . . . . . . . . 108
6.2.3 Abelian vs. non-abelian Fourier expansions . . . . . . . . . . . . . 110

6.3 Induced representations and Whittaker models . . . . . . . . . . . . . . . 111
6.3.1 Global considerations . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.3.2 Local considerations . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.3.3 Spherical Whittaker vectors . . . . . . . . . . . . . . . . . . . . . . 114

6.4 Fourier coefficients and nilpotent orbits* . . . . . . . . . . . . . . . . . . . 116
6.4.1 Character variety orbits . . . . . . . . . . . . . . . . . . . . . . . . 116
6.4.2 Wavefront sets and vanishing theorems for Fourier coefficients . . . 119

6.5 Method of Piatetski-Shapiro and Shalika* . . . . . . . . . . . . . . . . . . 122

iii



Contents

7 Fourier coefficients of Eisenstein series on SL(2,A) 125
7.1 Statement of theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.2 Constant term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.2.1 Trivial Weyl word . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.2.2 Non-trivial Weyl word . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.2.3 The global form of the full constant term . . . . . . . . . . . . . . 133

7.3 The non-constant Fourier coefficients . . . . . . . . . . . . . . . . . . . . . 134
7.3.1 Trivial Weyl word . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
7.3.2 Non-trivial Weyl word . . . . . . . . . . . . . . . . . . . . . . . . . 136

8 Langlands constant term formula 139
8.1 Statement of theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
8.2 Bruhat decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
8.3 Parametrising the integral . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
8.4 Obtaining the a dependence of the integral . . . . . . . . . . . . . . . . . 142
8.5 Solving the remaining integral by induction . . . . . . . . . . . . . . . . . 143
8.6 The Gindikin–Karpelevich formula . . . . . . . . . . . . . . . . . . . . . . 144

8.6.1 Integral over R: p =∞ . . . . . . . . . . . . . . . . . . . . . . . . 144
8.6.2 Integral over Qp for finite p . . . . . . . . . . . . . . . . . . . . . . 145
8.6.3 The global formula . . . . . . . . . . . . . . . . . . . . . . . . . . 145

8.7 Assembling the constant term . . . . . . . . . . . . . . . . . . . . . . . . . 146
8.8 Functional relations for Eisenstein series . . . . . . . . . . . . . . . . . . . 146
8.9 Expansion in maximal parabolics* . . . . . . . . . . . . . . . . . . . . . . 148

9 Whittaker vectors of Eisenstein series 153
9.1 Reduction of the integral and the longest Weyl word . . . . . . . . . . . . 153
9.2 Unramified local Whittaker vectors . . . . . . . . . . . . . . . . . . . . . . 156

9.2.1 Unramified characters ψ . . . . . . . . . . . . . . . . . . . . . . . . 156
9.2.2 Vanishing properties . . . . . . . . . . . . . . . . . . . . . . . . . . 157

9.3 The Casselman–Shalika formula . . . . . . . . . . . . . . . . . . . . . . . 157
9.3.1 Functional relation for the local Whittaker vector . . . . . . . . . . 159
9.3.2 Weyl invariant combination . . . . . . . . . . . . . . . . . . . . . . 161
9.3.3 Determining a special coefficient . . . . . . . . . . . . . . . . . . . 162

9.4 Whittaker vectors for generic ψ . . . . . . . . . . . . . . . . . . . . . . . . 163
9.5 Degenerate Whittaker vectors . . . . . . . . . . . . . . . . . . . . . . . . . 164
9.6 Whittaker vectors on SL(3,A) . . . . . . . . . . . . . . . . . . . . . . . . 169

9.6.1 Constant terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
9.6.2 Generic Whittaker vectors . . . . . . . . . . . . . . . . . . . . . . 170
9.6.3 Degenerate Whittaker vectors . . . . . . . . . . . . . . . . . . . . 171
9.6.4 Non-abelian Fourier coefficients . . . . . . . . . . . . . . . . . . . . 172

9.7 The Casselman–Shalika formula and Langlands duality* . . . . . . . . . . 176

10 Working with Eisenstein series 181
10.1 The SL(2,R) Eisenstein series as a function of s . . . . . . . . . . . . . . 181

iv



Eisenstein series and automorphic representations

10.1.1 Limiting values in original normalisation . . . . . . . . . . . . . . . 182
10.1.2 Weyl symmetric normalisation . . . . . . . . . . . . . . . . . . . . 184

10.2 Properties of Eisenstein series . . . . . . . . . . . . . . . . . . . . . . . . . 185
10.2.1 Validity of functional relation . . . . . . . . . . . . . . . . . . . . . 185
10.2.2 Weyl symmetric normalisation . . . . . . . . . . . . . . . . . . . . 188
10.2.3 Square-integrability of Eisenstein series . . . . . . . . . . . . . . . 190

10.3 Evaluating constant term formulas . . . . . . . . . . . . . . . . . . . . . . 192
10.3.1 The orbit method . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
10.3.2 Special λ-values and E(λ, g) . . . . . . . . . . . . . . . . . . . . . 197
10.3.3 Constant terms in maximal parabolic subgroups . . . . . . . . . . 200

10.4 Evaluating spherical Whittaker vectors . . . . . . . . . . . . . . . . . . . 201
10.4.1 Degenerate principal series and degenerate Whittaker vectors . . . 202
10.4.2 Whittaker vectors of maximal parabolic Eisenstein series . . . . . . 203
10.4.3 Examples of degenerate Whittaker vectors . . . . . . . . . . . . . . 204
10.4.4 Relation between Fourier coefficients and Whittaker vectors . . . . 206

11 Hecke theory and automorphic L-functions 213
11.1 Classical Hecke operators and Hecke ring: the general idea . . . . . . . . . 213
11.2 Hecke operators for SL(2,R) . . . . . . . . . . . . . . . . . . . . . . . . . 215

11.2.1 Definition of Hecke operators . . . . . . . . . . . . . . . . . . . . . 215
11.2.2 Algebra of Hecke operators . . . . . . . . . . . . . . . . . . . . . . 217
11.2.3 Common eigenfunctions of Tn and ∆ . . . . . . . . . . . . . . . . . 217

11.3 Hecke operators and Dirichlet series . . . . . . . . . . . . . . . . . . . . . 220
11.4 The spherical Hecke algebra . . . . . . . . . . . . . . . . . . . . . . . . . . 222
11.5 Spherical Hecke algebras and automorphic representations . . . . . . . . . 224
11.6 The Satake isomorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
11.7 The L-group and generalisation to GL(n) . . . . . . . . . . . . . . . . . . 229
11.8 The Casselman–Shalika formula revisited . . . . . . . . . . . . . . . . . . 233
11.9 Automorphic L-functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
11.10 The Langlands–Shahidi method* . . . . . . . . . . . . . . . . . . . . . . . 239

12 Outlook 245
12.1 String scattering amplitudes and automorphic forms . . . . . . . . . . . . 245

12.1.1 Small representations and string amplitudes . . . . . . . . . . . . . 246
12.1.2 D6R4-amplitudes and new automorphic forms . . . . . . . . . . . . 248
12.1.3 Wavefront sets of curvature corrections and their reduction . . . . 249

12.2 Automorphic functions and lattice sums . . . . . . . . . . . . . . . . . . . 251
12.3 Asymptotics of Fourier coefficients . . . . . . . . . . . . . . . . . . . . . . 252
12.4 Black hole counting and automorphic representations . . . . . . . . . . . . 254

12.4.1 N = 8 supersymmetry . . . . . . . . . . . . . . . . . . . . . . . . . 254
12.4.2 N = 4 supersymmetry . . . . . . . . . . . . . . . . . . . . . . . . . 256
12.4.3 N = 2 supersymmetry . . . . . . . . . . . . . . . . . . . . . . . . . 257

12.5 The Langlands program . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
12.5.1 The classical version . . . . . . . . . . . . . . . . . . . . . . . . . . 258

v



Contents

12.5.2 The Langlands program and physics . . . . . . . . . . . . . . . . . 260
12.5.3 The geometric version . . . . . . . . . . . . . . . . . . . . . . . . . 260

12.6 Whittaker vectors, multiple Dirichlet series and statistical physics . . . . . 261
12.6.1 Generalisations of the Weyl character formula . . . . . . . . . . . . 261
12.6.2 Weyl group multiple Dirichlet series . . . . . . . . . . . . . . . . . 266

12.7 Extension to Kac–Moody groups . . . . . . . . . . . . . . . . . . . . . . . 269
12.7.1 String theory motivation: infinite-dimensional U-duality . . . . . . 269
12.7.2 Mathematical motivation: new automorphic L-functions . . . . . . 269
12.7.3 Fourier coefficients and small representations . . . . . . . . . . . . 270
12.7.4 Langlands program for Kac–Moody groups . . . . . . . . . . . . . 271

Appendices

A SL(2,R), H and SL(2,Z) 273
A.1 SL(2,R) Lie group and sl(2,R) Lie algebra . . . . . . . . . . . . . . . . . 273
A.2 The upper half plane H and SL(2,Z) . . . . . . . . . . . . . . . . . . . . 274
A.3 Action of SL(2,R) on smooth functions on SL(2,R) . . . . . . . . . . . . 275

B Fourier expansion of SL(2,R) series by Poisson resummation 279
B.1 Constant term(s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
B.2 Non-zero Fourier modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

C Laplace operators on G/K and automorphic forms 283
C.1 Scalar Laplace operator and quadratic Casimir . . . . . . . . . . . . . . . 283
C.2 Automorphic forms on SL(2,R) as Laplace eigenfunctions . . . . . . . . . 285

D Local-to-global principle 287

References 291

Index 313

vi





Chapter 1

Motivation and background

An efficient, but abstract, way to approach the subject of
automorphic forms is by the introduction of adeles,
rather ungainly objects that nevertheless, once familiar, spare much
unnecessary thought and many useless calculations.

— Robert P. Langlands∗

This text grew out of our endeavour to learn the adelic techniques used in the analysis
of Eisenstein series in many mathematical works. Part of our motivation came from
research problems in string theory were we faced the challenge of calculating certain
Fourier coefficients of automorphic forms on exceptional Lie groups. The present text can
be viewed as the culmination of the resulting journey through the world of automorphic
forms. Even though none of the results that we present here are new, we felt that there
might be an interest in such a survey since many of the original sources and textbooks do
not make an easy first reading, especially for theoretical physicists like ourselves. Therefore
we strove to be as pedagogical and precise as possible but will sometimes sacrifice rigour
or generality for conveying ideas and explicit examples. The reader is referred to the many
sources quoted if he wishes more details on a particular point.

∗Representation theory - its rise and its role in number theory, Proceedings of the Gibbs symposium
(1989)
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Chapter 1. Motivation and background

1.1 Automorphic forms and Eisenstein series

Automorphic forms are functions f(g) on a Lie group G that

(1) are invariant under the action of a discrete subgroup Γ ⊂ G: f(γ · g) = f(g) for all
γ ∈ Γ,

(2) satisfy eigenvalue differential equations under the action of the ring of G-invariant
differential operators and

(3) have well-behaved growth conditions.

A more explicit and refined form of these conditions will be given in chapter 5 when we
properly define automorphic forms; here we content ourselves with a qualitative description
based on examples. We will mainly be interested in automorphic forms f(g) that are
invariant under the action of the maximal compact subgroup K of G when acting from the
right: f(gk) = f(g) for all k ∈ K; such forms are called K-spherical. The automorphic
forms are then functions on the coset G/K.

The prime example of an automorphic form is obtained when considering G = SL(2,R)
and Γ = SL(2,Z) ⊂ SL(2,R). The maximal compact subgroup is K = SO(2,R) and the
coset space G/K is a constant negative curvature space isomorphic to the Poincaré upper
half plane H = {z = x + iy | x ∈ R and y > 0}. A function satisfying the three criteria
above is then given by the non-holomorphic function

fs(z) =
∑

(c,d)∈Z2

(c,d)6=(0,0)

ys

|cz + d|2s . (1.1)

The sum converges absolutely for Re(s) > 1. The action of an element γ ∈ SL(2,Z) on
z ∈ H is given by the standard fractional linear form (see appendix A)

γ · z =
az + b

cz + d
for γ =

(
a b
c d

)
∈ SL(2,Z). (1.2)

Property (1) is then verified by noting that the integral lattice (c, d) ∈ Z2 is preserved by
the action of SL(2,Z) and acting with γ ∈ SL(2,Z) in (1.1) merely reorders the terms
in the absolutely convergent sum. Property (2) in this case reduces to a single equation
since there is only a single primitive G-invariant differential operator for the real rank one
group SL(2,R). This operator is given by

∆ = y2
(
∂2
x + ∂2

y

)
(1.3)

and corresponds to the Laplace–Beltrami operator on the upper half plane H. In group
theoretical terms it is the quadratic Casimir operator. Acting with it on the function (1.1)
one finds

∆fs(z) = s(s− 1)fs(z) (1.4)

2



Eisenstein series and automorphic representations

and hence fs(z) is an eigenfunction of ∆ (and therefore of the full ring of differential
operators generated by ∆). Condition (3) relating to the growth of the function here
corresponds to the behavior of fs(z) near the boundary of the upper half plane, more
particularly near the so-called cusp at infinity when y → ∞.1 The growth condition
requires fs(y) to grow at most as a power law as y →∞. To verify this point it is easiest
to consider the Fourier expansion of fs(y). This requires a bit more machinery and also
paves the way to the general theory. We will introduce it heuristically in section 1.3 and
in detail in chapter 6.

The form of the function fs(z) is very specific to the action of SL(2,Z) on the upper
half plane H. To pave the way for the more general theory of automorphic forms for higher
rank Lie groups we shall now rewrite (1.1) in a more suggestive way. In fact, fs(z) is
(almost) an example of an Eisenstein series on G = SL(2,R). To see this, we first extract
the greatest common divisor of the coordinates of the lattice point (c, d) ∈ Z2:

fs(z) =

(∑
k>0

k−2s

) ∑
(c,d)∈Z2

gcd(c,d)=1

ys

|cz + d|2s = ζ(2s)
∑

(c,d)∈Z2

gcd(c,d)=1

ys

|cz + d|2s (1.5)

where we have evaluated the sum over the common divisor k using the Riemann zeta
function [318]

ζ(s) =
∑
n>0

n−s. (1.6)

Referring back to (1.2), we can rewrite the summand using an element of the group
SL(2,Z):

ys

|cz + d|2s = [Im (γ · z)]s for γ =

(
a b
c d

)
. (1.7)

For this to be possible, two things have to occur: (i) For any co-prime pair (c, d) such a
matrix γ ∈ SL(2,Z) must exist, and (ii) if several matrices exist we must form equivalence
classes such that the sum over co-prime pairs (c, d) corresponds exactly to the sum over
equivalence classes. For (i), we note that the condition that c and d be co-prime is
necessary since it would otherwise be impossible to satisfy the determinant condition
ad − bc = 1 over Z. At the same time, co-primality is sufficient to guarantee existence
of integers a0 and b0 that complete c and d to a matrix γ ∈ SL(2,Z). In fact, there is a
one-parameter family of solutions for γ that can be written as(

a0 +mc b0 +md
c d

)
=

(
1 m
0 1

)(
a0 b0

c d

)
(1.8)

for any integer m ∈ Z. (That these are all solutions to the determinant condition over Z
is an elementary lemma of number theory, sometimes called Bézout’s lemma [180].) The

1For Γ = SL(2,Z) this is the only cusp up to equivalence. With this one means that the fundamental
domain of the action of Γ on H only touches the boundary of the upper half plane at a single point. See
appendix A for pictures and [28,201,213] more details on discrete subgroups of SL(2,R).
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Chapter 1. Motivation and background

form (1.8) tells us also how to resolve point (ii): We identify matrices that are obtained
from each other by left multiplication by a matrix belonging to the Borel subgroup

B(Z) =

{(
±1 m
0 ±1

) ∣∣∣∣m ∈ Z
}
⊂ SL(2,Z). (1.9)

The interpretation of this group is that it is the stabiliser of the y-axis.

Summarising the steps we have performed, we find that we can write the function (1.1)
as

fs(z) = 2ζ(2s)
∑

γ∈B(Z)\SL(2,Z)

[Im (γ · z)]s . (1.10)

Since we had included the matrix −1 in the definition of B(Z), an extra factor of 2 arises
in this formula.

Dropping the multiplicative ζ-factor, we obtain the function

E(χs, z) =
∑

γ∈B(Z)\SL(2,Z)

χs(γ · z), (1.11)

where we have also introduced the notation χs(z) = [Im(z)]s = ys. The reason for this
notation is that χs is actually induced from a character on the real Borel subgroup. We
will explain this in more detail below in chapter 5. Note that this way of writing the
automorphic form makes the invariance under SL(2,Z) completely manifest because it is
a sum over images.

The form (1.11) is what we will call an Eisenstein series on SL(2,R) and it is this
form that generalises straight-forwardly to Lie groups G(R) other than SL(2,R) (whereas
the form with the sum over a lattice does not, as we discuss in more detail in section 12.2).
In complete analogy with (1.11) we define the (minimal parabolic) Eisenstein series on
G(R) invariant under the discrete group G(Z) by2

E(χ, g) =
∑

γ∈B(Z)\G(Z)

χ(γg) (1.12)

where χ is (induced from) a character on the Borel subgroup B(R) and g ∈ G(R).
Eisenstein series are the protagonists of the story we will develop.

1.2 Why Eisenstein series and automorphic forms?

Before delving into the further analysis of Eisenstein series, let us briefly step back and
provide some motivation for their study.

2We will always take G(Z) as the Chevalley group that is defined as the stabiliser (in G(R)) of a
preferred integral basis (Chevalley basis) of the Lie algebra of G(R), see section 4.1.4 below more details.
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Eisenstein series and automorphic representations

1.2.1 A mathematician’s possible answer

Automorphic forms are of great importance in many mathematical fields such as number
theory, representation theory and algebraic geometry. The various ways in which
automorphic forms enter these seemingly disparate fields are connected by a web of
conjectures collectively referred to as the Langlands program [98,116,196,197,216,217].

Much of the arithmetic information is contained in the Fourier coefficients of
automorphic forms. The standard examples correspond to modular forms on G(R) =
SL(2,R), where these coefficients yield eigenvalues of Hecke operators (covered in
chapter 11) and the counting of points on elliptic curves.

For arbitrary Lie groups G(R) one considers the Hilbert space L2(Γ\G(R)) of square-
integrable functions that are invariant under a left action by a discrete subgroup Γ ⊂ G(R).
This space carries a natural action of g ∈ G(R), called the right-regular action, through[

π(g)f
]
(x) = f(xg) (1.13)

where f ∈ L2
(
Γ\G(R)

)
, g, x ∈ G(R) and π : G(R) → Aut

(
L2
(
Γ\G(R)

))
is the right-

regular representation map. Since the functions are square-integrable the representation is
unitary. This representation-theoretic viewpoint on automorphic forms was first proposed
by Gelfand, Graev and Piatetski-Shapiro [120] late developed considerably by Jacquet and
Langlands [176]. This perspective provides the key to generalising the classical theory of
modular forms on the complex upper half plane to higher rank Lie groups.

It is an immediate, important and difficult question as to what the decomposition of
the space L2(Γ\G(R)) into irreducible representations of G(R) looks like. The irreducible
constituents in this decomposition are called automorphic representations. This spectral
problem was tackled and solved by Langlands [218]. The Eisenstein series (and their
analytic continuations) form an integral part in the resolution although they themselves
are not square-integrable.3 Although we will not describe the full resolution of this problem
in these notes, automorphic representations will play a prominent role in our discussion.

1.2.2 A physicist’s possible answer

Many problems in quantum mechanics are characterised by discrete symmetries. At the
heart of many of them lies Dirac quantisation where charges (e.g. electric or magnetic)
of physical states are restricted to lie in certain lattices rather than in continuous spaces.
The discrete symmetries preserving the lattice are often called dualities and can give very
interesting different angles on a physical problem. This happens in particular in string
theory, where such dualities mix perturbative and non-perturbative effects.

For the discrete symmetry to be a true symmetry of a physical theory, all observable
quantities must be given by functions that are invariant under the discrete symmetry,
corresponding to property (1) discussed at the beginning of section 1.1. Similarly, the

3A passing physicist might note that this is very similar to using non-normalisable plane waves as a
‘basis’ for wave functions in quantum mechanics. Indeed the piece χ(γg) in (1.12) is exactly like a plane
wave; the γ-sum is there to make it invariant under the discrete group so that E(χ, g) are the simplest
Γ-invariant plane waves.
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Chapter 1. Motivation and background

dynamics or other symmetries of the theory impose differential equations on the observables,
corresponding to property (2), and the growth condition (3) is typically associated with
having well-defined perturbative regimes of the theory. The main example we have in
mind here comes from string theory and the construction of scattering amplitudes of type
II strings in various maximally supersymmetric backgrounds [138–141,195,252]. However,
the logic is not necessarily restricted to this, see also [6,25,229,302] for some other uses of
automorphic forms in physics.

For these reasons one is naturally led to the study of automorphic forms in physical
systems with discrete symmetries. Via this route one is also led to the same spectral
problem posed by the mathematician since one needs to determine which automorphic
representation a given physical observable belongs to. Again, the Eisenstein series and
their properties are the building blocks of such spaces and it is important to understand
them well. Furthermore, in a number of examples from string theory it was actually
possible to show that the observable is given by an Eisenstein series itself [138,144].4 A
detailed discussion of automorphic forms in string theory is given in chapter 2.

1.3 Analysing automorphic forms and adelisation

We now return to the study of Eisenstein series defined by (1.12) and their properties,
starting again with the very explicit example (1.1) for SL(2,R).

1.3.1 Fourier expansion of the SL(2,R) series

The discrete Borel subgroup B(Z) of (1.9) acts on the variable z = x+ iy as translations:(
±1 m
0 ±1

)
· z = z ±m for m ∈ Z (1.14)

and therefore any automorphic function (that is by definition invariant under any discrete
transformation) is periodic in the x direction with period equal to 1 corresponding to the
smallest non-trivial m = 1. This means that we can Fourier expand it in modes e2πinx.
Applying this to (1.11) leads to

E(χs, z) = C(y)︸ ︷︷ ︸
constant term

zero mode

+
∑
n6=0

an(y)e2πinx

︸ ︷︷ ︸
non-zero mode

. (1.15)

As we indicated, it is natural to divide the Fourier expansion into two parts depending on
whether one deals with the zero Fourier mode (a.k.a. constant term) or with a non-zero
mode. Since the Fourier expansion was only in the x direction, the Fourier coefficients
still depend on the second variable y.5

4That Eisenstein series are mostly not square-integrable is no problem in these cases since the object
computed (part of a scattering amplitude) is not a wavefunction and not required to be normalisable.

5If one dealt with an automorphic form holomorphic in z (called modular forms in chapter 5 below)
this would not be true since the holomorphicity condition links the x and y dependence. The Fourier
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Eisenstein series and automorphic representations

Determining the explicit form of the Fourier coefficients is one of the key problems in
the study of Eisenstein series. In the example of SL(2,R) this can for instance be done by
making recourse to the formulation in terms of a lattice sum that was given in (1.1) and
using the technique of Poisson resummation. The calculation is reviewed in appendix B
and leads to the following explicit expression

E(χs, z) = ys +
ξ(2s− 1)

ξ(2s)
y1−s +

2y1/2

ξ(2s)

∑
m 6=0

|m|s−1/2σ1−2s(m)Ks−1/2(2π|m|y)e2πimx,

(1.16)

where

ξ(s) = π−s/2Γ(s/2)ζ(s) (1.17)

is the completion of the Riemann zeta function (1.6), Ks(z) is the modified Bessel function
of the second kind (that decreases exponentially for z →∞ in accordance with the growth
condition) and

σ1−2s(n) =
∑
d|n

d1−2s (1.18)

is called a divisor sum (or the instanton measure in physics; see chapter 2 below) and
given by a sum over the positive divisors of n 6= 0.

As is evident from (1.16), the explicit form of the Fourier expansion can appear quite
complicated and involves special functions as well as number theoretic objects. For the
case of more general G(R) the method of Poisson resummation is not necessarily available
as there is not always a form of the Eisenstein series as a lattice sum. It is therefore
desirable to develop alternative techniques for obtaining (parts of) the Fourier expansion
under more general assumptions.6 This is achieved by lifting the Eisenstein series into an
adelic context which we now sketch and explain in more detail in section 5.2.

1.3.2 Adelisation of Eisenstein series

A standard elementary technique in number theory for analysing equations over Z is
by analysing them instead as congruences for every prime (and its powers) separately
(sometimes known as the Hasse principle or the local-global principle based on the Chinese
remainder theorem) [1,251] (see also Appendix D for some examples). One way of writing
all the terms together is by using the ring of adeles A. The adeles can formally be thought
of as an infinite tuple

a = (a∞; a2, a3, a5, a7, . . .) ∈ A = R×
∏′

p<∞

Qp, (1.19)

coefficients in an expansion in q = e2πi(x+iy) = e2πiz would be pure numbers. This is the origin of the
name constant term for the zero mode in (1.15).

6Additional care has to be taken for the Fourier expansion for general G(R) also because the translation
group B(Z) is in general not abelian. One can still define (abelian) Fourier coefficients as we will see,
however, they fail to capture the full Eisenstein series. There are also non-abelian parts to the Fourier
expansion.
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Chapter 1. Motivation and background

where Qp denotes the p-adic numbers that are a completion of the rational number Q that
is inequivalent to the standard one (leading to R) and that is parametrised by a prime
number p and defined properly in section 3.1. The product is over all prime numbers and
the prime on the product symbol indicates that the entries ap in the tuple are restricted
in a certain way (see (3.59) below for the exact statement). The real numbers R can be
written as Q∞ in this context and interpreted as the completion of Q at the ‘prime’ p =∞.
Very crudely, an adele can be thought of as summarising the information of an object
modulo all primes.

Strong approximation is a similar method that lifts a general automorphic form from
being defined on the space G(Z)\G(R)/K(R) to the space G(Q)\G(A)/K(A) so that
G(Q) plays the role of the discrete subgroup that was played by G(Z) before. However,
G(Q) is a nicer group than G(Z) since Q is a field whereas Z is only a ring. This facilitates
the analysis and allows the application of many theorems for algebraic groups.

A consequence of using strong approximation and adeles is that the result of the
calculation factorises according to (1.19) and one can do the calculation for all primes
and p =∞ separately. Indeed, the explicit form (1.16) for the Fourier expansion of the
SL(2,R) Eisenstein series already secretly had this form. This can be seen for example in
the constant term since

ξ(2s− 1)

ξ(2s)
= π1/2 Γ(s− 1/2)

Γ(s)

∏
p<∞

1− p−2s

1− p1−2s
(1.20)

where we have used the definition of the completed zeta function from (1.17) and the
Euler product formula for the Riemann zeta function [318]

ζ(s) =
∑
n>0

n−s =
∏
p<∞

1

1− p−s . (1.21)

In (1.20) we clearly recognise a factorised form that is very similar to (1.19). That this is
not an accident will be demonstrated in section 7.2 for SL(2,R). For the other Fourier
modes in (1.16) we get a similar factorisation with the modified Bessel function belonging
to the p =∞ factor and

σ1−2s(m) =
∏
p<∞

γp(m)
1− p−(2s−1) |m|2s−1

p

1− p−(2s−1)
(1.22)

where |m|p is the p-adic norm of m defined in section 3.1 and γp(m) selects all factors with
|m|p ≤ 1 as shown in section 3.4. The complete derivation for the non-constant terms can
be found in section 7.3 for the SL(2,R) Eisenstein series.

The adelic methods are so powerful that one can obtain a closed, simple and group-
theoretic formula for the constant term of Eisenstein series on any (split real) Lie group
G(R). This formula, known as the Langlands constant formula will be the topic of chapter 8.

For the (abelian) Fourier coefficients, the adelic methods also help to obtain fairly
general results, in particular for the part that involves the finite primes p <∞. For the
contribution coming from the R in (1.19) the results are not quite as general; already for
SL(2,R) this is what gives the modified Bessel function. We discuss the Fourier coefficients
in chapter 9.
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1.4 Reader’s guide and main theorems

Chapters 2, 3 and 4 provide preliminary background material that is needed in subsequent
chapters. Chapter 2 gives a brief overview of how automorphic forms enter in computing
scattering amplitudes in string theory. This is not intended as a comprehensive introduction
to string theory, but its aim is rather to act as a first glimpse, primarily directed towards
mathematicians, of a vast and fascinating topic that is closely tied to automorphic forms and
representation theory. Throughout the main text we also offer remarks and pointers that
indicate physical interpretations of various mathematical notions and results. Chapter 3,
on the other hand, introduces the basic machinery of p-adic and adelic analysis which will
be crucial for everything we do later. The main thrust of the chapter is provided by the
numerous examples of computing p-adic integrals that will be used extensively in proving
Langlands constant term formula, and computing Fourier coefficients of Einstein series. In
chapter 4 we introduce some basic features of Lie algebras and Lie groups that will be
used in the remainder of the text. We first discuss Lie groups and Lie algebras over R and
then move on to algebraic groups over Qp as well as adelic groups.

We shall now discuss the structure of the remainder of the text in a little more detail,
with emphasis on the central results in each chapter.

• In chapter 5 we introduce the general theory of automorphic forms and automorphic
representations. We start out gently by discussing how to pass from modular forms
on the upper half plane to automorphic forms on the adelic group SL(2,A). We
then move on to the general case of arbitrary Lie groups. We define Eisenstein series
E(χ, g) for general split real Lie groups G(R) that are invariant under the discrete
Chevalley subgroup G(Z). The definition (1.12) requires the choice of a character χ
of a parabolic subgroup P of G; alternatively, we can think of χ as being defined
by a choice of weight vector λ of the (split real) Lie algebra of G(R). We explain
how this can be understood from the point of view of the representation theory of
G(R), and we show how to lift the function from being defined on G(R) to a function
defined on G(A) where A are the adeles of the rational number field Q.

• A major part of these notes are devoted to analysing Fourier expansions of
automorphic forms. This is a highly non-trivial subject with many interesting
connections to representation theory as well as in physics. In chapter 6 we introduce
the general theory of Fourier coefficients and Whittaker vectors, with emphasis
on the representation-theoretic viewpoint. Toward the end of the chapter we also
introduce some more advanced topics, such as the nilpotent orbits and wavefront
sets, as well as the Piatetski-Shapiro–Shalika formula.

• Chapter 7 we illustrate all the general techniques in the context of Eisenstein series
on SL(2). Specifically, using adelic techniques, we provide a detailed proof of the
following classic theorem:
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Chapter 1. Motivation and background

Theorem 1.1. The complete Fourier expansion of the Eisenstein series E(χs, g) for
g ∈ SL(2,R) ⊂ SL(2,A) is given by:

E(χs, g) = ys +
ξ(2s− 1)

ξ(2s)
y1−s +

∑
m 6=0

2y1/2

ξ(2s)
|m|s−1/2σ1−2s(m)Ks−1/2(2π|m|y)e2πimx.

(1.23)

Furthermore, the Eisenstein series satisfies the functional relation

E(χs, g) =
ξ(2s− 1)

ξ(2s)
E(χ1−s, g), (1.24)

where ξ is the (completed) Riemann zeta function. The rest of the notation is
explained in chapter 7.

• The first two terms in the Fourier expansion above correspond to the zeroth Fourier
coefficients. These are often collectively referred to as the constant term of the
Eisenstein series, A very important and general result in this context is provided by
the so called Langlands constant term formula, which yields a remarkably simple
expression for the complete constant term of Eisenstein series on arbitrary semi-
simple Lie groups. In chapter 8 we give a complete proof of the following theorem of
Langlands:

Theorem 1.2 (Langlands’ constant term formula). Let G be a real semi-simple
Lie group and G(A) its adelisation. Let λ be a weight of the Lie algebra g, W the
associated Weyl group, and N a maximal unipotent radical of G. We then have∫

N(Z)\N(R)

E(λ, ng)dn =
∑
w∈W

awλ+ρ
∏

α>0 :wα<0

ξ(〈λ|α〉)
ξ(1 + 〈λ|α〉) , (1.25)

where a belongs to the Cartan torus A ⊂ G, and the product runs over positive roots
α of g.

• The infinite sum in the Fourier expansion (1.23) correspond to the non-zero coefficients
and this is generally referred to as the non-constant term. In chapter 9 we discuss the
general structure of of Fourier coefficients of Eisenstein series on reductive groups G.
For this part of the expansion much less is known explicitly. However, there exists a
beautiful formula due to Kato–Shintani–Casselman–Shalika, commonly known as
the Casselman–Shalika formula, which gives an explicit expression for the so-called
p-adic Whittaker vector. This corresponds to a local version of the Fourier coefficient
of the Eisenstein series, which can be used to reassemble the full (global) coefficient.
A large part of chapter 9 is therefore devoted to proving the following theorem:

Theorem 1.3 (Casselman–Shalika formula). Let G(Qp)(p < ∞) be a p-adic
semi-simple Lie group, N(Qp) a maximal unipotent radical of G(Qp) and ψ an
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unramified unitary character on N(Qp). The Casselman–Shalika formula is given
by: ∫

N(Qp)

χ(w0na)ψ(n)dn =
ε(λ)

ξ(λ)

∑
w∈W

(det(w))|awλ+ρ|
∏
α>0
wα<0

p〈λ|α〉 (1.26)

• For certain special types of Fourier coefficients, so called degenerate Whittaker vectors,
one can take one step further and compute the full global coefficient (and not just
the p-adic version). In chapter 9 we also prove the following theorem which gives
such a formula:

Theorem 1.4 (degenerate Whittaker vector). Let ψ : N(Q)\N(A)→ U(1) be
a degenerate character associated subgroup G′(A) ⊂ G(A). Then the degenerate
Whittaker vector on G(A) is given by

W ◦
ψ(χ, a) =

∑
wcw′long∈W/W ′

a(wcw′long)−1λ+ρM(w−1
c , λ)W ′◦

ψa(w
−1
c λ, 1), (1.27)

where W ′◦
ψ denotes a Whittaker function on the G′(A) subgroup of G(A). The weight

w−1
c λ is given as a weight of G′(A) by orthogonal projection.

A more complete formulation is provided in section 9.5. In section 9.6 we also provide
an extensive example of how to calculate Whittaker vectors for Eisenstein series on
SL(3,A).

• In chapter 10 we illustrate how to perform calculations with Eisenstein series in
practice. More specifically we explain how to evaluate Langlands constant term
formula in concrete examples, which, in particular, involves a detailed analysis of
the functional equation. We also show how to perform similar evaluations of the
Whittaker vectors that appear in the non-constant Fourier coefficients. We provide
some explicit examples for exceptional Lie groups.

• It is interesting to note that both the Langlands constant term formula (1.25) and
the Casselman–Shalika formula (1.26) have cunning similarities to the Weyl character
formula. That this is not an accident is a central insight of Langlands. To understand
this requires the additional machinery of Hecke theory, which is the topic of chapter 11.
Here we explain how to pass from the classical notion of Hecke operators acting on
modular forms to the general notion of spherical Hecke algebras on adelic groups.
This analysis leads us to a reformulation of the Casselman–Shalika formula that
clearly illustrates the intimate connection with the Weyl character formula. In this
context we are naturally lead to the notion of the Langlands dual group LG and to the
notion of automorphic L-functions, which form a central ingredient in the Langlands
program. The chapter concludes with a discussion of the Langlands-Shahidi method,
which is a powerful way to construct L-functions from automorphic representations.
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• In the concluding chapter 12, we present various interesting directions which we
have not been able to cover in detail. We emphasise open questions and conjectures,
many of which has sprung out of problems in string theory, and we have tried to
formalise them and phrased them in purely mathematical terms. We also discuss
briefly some of the key ingredients in the Langlands program and we make various
comments and conjectures regarding its extension to Kac–Moody groups.

We end by giving some disclaimers: All groups G(R) that will be considered here are
associated with split real forms and we also restrict to simple groups. The only base
field that we will use for adelisation are the rational numbers Q. Often we will perform
formal manipulations of infinite sums and integrals without paying attention to whether
the expressions are (absolutely) convergent or not. The expressions typically depend on a
set of parameters and for some range of parameters convergence can be established. In
many cases, the results can be extended by analytic continuation.
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Chapter 2

String theory scattering and
automorphic forms

In this chapter we will introduce some basic concepts of string theory with emphasis
on scattering amplitudes of closed strings. Our main purpose is to illustrate the deep
connection between string theory and automorphic forms, which may come as a surprise to
a mathematician. The topic is far too vast for us to do it justice in just a single chapter, but
hopefully this will provide a sufficient glimpse to spark the motivation for further studies.
The main point we wish to convey is that the Fourier coefficients of automorphic forms on
higher rank Lie groups capture essential information about string theory amplitudes. We
should stress that scattering amplitudes is but one aspect of the relation between string
theory and automorphic forms. Other connections, such as to BPS-state counting, are
discussed in section 12.1. For more information about string theory we recommend the
books [24,150,272,326] and, for a brief introduction, the lecture notes [82,311].

2.1 String theory concepts

String theory is a theory of one-dimensional extended objects propagating in a (Lorentzian)
target space-time M . During their propagation, strings sweep out a two-dimensional world-
sheet Σ and string theory can therefore be thought of as the dynamics of the embedding
maps X : Σ → M , where both Σ and M are endowed with additional structure (like
a metric) that enter in the definition of the dynamics. In superstring theory —that we
exclusively consider here and refer to generally as string theory— this additional structure
includes world-sheet supersymmetry and the space of allowed world-sheets Σ is then the
space of all closed, orientable super Riemann surfaces. We here also specialise to so-called
type IIB superstrings; otherwise one might have to include boundaries and non-orientable
surfaces as well. Riemann surfaces are classified by their genus h ∈ Z≥0, a topological
invariant.

A fundamental parameter of string theory is the characteristic length `s of a string .
More commonly, one uses the parameter α′ = `2

s which can be thought of as the scale
of area of the string world-sheet Σ. For very small string lengths `s → 0, the strings
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+ + +  ...

Figure 2.1: String world-sheets as they appear in the scattering of four closed strings.
Ignoring the asymptotic boundary states, the diagrams correspond to genera h = 0, 1, 2,
respectively.

look effectively like point particles. The (bosonic) spectrum of string excitations in flat
ten-dimensional Minkowski space M = R1,9 is then given by states of mass

m2 =
2

α′
N, (2.1)

where N ∈ Z≥0 is the excitation number of the string states. The lightest string states are
massless and there is an infinite sequence of massive states with quantised masses and the
separation between the masses is set by the string scale α′. At every mass level one has a
finite number of degrees of freedom.

Strings can interact by various joining and splitting processes. Such interactions
correspond to string world-sheets with asymptotic states coming together for a scattering
process and then separating again. Examples with few splittings, corresponding to low
genus world-sheets, are depicted in figure 2.1. In the limit α′ → 0 the diagrams lose their
waists and reduce to standard Feynman diagrams commonly used in the quantum field
theory of point particles. At the same time, the massive states (N > 0) in (2.1) become
infinitely heavy compared to the massless states (N = 0) in the limit α′ → 0.

Among the quantities one wants to compute in string theory are scattering amplitudes .
They provide information about the likelihood of a certain scattering process of strings
to take place. Computing a scattering amplitude in string perturbation theory requires
summing over possible world-sheets of all genera h. A given topology is then weighted by
the so-called string coupling gs with a weight g

2(h−1)
s . The string coupling is a measure

of the strength of string-string interaction, i.e., the joining and splitting of strings. Note
that in string theory it is convention to use the term loop when referring to the genus of a
world-sheet. The probability of a certain string scattering process is given by the modulus
square of the scattering amplitude. The perturbative expansion is a power expansion in gs.

Besides the data of the asymptotic states, the scattering amplitude depends on α′, the
string coupling and potentially other so-called moduli fields . These can be thought of as
aspects of the target space M in the form of additional (scalar) fields living on them. Only
their vacuum expectation values matter and we will denote them by

g ∈M (moduli expectation values) . (2.2)

Here, M is the so-called moduli space of string theory. The string coupling constant gs

turns out to be related to one of the moduli fields called the dilaton, but in general there
are many more moduli fields.
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Table 2.1: Table of Cremmer–Julia symmetry groups G(R) with compact subgroup
K(R) and U-duality groups G(Z) for compactifications of type IIB string theory on a
d-dimensional torus T d to D = 10− d dimensions.

d G(R) K(R) G(Z) D

0 SL(2,R) SO(2,R) SL(2,Z) 10
1 GL(2,R) SO(2,R) SL(2,Z) 9
2 SL(2,R)× SL(3,R) SO(2,R)× SO(2,R) SL(3,Z)× SL(2,Z) 8
3 SL(5,R) SO(5,R) SL(5) 7
4 SO(5, 5,R) (SO(5,R)× SO(5,R))/Z2 SO(5, 5,Z) 6
5 E6(R) USp(8,R)/Z2 E6(Z) 5
6 E7(R) SU(8,R)/Z2 E7(Z) 4
7 E8(R) SO(16,R)/Z2 E8(Z) 3

The structure of moduli space is of central importance in understanding the possible
forms of string scattering amplitudes. Much is known for flat target spaces of the type
M = R1,9 (flat Minkowski space) or M = R1,9−d × T d (toroidal compactification). In both
cases one retains maximal supersymmetry strongly constraining the moduli space. The
classical low energy moduli space is a symmetric space of the form

Mclass. = G(R)/K(R) = Ed+1(R)/K(Ed+1(R)), (2.3)

where Ed+1 is the Cremmer–Julia sequence of duality groups [72,73,185] that are listed
in table 2.1 and their Dynkin diagrams shown in figure 2.2, and K(Ed+1(R)) are their
maximal compact subgroups. Up to d ≤ 7, these groups are finite-dimensional reductive
groups and we restrict to this range first. We will come back to d ≥ 8 in section 12.7. For
other internal manifolds one can get a large variety of different Lie groups.

The classical low-energy effective theory in D = 10− d dimensions, which is described
by supergravity, has a symmetry given by the non-compact real Lie group G(R) [171,253].
However, as mentioned in section 1.2.2, when passing to the quantum theory, the classical
symmetries are generically broken because the (generalised) electro-magnetic charges of
physical states become quantised according to the Dirac-Schwinger-Zwanziger quantisation
condition, and take values in some integral lattice Γ [88, 250, 306, 307]. Although the
classical symmetry group G(R) is broken, there is a discrete subgroup of G(R) that survives
and remains a symmetry of the full quantum theory. This quantum symmetry is defined
as the subgroup of G(R) that preserves the lattice Γ [171]

{g ∈ G(R) | gΓ = Γ}. (2.4)

This quantum symmetry group is generally referred to as a U-duality group which unifies the
previously known existing dualities called S- and T-duality and agrees with the Chevalley
subgroup G(Z) [299]. The U-duality groups G(Z) for toroidal compactifications of type
IIB string theory on a torus T d are also listed in table 2.1.

Points in moduli space related by U-duality transformations give rise to equivalent
string theories. This implies that the correct moduli space of quantum string theory is not
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Figure 2.2: The Dynkin diagram of the Cremmer–Julia symmetry group Ed+1 with labelling
of nodes in the ‘Bourbaki convention’.

the classical symmetric space (2.3) but

M≡Mquantum = G(Z)\G(R)/K(R) , (2.5)

and all observables, like string scattering amplitudes, that are functions of the expectation
values of the moduli are functions on this space.

Put differently; physical observables are G(Z)-invariant functions on G(R)/K. In
addition, physical constraints, such as supersymmetry, typically force these observables
to satisfy differential equations and have a prescribed asymptotic behaviour at infinity,
thereby satisfying the conditions (1)–(3) in section 1.1, characterising automorphic forms.

2.2 Four-graviton scattering amplitudes

Let us now consider an explicit example. In ten-dimensional type IIB string theory the
scattering of four massless string states called gravitons gives rise to a quantum correction
to standard gravitational interactions in general relativity without the inclusion of strings.

The exact form of the full four-graviton scattering amplitude is not known but one
can attempt to perform series expansions of the amplitude with respect to some of its
arguments. There are two common expansions of the amplitude.

The first expansion is string perturbation theory, discussed above, in which one treats
the string coupling constant gs as small and computes the contributions to the amplitudes
from Riemann surfaces of increasing genus. This involves an integral over the moduli space
of all Riemann surfaces of a given genus and with a number of punctures corresponding
to the number of asymptotic scattering states. These integrals have been studied up to
two loops, see for instance [85], and become increasingly hard for increasing genus. One
complication arises from the Schottky problem of parametrising the moduli space for
large genus h. Another serious complication is that one should actually integrate over
the moduli space of super Riemann surfaces since one is dealing with superstring theory
and it is known that this integral cannot be reduced in a simple manner to an integral
over ordinary Riemann surfaces for h ≥ 5 [89]. Finally, the amplitude is not expected to
be a convergent series in gs, meaning that there are non-perturbative effects arising from
instanton configurations [138,268,296]. These are roughly of the form e−1/gs and do not
admit a Taylor series expansion around weak coupling gs = 0 and therefore cannot be
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captured by string perturbation theory. The string coupling gs is one of the coordinates
on the moduli space M and the limit gs → 0 corresponds to approaching a cusp on M.

The second expansion of the amplitude is the low energy expansion in which one
considers the momenta of the scattering particles to be small, leading to an expansion in
derivatives of the fields. Dimensionless expansion parameters are formed by multiplying
momenta squared with α′, which is why the expansion is also called the α′-expansion. It
is this expansion that makes contact to automorphic forms and we will now study it in
detail.

As asymptotic states, gravitons are characterised by their momenta ki ∈ R1,9 (i =
1, 2, 3, 4) and their polarisations εi ∈ S2(R1,9), which are symmetric second rank tensors
subject to some constraints whose detail we do not require for the present discussion.
Since gravitons are massless, the momenta satisfy k2

i = 0, where the norm-squared is
computed using the Lorentzian metric on R1,9. Out of the four momenta ki one forms the
dimensionless Lorentz invariant Mandelstam variables

s = −α
′

4
(k1 + k2)2, t = −α

′

4
(k1 + k3)2 and u = −α

′

4
(k1 + k4)2. (2.6)

Momentum conservation (k1 + k2 + k3 + k4 = 0) and masslessness imply that s+ t+ u = 0.
Any symmetric polynomial in s, t, u then is a polynomial in

σ2 = s2 + t2 + u2, and σ3 = s3 + t3 + u3. (2.7)

The string scattering amplitude will therefore be a function of the momenta only through
σ2 and σ3. Similar simplifications arise for the polarisation tensors εi that enter the
final answer only in a particular combination that we will denote by R4. It can be
expressed as the contraction of two copies of a standard rank 8 tensor t8, whose precise
form is for example given in [150,156], and four copies of the linearised curvature tensor
Rµνρσ ∝ kµενρkσ (with permutations).

Our four graviton amplitude in D = 10− d dimensions is therefore of the form

A(D)(s, t, u, εi; g) , (2.8)

with g ∈M. We recall that the string scale α′ was absorbed into the Mandelstam variables
s, t, u.

The (analytic in α′ part of the) four-graviton amplitude (in Einstein frame) in this
expansion takes the form [140]

A(D)(s, t, u, εi; g) =

[
E (D)

(0,−1)(g)
1

σ3

+
∑
p≥0

∑
q≥0

E (D)
(p,q)(g)σp2σ

q
3

]
R4 . (2.9)

The interesting objects in this expression are the coefficient functions E (D)
(p,q)(g) that are

functions on the moduli space Mclass. = G(R)/K(R) in (2.3).
The first term in (2.9) plays a special role in that it is the only term that is not

polynomial in σ2 and σ3. It is the lowest order term in the α′-expansion and it agrees
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with what one would calculate in a standard theory of gravity with Lagrangian given by
the Ricci scalar only (referred to as the Einstein–Hilbert term). The coefficient function

E (D)
(0,−1)(g) = 3 is constant. By contrast, the infinite series of terms in p and q come with

higher powers of α′ and they reflect the contribution of massive string states to the graviton
scattering process [156].

The low energy effective theory is obtained by writing the field theory action whose
classical interactions give rise to the same quantum corrected amplitudes obtained from
string theory, order by order in α′. It gets corrections from the four-graviton amplitudes
on the form [146]

E (D)
(p,q)(g)D2p+3qR4 (2.10)

where D denotes a covariant derivative and R4 (not to be confused with the Ricci curvature
scalar) is a contraction of two t8 tensors and four Riemann curvature tensors like the
linearised version for the polarisation term R4 in the amplitude.

In other words, for the first few orders in α′ we get the corrections

S = Sclass. +

∫
dDx
√
−G
(

(α′)3E (D)
(0,0)(g)R4 +(α′)5E (D)

(1,0)(g)D4R4 +(α′)6E (D)
(0,1)(g)D6R4 + . . .

)
,

(2.11)
where Sclass. is the classical, zeroth order low energy effective action described by
supergravity. We see why this expansion also is called the derivative expansion.

As the functions E (D)
(p,q)(g) depend on the moduli g ∈M, they in particular depend on

the string dilaton and thus on the string coupling gs that controls string perturbation
theory in terms of Riemann surfaces as discussed above. However, there is no reason that
the dependence on gs be analytic. Non-analytic terms in gs are known as non-perturbative
effects and they appear in E (D)

(p,q)(g) through so-called instanton contributions . Their direct
determination in terms of a string theory calculation is typically very hard. The action
of the U-duality group G(Z) also includes a transformation that mixes perturbative and
non-perturbative effects and therefore using U-duality opens up the opportunity to access
non-perturbative effects indirectly.

Because of U-duality, the coefficients E (D)
(p,q) are, in fact, functions on the (quantum)

moduli space M: They are functions on the symmetric space Mclass. = G(R)/K(R)
invariant under the left action of the discrete group G(Z).

This means that E (D)
(p,q) satisfy (1) of the definition of automorphic forms in section 1.1

and, since they should also have perturbative expansions in the weak string coupling limit
gs → 0 and other similar limits of the moduli space corresponding to cusps in G/K, they
also satisfy the growth condition (3).

Let us now discuss the remaining condition (2) which requires that an automorphic
form satisfies the eigenvalue equations of G-invariant differential operators.

String theory imposes differential conditions on the coefficient functions. This was
analysed most thoroughly by Green and Sethi in the case of ten-dimensional (D = 10)

type IIB string theory and p = q = 0 [141]. They found that E (10)
(0,0)(g) has to satisfy a

Laplace equation with an eigenvalue determined by supersymmetry considerations. This,
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together with the known value for the string tree level (h = 0 topology) scattering result,
uniquely determined the coefficient function to be a non-holomorphic Eisenstein series on
SL(2,R) [261] as discussed by Green and Gutperle before in [138,139].

In other dimensions D and for small values of p and q, there are strong arguments that
the coefficient functions E (D)

(p,q)(g) satisfy the differential equations [140]

R4 :

(
∆G/K −

3(11−D)(D − 8)

D − 2

)
E (D)

(0,0)(g) = 6πδD,8, (2.12a)

D4R4 :

(
∆G/K −

5(12−D)(D − 7)

D − 2

)
E (D)

(1,0)(g) = 40ζ(2)δD,7, (2.12b)

D6R4 :

(
∆G/K −

6(14−D)(D − 6)

D − 2

)
E (D)

(0,1)(g) = 40ζ(3)δD,6 − (E (D)
(0,0)(g))2, (2.12c)

where ∆G/K is the Laplace-Beltrami operator on G/K.
We see that the third equation is qualitatively very different from the first two since it

has a non-constant function as a source on the right-hand side, and we will discuss this
case in more detail in section 12.1.2.

The Kronecker delta contributions in all three equations in (2.12) are related to the
existence of UV divergences in the underlying supergravity theory and the existence of
supersymmetric counterterms. They arise in those dimensions where also the eigenvalue
vanishes and signal logarithmic terms in the coefficient function E (D)

(p,q). We refer the reader

to [149] for further discussions of this point. There can be additional Kronecker delta
contributions related to form factor divergences and these are discussed in [265].

Besides from these special cases, equations (2.12a) and (2.12b) correspond to
eigenfunction conditions from (2) in section 1.1. For dimensions lower than ten, there
are additional G-invariant differential operators other than ∆G/K but the corresponding
conditions are not fully known from string theory. A superspace analysis that generates
the other differential equations was pioneered in [33,34]. It is expected that the coefficient
functions for R4 and D4R4 satisfy all the required differential equations and hence are
standard automorphic forms.

As shown in section 1.1 in the case of G(R) = SL(2,R), Eisenstein series are
eigenfunctions to the Laplace-Beltrami operator, and comparing with computed scattering
amplitudes in string theory one has been able to conjecture the exact forms of the
coefficients E (D)

(0,0) and E (D)
(1,0) in terms of maximal parabolic Eisenstein series which will be

defined in chapter 5. Parabolic subgroups, denoted by P , are introduced in section 4.1.3.
More precisely, in five, four and three dimensions, with symmetry groups E6, E7 and

E8 according to table 2.1, if one considers the maximal parabolic subgroups P that have
semi-simple Levi parts SO(5, 5), SO(6, 6) and SO(7, 7), respectively, then the solutions

R4 : E (D)
(0,0)(g) = 2ζ(3)E(λs=3/2, P, g), (2.13a)

D4R4 : E (D)
(1,0)(g) = ζ(5)E(λs=5/2, P, g). (2.13b)

to equations (2.12a) and (2.12b) are the conjectured coefficient functions appearing in the
four-graviton amplitudes, or equivalently, as corrections to the effective action (2.11).

19



Chapter 2. String theory scattering and automorphic forms

The weight λs specifies the character χs on P , which defines the Eisenstein series
similar to (1.12). It is given by

λs = 2sΛP − ρ, (2.14)

where ΛP denotes the fundamental weight orthogonal to the Levi subgroup L of P = LU
and ρ the Weyl vector.

Remark 2.1. Looking at the coefficients of (12.3) we recognise the corresponding values
from the tree level amplitudes which are computed in section 2.4. This means that the
above functions are nothing but the (single) U-duality orbit of the tree level results.

This is no longer true for the higher functions E (D)
(p,q) as we will discuss in more detail in

section 12.1.2.

These conjectures have been subjected to numerous consistency checks [144,146,263]
and, particularly, capture the known results of scattering amplitudes in the weak coupling
limit gs → 0 which we will discuss in the following section.

Remark 2.2. We would also like to point out that recent investigations of superstring
scattering amplitudes at tree-level and one-loop for more than four particles have revealed
very interesting different connections to number theory. Instead of single ζ-values like
ζ(3) one will typically have so-called (elliptic) multiple zeta values governed by Drinfeld
associators [41, 42, 93, 280]. We note that this structure is at fixed order in string
perturbation theory whereas the U-duality invariant functions we are discussing here
include all perturbative and non-perturbative effects.

2.3 Physical interpretation of Fourier expansion

We will know study the functions E (D)
(p,q) which were found above as the quantum corrections

to the low energy effective action in type IIB string theory on tori T d. Since they are
invariant under the discrete subgroup G(Z), they are periodic functions and we can extract
physical information from their Fourier expansions.

For concreteness, let us consider the R4 and D4R4 coefficients E (10)
(0,0) and E (10)

(1,0) in ten

dimensions, where G(R) = SL(2,R) — although the physical interpretations hold for
general dimensions and coefficients.

As stated in section 1.1, the classical moduli space G(R)/K(R) = SL(2,R)/SO(2,R)
is isomorphic to the Poincaré upper half plane H = {z = x + iy ∈ C | y = Im z > 0}
parametrised by a complex scalar field called the axio-dilaton here denoted by z = x+ iy
with x being the axion and where y = g−1

s is related to the dilaton. The U-duality group
G(Z) = SL(2,Z) includes the translation invariance z → z + 1.

To reproduce the right classical behaviour, the leading order term in the weak coupling
limit gs → 0, i.e. y →∞, should be (in Einstein frame):

E (10)
(0,0) ∼ 2ζ(3)y3/2

E (10)
(1,0) ∼ ζ(5)y5/2

as y →∞. (2.15)
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These weak coupling limits of the scattering amplitudes are computed in section 2.4.
The eigenvalue equations (2.12) for the coefficient functions are

∆E (10)
(0,0)(z) =

3

4
E (10)

(0,0)(z)

∆E (10)
(1,0)(z) =

15

4
E (10)

(1,0)(z)
(2.16)

where ∆ = y2(∂2
x + ∂2

y) is the Laplace-Beltrami operator on H from (1.3). They are thus
automorphic forms as defined in section 1.1.

It was first realised by Green et al. in [138] and [143], that these conditions are solved
by7

E (10)
(0,0)(z) = f3/2(z) = 2ζ(3)E(s = 3/2, z)

E (10)
(1,0)(z) = 1

2
f5/2(z) = ζ(5)E(s = 5/2, z)

(2.17)

as seen from (1.16) and (1.4) with fs(z) defined in (1.1). This is exactly the SL(2,R)
variant of (2.13).

The Fourier expansion (1.16) then has a direct physical interpretation: the first two
terms (constant terms) correspond to the perturbative quantum corrections (tree-level and
one-loop), while the infinite series of non-constant coefficients encode non-perturbative
effects. To see this we can expand the Bessel function Ks−1/2(2π|n|y) as y →∞ which,
for the R4 coefficient, yields

E (D)
(0,0)(z) =

perturbative terms︷ ︸︸ ︷
2ζ(3)y3/2

︸ ︷︷ ︸
tree-level

+ 4ζ(2)y−1/2

︸ ︷︷ ︸
one-loop

+

non-perturbative terms︷ ︸︸ ︷
2π
∑
m 6=0

√
|m|σ−2(m)e−Sinst(z)

[
1 +O(y−1)

]

amplitudes in the presence of instantons

,

(2.18)
where we have defined the instanton action

Sinst(z) := 2π|m|y + 2πimx. (2.19)

It is clear from this expression that the infinite series is exponentially suppressed by e−y

in the limit y →∞. As y = g−1
s this corresponds to the weak coupling limit of the theory

and this exponential suppression is characteristic for a non-perturbative, instanton effect.
In string theory, they arise from a background of so-called D-instantons [138, 142]

where D stands for Dirichlet as in the Dirichlet boundary conditions that are imposed
on strings attached to them. These are special cases of extended objects in string theory
called D-branes , localised to a single point in space-time.

7A priori these solutions are only unique up to the addition of cusp forms but they were subsequently
ruled out in [261] for the R4 coupling.
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From this perspective the divisor sum σ−2(n) =
∑

d|n d
−2 is the instanton measure and,

as described in [138], counts the number of ways the mode m, which is called the instanton
charge, can be factorised into two integers: the winding number of a D-particle trajectory
around a circle in the T-dual type IIA string theory, and the Ramond–Ramond charge of
the same particle. When m is a negative integer it corresponds to an anti-instanton.

The higher order corrections in gs = y−1 in the non-perturbative terms are higher genus
corrections to the scattering amplitude in the presence of instantons.

In summary, the discrete symmetry leading us to the study of automorphic forms
gives a lot of information about string theory: it tells us that there are no perturbative
corrections to the R4 term for genera larger than one, and gives clues of how to compute
general scattering amplitudes in the presence of instantons in string theory, which is
otherwise very difficult to do.

The above example provided the first hint of an intriguing relation between quantum
corrections in string theory and automorphic forms. There is by now a vast literature on this
subject; see [9,11–15,140,151,152,157,159,191,211,212,252,254,261,262,266,267,269,270]
for a sample. In recent years also the representation theoretic aspects have proven to play
an increasingly important role [95–97,144,146,259,263], thus providing ample motivation
also from physics for the emphasis on automorphic representations in these notes.

Section 12.1, continues the discussions of this chapter with the topic of automorphic
representations for the coefficients E (D)

(p,q) and the D6R4 correction which differs from the
lower order terms by also requiring a non-constant source term in the differential equation
(2.12c).

2.4 Computing the four-graviton tree level

amplitude*

A comprehensive discussion of string theory and its scattering amplitudes is beyond the
scope of this work. We only give one indicative and, hopefully, illustrative example and
refer to the string theory literature [150,272] for more information.

The example is the four-graviton amplitude at string tree level . The closed string tree
level topology is that of a sphere, and the four asymptotic graviton states correspond
to four punctures in this sphere as pictured in figure 2.3. This configuration can be
obtained by a homeomorphism of the left-most diagram in figure 2.1. By definition, the
string scattering amplitude is given by an integral over the moduli space of all Riemann
spheres and all possible insertion points for four punctures. The discussion below uses the
Ramond–Neveu–Schwarz (RNS) formalism.

In terms of complex geometry, we can describe the sphere S2 = CP1 by one complex
variable z ∈ C everywhere except at the ‘north-pole.’ An asymptotic graviton state
at a puncture zi corresponds to a vertex operator . Due to a complication called ghost
picture [99] that arises for the superstring, we actually require it in two related forms, one
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z1 z2

z3 z4

(ε1, k1) (ε2, k2)

(ε3, k3) (ε4, k4)

Figure 2.3: Riemann sphere with four punctures as it appears in the four graviton scattering
amplitude. An external massless graviton with polarisation εi and momentum ki is located
at each of the four punctures zi ∈ CP1.

called ghost picture 0 and ghost picture −1:

V0(zi; ki, εi) =
2

α′
: εi,µν

(
∂Xµ +

α′

2
kρψ

ρψµ
)(

∂̄Xν +
α′

2
kσψ̄

σψ̄ν
)
eiki,µX

µ

: , (2.20a)

V−1(zi; ki, εi) =: εi,µνψ
µψ̄νeiki,µX

µ

: . (2.20b)

In these expressions, we are using the Einstein summation convention for repeated Lorentz
indices µ = 0, . . . , 9 that label the ten directions of the Minkoswki target space in which
the sphere is embedded via the embedding coordinates Xµ ≡ Xµ(z, z̄). The polarisation
tensor εi ≡ εi,µν is a second-rank symmetric tensor of the Lorentz group SO(1, 9) and
the external momentum of the graviton ki ≡ ki,µ is light-like in the Minkowski metric:
k2
i = ki,µki,νη

µν = 0 as the scattering gravitons are massless. The colons surrounding this
expression indicate a specific normal ordering procedure necessary for the vertex operator
to be well-defined on a Fock space vacuum. The field ψµ and its (Dirac) conjugate ψ̄µ

correspond to the fermionic coordinates that accompany the bosonic Xµ in superstring
theory. The derivatives ∂ and ∂̄ are with respect to the world-sheet coordinate z.

The desired expression for the scattering amplitude is then roughly of the following
form for D = 10 (in string frame)

A(10)
tree (s, t, u, εi; g) =

∫
M0,4

dµ〈
4∏
i=1

V (zi; ki, εi)〉S2 , (2.21)

where the angled brackets denote the correlation function of the vertex operators on the
given sphere S2 that we detail below. For reasons of ghost number saturation, two vertex
operators have to be taken in ghost picture 0 (of the form V0 in (2.20)) and two in ghost
picture −1 (of the form V−1 in (2.20)). The integral dµ is over all Riemann spheres (genus
h = 0) with four punctures, so that the positions zi of the punctures is also integrated
over. More concretely, the measure is given by the integral over all metrics that can be
put on topological spheres up to diffeomorphisms and Weyl rescalings (local dilatations).
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To make this well-defined in the path-integral sense one has to divide by this volume of
this gauge group so that

dµ =
DγCP1

Vol(diff×Weyl)
. (2.22)

Here, DγCP1 indicates all possible metrics on the sphere CP1. According to the Riemann–
Roch theorem, the sphere as a Riemann surface has no metric moduli and any metric γCP1

can be brought into the form of that of the round sphere

ds2 =
dzdz̄

(1 + |z|2)2
(2.23)

by diffeomorphisms and Weyl rescalings. There is no modulus in this expression and even
this form is left invariant by the conformal Killing group of the sphere PSL(2,C) that
acts by (

α β
γ δ

)
∈ PSL(2,C) : z 7→ αz + β

γz + δ
(2.24)

on the coordinate z. So, even after fixing the diff ×Weyl gauge-freedom to bring the
metric to the above form (2.23), one has still the freedom to perform transformations
from the conformal Killing group PSL(2,C) that represent the residual gauge freedom.
Without fixing it the integral in (2.21) is of the form∫

M0,4

dµ =
4∏
j=1

∫
CP1

d2zj∆FP, (2.25)

where ∆FP is a Faddeev–Popov determinant arising from the gauge-fixing and that is
treated by introducing (super-)ghost systems. We will not be more specific on it here
(see for example [272]) and only mention its effect on the calculation below. We see that,
due to the absence of metric moduli for the sphere, the integral over the moduli space of
four-punctured sphere reduces to an integral over the locations zi of the four punctures.
The complex three-dimensional conformal Killing group can be used to fix three of the
puncture positions to one’s favourite values; a standard choice being 0, 1,∞ and only as
single integral over a single puncture position remains.

Let us return to the correlation function appearing in the expression (2.21) above. It is
formally given by a path-integral over all (super-)embeddings Xµ of the (super-)Riemann
sphere into the ten-dimensional target space. Schematically, one has

〈
4∏
i=1

V (zi; ki, εi)〉S2 = g−χ(S2)
s

∫
DXDψDψ̄ e−S[X,ψ,ψ̄]

4∏
i=1

V (zi; ki, εi), (2.26)

where S[X,ψ, ψ̄] denotes the two-dimensional σ-model action that is basically the induced
volume under the embedding. The Euler number χ(S2) = 2 of the sphere provides the
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standard topological weighting of different string diagrams that was mentioned above (cf.
figure 2.1) and here evaluates to g−2

s . The string coupling gs is the only string theory
modulus g of equation (2.2) of relevance in the present discussion. As our goal here is to give
a heuristic derivation of the final formula (2.30) below, we are not displaying or discussing
aspects related to so-called pictures of vertex operators associated with the ghosts arising
from gauge-fixing. A proper treatment would modify the above equation [150,272]; this
modification will be taken into account in the final expression below.

The correlation function can be evaluated on the sphere explicitly in terms of the
Green’s function on the sphere. First, we note that for vertex operators in ghost picture 0
the fermionic integrals (over ψ and ψ̄) pick out the contribution

α′εi,µνkρkσe
iki,τX

τ ∝ α′Rρµνσe
iki,τX

τ

(2.27)

from V (zi; ki, εi) in (2.20a) and we recognise the linearised Riemann curvature tensor
mentioned in section 2.2, and the full integral also provides the necessary contractions of
the four Riemann tensors. For the vertex operator in picture −1 of (2.20b), the integral
yield contributions that are roughly of the form

εi,µνe
iki,τX

τ ∝ Rρµνσ

kρkσ
eiki,τX

τ

. (2.28)

The Green’s function on the sphere now evaluates the product of two normal ordered
exponentials to

: eiki,µX
µ(zi) :: eikj,νX

ν(zj) : ∝ |zi − zj|α
′ki·kj : ei(k1+k2)µXµ(zi) : + . . . (2.29)

which is sometimes called the operator product expansion (or Wick contraction) and the
dots denote subdominant terms in an expansion around zi → zj. In this expression we
have used the Lorentz inner product ki · kj = ki,µk

µ
j between the two external momenta

ki and kj. Since the external momenta are massless, we can rewrite this product as
ki · kj = 1

2
(ki + kj)

2 and we already begin to recognise a connection to the Mandelstam
variables s, t and u defined in (2.6). One has to perform the above operator product
expansion of eikX for all four factors appearing in the correlation function and this will
lead to a permutation invariant expression of the four Mandelstam variables.

We can now put all the pieces together: (i) The integral over the moduli space reduces
to an integral over the four punctures, (ii) the conformal Killing groups allows to fix three
of four punctures to fixed values that we choose to be 0, 1 and ∞, (iii) the integral over
the fermionic variables in the correlation function produces the linearised curvature tensors
times exponentials of the form eikX , (iv) these exponentials get converted into factors of
the form |zi − zj|α′ki·kj in all possible ways and (v) include additional contributions from
the ghost sector. The ultimate integral is of the form

A(10)
tree (s, t, u, εi; g) =

4(α′)2g−2
s

π

R4

(k1 · k3)2
δ(s+ t+ u)

∫
C
d2z|z|α′k1·k2−2|1− z|α′k2·k3−2

= (α′)4g−2
s δ(s+ t+ u)

1

stu

Γ(1− s)Γ(1− t)Γ(1− u)

Γ(1 + s)Γ(1 + u)Γ(1 + t)
R4 (2.30)
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Chapter 2. String theory scattering and automorphic forms

We have introduced a few factors related to the normalisations of the various measures
introduced above. The shift in the power is due to the conformal ghost sector that we
have not discussed explicitly and the denominator (k1 · k3)

2 = 4
(α′)2 t

2 is due to (2.28).

We note that the factor δ(s + t + u) expresses momentum conservation for massless
states. As stated in section 2.2, the linearised curvature tensor Rµνρσ ∝ kµενρkσ is
determined by the graviton’s momentum and polarisation, and R4 is a specific contraction
of the linearised curvatures of the four gravitons. More precisely, it is given by t8t8R4

where the t8 tensor contracts four powers of an antisymmetric matrix Mµν according to

tµ1...µ8Mµ1µ2 · · ·Mµ7µ8 = 4Tr(M4)− (Tr(M2))
2
.

The amplitude (2.30) can be expanded for small values of s, t and u which we recall
from (2.6) contain the string length α′ = `2

s . The result is (in string frame)

A(10)
tree (s, t, u, εi; g) = g−2

s (α′)4

(
3

σ3

+ 2ζ(3) + ζ(5)σ2 +
2ζ(3)2

3
σ3 + . . .

)
R4 (2.31)

where we have used stu = 1
3
σ3 up to momentum conservation s+ t+ u = 0. The above

expression provides the tree level contributions to the functions E (10)
(0,−1), E

(10)
(0,0), E

(10)
(1,0) and

E (10)
(0,1) appearing in (2.9) in ten dimensions. A prefactor of g4

s is to be attributed to the

external states, so that the overall weight of the amplitude is g−2
s as it should be for a tree

level calculation. We note also that g2
s (α′)4 = `8

10 = κ2
10 in terms of the ten-dimensional

Planck scale `10 and the ten-dimensional gravitational coupling κ10. The fact that this
amplitude is proportional to the square of the coupling is characteristic for a tree level
scattering of four particles (in a theory that has cubic vertices).

We note also upon toroidal compactification to D < 10 dimensions integrals such
as (2.30) receive additional contributions related to the structure of states on the torus T d

(d = 10−D) that is used in the compactification. This leads naturally to a relation of
string amplitudes to theta correspondences .
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Chapter 3

Preliminaries on p-adic and
adelic technology

As seen in section 1.3.2 the Fourier expansion of the SL(2,R) Eisenstein series factorises
into an Euler product over all primes p. This number theoretic information is best captured
by introducing the p-adic numbers which, for any prime p, are an extension of the rational
numbers, and furthermore the ring of adeles, which encapsulates all the different p-adic
extensions in a single product.

This chapter is intended as an introduction to these objects as well as providing example
calculations that will be used throughout the remaining text. Additional reading can for
example be found in [1, 80, 117, 251]. Readers familiar with the subject are welcome to
proceed to the next chapter and come back to the explicit examples when needed later on
in the text. Further reading can be found in [40] and [80].

For the whole of this chapter and most of the remaining text, let p be a prime number.

3.1 p-adic numbers

We start by providing the basic definitions and discussing some of the properties of p-adic
numbers.

Definition 3.1 (Integers Zp). The p-adic integers Zp are formal power series in p with
coefficients between 0 and p− 1

x ∈ Zp ⇐⇒ x = x0p
0 + x1p

1 + . . . with xi ∈ Z/pZ ∼= {0, 1, . . . , p− 1} . (3.1)

The p-adic integers form a ring.

Arithmetic operations on the p-adic integers work in the usual manner. However, since
all coefficients in the expansion are positive it may not be immediately obvious how the
additive inverse (i.e. subtraction) works. As an example, consider the equation x+ 1 = 0
that should have a solution over Zp. The inverse is given by the infinite power series in p
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with all coefficients are equal to p− 1:

x =
∞∑
i=0

(p− 1)pi (3.2)

This is a bit like evaluating the (non-converging) sum x =
∑∞

k=0 10k = 1 + 10 + 100 + . . .
in decimal notation to be an infinite string of 1s. Multiplying by 9 and then adding 1
creates a zero for every decimal place. Hence 9x + 1 = 0 ⇔ x = −1/9 = 1/(1 − 10) in
agreement with a naive application of the geometric series definition.

Next we define the p-adic number field.

Definition 3.2 (Number field Qp). The associated number field is given by the p-adic
numbers Qp that are formal Laurent series in p with a finite number of terms of degree
less than zero, i.e. finite polar part

x = xkp
k + xk+1p

k+1 + . . . with xk 6= 0 , (3.3)

where k is some integer not necessarily positive.

The p-adic numbers Qp can be thought of as the completion of rational numbers Q
with respect to the following norm.

Definition 3.3 (p-adic norm | · |p). The p-adic norm on Qp is given by

|x|p = p−k ⇔ with xk 6= 0 . (3.4)

The p-adic norm is multiplicative

|x · y|p = |x|p|y|p (3.5)

and satisfies a stronger triangle inequality than generic norms, namely

|x+ y|p ≤ max(|x|p, |y|p) , (3.6)

for x, y ∈ Qp. This second property is called ultrametric property and a space with a norm
of this type is called non-archimedean in contrast with archimedean spaces satisfying the
usual archimedean triangle inequality. The p-adic norm of 0 is |0|p = 0.

The integer k in (3.4) is called the p-adic valuation of Q or Qp and is often also denoted
by νp(x). Two properties of the p-adic valuation, equivalent to the ones above for the
p-adic norm, are

νp(x · y) = νp(x) + νp(y) (3.7)

and

νp(x+ y) ≥ min(νp(x), νp(y)) , (3.8)

where in the last property equality is achieved if νp(x) 6= νp(y).
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The integers in the normed space Qp can then be expressed as

Zp = {x ∈ Qp | |x|p ≤ 1} , (3.9)

i.e. they have an exponent k ≥ 0 of p. This shows that the p-adic integers are compactly
embedded in Qp. The complementary set to Zp in Qp is given by

Qp \ Zp = {x ∈ Qp | |x|p > 1} . (3.10)

Let us provide two simple examples illustrating the p-adic expansion of a rational number.

Example 3.4: p-adic expansions

We consider the p-adic expansion of the rational number x = 1
2 ∈ Q for p = 2 and p = 3.

For p = 2 one has |x|2 = 21 = 2 or ν2(x) = −1 and hence 1
2 is not a 2-adic integer. As an element of

Q2 one finds 1
2 = 1 · 2−1 as the expansion of the form (3.3).

For p = 3 one has |x|3 = 30 = 1 or ν3(x) = 0 and hence 1
2 is a 3-adic integer. Its expansion of the

form (3.3) is 1
2 = 2 · 30 +

∑
k>0 3k.

Another useful property for the p-adic norm of the greatest common divisor of two
integers which will be used in section 9.6 is introduced in the following example.

Example 3.5: Norm of a greatest common divisor

Let m and n be two integers, d = gcd(m,n), m′ = m/d and n′ = n/d. Then 1 = gcd(m′, n′) which, for
a prime p, means that if |m′|p < 1 (that is, p | m′) then |n′|p = 1 (that is, p - n′) and vice versa. Thus,
1 = |gcd(m′, n′)|p = max(|m′|p , |n′|p). Hence,

|d|p = |d|p max(|m′|p , |n′|p) = max(|m′d|p , |n′d|p) = max(|m|p , |n|p) . (3.11)

We also define the multiplicatively invertible p-adic numbers of Zp and Qp.

Definition 3.6 (Multiplicatively invertible numbers Z×p and Q×p ). The set of
multiplicatively invertible elements in Zp will be denoted by

Z×p =
{
x ∈ Zp

∣∣x−1 exists in Zp
}

= {x ∈ Zp | |x|p = 1} = {x ∈ Qp | |x|p = 1} . (3.12)

They correspond to those x in (3.1) for which x0 6= 0. The set of multiplicatively invertible
elements Q×p in Qp is defined as

Q×p = {x ∈ Qp | |x|p 6= 0} . (3.13)

For p-adic numbers the case when p is the prime at infinity, i.e. p =∞, is typically
associated with standard calculus via

Q∞ = R . (3.14)
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In accord with the terminology used for more general number fields the case of a finite
prime, i.e. p <∞, is sometimes referred to as the non-archimedean place, while p =∞ is
called the archimedean place.

The p-adic numbers were introduced in number theory by Hensel with the intention
of transferring the powerful tools of complex analysis to power and Laurent series. A
theorem by Ostrowski [200] states that any non-trivial norm on Q is either the standard
Euclidean norm (leading to the real numbers upon completion) or one of the p-adic norms.

Remark 3.7 (Alternative construction of Qp). Another way of defining the p-adic
numbers is through the following definition of the p-adic norm of an ordinary rational
number x ∈ Q:

|x|p = p−k , (3.15)

where k ∈ Z is the largest integer such that x = pky with y ∈ Q not containing any powers
of p in its numerator or denominator (in cancelled form); this is often stated as pk divides
x. It is from this construction that one obtains Qp as the completion of Q and one obtains
an embedding of Q into Qp. The definition implies that for a prime q and k ∈ Z

|qk|p =

{
p−k if p = q
1 otherwise .

(3.16)

3.2 p-adic integration

Integration on Qp can be defined with respect to the additive measure dx that is invariant
under translation and has a simple scaling transformation

d(x+ a) = dx , d(ax) = |a|pdx . (3.17)

The measure is by convention normalised as to give the p-adic integers unit volume:∫
Zp

dx = 1 . (3.18)

We will now provide a series of examples of basic p-adic integrals. When evaluating
such integrals it is often useful to employ different decompositions of Zp. One such
decomposition is to write Zp as a disjoint union

Zp =

p−1⊔
k=0

Ck , (3.19)

where Ck denotes the set of those p-adic integers with ‘constant’ coefficient (the coefficient
of p0 in (3.1)) equal to k. Another decomposition of Zp employed is to write it as

Zp =
∞⊔
k=0

pkZ×p , (3.20)
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Example 3.8: Volume of invertible integers Zp

∫
Z×p

dx =
p− 1

p
. (3.21)

The integral is a simple consequence of the definition (3.18) and can be understood intuitively by noting
that only p− 1 out of the p choices for the constant coefficient of x ∈ Zp correspond to elements in Z×p .
For a more formal derivation we use decomposition (3.19) of Zp and integrate over each Ck separately.
By translation invariance of the measure (3.17) all Ck have the same volume 1/p. Integrating over all Ck
except for the one with k = 0 one thus obtains the above formula.

The following two examples explore the integration of the p-adic norm over different
domains.

Example 3.9: Integration of the norm over Zp

∫
Zp

|x|spdx =
p− 1

p

1

1− p−s−1
, (3.22)

with s ∈ C. This is derived in a few steps:∫
Zp

|x|spdx =

∞∑
k=0

∫
pkZ×p

|x|spdx =

∞∑
k=0

p−ks
∫

pkZ×p

dx =

∞∑
k=0

p−ks
∫
Z×p

p−kdy

=
p− 1

p

∑
k=0

p−k(s+1) =
p− 1

p

1

1− p−s−1
. (3.23)

In the first step we have used the decomposition (3.20) of the p-adic integers. Then we have used the
fact that for x ∈ pkZ×p the norm is |x|p = p−k. After that we have changed variables to x = pky with
y ∈ Z×p , used the resulting volume of Z×p computed in exmaple 3.8 and carried out the geometric sum.
The integral converges only for Re(s) > −1.

Using the identity from the previous example we can also evaluate the following integral
which will be used in chapter 7 and section 8.6.2.

Example 3.10: Integration of the norm over Qp \ Zp

∫
Qp\Zp

|x|spdx =
p− 1

p

ps+1

1− ps+1
, (3.24)
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with s ∈ C and the domain of integration as defined in (3.10). The integral is then evaluated in the
following steps ∫

Qp\Zp
|x|spdx =

∫
|x|p>1

|x|spdx =

∞∑
k=1

pks
∫
p−kZ×p

dx =

∞∑
k=1

pk(s+1)

∫
Z×p
dx

=
p− 1

p

∞∑
k=1

pk(s+1) =
p− 1

p

ps+1

1− ps+1
. (3.25)

The integral converges for Re(s) < −1. Note that the same integral over all of Qp does not exist.

Remark 3.11 (Multiplicative measure dx×). We denote the multiplicative measure
on Q×p by d×x with its defining relation

d×x =
p

p− 1

dx

|x|p
. (3.26)

It satisfies
∫
Z×p
d×x = 1. It transforms as d×(ax) = d×x. Integrating the function |x|sp

against the multiplicative measure d×x the result (3.22) simplifies to∫
Zp
|x|sp d×x =

∞∑
k=0

p−ks
∫
Z×p
d×x =

∞∑
k=0

p−ks =
1

1− p−s , (3.27)

where in the first step we used the property (3.20). Note that the same result is obtained
if we restrict the integration domain to Zp\{0}, which will be useful in the proof of
proposition 3.26.

3.3 Characters and the Fourier transform

In this section we introduce the concept of a character which is then used to define the
p-adic Fourier transform. As before we provide explicit computations of various integrals
serving as prototypical examples for later calculations.

Definition 3.12 (Fractional part of a p-adic number). The fractional part [y]p of a
p-adic number y ∈ Qp is given by its class in Qp/Zp, or more concretely by the terms in
its series expansion with negative powers of p:

[
xkp

k + . . .+ x−1p
−1 + x0p

0 + x1p
1 + . . .

]
p

=

{
xkp

k + . . . x−1p
−1 if k < 0,

0 otherwise.
(3.28)

Note that we will often suppress the subscript p when there is no risk of confusion.

We will now show that given a rational number x, subtracting all the fractional parts
of x with respect to all Zp from x leaves a normal integer. This will, for example, be used
in sections 3.5 and 9.6.
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Proposition 3.13 (Normal integer of a p-adic number). Let x ∈ Q. Then,

x−
∑
p<∞

[x]p ∈ Z . (3.29)

Proof. By design, x− [x]p ∈ Zp and for any prime q 6= p

|[x]q|p ≤ max(
∣∣xkqk∣∣p , . . . , ∣∣x−1q

−1
∣∣
p
) ≤ 1 (3.30)

if k < 0 (since xi ∈ Z) and otherwise [x]q = 0 which means that [x]q ∈ Zp. Hence, for any
prime p

x−
∑
q<∞

[x]q = (x− [x]p)−
∑
q 6=p

[x]q ∈ Zp (3.31)

which proves the statement.

With the definition of the fractional part of a p-adic number introduced we can now
provide the definition of an additive character.

Definition 3.14 (Additive characters). Additive characters on Qp are defined by

ψp ≡ ψp,u : Qp → U(1) , ψp,u(x) = e−2πi[ux]p x, u ∈ Qp . (3.32)

The additive characters of (3.32) satisfy the relations ψp,u(x)ψp,u(y) = ψp,u(x + y) and

ψp,uψp,v = ψp,u+v, as well as ψp,u(x) = ψp,−u(x) = ψp,u(−x). The conductor of the character
is its kernel |u|pZp, but often we simply call |u|p the conductor.

Note that in the following, we shorten the notation to ψp ≡ ψp,u since it will be more
important to keep track of the dependence on the prime p; the ‘mode number’ u will be
given explicitly where needed. Also in the interest of simplicity of notation we will shall
often drop the prime p script on the symbol for the fractional part [·]p when writing out
characters explicitly.

Let us work through some integrals over the additive character.

Example 3.15: Integration of a character over pkZp

For k ∈ Z one has ∫
pkZp

e−2πi[ux]dx = p−kγp(up
k) , (3.33)

where the characteristic function γp(u) of Zp in Qp is defined as

γp(u) :=

∫
Zp

e−2πi[ux]dx =

{
1 if u ∈ Zp ,
0 otherwise .

(3.34)

The function γp(u) is also called the p-adic Gaussian which will be discussed in more detail in section 3.4.
In order to derive this result we start with the case when k = 0:∫

Zp

ψu(x)dx =

∫
Zp

e−2πi[ux]dx (3.35)
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and the integral only depends on the conductor |u|p. We then distinguish two cases: (i) u ∈ Zp and (ii)
u /∈ Zp:

(i) If u ∈ Zp then [ux]p = 0 for x ∈ Zp and hence the integral equals
∫
Zp dx = 1.

(ii) If u /∈ Zp then we are effectively integrating a periodic function over a full period and hence the
integral gives zero. More concretely, consider the example when u = p−1; then∫

Zp

e−2πi[p−1x]dx =

p−1∑
k=0

e−2πik/p

∫
Ck

dx =
1

p

p−1∑
k=0

e−2πik/p = 0 (3.36)

with Ck defined as in (3.19) and where we have used the fact that
∫
Ck
dx = 1/p, c.f. also example 3.8. If

u is ‘more rational’ one has to refine the summation region more but will always encounter sums that
average to zero. We have thus derived (3.33) for the case of k = 0.

The result for the integral in the case when k 6= 0 then follows by a simple change of variables:∫
pkZp

e−2πi[ux]dx = p−k
∫
Zp

e−2πi[upkx]dx = p−kγp(up
k). (3.37)

We will also require the integral over ‘shells’ of p-adic numbers.

Example 3.16: Integration of a character over pkZ×p

For k ∈ Z we have

∫
pkZ×p

e−2πi[ux]dx =


p−1
p p−k for |u|p ≤ pk

−p−(k+1) for |u|p = pk+1

0 for |u|p > pk+1

. (3.38)

Starting as before with the case k = 0, this can be related to the preceding example by noting that
Z×p = Zp \ (pZp): ∫

Z×p

e−2πi[ux]dx =

∫
Zp

e−2πi[ux]dx−
∫
pZp

e−2πi[ux]dx

= γp(u)− p−1

∫
Zp

e−2πi[upx]dx

= γp(u)− p−1γp(pu)

=


p−1
p for |u|p ≤ 1, i.e., u ∈ Zp
−p−1 for |u|p = p

0 for |u|p > p

. (3.39)

The result of pkZ×p for k 6= 0 then follows by a change of variables∫
pkZ×p

e−2πi[ux]dx = p−k
∫
Z×p

e−2πi[upkx]dx = p−kγp(up
k)− p−(k+1)γp(up

k+1)

=


p−1
p p−k for |u|p ≤ pk

−p−(k+1) for |u|p = pk+1

0 for |u|p > pk+1

. (3.40)
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Note also that this implies that∫
Qp\Zp

e−2πi[ux]dx =

−∞∑
k=−1

∫
pkZ×p

e−2πi[ux]dx = −γp(u) . (3.41)

An important comment here concerns the integral of a character over all of Qp: Since
Qp is formally the sum of pkZ×p over all k ∈ Z, we see from the above result that for any
u ∈ Qp we obtain formally∫

Qp

e−2πi[ux]dx = 0 (not well-defined!) (3.42)

which is the analogue of the incorrect equation
∫
R e

2πiuxdx = 0 which could be derived
by splitting up R into an infinite number of intervals of length 1/u on each of which the
integral vanishes. As is well-known, the integral over the whole real line of e2πiux is not
well-defined but rather yields a δ-distribution. We will now see that something similar is
true for the p-adic character e−2πi[ux] integrated over Qp.

Before introducing the concept of a p-adic Fourier transform let us make a short
comment about function spaces used. The functions which we will be integrating are
elements of S(Qp) which is the Schwartz-Bruhat space. These functions generalise the
Schwartz functions which are infinitely differentiable, with rapidly decreasing derivatives.

Definition 3.17 (Fourier transform). One defines the Fourier transform over Qp by
integrating a function fp on Qp against the additive character ψp(x) ≡ ψp,u(x):

f̃p(u) =

∫
Qp

fp(x)ψp(x)dx =

∫
Qp

fp(x)e−2πi[ux]dx . (3.43)

The inverse transform uses the conjugate character

fp(x) =

∫
Qp

f̃p(u)ψp(x)du =

∫
Qp

f̃p(u)e2πi[ux]du . (3.44)

One can now ask for which functions fp the transform is well-defined and can actually be
inverted. As a first step we calculate the composition of the transforms of the characteristic
function of a ball pkZp ⊂ Qp, i.e., fp(x) = γp(p

−kx)∫
Qp

ψp(x)

∫
Qp

ψp(y)γp(p
−ky)dydu =

∫
Qp

ψp(x)

∫
pkZp

ψp(y)dydu

=

∫
Qp

e2πi[ux]p−kγp(up
k)du =

∫
Zp

e2πi[up−kx]du = γp(p
−kx) . (3.45)

From this calculation we see that restricting to compactly supported (and bounded)
functions makes the integrals well-defined. We can relax the assumption of compact
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support if the function decreases sufficiently fast for larger and larger balls. This is for
instance the case when fp(x) = |x|sp with Re(s) sufficiently negative. However, since in
this case |x|sp blows up for |x|p → 0 one has to cut out that region or replace fp(x) by a
different function there. In summary, the p-adic Fourier transform is only well-defined on
functions that are locally constant (i.e. constant on each pkZ×p ) and have compact support
or a sufficiently fast decrease when |x|p →∞.

Let us go through a series of interesting examples.

Example 3.18: Fourier transform of |x|sp over Qp \ Zp

Here, we cut out the compact region of the integers and consider the effect of the damping function |x|sp
with Re(s) < −1. The result is∫

Qp\Zp

|x|spψp(x)dx = γp(u)

(
(1− ps)1− ps+1|u|−s−1

p

1− ps+1
− 1

)
. (3.46)

To show this, we denote the integral by I and distinguish two cases: (i) u integral and (ii) u non-integral:
(i): If u ∈ Zp and has conductor pk with k ≥ 0, then we evaluate the integral as

I =

∫
Qp\Zp

|x|spe−2πi[pkx]dx =

∞∑
`=1

ps`
∫
p−`Z×p

e−2πi[pkx]dx

=

∞∑
`=1

p(s+1)`

∫
Z×p
e−2πi[pk−`x]dx =

Ex. 3.16

p− 1

p

k∑
`=1

p(s+1)` − 1

p
p(k+1)(s+1)

= (1− ps)1− ps+1|u|−s−1
p

1− ps+1
− 1 (3.47)

(ii): If u /∈ Zp, so that the character has conductor pk with k < 0 we find

I =

∫
Qp\Zp

|x|spe−2πi[pkx]dx =

∞∑
`=1

p(s+1)`

∫
Z×p
e−2πi[pk−`x]dx = 0 (3.48)

by example 3.16 since k − ` < −1 for all ` ≥ 1.

Example 3.19: Fourier transform of |x|sp over Zp

Here we cut out the region Qp\Zp. In order to have a bounded function for |x|p → 0 we now require
Re(s) > −1. The Fourier transform now evaluates to∫

Zp

|x|spe−2πi[xu]dx = γp(u)
p− 1

p

1

1− p−s−1
+ (1− γp(u))|u|−s−1

p

1− ps
1− p−s−1

. (3.49)
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This can be derived in a few steps∫
Zp

|x|spe−2πi[xu]dx =

∞∑
`=0

p−s`
∫
p`Z×p

e−2πi[ux]dx =

∞∑
`=0

p−(s+1)`

∫
Z×p
e−2πi[up`x]dx

= γp(u)
p− 1

p

1

1− p−s−1
+ (1− γp(u))|u|−s−1

p

1− ps
1− p−s−1

, (3.50)

where we have treated the cases u ∈ Zp and u /∈ Zp separately and used equation (3.22) and example 3.16.

3.4 p-adic Gaussian and Bessel function

In this section we will discuss two special functions: the p-adic Gaussian and the p-adic
Bessel function, which will play a role later on in the text.

The p-adic analogue of the Gaussian e−πx
2

is given by the function

γp(x) =

{
1 if x ∈ Zp, i.e. |x|p ≤ 1

0 if x /∈ Zp, i.e. |x|p > 1 ,
(3.51)

which we have already encountered in example 3.15 of the previous section. In order to
see why it is the generalisation of the real Gaussian e−πx

2
we recall that the real Gaussian

is invariant under Fourier transformation. Using (3.33) this property is then also easily
checked for the p-adic version:

γ̃p(u) =

∫
Qp

ψu(x)γp(x)dx =

∫
Zp

e−2πi[ux]dx = γp(u) . (3.52)

Let us also note the following useful property of the finite product of the p-adic Gaussian
which will be used in chapter 7 in the computation of the Fourier coefficients of Eisenstein
series on SL(2,A), c.f. equation (7.78):

∏
p<∞

γp(m) =

{
1 if m ∈ Z
0 otherwise .

(3.53)

In order to introduce the p-adic version of the Bessel function, recall that the real
(modified) Bessel function Ks can be written as the (inverse) Fourier transform of the
function (1 + u2)−2s ≡ ||(1, u)||−2s = (1 + u2)−s via∫

R
(1 + u2)−se−2πimudu =

2πs

Γ(s)
|m|s−1/2Ks−1/2 (2π|m|) , (3.54)

where Γ(s) is the standard Gamma function. The p-adic generalisation of the integrand is
through ||(1, u)||−2s

p = (max(1, |u|p))−2s. The normalisation to be chosen is [190,191]

f̃(u) =
1

1− p−2s
(max(1, |u|p))−2s . (3.55)
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The Fourier transform of this function is

f(x) = γp(x)
1− p−2s+1|x|2s−1

p

1− p−2s+1
. (3.56)

which we call the p-adic Bessel function and will be used, for example, in section 7.3.
To demonstrate these properties of the p-adic Bessel function we perform the Fourier

transform in the following example.

Example 3.20: Fourier transform of p-adic Bessel function

Consider the following calculation∫
Qp

e2πi[ux] 1

1− p−2s
(max(1, |u|p))−2sdu

=
1

1− p−2s

∫
Zp

e2πi[ux]du+
1

1− p−2s

∫
Qp\Zp

|u|−2s
p e2πi[ux]du . (3.57)

We have separated the integral according to the two possible cases of the max function. The first integral
is given in example 3.15 and the second one in example 3.18. Combining the results we obtain∫

Qp

e2πi[ux] 1

1− p−2s
(max(1, |u|p))−2sdu = γp(x)

1− p−2s+1|x|2s−1
p

1− p−2s+1
. (3.58)

We note that the integral converges for Re(s) > 1/2.

3.5 Adeles

In the previous sections we have introduced the concept of the p-adic completions Qp

of Q and we have shown in a number of examples how integration can be carried out
locally and also that the real Gaussian and Bessel function have p-adic counterparts. The
next step will be to organise the completions Qp of the rational numbers Q into a global
field called the adeles of Q, denoted by A, which comprises the p-adic completions at all
primes, including the prime at infinity, at the same time. The introduction of the adeles
as a global number field is in line with the so-called local-to-global principle. For a brief
summary highlighting the power of this principle see appendix D.

Definition 3.21 (Adeles A). The adeles A = AQ of Q are defined as a restricted direct
product

A = R×
∏′

p<∞

Qp , (3.59)

where the restriction on the product (signified by the prime) means that A consists of
those elements

a = (ap) = (a∞; a2, a3, a5, a7, . . . ) (3.60)

such that for almost all finite primes p one has ap ∈ Zp.
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The restriction on the direct product in the definition of the adeles makes them locally
compact which is needed for the existence of a Haar measure. Also as a consequence of
the definition, the adeles are endowed with a natural topology, and they are in fact a
locally compact ring. We refer the reader to [117] for more details on these issues. It will
sometimes be useful to talk about the finite adeles Af which are defined as the restricted
direct product over the finite primes:

Af =
∏′

p<∞

Qp, . (3.61)

We also define the set of invertible elements of the adeles.

Definition 3.22 (Ideles A×). The ideles A× are the set of invertible elements in A.
They are defined as:

A× = R× ×
∏′

p<∞

Q×p . (3.62)

The norm for the adeles is induced directly from the local norms.

Definition 3.23 (Global norm | · |A). The global norm | · |A on A is induced from the
norm | · |p on the local factors Qp according to the formula

|a|A =
∏
p≤∞

|ap|p. (3.63)

This is in fact a finite product since almost all ap ∈ Zp and hence satisfy |ap|p = 1.

The strong approximation principle8 states that the set

J = R+ ×
∏
p<∞

Z×p (3.64)

is a fundamental domain for Q×\A×. Hence we can write the ideles as the (disjoint) union

A× =
⋃
k∈Q×

k · J. (3.65)

The rational numbers embed diagonally into the adeles, i.e. Q ↪→ A, by simply taking

Q 3 x 7−→ (x;x, x, x, . . . ) ∈ A . (3.66)

One can see that this is indeed and element of the adeles since for x ∈ Q the norm |x|p is
non-trivial only for the finite number of p’s which divide x in the sense of (3.15). In other
words, the prime factorisations of the coprime numerator and denominator of x contain
only a finite number of primes. By factorising x ∈ Q into its prime factors we see that

|x|A = |x|∞
∏
p<∞

|x|p = |x|∞ |x|
−1
∞ = 1 . (3.67)

Following [80], we will now show that with this embedding Q sits discretely inside A,
mimicking the way the integers Z are embedded as a lattice inside R. As we will see, this
fact lies at the heart of the analysis in subsequent sections.

8A higher rank version of strong approximation is proven in section 4.2.2.
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Proposition 3.24 (Discrete embedding of Q in A). Q sits discretely inside A.

Proof. Let us first consider 0 ∈ Q and construct

V =

(
−1

2
,
1

2

)
×
∏
p<∞

Zp ⊂ A . (3.68)

The subgroup Zp is an open ball in Qp since |x|p takes only a discrete set of values,
that is, Zp = {x ∈ Qp | |x|p ≤ 1} = {x ∈ Qp | |x|p < α} for any 1 < α < p.

Thus, V is an open neighbourhood of 0 in A and for any x ∈ V ∩ Q we have that
|x|p ≤ 1 for all p <∞ which means that x ∈ Z, and |x|∞ < 1

2
which then gives that x = 0.

Hence, we have found an open neighbourhood V to 0 in A such that V ∩Q = {0}. For a
general point r ∈ Q these arguments generalise by instead considering r+ V , which makes
Q discrete in A.

With the definition of the adeles as the collection of all local factors at hand, we will
now see how to turn a set of local functions into a global one.

3.6 Adelisation

One can extend a collection of local functions fp on Qp to a global function fA on A:

fA(a) = fA(a∞; af ) , af = (a2, a3, a5, . . . ) ∈ Af , (3.69)

via an Euler product

fA(a) =
∏
p≤∞

fp(ap) . (3.70)

Starting from fA we can recover a function on R by setting

f∞(a∞) = fA(a∞; 1, 1, 1, . . . ) . (3.71)

One says that fA is the adelisation of fR. Similarly we can extend to A the notion of local
additive characters ψ on Qp.

Let u = (u∞, u2, u3, . . .) ∈ A and ψp : Qp → U(1) be an additive character, such that
for finite p this coincides with the character

ψp(xp) = e−2πi[upxp]p , up, xp ∈ Qp , (3.72)

defined in section 3.3, while for p =∞ this is the standard character on R:

ψ∞(x∞) = e2πiu∞x∞ , u∞, x∞ ∈ R. (3.73)

We can then consider a global character

ψA : A → U(1) (3.74)
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as the adelisation of ψR, i.e., as the Euler product

ψA(x) =
∏
p≤∞

ψp(xp) = e2πiu∞x∞
∏
p<∞

e−2πi[upxp]p , (3.75)

which we will denote as ψA(x) = e2πiux for short.
The sign difference in the exponentials of the characters at the archimedean and

non-archimedean places have been introduced for the following reason. For u = m ∈ Q
diagonally in A, the character ψA is periodic in Q since for x ∈ A and r ∈ Q

ψA(x+ r) = ψA(x)ψA(r) (3.76)

with
ψA(r) =

∏
p≤∞

ψp(r) = exp
(

2πi
(
mr −

∑
p<∞

[mr]p
))

= 1 (3.77)

using proposition 3.13. Thus, for rational u, ψA is a character on Q\A. That these are all
the characters on Q\A is shown in [80].

Integration over the adeles is similarly defined using Euler products [219]. For instance,
the integral over an adelic function fA(x) can be written as∫

A
fA(x) dx =

(∫
R
fR(x) dx

) (∏
p<∞

∫
Qp
fp(x) dx

)
. (3.78)

Definition 3.25 (Adelic Fourier transform). The adelic Fourier transform is defined
using the global character ψA as follows:

f̃A(u) =

∫
A
fA(x)ψA(x)dx. (3.79)

We will perform several integrals of this type in subsequent sections.
In the following section we will illustrate the usefulness of the adelic framework in the

context of the Riemann zeta function.

3.7 Adelic analysis of the Riemann zeta function

In this section we will illustrate the power of the adelic formalism by analysing the Riemann
zeta function from this point of view. This was one of the main points of the celebrated
thesis of Tate [305] which first introduced the notion of Fourier analysis over the adeles.

3.7.1 The completed Riemann zeta function

The first task will be to illustrate how the completed Riemann zeta function is a much
more natural object from an adelic perspective, than the ordinary zeta function. Recall
first that the completed Riemann zeta function takes the form:

ξ(s) = π−s/2Γ(s/2)ζ(s). (3.80)

We now have:
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Proposition 3.26 (Tate’s global Riemann integral [305]). The completed Riemann
zeta function ξ(s) can be written in the following global form:

ξ(s) =

∫
A×
γA(x)|x|sAd×x, (3.81)

where s ∈ C and γA =
∏

p≤∞ γp with γp the p-adic Gaussian (3.51) and γ∞ = e−πx
2
.

Proof. Splitting the integral into an Euler product yields∫
A×
γA(x)|x|sAd×x =

(∫
R×
e−πx

2|x|s∞d×x
) ∏

p<∞

∫
Q×p
γp(x)|x|spd×x. (3.82)

The archimedean integral can be evaluated in terms of a Gamma function:∫
R×
e−πx

2|x|s∞d×x =

∫
R
e−πx

2|x|s−1
∞ dx = π−s/2Γ(s/2), (3.83)

where we made use of (3.26).
Due to the γp-factor, the p-adic integrals localise on the p-adic integers∫

Q×p
γp(x)|x|spd×x =

∫
Zp\{0}

|x|spd×x. (3.84)

By remark 3.11, this yields∫
Zp\{0}

|x|spd×x =

∫
Zp
|x|spd×x =

1

1− p−s . (3.85)

Combining everything and performing the product over primes we obtain∫
A×
γA(x)|x|sAd×x = π−s/2Γ(s/2)

∏
p<∞

1

1− p−s = π−s/2Γ(s/2)ζ(s) = ξ(s). (3.86)

Remark 3.27. The above result illustrates that the adelic approach gives an elegant
integral representation of the completed zeta function, where the normalization factor
corresponds to the contribution from the archimedean place p =∞. Such integrals were
first considered in the thesis of Tate [305], and then developed further by Jacquet and
Langlands [176].

Remark 3.28. It is common to define the archimedean zeta factor by ζ∞(s) = π−s/2Γ(s/2)
and write the global Euler product form of the completed Riemann zeta function as

ξ(s) =
∏
p≤∞

ζp(s). (3.87)

Anticipating later notions, the completed Riemann zeta function can be thought of as an
automorphic form on the group GL(1,A).
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3.7.2 The functional relation

We shall now take the analysis one step further and prove the following famous theorem
using the adelic framework.

Theorem 3.29 (Functional relation for the completed Riemann zeta function).
The completed Riemann zeta function satisfies the functional relation

ξ(s) = ξ(1− s). (3.88)

Proof. To prove the theorem using the approach of Tate [305] we first need the following
Lemma (our proof follows the structure of [304]):

Lemma 3.30 (Adelic Poisson resummation). For any (sufficiently nice) function fA
we have the Poisson summation formula∑

γ∈Q

fA(γ) =
∑
γ∈Q

f̃A(γ). (3.89)

Proof. The proof is similar to the proof of the ordinary Poisson summation formula so we
will be brief. Define

FA(x) =
∑
γ∈Q

fA(xγ). (3.90)

This function is periodic by construction and so has a Fourier expansion. The Fourier
coefficients Fψγ of FA with respect a unitary character ψγ precisely equals the Fourier

transform f̃A(γ) of the seed function fA(γ) and so we can write

FA(x) =
∑
γ∈Q

f̃A(γ)ψγ(x). (3.91)

Putting x = 1 in this formula equating it with FA(1) from the definition (3.90) then
establishes the result.

To complete the proof of the theorem we need also the following lemma:

Lemma 3.31. The global theta function

ΘA(x) =
∑
k∈Q

γA(kx) (3.92)

satisfies the functional relation

ΘA(x) =
1

|x|A
ΘA(1/x), ∀x ∈ A×. (3.93)

Proof. This follows from applying the Poisson summation formula and the fact that the
global Gaussian γA(x) is invariant under Fourier transform.
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Now let J be fundamental domain for Q×\A×, as in (3.64). By Lemma 3.31 we then
have ∫

J

ΘA(x)|x|sAd×x =

∫
J

ΘA(1/x)|x|s−1
A d×x =

∫
J

ΘA(x)|x|1−sA d×x, (3.94)

where in the last step we used the fact that the multiplicative measure is invariant under
x→ x−1. Finally, using the factorisation A× =

⋃
k∈Q× k · J (see (3.64)), and the fact that

|x|A = 1 for x ∈ Q, we can rewrite (3.94) as∫
A×
γA(x)|x|sAd×x =

∫
A×
γA(x)|x|1−sA d×x, (3.95)

thus establishing the functional relation (3.88) for the completed Riemann zeta function.
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Chapter 4

Basic notions from Lie algebras and
Lie groups

We will make use of some standard terminology from the theory of Lie groups and Lie
algebras that we briefly summarise for definiteness. We first address complex and real
Lie algebras and groups before we turn to the adelic setting with emphasis on the strong
approximation theorem.

4.1 Real Lie algebras and real Lie groups

The material reviewed in this section can be found for example in [103,168,172,186].

4.1.1 Split real simple Lie algebras and root systems

Let g(C) be a finite-dimensional and simple complex Lie algebra from the Cartan–Killing
classification. We will consider here only the split real form g ≡ g(R) of the Lie algebra. We
choose a Cartan subalgebra h ⊂ g, that is, a maximally abelian subalgebra of semi-simple
elements. This means that we can decompose g into eigenspaces of h in what is called the
root space decomposition:

g = h⊕
⊕
α∈∆

gα, (4.1)

where the root space gα for a generalised eigenvalue α : h→ R is given by

gα = {x ∈ g | [h, x] = α(h)x for all h ∈ h} . (4.2)

The set of α 6= 0 for which gα 6= {0} is called the set of roots ∆. By our assumption on
the Lie algebra g we have that dim(gα) = 1 for all α ∈ ∆. Since gα is one-dimensional
there is, for each root α ∈ ∆, a unique element Hα ∈ [gα, g−α] ⊂ h such that α(Hα) = 2.

In the set of roots ∆ ⊂ h∗ we choose a system of simple roots

Π = {α1, . . . , αr}, (4.3)
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where r = dim(h) is the rank of the Lie algebra. Then any root α ∈ ∆ can be written as
an integral linear combination of the simple roots

α =
r∑
i=1

miαi, (4.4)

where either all mi ≥ 0 (and α is called a positive root : α > 0) or all mi ≤ 0 (and α
is called a negative root : α < 0). The set of positive/negative roots is denoted by ∆±
and they satisfy ∆− = −∆+. There is a unique highest root θ ∈ ∆ for which the height
ht(α) =

∑
imi is maximal. Another important element is the Weyl vector (which is not

necessarily an element of ∆)

ρ =
1

2

∑
α∈∆+

α. (4.5)

We define the spaces of positive/negative step operators by

n ≡ n+ =
⊕
α∈∆+

gα and n− =
⊕
α∈∆−

gα, (4.6)

as well as the (upper) Borel subalgebra

b = h⊕ n. (4.7)

The spaces n± are nilpotent subalgebras of g; the Borel subalgebra b is solvable. One can
think of n± as strictly upper/lower triangular matrices and h as diagonal matrices.

More formally, the notions of nilpotency and solvability for Lie algebras are defined as
follows. A nilpotent Lie algebra is one whose lower central series Dk(g) := [g, Dk−1(g)]
vanishes for some finite k. A solvable Lie algebra is one whose derived series Dk(g) :=[
Dk−1(g), Dk−1(g)

]
vanishes for some finite k. The Borel subalgebra b includes semi-

simple elements whence the lower central series does not vanish. The semi-simple elements
disappear in D1(b) = [b, b] and thus the derived series vanishes, rendering b solvable. The
derived series will play an role when discussing Fourier expansions of automorphic forms
in chapter 6.

On g one can define an invariant bilinear form that we will write as 〈x|y〉 for x, y ∈ g.
Invariance means compatibility with the Lie bracket:

〈[x, y] |z〉 = 〈x| [y, z]〉. (4.8)

This form is proportional to the Killing metric. We have that Hα ∈ [gα, g−α] implies that
Hα = [Xα, Yα] for some Xα ∈ gα and Yα ∈ g−α.

Then, for any h ∈ h

〈Hα|h〉 = 〈[Xα, Yα]|h〉 = 〈Xα|[Yα, h]〉 = α(h)〈Xα|Yα〉 . (4.9)

With h = Hα this becomes

〈Hα|Hα〉 = α(Hα)〈Xα|Yα〉 = 2〈Xα|Yα〉 (4.10)
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Thus, by insertion into (4.9)

α(h) =
2〈Hα|h〉
〈Hα|Hα〉

(4.11)

Sometimes we will also use the notation 〈α|h〉 for α(h).
The Cartan element Tα = 2Hα/〈Hα|Hα〉 can then be used to define an inner product

on h∗ by
〈α|β〉 = 〈Tα|Tβ〉 = α(Tβ) = β(Tα) . (4.12)

Since g is finite-dimensional and simple this bilinear form on h∗ is positive definite and
can be used to define the lengths of root vectors α. We normalise it such that the highest
root θ has length θ2 := 〈θ|θ〉 = 2.

The bilinear form on h∗ (spanned over R by the simple roots) can be used to define
a basis of h∗ dual to the simple roots. The corresponding basis elements are called the
fundamental weights Λi and satisfy

〈Λi|αj〉 =
1

2
〈αi|αi〉δij for i, j = 1, . . . , r. (4.13)

In terms of the fundamental weights one can re-express the Weyl vector of equation (4.5)
as ρ =

∑r
i=1 Λi. A general element of h∗ will be called a weight and denoted by λ.

Associated with the choice of simple roots αi is also a realisation of the Weyl group
of g. This is a finite Coxeter group that is generated by the fundamental reflections wi
(i = 1, . . . , r) that are defined through their action on weights λ by

wi(λ) = λ− 2〈λ|αi〉
〈αi|αi〉

αi, (4.14)

so that in particular wi(ρ) = ρ − αi. A general word of the Weyl group is given by a
succession of fundamental reflections w = wi1 · · ·wi` and we call ` = `(w) the length of the
Weyl word w. This assumes that the expression is in reduced form, i.e., that the relations
between the generating fundamental wi have been used to make the word as short as
possible. We denote the Weyl group by W ≡W(g) and its distinguished longest element
by wlong. The longest Weyl word has the property wlong(∆+) = ∆−; all other Weyl words
map some positive roots to other positive roots.

Since dim(gα) = 1 for all roots α ∈ ∆ and ∆− is opposite to ∆+ we can define for any
α > 0 a triplet

(Eα, Hα, Fα) ∈ gα × h× g−α (4.15)

such that the triplet forms a standard sl(2,R) subalgebra of g. The relations of one such
sl(2,R) algebra are

[Hα, Eα] = 2Eα, [Hα, Fα] = −2Fα, [Eα, Fα] = Hα. (4.16)

We also use the notation E−α = Fα,
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Furthermore, we introduce the following notation for the sl(2,R) triples associated
with the simple roots αi for i = 1, . . . , r:

ei ≡ Eαi , fi ≡ Fαi , hi ≡ Hαi . (4.17)

The hi form a basis of the Cartan subalgebra h. The r triples (ei, hi, fi) are sometimes
referred to as the simple Chevalley generators .

The Cartan matrix A is an r × r matrix defined by the elements

Aij =
2〈αi|αj〉
〈αi|αi〉

=
2αj(hi)

αi(hi)
= αj(hi). (4.18)

The Lie algebra g has a compact subalgebra k that is spanned by Eα − E−α. It is of
dimension equal to the number of positive roots. All its elements have negative norm in
the invariant bilinear form discussed above.

4.1.2 Split real Lie groups and highest weight representations

Many of the notions just introduced carry over to the group level. Let G(R) be a real Lie
group with Lie algebra g of the type just discussed. The link between the Lie algebra and
Lie group is given by the standard exponential map (in the identity component of G(R)).

The Cartan subalgebra h of commuting elements is the Lie algebra of an abelian
subgroup A(R) ⊂ G(R) that we take to be the exponential of h. Topologically, A(R) ∼=
(GL(1,R)+)r, where the + subscript indicates that we restrict to positive elements. An
important remark here is that there is a larger abelian subgroup, sometimes called the
(split) Cartan torus that is of the form (GL(1,R))r and covers A(R). We will sometimes
abuse notation and refer to A(R) as the Cartan torus or even refer to the Cartan torus as
A(R) as it should always be clear from the context which abelian subgroup is meant.

The space of nilpotent elements n ≡ n+ is the Lie algebra of a unipotent subgroup
N(R) ⊂ G(R). The compact subalgebra k ⊂ g is the Lie algebra of a (maximal) compact
subgroup K(R) ⊂ G(R).

The Iwasawa decomposition states that one can write any element g ∈ G(R) uniquely
as the product of elements of the three subgroups just introduced, i.e.,

G(R) = N(R)A(R)K(R) (4.19)

with uniqueness of decomposition [168].
The split real Lie algebras g(R) have irreducible finite-dimensional representations

labelled by a dominant highest weight Λ. This is an element of h∗ that has integral
non-negative coefficients when expanded in the basis of fundamental weights Λi that was
introduced in (4.13). In other words, a dominant highest weight Λ satisfies

〈Λ|αi〉 ∈ N0 for all i = 1, . . . , r. (4.20)

We denote the highest weight representation of a dominant highest weight Λ by VΛ. The
notion of highest weight implies that there is a vector vΛ ∈ VΛ that satisfies

h · vΛ = Λ(h)vΛ for all h ∈ h, (4.21a)

Eα · vΛ = 0 for all positive roots α ∈ ∆+. (4.21b)
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The first condition reflects that the vector vΛ is in the Λ-eigenspace of the action of g
(hence it is a weight vector) and the second condition shows that it is annihilated by all
raising operators (hence at highest weight). Here, we have denoted the action of g on the
representation space VΛ by · for brevity.

The structure of highest weight representations VΛ can be conveniently summarized in
terms of its character

chΛ =
∑
µ∈h∗

multVΛ
(µ)eµ, (4.22)

where multVΛ
(µ) denotes the weight multiplicity of a weight µ ∈ h∗ in the representation

VΛ, i.e., the dimension of the µ-eigenspace of the action of g on VΛ. The expression
eµ denotes an element of the group algebra of h∗ and satisfies eµ1eµ2 = eµ1+µ2 for two
weights µ1 and µ2. Any representation has a character but the advantage of highest weight
representations is that there is a nice compact formula that determines the character
ch(VΛ) in terms of Λ, the root structure of g and its Weyl group. This formula is the Weyl
character formula [103,172]:

chΛ =

∑
w∈W ε(w)ew(Λ+ρ)−ρ∏

α>0(1− e−α)
. (4.23)

The product in the denominator is over all positive roots α ∈ ∆+ of the algebra g and ρ is
the Weyl vector defined in (4.5). The sign ε(w) = (−1)`(w) gives the signature of w as an
even or odd element in W. As a special case for Λ = 0 one obtains the one-dimensional
trivial representation with ch(V0) = 1. This implies the denominator formula∑

w∈W

ε(w)ew(ρ)−ρ =
∏
α>0

(1− e−α) (4.24)

that ties the structure of the Weyl group to the structure of the root system. There is
an alternative form of the character formula that will play a rôle later on. This based on
observing that

w

(
eρ
∏
α>0

(1− e−α)

)
= ε(w)eρ

∏
α>0

(1− e−α) (4.25)

is W skew-invariant, as follows for example from the denominator identity. This implies
that one can write the character chΛ alternatively as

chΛ =
∑
w∈W

w

(
eλ+ρ

eρ
∏

α>0(1− e−α)

)
=
∑
w∈W

w

(
eΛ∏

α>0(1− e−α)

)
. (4.26)

The character chΛ is not only a formal object but can actually be interpreted as a
function chΛ : h(C)→ C on the Cartan subalgebra h(C) by replacing eΛ(h) = eΛ(h) etc.
everywhere. The resulting expression converges everywhere on the complexified Cartan
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subalgebra. We can also evaluate the character on elements of the maximal torus by the
exponential map. Let a ∈ A then

chΛ(a) =

∑
w∈W ε(w)aw(λ+ρ)a−ρ∏

α>0(1− a−α)
=
∑
w∈W

w

(
aΛ∏

α>0(1− a−α)

)
. (4.27)

Remark 4.1. The highest weight representations VΛ for split real G(R) are finite-
dimensional, but not unitary. For complex G(C) the representation VΛ is irreducible
and unitarizable for dominant highest weights.

Remark 4.2. For Kac–Moody algebras with symmetrizable Cartan matrix, convergence
is restricted to the interior of the complexified Tits cone [186, §10.6]. Since we will not be
dealing with this case, we refer the reader to literature.

4.1.3 Borel and parabolic subgroups

An important notion for the development of automorphic representations will be that of
Borel and parabolic subgroups. The (upper) Borel subgroup is given by

B(R) = A(R)N(R) = N(R)A(R). (4.28)

Here, the abelian group A(R) denotes the full Cartan torus that covers the exponential of
the Cartan subalgebra h.

A (standard) parabolic subgroup P (R) of G(R) is a proper subgroup that contains the
standard Borel subgroup B(R). If we think of B(R) as consisting of upper triangular
matrices (in G(R)) then a parabolic subgroup P (R) contains all upper triangular matrices
as well as some lower triangular ones. The discussion of this section is valid for both R
and C and from here on we will suppress the notation of the underlying field.

Standard parabolic subgroups can be described by choosing a subset Σ of the simple
roots Π of g [71]. The subset Σ ⊂ Π generates a root system 〈Σ〉 which defines a parabolic
subalgebra as follows

p = h⊕
⊕
α∈∆(p)

gα where ∆(p) = ∆+ ∪ 〈Σ〉 . (4.29)

For clarity of notation, we suppress typically the dependence on the subset Σ.
The parabolic subalgebra can be decomposed into semi-simple Levi subalgebra l and a

nilpotent subalgebra u
p = l⊕ u (4.30)

which is called a Levi decomposition.
Explicitly,

l = h⊕
⊕
α∈〈Σ〉

gα u =
⊕

α∈∆+\〈Σ〉+

gα , (4.31)

where 〈Σ〉+ = ∆+ ∩ 〈Σ〉. Henceforth we will often denote the set difference ∆+ \ 〈Σ〉+ as
∆(u). We also note that l has the same rank as g.
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The reductive Levi subalgebra is often decomposed further into

l = m⊕ aP (4.32)

with m = [l, l] being semi-simple and aP ⊂ h being abelian. The decomposition

p = m⊕ aP ⊕ u (4.33)

of the parabolic subalgebra is referred to as the Langlands decomposition.
Note that we have decorated aP with a subscript P to distinguish its corresponding

group AP from the A in the Iwasawa decomposition. Recall that we use h (and not a) for
the Cartan subalgebra of g.

Explicitly we have that

aP = {h ∈ h | α(h) = 0 for all α ∈ Σ}
m = [l, l] = a⊥P ⊕

⊕
α∈〈Σ〉

gα , (4.34)

where the orthogonal complement a⊥P is taken within h with respect to the invariant
bilinear form 〈·|·〉.

Example 4.3: Parabolic subgroups of sl(3,R)

As an example we consider the Lie algebra g(R) = sl(3,R) of type A2. It has two simple roots Π(g) =
{α1, α2} and positive roots given by

∆+(g) = {α1, α2, α1 + α2} . (4.35)

Choosing the subset Σ = {α1} defines a parabolic subalgebra p(R) ⊂ sl(3,R) with root system

∆(p) = {α1,−α1}︸ ︷︷ ︸
∆(l)

∪{α2, α1 + α2}︸ ︷︷ ︸
∆(u)

. (4.36)

The Levi subalgebra l(R) consists of the embedded sl(2,R) associated with the simple root α1, together
with an additional abelian element:

l(R) = sl(2,R)︸ ︷︷ ︸
m(R)

⊕ R︸︷︷︸
a(R)

(4.37)

The nilpotent part u(R) is a two-dimensional abelian Lie algebra and transforms in the two-dimensional
representation of l(R).

As (traceless) (3× 3)-matrices the elements of p(R), l(R) and u(R) take the forms

p(R) :

∗ ∗ ∗∗ ∗ ∗
0 0 ∗

 , l(R) :

∗ ∗ 0
∗ ∗ 0
0 0 ∗

 , u(R) :

0 0 ∗
0 0 ∗
0 0 0

 . (4.38)

At the level of Lie groups there are corresponding notions. Let P be a connected group
having p as its Lie algebra. Then there are (unique) decompositions

P = LU = MAPU , (4.39)
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also called the Levi decomposition and Langlands decomposition. The subgroup L is called
the Levi subgroup and U the unipotent subgroup or unipotent radical of the parabolic
subgroup P ⊂ G.

A particularly important class of parabolic subgroups is furnished by the so-called
maximal parabolic subgroups . These are in a sense the largest (proper) parabolic subgroups
and are characterised by choosing as a defining set Σ all simple roots of G but one:
Σ = Π \ {αi∗}, where we denoted the simple root that is left out by αi∗ . We will use the
notation Pi∗ to denote the maximal parabolic subgroup associated with such a choice. For
maximal parabolic subgroups one has that

L = GL(1)×M (4.40)

where M is a semi-simple Lie group. The Dynkin diagram of its Lie algebra is obtained
by removing the node i∗ from the Dynkin diagram of g. The parabolic subgroup of
example 4.3 is maximal and corresponds to the choice i∗ = 2.

4.1.4 Chevalley group notation and discrete subgroups

Using the exponential map, we will often parametrise group elements in terms of some
basic elements. Concretely, we define for roots α ∈ ∆ and u ∈ R (or another base field of
the split Lie algebra)

xα(u) = exp(uEα), (4.41)

where Eα is the distinguished element of the root space gα that appears in the Chevalley
basis constructed in (4.15). The one-parameter group generated by xα(u) for u ∈ R will
be denoted by Nα(R).

Furthermore, let

wα(u) = xα(u)x−α(−u−1)xα(u) and hα(u) = wα(u)wα(1)−1. (4.42)

The notation wα(u) is connected to the Weyl group defined above by noting that the
wαi(1) (for simple αi) generate a cover of the Weyl group [186]. For u ≈ 1, the element
hα(u) yields Hα.

These elements so defined satisfy

xα(u)xα(v) = xα(u+ v) and hα(u)hα(v) = hα(uv) (4.43)

and for α 6= −β

xα(u)xβ(v)xα(u)−1xβ(v)−1 =
∏
m,n>0

mα+nβ∈∆

xmα+nβ(cαβmnu
mvn), (4.44)

which is the exponentiation of the relation [Eα, Eβ] ∝ Eα+β. The constants cαβmn depend on
the chosen order in the product and the structure constants of the basis {Eα}. If α = −β
we obtain instead

wα(u)xα(v)wα(−u) = x−α(−uv2). (4.45)
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This is related to the commutator [Eα, E−α] = Hα.
We will always take the discrete subgroup G(Z) that is generated by the xα(u) and

hα(u) for integer u. This group is called the (adjoint) Chevalley group. Another way of
obtaining the group is to consider the integer lattice of elements spanned by the generators
Eα, Hα and Fα (for α > 0). Since the structure constants of g are integral in this basis
(whence Chevalley basis), this lattice actually defines a Lie algebra g(Z) over the ring Z.
The group G(R) acts on g(R) via the adjoint action. The alternative definition of G(Z) is
as the stabiliser of g(Z) under this action. The group G(Z) contains representatives of the
Weyl group.

4.2 p-adic and adelic groups

In this section we introduce some basic properties of linear algebraic groups defined over
a number field F, which can be either local or global. In our treatment we shall always
take F to be either Q, Qp or the ring of adeles A. For more details and proofs, see for
instance [27,57,117,120].

Recall that a Lie group G = G(C) defined over C is a differentiable manifold with a
compatible group structue. More generally, one can consider algebraic groups G(F) over
any number field F. Formally, the group G(F) is an (affine) algebraic variety equipped with
a group structure given by polynomial operations with values in F. We will be interested
in linear algebraic groups over F, which are subgroups G(F) of the group GL(n,F) of
invertible n× n matrices with entries in F. As we shall see, the notion of algebraic group
extends to local fields, like F = Qp, or global fields, like F = Q, or even the adeles F = A.

4.2.1 p-adic groups

We shall now take a closer look at algebraic groups G over the local field of p-adic numbers
Qp. At the infinite place, Q∞ = R, this is just a real Lie group G(R) corresponding to a
real form of a complex Lie group G(C). We will always take this to be the split real form
discussed in the preceding section.

Let us focus on the non-archimedean completions Qp<∞ of Q, comparing with the
more familiar situation of real Lie groups G(R) where it is appropriate. If G(Q) is a
linear algebraic subgroup of GL(n,C) defined by polynomial conditions with coefficients
in Q, then we can also speak of the local linear algebraic group G(Qp) defined by the
same polynomial conditions, but now taken over Qp. The typical example of a linear
algebraic group is SL(n,C) that is defined as the subgroup of GL(n,C) such that the
polynomial equation det(g) = 1 is satisfied. As this equation has rational coefficient, one
can define the local linear algebraic groups GL(n,Qp) and SL(n,Qp), which are simply
the corresponding groups of n× n matrices with entries in Qp.

An important fact is that the notion of maximal compact subgroup carries over to
the local setting. Recall that for a real Lie group G(R) in its split real form the maximal
compact subgroup K(G) is defined as the fixed point set of G under the Chevalley
involution. For example, in the case of G(R) = SL(n,R) we have K(G) = SO(n). To
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understand the analogous notion of maximal compact subgroup of G(Qp), recall that the
p-adic integers Zp form a compact ring inside Qp. It follows that the subgroup of integer
points

G(Zp) = G ∩GL(n,Zp), (4.46)

sits compactly inside G(Qp). Hence, for finite primes the maximal compact subgroup of
G(Qp) is Kp = G(Zp).

For real Lie groups G(R) we always have a unique Iwasawa decomposition

G(R) = N(R)A(R)K(R), (4.47)

where K(R) is the maximal compact subgroup, A(R) is the Cartan torus and N(R) is the
nilpotent subgroup generated by the positive Chevalley generators of the Lie algebra of G.
The notion of Iwasawa decomposition carries over to the local situation, where we have a
decomposition of the form

G(Qp) = N(Qp)A(Qp)G(Zp). (4.48)

In contrast to the case of real groups, the local Iwasawa decomposition is not unique,
however its restriction to A is, and this fact will play a crucial role later.

Example 4.4: Iwasawa decompositions in SL(2,Qp) for p ≤ ∞

We now consider in more detail the example of G(Qp) = SL(2,Qp). The maximal compact subgroup is
Kp = SL(2,Zp) and the Iwasawa decomposition reads

SL(2,Qp) = N(Qp)A(Qp)SL(2,Zp), (4.49)

where

N(Qp) =

{(
1 x

1

) ∣∣∣x ∈ Qp
}
, A(Qp) =

{(
a

a−1

) ∣∣∣ a ∈ Q×p
}
. (4.50)

To illustrate this further, let us consider the explicit Iwasawa decomposition of a specific element

g =

(
1
u 1

)
∈ SL(2,Qp), (4.51)

which will be of relevance for the analysis in subsequent sections. First notice that if u ∈ Zp then g is
already in SL(2,Zp) and the decomposition is trivial. Consider therefore the case when u ∈ Qp\Zp, for
which one could write a g = nak decomposition as follows(

1
u 1

)
=

(
1 u−1

1

)(
u−1

u

)(
−1

1 u−1

)
. (4.52)

Notice that for u ∈ Qp\Zp, the element u−1 ∈ Zp and therefore the matrix on the right is in Kp = SL(2,Zp)
such that this represents a valid Iwasawa decomposition.

An important remark is that the Iwasawa decomposition for groups over non-archimedean fields is
not unique. In the present example, all possible Iwasawa decompositions are of the form(

1
u 1

)
=

(
1 e−1u−1 − ke−2u−2

1

)(
(eu)−1

eu

)(
k ke−1u−1 − 1
1 e−1u−1

)
(4.53)
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for arbitrary k ∈ Zp and e ∈ Z×p . We note that since |e|p = 1, the norms of the entries of the element
a ∈ A(Qp) is unambiguously defined even though the full Iwasawa decomposition is not unique. The
relation (4.52) corresponds to k = 0 and e = 1. (One can render the p-adic Iwasawa decomposition unique
by imposing further restrictions on the individual elements [131]. We will not use this here.)

It is illuminating to compare (4.52) with the decomposition of the analogous element in SL(2,R).
Thus, take (

1
x 1

)
∈ SL(2,R), (4.54)

so that in this case x ∈ R. The unique Iwasawa decomposition of this element is(
1
x 1

)
=

(
1 x

1+x2

1

)(
1/
√

1 + x2 √
1 + x2

)
k, (4.55)

with

k =
1√

1 + x2

(
1 −x
x 1

)
∈ SO(2,R). (4.56)

Hence, the component along the Cartan torus in (4.52) is in fact simpler in the Iwasawa decomposition of
SL(2,Qp) compared with that of SL(2,R).

4.2.2 Adelisation and strong approximation

We now discuss the central notion of strong approximation that allows the reformulation of
many questions concerning G(R) and its automorphic forms in terms of questions on the
adelic group G(A). The description in this section is general; the following section 4.2.3
gives more details for the case of G = SL(2).

Given an algebraic group G defined over Q we can consider its adelisation G(A) as the
restricted direct product

G(A) = G(R)×Gf , (4.57)

where

Gf =
∏′

p<∞

G(Qp), (4.58)

consisting of elements g = (gp) = (g∞; g2, g3, g5, . . . ) such that all but finitely many
gp ∈ G(Zp). We further set

Kf =
∏
p<∞

G(Zp) (4.59)

and we then have the notion of maximal compact subgroup KA of G(A) defined as

KA = K∞ ×Kf , (4.60)

where K∞ is the maximal compact subgroup of G(R). The adelic version of the Iwasawa
decomposition thus reads

G(A) = N(A)A(A)KA. (4.61)

When G is split of rank r, the adelic Cartan torus is given by

A(A) = GL(1,A)× · · · ×GL(1,A) ∼= (A×)r. (4.62)
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Since Q is discrete in A according to proposition 3.24, it follows that G(Q) is a discrete
subgroup of G(A). This implies that the arithmetic coset space G(Q)\G(A) corresponds
to the adelisation of G(Z)\G(R). In fact, topologically G(Q)\G(A) is the total space of a
fiber bundle over G(Z)\G(R) [120]:

Kf ↪→ G(Q)\G(A)
↓

G(Z)\G(R)
(4.63)

One way of stating strong approximation then asserts that

G(Z)\G(R) ∼= G(Q)\G(A)/Kf . (4.64)

This has the very useful consequence that any function φR on G(Z)\G(R) can be lifted
to a function φA on the adelisation G(Q)\G(A) where φA is characterized by being right-
invariant under Kf . The consequences of this for automorphic forms will be discussed in
chapter 5.

The strong approximation theorem (4.64) can be stated even more generally for open
subgroups KΓ of Kf according to [80] (see also [271,273]):

Theorem 4.5 (Strong approximation theorem). Let G be a topological group with
G(Q) dense in Gf , let KΓ be an open subgroup of Kf and Γ = KΓ ∩G(Q). Then

φ : Γ\G(R)→ G(Q)\G(A)/KΓ

Γx∞ 7→ G(Q)(x∞; 1)KΓ

(4.65)

is a homeomorphism. Here, G(Q) is diagonally embedded in G(A); G(R) is embedded as
(x∞; 1) and KΓ as (1; kp).

An assumption in the theorem is that G(Q) should be dense in Gf and this is equivalent
to the statement that for all open subsets U of Gf we have that U ∩ G(Q) 6= ∅. An
example of such a group G that will be useful for us is SL(n) [57].

Proof.

• φ is well-defined (independent of coset representative)

Let x∞, y∞ ∈ G(R) such that Γx∞ = Γy∞, that is, there exists a γ ∈ Γ such that
x∞ = γy∞.

We have that Γ = KΓ∩G(Q). Denoting a double coset in G(Q)\G(A)/KΓ by square
brackets (with the real and finite places given separately) this leads to

φ(Γx∞) = [x∞; 1] = [γy∞; 1] = [γy∞; γγ−1]
(a)
= [y∞; γ−1]

(b)
= [y∞; 1] = φ(Γy∞)

(4.66)
where we have used (a) that γ ∈ G(Q) and (b) that γ−1 ∈ KΓ
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• φ is injective

Assume φ(Γx∞) = φ(Γy∞). Then G(Q)(x∞; 1)KΓ = G(Q)(y∞; 1)KΓ, that is, there
exists a γ ∈ G(Q) and k ∈ KΓ such that (x∞; 1) = γ(y∞; 1)k = (γy∞; γk).

This means that x∞ = γy∞ and γ = k−1. Since γ ∈ G(Q) and k ∈ KΓ we then have
that γ = k−1 ∈ KΓ ∩G(Q) = Γ. Thus, x∞ = γy∞ implies that Γx∞ = Γy∞.

• φ is surjective
(
G(A) = G(Q)G(R)KΓ

)
Let x = (x∞;xf ) be an arbitrary element in G(A) = G(R)×Gf .

We will now show that since G(Q) is dense in Gf , there exists a γ ∈ G(Q) such that
γ−1xf ∈ KΓ.

Consider the continuous map f : Gf → Gf g 7→ gxf . KΓ is an open set around 1
in Gf . Since f is continuous U = f−1(KΓ) is an open set in Gf around x−1

f . Let
γ−1 ∈ U ∩G(Q) which is non-empty as G(Q) is dense in Gf . Then γ−1xf = f(γ−1) ∈
f(U) = KΓ.

Let k = γ−1xf ∈ KΓ. Then,

x = (x∞;xf ) = (x∞; γk) = γ(γ−1x∞; k) = γ(γ−1x∞; 1)k ∈ G(Q)G(R)KΓ (4.67)

Remark 4.6. The generalisation to open subgroups KΓ is important since it allows to
treat different discrete subgroups Γ in a uniform way. Typically these subgroups are
associated with arithmetically defined congruence subgroups.

4.2.3 Strong approximation for SL(2,R)

In this section, we illustrate the concepts of the preceding section in some examples
involving G = GL(2) and G = SL(2).

Example 4.7: Discreteness of GL(2,Q) in GL(2,A)

We will now show that GL(2,Q) is discrete in GL(2,A) by first considering the identity element. The
line of reasoning is analogous to the case of Q being discretely embedded in A that was treated in
proposition 3.24.

Let U ⊂ GL(2,R) be an open neighbourhood of 1 such that U ∩GL(2,Z) = {1}. Then

V = U ×
∏
p<∞

GL(2,Zp) ⊂ GL(2,A) (4.68)

is an open neighbourhood of 1 in GL(2,A).
Since, with the diagonal embedding,

GL(2,Q) ∩
∏
p<∞

GL(2,Zp) = GL(2,Z) (4.69)

we then have that GL(2,Q)∩ V = {1}. For an arbitrary element g ∈ GL(2,Q) these arguments generalise
directly by instead considering gV . We have then that GL(2,Q) is discrete in GL(2,A).
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Perhaps more importantly for our further calculations, it can similarly be shown that SL(2,Q) is
discrete in SL(2,A).

The next example discusses how the strong approximation theorem 4.5 works for SL(2)
and different choices of subgroup Γ.

Example 4.8: Strong approximation for SL(2)

Let G = SL(2). Firstly, let KΓ = Kf =
∏
p<∞G(Zp). Then Γ = KΓ ∩ G(Q) = G(Z) = SL(2,Z), the

standard modular group. From the above theorem we then get that

G(Z)\G(R) ∼= G(Q)\G(A)/Kf . (4.70)

The second example addresses the principal congruence subgroup Γ0(N). Let locally

Γ0(N)p =

{(
a b
c d

)
∈ SL(2,Zp) : c ≡ 0 mod NZp

}
(4.71)

and KΓ(N) = K0(N) :=
∏
p<∞KΓ(N)p where

KΓ(N)p =

{
SL(2,Zp) p - N
Γ0(N)p p | N (4.72)

Since KΓ ⊂ Kf =
∏
p<∞ SL(2,Zp) we know that Γ = KΓ ∩ SL(2,Q) ⊂ SL(2,Z).

That c ≡ 0 mod NZp for all divisors p of N means that (with c ∈ Z)

c ∈ NZp ∀p | N ⇐⇒
∣∣∣ c
N

∣∣∣
p
≤ 1 ∀p | N

⇐⇒ c

N
has no p in the denominator ∀p | N

⇐⇒ c ≡ 0 mod N

(4.73)

Thus Γ = Γ0(N) and from the above theorem

Γ0(N)\SL(2,R) ∼= SL(2,Q)\SL(2,A)/KΓ(N). (4.74)

We finally exhibit a isomorphism of cosets of the discrete subgroups in G(A) with
cosets of discrete subgroups in G(R). This will be central for the adelic lift of Eisenstein
series in section 5.1.6.

Example 4.9: Bijection of Borel cosets

In this example we will (based on the notes of [113]) show that

φ : B(Z)\SL(2,Z)→ B(Q)\SL(2,Q)

B(Z)γ 7→ B(Q)γ
(4.75)

is an isomorphism, where

B(F) =

{(
∗ ∗
0 ∗

)}
∩ SL(2,F) . (4.76)

The mapping is well-defined since if B(Z)γ′ = B(Z)γ then B(Q)γ′ = B(Q)γ as B(Z) ⊂ B(Q).

58



Eisenstein series and automorphic representations

It is injective because if B(Q)γ′ = B(Q)γ then there exists a b in B(Q) such that γ′ = bγ, but then
b = γ′γ−1 ∈ SL(2,Z) which means that b ∈ B(Q) ∩ SL(2,Z) = B(Z). Thus, B(Z)γ′ = B(Z)γ.

For the surjectivity we need to show that every B(Q)g with g ∈ SL(2,Q) has a representative in
SL(2,Z). Let

g =

(
a b
c d

)
∈ SL(2,Q) b =

(
q m
0 q−1

)
∈ SL(2,Q) bg =

(
qa+mc qb+md
q−1c q−1d

)
(4.77)

where c = c1/c2 and d = d1/d2 with ci, di ∈ Z in shortened form with positive denominators. Now set
q = gcd(c1d2, c2d1)/(c2d2) which makes q−1c and q−1d coprime integers, and thus there exist integers α
and β such that αq−1d− βq−1c = 1 by Bézout’s lemma.

If c = 0 then d 6= 0, a = 1/d and q = gcd(0, c2d1)/(c2d2) = |c2d1| /(c2d2) = |d| meaning that
qa = q−1d = ±1 and we may choose m such that qb+md is integer. On the other hand, if c 6= 0 we may
choose m = (α− qa)/c giving qa+mc = α and qb+md = β which are both integers. This completes the
proof.
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Chapter 5

Automorphic forms and
representation theory

In this section we explain how to think about automorphic forms as functions on
G(Q)\G(A), as opposed to the more familiar concept of G(Z)-invariant functions on
a real Lie group G(R). This leads naturally to the notion of automorphic representations
and the close connection with studying the unitary action of G(A) on the Hilbert space
L2(G(Q)\G(A)). We discuss in detail the theory of Eisenstein series from the point of
view of representations induced from parabolic subgroups P (A) ⊂ G(A). As a warmup
we begin in section 5.1 by discussing the passage from classical modular forms on the
upper-half plane H to automorphic forms on the adelic group SL(2,A). This will serve to
illustrate some of the main points in a simple and explicit setting.

5.1 From classical modular forms to (adelic)

automorphic forms

In this section we show how to pass from the classical notion of a modular form as a
function on the complex upper-half plane H, to an automorphic form as a function on a
Lie group G. Here we focus on the example of SL(2), leaving the generalisation to higher
rank groups to subsequent sections. We begin by going from H to SL(2,R) and then
further to the adelic group SL(2,A).

5.1.1 Holomorphic modular forms

Let H be the complex upper-half plane {z = x + iy ∈ C| Im(z) > 0}. This carries an
action of SL(2,R) given by the Möbius transformation

z → g · z =
az + b

cz + d
, g =

(
a b
c d

)
∈ SL(2,R). (5.1)
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The appearance of the SL(2,R)-action is very natural since we have in fact an isomorphism
H ∼= SL(2,R)/SO(2,R), where SO(2,R) ⊂ SL(2,R) is the stabiliser of the point i ∈ H.
This is reviewed in appendix A.

A holomorphic modular form of weight w ≥ 0 is a holomorphic function f : H→ C
which transforms according to

f

(
az + d

cz + d

)
= (cz + d)wf(z), (5.2)

under the discrete action of (
a b
c d

)
∈ SL(2,Z). (5.3)

If f(z) has zero weight, w = 0, we call it a modular function. The prefactor (cz + d)w

in (5.2) is often referred to as factor of automorphy . The defining eq. (5.2) implies that f
is periodic f(z + 1) = f(z) (for any weight w) and thus has a Fourier expansion of the
form

f(z) =
∑
n∈Z

a(n)qn, q := e2πiz. (5.4)

Decomposing q = e2πiz = e2πixe−2πy the Fourier coefficients can be computed from the
standard Fourier transform

a(n)e−2πny =

∫ 1

0

e−2πinxf(x+ iy)dx. (5.5)

This formula (and its generalisations) will play a key role in subsequent chapters.
The moderate growth condition mentioned in section 1.1 can be formulated as the

statement that
|f(x+ iy)| ≤ C · yN (5.6)

for some constants C,N as y →∞ for any x ∈ R. For holomorphic modular forms this is
in fact equivalent to the statement that all negative Fourier coefficients a(n), n < 0, in
(5.4) vanish. To see this we simply use the integral representation (5.5) for the Fourier
coefficient and calculate its norm:

|a(n)e−2πny| =
∣∣∣∣∫ 1

0

e−2πinxf(x+ iy)dx

∣∣∣∣ (5.7)

Removing the oscillating exponential we obtain a sequence of inequalities∣∣∣∣∫ 1

0

e−2πinxf(x+ iy)dx

∣∣∣∣ ≤ ∫ 1

0

|f(x+ iy)| dx ≤
∫ 1

0

C · yNdx = C · yN . (5.8)

Thus we arrive at the inequality

|a(n)e−2πny| ≤ C · yN . (5.9)

and when n < 0 the exponential e−2πny blows up as y → ∞ so therefore we must have
a(n) = 0 for n < 0 as claimed.
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Example 5.1: Classical holomorphic Eisenstein series

Classic examples of holomorphic modular forms on H are provided by the holomorphic Eisenstein series
defined by

E2w(z) =
1

2

∑
(c,d)∈Z2
(c,d)=1

1

(cz + d)2w
. (5.10)

One can check that this satisfies all the criteria stated above for integral w ≥ 2. The (finite-dimensional)
space M2w(SL(2,Z) of weight 2w holomorphic modular forms is a ring, famously generated by the
Eisenstein series E4(z) and E6(z) (see, e.g., [323] for a proof). The Fourier expansions of E4(z) and E6(z)
are given by

E4(z) = 1 + 240

∞∑
n=1

σ3(n)qn = 1 + 240q + 2160q2 + · · ·

E6(z) = 1− 504

∞∑
n=1

σ5(n)qn = 1− 504q − 16632q2 + · · · (5.11)

where
σs(n) =

∑
d|n

ds (5.12)

is the divisor function. For proofs see for example the classic book by Serre [287].

5.1.2 Modular forms for congruence subgroups*

It is often of interest in number theory to consider holomorphic modular forms for
congruence subgroups Γ ⊂ SL(2,Z) (a good reference is the book by Diamond and
Shurman [86]). These satisfy an analogous relation to (5.2) but with extra restrictions on
the transformation matrix and possibly with a character appearing on the right hand side.
Consider for example the congruence subgroups

Γ1(N) =

{(
a b
c d

)
∈ SL(2,Z)

∣∣∣∣N |c, a− 1, d− 1

}
Γ0(N) =

{(
a b
c d

)
∈ SL(2,Z)

∣∣∣∣N |c} , (5.13)

where Γ0(N) contains Γ1(N) as a normal subgroup of finite index φ(N) (the Euler totient
function). The space of weight w modular forms for Γ1(N) (resp. Γ0(N)) is then denoted
by Mw(Γ1(N)) (resp. Mw(Γ0(N))). Since the quotient Γ0(N)/Γ1(N) is isomorphic
to the multiplicative group (Z/NZ)× of order φ(N), one can relate modular forms on
these different congruence subgroups through the introduction of Dirichlet characters. A
Dirichlet character χ is a group homomorphism

χ : (Z/NZ)× → C× (5.14)

where the product between two Dirichlet characters χ1 and χ2 is defined by (χ1χ2)(g) =
χ1(g)χ2(g) for g ∈ (Z/NZ)×. One can then decompose the space Mw(Γ1(N)) in terms
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of modular forms for the larger group Γ0(N), at the expense of introducing Dirichlet
characters:

Mw(Γ1(N)) =
⊕
χ

Mw(Γ0(N), χ), (5.15)

where functions in the χ-eigenspace Mw(Γ0(N), χ) obey a generalisation of (5.2):

f

(
az + d

cz + d

)
= χ(d)(cz + d)wf(z), f ∈Mw(Γ0(N), χ). (5.16)

Functions in Mw(Γ0(N), χ) are said to be of level N.

Example 5.2: Classical level N Eisenstein series

An example of a modular form for Γ0(N) is provided by the level N , weight 2w Eisenstein series

E2w(z;χ) =
∑

(m,n)∈Z2
(m,n)=1

χ(n)

(mz + n)2w
, (5.17)

generalising the classical series (5.10).

5.1.3 From holomorphic modular forms to automorphic forms
on SL(2,R)

We shall now see how to adapt the theory of holomorphic modular forms on H =
SL(2,R)/SO(2,R) to the more general framework of automorphic forms defined on
G = SL(2,R), invariant under the left action of SL(2,Z).

Given a weight w holomorphic modular form f : H → C we define a new (complex)
function on SL(2,R) through the assignment

f 7−→ ϕf (g) = (ci+ d)−wf(g · i), (5.18)

where g = ( a bc d ) ∈ SL(2,R). The prefactor here is chosen in such away as to cancel the
factor of automorphy in (5.2) in order for the function ϕf to be invariant under SL(2,Z):

ϕf (γg) = ϕf (g), γ ∈ SL(2,Z). (5.19)

According to our definition in section 1.1 ϕf is thus an automorphic function on SL(2,R).
Note that the condition of moderate growth is satisfied automatically since the seed
function f is holomorphic.

We can make the lift (5.18) from H to SL(2,R) more explicit by making use of the
Iwasawa decomposition of an element g ∈ SL(2,R):

g = nak =

(
1 x

1

)(
y1/2

y−1/2

)(
cos θ sin θ
− sin θ cos θ

)
, (5.20)

with n ∈ N(R), a ∈ A(R), k ∈ SO(2,R). Acting with g on the point i one finds then

g · i = x+ iy ≡ z. (5.21)
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We recall that K = SO(2,R) leaves the point i invariant. Plugging the Iwasawa
decomposition of g into the right-hand side of (5.18) we can write ϕf as a function
of the three variables (x, y, θ):

ϕf (g) = ϕf (x, y, θ) = eiwθyw/2f(x+ iy). (5.22)

Moreover, under the right-action of

k =

(
cosϑ sinϑ
− sinϑ cosϑ

)
∈ SO(2,R) (5.23)

it transforms by a phase:
ϕf (gk) = eiwϑϕf (g). (5.24)

This implies that the original transformation property (5.2) of f under SL(2,Z) has been
traded for the above phase transformation of ϕf(g) under K = SO(2,R). While f itself
was invariant under SO(2,R) one instead says that ϕf is K-finite, implying that the
action of K on f generates a finite-dimensional vector space; in the present example this
is represented by the one-dimensional space of characters σ : k 7→ eiwϑ through

ϕf (gk) = σ(k)ϕf (g). (5.25)

Next, we address the question how the automorphic form ϕf incorporates the
holomorphy of f on H:

∂

∂z̄
f =

1

2

(
∂

∂x
+ i

∂

∂y

)
f = 0, (5.26)

where z = x+ iy. The corresponding statement for ϕf is that it satisfies

Fϕf = −2ie−2iθ

(
y
∂

∂z̄
− 1

4

∂

∂θ

)
ϕf = 0. (5.27)

We will now give a group-theoretic interpretation to this differential condition. The space
of smooth functions ϕ on G = SL(2,R) is acted upon by the right-regular action of
SL(2,R) denoted by ρ

(ρ(g)ϕ) (h) = ϕ(hg) for g ∈ SL(2,R). (5.28)

For smooth functions one can linearise the action and obtain a realisation of the sl(2,R)
generators in terms of (linear) differential operators. The derivation of these operators
is reviewed in appendix A.3. Using the expressions from there one recognises that the
particular operator annihilating ϕf in (5.27) corresponds to the generator F in the so-called
compact realisation of sl(2,R). The three basis generators in this realisation are given by

H = i

(
−1

1

)
, E =

1

2

(
1 i
i −1

)
, F =

1

2

(
1 −i
−i −1

)
(5.29)

and satisfy
[H,E] = 2E, [H,F ] = −2F, [E,F ] = H. (5.30)
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This basis is unitarily equivalent to the standard real basis of (2 × 2)-matrices, see
appendix A for details.

Thus, the differential operator F in (5.27) may in fact be identified with the lowering
operator in the basis (E,F,H) of the Lie algebra sl(2,R). This implies that ϕf may be
viewed as a lowest weight state of a representation of sl(2,R). Furthermore, we note that
the (Hermitian) generator H in this basis corresponds to

eiθH =

(
cos θ sin θ
− sin θ cos θ

)
∈ SO(2,R), (5.31)

and hence corresponds to the differential operator H = −i∂θ. Therefore, H is diagonal on
ϕf with eigenvalue w:

Hϕf = wϕf . (5.32)

From the commutation relations we further deduce that E raises the H-eigenvalue w by
+2, while F lowers it by the same amount. This implies that the holomorphic Eisenstein
series E2w can be viewed as lowest weight vectors in the holomorphic discrete series of
SL(2,R), providing our first glimpse of the general connection between automorphic forms
and representation theory, a topic that will be discussed in more generality in section
5.4 and onwards. See also section 5.5 for some more details on the specific case of SL(2)
treated above.

Before we proceed we shall mention one final important property of ϕf , namely that it
is an eigenfunction of the Laplacian on SL(2,R). This Laplacian is derived in appendix A.3
and reads

∆SL(2,R) = y2

(
∂2

∂x2
+

∂2

∂y2

)
− y ∂2

∂x∂θ
. (5.33)

Acting on ϕf one obtains that

∆SL(2,R)ϕf =
w

2

(w
2
− 1
)
ϕf . (5.34)

As we will see, all the properties of ϕf discussed above will have counterparts in the general
theory of automorphic forms.

The automorphic lift of weight w, level N modular forms for Γ0(N) will be treated in
section 5.2.1.

Example 5.3: Lift of a holomorphic Eisenstein series

The lift of the holomorphic Eisenstein series E2w(z) to an automorphic form on SL(2,R) can be written
explicitly as follows. For f a weight w holomorphic modular form, g ∈ SL(2,R), define the slash operator
f |wg : H→ C by

(f |wg) (z) := (cz + d)−wf

(
az + b

cz + d

)
, g =

(
a b
c d

)
∈ SL(2,R). (5.35)

Using the slash operator the defining relation (5.2) can be written simply as

(f |wγ) (z) = f(z), γ =

(
a b
c d

)
∈ SL(2,Z). (5.36)
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By a calculation similar to the one used in proving equation (1.7) we can now rewrite the Eisenstein series
E2w(z) in (5.10) directly as a function on SL(2,R). Parametrising an element g ∈ SL(2,R) in Iwasawa
form as g = nak (see 5.20) we obtain

ϕf (nak) = (f |wnak) (i) = eiwθyw/2
∑

γ∈N(Z)\SL(2,Z)

(1|wγ) (nak · i). (5.37)

Remark 5.4. We would like to make a cautionary remark regarding the generalisation of
the above discussion to arbitrary groups G(R). Modular forms are holomorphic functions
on H ∼= SL(2,R)/SO(2,R) with simple transformation properties under SL(2,Z), and
it seems natural to try and generalise this construction to higher rank real Lie groups
G(R). One might suspect a generalisation to holomorphic functions f : G(R)/K → C,
where K is the maximal compact subgroup of G(R), transforming with some weight under
the action of a discrete subgroup G(Z) ⊂ G(R). However, this only works whenever the
coset G(R)/K carries a complex structure. In the case above this complex structure is
provided by the fact that the maximal compact subgroup K = SO(2,R) ∼= U(1). In
general, the maximal subgroup K of some G(R) does not have an isolated U(1) factor
that can provide a complex structure on G(R)/K and therefore we could not expect to
have a general theory of holomorphic modular forms on G/K. A standard example with a
complex structure is provided by G = Sp(2n,R), K = U(n), in which case Sp(2n;R)/U(n)
is a hermitian symmetric domain known as the Siegel upper half space. This leads to the
theory of holomorphic Siegel modular forms (see, e.g., [54] for a review).

5.1.4 Maass forms and non-holomorphic Eisenstein series

As just discussed, it is in general too restrictive (and often impossible) to consider
holomorphic modular forms. It is therefore called for to look for a theory of arbitrary
(non-holomorphic) functions f : G(R)/K → C which transform nicely under the action of
some discrete subgroup G(Z) ⊂ G(R). This leads to the notion of an automorphic form
that we will now discuss for SL(2,R).

In addition to the holomorphic modular forms, the classical theory also contains
an interesting class of non-holomorphic functions f : SL(2,Z)\H → R . These non-
holomorphic functions are eigenfunctions of the Laplacian ∆H on H = SL(2,R)/SO(2,R)
(that is simply obtained from (5.33) since ∂θ = 0 on H):

∆Hf = y2

(
∂2

∂x2
+

∂2

∂y2

)
f = λf (5.38)

and by definition are invariant under SL(2,Z):

f(γ · z) = f(z); (5.39)

there is no non-trivial weight w compared to (5.2). Similarly, to the holomorphic case
we require that f(z) is of moderate growth, i.e. that it grows at most polynomially for
y →∞ (see (5.6)).

67



Chapter 5. Automorphic forms and representation theory

Functions on SL(2,R) satisfying these conditions are called Maass (wave) forms , and
they can also be fit into the general framework of automorphic forms, with even less effort
than for the holomorphic modular forms. Given a Maass form f on H we lift this to a
function ϕf on SL(2,R) according to (5.22)

f 7−→ ϕf (g) = ϕf

((
1 x

1

)(
y1/2

y−1/2

)
k

)
= f(x+ iy), (5.40)

where we used the Iwasawa decomposition g = nak ∈ SL(2,R) given in eq. (5.159). The
lift in this case is trivial since w = 0.

The associated function ϕf (g) then satisfies

ϕf (γgk) = ϕf (g), γ ∈ SL(2,Z), k ∈ SO(2,R), (5.41)

and so is indeed an automorphic form on SL(2,R).
Important examples of Maass forms are provided by the non-holomorphic Eisenstein

series with parameter s ∈ C

E(s, z) =
1

2

∑
(c,d)∈Z2

(c,d)=1

ys

|cz + d|2s . (5.42)

This converges absolutely for Re(s) > 1, but according to Langlands general theory [218]
it can be analytically continued to a meromorphic function of s ∈ C\{0, 1}. This crucial
fact relies on the functional relation

ξ(s)E(s, z) = ξ(1− s)E(1− s, z), (5.43)

where ξ(s) is the completed Riemann zeta function (1.17).
One can verify that the Eisenstein series E(s, z) indeed defines an SL(2,Z)-invariant

eigenfunction of the Laplacian ∆H with eigenvalue λ = s(s− 1). The non-holomorphic
Eisenstein series E(s, z) provides the simplest example of the class of Eisenstein series on
a group G(R) that will be our main concern in the following.

It is instructive to rewrite E(s, z) as defined in (5.42). We parametrise an arbitrary
group element g ∈ SL(2,R) according to the same Iwasawa decomposition g = nak as in
(5.20). Then introduce a character χs : B = NA→ C× defined by

χs(na) = ys, n ∈ N, a ∈ A, (5.44)

and extend it to all of SL(2,R) by requiring it to be trivial on SO(2,R): χs(nak) = χs(na).
The Eisenstein series E(s, τ) can now be equivalently written as

E(s, g) =
∑

γ∈B(Z)\SL(2,Z)

χs(γg), (5.45)

where the quotient by the discrete Borel subgroup B(Z) = {
( ±1 m

±1

)
|m ∈ Z} is needed

since it leaves χs invariant. (This was also explained in the introduction.) It should be
apparent that this reformulation of the Eisenstein series is well suited for generalisations
to higher rank Lie groups G(R). This will be discussed in section 5.3 below.
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5.1.5 Maass forms of non-zero weight*

One can generalise the definition of Maass form given above to include non-holomorphic
functions which transform with a weight. We define a weight w Maass form to be a
non-holomorphic function f : H→ C satisfying

f

(
az + d

cz + d

)
=

(
cz + d

|cz + d|

)w
f(z), w ∈ Z. (5.46)

A weight w Maass form is furthermore an eigenfunction of the weight w Laplacian ∆w

which is a modification of (5.38):

∆w
H := y2

(
∂2

∂x2
+

∂2

∂y2

)
− iwy ∂

∂x
. (5.47)

We can elucidate the meaning of this differential operator by lifting the weight w Maass
form f to an automorphic form ϕf on SL(2,R) through a straightforward generalisation
of (5.40):

f 7−→ ϕf (g) :=

(
ci+ d

|ci+ d|

)−w
f(g · i), g =

(
a b
c d

)
∈ SL(2,R). (5.48)

Rewriting this in Iwasawa form (5.20) yields

ϕf (g) = ϕf

((
1 x

1

)(
y1/2

y−1/2

)
k

)
= eiwθf(x+ iy). (5.49)

We then recognise the weight w Laplacian ∆w
H in (5.47) as nothing by the full Laplacian

on SL(2,R) (5.33) after evaluating the derivative on θ:

∆SL(2,R)ϕf (g) = eiwθ
[
y2

(
∂2

∂x2
+

∂2

∂y2

)
− iwy ∂

∂x

]
f(x+ iy) = eiwθ∆w

Hf(z). (5.50)

Example 5.5: Non-holomorphic Eisenstein series of weight w

A classic example of a weight w Maass form is the following generalisation of the non-holomorphic
Eisenstein series (5.42):

Ew(s, z) =
∑

(c,d)∈Z2
(c,d)=1

ys

|cz + d|2s
(
cz + d

cz̄ + d

)w
, (5.51)

which transforms as

Ek

(
s,
az + b

cz + d

)
=

(
cz + d

cz̄ + d

)w/2
Ek(s, z) =

(
cz + d

|cz + d|

)w
Ek(s, z). (5.52)

We will come back to this Eisenstein series in section 5.5.
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5.1.6 Adelisation of non-holomorphic Eisenstein series

As we discussed in section 4.2.2, strong approximation ensures that we can always lift
a function on SL(2,Z)\SL(2,R) to an adelic function on SL(2,Q)\SL(2,A), where the
role of the discrete subgroup is now played by SL(2,Q). Recall that this lift also requires
that the resulting function is right-invariant under Kf =

∏
p<∞ SL(2,Zp). It is now a

simple matter to generalise the Eisenstein series E(s, g) to such an adelic function. First
extend the definition of χs to a function χs : B(A)→ C, which is invariant under the left
action of B(Q). We extend it to all of SL(2,A) using the global Iwasawa decomposition
SL(2,A) = B(A)KA and demanding it to be trivial on KA = SO(2,R)×Kf . Note that
this automatically takes care of the required condition of Kf -invariance on the right. The
adelic Eisenstein series then takes the form

E(s, gA) =
∑

γ∈B(Q)\SL(2,Q)

χs(γgA), (5.53)

which is a function on SL(2,A) satisfying

E(s, γgAkA) = E(s, gA), γ ∈ SL(2,Q), kA ∈ KA. (5.54)

As shown in Example 4.9, the range of the sum in (5.53) is in fact in bijection with the
range of summation in (5.45):

B(Q)\SL(2,Q) ∼= B(Z)\SL(2,Z). (5.55)

Therefore, if we restrict to elements gA = (g∞; 1, 1, . . . ) ∈ SL(2,A), with g∞ ∈ SL(2,R),
then the adelic Eisenstein series reduces to the real Eisenstein series (5.45). More details
of this procedure can be found in section 5.5.

With a little more effort one can also obtain the adelisation of the function ϕf(g)
in (5.18), for f a weight w holomorphic modular form on H. This analysis is done in
Example 5.2.1.

Even though our main interest often lies with automorphic forms on real Lie groups
G(R), the adelic reformulation turns out to be extremely convenient for many purposes,
not the least of which being the calculational advantages that it brings when computing
Fourier expansions of automorphic forms, a topic which we will be concerned with in the
second half of these notes.

5.2 Adelic automorphic forms

We shall now give the definition of an automorphic form in the adelic framework. There are
various degrees of generality here; for instance, one can define the theory of automorphic
forms over the adeles AF of an arbitrary number field F. However, we shall continue
to assume that F = Q in what follows. The framework of adelic automorphic forms
was originally developed in the books by Gelfand-Graev-Piatetski-Shapiro [120], and
Jacquet–Langlands [176]. Good introductions can be found in the books by Gelbart [117],
Bump [57] and Goldfeld-Hundley [131,132].
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In what follows we let G be a split algebraic group defined over Q and G(A) its
adelisation. The typical example we have in mind is G(A) = SL(n,A). Let us now state
our definition of an automorphic form:

Definition 5.6 (Automorphic form). An automorphic form is a smooth function
ϕ : G(Q)\G(A)→ C satisfying the following conditions:

1. left G(Q)-invariance: ϕ(γg) = ϕ(g), γ ∈ G(Q),

2. right K-finiteness: dimC〈ϕ(gk)|k ∈ KA〉 <∞,

3. Z(gC)-finiteness: dim〈Xϕ(g)|X ∈ Z(gC)〉 <∞,

4. ϕ is of moderate growth: for any norm || · || on G(A) there exists a positive integer n
and a constant C such that |ϕ(g)| ≤ C||g||n.

Remark 5.7. We denote by A(G(Q)\G(A)) the space of automorphic forms satisfying
definition 5.6. This is a subspace of the space C∞(G(Q)\G(A)) of smooth functions on
G(Q)\G(A). An adelic function ϕ(g), with g = (g∞; gf ) ∈ G(A) = G(R)×G(Af ), is said
to be smooth if it is C∞ with respect to the archimedean variables g∞ ∈ G(R) and locally
constant with respect to the non-archimedean variables gf ∈ G(Af ).

Let us now elaborate a little on the definition 5.6 of an adelic automorphic form:

• Condition (1) ensues as a straightforward generalisation of invariance of the function
under a discrete subgroup of G(A).

• The condition of right K-finiteness means that the vector space V spanned by
the functions k 7→ ϕ(gk), k ∈ KA, is finite-dimensional. We have already seen an
example of a non-trivial K representation in (5.25). When ϕ is K-invariant on the
right, it would be more appropriate to refer to ϕ as an automorphic function rather
than form but we will use the more general term.

• In condition (3), g is the Lie algebra associated with the group G and Z(g) is the
center of its universal enveloping algebra U(gC). The center Z(g) is the space of
bi-invariant differential operators on G, i.e. the quadratic Casimir and higher-order
operators. The condition of Z(g)-finiteness then implies that ϕ is contained in a
Z(g)-invariant finite dimensional subspace of C∞(G(Q)\G(A)). Equivalently, if
X ∈ Z(g) then Z(g)-finiteness implies that there exists a polynomial R(X) such
that R(X)ϕ = 0.

Remark 5.8. It is sometimes useful to specify the transformation properties of an
automorphic form with respect to the center Z(A) of G(A). To this end, let ω be a
central character , i.e. a homomorphism ω : Z(A) → C×, which is trivial on Z(Q). An
automorphic form f is then said to have central character ω if it satisfies conditions (1)-(4)
along with the additional condition

5. f(zg) = ω(z)f(g).
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Chapter 5. Automorphic forms and representation theory

We shall now illustrate these defining properties of an automorphic form, by giving
two examples. First we look at the non-holomorphic Eisenstein series (5.53) and we will
verify its properties according to the above definition.

Example 5.9: Verification of automorphic properties of an Eisenstein series on SL(2,A)

Consider the case when G(A) = SL(2,A). We now verify the conditions (1)-(4) in definition 5.6 for the
non-holomorphic Eisenstein series defined in (5.53):

E(s, g) =
∑

γ∈B(Q)\SL(2,Q)

χs(γg), g ∈ SL(2,A). (5.56)

• By construction, E(s, g) is left SL(2,Q)-invariant and so satisfies condition (1).

• Moreover, by definition the function χs is invariant under any kp ∈ SL(2,Zp), χs(gkp) = χs(g),
and hence condition (2) is also satisfied.

• To understand condition (3) we recall that E(s, g) is an eigenfunction of the g-invariant Laplacian
∆H on SL(2,R)/SO(2,R) with eigenvalue λ = s(s − 1). Hence, E(s, g) is in the kernel of the
operator (∆− λ) ∈ Z(g), and since for g = sl(2,A), Z(g) = C[∆H], we have that condition (3) is
satisfied.

• The final part consists in verifying the moderate growth condition (4). To this end one must
translate the classical moderate growth condition (5.6) to the adelic picture. A norm || || on SL(2,A)
can be defined as follows (see, e.g., [131]):

||g|| :=
∏
p≤∞

max
{
|a|p, |b|p, |c|p, |d|p, |ad− bc|−1

p

}
, g =

(
a b
c d

)
, (5.57)

where it is understood that |a|p = |ap|p etc., with ap the p:th component of the adele a =
(a∞, a2, a3, . . . ) ∈ A. For a proof that the the moderate growth condition of E(s, g) with respect to
this norm follows from the classical moderate growth on SL(2,R), see p. 122-123 of [131].

Before we move on to analysing Eisenstein series on arbitrary reductive groups we shall
give an additional important definition:

Definition 5.10 (Cusp form). An automorphic form f ∈ A(G(Q)\G(A)) is a cusp
form if for all parabolic subgroups P (A) ⊂ G(A) it satisfies∫

U(Q)\U(A)

f(ug)du = 0, (5.58)

where U is the unipotent radical in the Levi decomposition P (A) = L(A)U(A), and du
is the left-invariant Haar measure on U . The subspace of cusp forms will be denoted by
A0(G(Q)\G(A)) ⊂ A(G(Q)\G(A)).

This definition generalises the notion of cusp form found in the classical theory, namely
holomorphic modular forms f(τ) whose Fourier expansion in q = e2πiτ contains no term of
order q0. An example is provided by Ramanujan’s discriminant ∆(z) of weight w = 12.

The integral in (5.58) can be thought of as the zeroth Fourier coefficient of f(g) with
respect to U ; by analogy with the classical theory it is called the “constant term” of f(g),
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although in general it is by no means constant. From this perspective a cusp form is
simply an automorphic form with vanishing constant term. Constant terms are analyzed
in detail for SL(2,A) in chapter 7 and in full generality in chapter 8.

5.2.1 Adelic lift of a holomorphic modular form with Hecke
character*

We shall now construct the adelic lift of a holomorphic modular form f . To illustrate the
power of the adelic formalism we will consider the general case addressed in section 5.1.2,
namely let f ∈ Mw(Γ0(N), χ), i.e a level N holomorphic modular form for Γ0(N) with
Dirichlet character χ. We can now use strong approximation (see sec. 4.2.2) to lift f to
a function on SL(2,A). Recall from section 4.2.2 (see in particular Example 4.8) that
strong approximation implies that any g ∈ SL(2,A) can be (non-uniquely) written as

g = γg∞kf , γ ∈ SL(2,Q), g∞ ∈ SL(2,R), kf ∈ K0(N), (5.59)

where K0(N) ⊂ Kf =
∏

p<∞ SL(2,Zp) was defined in Example 4.8. In order to define a
lift to SL(2,A) we must first lift the Dirichlet character χ to the adelic setting. This can
be done using the GL(1,A) = A×-version of strong approximation:

A× = Q×R+

∏
p<∞

Z×p . (5.60)

This implies that any Dirichlet character χ : (Z/NZ)∗ → C× has a canonical lift to an
adelic (Hecke) character

ωχ : Q×\A× → C×. (5.61)

Indeed, such a character can be decomposed as

ωχ = ωχ,∞
∏
p<∞

ωχ,p, (5.62)

where the archimedean factor ωχ,∞ is taken to be trivial, and each local factor ωχ,p equals
the Hecke character χ : (Z/NZ)× → C× for N a power of the prime p.

Next, we lift the local character ωχ,p to a character on SL(2,Zp) via the map ( a bc d ) 7→
ωχ,p(d). The adelic lift of the holomorphic modular form f is then defined by:

ϕf (g) := (ci+ d)−wf(g∞ · i)ωχ(kf ), (5.63)

where g∞ = ( a bc d ) ∈ SL(2,R). We can also write this in terms of the slash operator used
in Example 5.3:

ϕf (g) = (f |wg∞) (i)ωχ(kf ). (5.64)

Having extended the definition of ϕf to an adelic automorphic form we wish to verify
the conditions (1)-(4) of the definition:

• Condition (1) is satisfied by construction: ϕf (γg) = ϕf (g), for any g ∈ SL(2,A) and
γ ∈ SL(2,Q).
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• Condition (2), concerning right K-finiteness can be seen as follows. Finiteness under
the non-archimedean Kf is a consequence of the relation

ϕf (gkf ) = ϕf (g)ωχ(kf ) (5.65)

while at the archimedean place we have

ϕf (gk∞) = ϕf (g)eiwθ, (5.66)

where k∞ = k∞(θ) ∈ SO(2,R) as in (5.31).

• Z(g)-finiteness (Condition 3) again follows from the fact that ϕf is an eigenfunction
of the Laplacian:

∆ϕf =
w

2

(w
2
− 1
)
ϕf . (5.67)

• Finally the condition of moderate growth (Condition 4) is satisfied if the coefficients
a(n) in the q-expansion of f(τ) satisfy a(n) = 0 whenever n < 0 which holds since f
is holomorphic.

Finally, we shall see that ϕf is in fact an example of an automorphic form with central
character, as in the supplementary Condition (5) mentioned in remark 5.8. To this end we
must first view ϕf as a function on GL(2,A) as opposed to SL(2,A). The defining relation
(5.63) is still valid for g ∈ GL(2,A) and conditions (1)-(4) go through without change. Our
aim is now to check how ϕf (g) transforms under the non-trivial centre Z(GL(2,A)) = A×.
An element z ∈ Z(GL(2,A)) can be represented by the diagonal matrix

z =

(
r

r

)
, r ∈ A. (5.68)

Strong approximation then yields the decompositions

g = γg∞kf , γ ∈ GL(2,Q), g∞ ∈ GL(2,R)+, kf ∈ K0(N),

r = α r∞ rf , α ∈ Q×, r∞ ∈ R+, rf ∈
∏
p<∞

Z×p , (5.69)

and consequently

zg =

(
α

α

)
γ

(
r∞

r∞

)
g∞

(
rf

rf

)
kf ∈ GL(2,A). (5.70)

We can now proceed to calculate the action of Z on the automorphic form ϕf :

ϕf (zg) =

(
f |w

(
r∞

r∞

)
g∞

)
(i)ωχ

((
rf

rf

)
kf

)
. (5.71)

To evaluate this we first notice that(
f |w

(
r∞

r∞

))
= f, (5.72)
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and hence (
f |w

(
r∞

r∞

)
g∞

)
(i) = (f |wg∞) (i). (5.73)

Using the multiplicative property of the Hecke character we further have

ωχ

((
rf

rf

)
kf

)
= ωχ

((
rf

rf

))
ωχ(kf ). (5.74)

By definition the Hecke character ωχ is trivial on Q× and at the archimedean place. Thus,
using strong approximation we can write

ωχ(rf ) = ωχ(αr∞rf ) = ωχ(z), z ∈ Z(GL(2,A). (5.75)

Combining everything we then find

ϕf (zg) = ωχ(z)ϕf (g), (5.76)

verifying that ϕf is an automorphic form with central character ω = ωχ as in remark 5.8.

5.3 Eisenstein series and multiplicative characters

We now want to generalise the construction of adelic Eisenstein series given in section
5.1 to arbitrary reductive groups G(A). To this end we must first recall the process of
constructing representations of G via induction from a standard parabolic subgroup P ⊃ B.
In this section we shall take P = B, the Borel subgroup which is the minimal parabolic
subgroup. The case of arbitrary (standard) parabolic subgroups will be treated in the
subsection 5.6.

5.3.1 Adelic multiplicative characters

Fix a Borel subgroup B(A) ⊂ G(A) with Levi decomposition B(A) = N(A)A(A). Recall
that since G(A) is split, A(A) ∼= (A×)rank g. Introduce a multiplicative character

χ : B(Q)\B(A)→ C×, (5.77)

defined by
χ(na) = χ(a), n ∈ N(A), a ∈ A(A). (5.78)

Using the Iwasawa decomposition we can extend χ to all of G(A) by demanding it to be
trivial on KA:

χ(g) = χ(nak) = χ(na) = χ(an) = χ(a), k ∈ KA. (5.79)

Although we extend the character to all of G(A) it is only multiplicative on B(A):

χ(bb′) = χ(b)χ(b′) = χ(a)χ(a′), b, b′ ∈ B(A). (5.80)
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On the other hand, to evaluate it on a product of two elements g, g′ ∈ G(A) we have

χ(gg′) = χ(bkb′k′) = χ(bkb′) = χ(bb̃k̃) = χ(bb̃) = χ(b)χ(b̃), (5.81)

where b̃k̃ is the Iwasawa decomposition of kb′. From this we see also

χ(bg) = χ(b)χ(g), b ∈ B(A), g ∈ G(A). (5.82)

The global character splits into an Euler product over local factors:

χ(g) =
∏
p≤∞

χp(gp), gp ∈ G(Qp). (5.83)

There is a one-to-one correspondence between such characters and weights of the Lie
algebra g(R), or, more precisely, complex linear functionals λ ∈ h?C = h(R)? ⊗R C, where
h(R) is the Cartan subalgebra of g(R). We define a logarithm map H as follows:

H : G(A)→ h(R), (5.84)

defined by
H(g) = H(nak) = H(a) = log |a|. (5.85)

The absolute value is defined as follows. Parametrise the group element a ∈ A(A) by

a = exp

(∑
α∈Π

uαHα

)
, Hα ∈ h(R), uα ∈ A, (5.86)

where Π denotes the set of simple roots of g(R).
Then we define

log |a| := log exp

(∑
α∈Π

|uα|Hα

)
=
∑
α∈Π

|uα|Hα =
∑
α∈Π

(∏
p≤∞

|uα,p|p
)
Hα, (5.87)

where each uα,p ∈ Qp.
The choice of character χ can now be parametrised by the choice of linear functional λ

according to the formula:
χ(g) = e〈λ+ρ|H(g)〉 = |aλ+ρ|. (5.88)

Here, we introduced a convenient short-hand notation. The translation by the Weyl vector
ρ constitutes a convenient choice of normalization.

Remark 5.11 (Modulus character). The map

b 7→ e〈2ρ|H(b)〉 ≡ δB(b), b ∈ B(A), (5.89)

is often called the modular function (or “modulus character”) of B. It is defined by

δB(b) =
∣∣∣ det ad(b)

∣∣
n

∣∣∣. (5.90)
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In words, it is the modulus of the determinant of the adjoint representation of b ∈ B(A),
restricted to the Lie algebra n of the unipotent radical N . By virtue of the properties
(5.85) of the logarithm map we have

δB(b) = δB(na) = δB(a). (5.91)

The modulus character corresponds to the Jacobian that relates the left- and right-invariant
Haar measures on B. This implies in particular that under conjugation by a ∈ A(A), i.e.

n 7→ ana−1, (5.92)

the Haar measure dn on N(A) transforms by

dn 7→ δB(a)dn. (5.93)

This fact will play a crucial role in our calculations in chapter 7 and onwards.
See Example 5.12 for an explicit description for SL(2,A). Using the modulus character

we can write χ in the alternative form

χ(g) = e〈λ|H(g)〉δ
1/2
B (g). (5.94)

This form of the character is common in the mathematical literature.

Example 5.12: Haar measure and modulus character for the Borel subgroup of SL(2,A)

For SL(2,A) we can take

b = na =

(
1 u

1

)(
v

v−1

)
, (5.95)

in which case the right-invariant Haar measure is

dnda =
dudv

v
, (5.96)

and the modulus character is given by

δB(na) = δB

((
1 u

1

)(
v

v−1

))
= |v|2. (5.97)

5.3.2 Eisenstein series

With the definition of the character χ on the Borel subgroup, we are now in a position to
state Langlands’s definition of an Eisenstein series for an arbitrary reductive groups G(A).
It is defined as the sum over images of the coset B(Q)\G(Q):

E(χ, g) =
∑

γ∈B(Q)\G(Q)

χ(γg) , (5.98)

and using the explicit parametrisation (5.88), the definition reads

E(λ, g) =
∑

γ∈B(Q)\G(Q)

e〈λ+ρ|H(γg)〉. (5.99)
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The series defined here is not the only possible type of Eisenstein series that one can define,
although it is the one that we will be most interested in. However, in section 5.4.4 we
will treat Eisenstein series in the context of automorphic representations. This will then
provide us with a way of deriving different types of Eisenstein series, including the one
just defined.

For the above series Godement [29, 129] proved that the sum converges absolutely
whenever λ lies in the open subset

{λ ∈ h?C | Re(λ) ∈ ρ+ (h?)+}, (5.100)

where the positive chamber (h?)+ is defined by

(h?)+ = {Λ ∈ h? | 〈Λ, Hα〉 > 0, ∀α ∈ Π}, (5.101)

so that we require 〈λ,Hα〉 > 1 for all simple roots α. For discussing the spectral
decomposition of A(G(Q)\G(A)), see also section 5.4.5, one is mainly interested in
the case when λ ∈ ih?. This choice for λ is motivated in section 5.4.3 by the fact that
the inducing representation is unitary in this case. However, such values lie outside the
domain of absolute convergence (5.100) of E(λ, g), which seems worrisome for the spectral
decomposition. This puzzle is resolved by the remarkable result of Langlands that the
Eisenstein series E(λ, g) can in fact be analytically continued outside of the domain (5.100)
to a meromorphic function on all of h?C. To establish the analytic continuation a crucial
property of E(λ, g) is its functional relation which relates its value at λ to its value at the
Weyl-transform of λ:

E(λ, g) = M(w, λ)E(wλ, g) , w ∈ W(g), (5.102)

where M(w, λ) is a known function. The functional relation will be discussed in more
detail in chapter 8. Another important property is that E(λ, g) is an eigenfunction of the
Laplace operator ∆G/K :

∆G/KE(λ, g) =
1

2
(〈λ|λ〉 − 〈ρ|ρ〉)E(λ, g). (5.103)

This formula is derived in appendix C. In fact, the Eisenstein series E(λ, g) is a common
eigenfunction of all G(A)-invariant differential operators which is a reflection of its Z(g)-
finiteness. The following is a useful property of Eisenstein series:

Proposition 5.13. In the special case when λ = −ρ we have

E(−ρ, g) = 1. (5.104)

Proof. Note first that by (5.103), E(−ρ, g) is an eigenfunction of the Laplacian ∆G/K

with eigenvalue zero; hence it must be a constant function. To fix the constant to unity,
we note that by Langlands constant term formula (see chapter 8), the constant term of
E(−ρ, g) with respect to the maximal unipotent radical N is∫

N(Q)\N(A)

E(−ρ, ng)dn = 1, (5.105)

from which the claim follows.
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5.4 Automorphic representations

In this section we introduce the concept of an automorphic representation associated with
an adelic group G(A). Since this is a rather difficult concept to grasp at first sight, we
shall begin with a heuristic discussion before we delve into the technical definition. Our
main focus will then lie with the so called principal series which is the representation
relevant for general Eisenstein series. We also provide some remarks on the problem of
classifying all automorphic representations of A(G(Q)\G(A)).

5.4.1 Automorphic forms and representation theory:
a first glance

We have already seen hints in section 5.1 that automorphic forms on SL(2,Z)\SL(2,R) are
intimately related to the representation theory of SL(2,R). Here we will further develop
this point of view and also generalise it to the adelic framework.

The main idea is that the space of smooth functions ϕ : SL(2,Z)\SL(2,R)→ C carries
several actions:

• First, we have the action π of SL(2,R) by right-translation:

[π(h)ϕ](g) := ϕ(gh), g, h ∈ SL(2,R). (5.106)

• Second, we have the action of the universal enveloping algebra U(sl(2,C)) by
differential operators:

(DX · ϕ)(g) :=
d

dt
ϕ(g · etX)

∣∣∣
t=0
, X ∈ U(sl(2,C)). (5.107)

Whenever one has a group action on a space it is natural to look for a decomposition into
irreducible representations of the group. Moreover, since the centre Z of the universal
enveloping algebra U(gC) commutes with SL(2,R) it is also natural to distinguish the
irreducible components in terms of their eigenvalues with respect to differential operators
in Z. For these reasons the theory of automorphic forms on SL(2,R) is closely related
to the decomposition of the space A(SL(2,Z)\SL(2,R)) into irreducible representations
with respect to the right-regular action of SL(2,R), compatible with the action by U . To
get an idea of what this entails, let us now look at an extremely simplified, though still
enlightening, example.

Example 5.14: Fourier analysis on Z\R

In this example we will look at the abelian situation where the space SL(2,Z)\SL(2,R) is replaced by
Z\R, the circle group. This is the setting of classical Fourier analysis. The space of smooth functions
C∞(Z\R) is then just Fourier series where the coefficients are constrained to decay rapidly with increasing
Fourier number. Let us now formalise this a little and try to analyse it in the spirit of automorphic
forms. Consider the unitary character χk : Z\R→ U(1), defined by χk(x) = e2πikx for x ∈ R, k ∈ Z. Any
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function f ∈ C∞(Z\R) can then be expanded in a Fourier series in terms of these characters

f(x) =
∑
k∈Z

ckχk(x), (5.108)

Recall that an automorphic form is also required to satisfy a moderate growth condition. In the present
setting we can choose square-integrability of f(x) as a suitable condition for moderate growth. Thus the
space of automorphic forms on Z\R can be taken to be the Hilbert space L2(Z\R) ⊂ C∞(Z\R) where the
Fourier coefficients satisfy the square-integrability condition∑

k∈Z
|ck|2 <∞. (5.109)

Each character χk generates a one-dimensional irreducible subspace Vk = Cχk ⊂ L2(Z\R) and the regular
representation π of R defined by

(π(y)f)(x) := f(x+ y), x, y ∈ R, (5.110)

is diagonalized by the subspaces Vk:

π(y) · v = χk(y)v, v ∈ Vk, y ∈ R. (5.111)

The set of equivalence classes of unitary representations of a group G is called the unitary dual, usually
denoted Ĝ. In our example, the unitary dual R̂ is simply the space of Fourier coefficients subject to the
condition (5.109):

R̂ = L2(Z) = {(ck) |
∑
k

|ck|2 <∞}. (5.112)

This gives the spectral decomposition of the Hilbert space L2(Z\R). The fact that the spectrum is discrete
is a general feature of spectral theory on compact spaces like S1 ∼= Z\R.

Before we proceed with the adelic perspective we shall consider one more simple
example that illustrates another feature that has a counterpart on the general theory of
automorphic forms.

Example 5.15: Fourier analysis on R

Consider the same setting as in the previous example, namely G = R, but we now take the discrete
subgroup G(Z) to be trivial. In other words, we are interested in the regular representation of R on the
Hilbert space L2(R). The regular action π is defined in the same way as in (5.110), but now this action is
diagonalised on a continuous family of characters χζ : R→ U(1) defined by χζ(x) = e2πiζx with ζ, x ∈ R.
On the irreducible subspaces Vζ = Cχζ we then have

π(x) · v = χζ(x)v, ζ, x ∈ R, v ∈ Vζ . (5.113)

The unitary dual in this case is a “continuous direct sum”, or direct integral of irreducible representations,
meaning that any function f ∈ L2(R) can be written as a continuous version of a Fourier series:

f(x) =

∫
R
f̂(ζ)χζ(x)dζ, (5.114)

where f̂(ζ) is the standard Fourier transform of f with respect to the character χζ .
From the above analysis we conclude that the spectral decomposition of L2(R) with respect to the

regular action of R has only a continuous part, in stark contrast with the situation in example 5.14
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above. The appearance of a continuous spectrum is a general feature of spectral analysis on non-compact
spaces, just like the discrete spectrum always appear for compact spaces. We also note a curious feature,
namely that although the characters χk are used to decompose the spectrum L2(R) they are in fact not
square-integrable. This is not a problem since the Fourier transform always preserves square integrability.
An elaborate version of this phenomenon will reappear later in this chapter.

In the previous examples we have illustrated how the spectral analysis on compact or
non-compact spaces the spectrum has very different properties. When we generalise this
to the non-abelian setting of SL(2,Z)\SL(2,R) we actually combine these properties in
the following sense. Consider for a moment the space of square-integrable automorphic
forms L2(SL(2,Z)\SL(2,R)) which is a subspace of all automorphic forms where the
moderate growth condition is replaced by the square-integrability condition. The space
SL(2,Z)\SL(2,R) is certainly non-compact and we therefore expect that a spectral
analysis would give rise to a continuous spectrum. In addition, and in contrast to the
abelian case Z\R, the quotient SL(2,Z)\SL(2,R) has finite volume and therefore also
give rise to a discrete spectrum. Indeed, it was proven by Selberg that

L2(SL(2,Z)\SL(2,R)) = C⊕ L2
cusp(SL(2,Z)\SL(2,R))⊕ L2

cont(SL(2,Z)\SL(2,R)),
(5.115)

where:

• the first factor C represents the constant functions (these are considered to be part of
the discrete spectrum and arise also as the residue of the non-holomorphic Eisenstein
series E(s, z) at s = 1, see also section 10.1.1),

• the remainder of the discrete spectrum is L2
cusp(SL(2,Z)\SL(2,R)) which is spanned

by Maass cusp forms ϕ with a discrete set of eigenvalues λn, n = 1, 2, 3, . . . , with
respect to the Laplacian ∆H,

• the continuous spectrum L2
cont(SL(2,Z)\SL(2,R)) is a direct integral of non-

holomorphic Eisenstein series E(s, z) (5.42).

Remark 5.16. Note that the non-holomorphic Eisenstein series E(s, τ) are not-square
integrable and so are not themselves part of L2(SL(2,Z)\SL(2,R) they nevertheless play
a key role in parametrising the unitary dual, in a very similar vein as the non-square
integrable, continuous characters χζ occurred in the spectral decomposition of L2(R) in
example 5.15. The spectral decomposition (5.115) form a crucial ingredient in the Selberg
trace formula (see [5] for a nice introduction).

Although Eisenstein series are not square integrable they are still important for the
representation theoretic aspects of automorphic forms and therefore it is natural to enhance
the space of automorphic forms to include non-square integrable objects. One then replaces
the square-integrable condition with a more general moderate growth condition, leading to
the full space of automorphic forms A(SL(2,Z)\SL(2,R)). We thus have the inclusions

L2
cusp(SL(2,Z)\SL(2,R)) ⊂ L2(SL(2,Z)\SL(2,R)) ⊂ A(SL(2,Z)\SL(2,R)). (5.116)
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The representation-theoretic aspects of automorphic forms is however not yet complete,
as the above treatment is missing an important ingredient. The spaceA(SL(2,Z)\SL(2,R))
carries an additional action by Hecke operators, which has not yet been taken into account.
We will treat Hecke operators in detail in chapter 11 so here we shall merely offer some
qualitative remarks. A Hecke operator is an operation Tp : A → A, parametrised by a
prime number p <∞. The set of all Hecke operators {Tp}p<∞ forms a commutative ring,
called the Hecke algebra. An element ϕ ∈ A(SL(2,Z)\SL(2,R)) which is an eigenvector
for all Hecke operators

Tpϕ = λpϕ, (5.117)

is called a Hecke eigenform. Here the eigenvalues λp carry the arithmetic information
contained in ϕ. However, the right-regular action of SL(2,R) on A cannot be used to
accommodate the action of the Hecke algebra and so the analysis of automorphic forms
in terms of the representation theory of SL(2,R) is incomplete. One of the reasons for
passing to the adelic picture is precisely to remedy this problem. The basic idea is this:
if we consider the right-regular action of SL(2,A) on the space A(SL(2,Q)\SL(2,A)),
then the Hecke eigenvalues {λp} parametrise the irreducible representations of the right
regular action of the local subgroups SL(2,Qp) on A(SL(2,Q)\SL(2,A)). Thus, from the
adelic perspective the Hecke algebra plays the same role at the non-archimedean places of
SL(2,A), as the universal enveloping algebra U(sl(2,C)) does at the archimedean place.
The Hecke action is thus implicitly already taken into account in the general definition 5.6
of an adelic automorphic form.

Example 5.17: The action of Hecke operators on non-holomorphic Eisenstein series

For illustration we consider here a simple example of how the Hecke operators act on the non-holomorphic
Eisenstein series E(s, z). For any integer n > 0 we define the operator Tn as follows:

(TnE)(s, z) :=
1

n

∑
d|n

d−1∑
b=0

E

(
s,
nz + bd

d2

)
. (5.118)

In chapter 11 we will show that
(TnE)(s, z) = λnE(s, z), (5.119)

with
λn = ns−1/2σ1−2s(n). (5.120)

This is precisely the numerical Fourier coefficient in the Fourier expansion of E(s, z); see eq. (1.16). The
operators Tn further satisfy the following basic relation

TmTn =
∑

d|(m,n)

1

d
Tmn/d2 , (5.121)

characterising the Hecke algebra. This algebra is generated by the subset of Hecke operators Tp for p a
(finite) prime, hence the fundamental information is contained in the prime eigenvalues λp, as claimed in
the main text. In chapter 11 we provide much more details on Hecke operators and explain their link
with the representation theory of SL(2,Qp).

We now want to make sense of combined action on A(SL(2,Q)\SL(2,A)) of SL(2,A)
by right-translation as well as the action of the universal enveloping algebra U(sl(2,C))
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by differential operators. To this end it is useful to distinguish between the action of
the finite part SL(2,Af ) =

∏
p<∞ SL(2,Qp) and the archimedean part SL(2,R). For any

ϕ ∈ A(SL(2,Q)\SL(2,A)) we then have

(π(hf )ϕ)(g) = ϕ(ghf ), g ∈ SL(2,A), hf ∈ SL(2,Af ).

(π(h∞)ϕ)(g) = ϕ(gh∞), g ∈ SL(2,A), h∞ ∈ SL(2,R). (5.122)

Here it is understood that the elements hf and h∞ are embedded in the canonical way
into the adelic group. For instance, when we write gh∞ we really mean

g ·
(
h∞,

(
1

1

)
,

(
1

1

)
, . . . ,

(
1

1

))
, g ∈ SL(2,A), h∞ ∈ SL(2,R). (5.123)

These two actions of course commute with each other. The action by SL(2,Af) at the
non-archimedean places also commutes with the U(sl(2,C))-action at the archimedean
place, and so this gives a well-defined representation. On the other hand, the right-regular
action of K∞ = SO(2,R) ⊂ SL(2,R) does not commute with U(sl(2,C)). Rather, for
X ∈ U(sl(2,C)) and k∞ ∈ SO(2,R) one has

DX · π(k∞) = π(k∞) ·Dk−1
∞ Xk∞

, (5.124)

where DX is the differential operator (5.107). One can check this by a direct calculation:

DX · (π(k∞)ϕ) (g) = DX · ϕ(gk∞)

= DX · ϕ
(
g ·
(
k∞,

(
1

1

)
,

(
1

1

)
, . . . ,

(
1

1

)))
(5.125)

where k∞ ∈ SO(2,R). Now using the definition of DX we find that the right hand side
can be written as

d

dt
ϕ

(
g ·
(
eXtk∞,

(
1

1

)
,

(
1

1

)
, . . . ,

(
1

1

))) ∣∣∣∣
t=0

. (5.126)

Inserting the identity k∞k
−1
∞ and using the following property of the matrix exponential

k−1
∞ eXtk∞ = ek

−1
∞ Xk∞t, (5.127)

we can rewrite equation (5.126) as

d

dt
ϕ

(
gk∞ ·

(
k−1
∞ eXtk∞,

(
1

1

)
,

(
1

1

)
, . . . ,

(
1

1

))) ∣∣∣∣
t=0

= π(k∞)·
(
Dk−1
∞ Xk∞

· ϕ(g)
)
,

(5.128)
which is the right hand side of (5.124). This turns out to be the characteristic property of
a so called (g, K∞)-module, a notion which will be properly defined in the next section.

Remark 5.18. To ensure that the space A(SL(2,Q)\SL(2,A)) is preserved under all
three actions defined above, one must of course verify that they are compatible with
definition 5.10. In other words one should check that the three functions

DX · ϕ(g), (π(h∞)ϕ)(g), (π(hf )ϕ)(g), (5.129)

all satisfy Conditions (1)-(4) in definition 5.10. See, e.g., section 5.1 of [131] for a detailed
check of this.
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When speaking about an automorphic representation of SL(2,A) one really refers to
a structure that carries a standard group representation with respect to the finite part
SL(2,Af), and a (g, K∞)-module structure at the archimedean place. In the following
section we will give the precise definition for an arbitrary reductive group G(A) and discuss
some central features of automorphic representations.

5.4.2 Formal definition

In this section we shall give the precise definition of an automorphic representation of
an adelic group G(A) and present some of the key features that will be important in
subsequent chapters. Just as in the SL(2,A)-discussion of the previous section, we are
interested in the combined actions of G(Af ) and K∞ by right-translation and the action
of U(gC) by differential operators. The general analysis goes through in a similar vein
as above and the conclusion is that the space A(G(Q)\G(A)) does not carry a group
representation with respect the whole group G(A), but only with respect to the finite part
G(Af). At the real place one has instead that A(G(Q)\G(A)) carries the structure of a
(g, K∞)-module, whose definition we will now recall.

Definition 5.19 ((g, K)-module). A (g, K∞)-module is a complex vector space V which
carries an action of both the Lie algebra g and K∞, such that all vectors v ∈ V are K-finite,
i.e. dim 〈k∞ · v | k∞ ∈ K∞〉 < ∞. The actions of g and K∞ are furthermore required to
be compatible in the following sense

X · k∞ · v = k∞ · Adk−1
∞

(X) · v, k∞ ∈ K∞, X ∈ g. (5.130)

Remark 5.20. In our context the complex vector space V is A(G(Q)\G(A)), the action
by X ∈ g is by the differential operator DX and the action by k∞ ∈ K∞ is by right-
translation. In this setting k∞ · Adk−1

∞
(X) means π(k∞) · Dk−1

∞ Xk∞
and hence equation

(5.124) is precisely the compatibility condition (5.130) for a (g, K∞)-module.

Remark 5.21. Let us offer some remarks on the usefulness of (g, K∞)-modules. The notion
of (g, K∞)-module was introduced by Harish-Chandra in his efforts on “algebraisation” of
representations. Function spaces on groups are themselves typically not specific enough
and there can be many function spaces that share the same algebraic features. For example,
one can consider continuous functions on a group manifold and they are a perfectly nice
representation of G. However, unless the functions are differentiable, this representations
does not give rise to a representation of the Lie algebra g that would be represented by an
algebra of differential operators. There are many different types of differentiable functions
on G and the notion of (g, K∞)-module mainly serves to eliminate the ambiguities related
to choosing a type.

With the above concepts introduced, we are now ready to state the definition of an
automorphic representation.
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Definition 5.22 (Automorphic representation). A representation π of G(A) is called
an automorphic representation if it occurs as an irreducible constituent in the decomposition
of A(G(Q)\G(A)) with respect to the simultaneous action by

(g∞, K∞)×G(Af ), (5.131)

where K∞ and G(Af) acts by right-translation and g by differential operators at the
archimedean place.

We shall for short denote by V the complex vector space on which an automorphic
representation π acts. Then V is simultaneously a (g∞, K∞)-module and a G(Af )-module
and the automorphic representation is also often denoted by the pair (π, V ).

Let Kf ⊂ G(Af) be a compact open subgroup (not necessarily maximal) and σ an
irreducible representation of K∞ ×Kf . Denote by V [σ] the space of vectors in V that
transforms according to σ under the action of K∞ × Kf . We then have the following
important definition:

Definition 5.23 (Admissible representation). A (g∞, K∞) × G(Af)-module V is
called admissible if the subspace V [σ] ⊂ V is finite-dimensional for all σ.

It is then a central result of Flath [94], known as tensor decomposition theorem, that for
admissible automorphic representations (π, V ) there exists an Euler product decomposition
into local factors

(π, V ) =
⊗
p≤∞

(πp, Vp), (5.132)

where the archimedean component (π∞, V∞) is a (g∞, K∞)-module according to the
discussion above, while the non-archimedean components (πp, Vp) furnish representations
of G(Qp).

Let us finally also introduce the notion of a spherical representation and vector.

Definition 5.24 (Unramified representation). An automorphic representation πp is
called unramified (or spherical) if Vp contains a non-zero vector fp which is invariant under
Kp = G(Zp). We then call such an fp a spherical vector . Globally one has the important
notion that if (π, V ) is a spherical automorphic representation if πp is spherical for almost
all p.

5.4.3 Principal series representation

Fix a Borel subgroup B and a quasi-character χ : B → C× defined as in (5.88):

χ = e〈λ+ρ|H〉. (5.133)

Consider now the following space of smooth functions on G(A):

I(χ) =
{
f : G(A)→ C

∣∣ f(bg) = χ(b)f(g), b ∈ B(A)
}
. (5.134)
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This is the function space of an induced representation of G(A) called the principal series

representation; it is also often denoted by Ind
G(A)
B(A)χ. The principal series I(χ) provides an

important example of an automorphic representation thanks to the theory of Eisenstein
series which will be discussed in section 5.4.4 below. In general I(χ) is a reducible
representation. However, one can show that when χ = ⊗pχp is an unramified character,
I(χ) is an irreducible, admissible representation and so affords a decomposition into local
factors:

I(λ) =
⊗
p≤∞

Ip(λ) =
⊗
p≤∞

Ind
G(Qp)

B(Qp)χp. (5.135)

Remark 5.25. The space I(λ) can be viewed as the total space of a fiber bundle I(λ)→ h?C,
with the fiber over each point λ ∈ h?C consisting of the space of functions on G(A) which
transform by the character e〈λ+ρ|H〉 under the left action of B(A).

Definition 5.26 (Standard section). An element fλ ∈ I(λ) is called a standard section
if it is KA-finite and its restriction to KA is independent of λ.

By virtue of (5.135), any standard section fλ ∈ I(λ) splits into a product of local factors

fλ =
⊗
p≤∞

fλ,p. (5.136)

Although the principal series representations Ip(λ) are infinite-dimensional, one can
still attach to them a notion of “size”, which is called the functional, or Gelfand–Kirillov,
dimension and denoted by GKdim. This is defined as the smallest number of variables on
which we can realize the functions in Ip(λ). For example, the functional dimension of the
Hilbert space L2(Rn) is n. Similarly, by the Iwasawa decomposition G(Qp) = B(Qp)G(Zp)
the sections fλ,p ∈ Ip(λ) are determined by their restriction to B(Qp)\G(Qp) = G(Zp) and
hence the functional dimension is

GKdim(Ip(λ)) = dimQp B(Qp)\G(Qp). (5.137)

5.4.4 Eisenstein series and induced representations

Let us now discuss the definition of Eisenstein series from the perspective of induced
representations. One can think of an Eisenstein series as providing a G(A)-equivariant
map from the induced representation I(λ) of (5.134) into the space of automorphic forms:

E : I(λ) → A(G(Q)\G(A)). (5.138)

For any standard section fλ ∈ I(λ) the construction of the corresponding Eisenstein series
is given by

E(fλ, g) =
∑

γ∈B(Q)\G(Q)

fλ(γg). (5.139)

As fλ varies in the fiber of I(λ)→ h?C we thus obtain a family of Eisenstein series E(fλ, g)
that satisfy all the conditions of definition 5.58 for an automorphic form; in particular, KA-
finiteness follows from the fact that fλ is a standard section. By virtue of the decomposition
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fλ = ⊗p≤∞fλ,p, the Eisenstein series E(fλ, g) can be defined by choosing all the local factors
fλ,p separately. This gives a lot of freedom in defining the Eisenstein series and is one of
the main reasons why the adelic formalism is so powerful (see section 5.5 for a detailed
demonstration in the case of SL(2,A)).

In order to recover the particular Eisenstein series of definition (5.99), one chooses the
standard section fλ to be equal to the inducing character, fλ = e〈λ+ρ|H〉 = χ.

In section 5.5 we will illustrate for G(A) = SL(2,A) how the more general construction
in (5.139) interpolates between holomorphic and non-holomorphic Eisenstein series on the
upper-half plane H.

5.4.5 Classifying automorphic representations

It is one of the central unsolved problems in the theory of automorphic forms to classify
all automorphic representations. In fact, all admissible automorphic representations have
been classified (see, e.g., [57]). This includes in particular the spherical, or unramified,
representations.

The task of decomposing A(G(Q)\G(A)) into irreducible representations is closely
connected to the problem of decomposing the Hilbert space L2(G(Q)\G(A)) under the
unitary action of G. A priori this might seem a little surprising since an automorphic form
need not be square-integrable; indeed the Eisenstein series E(s, g) considered in section
5.1 provide an example of a non-square integrable automorphic form. The decomposition
of L2(G(Q)\G(A)) splits into two orthogonal spaces

L2(G(Q)\G(A)) = L2
discrete(G(Q)\G(A))⊕ L2

continuous(G(Q)\G(A)), (5.140)

corresponding respectively to the discrete and continuous parts of the spectrum. It
turns out that the discrete spectrum is spanned by cusp forms and residues of Eisenstein
series [218,243].

It is a fundamental result in the spectral theory of automorphic forms that the
space A0(G(Q)\G(A)) is the subspace of L2

discrete(G(Q)\G(A)) corresponding to smooth,
cuspidal, K-finite and Z(g)-finite vectors occurring in the decomposition of the unitary
representation L2(G(Q)\G(A)). This is the reason that cusp forms constitute an essential
part in the theory of automorphic forms.

While the discrete spectrum can be understood in this way as a direct sum of invariant
subspaces spanned by cusp forms, the space L2

continuous(G(Q)\G(A)) rather decomposes
into a direct integral over principal series representation of G(R). Such integrals turn out
to be parametrised by Eisenstein series, even though these by themselves are not square
integrable (see the following section and also [117] for more on the continuous spectrum
and the relation with Eisenstein series). This situation is a generalisation of the problem
of decomposing the Hilbert space L2(R) via Fourier analysis in terms of the non-square
integrable characters (Fourier modes) e2πixy, x, y ∈ R, as discussed in example 5.15. The
construction of Eisenstein series on G(Q)\G(A), generalising the function E(g, s) of section
5.1, therefore constitutes an equally important part of the theory of automorphic forms as
that of analyzing the space of cusp forms. Moreover, the complement of A0(G(Q)\G(A))
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inside the discrete spectrum L2
discrete(G(Q)\G(A)) is conjecturally spanned by residues of

Eisenstein series E(λ, g) for special values of the weight λ. Thus, one expects that the
discrete spectrum decomposes according to:

L2
discrete(G(Q)\G(A)) = L2

cusp(G(Q)\G(A))⊕ L2
res(G(Q)\G(A)). (5.141)

Arthur has outlined a set of conjectures that characterise precisely which weights λ for
which the representation becomes square-integrable [3] (for proofs of Arthur’s conjectures
in some cases, see [175,194,233,242,244]). See also section 10.2.3 for further discussions of
square-integrability of Eisenstein series.

Example 5.27: A representation-theoretic viewpoint on Eisenstein series on SL(2,A)

We now analyze the general Eisenstein series E(λ, g) more explicitly for G(A) = SL(2,A). In this case
the space of (complex) weights h?C is one-dimensional and spanned by the fundamental weight Λ dual
to the unique simple root α of the Lie algebra sl(2,A). The Weyl vector ρ is also identical to Λ = α/2.
Therefore, we can parametrise the weight appearing in (5.99) with a single parameter s ∈ C according to

λ = 2sΛ− ρ = (2s− 1)Λ =⇒ λ+ ρ = 2sΛ . (5.142)

The character χ : B(Q)\B(A)→ C× in (5.88) can now be written as

χs(g) ≡ e〈λ+ρ|H(g)〉 = e〈2sΛ|H(a)〉 . (5.143)

We can write all these objects explicitly in the fundamental representation of sl(2,A):

g = nak =

(
1 u

1

)(
v

v−1

)
k (5.144)

with k ∈ KA. Evaluated on the group element (5.144) we then find

χs(g) = e2s〈Λ|H(a)〉 = |v|2s (5.145)

since H(a) = log |v| · Hα where Hα is the Cartan generator of sl(2,A). The general Eisenstein series
E(g;λ) in (5.99) now becomes

E(s, g) =
∑

γ∈B(Q)\SL(2,Q)

χs(γg), (5.146)

which is indeed equivalent to (5.53). This Eisenstein series is attached to the induced representation

I(s) = Ind
SL(2,A)
B(A) χs. (5.147)

This representation is unitary when s = 1
2 + it ∈ 1

2 + iR+. In this simple example one can also give a
more explicit description of the spectral problem of decomposing the space L2(SL(2,Q)\SL(2,A)) with
respect to the right-regular action of SL(2,A). The decomposition (5.140) becomes in this case

L2(SL(2,Q)\SL(2,A)) = L2
0(SL(2,Q)\SL(2,A))⊕ C⊕

∫ ∞
0

I
(

1
2 + it

)
dt, (5.148)
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where the discrete spectrum L2
discrete is represented by the space of cusp forms L2

cusp together with the
space C of constant functions that correspond to the residual spectrum from the pole of E(s, g) at s = 1.
The continuous spectrum L2

continuous corresponds to the integral over the principal series I(s), restricted
to the unitary domain s ∈ 1

2 + iR+. For a proof of this statement, see the book by Gelbart [117].

5.5 Embedding of the discrete series

in the principal series

Our aim in this section is to illustrate in great detail the construction of the general
Eisenstein series E(fλ, g) in (5.139) for the special case of SL(2,A). We will in particular
demonstrate that when restricted to a function on SL(2,Z)\SL(2,R) this yields a
generalisation of the classical non-holomorphic Eisenstein series, which in fact interpolates
between the non-holomorphic function E(s, z), z ∈ H, and the weight w holomorphic
Eisenstein series Ew(z). We explain how to understand this representation-theoretically in
terms of the embedding of the holomorphic discrete series of SL(2,R) into the principal
series.

5.5.1 Eisenstein series for arbitrary standard sections

Let I(λ) = Ind
SL(2,A)
B(A) χs be the induced representation (5.134) for SL(2,A). As in Example

5.27 we take the inducing character χs : B(Q)\B(A)→ C× (extended to all of SL(2,A))
to be defined by

χs(bk) = χs(b) = χs

(
v ?

v−1

)
= |v|2s , s ∈ C, (5.149)

where b ∈ B(A) and k ∈ KA = SO(2,R)×∏p<∞ SL(2,Zp).
Let fλ = ⊗pfλ,p ∈ I(λ) with each local factor

fλ,p ∈ Ip(λ) = Ind
SL(2,Qp)

B(Qp) χp, (5.150)

determined by its restriction to SL(2,Zp) = B(Qp)\SL(2,Qp). For the purposes of this
example we shall now fix these local sections as follows.

• For the non-archimedean places p <∞ we choose the section fλ,p to be the unique
(normalized) spherical vector f◦λ,p in Ip(λ) defined by (see also section 6.3.3)

f◦λ,p(gp) = f◦λ,p(bpkp) = χs,p(bp), f◦λ,p(kp) = f◦λ,p(1) = 1, (5.151)

where bp ∈ B(Qp) and kp ∈ SL(2,Zp).

• For the archimedean place p =∞ we define fλ,∞ ∈ I∞(λ) according to

fλ,∞(b∞) = χs,∞(b∞), fλ,∞(g∞k∞) = eiwθfλ,∞(g∞), fλ,∞(1) = 1, (5.152)
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where w ∈ Z, g∞ ∈ SL(2,R), b∞ ∈ B(R) and

k∞ =

(
cos θ sin θ
− sin θ cos θ

)
∈ SO(2,R). (5.153)

Notice that with this definition fλ,∞ is a K∞ = SO(2,R)-finite, but non-spherical
section of I∞(λ).

With these definitions of the local factors, the product

fλ = fλ,∞ ⊗
⊗
p<∞

f◦λ,p (5.154)

becomes a standard section (because λ and w are independent parameters) of the global
representation I(λ).

With this choice of section we now construct the Eisenstein series

E(fλ, g) =
∑

γ∈B(Q)\G(Q)

(
fλ,∞(γg∞)×

∏
p<∞

f◦λ,p(γgp)

)
, (5.155)

with g = (g∞; g2, g3, . . . ) ∈ SL(2,A) = SL(2,R) ×
∏′

p<∞
SL(2,Qp). We now want to

analyze the restriction of this adelic Eisenstein series to a function on SL(2,R). To this
end we fix the adelic group element to be the identity at all finite places:

g = (g∞; 1, 1, · · · ) ∈ SL(2,A). (5.156)

In example 4.9 we showed the bijection of cosets B(Q)\SL(2,Q) ∼= B(Z)\SL(2,Z) with
each B(Q)g coset having a representative in SL(2,Z) for g ∈ SL(2,Q). We will now use
this write the Eisenstein series as a sum over γ ∈ SL(2,Z). At the finite places SL(2,Z)
embeds into SL(2,Zp), and hence, by (5.151), we have

f◦λ,p(γ) = 1 (for γ ∈ SL(2,Z) and p <∞). (5.157)

The Eisenstein series E(fλ, g) therefore restricts to

E(fλ,∞, g∞) =
∑

B(Q)\SL(2,Q)

fλ,∞(γg∞) ·
∏
p<∞

f◦λ,p(γ)

=
∑

B(Z)\SL(2,Z)

fλ,∞(γg∞) ·
∏
p<∞

f◦λ,p(γ)

=
∑

B(Z)\SL(2,Z)

fλ,∞(γg∞). (5.158)

To relate this to a function on the upper-half plane H, we use the Iwasawa decomposition

g∞ = b∞k∞ = n∞a∞k∞ =

(
1 x

1

)(
y1/2

y−1/2

)(
cos θ sin θ
− sin θ cos θ

)
, (5.159)
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which yields

E(fλ,∞, g∞) = eiwθ
∑

B(Z)\SL(2,Z)

fλ,∞(γb∞). (5.160)

It remains to evaluate fλ,∞(γb∞). To this end we perform an additional Iwasawa
decomposition of γb∞ with the result:

γb∞ = b′∞k
′
∞, γ =

(
a b
c d

)
∈ SL(2,Z), (5.161)

with

b′∞ =

(
y1/2

|cz+d| ?

0 |cz+d|
y1/2

)
, k′∞ =

(
cos θ′ sin θ′

− sin θ′ cos θ′

)
=

1

|cz + d|

(
cx+ d −cy
cy cx+ d

)
,

(5.162)
and z = x+ iy = b∞ · i. Further using that eiθ = cos θ + i sin θ we find

eiθ
′
=
|cz + d|
cz + d

, (5.163)

and hence, by (5.149) and (5.152), the section in (5.160) evaluates to

fλ,∞(γb∞) = fλ,∞(b′∞k
′
∞) =

( |cz + d|
cz + d

)w
χs,∞(b′∞) =

( |cz + d|
cz + d

)w
ys

|cz + d|2s . (5.164)

We thereby arrive at the following explicit expression for the Eisenstein series

E(f(s,w),∞, g∞) = eiwθ
∑

(c,d)=1

ys

(cz + d)w|cz + d|2s−w . (5.165)

This is a non-holomorphic function on SL(2,Z)\SL(2,R) with weight eiwθ under the right
action of k∞ ∈ SO(2,R).

5.5.2 Representation theoretic interpretation

Let us now analyse the Eisenstein series (5.165) a little closer. First observe that
E(f(s,w),∞, g∞) interpolates between the classical holomorphic and non-holomorphic
Eisenstein series on the upper-half plane. Indeed, restricting the value of s to s = w/2 we
obtain

E(f(w/2,w),∞, g∞) = eiwθyw/2
∑

(c,d)=1

1

(cz + d)w
= eiwθyw/2Ew(z), (5.166)

which we recognize as ϕf(g∞) in the terminology of section 5.1 (see eq. (5.22)) with
f = Ew(z) being the classical weight w holomorphic Eisenstein series on H. Similarly,
restricting to w = 0 in (5.165) we obtain the classical non-holomorphic Eisenstein series

E(f(s,0),∞, g∞) =
∑

(c,d)=1

ys

|cz + d|2s = E(s, z). (5.167)
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Note that this is compatible with the fact that fixing w = 0 is equivalent to choosing the
local section fλ,p to be spherical also at the archimedean place, fλ,∞ = f◦λ,∞. The Eisenstein
series E(fλ, g) in (5.99) then reduces to (5.53) which is indeed the adelisation of E(s, z).

While the non-holomorphic Eisenstein series E(s, z) is naturally associated with the

principal series Ind
SL(2,R)
B(R) χs, the holomorphic Eisenstein series Ew(z) is rather associated

with the so-called holomorphic discrete series D(w) of SL(2,R). Let us recall some
properties of the discrete series. For w ∈ Z+, let H(w) be the Hilbert space of holomorphic
square-integrable functions on the upper-half plane H ∼= SL(2,R)/SO(2,R). Then the
holomorphic discrete series D(w) representation of SL(2,R) consists of functions f ∈ H(w)
transforming as follows:

f(z) 7−→ (cz + d)wf

(
az + b

cz + d

)
, (5.168)

for g = ( a bc d ) ∈ SL(2,R). This is precisely the transformation property of holomorphic
modular forms in Mw(SL(2,Z)). To understand more precisely the role of Eisenstein
series in this context, let us note that the following differential operator

Lw := −(z − z̄)
∂

∂z̄
− w

2
(5.169)

annihilates Ew:

Lw · Ew(z) = 0. (5.170)

Moreover, we also observe that another differential operator

Rw := (z − z̄)
∂

∂z
+
w

2
(5.171)

raises the weight of the Eisenstein series by 2,

Rw · Ew(z) = Ew+2(z). (5.172)

The operators (Rw, Lw) are called Maass operators and they can be understood
representation-theoretically as follows. Let ϕf be the lift of f = Ew to SL(2,R) as
in section 5.1.3. Recall that ϕf satisfies the differential equation

DF · ϕf = −2ie−2iθ

(
y
∂

∂z̄
− 1

4

∂

∂θ

)
ϕf = 0, (5.173)

where DF is the differential operator-realisation of the negative Chevalley generator F of
SL(2,R) in the compact basis (5.29) (see also appendix A for more details). Using (5.166)
we can rewrite this as

DF · ϕf = eiwθyw/2Lw · Ew(z) = 0, (5.174)

revealing that the Maass operator Lw is nothing but the Chevalley generator F after
evaluating the derivative on θ. Similarly, the Maass operator Rw is the positive Chevalley
operator E. We conclude from this that the holomorphic Eisenstein series Ew(z) is the
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lowest weight vector in the holomorphic discrete series of SL(2,R), with weight w as
measured by the Cartan generator H (c.f. (5.29)):

DH · ϕf = wϕf . (5.175)

One can also check that

DH ·(DE·ϕf ) = [DH , DE]·ϕf+DE·(DH ·ϕf ) = 2DE·ϕf+wDE·ϕf = (w+2)DE·ϕf , (5.176)

This means that ϕf is the lowest weight state in a representation of sl(2,R), whose states
are obtained by acting successively with the raising operator DE:

{ϕf , DE · ϕf , D2
E · ϕf , . . . }. (5.177)

Here each vector Dn
E · ϕf , n ≥ 0, is an automorphic form on SL(2,A), and hence belongs

to the space A(SL(2,Q)\SL(2,A)). The span of the states (5.177) is a subspace V of
A(SL(2,Q)\SL(2,A)) that is clearly invariant under the sl(2,R)-action. It is furthermore
preserved by K = SO(2,R), since each vector Dn

E ·ϕf ∈ A(SL(2,Q)\SL(2,A)) is K-finite
by definition 5.6. Thus, the vector space V spanned by (5.177) is a (g, K)-module. This is
the (g, K)-module underlying the holomorphic discrete series D(w).

In general the principal series Ind
SL(2,R)
B(R) χs is not a lowest (or highest) weight

representation; indeed the general Eisenstein series (5.165) is not annihilated by either
of DE or DF . However, as we restrict to the integer points s = w/2 of the complex

weight space where χs lives, we land on an irreducible submodule of Ind
SL(2,R)
B(R) χs which

can be identified with the holomorphic discrete series D(w). In other words, we have
discovered the well-known fact that the holomorphic discrete series can be embedded into
the principal series for special values of the inducing character:

D(w) ⊂ Ind
SL(2,R)
B(R) χs

∣∣
s=w/2

. (5.178)

We should in fact be a little more careful. In (5.166) it is understood that the weight
is restricted to be a positive integer w > 0. We should therefore distinguish between
positive and negative weights in the spherical vector (5.152). The case w > 0 leads to
(5.166) as we just discussed. The negative weight case w < 0 leads to the same conclusion,
except that the restriction (5.166) now corresponds to the anti-holomorphic Eisenstein
series Ew(z̄). This Eisenstein series is then naturally associated with the anti-holomorphic
discrete series D(w) of SL(2,R) which is defined analogously to (5.168) for antiholomorphic
functions f(z̄). The anti-holomorphic Eisenstein series Ew(z̄) lifts to a function ϕf which
is annihilated by DE, rather than DF and can therefore be interpreted as a highest weight
vector of D(w) with weight −w. The negative Chevalley generator DF then lowers the
weight by 2.

The above discussion shows that both the holomorphic and anti-holomorphic discrete
series can be embedded into the principal series. The complement is a finite-dimensional
representation of SL(2,R), known as Symw−1; this is the w-dimensional symmetric power
representation of SL(2,R) acting on homogeneous degree w − 1 polynomials in two real
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0

w − 2

−w + 2

w

−w

w + 2

−w − 2

w + 4

−w − 4

Symw−1

D(w)

D(w)

Figure 5.1: Weight diagram for SL(2,R).

variables. Indeed, it is easy to see from the weight diagram in figure 5.1 that the number
of weights that are excluded from the holomorphic and anti-holomorphic discrete series are
precisely equal to w. This implies that Symw−1 as the following quotient of the principal
series by the discrete series:

Ind
SL(2,R)
B(R) χw/2

/(
D(w)⊕D(w)

)
= Symw−1. (5.179)

5.6 Eisenstein series for non-minimal parabolics*

With a little effort one can generalise the construction of Eisenstein series to any parabolic
subgroup. In what follows we restrict to standard parabolics, that is, those that contain
the Borel subgroup B(A) = A(A)N(A) as discussed in section 4.1.3. Fix such a standard
parabolic subgroup P (A) ⊂ G(A) with Langlands decomposition as in (4.39)

P (A) = L(A)U(A) = M(A)AP (A)U(A) (5.180)

The full group G(A) factorises (non-uniquely) as

G(A) = M(A)AP (A)U(A)KA. (5.181)

For an arbitrary element of G(A) we write

g = luk = maPuk, l ∈ L(A), m ∈M(A), aP ∈ AP (A), u ∈ U(A), k ∈ KA. (5.182)

See Example 5.28 for some details of these decompositions in the cases G(A) = GL(n,A)
and G(A) = SL(n,A).
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5.6.1 Multiplicative characters

We now want to define multiplicative characters on P (A) analogously to what we did for
the Borel subgroup in section 5.3.1. These will be homomorphisms

χP : P (Q)\P (A) → C×. (5.183)

determined by their restriction to the Levi subgroup

χP (lu) = χP (l) l ∈ L(A), u ∈ U(A) . (5.184)

As in the minimal parabolic case the characters can be described by roots, but now
the image in root space will be a∗P , the lie algebra of AP , instead of h∗ and we will use a
generalisation of the logarithm map H from (5.85).

Let HP : P (A)→ aP (R) be defined by

HP (p) = HP (lu) = HP (maPu) = HP (aP ) = log |aP | aP ∈ AP ⊆ A (5.185)

where the absolute value is defined as in (5.87).
A character can then be defined using a weight λP ∈ a∗P as

χP (l) = e〈λP+ρP |HP (l)〉 (5.186)

where ρP is now the restriction of the full Weyl vector to the positive roots ∆(u) = ∆+\〈Σ〉〉+
of g from section 4.1.3

ρP =
1

2

∑
α∈∆(u)

α. (5.187)

In Example 5.28 we give some details of the above construction for the case of GL(n,A).

Example 5.28: Parabolic subgroups and characters for GL(n,A)

For G(A) = GL(n,A) there is a bijection between standard parabolic subgroups P (A) and ordered
partitions (n1, . . . , nq) of n. It is then sometimes useful to start from this point of view when parametrising
the subgroup P instead of the one based on subsets Σ ⊂ Π from section 4.1.3.

For a given such partition we then have that P (A) = L(A)U(A) = M(A)AP (A)U(A) can be expressed
explicitly as

L(A) =


l1 0

. . .

0 lq


∣∣∣∣∣∣∣ li ∈ GL(ni,A)

 U(A) =


1n1 ? ?

. . . ?
0 1nq


 (5.188)

M(A) =


m1 0

. . .

0 mq


∣∣∣∣∣∣∣ mi ∈ SL(ni,A)

 AP (A) =


a11n1

0
. . .

0 aq1nq


∣∣∣∣∣∣∣ ai ∈ GL(1,A)

 ,

(5.189)
where 1n denotes the n× n identity matrix.

Similarly, instead of working with the Chevalley basis for aP it is useful to choose a basis that reflects
the block form in the parametrisation above.
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We choose a basis H̃i for aP such that HP from (5.185) becomes

HP

(( a11n1
0

. . .
0 aq1nq

))
=

q∑
i=1

ni log |ai| H̃i . (5.190)

For

l =

(
l1 0

. . .
0 lq

)
(5.191)

we then obtain that

HP (l) =

q∑
i=1

log |det li| H̃i . (5.192)

Now introduce a basis Λ̃i for a∗P dual to H̃i, that is, 〈Λ̃i|H̃j〉 = δij , and let λP and ρP in a∗P be

parametrised by λP =
∑q
i=1 siΛ̃i and ρP =

∑q
i=1 ρiΛ̃i with si, ρi ∈ C. Note that since H̃i is not the

Chevalley basis, the Λ̃i are not the standard fundamental weights.
Any character on P (Q)\P (A) can then be constructed by

χP (lu) = χP (l) = e〈λP+ρP |HP (l)〉 =

q∏
i=1

|det li|si+ρi . (5.193)

For G = SL(n,A) we have the restriction
∏q
i=1 ai = 1 which reduces the number of independent

elements in the sum (5.190) spanning aP . In the same way, the parameters in λP =
∑q
i=1 siΛ̃i are also

restricted. A general character on P (Q)\P (A) for SL(n,A) can thus be seen as special cases of (5.193).
Explicitly, we require that 〈λP |1n〉 = 0 and, since 1n =

∑
i niH̃i, we get the restriction that

∑
i nisi = 0.

5.6.2 Parabolically induced representations

Associated with the parabolic subgroup P (A) we now consider the following space of
functions

IP (λ) = {f : G(A) → C | f(gp) = e〈λ+ρP |HP (p)〉f(g), g ∈ G(A), p ∈ P (A)} (5.194)

where λ ∈ a∗P . Note that we have suppressed the subscript P on λ for brevity.

This is the function space of the induced representation Ind
G(A)
P (A)χP = Ind

G(A)
P (A)e

〈λ+ρP |HP 〉.
We will also refer to this as the principal series, although strictly speaking that name
should be reserved for the case P (A) = B(A), the Borel subgroup. In that case we
have IB(λ) = I(λ) from (5.134). The generic functional dimension of the representation

Ind
G(A)
P (A)χP is, similarly to (5.137), given by

GKdim(IP (λ)) = dim(G)− dim(P ). (5.195)

It is now straightforward to construct an Eisenstein series associated with the induced
representation IP (λ). It takes the form

E(λ, P, g) =
∑

γ∈P (Q)\G(Q)

e〈λ+ρP |HP (γg)〉. (5.196)

In case P is the Borel subgroup we write E(λ,B, g) = E(λ, g) and we recover the Eisenstein
series in (5.139).
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Just as for the Borel subgroup, we can of course also start from any standard section
fλ ∈ IP (λ) and obtain another Eisenstein series

E(fλ, P, g) =
∑

γ∈P (Q)\G(Q)

fλ(γg). (5.197)

One can generalise the Eisenstein series E(λ, P, g) even further by modifying the
induced representation IP (λ) as follows. For P (A) = L(A)U(A) let σ be a representation
of L(A) and define

σλ(l) = σ(l)e〈λ+ρP |HP (l)〉, l ∈ L(A), λ ∈ a?P (C). (5.198)

We then consider the associated induced representation Ind
G(A)
P (A)σλ. This corresponds

to automorphic forms on L(Q)\L(A), extended to P (A) by triviality on U(A). More
specifically, it is the space of functions

φ :
(
L(Q)U(A)

)
\G(A)→ C, (5.199)

such that for each fixed g ∈ G(A) the function

φg : l→ φ(lg) (5.200)

is a vector in the finite-dimensional space V of automorphic forms on L(Q)\L(A)
transforming according to the representation σ.

For each φ ∈ Ind
G(A)
P (A)σλ, λ ∈ a?P (C) we now have the Eisenstein series

E(λ, P, φ, g) =
∑

γ∈P (Q)\G(Q)

φ(γg)e〈λ+ρP |HP (γg)〉. (5.201)

In the mathematical literature, one often takes φ ∈ A0(L(Q)\L(A)), the space of cusp
forms on L(A). In this case, Langlands has proven the analytic continuation and functional
relation for E(λ, P, φ, g) [218].

Proposition 5.29. The Eisenstein series E(λ, g), induced from the Borel subgroup B,
is a special case of the Eisenstein series E(λ, Pi∗ , φ, g), where Pi∗ is a maximal parabolic
subgroup associated with the simple root αi∗ (see section 4.1.3).

Proof. To see this, we follow the argument in [144]. First note that BLi∗ = Li∗ ∩ B is
a Borel subgroup of the Levi Li∗ ⊂ Pi∗ . This implies that any γ ∈ B(Q)\G(Q) can be
uniquely decomposed as γ = γ1γ2, with

γ1 ∈ BLi∗ (Q)\Li∗(Q), γ2 ∈ Pi∗(Q)\G(Q). (5.202)

We can thus rewrite the Eisenstein series E(λ, g)as follows:

E(λ, g) =
∑

γ∈B(Q)\G(Q)

e〈λ+ρ|H(γg)〉 =
∑

γ1∈BLi∗ (Q)\Li∗ (Q)

∑
γ2∈Pi∗ (Q)\G(Q)

e〈λ+ρ|H(γ1γ2g)〉. (5.203)
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Any complex weight λ ∈ a?(C) can be decomposed as λ = λi∗ + λ⊥i∗ , where λi∗ is a
complex linear combination of all simple roots different from αi∗ and λ⊥i∗ is the orthogonal
complement to these simple roots. Furthermore, for any l ∈ Li∗ generated by only positive
roots in the Lie algebra li∗ we have

〈λi∗ + ρi∗|H(l)〉 = 1. (5.204)

Hence, in the domain of absolute convergence, we may decompose the summation as

E(λ, g) =
∑

γ1∈BLi∗ (Q)\Li∗ (Q)

∑
γ2∈Pi∗ (Q)\G(Q)

e〈λ+ρ|H(γ1γ2g)〉

=
∑

γ2∈Pi∗ (Q)\G(Q)

[ ∑
γ1∈BLi∗ (Q)\Li∗ (Q)

e〈λi∗+ρi∗ |H(γ2g)〉
]
e〈λ⊥i∗+ρ⊥i∗ |H(γ2g)〉

=
∑

γ2∈Pi∗ (Q)\G(Q)

e〈λ⊥i∗+ρ⊥i∗ |H(γ2g)〉φ(γ2g), (5.205)

where the function
φ(g) =

∑
γ1∈BLi∗ (Q)\Li∗ (Q)

e〈λi∗+ρi∗|H(g)〉 (5.206)

is an Eisenstein series on the Levi Li∗ , induced from the Borel subgroup BLi∗ .

Remark 5.30. Proposition 5.29 can be straightforwardly generalised to give a relation
between Eisenstein series E(λ, g), induced from the Borel subgroup B, and Eisenstein series
E(λ, P, φ, g) induced from an arbitrary parabolic subgroup P (not necessarily maximal).

To illustrate the general analysis of this section, we shall conclude with two explicit
examples dealing with the case of maximal parabolic subgroups P (A). This is the opposite
extreme compared to the Borel subgroup, which we recall is a minimal parabolic.

Example 5.31: Eisenstein series on SL(n,A) induced from a maximal parabolic P

Again we consider SL(n,A) and in this example we take P (A) to be a maximal parabolic. Maximal
parabolic subgroups are simply classified by partitions n 7→ (n1, n2). The Levi decomposition is therefore
P (A) = L(A)U(A) with Levi subgroup given by

L(A) =

{(
l1

l2

)
| li ∈ GL(ni,A)

}
. (5.207)

The character χP evaluates to

χP (luk) = χP (l) = |det l1|s1+ρ1 |det l2|s2+ρ2 , (5.208)

for l ∈ L(A), u ∈ U(A), k ∈ KA. Since the restriction to SL(n,A) require n1s1 + n2s2 = 0 we effectively
only have one independent parameter s ∈ C.

Let now φ ∈ Ind
SL(n,A)
P (A) σs such that

φ(luk) = φ(l). (5.209)

98



Eisenstein series and automorphic representations

The associated Eisenstein series is

E(λ, P, s, g) =
∑

γ∈P (Q)\G(Q)

φ(γg)χP (γg). (5.210)

The final example discusses a construction using a 5-grading of g that is possible for
all simply-laced ADE groups but SL(2,A).

Example 5.32: Eisenstein series on E6.E7, E8 induced from Heisenberg parabolic subgroups

Let now G(A) be the adelisation of either E6, E7 or E8 with Lie algebra g. We shall analyze the above
construction for a very special type of maximal parabolic subgroup of G, known as the Heisenberg parabolic,
henceforth denoted by PHeis. This parabolic subgroup is associated with the highest root θ of g. Similar
arguments can be made for the ADE-series of simple Lie algebras [191, 192] but then not necessarily
resulting in PHeis being maximal.

Associated with θ the Lie algebra exhibits a canonical 5-grading

g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2, (5.211)

where the subscript indicates the eigenvalue under the Cartan generator Hθ associated with θ, and
g±2 are one-dimensional subspaces spanned by the corresponding Chevalley generators E±θ. The triple
(Hθ, Eθ, E−θ) generates an sl(2,R) subalgebra:

[Hθ, Eθ] = 2Eθ, [Hθ, Fθ] = −2Fθ, [Eθ, Fθ] = Hθ. (5.212)

The zeroth subspace g0 is of the form mHeis⊕CHθ, where mHeis ⊂ g is a reductive Lie algebra corresponding
to the commutant of the sl(2,R)-algebra (5.212) inside g. The nilpotent subspace g1 ⊕ g2 is a Heisenberg
algebra of dimension dimR g1 + 1 ≡ 2d+ 1, with commutator

[g1, g1] ⊆ g2. (5.213)

We set
p = g0 ⊕ g1 ⊕ g2, (5.214)

which is the Lie algebra of a maximal parabolic subgroup PHeis ⊂ G, the Heisenberg parabolic. Its Levi
and Langlands decompositions are

PHeis = LHeisUHeis = MHeisAHeisUHeis, (5.215)

where the Levi subgroup LHeis = MHeisAHeis is the exponentiation of g0 further decomposing into
aHeis = CHθ and mHeis above, and the unipotent radical UHeis is the Heisenberg group whose Lie algebra
is g1 ⊕ g2.

For PHeis we define a logarithm map HP : PHeis(A)→ aHeis(R) = RHθ according to (5.185). Where
for aP = exp(vHθ) with v ∈ A

HP (p) = HP (maPu) = HP (aP ) = |v|Hθ . (5.216)

Let Λθ be the weight dual to Hθ, i.e. defined by

〈Λθ | Hθ〉 = 1, (5.217)

99



Chapter 5. Automorphic forms and representation theory

and parametrise an arbitrary linear functional λ ∈ a∗Heis(C) by λ = 2sΛθ − ρPHeis
with s ∈ C. The Weyl

vector is ρPHeis = Λθ so we have

λ = (2s− 1)Λθ, λ+ ρPHeis
= 2sΛθ. (5.218)

Putting this together we obtain a character

χPHeis
≡ χs : PHeis(Q)\PHeis(A)→ C× (5.219)

defined by
χs = e〈2sΛθ|HP 〉. (5.220)

We extend it to all of G(A) by demanding that it is trivial on KA by virtue of the decomposition
(5.181). Explictly, we have

χs(g) = χs(maPuk) = χs(aP ) = e〈2sΛθ|HP (aP )〉 = |v|2s. (5.221)

The associated induced representation Ind
G(A)
PHeis(A)χs is called the degenerate principal series. At the

infinite place it has functional dimension

GKdim Ind
G(R)
PHeis(R)χs = dimPHeis(R)\G(R) = dim g1 ⊕ g2 = 2d+ 1, (5.222)

and depends on a single complex parameter s. In contrast, the generic principal series induced from
the Borel subgroup B depends on r = rank g parameters (s1, . . . , sr) ∈ Cr. Formally one can view

Ind
G(A)
PHeis(A)χs as the limit of Ind

G(A)
B(A)e

〈∑r
i=1 siΛi|H〉 when projecting onto the complement of a complex

co-dimension one locus in Cr.
For any standard section fs ∈ Ind

G(A)
PHeis(A)χs the Eisenstein series attached to the degenerate principal

series is
E(s, PHeis, g) =

∑
γ∈PHeis(Q)\G(Q)

fs(γg). (5.223)

This Eisenstein series has interesting properties because its residues at the poles in the complex
s-plane give rise to automorphic forms attached to special types of (unipotent) representations of G
which have very small functional dimensions (typically of dimension less than 2d + 1). The smallest
such representation is known as the minimal representation of G and it has functional dimension d+ 1.
Automorphic forms attached to minimal representations were analyzed from this point of view in [126],
and has also played an important role in physical applications [146,158,159,191,262,263,267]. See also
sections 12.1 and 12.4.
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Whittaker vectors and
Fourier coefficients

In this chapter, we analyse the general structure of the Fourier expansions of automorphic
forms, with particular emphasis on Eisenstein series and the associated theory of Whittaker
vectors. We will discuss both local and global aspects. As advanced topics we introduce the
useful notion of wave-front set [230,239–241] and discuss the method of Piatetski-Shapiro
and Shalika [260,295]. General references are [57,130,174] and we also found the discussions
in [121,146,177,199,235] very useful.

6.1 Preliminary example: SL(2,R) Whittaker vectors

In section 1.3, we discussed the Fourier expansion of the non-holomorphic Eisenstein series
E(s, z) where z = x+ iy is on the upper half plane H. Invariance under SL(2,Z) implies
the periodicity of the series in the real x-direction:

E(s, x+ 1 + iy) = E(s, x+ iy), (6.1)

and hence we have a Fourier expansion of the form

E(s, x+ iy) =
∑
m∈Z

am(y)e2πimx, (6.2)

where the y-dependent Fourier coefficients am(y) can be extracted from the explicit
expansion stated in (1.16) and will be derived in detail in chapter 7 using adelic methods.
Let us now reinterpret E(s, z) as a function on SL(2,R) = N(R)A(R)K(R) according to
the prescription in section 5.1.4. To this end we define

ϕE(g) = ϕE(nak) = ϕE

((
1 x

1

)(
y1/2

y−1/2

)(
cos θ sin θ
− sin θ cos θ

))
= E(s, x+ iy),

(6.3)
where n ∈ N(R), a ∈ A(R), k ∈ K(R) = SO(2,R). From this point of view, the
periodicity (6.1) of E(s, z) in the variable x is equivalent to the invariance of ϕE(g) under
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discrete left-translations: ϕE(ng) = ϕE(g), n ∈ N(Z). This follows from the simple
calculation for n = ( 1 1

1 ):

ϕE

((
1 1

1

)
g

)
= ϕE

((
1 x+ 1

1

)(
y1/2

y−1/2

)(
cos θ sin θ
− sin θ cos θ

))
= E(s, x+ 1 + iy), (6.4)

which equals ϕE(g) = E(s, x+ iy) by left N(Z)-invariance.
More generally, we can consider an automorphic form ϕ on SL(2,Z)\SL(2,R),

satisfying

ϕ(γgk) = σ(k)ϕ(g), γ ∈ SL(2,Z), k ∈ K(R) = SO(2,R), (6.5)

where σ can be a non-trivial finite-dimensional representation of K(R). When σ is non-
trivial, the function ϕ depends on all three coordinates (x, y, θ). When σ is trivial and
hence ϕ independent of k, the function is spherical.

The automorphy of ϕ includes invariance under N(Z) and therefore ϕ(g) = ϕ(x, y, θ)
will have a Fourier expansion of the same form as the one for E(s, z), although the precise
coefficients will of course be different depending on the choice of ϕ. To pave the way for
higher rank groups, we now wish to recast this expansion in a form that can be easily
generalised.

To this end, let ψ : N(Z)\N(R)→ U(1) be a unitary multiplicative character on N(R)
which is trivial on N(Z). The space of such characters is Hom (N(Z)\N(R), U(1)) ∼= Z
and we can parametrise the choice of character by a single integer m via

ψ

((
1 x

1

))
= e2πimx, m ∈ Z, x ∈ R. (6.6)

This is therefore nothing but a set of Fourier modes. If ψ is non-trivial , i.e. m 6= 0, we
say that ψ is generic. For higher rank groups, if a character is non-trivial, it does not
necessarily mean that it is also generic. In definition 6.10 we will extend our concept
of this notion to the case of higher rank groups by introducing a more refined notion of
generic vs. non-generic (or degenerate) characters.

Then, due to the periodicity of the automorphic form, ϕ(ng) = ϕ(g), n ∈ N(Z), we
can write ϕ(g) as a Fourier expansion along N(R):

ϕ(g) =
∑

ψ∈Hom(N(Z)\N(R),U(1))

Wψ(g) , (6.7)

where the sum runs over all possible characters ψ and hence over m ∈ Z. We have also
defined the Whittaker vector

Wψ(g) =

∫
N(Z)\N(R)

ϕ(ng)ψ(n)dn, (6.8)

with dn the Haar measure on N(Z)\N(R). The Haar measure is normalized such that∫
N(Z)\N(R)

dn = 1. The expansion (6.7) is a reformulation of (6.2) as we will now illustrate.
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By the Iwasawa decomposition g = nak it follows that Wψ(g) is determined by its
restriction to A(R):

Wψ(nak) =

∫
N(Z)\N(R)

ϕ(n′nak)ψ(n′)dn′

= σ(k)

∫
N(Z)\N(R)

ϕ(ña)ψ(ñn−1)dñ

= ψ(n)σ(k)Wψ(a), (6.9)

where we used the multiplicativity of ψ as well as the invariance of the Haar measure
under translations by N(R). In particular, this allows us to rewrite the expansion in a
way that is more akin to the classical form (6.7):

ϕ(g) =
∑
ψ

Wψ(ak)ψ(n). (6.10)

Note that contrary to standard harmonic analysis the function Wψ(g) is not a numerical
coefficient, but also contains explicitly the Fourier variable(s) that one is expanding in.
This is made explicit by the factor ψ(n) appearing in (6.9) and (6.10).

Remark 6.1. Strictly speaking, it is more accurate to refer to Wψ(g) as a Whittaker
function, leaving the phrase Whittaker vector for the representation-theoretic counterpart,
which is an element of a vector space, called the Whittaker model (see Definition 6.19).
However, we will take the liberty to abuse terminology and often refer to Wψ(g) as a
Whittaker vector.

By an explicit Iwasawa parametrisation of g in terms of the variables (x, y, θ) as in
(5.159) and the character ψ in terms of an integer (6.6), the integral (6.8) takes the more
familiar form

Wψ(ak) = Wm(y, θ) =

∫ 1

0

ϕ(x, y, θ)e−2πimxdx. (6.11)

(For trivial σ(k) the integral is independent of θ and equal to am(y) of (6.2).)
The general SL(2,R) expansion (6.10) contains two types of terms, corresponding to

m = 0 (ψ = 1) and m 6= 0 (ψ 6= 1) that are useful to distinguish:

Definition 6.2 (Constant terms and Whittaker vectors for SL(2,R)). The
sum (6.10) can be split into

ϕ(g) = W1(ak) +
∑
ψ 6=1

Wψ(g), (6.12)

where the first term is independent of n and called the constant term. It is defined by

W1(ak) =

∫
N(Z)\N(R)

ϕ(nak)dn. (6.13)

and we will sometimes also denote it by C(ak) ≡ W1(ak). The functions Wψ(g) for
non-trivial characters ψ (m 6= 0) are the proper Whittaker vectors.
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Remark 6.3. The functions Wψ(g) were termed Whittaker functions by Jacquet [174]
because they reduce to the classical Whittaker function Wk,m(y) for the group GL(2,R).
For SL(2,R) they are given basically by modified Bessel functions that arise for the special
case k = 0; see also appendix C.2. For higher rank groups G(R), Whittaker functions
define more complicated special functions as we will study in sections 6.2 and 9.6.

Example 6.4: Fourier and q expansion of holomorphic Eisenstein series

Consider now the example when ϕ = ϕf with f(z) = E2w(z) being a weight 2w holomorphic Eisenstein
series

E2w(z) =
1

2

∑
(c,d)=1

1

(cz + d)2w
, τ ∈ H, w > 1, w ∈ Z. (6.14)

This function is spherical (θ-independent) and has a well-known Fourier expansion

E2w(z) = 1 +

∞∑
m=1

amq
m, q = e2πiz, (6.15)

where the coefficients are given by

am =
2

ζ(1− 2w)
σ2w−1(m), (6.16)

with σ2w−1(m) the sum over positive divisors as in (1.18)

σs(m) =
∑
d|m

ds. (6.17)

The coefficients can be alternatively be expressed in terms of Bernoulli numbers, see for example [2]. In
this case the constant term and Whittaker vectors are given by

C(a) ≡W1(a) = 1,

Wψ(z) ≡Wψ(na) = Wm(τ) =
2

ζ(1− 2w)
σ2w−1(m)qm, m > 0. (6.18)

Notice that the holomorphicity of E2w(z) requires that Wm(z) vanishes unless m > 0. As mentioned in
section 5.5, this is due to the holomorphic Eisenstein series’ E2w being associated with the discrete series
representation of SL(2,R).

For completeness, we also recall the constant terms and Whittaker vectors for the
non-holomorphic Eisenstein series E(s, z) on SL(2,R) from the introduction.

Example 6.5: Fourier expansion of non-holomorphic Eisenstein series

In the case when ϕ = ϕE , with E(s, z) the non-holomorphic Eisenstein series on H, the constant term
W1(a) and Whittaker function Wψ(na) will be derived in chapter 7 with the result

W1(a) = W1(y) = ys +
ξ(2s− 1)

ξ(2s)
y1−s

Wψ(na) = Wm(x, y) =
2y1/2

ξ(2s)
|m|s−1/2σ1−2s(m)Ks−1/2(2π|m|y)e2πimx, with m 6= 0.

(6.19)
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In contrast to the holomorphic case, the ‘constant term’ here is not really constant; it is a function on the
Cartan torus that is parametrised by the imaginary part y of z = x+ iy. As we will see below, this is in
fact a general feature, namely the constant term of a spherical automorphic function is only constant with
respect to the coordinates along the unipotent radical N(R) of the Borel subgroup B(R) ⊂ G(R).

6.2 Fourier expansions and unitary characters

We now turn to the general analysis of Fourier coefficients of automorphic forms on semi-
simple Lie groups G, and we also switch to the adelic framework. For this we first require
the notion of a unitary character ψ on a unipotent subgroup U ⊂ G that generalises the
Fourier mode e2πimx in (6.6). This is discussed in detail in section 6.2.1. We will then
discuss the notion of Fourier expansion for different types of unipotent groups U in the
sequel.

6.2.1 Unitary characters

Definition 6.6. Let U(A) be a unipotent subgroup of the adelic group G(A). A unitary
character on U(A) is a group homomorphism

ψ : U(Q)\U(A)→ U(1) (6.20)

and we also require it to be trivial on the discrete subgroup U(Q) = U(A) ∩G(Q) since
we will study in the context of automorphic forms on G(A) that are invariant under the
discrete subgroup G(Q). The space of all unitary characters on U(A) that are trivial on
U(Q) are called the integral points of the character variety .

Remark 6.7. Unipotent groups are required if one wants to have non-trivial unitary
characters. On the simple group G(A) there are no non-trivial unitary characters.

Definition 6.6 generalises (6.6). As ψ is a group homomorphism to the abelian group
U(1), it is trivial on the commutator subgroup

[U,U ] =
{
u1u2u

−1
1 u−1

2

∣∣ u1, u2 ∈ U
}
. (6.21)

In other words,

ψ([U,U ]) = 1, (6.22)

such that ψ is sensitive only to the abelianisation [U,U ]\U . We note that [U,U ] equals
the second member of the derived series of U defined in section 4.1.1. We will discuss the
relevance of the derived series for Fourier expansions in more detail below in section 6.2.3.

It is convenient to have a more explicit parametrisation of possible unitary characters
ψ. To this end we restrict to the case where U is the unipotent of a standard parabolic
subgroup P = LU as defined in section 4.1.3. As always we are working with a fixed
choice of split Cartan torus A ⊂ G. Such unipotent groups U can be generated from the
product of one-parameter subgroups

Uα =
{
xα(uα) = exp(uαEα) | uα ∈ A

}
, (6.23)
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with α ranging over the subset ∆(u) of positive roots of g corresponding to the Lie algebra
u of U :

U =
∏

α∈∆(u)

Uα. (6.24)

The restriction of ψ to any of the one-parameter subgroups Uα then yields a unitary
character

ψα : Uα(Q)\Uα(A)→ U(1). (6.25)

As any one-parameter subgroup Uα is abelian and satisfies the isomorphism

Uα(Q)\Uα(A) ∼= Q\A, (6.26)

the unitary character ψα can therefore be parametrised by a rational number mα ∈ Q
as discussed in section 3.5, see also [80, Thm 5.4.3], and can be thought of as the global
function

ψα (xα(uα)) = e2πimαuα (6.27)

and we will sometimes refer to the mα as mode numbers or instanton charges as this is
their interpretation in a string theory context, see chapter 2.

The triviality (6.22) of ψ can then be restated as

ψ

 ∏
α∈∆([u,u])

Uα

 = 1 (6.28)

and the non-trivial unitary characters are therefore sensitive only to the one-parameters
subgroups Uα such that α is a ‘root’ of u but not of [u, u]. This means that the
parametrisation of different unitary characters ψ on U only requires the knowledge of the
mode numbers mα for the positive roots α that belong to ∆(u) but not to ∆([u, u]). We
define

∆(1)(u) := ∆(u) \∆([u, u]) (6.29)

to be these roots.

Remark 6.8. The notation ∆(1)(u) indicates that these are the ‘roots’ of the abelianisation
[U,U ]\U of the degree one piece U = U (1) in the derived series of U . See section 6.2.3 for
a more detailed discussion of the relevance of the derived series of U for Fourier expansions
and section 4.1.1 for the notion of derived series.

The above considerations lead to
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Proposition 6.9 (Parametrisation of unitary characters). Let U(A) be a unipotent
subgroup of G(A). Unitary characters ψ : U(Q)\U(A) → U(1) can be parametrised
uniquely by a set of mode numbers

{
mα ∈ Q

∣∣ α ∈ ∆(1)(u)
}

. The unitary character is then
given by

ψ

 ∏
α∈∆(1)(u)

xα(uα)

 = exp

2πi
∑

α∈∆(1)(u)

mαuα

 . (6.30)

It factorises into local places as in (3.75).

Proof. The triviality of ψ on the commutator subgroup [U,U ] shows that it suffices to
define ψ on the abelianisation that is constructed from the one-parameter subgroups Uα
with α ∈ ∆(1)(u) for which the characters were determined in (6.27) above. The group
homomorphism property of ψ then yields the proposition.

The following notions will be important in the sequel.

Definition 6.10 (Generic and degenerate characters). Let ψ : U(Q)\U(A)→ U(1)
be a global character as in (6.30).

(i) ψ is called generic if mα 6= 0 for all α ∈ ∆(1)(u), i.e. if the character is non-trivial
on each one-parameter subgroups Uα(A) for α ∈ ∆(1)(u).

(ii) If mα = 0 for all α ∈ ∆(1)(u), the character ψ is called trivial .

(iii) Furthermore, if mα 6= 0 for at least one, but not all, α ∈ ∆(1)(u), the character ψ is
called non-generic or degenerate.

We illustrate these notions by the following example.

Example 6.11: Unitary characters on the maximal unipotent of SL(n,A)

Consider the case G = SL(n,A) and U(A) = N(A) to be the (maximal) unipotent subgroup of the Borel
subgroup B(A), implying n = u. The set ∆(n) is given by all positive roots ∆+ of sl(n) and the set
∆(1)(n) equals the (n− 1) simple roots Π ⊂ ∆+. In the fundamental representation we can write elements
of n ∈ N as (n× n)-matrices of the form

n =


1 u1 ∗ ∗ · · ·

1 u2 ∗ · · ·
. . .

1 un−1

1

 . (6.31)

The starred entries are of no relevance for the discussion of unitary characters as they are associated
with the commutator subgroup [N,N ]. A character ψ on N is determined by n− 1 rational numbers mi

(i = 1, . . . , n− 1) such that

ψ(n) = exp(2πi

n−1∑
i=1

miui). (6.32)
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The character ψ is generic when all mi 6= 0. It is degenerate when some mi vanish and then it does not
depend on the corresponding one-parameter subgroups.

We recall from section 3.5 that a global unitary character ψα on Q\A as in (6.27)
factorises as

ψα =
∏
p≤∞

ψα,p , (6.33)

where for p <∞

ψα,p : U(Zp)\U(Qp)→ U(1), ψα,p(xα(u)) = e−2πi[mαu] (6.34)

in terms of the fractional part (3.28) of a p-adic number, and for p =∞

ψ∞ : U(Z)\U(R)→ U(1), ψα,p(xα(u)) = e2πimαu. (6.35)

This factorisation extends to characters ψ on unipotent groups U :

ψ =
∏
p≤∞

ψp. (6.36)

Definition 6.10 extends to all local characters ψp. Moreover, we have the following notion:

Definition 6.12 (Unramified unitary character). A generic local character ψp for
p <∞ is called unramified if for all α ∈ ∆(0)(u) one has

ψα,p
(
euEα

)
= e−2πi[u], u ∈ Qp. (6.37)

Equivalently, this means that all instanton charges |mα|p = 1 in (6.30). We call a global
character unramified if mα = 1 for all α.

6.2.2 Fourier coefficients vs. Whittaker vectors

Now that we have the Fourier modes in terms of characters ψ on unipotent subgroups U ,
it is possible to define Fourier coefficients of automorphic forms.

Definition 6.13 (Fourier coefficient). Let ϕ be an automorphic form on G(A), i.e.,
an element of the space A(G(Q)\G(A)), and U(A) a unipotent subgroup of G(A). The
Fourier coefficient of ϕ with respect to the unitary character ψ on U is given by:

Fψ(ϕ, g) =

∫
U(Q)\U(A)

ϕ(ug)ψ(u)du. (6.38)

(du denotes the invariant Haar measure on U .) The Fourier coefficient can be viewed
either as a function on G(A) for fixed ϕ or as a functional on A(G(Q)\G(A)). When it is
clear from the context which fixed ϕ is meant, we may write simply Fψ(g) for conciseness.
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A short calculation similar to (6.9) shows that Fourier coefficients satisfy

Fψ(ϕ, ug) = ψ(u)Fψ(ϕ, g) for all u ∈ U . (6.39)

We make the additional definitions for the case U(A) = N(A).

Definition 6.14 (Whittaker vector). Let ϕ be an automorphic form on G(A), N(A)
be the maximal unipotent subgroup of a fixed Borel B(A) and ψ be a unitary character
on N(A).

(i) The integral

Wψ(ϕ, g) =

∫
N(Q)\N(A)

ϕ(ug)ψ(u)du. (6.40)

is called the Whittaker vector of ϕ with respect to ψ.

(ii) If ϕ is KA invariant, the Whittaker vector Wψ(ϕ, g) is right-invariant under KA
and the Whittaker vector is then called spherical . We denote it by W ◦

ψ(ϕ, g). The
spherical Whittaker vector is completely determined by its values on the Cartan
torus A(A): Writing g = nak in Iwasawa decomposed form one has

W ◦
ψ(ϕ, nak) = ψ(n)W ◦

ψ(ϕ, a). (6.41)

This is the case for Eisenstein series.

Remark 6.15. Even though definition 6.14 is a special case of 6.13, it is useful to
distinguish this case notationally. Throughout this work, we will denote Whittaker vectors
(i.e., Fourier coefficients along the maximal unipotent N) by Wψ and reserve the notation
Fψ for the case when the unipotent U is different from N . Whittaker vectors, i.e., Fourier
coefficients associated with N , will be the main focus of this work and studied in detail in
chapter 9 for Eisenstein series.

We note that if U is the unipotent of some standard parabolic subgroup P = LU and
ϕ KA-invariant, the general Fourier coefficient Fψ(ϕ, g) is determined by its values on the
Levi subgroup L and one could define a spherical Fourier coefficient F ◦ψ but we will not
make use of this notion.

Definition 6.16 (Constant term). (i) The Fourier coefficient of an automorphic
form ϕ with respect to the trivial character ψ = 1 on U is called the constant
term along U :

CU(ϕ, g) =

∫
U(Q)\U(A)

ϕ(ug)du. (6.42)

It is independent of u ∈ U : CU(ϕ, ug) = CU(ϕ, g).
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(ii) For the case U = N , we will call it simply the constant term and denote it by

C(ϕ, g) ≡ CN(ϕ, g) =

∫
N(Q)\N(A)

ϕ(ng)dn. (6.43)

If ϕ is spherical, the constant term is a function only of the Cartan torus A(A):
Using Iwasawa decomposition C(ϕ, nak) = C(ϕ, a).

6.2.3 Abelian vs. non-abelian Fourier expansions

In the SL(2) example of section 6.1, the Whittaker vectors Wψ were used in (6.7) to give
a complete Fourier expansion of an automorphic form ϕ by summing over all possible
unitary characters ψ.

It is a natural question how this carries over to higher rank groups G(A). In view
of proposition 6.9, we can already anticipate that the Fourier expansion with unitary
characters ψ on a unipotent group U will in general be incomplete since the characters ψ
only depend on the abelianisation [U,U ]\U , see (6.22). For SL(2) the (maximal) unipotent
group N is abelian and we did not have to consider this subtlety. The general statement is

Proposition 6.17 (Partial Fourier sum). Let U(A) be a unipotent subgroup of G(A)
and ϕ be an automorphic form on G(A). Then the sum of Fourier coefficients over all
unitary characters ψ on U yields∑

ψ

Fψ(ϕ, g) =

∫
[U,U ](Q)\[U,U ](A)

ϕ(ug)du. (6.44)

In other words, the sum of the Fourier coefficients reconstitutes only the average of the
automorphic form over the commutator subgroup [U,U ]. If U is abelian, the Fourier
expansion is complete.

Proof. See [235].

In order to obtain a complete Fourier expansion when the unipotent U is non-abelian,
one has to consider the derived series of U (cf. also section 4.1.1):

U (i+1) = [U (i), U (i)] , U (1) = U. (6.45)

Since U is unipotent, the derived series trivializes after finitely many steps: U (i0) = {1}
for some i0 ≥ 1 and we assume i0 to be the smallest integer for which U (i0) = {1}. If U is
abelian, one has i0 = 2. The successive quotients U (i+1)\U (i) are the abelianisations of the
unipotent groups U (i) for any integer i ≥ 1. A unitary character ψ(i) on U (i) is trivial on
U (i+1). One can define Fourier coefficients for any of the U (i) by the same formula as in
definition 6.13:

Fψ(i)(ϕ, g) =

∫
U(i)(Q)\U(i)(A)

ϕ(ug)ψ(i)(u)du. (6.46)
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As an immediate analogue of proposition 6.17 one has that∑
ψ(i)

Fψ(i)(ϕ, g) =

∫
U(i+1)(Q)\U(i+1)(A)

ϕ(ug)du. (6.47)

We observe that the right-hand side is nothing but the constant term of ϕ along U (i+1),
corresponding to ψ(i+1) = 1. It is therefore natural that the complete non-abelian Fourier
expansion of ϕ along U is given by

ϕ(g) = CU(ϕ, g) +
∑
ψ(1) 6=1

Fψ(1)(ϕ, g) +
∑
ψ(2) 6=1

Fψ(2)(ϕ, g) + . . .+
∑

ψ(i0) 6=1

Fψ(i0)(ϕ, g). (6.48)

The trivial character ψ(i) = 1 is always excluded because the sum of the preceding terms
reconstitutes the constant term along U (i) by (6.47). Note that unitary characters ψ(1)

are characters on U (1) = U and therefore equal the unitary characters we have been
discussing in definition 6.13. We will sometimes refer to the Fourier coefficients in (6.48)
associated with U (i) and i ≥ 2 as non-abelian Fourier coefficients and the ones associated
with U (1) = U as the abelian Fourier coefficient .

The same structure of the expansion and terminology arises for the case when the
unipotent U is given by the maximal unipotent N . Then we have

ϕ(g) = C(g)

︸ ︷︷ ︸
constant term

+
∑
ψ(1) 6=1

Wψ(1)(g)

︸ ︷︷ ︸
abelian term

+
∑
ψ(2) 6=1

Wψ(2)(g)

︸ ︷︷ ︸
non-abelian term

+ · · · , (6.49)

where we have suppressed the fixed automorphic function ϕ on the right-hand side.

Remark 6.18. Our main interest in this work lies with the abelian Whittaker vectors
Wψ(1) and we will discuss them in more detail in the following sections and in particular
in chapter 9. Non-abelian Fourier expansions have been carried out in detail for SL(3,R)
in [57,249,267,314] and this will be reviewed in section 9.6. Non-abelian Fourier expansions
for the non-split real group SU(2, 1) can be found in [12, 173] and some further comments
on the non-abelian coefficients will be offered in chapter 12.

6.3 Induced representations and Whittaker models

We now specialise to the case then the automorphic form ϕ ∈ A(G(Q)\G(A)) is an
Eisenstein series

E(fλ, g) =
∑

γ∈B(Q)\G(Q)

fλ(γg), g ∈ G(A), (6.50)

constructed from a standard section fλ of the (in general, non-unitary) principal series

Ind
G(A)
B(A)χ, cf. section 5.4.3. Here χ = e〈λ+ρ|H〉 is the inducing character on the Borel

subgroup B(A) = N(A)A(A), as defined in section 5.3.1. For the constant term of E(fλ, g)
one can derive an explicit formula; this is done in great detail for SL(2,A) in chapter 7.
The formula for arbitrary split groups G(A), due to Langlands, will be derived in chapter 8.
Here we are interested in the representation theoretic properties of the non-constant
(abelian) Whittaker coefficients of E(fλ, g).
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6.3.1 Global considerations

For a character ψ on N(Q)\N(A) the abelian coefficients of E(fλ, g) are given by the
Whittaker function Wψ of the type (6.40). Plugging E(fλ, g) from (6.50) into (6.40) and
exchanging the order of summation and integration we obtain the formula

Wψ(fλ, g) =
∑

γ∈B(Q)\G(Q)

∫
N(Q)\N(A)

fλ(γng)ψ(n)dn. (6.51)

Representation theoretically, Wψ(fλ, g) belongs to the induced representation

Ind
G(A)
N(A)ψ =

{
Wψ : G(A)→ C

∣∣∣Wψ(ng) = ψ(n)Wψ(g), n ∈ N(A)
}
. (6.52)

Equation (6.51) thus gives an embedding

I(λ) = Ind
G(A)
B(A)χ ↪→ Ind

G(A)
N(A)ψ. (6.53)

Definition 6.19 (Whittaker model). The space

Whψ(λ) = {Wψ(fλ)|fλ ∈ I(λ)} ⊂ Ind
G(A)
N(A)ψ (6.54)

is called a Whittaker model of I(λ), and its elements Whittaker vectors . The associated
map

fλ 7→ Wψ(fλ), (6.55)

is an intertwiner between the principal series I(λ) and its Whittaker model Whψ(λ).

Remark 6.20. An important result about Whittaker models is their uniqueness: for
each fixed section fλ ∈ I(λ) and fixed generic character ψ there exists a unique Whittaker
vector Wψ(fλ) (see, e.g., [57, 68]). This property is known multiplicity one and was shown
originally for GL(n) locally for archimedean and non-archimedean fields in [176,295]. We
note that it does not hold for SL(n) if n > 2 [23].

In chapter 9 we will show that, for generic ψ, the Whittaker vector can be written as
a single integral rather than a sum. The argument relies on the Bruhat decomposition of
G(Q), which allows one to trade the sum over γ ∈ B(Q)\G(Q) for a sum over the Weyl
group W(g). The end result is that the Whittaker function may be written as

Wψ(fλ, g) =

∫
N(A)

fλ(wlongng)ψ(n)dn. (6.56)

This expression is sometimes known as a Jacquet–Whittaker integral [174]. The sum over
γ has reduced to a single contribution represented by wlong, the longest element in the
Weyl group W(g) (for the details see chapter 9).
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6.3.2 Local considerations

Recall from section 5.4.2 that by Flath’s tensor product theorem the principal series
decomposes into a product over all places [94]

Ind
G(A)
B(A)χ =

⊗
p≤∞

Ind
G(Qp)

B(Qp)χp, (6.57)

and we have a similar decomposition for Ind
G(A)
N(A)ψ:

Ind
G(A)
N(A)ψ =

⊗
p≤∞

Ind
G(Qp)

N(Qp)ψp. (6.58)

To each standard section fλ,p ∈ Ind
G(Qp)

B(Qp)χp we then have a local (p-adic) Whittaker vector

Wψp(fλ,p, g) =

∫
N(Zp)\N(Qp)

fλ,p(wlongng)ψp(n)dn, g ∈ G(Qp) (6.59)

and the global Whittaker model Whψ(χ) splits accordingly

Whψ(χ) =
⊗
p≤∞

Whψp(χp). (6.60)

In chapter 9 we will derive an explicit formula (Casselman–Shalika formula) for the p-adic
Whittaker function Wψp(fλ,p, g), p <∞, in the special case when Wψp(fλ,p, g) is spherical
and ψ unramified, notions that were defined in definitions 6.14 and 6.12, respectively.

For generic characters ψ, the global Whittaker function can then be recovered as an
Euler product over all places

Wψ(fλ, g) =
∏
p≤∞

Wψp(fλ,p, gp), g ∈ G(A), gp ∈ G(Qp). (6.61)

It is sometimes useful to separate the finite places p <∞ from the infinite place p =∞
and make the following definition:

Definition 6.21 (finite Whittaker vector). Consider the Whittaker vector W fin
ψ

obtained by taking the product over all the finite places :

W fin
ψ (ffin

λ , gf ) =
∏
p<∞

Wψp(fλ,p, gp), gf = (1; g2, g3, . . . ) ∈ G(Af ). (6.62)

We call this the finite Whittaker vector .

Remark 6.22. The finite Whittaker vector plays an important role in string theory where
it contributes to the instanton measure, as we illustrate in example 6.25 below and as was
discussed in chapter 2.
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6.3.3 Spherical Whittaker vectors

Here we will introduce a special class of Whittaker vectors which are spherical in an
appropriate sense. Assume that Ind

G(A)
B(A)χ is unramified , i.e. for almost all places p the

local component Ind
G(Qp)

B(Qp)χp is spherical . This implies that there exists a unique (up to

normalization) section f◦λ,p ∈ Ind
G(Qp)

B(Qp)χp that satisfies

f◦λ,p(bk) = χp(b), f◦λ,p(k) = f◦λ,p(1) = 1, (6.63)

where b ∈ B(Qp) and k ∈ G(Zp).

Definition 6.23 (spherical vector). We call f◦λ,p ∈ Ind
G(Qp)

B(Qp)χp, defined by (6.63), a
spherical vector .

Definition 6.24 (spherical Whittaker vector). To each spherical vector f◦λ,p and
generic character ψp we can associate a spherical Whittaker vector W ◦

ψp
∈ Whψp(χp),

defined by

W ◦
ψp(λ, g) =

∫
N(Zp)\N(Qp)

f◦λ,p(wlongng)ψp(n)dn, g ∈ G(Qp). (6.64)

As before, The spherical Whittaker vector satisfies the relation

W ◦
ψp(λ, nak) = ψp(n)W ◦

ψp(λ, a), (6.65)

where n ∈ N(Qp), a ∈ A(Qp), k ∈ G(Zp). This again implies that W ◦
ψp

(λ, g) is completely
determined by its restriction to the Cartan torus A(Qp), where it equals

W ◦
ψp(λ, a) =

∫
N(Qp)

f◦λ,p(wlongna)ψp(n)dn. (6.66)

Example 6.25: Spherical Whittaker vector for SL(2,A)

We now illustrate the discussion for the Eisenstein series E(s, g) on SL(2,A). The results below are all
derived in section 7.3. Recall from example 5.27 that the Eisenstein series is obtained by choosing the
standard section fλ to be the spherical vector f◦λ = f◦s , such that

E(f◦s , g) =
∑

γ∈B(Q)\SL(2,Q)

f◦s (γg) =
∑

γ∈B(Q)\SL(2,Q)

χs(γna), (6.67)

where χs = e〈2sΛ|H〉, Λ = α/2 with α the simple root of sl(2,R). The local spherical Whittaker vector
(6.66) is

W ◦ψp(s, a) =

∫
N(A)

χs(wlongna)ψ(n)dn, a ∈ A(Qp). (6.68)

As will be shown in detail in section 7.3, the integral equals

W ◦ψ∞(s, y) =
2πs

Γ(s)
y1/2|m|s−1/2Ks−1/2(2π|m|y), (6.69)
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at the archimedean place p =∞ (see (7.73)). Here, m ∈ Z×, and we parametrised the Cartan torus A(R)
according to (

y1/2

y−1/2

)
, y ∈ R>0. (6.70)

At the non-archimedean places, the integral becomes (cf. (7.77))

W ◦ψp(s, v) = |v|−2s+2
p γp(mv

2)(1− p−2s)
1− p−2s+1|mv2|2s−1

p

1− p−2s+1
, (6.71)

with p <∞ and m ∈ Q×, and we parametrised the torus A(Qp) by(
v

v−1

)
, v ∈ Q×p (6.72)

for all p <∞.
The associated finite Whittaker vector (6.62), evaluated at the identity v = 1, is only non-vanishing

for m ∈ Z× because of the γp factors as is seen in section 3.4. For m ∈ Z×

W ◦,fin
ψ (s, 1) =

∏
p<∞

W ◦ψp(s, 1) =

(∏
p<∞

(1− p−2s)

)(∏
p<∞

1− p−(2s−1) |m|2s−1
p

1− p−(2s−1)

)
. (6.73)

The first factor is simply the Euler product (1.21) of the (inverse of the) Riemann zeta function
ζ(2s)−1. We will now show that the second factor is actually the divisor sum σt(m) defined in (1.18)
denoting t = 1− 2s for brevity.

Assume first that m = pa for some prime p and positive integer a. Then

σt(m) =
∑
d|m

dt = 1 + pt + p2t + . . .+ pat =
1− p(a+1)t

1− pt . (6.74)

For m = paqb we get

σt(m) = 1 + pt + qt + p2t + q2t + ptqt + . . .+ patqbt

= (1 + pt + . . .+ pt)(1 + qt + . . .+ qbt) = σt(p
a)σt(q

b) .
(6.75)

Similarly, for the general case with m having the prime factorisation m = pa11 · · · parr ,

σt(m) = σt(p
a1
1 ) · · ·σt(parr ) =

r∏
i=1

1− ptipaiti
1− pti

=
∏
p<∞

1− pt |m|−tp
1− pt (6.76)

since |m|p = p
−aj
j for p = pj (some j) and otherwise |m|p = 1. In other words, the finite spherical

Whittaker vector for SL(2,A) (and the divisor sum σt) are multiplicative.
Thus, for non-zero integer m

W ◦,fin
ψ (s, 1) =

1

ζ(2s)
σ1−2s(m) . (6.77)
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Comparing with the discussion in section 1.3 we conclude that the finite Whittaker vector W ◦,fin
ψ ,

defined in (6.62), is closely related to the instanton measure in string theory. More precisely, when
evaluating the finite Whittaker vector at the identify in SL(2,Af ) we obtain the divisor sum which is
characteristic for so-called D(−1)-instanton effects in string theory (see [138]). This in fact also holds
for more general groups G(A) and gives a strong physics motivation for the detailed analysis of the
Casselman–Shalika formula presented in section 9.3.

6.4 Fourier coefficients and nilpotent orbits*

When considering the Fourier expansion along a unipotent radical U(A) that is part of a
standard parabolic subgroup P (A) = L(A)U(A), one can group the Fourier integrals (6.38)
into orbits of the Levi factor L(Q), see for example [146,235]. There is a close connection
to the theory of nilpotent orbits of the adjoint action of G(C) on its Lie algebra g(C)
and the notion of wavefront sets through the work of Moeglin–Waldspurger [239, 241],
Matumoto [230], Ginzburg–Rallis–Soudry [122–124], Jiang–Liu–Savin [177] and many
others.

Remark 6.26. The discussion of the present section only applies to Fourier expansions
along unipotent radicals U of non-minimal parabolic subgroups; for expansions along N(A)
contained in the (minimal parabolic) Borel subgroup B(A) the orbits under the abelian
Levi factor become single points.

6.4.1 Character variety orbits

Let ψ denote a unitary character on U(A) that is trivial on U(Q) and consider the Fourier
integral Fψ(g) ≡ Fψ(ϕ, g) of an automorphic form ϕ as defined in definition 6.13. We
consider ϕ fixed for the following discussion and will suppress it in the notation Fψ(g).
Under the action of an element γ ∈ L(Q), that is an element γ of the intersection of the
discrete subgroup with the Levi factor, the Fourier coefficient changes as follows

Fψ(γg) =

∫
U(Q)\U(A)

ϕ(uγg)ψ(u)du =

∫
U(Q)\U(A)

ϕ(γ−1uγg)ψ(u)du

=

∫
U(Q)\U(A)

ϕ(ug)ψ(γuγ−1)du = Fψγ (g) (6.78)

where we have used the fact that ϕ is invariant under discrete transformations as well as
the fact that the change of coordinates u→ γ−1uγ is uni-modular since γ is in the discrete
subgroup. In the last step, we have defined the transformed character

ψγ(u) := ψ(γuγ−1) (6.79)

and identified its Fourier coefficient. The transformed character ψγ is well-defined since the
Levi component L(Q) acts on U(Q) by conjugation. In view of the terminology introduced
in definition 6.6, the orbits thus produced are called character variety orbits. We also
introduce the following notion:
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Definition 6.27. Let ψ be a unitary character on the unipotent subgroup U(A) of a
standard parabolic subgroups P (A) = L(A)U(A). The set

Cψ = {γ ∈ L(Q) | ψγ = ψ} (6.80)

is called the stabiliser of the character ψ. We will sometimes use the same terminology
when referring to the action of L(R) or L(C) on the corresponding character variety.

The calculation (6.78) shows that the Fourier coefficient Fψ is invariant (automorphic)
under the stabiliser subgroup Cψ.

The adjoint action of L(Q) on U(Q) can be described more explicitly by realizing the
original character ψ in terms of a weight vector similar to proposition 6.9. The Lie algebra
u consists of nilpotent elements X ∈ u and we can write an element u ∈ U as u = eX . A
unitary character ψ on U is then given by an element ω of the dual space u∗ via

ψ(eX) = exp (2πiω(X)) (6.81)

and the triviality (6.22) of ψ on the commutator subgroup [U,U ] enforces that

ω ([u, u]) = 0, (6.82)

so that ω is not an arbitrary element of u∗ but one associated with the Lie algebra of the
abelianisation [U,U ]\U . Clearly, the abelianisation [U,U ]\U is preserved by the adjoint
action of L(Q) on U(A) and L(Q) therefore acts dually on the space of allowed ω. By
virtue of (6.78), the Fourier coefficients for all characters in one orbit are related and it
suffices to calculate the Fourier coefficient of one representative of an orbit. In practice,
it is more convenient to take the dual of ω and study the adjoint nilpotent orbits of the
action of L(Q) on u(Q), where one can also restrict to the abelian quotient [u, u]\u.

Remark 6.28. Let Σ be the subset of the simple roots Π that defines a standard parabolic
subgroup P = LU , cf. section 4.1.3. The nilpotent Lie algebra u of U has a (finite) graded
decomposition

u =
⊕
j∈Z

uj, with uj =

〈
Eα

∣∣∣∣∣∣ α =
∑
β∈Π

nββ ∈ ∆+ and
∑
α∈Π\Σ

nα = j

〉
. (6.83)

Each space uj is preserved by the adjoint action of L and the space of characters ψ on U
is dual to u1. The character variety orbits can therefore be viewed dually in u1. The space
u1 is isomorphic (as a vector space) to [u, u]\u.

Example 6.29: Mirabolic subgroups of GL(n,R)
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Consider G(R) = SL(n,R) that can be represented by (n× n)-matrices. A maximal parabolic subgroup
can be chosen with Levi factor L(R) = GL(n− 1,R) through the following matrices

L(R) =




∗ 0 0 · · · 0 0
0 ∗ ∗ · · · ∗ ∗
0 ∗ ∗ · · · ∗ ∗
...

...
...

0 ∗ ∗ · · · ∗ ∗




=

{(
r 0
0 m

) ∣∣∣∣ r ∈ R, m ∈ GL(n− 1,R) such that det(m) = r−1

}

(6.84)

and associated (n− 1)-dimensional unipotent radical

U(R) =




1 ∗ ∗ · · · ∗ ∗
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

0 0 0 · · · 0 1




=

{(
1 uT

0 1n−1

) ∣∣∣∣ u ∈ Rn−1

}
. (6.85)

The unipotent radical is abelian in the present case and acted upon by L = GL(n− 1,R). Characters ψ
can be thought of as being given by (n−1)-column vectors ω that contract into X ∈ Lie(U) = u and define
the character via (6.81). These parabolic subgroups are sometimes referred to as mirabolic subgroups.

For the local transformation of the Fourier coefficients (6.78) at the archimedean place one needs to
restrict to orbits under L(Z) that force r = 1 and m ∈ SL(n− 1,Z) in (6.84) (or r = −1 and det(m) = −1
but this does not influence the discussion below). The action of the Levi subgroup L(Z) on U(R) is by(

1
m

)(
1 uT

1

)(
1

m−1

)
=

(
1 uTm−1

1

)
. (6.86)

The group L(Z) then acts on the character variety u∗ modelled by a vector ω ∈ Rn by

ω 7→ m−1ω, (6.87)

that is, simply by left multiplication of the column vector. The character variety {ω ∈ Rn−1} decomposes
into infinitely many orbits with representatives

σ
0
...
0

 for σ ∈ R≥0 (6.88)

under this action. If the character is trivial on integral points (as is the case for unitary characters trivial
on U(Z)) the representatives are labelled by σ ∈ Z≥0:

Zn−1 =
⋃

σ∈Z≥0

SL(n− 1,Z) ·


σ
0
...
0


 . (6.89)

An arbitrary vector ω ∈ Zn−1 belongs to the orbit with σ = gcd(ω).

Classifying the orbits of the action of L on U over Z or Q is in general a difficult
task, see [22, 178, 207, 279] for some results. A slightly coarser description can be obtained
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by complexifying the Levi subgroup to L(C) and studying the complex orbits. All such
complex orbits have been determined in the literature [79, 222,235], using the methods of
Dynkin [91], Kostant [204,205], Bala–Carter [7, 8], Vinberg [313] and Kac [114].

6.4.2 Wavefront sets and vanishing theorems for
Fourier coefficients

There are many different choices of parabolic subgroup P (A) = L(A)U(A) and associated
Fourier expansions along their unipotents U . All the different character variety orbits of
the action of L(Q) on unitary characters on U(A) are associated with nilpotent elements
ω ∈ u∗ ⊂ g∗. A given character variety orbit therefore lies in a coadjoint nilpotent orbit of
the action of G(R) on elements of g∗ that are dual to nilpotent elements. Properties of
automorphic representations of G(A) are only associated with structures arising from G,
implying that the character variety orbits (under the action of L) are less fundamental
than the nilpotent orbit they embed into. We will not fully develop the theory of nilpotent
orbits here but refer the reader to the books [62,71,300] for a detailed exposition. Below
we will mention only some aspects that are of relevance to our discussion.

The approach using nilpotent orbits is useful because it sometimes allows to determine
that certain Fourier coefficients must vanish identically without actually calculating them.
At the heart of this is the notion of the (complexified) wavefront set of an irreducible
automorphic representation π (cf. definition 5.22).

Definition 6.30 (Wavefront set). Let πp be an automorphic representation of G(Qp)
at a local place p. The wavefront set of πp is given by

WF(πp) =
⋃
i∈I

Oi, (6.90)

where the Oi are a finite collection of complex nilpotent orbits and the closure is with
respect to the Zariski topology naturally defined on the set of nilpotent elements of
g(C). The Oi appearing in the sum are characterized by admitting a non-trivial Fourier
coefficient [124,239].

The wavefront set therefore is the closure of a (set of) nilpotent orbits [30, 183].
Originally, it is defined as the annihilator ideal associated with the representation πp; in
the case of the so-called minimal representation it is also referred to as the Joseph ideal .

Remark 6.31. We will also use the notion of a global wavefront set of an adelic
representation π = ⊗p≤∞πp of G(A). It is a priori not guaranteed that the local wavefront
set WF(πp) does not vary as p varies and therefore one has to treat this notion with care.
For Eisenstein series induced by characters of the form (5.88) this does not happen. Global
wavefront sets have been discussed for example in [177] where it was also shown that the
maximal orbits in wavefront sets have to be so-called special orbits. This property was
known for local wavefront sets due to [239].
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A nilpotent orbit for a Lie algebra g is the orbit of a nilpotent element X ∈ g under
the action of the adjoint group G with Lie algebra g, see for example [71, 300] for an
introduction. The theorems of [30, 183] show that one can associate (the closure of) a
unique nilpotent orbit in g to any irreducible automorphic representation π of G, meaning
that the wavefront set of irreducible automorphic representation is given by the closure of
unique maximal orbit (w.r.t. the partial closure ordering). One can also consider the action
of the adjoint group G on the dual Lie algebra g∗ and study coadjoint nilpotent orbits.
Using the non-degenerate Killing form, we can identify adjoint and coadjoint nilpotent
orbits. By the correspondence (6.81) one can view characters ψ on some unipotent U as
elements of g∗ and the character variety orbits lie therefore in coadjoint nilpotent orbits.

The link to the L(C)-orbits of Fourier coefficients FψU of an automorphic function ϕ is
provided by the theorems of Mœglin–Waldspurger and Matumoto [230,235,241] that assert
that a Fourier coefficient can only be non-zero if its associated character variety orbit
in u∗ (under the action of L(C)) intersects a coadjoint nilpotent orbit in g∗ ⊃ u∗ (under
the action of G(C)) that belongs to the wavefront set associated with the automorphic
representation to which ϕ belongs.

Example 6.32: Minimal representation of E6

Suppose ϕ belongs to the minimal representation of the exceptional Lie group E6(R) of dimension 78.
Then its associated wavefront set is the closure of the minimal orbit (of dimension 22). The minimal
representation of E6 can be realized as a special point in the degenerate principal series representation
that is associated with a maximal parabolic subgroup P = LU with Levi factor L = SO(5, 5)×GL(1).
The unipotent U in this case is a Heisenberg group of dimensions 21. The (dualized) character variety
u1 = [u, u]\u has dimension 20 and is acted upon by L(R). After complexification one finds that u1 breaks
up into five different character variety orbits under GL(6,C) [235]. Of these only the trivial and the
smallest non-trivial one intersect the closure of the minimal coadjoint nilpotent orbit. One concludes
that the Fourier coefficients in the remaining three character variety orbits must vanish in the minimal
representation.

We also note that the Gelfand–Kirillov dimension of the degenerate principal series in this case is
21 = 20 + 1, corresponding to the dimension of the Heisenberg group. At the special point where the
minimal representation is realized the 20-dimensional space can be polarized into 10 ‘coordinates’ and 10
‘momenta’ and the Heisenberg algebra is realized on functions of the 10 coordinate variables on which the
momenta act as derivative operators. This action of the Heisenberg group extends to all of E6(R) and can
also be given an oscillator realization [158].

This example is based on [126, 146, 235, 263] where more information can be found. The minimal
representation discussed here is an example of a small representation that we will discuss in more detail in
sections 10.3.2 and 12.1.1.

The connection between nilpotent orbits and Fourier coefficients is made more concrete
in the work of Ginzburg [123]. We follow [160] in the following discussion. To the nilpotent
orbit O ≡ OX of a nilpotent element X ∈ g one can associate a Jacobson–Morozov triple
H,X, Y ∈ g that satisfies the standard sl(2) Lie algebra relations. The orbit is uniquely
characterised by the (unique) Weyl chamber image of H under the action of the Weyl
group. This leads to a labelling of nilpotent orbits by weighted Dynkin diagrams, where
the weights are non-negative integers. (These integers are less than or equal to two but
this does not matter for our discussion.) Any integrally weighted Dynkin diagram gives
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rise to a graded decomposition

g =
⊕
i∈Z

gi, (6.91)

where gi is the space of elements in g with eigenvalue i under the adjoint action of the H
that lies in the Weyl chamber. All gi are of finite dimension and there are only finitely
many non-trivial gi since g is finite-dimensional. We define

lO = g0, uO =
⊕
i≥1

gi and vO =
⊕
i≥2

gi. (6.92)

Let LO, UO and VO be corresponding subgroups of G. A nilpotent orbit O has a unique
stabiliser CO ⊂ LO that is a reductive group.

Definition 6.33 (orbit Fourier coefficient). Let O be a non-trivial nilpotent orbit
and let ψV : VO(Q)\VO(A)→ U(1) be a unitary character on VO. We require ψV to have
the same stabiliser type under the action of LO as the stabiliser CO of the orbit O. Then
the orbit Fourier coefficient of an automorphic form ϕ belonging to some automorphic
representation π is defined as

FO(ϕ, ψV , g) =

∫
VO(Q)\VO(A)

ϕ(vg)ψV (v)dv. (6.93)

For the trivial orbit O = {0} we define the orbit Fourier coefficient to be the constant
term along the maximal unipotent N(A) as in definition 6.16.

The orbit Fourier coefficients vanish when the orbit does not belong to the wavefront
set and allow a rewriting of the Fourier expansion of an automorphic function in terms of
a sum over nilpotent orbits. This is similar to the expansion of the Howe–Harish-Chandra
expansion of the character distribution of an automorphic representation [162,170]:

µ(π) =
∑

O∈WF(π)

cOµO (6.94)

For local automorphic representations πp, the numbers cO are computed by the Moeglin–
Waldspurger theorem [241,277].

Remark 6.34. It is often possible to relate the orbit Fourier coefficients to (degenerate)
Whittaker vectors and this was done for example in [107,123,160]. Turning the argument
around, one might suspect that the wavefront set can be effectively computed by studying
the degenerate Whittaker vectors with charges defining the parabolic subgroups defining
a nilpotent orbit in the Bala–Carter classification. This is borne out for minimal
representations [107, 235] and also well supported for some other small representations
relevant for string theory [32, 34, 160], see also the discussion in sections 12.1.1 and 12.1.3.

Degenerate Whittaker vectors and their relation to small representations in the local and
global case have also been discussed in detail recently by Gourevitch–Sahi [134,136,137].
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6.5 Method of Piatetski-Shapiro and Shalika*

The grouping of Fourier coefficients into orbits under a Levi subgroup L discussed in the
previous section is a powerful tool for analyzing automorphic forms. This is at the heart
of the method of Piatetski-Shapiro and Shalika that expresses an automorphic form on
GL(n,R) completely in terms of its Whittaker vectors (with respect to N) [260,295]. We
briefly explain how this connection between Fourier coefficients along U and Whittaker
vectors along N comes about in the case of GL(n,R) following [105,235]. Generalisations
to some other groups have been discussed by Miller and Sahi [235].

Let P = LU be a parabolic subgroup of G. According to proposition 6.17 we have for
a spherical automorphic form ϕ(g) = ϕ(gk) in an automorphic representation π that

∑
ψ

F ◦ψ(g) =

∫
U(2)(Q)\U(2)(A)

ϕ(ug)du, (6.95)

where U (2) = [U,U ] is the derived group of U and

Fψ(g) =

∫
U(Q)\U(A)

ϕ(ug)ψ(u)du (6.96)

is the Fourier coefficient of ϕ along U for the character ψ.

Now we want to group the sum over the characters ψ into complex orbits thanks to
(6.78). A given character ψ can have a stabiliser Cψ(A) ⊂ L(A) under the action of L(A)
and Cψ(Q) = C(Q) ∩ LψU (A) is a discrete subgroup of it. Writing the set of complex
character orbits as WF(π) one can write (6.95) as [235]∑

ψ

F ◦ψ(g) =
∑

O∈WF(π)

∑
ψ∈O

∑
γ∈Cψ(Q)\L(Q)

Fψ(γg), (6.97)

where the sum over ψ ∈ O denotes single representatives of the different integral orbits
contained in the complex orbit O ∈ WF(π). The method of Piatetski-Shapiro and
Shalika then uses the fact that Fψ(γg) is a function on the reductive stabiliser Cψ(A)
and automorphic under Cψ(Q) and so can be expanded in the same manner, yielding an
iterative procedure for determining the Fourier expansion.

In the case of GL(n,R) this can be done very successfully in terms of iterations of
parabolic subgroups of the type discussed in example 6.29. As was explained there, the
unipotent subgroup is abelian and therefore the Fourier expansion (6.95) recovers the
whole automorphic function ϕ. Moreover, there is a unique non-trivial complex orbit
of GL(n− 1,C) acting on the (n− 1)-dimensional U(C). The trivial orbit corresponds
to trivial ψ = 1 and corresponds to the constant term in the expansion along U , cf.
definition 6.16. In order to avoid having to include this term at every iteration step, we
now assume until the end of this section that ϕ is a cusp form. Then the sum over complex
orbits in WF(π) has only a single element.
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The integral orbits contained in the single complex orbit can also be identified easily
in this case. They are represented by (non-zero) integers mα1 and the representatives can
be chosen to be such that

ψ(u) = e2πimα1uα1 (6.98)

where α1 is the first simple root. (Allowing mα1 to be integral instead of integral and
positive actually overcounts the integral orbits by a factor of two but this has no impact
on the final result.) In terms of matrices as in example 6.29 this can be written as

u = exp


0 uα1 uα1+α2 · · · uα1+...+αn−1

0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

0 0 0 · · · 0

 , ω = (mα1 , 0, 0, . . . , 0)T ∈ u∗ (6.99)

The stabiliser of such a character in L(Q) = GL(n − 1,Q) is given by GL(n − 2,Q) ⊂
GL(n− 1,Q). At the present stage we have therefore from (6.97)

ϕ(g) =
∑
mα1∈Z

∑
γ∈GL(n−2,Q)\GL(n−1,Q)

Fψ(γg). (6.100)

The Fourier coefficient Fψ(γg) appearing in (6.100) is therefore an automorphic form
on GL(n− 1,Q) automorphic under GL(n− 2,Q). The iteration now consists in repeating
the same process for this smaller subgroup. What this will produce is a sum over mα2 ∈ Z
and an automorphic form on GL(n−2,A) and so on. At the end of the iteration we obtain

ϕ(g) =
∑

mα1 ,...mαn−1∈Z

∑
γ∈N(n−1,Q)\GL(n−1,Q)

Wψ(γg) (6.101)

where

Wψ(g) =

∫
N(Q)\N(A)

ϕ(ng)ψ(n)dn (6.102)

is a standard Whittaker vector on N for the character with instanton charges mα for the
simple roots α ∈ Π and as defined in (6.40). (The integration domain is enlarged from U
to N by combining some of the intermediate sums over cosets.) Reassembling the sum
over all these characters we therefore can also also write

ϕ(g) =
∑

γ∈N(n−1,Z)\GL(n−1,Z)

∫
N(2)(Z)\N(2)(R)

ϕ(nγg)dn (6.103)

where N (2) is the derived group of N , cf. (6.45), and we have projected back down to R.
The power of the formula (6.101) is that it allows us to reconstruct the whole (cuspidal)
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automorphic form from its standard Whittaker vectors by taking suitable translates of
them. This is important since, according to (6.49), an automorphic function also contains
terms beyond the standard Whittaker vectors in its expansion. The result of Piatetski-
Shapiro and Shalika tells us how to compute these non-abelian terms as translates of
abelian terms. We will see a similar structure later when we study the case of SL(3) in
detail in section 9.6.
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Chapter 7

Fourier coefficients of
Eisenstein series on SL(2,A)

In this chapter we apply the formalism developed in chapter 6 to the classical theory of
non-holomorphic Eisenstein series E(s, z) on the double coset SL(2,Z)\H, with z ∈ H =
SL(2,R)/SO(2,R) which was already presented as a canonical example in the introduction.
Following the analysis in the previous section, we will consider the adelic treatment of
this Eisenstein series. The purpose of this chapter is to give an example for the Fourier
expansion of an Eisenstein series, where the method can be made explicit and is still
fully tractable. We try to carefully introduce every step in the calculation, however the
explanation of some of the underlying theory is postponed to the next chapter, where
Langlands’ constant term formula is derived in full detail. Where appropriate in this
chapter, we refer the reader to the next chapter for more detailed explanations.

7.1 Statement of theorem

Before we state the theorem, let us introduce some of the necessary terminology. Recall
from chapter 4 that the adelic group SL(2,A) has the maximal compact subgroup KA,
defined by

KA = K(R)×
∏
p<∞

K(Qp) = SO(2,R)×
∏
p<∞

SL(2,Zp) , (7.1)

see for example [219]. We then have, by strong approximation (4.64), that

SL(2,A) = SL(2,Q)SL(2,R)KA. (7.2)

This decomposition ensures that any automorphic form ϕ on SL(2,Z)\SL(2,R)/SO(2,R)
corresponds to an automorphic form on SL(2,Q)\SL(2,A)/KA.

For the adelic group SL(2,A) we have the Iwasawa decomposition

SL(2,A) = N(A)A(A)KA . (7.3)
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Given a generic group element g = nak of SL(2,A), we define the character χ on SL(2,A)
in analogy with the general definition (5.88) such that

χ(nak) = |aλ+ρ| , (7.4)

where λ is some weight vector of sl(2,A) and ρ is the Weyl vector. In the case of SL(2,A)
the space of (complex) weights is one-dimensional and spanned by the fundamental weight
Λ1 dual to the unique simple root α1 of sl(2,A). The Weyl vector ρ is also identical to
Λ1. Therefore, we can parametrise the weight appearing in (7.4) with a single parameter
s ∈ C as

λ = 2sΛ1 − ρ = (2s− 1)Λ1 ⇒ λ+ ρ = 2sΛ1 . (7.5)

Furthermore, we make use of the function H(g) of (5.84), which denotes the Lie algebra
element associated with the abelian part a in the Iwasawa decomposition of g = nak, such
that a = exp(H(g)). With this function the character can now be written as

χs(g) ≡ |aλ+ρ| = e(λ+ρ)(H(g)) = e(λ+ρ)(H(a)) = e2sΛ1(H(a)) , (7.6)

where we have introduced the notation χs for the character parametrised by s ∈ C. In the
case of SL(2,A) we can write all these objects explicitly (in the fundamental representation)
as (2× 2)-matrices as follows:

g = nak =

(
1 u

1

)(
v

v−1

)
k (7.7)

with k ∈ KA of (7.1). Here, u and v are adelic numbers. In keeping with the identification
of the upper half plane (cf. also appendix A)

H = {z = x+ iy ∈ C | Im(z) > 0} = SL(2,R)/SO(2,R), (7.8)

this requires that at the archimedean place p = ∞ we have to use the following
parametrisation

g∞ = n∞a∞k∞ =

(
1 x

1

)(
y1/2

y−1/2

)
k∞ , (7.9)

with y > 0 and k∞ ∈ SO(2). Evaluated on the group element (7.7), the character (7.6)
yields

χs(g) = e2sΛ1(H(a)) = |v|2s (7.10)

since H(a) = log |v| ·H1 where H1 is the Cartan generator of SL(2,A) and the norm is
the adelic one. For the archimedean place this implies with (7.9) that χs(g∞) = ys, where
we have embedded g∞ into G(A) as g = (g∞, 1, 1, . . .).

The adelic Eisenstein series E(χ, g) is then defined by summing the character over a
coset according to (g ∈ SL(2,A))

E(χs, g) =
∑

γ∈B(Q)\SL(2,Q)

e(λ+ρ)(H(γg)) , (7.11)
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where the Borel subgroup B(Q) = N(Q)A(Q). Recall that this is the definition of the
SL(2,A) Eisenstein series attached to the induced representation which was given in
equation (5.146) of example 5.27. The sum converges absolutely for Re(s) > 1.

We are now ready to state the theorem:

Theorem 7.1 (Fourier expansion SL(2,A) Eisenstein series). The expansion of
E(χs, g) with respect to the unipotent radical N of SL(2,A) is given for g = g∞ ∈
SL(2,R) ⊂ SL(2,A) by:

E(χs, g) =
∑
ψ

Wψ(s, g) = ys +
ξ(2s− 1)

ξ(2s)
y1−s

+
∑
m 6=0

2

ξ(2s)
y1/2|m|s−1/2σ1−2s(m)Ks−1/2(2π|m|y)e2πimx, (7.12)

where there terms on the right-hand side of the first line constitute the constant term and the
second line provides the non-constant terms. Here, we have used the parametrisation (7.9)
for g∞ ∈ SL(2,R).

Furthermore, the Eisenstein series satisfies the functional relation

E(χs, g) =
ξ(2s− 1)

ξ(2s)
E(χ1−s, g). (7.13)

Proof. The proof of this theorem constitutes the rest of the present chapter.

To prove the theorem we now wish to analyse the Fourier expansion of E(χs, g) along
the unipotent radical N . This was already outlined in section 6.1. According to the general
discussion of the previous chapter, we have the following expansion

E(χs, g) =
∑

ψ∈Hom(N(Q)\N(A),U(1))

W ◦
ψ(s, g). (7.14)

We recall from section 6.2 that the superscript indicates that the Fourier coefficient
(Whittaker vector) W ◦

ψ is spherical, i.e., K-independent: W ◦
ψ(nak) = W ◦

ψ(na). We shall
distinguish the ‘constant’ Fourier coefficient W ◦

1 (s, g) corresponding to the special case of
a trivial character ψ ≡ 1

W ◦
1 (s, g) =

∫
N(Q)\N(A)

E(χs, ng)dn , (7.15)

and the remaining ‘non-constant’ coefficients given by

W ◦
ψ(s, g) =

∫
N(Q)\N(A)

E(χs, ng)ψ(n)dn. (7.16)

The expressions W1(s, g) and Wψ(s, g) are sometimes simply referred to as the ‘constant
term’ and the ‘Fourier coefficients’, respectively.
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Plugging-in the definition of the Eisenstein series, and interchanging the sum and
integration, we can rewrite the coefficients in the following form

W ◦
1 (s, g) =

∑
γ∈B(Q)\SL(2,Q)

∫
N(Q)\N(A)

χs(γng)dn, (7.17a)

W ◦
ψ(s, g) =

∑
γ∈B(Q)\SL(2,Q)

∫
N(Q)\N(A)

χs(γng)ψ(n)dn, (7.17b)

where we recall that the sums converge absolutely for Re(s) > 1.
We now proceed with the analysis of the constant and non-constant terms, starting

with the constant term.

7.2 Constant term

As seen in more detail in section 8.2, the constant term (7.17a) can be re-written as

W ◦
1 (s, g) =

∑
γ∈B(Q)\SL(2,Q)

∫
N(Q)\N(A)

χs(γng)dn

=
∑

γ∈B(Q)\G(Q)/B(Q)

∑
δ∈γ−1B(Q)γ∩B(Q)\B(Q)

∫
N(Q)\N(A)

χs(γδna)dn. (7.18)

Because of the quotient by B(Q) on the left in the original γ sum, we must make sure to
not overcount the coset representatives δ and this is achieved by the restriction on the δ
sum. To simplify the integral further we shall need the following result:

Proposition 7.2 (Bruhat decomposition).

SL(2,Q) =
⋃
w∈W

B(Q)wB(Q). (7.19)

Proof. To establish (7.19) we begin by noting that for the first coset representative w, we
have the double coset BwB = B and for the second coset representative we get

B

(
1

−1

)
B =

{(
a b

a−1

)(
1

−1

)(
ã b̃

ã−1

)
: b, b̃ ∈ Q, a, ã ∈ Q×

}
=

{(
−bã aã−1 − bb̃
−a−1ã −a−1b̃

)
: b, b̃ ∈ Q, a, ã ∈ Q×

}
=

{(
a ad−1

c

c d

)
: a, d ∈ Q, c ∈ Q×

}
(7.20)

and hence the Bruhat decomposition (7.19) corresponds to the division of SL(2,Q) into
those matrices with lower left entry equal to zero and those where it is non-zero.
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Using this we can now unfold the δ sum in (7.18) to the integration domain by enlarging
it, which yields

W ◦
1 (s, g) =

∑
γ∈B(Q)\SL(2,A)/B(Q)

∫
γ−1B(Q)γ∩N(Q)\N(A)

χs(γng)dn. (7.21)

The measure on this larger space is induced from the embedding N(Q)→ N(A).
We can simplify the summation even further by using the embedding of the Weyl group

W into K(Q); the sum over cosets has only two contributions arising from the trivial and
non-trivial coset representatives that can be chosen as

w =

(
1

1

)
or

(
1

−1

)
. (7.22)

These correspond precisely to the fundamental Weyl reflections of the Weyl group W of
the Lie algebra sl(2,Q). Denoting the coset representatives by Weyl words w, we can
therefore write the constant term as

W ◦
1 (s, g) =

∑
w∈W

Cw =
∑
w∈W

∫
w−1B(Q)w∩N(Q)\N(A)

χs(wng)dn , (7.23)

where we have defined individual contributions Cw to the constant term that are labelled
by elements of the Weyl group.

7.2.1 Trivial Weyl word

In the case when the Weyl word is the trivial Weyl reflection, i.e. w = 1, the integral
reduces to

C1 =

∫
B(Q)∩N(Q)\N(A)

χs(ng)dn =

∫
N(Q)\N(A)

χs(ng)dn

= |v|2s
∫

N(Q)\N(A)

dn = |v|2s, (7.24)

where we have used the fact that the Haar measure on N(Q)\N(A) is normalized to 1,
and applied the definition (7.10) of the character χs for the Iwasawa decomposed group
element g.

7.2.2 Non-trivial Weyl word

When w is the non-trivial Weyl reflection in (7.22), it is clear that we have a trivial
intersection

w−1B(Q)w ∩N(Q) = {1} (7.25)

129



Chapter 7. Fourier coefficients of Eisenstein series on SL(2,A)

and hence the integral for the non-trivial Weyl word simplifies to

Cw =

∫
w−1B(Q)w∩N(Q)\N(A)

χs(wng)dn =

∫
N(A)

χs(wng)dn. (7.26)

To evaluate the integral we first note that we can restrict the argument to χs(wng) =
χs(wna) since we integrate over N(A) and χs is trivial on KA. Therefore, we have to
evaluate ∫

N(A)

χs(wna)dn. (7.27)

Now we choose a parametrisation of N(A) by

N(A) =

{(
1 u

1

)
|u ∈ A

}
, (7.28)

and of a as in (7.7) to write the integral explicitly as∫
N(A)

χs(wna)dn =

∫
A

χs

((
1

−1

)
︸ ︷︷ ︸

w

(
1 u

1

)
︸ ︷︷ ︸

n

(
v

v−1

)
︸ ︷︷ ︸

a

)
du (7.29)

We now want to separate out how the integral depends on a. This is done by writing

wna = waa−1na = (waw−1)w(a−1na). (7.30)

The a-dependence comes from both parentheses in this relation. The factor in the first
parenthesis is

waw−1 =

(
1

−1

)(
v

v−1

)(
1

−1

)
=

(
−v−1

−v

)
(7.31)

and lies in A(A). It can therefore be extracted from the character χs using χs(waw
−1) =

|v|−2s by the definition (7.10) of χs and using the multiplicative properties of χs.
The factor in the second parenthesis in (7.30) is a conjugation of N(A) by a diagonal

element a and can be undone by a change of integration variable. Explicitly, we have

a−1na =

(
v−1

v

)(
1 u

1

)(
v

v−1

)
=

(
1 v−2u

1

)
(7.32)

Making the change of variables u → v−2u that maps the (Haar) measure du → |v|2du,
we can combine the contributions from the two parentheses in (7.30) to obtain the
a-dependence∫

A

χs(wna)dn = |v|−2s︸ ︷︷ ︸
χs(waw−1)

|v|2︸︷︷︸
change of du

∫
A

χs

((
1

−1

)
︸ ︷︷ ︸

w

(
1 u

1

)
︸ ︷︷ ︸

n

)
du. (7.33)
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In order to evaluate the remaining integral, we rewrite the character according to

χs(wn) = χs(wnw
−1w) = χ(wnw−1), (7.34)

where we have used that we have embedded the Weyl group in KA and the fact that χs is
right invariant under KA. Inserting the explicit parametrisations for w and n we find

wnw−1 =

(
1
−u 1

)
. (7.35)

We see that the Weyl transformation w maps the upper triangular element into a lower
triangular element as expected since the non-trivial w maps the (unique) positive root
of SL(2,A) to the unique negative root. To evaluate the character χs we will need to
perform an Iwasawa decomposition of its argument. By Langlands’ theory, see [219], the
integral (7.33 enjoys complete factorisation into a product∫

A

χs

((
1

−1

)(
1 u

1

))
du =

∏
p≤∞

∫
Qp
χs,p

((
1 0
−u 1

))
du (7.36)

such that one can analyse the integrals for each prime p separately.

Archimedean place p = ∞. We first prove the following result for the archimedean
integral corresponding to the real prime at infinity Q∞ = R.

Lemma 7.3 (Gindikin–Karpelevich formula for SL(2,R)). At the archimedean place
the integral (7.36) evaluates to:∫

R
χs,p

((
1 0
−u 1

))
du =

√
π

Γ(s− 1/2)

Γ(s)
. (7.37)

Proof. At the archimedean place, we denote the parameters of SL(2,R)/SO(2,R) by x
and y1/2 rather than u and v as shown in (7.9). The integral then becomes∫ ∞

−∞
χs,∞

((
1 0
−x 1

))
dx. (7.38)

In order to evaluate this we must bring the argument of the character into Iwasawa form,
i.e. we must find n ∈ N and a ∈ A such that(

1 0
−x 1

)
= nak, (7.39)

for some k ∈ K∞ = SO(2,R). This was done in example 4.4 with the result (cf. (4.55))
that (

1 0
−x 1

)
=

(
1 −x

1+x2

1

)( √
1 + x2

−1

√
1 + x2

)
k (7.40)
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and the character therefore evaluates to

χs,∞

((
1 0
−x 1

))
= χs,∞

(( √
1 + x2

−1

√
1 + x2

))
= (
√

1 + x2)−2s. (7.41)

We then find for the integral∫ ∞
−∞

χs,∞

((
1 0
−x 1

))
dx =

∫ ∞
−∞

(
√

1 + x2)−2sdx =
√
π

Γ(s− 1/2)

Γ(s)
. (7.42)

Non-archimedean places p <∞. We shall now prove the corresponding result for finite
primes:

Lemma 7.4 (Gindikin–Karpelevich formula for SL(2,Qp) [219]).∫
Qp
χs,p

((
1 0
−u 1

))
du = 1 +

p− 1

p

p−2s+1

1− p−2s+1
=

1− p−2s

1− p−2s+1
. (7.43)

Proof. We now consider the terms in (7.36) for which p is a finite prime:∫
Qp
χs,p

((
1 0
−u 1

))
du. (7.44)

The Iwasawa decomposition of this element was also discussed in example 4.4. When
u ∈ Zp we have (

1 0
−u 1

)
∈ SL(2,Zp) . (7.45)

The compact part of SL(2,Qp) is Kp = SL(2,Zp) and hence, since χs is trivial on K, we
have

χs,p

((
1 0
−u 1

))
= 1 . (7.46)

We may thus split the integral into∫
Zp
du+

∫
Qp\Zp

χs,p

((
1 0
−u 1

))
du , (7.47)

where the first term is unity by choice of normalisation (3.18) for the measure du. When
u ∈ Qp but not in Zp, i.e. |u|p > 1, we write the matrix in an Iwasawa decomposition
(which is not unique, cf. example 4.4)(

1 0
−u 1

)
=

(
1 ∗

1

)(
u−1

u

)
k. (7.48)
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The remaining integral becomes∫
Qp\Zp

χs,p

((
1 ∗

1

)(
u−1

u

)
k

)
du =

∫
Qp\Zp

|u|−2s
p du. (7.49)

We recognize this as an integral of the type (3.25) that we already evaluated, so the result
is ∫

Qp\Zp
|u|−2s

p du =
p− 1

p

p−2s+1

1− p−2s+1
. (7.50)

Combining this with the first term in (7.47) proves the claim.

Remark 7.5. Integrals of this type will be evaluated more generally inequation (8.36),
leading to a more general Gindikin–Karpelevich formula.

7.2.3 The global form of the full constant term

We are now ready to assemble all the pieces and write down the complete result for the
constant term W1(s, g). The only remaining step is to compute the product over all finite
primes in (7.36). Recalling the Euler product representation of the Riemann zeta function
(1.21), we find∏

p<∞

∫
Qp
χs,p

((
1 0
−u 1

))
du =

∏
p<∞

1− p−2s

1− p−2s+1
=
ζ(2s− 1)

ζ(2s)
. (7.51)

Combining this with the result from the archimedean integral (7.42), including the overall
pre-factor from (7.33), as well as the contribution from the trivial Weyl word in (7.24) we
finally find

W ◦
1 (s, g) = |v|2s +

√
π

Γ(s− 1/2)

Γ(s)

ζ(2s− 1)

ζ(2s)
|v|−2s+2. (7.52)

Here, we have left v ∈ A. Restricting to g ∈ SL(2,R) we can write this in terms of
v = y1/2 instead, with the result that the first term scales like ys while the second term
scales as y1−s. The relation between the exponents is that induced from the non-trivial
Weyl reflection:

s→ 1− s . (7.53)

Referring back to our particular parametrisation (7.4) and (7.5) of the character χs, we
recall that for w being trivial, we have λ + ρ = 2sΛ1, while for w being the non-trivial
Weyl word we obtain wλ+ ρ = 2(1− s)Λ1. Hence the parameter s is seen to be related by
the above transformation. Recall from section 3.7.1 that the completed zeta function is
given by

ξ(s) = π−s/2Γ(s/2)ζ(s), (7.54)
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and satisfies the functional relation

ξ(s) = ξ(1− s). (7.55)

Using this we can write the constant term in the following compact way

W ◦
1 (s, g) = |v|2s +

ξ(2s− 1)

ξ(2s)
|v|−2s+2. (7.56)

For v = y1/2 this agrees with the constant term in (1.16) and the statement of theorem 7.1.
We note that constant terms therefore satisfy the functional relation

W ◦
1 (s, g) =

ξ(2− 2s)

ξ(1− 2s)
C(1− s, g) =

ξ(2s− 1)

ξ(2s)
C(1− s, g), (7.57)

where the functional relation for the completed Riemann zeta function (3.88) has been
used.

7.3 The non-constant Fourier coefficients

The Whittaker vector W ◦
ψ of (7.17b) we want to compute is given by

W ◦
ψ(s, g) =

∑
w∈W

Fw,ψ =
∑
w∈W

∫
w−1B(Q)w∩N(Q)\N(A)

χs(wng)ψ(n)dn . (7.58)

Using the Iwasawa decomposition of g = n′ak and performing a change of variables this
expression can be re-written as

W ◦
ψ(s, g) = ψ(n′−1)

∑
w∈W

∫
w−1B(Q)w∩N(Q)\N(A)

χs(wna)ψ(n)dn . (7.59)

As for the constant term case, the sum over the Weyl group has two contributions, one
each, for when the Weyl word is trivial, 1, and non-trivial, w,

W ◦
ψ = F1,ψ + Fw,ψ . (7.60)

The two contributions will be treated separately below.
Given our standard parametrisation of n by the variable u, we define the character ψ

(against which we integrate) as a direct product

ψ =
∏
p≤∞

ψp (7.61)

with

ψp(u) =

{
e2πimu for p =∞ ,

e−2πi[mu] for p <∞ .
(7.62)
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The function [ · ] returns the fractional part of a p-adic number as defined in (3.28). An
important point here is that we are interested in characters ψ of the continuous group
N(Q) embedded diagonally in N(A). Therefore the coefficient m is a rational number and
identical in all ψp.

In equation (7.62), we have not indicated the conductor m as a subscript on the
character ψp in contrast to section 3.3 in order to keep the notation light. It is always
understood that the conductor is m. Note that for the pre-factor in (7.59) we have
ψ(n′−1) = ψ(n′).

7.3.1 Trivial Weyl word

In the trivial case, i.e. when w is equal to the identity matrix, the integral in (7.59) takes
the form ∫

N(Q)\N(A)

χs(na)ψ(n)dn . (7.63)

As before, we use the definition χs(na) = |v|2s.
The complete expression for the ‘trivial’ term of the Fourier coefficient is then given by

F1,ψ(s, g) = ψ(n′)|v|2s
∫

N(Q)\N(A)

ψ(n)dn . (7.64)

We now proceed to write this expression as a product over all primes, including the place
at infinity, as

F1,ψ(s, g) =
∏
p≤∞

ψp(n
′)|v|2sp

∫
N(Zp)\N(Qp)

ψp(u)du . (7.65)

This has to be evaluated separately for each prime p ≤ ∞. Starting with the archimedean
p =∞, the domain of integration is Z\R ∼= [0, 1]. This leads to the integral

F1,ψ,∞(s, g) = ψ∞(n′)|v|2s∞
1∫

0

e−2πimudu = 0 (7.66)

since this is the integral of a periodic function (with mean value zero) over a full period.
Therefore, the full Fourier coefficient vanishes for the trivial Weyl word:

F1,ψ(s, g) = 0. (7.67)

This is the reflection of a general phenomenon that will be discussed in section 9.1 below.
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7.3.2 Non-trivial Weyl word

In the case when the Weyl word is non-trivial, with representation

w =

(
0 1
−1 0

)
, (7.68)

the corresponding term in the Fourier coefficient reads

Fw,ψ(s, g) = ψ(n′)

∫
N(A)

χs(wna)ψ(n)dn . (7.69)

We now perform the same transformation (7.30) to remove the a-dependence from χs.
Under a change of variables n→ ana−1, the integration measure transforms as dn→ |v|2dn,
and we obtain

ψ(n′)|v|2
∫

N(A)

χs(wan)ψ(ana−1)dn . (7.70)

Inserting w−1w in the argument before and after n, we find for the character χs(wan) =
χs(waw

−1)χs(wnw
−1w) = |v|−2sχs(wnw

−1), where we have again used the fact that χ is
right invariant under a Weyl group transformation. The full expression then takes the
form

ψ(n′)|v|−2s+2

∫
N(A)

χs(wnw
−1)ψ(ana−1)dn . (7.71)

Now we write the expression in the standard way as a product over all places

Fw,ψ(s, g) =
∏
p≤∞

ψp(n
′)|v|−2s+2

p

∫
N(A)

χs,p(wnw
−1)ψp(ana−1)dn (7.72)

and evaluate the archimedean and non-archimedean places separately.

The archimedean place p =∞: The Iwasawa decomposition of wnw−1 is as in (7.41)

and again leads to χs,∞(wnw−1) =
√

1 + x2
−2s

. Furthermore, the character evaluates to
ψ∞(ana−1) = exp(2πimyx), such that overall we obtain

Fw,ψ,∞ = ψ∞(n′)|y|−s+1
∞

∞∫
−∞

(1 + x2)−se−2πimyxdx

=
2πs

Γ(s)
y1/2|m|s−1/2Ks−1/2(2π|m|y)ψ∞(n′), (7.73)

where we have used the integral representation of the modified Bessel function given in
equation (3.54) and y > 0.
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The non-archimedean places p <∞: We have to analyse the integral

Fw,ψ,p = ψp(n
′)|v|−2s+2

p

∫
Qp

χs,p(wnw
−1)ψp(ana−1)dn . (7.74)

We will set a = n′ = 1 along the finite primes since we are interested in the Eisenstein series
as a function on SL(2,R) only. From the Iwasawa decomposition of wnw−1 following (7.44)
we know that χs,p(wnw

−1) is given by

χs,p(wnw
−1) = max(1, |u|p)−2s, (7.75)

where u parametrises N(Qp) as in (7.28) and we have to integrate this against the
appropriate character ∫

Qp

max(1, |u|p)−2se2πi[mu]du . (7.76)

Using example 3.20, this integral evaluates to∫
Qp

max(1, |u|p)−2se2πi[mu]du = γp(m)(1− p−2s)
1− p−2s+1|m|2s−1

p

1− p−2s+1
. (7.77)

Taking the product over all finite places yields

∏
p<∞

Fw,ψ,p =

(∏
p<∞

(1− p−2s)

)(∏
p<∞

γp(m)
1− p−(2s−1)|m|2s−1

p

1− p−(2s−1)

)
. (7.78)

The first factor is equal to ζ(2s)−1 by virtue of (1.21). We can restrict to m ∈ Z due to
the occurrence of the p-adic Gaussian γp(m) for all p <∞ as seen in section 3.4. Writing
m then in terms of its unique prime factorisation m =

∏
qkii with qi primes, we can rewrite

the second factor (cf. example 6.25). Consider first the case when m = qk for a single
prime q. Then (3.16) implies that the second factor can be written as a sum over (positive)
divisors of qk(∏

p<∞

1− p−(2s−1)|qk|2s−1
p

1− p−(2s−1)

)
=

1− q−(2s−1)q−k(2s−1)

1− q−(2s−1)
=

1− q−(k+1)(2s−1)

1− q−(2s−1)

=
∑
d|qk

d−(2s−1). (7.79)

By multiplicativity of the expressions, we therefore obtain for a general integral m(∏
p<∞

γp(m)
1− p−(2s−1)|m|2s−1

p

1− p−(2s−1)

)
=
∑
d|m

d−2s+1 =: σ1−2s(m), (7.80)
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where we have used the general divisor sum σ1−2s(m) over positive divisor of an integer
(cf. (1.18)).

Putting everything together we therefore obtain a non-vanishing coefficient only for
integral m with value

W ◦
ψ(s, g) = Fw,ψ(s, g) =

2

ξ(2s)
y1/2|m|s−1/2σ1−2s(m)Ks−1/2(2π|m|y)ψ∞(n′), (7.81)

where we have used the definition ξ(s) = π−s/2Γ(s/2)ζ(s) for the completed Riemann
ζ-function (1.17).

Finally, we address the functional relation (7.13) for the non-zero Fourier coefficients.
The modified Bessel function has the property Ks−1/2(w) = K1/2−s(w) for all w > 0. For
the divisor sum one finds similarly

σ1−2s(m) =
∑
d|m

d1−2s = |m|1−2s
∑
d|m

( |m|
d

)2s−1

= |m|1−2sσ2s−1(m). (7.82)

Putting this together, we obtain

W ◦
ψ(s, g) =

ξ(2s− 1)

ξ(2s)
W ◦
ψ(1− s, g), (7.83)

where again the functional relation (3.88) of the Riemann zeta function was used. This
concludes the proof of theorem 7.1.
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Chapter 8

Langlands constant term formula

In this chapter we shall provide a detailed proof of the Langlands constant term formula
for Eisenstein series on an arbitrary reductive group G. This generalises the results of
the previous chapter for G = SL(2). We will also discuss the general functional relation
satisfied by Eisenstein series and we explain how to define and evaluate constant terms
with respect to non-maximal unipotent radicals.

8.1 Statement of theorem

We start from the following definition of the minimal parabolic Eisenstein series

E(χ, g) =
∑

γ∈B(Q)\G(Q)

χ(γg) . (8.1)

This is a valid rewriting since the cosets B(Q)\G(Q) are in bijection with those of
B(Z)\G(Z) (see Example 4.9 for a proof of this for SL(2)). When writing (8.1), we can
allow g ∈ G(A). The real function (1.12) is re-obtained by setting g = (g∞, 1, 1, . . .), i.e.,
setting the components along G(Qp) equal to the identity for p 6=∞.

As in section 5.3 we parametrise the character χ by

χ(nak) = aλ+ρ (8.2)

in terms of a weight λ of the Lie algebra and ρ is the Weyl vector.
Our interest in the present section is to evaluating the so-called constant terms in the

minimal parabolic subalgebra B (standard Borel); that is we shall prove:

Theorem 8.1 (Langlands’ constant term formula). The constant term of E(λ, g)
with respect to the unipotent radical N ⊂ B is given by:∫

N(Q)\N(A)

E(λ, ng)dn =
∑
w∈W

awλ+ρ
∏

α>0 |wα<0

ξ(〈λ|α〉)
ξ(1 + 〈λ|α〉) , (8.3)

where dn is the Haar measure that is normalised such that N(Q)\N(A) has unit volume.
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Proof. The proof of this theorem constitutes the greater part of the present chapter and
is contained in sections 8.2 to 8.7.

Clearly, the constant term (8.4) depends only on a: For g = n′ak in Iwasawa form,
right K-invariance and a change of integration variation reduce the dependence to a. In
what follows we shall therefore define

C(χ, a) =

∫
N(Q)\N(A)

E(χ, ng)dn =

∫
N(Q)\N(A)

E(χ, na)dn , (8.4)

and we view the integral as a function on the Cartan torus.

8.2 Bruhat decomposition

The first step in evaluating (8.4) is to use the Bruhat decomposition [27]:

G(Q) =
⋃
w∈W

B(Q)wB(Q) (8.5)

that describes the group G(Q) as a disjoint union of double cosets by the Borel subgroup
B(Q) ⊂ G(Q). The group W is the Weyl group of G(R). Clearly, we could restrict the
group B(Q) on the right to the subgroup generated by those positive step operators that
are mapped to negative step operators by the action of w. The ones that stay positive
are already contained in the Borel subgroup on the left. One can think of the Bruhat
decomposition as the extension of the tessellation of the Cartan subalgebra into Weyl
chambers to the full group.

Using the same trick as in section 7.2 we can rewrite the constant term as

C(χ, a) =
∑

γ∈B(Q)\G(Q)

∫
N(Q)\N(A)

χ(γna)dn

=
∑
w∈W

∫
w−1B(Q)w∩N(Q)\N(A)

χ(wna)dn . (8.6)

Continuing from (8.6) we look at the individual terms

Cw =

∫
w−1B(Q)w∩N(Q)\N(A)

χ(wna)dn (8.7)

and note that the integration domain can be simplified to

Cw =

∫
Nw(A)

χ(wna)dn , (8.8)
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where Nw(A) is generated from a product over the positive roots that are mapped to
negative roots by the given Weyl word w

Nw(A) =
∏

α>0 |wα<0

Nα(A) (8.9)

and Nα(A) is the subgroup of G(A) generated by the step operator Eα and its dimension
is given by the length ` of the reduced Weyl word w. This simplification of (8.7) uses two
facts:

(i) (Upper) Borel elements that get mapped to lower Borel elements by w have trivial
intersection with N(Q) and therefore the quotient becomes trivial and leaves an
integral over all of A in that direction.

(ii) If an (upper) Borel element is mapped to another upper Borel element by the action
of w, one is left with the integral over the corresponding quotient. However, since
the part wn of the argument is then still a Borel element, the character is insensitive
to it and one is left with the volume of corresponding Borel directions which is
normalised to unity.

Therefore, in (8.8) we have carried out many trivial integrals and are only left with the
non-trivial integrals where wn is really a lower Borel element.

8.3 Parametrising the integral

We will eventually evaluate integral (8.8) using a recursive method and we start by
parametrising it conveniently. First, we need to know something about Nw(A) defined in
(8.9). We fix a reduced expression w = wi1wi2 · · ·wi` for the Weyl word w of length `. The
subscripts refer to the nodes of the Dynkin diagram of G(Q) and wi are the fundamental
reflections that generate the Weyl group. Then one can explicitly enumerate all positive
roots that are mapped to negative roots by the action of w as follows. Define

γk = wi`wi`−1
· · ·wik+1

αik (8.10)

where αik is the ikth simple root. That this gives a valid description of the positive roots
generating Uw can be checked easily by induction. Therefore we have

{α > 0 |wα < 0} = {γi | i = 1, . . . , `} . (8.11)

We also note that there is a simple expression for the sum of all these roots:

γ1 + . . .+ γ` = ρ− w−1ρ (8.12)

which can again be checked by induction. We note in particular γ` = αi` .
In the next step we use the Chevalley basis notation to write elements u ∈ Nw(A) as

u = xγ1(u1) · · · xγ`(u`) (8.13)
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with the Chevalley generator xα(v) being defined by

xα(v) = evEα , (8.14)

where Eα is the generator of the α root space normalised to unity (for both short and long
roots) and v ∈ A is the parameter of the group element. With this parametrisation, we
can rewrite our individual term Cw of (8.8) as

Cw =

∫
A`
χ (wxγ1(u1) · · ·xγ`(u`)a) du1 · · · du` . (8.15)

8.4 Obtaining the a dependence of the integral

It is now possible to extract the dependence on a from the integral (8.15). This is done by
conjugating the abelian element a through to the left in the argument of χ. The result is

Cw =

∫
A`
χ
(
waxγ1(a−γ1u1) · · ·xγ`(a−γ`u`)

)
du1 · · · du` , (8.16)

where we have used the fact that Cartan elements act diagonally on the Eγi root spaces.
In the next step we can move w past a in the argument of χ and employ the multiplicative
property (5.80) of the character to obtain

Cw = χ(waw−1)

∫
A`
χ
(
wxγ1(a−γ1u1) · · ·xγ`(a−γ`u`)

)
du1 · · · du`

= χ(waw−1)aγ1+...γ`

∫
A`
χ (wxγ1(u1) · · ·xγ`(u`)) du1 · · · du` , (8.17)

where we have also rescaled the u-variables and moved the Jacobi factor outside of the
integral. In the form (8.17), one can read off the full a-dependence of the constant term.
Using (8.2) and (8.12) we can rewrite the a-dependence of the constant term, remembering
that χ is W-invariant from the right, as

Cw = aw
−1(λ+ρ)aρ−w

−1ρIw

= aw
−1λ+ρIw , (8.18)

where the remaining, a-independent integral is

Iw =

∫
A`
χ (xwγ1(u1) · · ·xwγ`(u`)) du1 · · · du` , (8.19)

and we have applied w to all the Chevalley elements and used again K-invariance of χ on
the right.
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8.5 Solving the remaining integral by induction

We will now solve (8.19) by induction. First, we note that wγi is a negative root for all i
by virtue of the definition of γi. Therefore, the factors xwγi(ui) appearing in (8.19) are
elements of the lower triangular Borel subgroup of G(A). To evaluate the character χ in
(8.19) according to (8.2), we need to perform an Iwasawa decomposition and isolate the
A(A) part of the argument of the character χ. We start by Iwasawa decomposing the last
Chevalley factor in the argument of the character according to

xwγ`(u`) = n(u`)a(u`)k(u`) . (8.20)

The (negative) step operator Ewγ` that enters in xwγ`(u`) is part of an SL(2,A) subgroup
of G(A) and the Iwasawa decomposition (8.20) takes place in that subgroup. We choose to
label the SL(2,A) subgroup by its positive root −wγ`, so that the corresponding Cartan
generator is proportional to H−wγ` . The problem of Iwasawa decomposing the SL(2,A)
associated with −wγ` is different for p = ∞ and p < ∞ and will be treated separately
in 8.6.1 and 8.6.2 below.

Inserting the Iwasawa decomposed (8.20) into (8.19), we can again drop the compact
element on the right. Then we can conjugate n(u`) through to the left. For this we have
to pass through the negative step operators xwγi(ui) for i = 1, . . . , `− 1. This produces an
element that can be arranged as a product of nilpotent elements on the left times negative
step operators xwγi(u

′
i) for i = 1, . . . , ` − 1 with different u′i. The nilpotent elements

disappear in the character and the transformation of the space of parameters u1 to u`−1

is uni-modular.We tacitly perform the corresponding change of variables ui → u′i. We
therefore obtain that n(u`) can be completely absorbed and we are left with:

Iw =

∫
A`
χ
(
xwγ1(u1) · · ·xwγ`−1

(u`−1)a(u`)
)
du1 · · · du`. (8.21)

In the next step, we conjugate a(u`) to the left. This rescales again the u variables with
the result

Iw =

∫
A`
χ
(
a(u`)xwγ1(a(u`)

−wγ1u1) · · · xwγ`−1
(a(u`)

−wγ`−1u`−1)
)
du1 · · · du`

=

∫
A
χ(a(u`))a(u`)

w(γ1+...γ`−1)du` · Iw′ , (8.22)

where we have undone the scaling of the variables at the cost of introducing a Jacobi
factor and introduced w′ through

w = w′wi` , (8.23)

i.e., it is obtained from the Weyl word w by removing the right-most fundamental reflection.
This is the recursion formula we are after. All that remains now is to evaluate one integral
over A.
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8.6 The Gindikin–Karpelevich formula

Using the expression (8.2) for the character χ, the desired integral is

I` =

∫
A
a(u`)

λ+ρ+w(γ1+...γ`−1)du` =
∏
p≤∞

∫
Qp
a(u`)

λ+ρ+w(γ1+...γ`−1)du`, (8.24)

and can be evaluated for each finite and infinite prime ≤ ∞ as follows. For this one needs
the explicit Iwasawa decomposition expressions for a(u`) that will be derived below for
p =∞ and p <∞. We also introduce the notation

a(u`)
λ+ρ+w(γ1+...γ`−1) = |φ`|z`+1 (8.25)

with (8.2) and

z` = (λ+ w′ρ)(H−wγ`)− 1 = −〈λ|wγ`〉, (8.26)

where we have used a(u`) = elog(φ`)H−wγ` to introduce the Cartan generator H−wγ` of the
SL(2,A) associated with the −wγ` positive root space. We have also used

w(γ1 + . . .+ γ`−1) = w′ρ− ρ (8.27)

and

(w′ρ)(H−wγ`) = −〈w′ρ|wγ`〉 = −〈ρ|w`γ`〉 = 〈ρ|αi`〉 = 1 , (8.28)

since γ` = αi` and we have normalised the symmetric bilinear form such that ρ has unit
inner product with all simple roots. The precise value of φ` depends on whether one is at
Q∞ = R ⊂ A or at Qp ⊂ A for p <∞.

8.6.1 Integral over R: p =∞
At the archimedean place we have result:

Lemma 8.2 (archimedean Gindikin–Karpelevich formula).∫
Qp
a(u`)

λ+ρ+w(γ1+...γ`−1)du` =
√
π

Γ(z`/2)

Γ ((z` + 1)/2)
. (8.29)

Proof. If u = u` ∈ R, the Iwasawa decomposition (8.20) is (see Example 4.4)(
1 0
u 1

)
=

(
1 u

1+u2

0 1

)(
1/
√

1 + u2 0

0
√

1 + u2

)
k (8.30)

with

k =
1√

1 + u2

(
1 −u
u 1

)
∈ SO(2,R). (8.31)

The diagonal matrix is a(u`). Substituting it into the integral (8.24) for u = u` ∈ R,
one obtains with (8.25)∫

R
(1 + u2)−(z`+1)/2du =

√
π

Γ(z`/2)

Γ ((z` + 1)/2)
. (8.32)
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8.6.2 Integral over Qp for finite p

We now prove the corresponding result for finite primes:

Lemma 8.3 (non-archimedean Gindikin–Karpelevich formula). The non-archimedean
integral evaluates to ∫

Qp
a(u`)

λ+ρ+w(γ1+...γ`−1)du` =
1− p−z`−1

1− p−z` , (8.33)

where z` > 0.

Proof. If u = u` ∈ Zp, the matrix (
1 0
u 1

)
(8.34)

is in SL(2,Zp) which is the compact part of SL(2,Qp). Therefore a(u`) = 1 in this case
and the integral is trivial.

If u ∈ Qp\Zp, the (non-unique) Iwasawa decomposition yields (see Example 4.4)(
1 0
u 1

)
=

(
1 ∗
0 1

)(
u−1 0
0 u

)
k . (8.35)

Even though the Iwasawa decomposition is not unique, a(u`) is defined uniquely. We
therefore obtain∫

Qp
|φ`|z`+1

p du =

∫
Zp
dx+

∫
Qp\Zp

|u|−z`−1
p du

= 1 +
p− 1

p

p−z`

1− p−z` =
1− p−z`−1

1− p−z` , (8.36)

where we have used the integral (3.25) and the normalisation of the measure (3.18).

8.6.3 The global formula

Putting finite and infinite contributions together, we therefore obtain (with z` as in (8.26))

I` =
√
π

Γ(z`/2)

Γ ((z` + 1)/2)

∏
p<∞

1− p−z`−1

1− p−z` =
ξ(z`)

ξ(z` + 1)
, (8.37)

where we have used the Euler product formula (1.21) for the Riemann zeta function and
its completion

ξ(s) = π−s/2Γ(s/2)ζ(s) (8.38)

that satisfies the functional relation (cf. (3.88))

ξ(s) = ξ(1− s) . (8.39)
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8.7 Assembling the constant term

We can now write the final formula for the constant term (8.4) by assembling (8.18) and
the result (8.37) inserted into the recursion relation (8.22). The answer is∫

N(Q)\N(A)

E(χ, ng)dn =
∑
w∈W

aw
−1λ+ρ

∏
α>0 |wα<0

ξ(−〈λ|wα〉)
ξ(1− 〈λ|wα〉) . (8.40)

By relabelling the sum by w → w−1 we obtain the standard Langlands formula for the
constant term in the minimal parabolic∫

N(Q)\N(A)

E(χ, ng)dn =
∑
w∈W

awλ+ρ
∏

α>0 |wα<0

ξ(〈λ|α〉)
ξ(1 + 〈λ|α〉) . (8.41)

We note that the inner product here is normalised such that 〈ρ|αi〉 = 1 for all simple roots
αi. Often one denotes the intertwining coefficient by

M(w, λ) =
∏

α>0 |wα<0

ξ(〈λ|α〉)
ξ(1 + 〈λ|α〉) . (8.42)

This concludes the proof of theorem 8.1.

Remark 8.4. The derivation above of the constant term formula made heavy use of
the adeles A. This was most noticeable when evaluating the integral (8.24) that yielded
the completed Riemann ζ-functions in their Euler product form. Still, one may wonder
whether this level of abstraction was really necessary. For SL(2,R) one can obtain the
constant terms alternatively by Poisson resummation techniques, see appendix B for a
summary, without ever making reference to p-adic numbers. What this requires, however,
is an explicit understanding of the sum over the cosets B(Z)\G(Z) in the definition of
the Eisenstein series and their relation to sums over integer lattices. In the general case,
the description of these cosets is not easy to characterise and the lattice sum descriptions
typically involve representation theoretic constraints on the sum and this is discussed in
more detail in section 12.2. None of these details are required for obtaining the constant
term formula when using the p-adic description and this is where the power of the method
lies.

8.8 Functional relations for Eisenstein series

The definition of the Eisenstein series (8.1) is initially restricted to the domain of (absolute)
convergence of the defining sum. As we mentioned before this requires that the weight
λ entering in the definition of the character χ through the relation (8.2) has sufficiently
large real parts. More precisely, it is required to lie in the so-called Godemont range

Re〈λ|αi〉 > 1 for all simple roots αi. (8.43)
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The Eisenstein series E(χ, g) can then be defined by analytic continuation in the
complexified weight λ to almost all values of λ. Note that a complex weight λ corresponds
to a character χ taking values not in U(1) but in C×. We are mainly interested in real
weights. As shown in [214,218], this continuation is possible everywhere except for certain
hyperplanes that are related to the integral weight lattice.

An important property of the Eisenstein series is that they obey functional relations.
More precisely one has:

Theorem 8.5 (Functional relation for Eisenstein series [218]). For each w ∈ W
the Eisenstein series E(λ, g) satisfies the functional relation:

E(λ, g) = M(w, λ)E(wλ, g) . (8.44)

In other words, the Eisenstein series along the Weyl orbit of a character are all proportional
to each other.

Proof. To prove this, note first that the coefficients M(w, λ) given by (8.42) satisfy the
following property:

Lemma 8.6.

M(w1w2, λ) = M(w1, w2λ)M(w2, λ) , ,∀w1, w2 ∈ W . (8.45)

Proof. Assume first that w1 and w2 are fundamental Weyl reflections, say wi and wj . This
yields

M(wi, wjλ)M(wj, λ) =
∏

α>0 |wiα<0

ξ(〈wjλ|α〉)
ξ(1 + 〈wjλ|α〉)

∏
α>0 |wjα<0

ξ(〈λ|α〉)
ξ(1 + 〈λ|α〉)

=
∏

wjα′>0 |wiwjα′<0

ξ(〈λ|α′〉)
ξ(1 + 〈λ|α′〉)

∏
α>0 |wjα<0

ξ(〈λ|α〉)
ξ(1 + 〈λ|α〉) ,(8.46)

where in the second step we made the substitution α′ = wjα and used the invariance of
the bilinear form: 〈wjλ|α〉 = 〈λ|wjα〉.

We want to show that the two factors combine into the left hand side of (8.45). To
this end we rewrite the two disjoint sets of roots

A = {α > 0 ∧ wjα < 0}
B = {wjα > 0 ∧ wiwjα < 0} (8.47)

using Lemma 3.7 from [186] which states that if any α ∈ ∆+ satisfies wiα < 0 for some
fundamental reflection wi then α = αi; the root corresponding to wi.

Thus, α > 0 ∧ wjα < 0 =⇒ α = αj =⇒ wiwjα = −wiαj < 0 and

A = {α > 0 ∧ wiwjα < 0 ∧ wjα < 0} . (8.48)

Similarly, α′ = wjα > 0 ∧ wiα′ = wiwjα < 0 =⇒ α′ = αi =⇒ α = wjα
′ = wjαi > 0

and
B = {α > 0 ∧ wiwjα < 0 ∧ wjα > 0} . (8.49)

147



Chapter 8. Langlands constant term formula

This gives the disjoint union

A ∪B = {α > 0 ∧ wiwjα < 0} = {α > 0 ∧ wα < 0} (8.50)

and it follows that ∏
wjα′>0 |wiwjα′<0

ξ(〈λ|α′〉)
ξ(1 + 〈λ|α′〉)

∏
α>0 |wjα<0

ξ(〈λ|α〉)
ξ(1 + 〈λ|α〉)

=
∏

α>0 |wiwjα<0

ξ(〈λ|α〉)
ξ(1 + 〈λ|α〉) = M(wi, wjλ). (8.51)

The general formula (8.45) for arbitrary products of fundamental reflections follows by
iterating this procedure.

The functional relation (8.44) for the constant term of the Eisenstein series, now follows
from this result applied to the constant term formula (8.41). The fact that this also
extends to the non-constant terms was shown by Langlands [218].

Remark 8.7. The functional relation (8.44) shows the limitations of the analytic
continuation: For weights λ and Weyl words w ∈ W for which M(w, λ) is not a non-zero
finite number, the relation appears ill-defined. This can only happen for λ on certain
hyperplanes as indicated above. Another apparent limitation of the functional relation is
that for choosing a Weyl word w that stabilises the weight λ one would require M(w, λ).
This is not guaranteed to be true. For generic λ, (8.44) provides a valid relation. The
remaining cases are those when E(λ, g) actually develops poles (as a function of λ) and
one has to consider appropriate normalising factors in the functional relation to make it
well-defined.

8.9 Expansion in maximal parabolics*

In the previous sections we have explained how to expand Eisenstein series along a minimal
parabolic subgroup, with unipotent radical N . It is also possible to make an expansion
along different parabolic subgroups with smaller unipotent radical. The analogue of the
constant term (8.4) then retains a dependence on the coordinates on N(A) since only a
subset of them is integrated out. In In this section we state and prove a theorem giving
the formula for the constant terms of E(χ, g) in an expansion along a maximal parabolic
subgroup.

The maximal parabolic subgroup, which we denote by Pj◦ , is defined with respect to a
particular choice of simple root αj◦ (i.e node j◦ in the Dynkin diagram) of G. This choice
defines a subset of the simple roots, Πj◦ = Π\{αj◦}, where Π is the set of all simple roots.
From this we furthermore define Γj◦ to be the set of all positive roots of G, which are
given by linear combinations of the simple roots contained in Πj◦ , i.e., those roots of G
that do not contain αj◦ . Using the standard Langlands decomposition, we can write a
parabolic subgroup as the product of the Levi subgroup L and the unipotent radical U .
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In the present case this reads Pj◦ = Lj◦Uj◦ . At the level of the corresponding Lie algebras
one obtains pj◦ = lj◦ ⊕ uj◦ (not a direct sum of Lie algebras) with

pj◦ = a⊕
⊕

α∈∆+∪(−Γj◦ )

gα (8.52)

and

lj◦ = a⊕
⊕

α∈Γj◦∪−Γj◦

gα and uj◦ =
⊕

α∈∆+\Γj◦

gα , (8.53)

respectively. Note that the case of the minimal parabolic above can be recovered by setting
Γj◦ = ∅.

Proceeding in analogy with the definitions of the minimal parabolic expansion we
define the constant term part of the maximal parabolic expression as

Cj◦ =

∫
Uj◦ (Q)\Uj◦ (A)

E(λ, ug)du . (8.54)

The subscript j◦ indicates the restriction to the maximal parabolic subgroup. A similar
constant term formula as in the case of the minimal parabolic expansion can also be
derived for this case. Upon deleting the j◦th node from the Dynkin diagram of G, we
will denote the group associated with the Dynkin diagram which is left, by G′. We also
note that the Levi factor Lj◦ of Pj◦ can then be written as Lj◦ = GL(1)×G′, where the
one-parameter group GL(1) is parametrised by a single variable in R×.

Let us then state the formula for the constant term in this maximal parabolic:

Theorem 8.8 (Constant term formula for maximal parabolics [243]). The
constant term of E(λ, g) with respect to the unipotent radical Uj◦ ⊂ Pj◦ is given by:∫

Uj◦ (Q)\Uj◦ (A)

E(λ, ug)du =
∑

w∈Wj◦\W

e〈(wλ+ρ)‖j◦ |H(g)〉M(w, λ)EG′ (χw, g) . (8.55)

Below we provide a concise explanation of the notation used and give a proof of the formula.

In equation (8.55) the Weyl group of Pj◦ is denoted by Wj◦ and the sum on the
right-hand-side is then restricted to a sum over a coset of the Weyl group, in contrast
to the minimal parabolic case. Furthermore the projection operators (·)‖j◦ and (·)⊥j◦ are
defined as follows when acting on a weight λ ∈ a∗:

λ‖j◦ :=
〈Λj◦|λ〉
〈Λj◦ |Λj◦〉

Λj◦ , (8.56a)

λ⊥j◦ := λ− (λ)‖j◦ . (8.56b)

These correspond, respectively, to the component of λ parallel and orthogonal to the
fundamental weight Λj◦ . The orthogonal component is given by a linear combination of
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simple roots of G′. The character χw follows the definition (8.2), however with λ now
replaced by the weight (wλ)⊥j◦ . The G′ invariant Eisenstein Series on the right-hand-side
of the equation is independent of the GL(1) factor in the decomposition of the Levi
subgroup Lj∗ , as this dependence is projected out using the (·)⊥j◦ operator and appears
solely through the exponential prefactor. Let us also note that for simplicity of notation
we have put g in the argument of the Eisenstein series on the right, even though g lies
effectively in G′.

We also note that the formula (8.55) is well-defined and independent of the choice of
coset representative due to the functional relation (8.44).

Proof. Sources for the analysis presented here are [126, 243]. Consider two parabolic
subgroups P1(A) and P2(A) of G(A). The first one we take to be the one defining an
Eisenstein series through

E(χ, g) =
∑

γ∈P1(Q)\G(Q)

χ(γg), (8.57)

where χ : P1(Q)\P1(A) → C× is a character on the parabolic P1(A). The parabolic
subgroup P2(A) = L2(A)U2(A) is used to define the constant term along U2(A) via

CU2(χ, g) =

∫
U2(Q)\U2(A)

E(χ, ug)du. (8.58)

By the definition of the integral, the result is determined by its dependence on g = l ∈ L2(A)
and we will restrict to the Levi factor now. Most of the steps in the evaluation of (8.58)
will be very similar to those in section 8.2.

Using the Bruhat decomposition, we can rewrite the integral (8.58) as

CU2(χ, l) =
∑

w∈W1\W/W2

Cw,U2(χ, l) , (8.59)

where the individual of the double coset of the Weyl group W is

Cw,U2(χ, l) =
∑

δ∈w−1P1(Q)w∩P2(Q)\P2(Q)

∫
U2(Q)\U2(A)

χ(wδul)du. (8.60)

Now the sum over δ ∈ P2(Q) can be split into the Levi and unipotent part according to
δ = γlγu and then one can unfold the sum over γu onto the integration domain as in (8.6).
The result is

Cw,U2(χ, l) =
∑

γl∈w−1P1(Q)w∩L2(Q)\L2(Q)

∫
w−1P1(Q)w∩U2(Q)\U2(A)

χ(wγlul)du. (8.61)

We now specialize to P2(A) being maximal parabolic. Then the Levi factor takes the
form (cf. 4.40)

L2(A) = GL(1,A)×M2(A) (8.62)
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with M2 reductive and we parametrise the L2(A) element as l = rm. We next separate out
the dependence on the GL(1,A) element r by moving it to the left within χ. This leads to

Cw,U2(χ, rm) = rw
−1λ+ρ

∑
γm∈w−1P1(Q)w∩M2(Q)\M2(Q)

∫
w−1P1(Q)w∩U2(Q)\U2(A)

χ(wuγmm)du,

(8.63)

by combining the contribution from χ(wrw−1) and the change of the measure du. Note
also that we changed the summation over the L2(Q) cosets to one over M2(Q) cosets
since the two agree. We have also interchanged γm and u as the corresponding change of
variables is uni-modular (γm ∈M2(Q) is discrete).

Let us analyze the properties of the integral

I =

∫
Uw2 (Q)\U2(A)

χ(wuγmm)du (8.64)

that is a function from M2(A)→ C. We also defined for simplicity

Mw
2 (Q) := w−1P1(Q)w ∩M2(Q) and Uw

2 (Q) := w−1P1(Q)w ∩ U2(Q) (8.65)

and we note that Mw
2 (Q) is a parabolic subgroup of M2(Q). The integral (8.64) is invariant

under ε ∈Mw
2 (Q) according to∫

Uw2 (Q)\U2(A)

χ(wuεγmm)du =

∫
Uw2 (Q)\U2(A)

χ(wεuγmm)du = I (8.66)

since ε = w−1p1w for some p1 ∈ P1(Q) and the character χ : P1(Q)\P1(A) → C× is
invariant under P1(Q). But this means that

χw2 (γmm) =

∫
Uw2 (Q)\U2(A)

χ(wuγmm)du (8.67)

is a character χw2 : Mw
2 (Q)\M2(A) → C× if it is non-zero. (The integral I serves as an

intertwiner from characters on P1(A) to characters on Mw
2 (A).)

Inserting this back into the individual constant term (8.63) we obtain

Cw,U2(χ, rm) = rw
−1λ+ρ

∑
γm∈M2

w(Q)\M2(Q)

χw2 (γmm). (8.68)

The sum over γm now produces an Eisenstein series on M2(A) so that in all

CU2(χ, rm) =
∑

w∈W1\W/W2

rw
−1λ+ρEM2(χw2 ,m), (8.69)
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where we indicated that the Eisenstein series is on M2(A). This expression can be simplified
a bit more by identifying the character χw2 in terms of a weight of m2 = Lie(M2). To this
end we evaluate (8.67) at a semi-simple element of M2(A), i.e., m = a. This leads to

χw2 (a) =

∫
Uw2 (Q)\U2(A)

χ(wua)du = χ(waw−1)δŪw2 (a)

∫
Uw2 (Q)\U2(A)

χ(wu)du

= M(w−1, λ)a(w−1λ+ρ)M2 , (8.70)

where the last symbol denotes the orthogonal projection onto the space of M2 weights.
The exponent comes about as follows. The character χ(waw−1) evaluates to aw

−1(λ+ρ) and
the modulus character on Ūw

2 is determined by the sum over all roots of U2 that are not
mapped to roots of P1, i.e., the total exponent of a

w−1(λ+ ρ) +
∑

α∈∆(u2)|wα/∈∆(p1)

α = (w−1λ+ ρ)M2 . (8.71)

We have made furthermore made use of our knowledge of the Gindikin–Karpelevich type
integral, cf. the evaluation of (8.19). In summary we arrive at

CU2(χ, rm) =
∑

w∈W1\W/W2

rw
−1λ+ρM(w−1, λ)EM2((w−1λ)M2 ,m), (8.72)

in agreement with (8.55) if one replaces w by w−1 which maps the double coset to
W2\W/W1.
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Whittaker vectors of
Eisenstein series

In this chapter, we derive theorem 9.1 that states the formula of Casselman–Shalika [64]
(see also [294]) for the local abelian Fourier coefficients in the minimal parabolic (Borel)
subgroup B(A) ⊂ G(A) for the Eisenstein series E(χ, g). This formula is used to evaluate
Fourier integrals with a generic character ψ. By the discussion in chapter 6 the global
form of these Fourier coefficients are captured by the spherical Whittaker vector

W ◦
ψ(χ, g) =

∫
N(Q)\N(A)

E(χ, ng)ψ(n)dn (9.1)

for a (quasi-)character χ : B(A)→ C× and a general unitary character ψ : N(Q)\N(A)→
U(1). For SL(2,A) we have already evaluated this integral in section 7.3. As there, a useful
strategy is to factorise the integral and perform it at all places separately. It will turn out
that only for the finite primes p <∞ and so-called generic and unramified characters ψ
(to be defined below) a nice and compact formula exists. In sections 9.4 and 9.5, we will
explain how to also evaluate (9.1) for arbitrary generic or even degenerate characters ψ.

9.1 Reduction of the integral and the longest

Weyl word

To begin with, we bring the integral (9.1) into a form that is more amenable to evaluation.
As discussed in section 6.3.3, the spherical Whittaker vector satisfies

W ◦
ψ(χ, ngk) = ψ(n)W ◦

ψ(χ, g) (9.2)

and is therefore determined by its values on A(A) due to the Iwasawa decomposition
(4.19) and (4.48). Hence, we will only consider it for g = a ∈ A(A) in the sequel. For the
discussion in this subsection we assume ψ to be generic (see definition 6.10), i.e., it does
not vanish on any simple root generator.
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We start evaluating (9.1) by applying the Bruhat decomposition as for the constant
term to obtain

W ◦
ψ(χ, a) =

∑
γ∈B(Q)\G(Q)

∫
N(Q)\N(A)

χ(γna)ψ(n)dn

=
∑
w∈W

∫
w−1B(Q)w∩N(Q)\N(A)

χ(wna)ψ(n)dn . (9.3)

From the last line let us define W ◦
ψ(χ, a) =

∑
w∈W Fw,ψ, where

Fw,ψ =

∫
w−1B(Q)w∩N(Q)\N(A)

χ(wna)ψ(n)dn (9.4)

is the contribution from the Weyl word w.
Let us start with an analysis of the integration range of the Fourier integral (9.4), given

by the coset w−1B(Q)w ∩N(Q)\N(A), and the corresponding contribution to W ◦
ψ(χ, a).

It is clear that the intersection in the denominator of this coset consists of those elements
of the (upper) Borel subgroup that are mapped to upper Borel elements under the action
of the Weyl element w. For the whole denominator we can therefore write

w−1B(Q)w ∩N(Q) =
∏
α>0
wα>0

Nα(Q) . (9.5)

With this, the integration range conveniently splits up in the following way

w−1B(Q)w ∩N(Q)\N(A) '

∏
β>0
wβ>0

Nβ(Q)\Nβ(A)

 ·
∏

γ>0
wγ<0

Nγ(A)

 . (9.6)

Let us introduce some notation. We denote the union in the first parenthesis as

Nw
{β} :=

∏
β>0
wβ>0

Nβ(Q)\Nβ(A)

 (9.7)

and the union in the second parenthesis as

Nw
{γ} :=

∏
γ>0
wγ<0

Nγ(A)

 . (9.8)

Here, the sets of roots {β} and {γ} contain precisely those roots, which satisfy the
conditions imposed on the products in (9.7) and (9.8), respectively. It is important to
note that there is a qualitative difference in the two sets: Nw

{γ} is non-compact while Nw
{β}
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is compact. With this splitting of the integration range the contribution Fw then takes the
following form

Fw,ψ =

∫
Nw
{β}N

w
{γ}

χ(wna)ψ(n)dn

=

∫
Nw
{β}

∫
Nw
{γ}

χ(wnβnγa)ψ(nβnγ)dnβdnγ . (9.9)

Inserting w−1w between nβ and nγ and splitting the character up into two factors, we
obtain ∫

Nw
{β}

∫
Nw
{γ}

χ(wnβw
−1wnγa)ψ(nβ)ψ(nγ)dnβdnγ . (9.10)

Let us note that the character χ is left invariant under any subgroup that is given by the
exponential of positive root generators. In particular this applies to elements n of the
(upper) Borel subgroup. Hence by definition of Nw

{β}, the character χ is insensitive to the

factor wnβw
−1 in the argument and we can split-off the integral over nβ, leaving us with

Fw,ψ =

∫
Nw
{β}

ψ(nβ)dnβ

∫
Nw
{γ}

χ(wnγa)ψ(nγ)dnγ . (9.11)

Given the form of (9.11), we see that in the integral over nβ, effectively a periodic
function is integrated over a full period in the compact space Nw

{β}. Provided that the

character ψ is non-trivial along at least one simple root contained in {β}, this means that
the whole integral will vanish. Since this is always true for generic ψ and we arrive at the
conclusion

Fw,ψ = 0 unless w = wlong. (9.12)

This is true since all Weyl transformations except for the longest Weyl word wlong leave
at least one simple root positive. Therefore we arrive at the following expression for the
Whittaker function for a generic ψ:

W ◦
ψ(χ, a) =

∫
N(A)

χ(wlongna)ψ(n)dn. (9.13)

We will also refer to this expression as the Jacquet integral, see [174].
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9.2 Unramified local Whittaker vectors

The integral (9.13) should now be evaluated for all places separately, that is∫
N(A)

χ(wlongna)ψ(n)dn =

∫
N(R)

χ∞(wlongna)ψ∞(n)dn×
∏
p<∞

∫
N(Qp)

χp(wlongna)ψp(n)dn

= W ◦
ψ∞ ×

∏
p<∞

W ◦
ψp . (9.14)

However, while we will derive a nice closed formula for the local places p <∞, a general
expression for the real place is not known to the best of our knowledge. In the case
SL(2,A), the resulting expression was given by the Bessel function (7.73) and for SL(3,A)
it is known that the triple integral over the three unipotent generators gives convoluted
integrals of Bessel functions [60,314], see also section 9.6. For general groups with ‘more
non-abelian’ unipotent subgroups a proliferation of this nested structure of special functions
is to be expected. On the other hand, the Whittaker vectors for finite p <∞ contain the
essential number theoretic information that is reflected as instanton measures in string
theory applications [138, 248]. Therefore we will from now on consider only the group
G(Qp) for p < ∞ and calculate the local Whittaker vectors. To ease notation we shall
suppress all subscripts involving primes, hence in the remainder of this section we write ψ
for ψp and χ for χp.

9.2.1 Unramified characters ψ

The formula of Casselman and Shalika for the local Whittaker vectors is most conveniently
stated when one restricts the character ψ to be unramified (see definition 6.12 and [64,
p. 219]). Recall from definition 6.12 that this means that the character ψ : N(Qp)→ U(1)
has what a physicist might call ‘unit instanton charges’, i.e., when the element n is
expanded in terms of positive step operators in a Chevalley basis as

n =

( ∏
α∈∆+\Π

xα(uα)

)(∏
α∈Π

xα(uα)

)
∈ N(Qp), (9.15)

where we have ordered the individual factors in a convenient way. Note that for evaluating
ψ(n) the order does not matter since ψ is a homomorphism between abelian groups. An
unramified character ψ is then one that satisfies

ψ(n) = exp

(
2πi

[∑
α∈Π

mαuα

])
(9.16)

with mα = 1 for all simple roots α ∈ Π. An unramified character is automatically generic.
The local Whittaker vector for an unramified vector will be denoted simply by

W ◦(χ, a) =

∫
N(Qp)

χ(wlongna)ψ(n)dn, (9.17)
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where the reference to ψ has been suppressed for notational convenience and we do not
display the fact that we are using a fixed p <∞. Standard manipulations similar to (8.17)
on (9.17) lead to

W ◦(χ, a) = χ(wlongaw
−1
long)

∫
N(Qp)

χ(wlonga
−1na)ψ(n)dn

= χ(wlongaw
−1
long)δ(a)

∫
N(Qp)

χ(wlongn)ψ(ana−1)dn

= |awlongλ+ρ|
∫

N(Qp)

χ(wlongn)ψa(n)dn, (9.18)

where we defined ψa(n) := ψ(ana−1).

9.2.2 Vanishing properties

One advantage of restricting to unramified characters is that it is very simple to determine
the support of W ◦(χ, a) (cf. also [64, Lemma 5.1]). Consider an element n ∈ N(Zp) ⊂ Kp;
then, by right Kp-invariance and the transformation properties (9.2),

W ◦(χ, a) = W ◦(χ, an) = W ◦(χ, ana−1a) = ψ(ana−1)W ◦(χ, a). (9.19)

Therefore, W ◦(χ, a) can only be non-vanishing if ψ(ana−1) = 1 which requires that aα ∈ Zp
for all positive roots α since ψ is unramified.

9.3 The Casselman–Shalika formula

We are now ready to state the main theorem of this section:

Theorem 9.1 (Casselman–Shalika formula). The local unramified Whittaker vector
W ◦(χ, a), defined by the integral (9.14) for each p <∞, is given by∫

N(Qp)

χ(wlongna)ψ(n)dn =
ε(λ)

ζ(λ)

∑
w∈W

(det(w))|awλ+ρ|
∏
α>0
wα<0

p〈λ|α〉 (9.20)

Proof. The proof of this theorem will constitute the remainder of this section 9.3.

When translated to our notation, the Casselman–Shalika formula found for W ◦(χ, a)
in [64, Thm. 5.4] takes the form

W ◦(χ, a) =
ε(λ)

ζ(λ)

∑
w∈W

(det(w))

( ∏
α>0
wα<0

p〈λ|α〉
)
|awλ+ρ| = 1

ζ(λ)

∑
w∈W

ε(wλ)|awλ+ρ| (9.21)
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with

ζ(λ) =
∏
α>0

1

1− p−(〈λ|α〉+1)
, ε(λ) =

∏
α>0

1

1− p〈λ|α〉 . (9.22)

The latter identity of (9.21) follows from

ε(wiλ) =
∏
α>0

1

1− p〈λ|wiα〉 =
1

1− p−〈λ|αi〉
∏
α>0
α 6=αi

1

1− p〈λ|α〉 = −p〈λ|αi〉ε(λ) (9.23)

where wi is a fundamental reflection switching the sign of αi and permuting the remaining
positive roots. Recall that detw = (−1)`(w) where `(w) is the length of w as introduced
in section 4.1.1. Formula (9.21) is valid only for unramified ψ and we have used χ and λ
interchangeably.

Our strategy for proving theorem 9.1 will be a mixture of the works of Jacquet [174]
and Casselman–Shalika [64]. The argument consists of the following steps:

1. Derivation of a functional equation for the Whittaker function under Weyl
transformations on χ

2. Use this to show that a suitable multiple of the Whittaker function is Weyl invariant
and write it as a sum over Weyl images

3. Determine one term in this sum and derive all other terms from it. This will yield
formula (9.21)

Finally we will also show in section 9.4 how the formula (9.21) can be used to derive the
Whittaker vectors for all generic characters ψ.

However, as a preparatory ‘step 0’, we first recall and slightly extend some results from
chapter 7 where the Fourier coefficients for Eisenstein series on SL(2,A) were discussed.
Namely, after equation (7.74) we derived the Whittaker vector at finite places, evaluated
at the identity a = 1 ∈ A(Qp), for general ψ. Repeating the same steps but (i) keeping a
arbitrary and (ii) choosing an unramified character (m = 1) leads to

G(Qp) = SL(2,Qp) : Fwlong,ψ,p =

∫
N(Qp)

χ(wlongna)ψ(n)dn

= χ(wlongaw
−1
long)δ(a)

∫
N(Qp)

χ(wlongn)ψ(ana−1)dn

= γp(v
2)(1− p−2s)

|v|−2s+2 − p−2s+1|v|2s
1− p−2s+1

(9.24)

with χ(a) = |a|2s and a = diag(v, v−1) = vHα in terms of the unique positive root α of
sl(2,R). This formula, after dividing by (1 − p−2s) exhibits invariance under the Weyl
reflection s↔ 1− s. We will see how this feature generalises to arbitrary G and why it
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is basically a consequence of this SL(2,Qp) calculation. Equation (9.24) also manifestly
exhibits the vanishing property of section 9.2.2 since the p-adic Gaussian vanishes unless
|v2| = |aα| ≤ 1.

Before embarking on the proof proper, we also record the following

Proposition 9.2 (Holomorphy of local Whittaker vectors [64]). The local
Whittaker vector W ◦(χ, a) depends holomorphically on the quasi-character χ.

Proof. Inspection of formula (9.21) immediately reveals holomorphy when χ is in the
Godement domain (5.100) of absolute convergence. This extends to all χ by virtue of the
functional relation derived below.

The holomorphy of the Whittaker vector in the case of SL(2,Qp) (as a function of
s) can also be seen from the explicit expression (9.24) above. For s→ 1

2
, the expression

stays finite. We will comment in much more detail on the behaviour of Eisenstein series in
chapter 10.

9.3.1 Functional relation for the local Whittaker vector

We follow Jacquet’s thesis [174]. First one defines a function associated to the Whittaker
vector by

F (λ, g) = W ◦
ψ(λ,w−1

longg) (9.25)

for g ∈ G(Qp). This leads to the integral expression

F (λ, g) =

∫
N−(Qp)

χ(n−g)ψ−(n−)dn− (9.26)

for the associated function. Here, objects with a minus subscript refer to the unipotent
opposite to the standard unipotent N(Qp). In other words, N−(Qp) designates the subgroup
of G(Qp) generated by the exponentials of the negative roots, whereas the usual N(Qp)
is associated with the positive roots. The reason that the opposite group arises here is
because wlong maps all positive roots to negative ones (possibly combined with an outer
automorphism). We will derive a functional relation for F under Weyl transformations
which by (9.25) will imply one for the Whittaker vector.

The method for deriving the functional relation will be by reducing to the functional
relation for SL(2,Qp) that is manifest in (9.24) and then using the fact that G(Qp) is
made up of SL(2,Qp) subgroups.

Let αi be a simple positive root of G(Qp). Then define for g ∈ Qp

Fi(λ, g) =

∫
Ni,−(Qp)

χ(ni,−g)ψi,−(ni,−)dni,−, (9.27)

where the integral is now only over the one-dimensional subgroup generated by x−αi(u)
and similarly the character ψi,− is one of the (lower) unipotent of the SL(2,Qp) associated
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with αi and can be obtained from ψ− by restriction to the subgroup Ni,−. The function
Fi is useful because for any αi we can write

N−(Qp) = Ni,−(Qp)N̂−(Qp), (9.28)

where N̂−(Qp) are the lower unipotent elements that are not of the form x−αi(u) for some
u ∈ Qp. Associated with the factorisation above is a unique decomposition n− = ni,−n̂−
and then the integral (9.26) leads to

F (λ, g) =

∫
N̂−(Qp)

Fi(n̂−g)ψ−(n̂−)dn̂− (9.29)

by carrying out the integral over dni,−.
The SL(2,Qp) projected function (9.27) has the following invariances

Fi(λ, n̂gk) = Fi(λ, g) for n̂ ∈ N̂(Qp) and k ∈ Kp = G(Zp), (9.30)

where N̂(Qp) is the unipotent subgroup opposite to N̂−(Qp). It is generated by all positive
roots but αi. The set of these roots is invariant under the Weyl reflection wi. Let Pi be
the next-to-minimal parabolic subgroup defined by the (non-unique) decomposition

G(Qp) = Pi(Qp)Kp = N̂(Qp)Li(Qp)Kp = N̂(Qp)Â(Qp)SL(2,Qp)αiKp (9.31)

with Â(Qp) the part of the split torus A(Qp) that is not contained in the torus of the
embedded SL(2,Qp)αi . Using this decomposition and the invariances of Fi, one finds
that the function Fi(g) is determined by its values on elements of the form g = âgi with
â ∈ Â(Qp) and gi ∈ SL(2,Qp)αi . On such values one has that

Fi(λ, âgi) = |âλ+ρ−αi |
∫

Ni,−(Qp)

χ(ni,−gi)ψâi,−(ni,−)dni,− (9.32)

with ψâ−(ni,−) = ψ−(âni,−â
−1). The integral is basically the integral we have done in

(9.24) with the only change that χ is now defined on all of G(Qp) in which SL(2,Qp)αi is
embedded. The result is determined by diagonal ai and reads for â = 1∫
Ni,−(Qp)

χ(ni,−ai)ψi,−(ni,−)dni,− = γp(a
−αi
i )(1− p−(〈λ|αi〉+1))

1− p−〈λ|αi〉|a−αii |〈λ|αi〉
1− p−〈λ|αi〉 |aλ+ρ−αi

i |.

(9.33)

Under the Weyl reflection wi one has wiλ = λ − 〈λ|αi〉αi and the function Fi therefore
satisfies

Fi(wiλ, g) = Fi(λ, g)
1− p−(1+〈wiλ|αi〉)

1− p−(1+〈λ|αi〉)
, (9.34)
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where one also must keep track of the non-trivial â given by the prefactor in (9.32). The
relation (9.29) then gives immediately the same transformation under wi for F (λ, g) and
therefore for the unramified Whittaker vector:

W ◦(wiλ, a) =
ζp(wi, λ)

ζp(wi,−λ)
W ◦(λ, a) (9.35)

where we defined the local ζ factor

ζp(w, λ) =
∏
α>0
wα<0

1

1− p−(1+〈λ|α〉) . (9.36)

For a general Weyl transformation w ∈ W we find therefore

W ◦(wλ, a) =
ζp(w, λ)

ζp(w,−λ)
W ◦(λ, a) (9.37)

which we check in example 9.3.
This is not surprisingly the same factor that appeared in (the functional relation for)

the constant term, see (8.36).

Example 9.3

Let us check (9.37) with w = wiwj starting from (9.35) where wi and wj are two (different) fundamental
reflections. Using (9.35) twice we have that

W ◦(wλ, a) = W ◦(wiwjλ, a) =
ζp(wi, wjλ)

ζp(wi,−wjλ)
W ◦(wjλ, a) =

ζp(wi, wjλ)

ζp(wi,−wjλ)

ζp(wj , λ)

ζp(wj ,−λ)
W ◦(λ, a) . (9.38)

Consider now the factor

ζp(wi, wjλ)

ζp(wi,−wjλ)

ζp(wj , λ)

ζp(wj ,−λ)
=

∏
α′>0
wiα

′<0

1− p−(1−〈wjλ|α′〉)

1− p−(1+〈wjλ|α′〉)
∏
α>0
wjα<0

1− p−(1−〈λ|α〉)

1− p−(1+〈λ|α〉)

=
∏

wjα>0
wiwjα<0

1− p−(1−〈λ|α〉)

1− p−(1+〈λ|α〉)
∏
α>0
wjα<0

1− p−(1−〈λ|α〉)

1− p−(1+〈λ|α〉)

(9.39)

where we have made the substitution α′ = wjα and used the fact that 〈wjλ|wjα〉 = 〈λ|α〉. Applying the
same argument as in the proof of Lemma 8.6 we can then combine the products into

W ◦(wλ, a) =
∏
α>0
wα<0

1− p−(1−〈λ|α〉)

1− p−(1+〈λ|α〉)W
◦(λ, a) =

ζp(w, λ)

ζp(w,−λ)
W ◦(λ, a) , (9.40)

as claimed.

9.3.2 Weyl invariant combination

As for the constant term (and the full Eisenstein series), one can obtain a Weyl invariant
form by multiplying through by the denominator of ζ factors associated with the longest
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Weyl word. Denoting

ζ(λ) ≡ ζp(wlong, λ) =
∏
α>0

1

1− p−(1+〈λ|α〉) (9.41)

one has that the function

ζ(λ)W ◦(λ, a) (9.42)

is Weyl invariant. This is checked simply by combining (9.37) with the transformation of
ζp(λ) that can be derived straightforwardly.

Because of the Weyl invariance of (9.42), we write it as a sum over Weyl images as

ζ(λ)W ◦(λ, a) =
∑
w∈W

c(wλ)|awλ+ρ| (9.43)

since the invariant function has to be a polynomial in aλ+ρ (and its images). The fact that
the local Whittaker vector is a single Weyl orbit follows from the considerations in [64].

9.3.3 Determining a special coefficient

Next we determine c(wλ) for w = wlong which is the coefficient of |awlongλ+ρ| in (9.43).
Referring back to (9.18) we see that the coefficient of |awlongλ+ρ| in W ◦(λ, a) is obtained as
the a-independent part of the integral∫

N(Qp)

χ(wlongn)ψa(n)dn. (9.44)

The integral is a polyonmial in a and we can obtain its a-independent part formally by
sending a to zero. (This is only formal because, of course, 0 /∈ A(Qp).) Therefore, the
a-independent part of this integral can be obtained by removing the character ψa from
the integral and then one is left with the same integral as in the constant term (8.19) for
w = wlong. The result then is the same as the local factor for Qp in the constant term
formula (8.41), viz.

c(wlongλ) = ζ(λ)
∏
α>0

1− p−(〈λ|α〉+1)

1− p−〈λ|α〉 =
∏
α>0

1

1− p−〈λ|α〉 =
∏
α>0

1

1− p〈wlongλ|α〉
= ε(wlongλ).

(9.45)

This means that the general coefficient is given by

c(λ) = ε(λ) =
∏
α>0

1

1− p〈λ|α〉 (9.46)

and the general formula for the Whittaker vector for an unramified character is

W ◦(λ, a) =
1

ζ(λ)

∑
w∈W

ε(wλ)|awλ+ρ|, (9.47)

thus demonstrating (9.21). This concludes the proof of theorem 9.1.
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9.4 Whittaker vectors for generic ψ

Theorem 9.1 is only valid for unramified character ψ, but we will now show that it can also
be used for generic characters indirectly. Recall from definition 6.12 that for an unramified
character mα = 1 for all α ∈ Π and that a generic character has mα 6= 0 for all α.

Let us take a closer look at the so called ‘twisted’ character ψa(n) = ψ(ana−1)
introduced above where ψ without superscript a is the unramified character. We note that
periodicity of ψa is of course different from the one of ψ, but this will not influence our
reasoning.

From (9.15) and (9.16) we have that

ψ(n) = exp

(
−2πi

[∑
α∈Π

uα

])
, n =

( ∏
α∈∆+\Π

xα(uα)

)(∏
α∈Π

xα(uα)

)
(9.48)

where xα(uα) = exp(uαEα).
With insertions of aa−1, the expression for ana−1 splits into factors of axα(uα)a−1.

Using the Baker-Campbell-Hausdorff formula, these factors can be found as

axα(uα)a−1 = exp(et uαEα), (9.49)

where t is defined by
[log a, log xα(uα)] = t log xα(uα) . (9.50)

Let a be parametrised as

a = exp

(∑
β∈Π

log(vβ)Hβ

)
, (9.51)

which gives

[log a, log xα(uα)] =
∑
β∈Π

log(vβ)uα[Hβ, Eα] =
∑
β∈Π

α(Hβ) log(vβ)︸ ︷︷ ︸
=t

uαEα . (9.52)

Thus,

ana−1 =

( ∏
α∈∆+\Π

xα(u′α)

)(∏
α∈Π

xα(u′α)

)
, u′α = etuα =

(∏
β∈Π

(vβ)α(Hβ)

)
uα (9.53)

and, finally, by listing the simple roots as αi ∈ Π for i = 1, . . . , r and denoting the
associated elements uαi and vαj as ui and vj respectively

ψa(n) = exp

(
−2πi

[
r∑
i=1

u′i

])
= exp

(
−2πi

[
r∑
i=1

( r∏
j=1

(vj)
Aji

)
ui

])
(9.54)

where we have introduced the Cartan matrix Aij defined in (4.18).
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We now note that this is really a generic character with

mi = mαi =
r∏
j=1

(vj)
Aji (9.55)

and that any generic character can be expressed in this way with the inverse relation

vj =
r∏
i=1

(mi)
A−1
ij (9.56)

where A−1
ij is the inverse Cartan matrix.

Now that we can express a generic character in terms of the unramified character, we
would like to find the Whittaker vector for ψa using (9.47) indirectly. More specifically, we
ultimatelly want to find W ◦

ψa(χ, a
′) with a′ = 1 along the finite primes where g = na′k and

a′ ∈ A(Qp) ⊂ G(Qp). For each p this gives a contributing factor to the instanton measure
as discussed in example 6.25.

This will bring us one step closer to finding the Fourier coefficients of the Eisenstein
series with general instanton charges mα in (9.13) and not only the restricted case of an
unramified character.

Using similar steps as taken in (9.18), but in reverse order, we obtain

W ◦
ψa(χ, 1) =

(
χ(wlongaw

−1
long)δ(a)

)−1
W ◦(χ, a) = |a−(wlongλ+ρ)|W ◦(χ, a) . (9.57)

Therefore, the local instanton measure for a generic character ψa with instanton charges
mα can be expressed through the local instanton measure evaluated for an unramified
character at non-trivial a =

∏
α∈Π v

Hα
α ∈ A(Qp).

Example 9.4

We illustrate formula (9.57) by recovering the result (7.77) for SL(2,A). In this case, there is only one
simple root α and Aαα = 2. The unramified Whittaker vector is as given in (9.24). If we want to get the
Whittaker vector for a character ψa with instanton charge m, then (9.56) tells us that we have v = m1/2

and from (9.57) we find that

W ◦ψa(χ,1) = |v|2s−2γp(v
2)(1− p−2s)

|v|−2s+2 − p−2s+1|v|2s
1− p−2s+1

= γp(m)(1− p−2s)
1− p−2s+1|m|2s−1

1− p−2s+1
(9.58)

in agreement with (7.77).

9.5 Degenerate Whittaker vectors

While the Casselman–Shalika formula (9.47) provides an elegant expression for unramified
local characters and, via (9.57), also for Fourier coefficients of generic characters, it is
desirable to understand also Fourier coefficients for non-generic characters ψ. These are
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also sometimes referred to as degenerate Whittaker vectors in the literature [135,241,324]
and have the property that they only depend on a subset of the simple roots of G(R)
rather than all simple roots.

In this section, we will prove the following theorem that holds for global characters
ψ [97, 165]:

Theorem 9.5. Let ψ : N(Q)\N(A) → U(1) be a degenerate character with supp(ψ) =
Π′ 6= Π with associated subgroup G′(A) ⊂ G(A). Let wcw

′
long be the representatives of the

coset W/W ′ defined below in (9.65). Then the degenerate Whittaker vector on G(A) is
given by

W ◦
ψ(χ, a) =

∑
wcw′long∈W/W ′

a(wcw′long)−1λ+ρM(w−1
c , λ)W ′◦

ψa(w
−1
c λ, 1), (9.59)

where W ′◦
ψ denotes a Whittaker function on the G′(A) subgroup of G(A). The weight w−1

c λ
is given as a weight of G′(A) by orthogonal projection.

Remark 9.6. In this theorem and in the remainder of the chapter we suppress the adelic
absolute value on |aµ| in order to ease the notation.

Before embarking on the proof, we explain the notation used here. For a global
character

ψ

(∏
α∈Π

xα(uα)

)
= exp

(
2πi

∑
α∈Π

mαuα

)
, (9.60)

we call

supp(ψ) = {α ∈ Π |mα 6= 0} ⊂ Π (9.61)

determined by the non-vanishing mα the support of the character ψ. With this notion,
the definition 6.10 becomes

supp(ψ) = Π ⇐⇒ ψ generic,

supp(ψ) 6= Π ⇐⇒ ψ non-generic or degenerate.

We note that a degenerate character ψ : N(Q)\N(A) → U(1) canonically defines a
simple proper subgroup G′ ⊂ G. This subgroup G′ is the one with simple root system
Π′ = supp(ψ); its Dynkin diagram is the subdiagram of the Dynkin diagram of G obtained
by restricting to the nodes corresponding to supp(ψ). The subgroup G′ has a Weyl group
W ′ with longest Weyl word w′long.

Proof. Using the Bruhat decomposition, the spherical Whittaker vector W ◦
ψ(χ, a) can be

written as a sum over the Weyl group W of G as in (9.3)

W ◦
ψ(χ, a) =

∫
N(Q)\N(A)

E(χ, na)ψ(n)dn =
∑
w∈W

Fw,ψ(χ, a) (9.62)
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with

Fw,ψ(χ, a) =

∫
w−1B(Q)w∩N(Q)\N(A)

χ(wna)ψ(n)dn =

∫
Nw
{β}

ψ(nβ)dnβ

∫
Nw
{γ}

χ(wnγa)ψ(nγ)dnγ .

(9.63)

The various Fw,ψ can be analysed as in section 9.1 and we have used the w-dependent
split of positive roots of N into two sets of {β} and {γ} as in (9.7) and (9.8). Importantly,
for degenerate ψ the integral over the compact domain Nw

{β} can be non-vanishing for

Weyl words w different from wlong: if ψ is trivial on all the nβ in (9.63), the corresponding
integral yields unity rather than zero. This means that the Weyl word w must map all
elements in supp(ψ) to negative roots in order to avoid the vanishing of Fw,ψ and the sum
over W in (9.62) can be restricted to the subset

Cψ = {w ∈ W |wα < 0 for all α ∈ supp(ψ)} . (9.64)

(If ψ is generic, one recovers Cψ = {wlong} in agreement with the discussion of section 9.1.)
We will now parametrise the set Cψ explicitly. Denote by W ′ the Weyl subgroup

generated by the fundamental reflections associated with Π′ = supp(ψ) only. It is the
Weyl group of G′ and has its own longest Weyl word that we denote by w′long. The longest
Weyl word w′long has the desired property that it maps all elements in supp(ψ) to negative
roots and it is the only Weyl word in W ′ with this property. In fact, any element in Cψ
can be represented in a form that involves the longest word w′long of W ′:

w ∈ Cψ ⇐⇒ w = wcw
′
long. (9.65)

Here, wc ∈ W must satisfy

wcα > 0 for all α ∈ supp(ψ) (9.66)

in order for w = wcw
′
long to belong to Cψ.

The words wc ∈ W can be constructed as carefully chosen representatives of the coset
W/W ′. Consider the weight

Λψ =
∑

i :αi /∈supp(ψ)

Λi, (9.67)

i.e., the sum of fundamental weights of G that are not associated with the support of
the degenerate character ψ. The weight Λψ is stabilised by W ′ and its W-orbit is in
bijection with the coset W/W ′. A standard result for Weyl groups is that if w(αi) < 0
for some simple root, then `(wwi) < `(w) [186, Lemma 3.11]. Therefore, if w(αi) < 0 and
αi ∈ supp(ψ) we have

w(Λψ) = (wwi)(Λψ) (9.68)

since Λψ is stabilised by the fundamental reflections from supp(ψ) (these generate W ′).
This means that if w(αi) < 0 there is a shorter Weyl word wwi leading to the same point
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in the W-orbit of Λψ as the word w does. By induction, the shortest word leading to a
given point in the Weyl orbit of Λψ must be those wc ∈ W that satisfy wcα > 0 for all
α ∈ supp(ψ). Hence, the words wc appearing in (9.66) are the shortest words leading to
the points of the W-orbit of Λψ. Such shortest words are not necessarily unique; for a
given W-orbit point any shortest word wc will do. An explicit construction of the wc can
be achieved by the same orbit method as in section 10.3, see also [95,97].

With the parametrisation w = wcw
′
long of the elements of Cψ we thus arrive at the

following expression for the degenerate Whittaker integral (9.62):

W ◦
ψ(χ, a) =

∑
wcw′long∈W/W ′

Fwcw′long,ψ
(χ, a), (9.69)

where it is understood that wcw
′
long is the specific coset representative described above.

The quantities Fwcw′long,ψ
(χ, a) can be evaluated by reducing them to Whittaker vectors

of the subgroup G′(A) ⊂ G(A) associated with supp(ψ) as follows. First, we separate out
the a-dependence as usual by conjugating it to the left and using the multiplicativity of χ

Fwcw′long,ψ
(χ, a) =

∫
(wcw′long)−1B(Q)wcw′long∩N(Q)\N(A)

χ(wcw
′
longna)ψ(n)dn

= a(wcw′long)−1λ+ρ

∫
(wcw′long)−1B(Q)wcw′long∩N(Q)\N(A)

χ(wcw
′
longn)ψa(n)dn

(9.70)

with ψa(n) = ψ(ana−1) as before. We can also rewrite the integration into the two sets
Nw
{β} and Nw

{γ} (for w = wcw
′
long) as in (9.63) and we know that by construction the integral

over Nw
{β} gives unity.

The remaining integral over Nw
{γ} is then over all positive roots γ that are mapped

to negative roots by the action of w = wcw
′
long and we drop the γ subscript for ease of

notation. The particular form of w implies that we can parametrise the unipotent element
as n = ncn

′ where n′ ∈ N ′(A) is the (full) unipotent radical of the standard minimal Borel
subgroup B′(A) of G′(A) that is determined by ψ; and nc are the remaining elements
whose total space we call Nc(A). We note also that w′longnc(w

′
long)−1 is generated exactly

by the positive roots that are mapped to negative roots by wc alone. The degenerate
character ψ only depends on n′, i.e., ψa(ncn

′) = ψa(n′).
Putting these observations together one obtains

Fwcw′long,ψ
(χ, a) = a(wcw′long)−1λ+ρ

∫
Nc(A)

∫
N ′(A)

χ(wcw
′
longncn

′)ψa(n′)dncdn
′. (9.71)

As the next step one can rewrite the argument of the character χ as

χ(wcw
′
longncn

′) = χ
(
wcw

′
longnc(wcw

′
long)−1wcw

′
longn

′) = χ
(
wcw

′
longnc(wcw

′
long)−1wcñã

)
,

(9.72)
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where we have performed an Iwasawa decomposition (in G′(A)) of w′longn
′ = ñãk̃ and used

left-invariance of χ under K ′(A) ⊂ K(A) in the last step. In the next step we want to
perform another Iwasawa decomposition (now in G(A)) of

wcñã = n̂âk̂. (9.73)

The important observation now is that ñ ∈ N ′(A) and wc satisfies (9.66) which implies
that wcN

′(A)w−1
c ⊂ N(A). Therefore, the Iwasawa decomposition (9.73) has

n̂ = wcñw
−1
c , â = wcãw

−1
c , k̂ = wc. (9.74)

Inserting this back into the integral (9.71) one can bring the element n̂ ∈ N(A) to the left.
This will induce a uni-modular change of the integration variables dnc as in section 8.5.
Conjugating the element â ∈ A(A) to the left will induce a non-trivial change of measure
(w = wcw

′
long):∫

Nc(A)

χ(wncw
−1n̂â)dnc =

∫
Nc(A)

χ(n̂âwncw
−1)âwcρ−ρdnc =

∫
Nc(A)

χ(wncw
−1)ãw

−1
c λ−ρdnc

= ãw
−1
c λ−ρ

∫
Nc(A)

χ(wncw
−1)dnc = χ′(ã)

∫
Nc(A)

χ(wncw
−1)dnc. (9.75)

We have evaluated the character χ on n̂â in the second step according to χ(n̂â) = âλ+ρ =

ãw
−1
c λ+w−1

c ρ due to (9.74). In the last step, we have used that ã does not depend on nc and
can therefore be taken out of the integral and defined the character

χ′(ã) = ãw
−1
c λ+ρ = χ′(ã) = χ′(w′longn

′), (9.76)

on the group G′(A). In the last step we have used the definition of ã.
Putting everything together in (9.71) one obtains the factorised expression

Fwcw′long,ψ
(χ, a) = a(wcw′long)−1λ+ρ

∫
Nc(A)

χ(wcw
′
longnc)dnc ·

∫
N ′(A)

χ′(w′longn
′)ψa(n′)dn′. (9.77)

The two separate integrals are both of types we have encountered before: The Nc(A)
integral is precisely the Gindikin–Karpelevich expression (8.19) for the Weyl word wc ∈ W
and so gives a factor M(w−1

c , λ) defined in (8.42), and the second integral is the generic
Whittaker vector (9.13) for the subgroup G′(A) ⊂ G(A) with generic Fourier character
ψa, in the representation given by the weight w−1

c λ, projected orthogonally to G′(A) and
evaluated at the identity 1 ∈ A′(A). This completes the proof of theorem 9.5.

As a consequence of the theorem, Whittaker vectors of non-generic characters ψ can be
evaluated as sums over Whittaker vectors of subgroups on which the character is generic.
We stress again that the choice of coset representative of W/W ′ is important here. If the
full Whittaker vector on the subgroup is known, the above formula provides the explicit
expression for any character ψ. Thanks to the Casselman–Shalika formula, this means
that the local Whittaker vector (p <∞) can be calculated for any character, generic or
not. The archimedean part is typically more intricate.
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Remark 9.7. Theorem 9.5 of course also remains true in the case of generic ψ since
then W ′ = {1} is trivial and the sum on the right-hand side is just the decomposition of
the generic Whittaker vector into Bruhat cells and nothing is gained. The power of the
theorem arises in cases where one deals with an Eisenstein series that does not have any
generic Whittaker vectors and one can then use (9.59) to determine the degenerate ones.
This will be explored in more detail in section 10.4 below.

9.6 Whittaker vectors on SL(3,A)
We illustrate the general considerations above through the explicit example of SL(3,A).
The Eisenstein series on SL(3,R), GL(3,R) and this group have been studied in great
detail in the literature [60,314] by various techniques.

The split real group SL(3,R) has rank two and we denote the two simple roots by α1

and α2. The corresponding Cartan generators will be called H1 ≡ Hα1 and H2 ≡ Hα2 . A
general element a ∈ A(A) will be written as

a = vH1
1 vH2

2 . (9.78)

The Eisenstein series is determined by the weight

λ = (2s1 − 1)Λ1 + (2s2 − 1)Λ2 (9.79)

in terms of the fundamental weights dual to the simple roots.
The Weyl group consists of six elements:

W = {1, w1, w2, w1w2, w2w1, w1w2w1} . (9.80)

We will first compute the constant term using Langlands constant term formula of
chapter 8. Then, using the results of sections 9.1–9.3, we find the local part of a Whittaker
vector with an unramified character, which, with the help of section 9.4, can then be
used to compute the local part of any Whittaker vector with a generic character. The
remaining, degenerate, Whittaker vectors are then found following the arguments of section
9.5. Lastly, we will comment on the non-abelian Whittaker vectors.

9.6.1 Constant terms

We first evaluate the Langlands constant term formula (8.41). This yields a sum of six
terms:∫
N(Q)\N(A)

E(χ, ng)dn = v2s1
1 v2s2

2 +
ξ(2s1 − 1)

ξ(2s1)
v2−2s1

1 v2s1+2s2−1
2 +

ξ(2s2 − 1)

ξ(2s2)
v2s1+2s2−1

1 v2−2s2
2

+
ξ(2s1 − 1)ξ(2s1 + 2s2 − 2)

ξ(2s1)ξ(2s1 + 2s2 − 1)
v2s2

1 v3−2s1−2s2
2 +

ξ(2s2 − 1)ξ(2s1 + 2s2 − 2)

ξ(2s2)ξ(2s1 + 2s2 − 1)
v3−2s1−2s2

1 v2s1
2

+
ξ(2s1 − 1)ξ(2s2 − 1)ξ(2s1 + 2s2 − 2)

ξ(2s1)ξ(2s2)ξ(2s1 + 2s2 − 1)
v2−2s2

1 v2−2s1
2 . (9.81)

Here, v1 and v2 are real positive parameters.
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9.6.2 Generic Whittaker vectors

We first determine the local Whittaker vector for an unramified character ψ by using the
Casselman–Shalika formula in the form (9.21). The quantities 1/ζ(λ) and ε(λ) of (9.22)
evaluate to

1

ζ(λ)
= (1− p−2s1)(1− p−2s2)(1− p1−2s1−2s2), (9.82a)

ε(λ) =
1

(1− p2s1−1)(1− p2s2−1)(1− p2s1+2s2−2)
(9.82b)

and the full unramified local coefficient is then

W ◦(λ, a) =
ε(λ)

ζ(λ)

(
|v1|2s1|v2|2s2 − p2s1−1|v1|2−2s1|v2|2s1+2s2−1 − p2s2−1|v1|2s1+2s2−1|v2|2−2s2

+ p4s1+2s2−3|v1|2s2|v2|3−2s1−2s2 + p2s1+4s2−3|v1|3−2s1−2s2 |v2|2s1

− p4s1+4s2−4|v1|2−2s2|v2|2−2s1
)
. (9.83)

Here, v1 and v2 are in Qp.
From (9.83) we can deduce the Whittaker vector for a generic character with non-zero

instanton charges m1 and m2, i.e., one that satisfies

ψa (xα1(u1)xα2(u2)) = exp (2πi[m1u1 +m2u2]) (9.84)

by exploiting (9.57). For this we require v1 = m
2/3
1 m

1/3
2 and v2 = m

1/3
1 m

2/3
2 in the

expression above as well as the prefactor |a−(wlongλ+ρ)| = |v1|2s2−2|v2|2s1−2. The result is

W ◦
ψa(χ, 1) =

ε(λ)

ζ(λ)

(
|m1|2s1+2s2−2|m2|2s1+2s2−2 − p2s1−1|m1|2s2−1|m2|2s1+2s2−2

− p2s2−1|m1|2s1+2s2−2|m2|2s1−1 + p4s1+2s2−3|m1|2s2−1 + p2s1+4s2−3|m2|2s1−1

− p4s1+4s2−4
)
. (9.85)

As is well-known [60], this can also be expressed in terms of a Schur polynomial in (m1,m2)
which here encodes the character of a highest weight representation of sl(3,C). Taking
the product over all p <∞ produces double divisor sums.

In this case, we can also work out the archimedean Whittaker vector. The Whittaker
vector at p =∞ can be explicitly written as a convoluted integral of two modified Bessel
functions as we will now show.

Starting from (9.14) and using the same standard manipulations as in (9.18) we have
that

W ◦
ψ∞(χ∞, a) =

∫
N(R)

χ∞(wlongna)ψ∞(n)dn = |awlongλ+ρ|
∫
N(R)

χ∞(wlongn)ψ∞(ana−1)dn

(9.86)
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with the generic character ψ∞ given by two integers m1 and m2 through

ψ∞
(
xα1(u1)xα2(u2)

)
= exp

(
2πi(m1u1 +m2u2)

)
χ∞(vH1

1 vH2
2 ) = |v1|2s1 |v2|2s2∣∣awlongλ+ρ
∣∣ = |v1|2−2s2 |v2|2−2s1

n =
(

1 u1 z
0 1 u2
0 0 1

)
wlong =

(
0 0 1
0 1 0
1 0 0

)
.

(9.87)

Evaluating the integrand we obtain∫
N(R)

χ∞(wlongn)ψ(ana−1)dn =∫
R3

(
1 + (1 + u2

1)u2
2 − 2u1u2z + z2

)−s1(1 + u2
1 + z2

)−s2×
× exp

(
−2πi

v3
1m1u1 + v3

2m2u2

v1v2

)
du1du2dz . (9.88)

Using the variable substitution u2 → (u2 + u1z)/(1 + u2
1) and integrating over u2 we get

2πs1

Γ(s1)

∣∣∣∣m2v
2
2

v1

∣∣∣∣s1− 1
2
∫
R2

(1 + u2
1 + z2)

1
4
− 1

2
s1−s2√

1 + u2
1

Ks1− 1
2

(
2π

∣∣∣∣m2v
2
2

v1

∣∣∣∣
√

1 + u2
1 + z2

1 + u2
1

)
×

× exp

(
−2πi

(
m1v

2
1

v2

u1 +
m2v

2
2

v1

u1z

1 + u2
1

))
du1dz . (9.89)

With standard manipulations (see for example [314, Lemma 7]), this integral can be
expressed as a convoluted integral of two Bessel functions giving W ◦

ψ∞
as

W ◦
ψ∞(χ∞, a) =

4π2s3+ 1
2 |v1v2|

Γ(s1)Γ(s2)Γ(s3)
|m1m2|s3−

1
2

∣∣∣∣v1

v2

∣∣∣∣s1−s2 ×
×
∫ ∞

0

Ks3− 1
2

(
2π

∣∣∣∣m1v
2
1

v2

∣∣∣∣√1 + 1/x

)
Ks3− 1

2

(
2π

∣∣∣∣m2v
2
2

v1

∣∣∣∣√1 + x

)
x
s2−s1

2
dx

x
(9.90)

where we have introduced s3 = s1 + s2 − 1
2

for compactness.

9.6.3 Degenerate Whittaker vectors

We now evaluate the Whittaker vectors for non-generic characters, i.e., those where either
m1 or m2 vanishes. Note that it is not trivially possible to obtain this result from the
generic one above by setting some parameters to zero. We will employ theorem 9.5 and
perform this in the example m2 = 0. Then the support of the character is only on the
first simple root, so that w′long = w1 and the subgroup G′(A) is the one associated with
the first simple root only. The possible Weyl words that contribute to (9.59) are

w = wcw
′
long ∈

{
1w′long, w2w

′
long, w1w2w

′
long

}
= {w1, w2w1, w1w2w1} . (9.91)
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As a first step, we calulcate the projected weights w−1
c λ and M(w−1

c , λ) factors that appear
in (9.59) for the three choices:

wc = 1 : λ′ = (w−1
c λ)G′ = (2s1 − 1)Λ′1, M(w−1

c , λ) = 1, (9.92a)

wc = w2 : λ′ = (2s1 + 2s2 − 2)Λ′1, M(w−1
c , λ) =

ξ(2s2 − 1)

ξ(2s2)
, (9.92b)

wc = w1w2 : λ′ = (2s2 − 1)Λ′1, M(w−1
c , λ) =

ξ(2s1 − 1)ξ(2s1 + 2s2 − 2)

ξ(2s1)ξ(2s1 + 2s2 − 1)
.

(9.92c)

where Λ′1 = α1/2 is the fundamental weight for G′(A).
This will need to be combined with

ψa(xα1(u1)) = ψ(axα1(u1)a−1) = exp (2πiaα1u1m1) = exp
(
2πiv2

1v
−1
2 m1u1

)
(9.93)

and the SL(2,A) Whittaker vector for λ′ = (2s′ − 1)Λ′1 given by (cf. (7.81))

W ′◦
ψa(λ

′, 1) =
2(2π)1/2−s′

ξ(2s′)
σ2s′−1(m1)K1/2−s′(2π|m1|v2

1v
−1
2 ), (9.94)

where we introduced the short-hand Kt(x) = x−tK−t(x) in order to facilitate comparison
with [267]. Recall also the compact notation s3 = s1 + s2− 1

2
. The resulting expression for

the (m1, 0) degenerate Whittaker vector is then

W ◦
ψ(χ, a) =

2(2π)1/2−s1

ξ(2s1)
v2−2s1

1 v2s1+2s2−1
2 σ2s1−1(m1)K1/2−s1(2π|m1|v2

1v
−1
2 )

+
2(2π)1/2−s3

ξ(2s3)

ξ(2s2 − 1)

ξ(2s2)
v3−2s1−2s2

1 v2s1
2 σ2s3−1(m1)K1/2−s3(2π|m1|v2

1v
−1
2 )

+
2(2π)1/2−s2

ξ(2s2)

ξ(2s1 − 1)ξ(2s3 − 1)

ξ(2s1)ξ(2s3)
v2−2s2

1 v2−2s1
2 σ2s2−1(m1)K1/2−s2(2π|m1|v2

1v
−1
2 ).

(9.95)

This matches also the expressions in [267] if one adapts the conventions and corrects a

typo there. More precisely, one uses v1 = ν−1/6τ
1/2
2 , v2 = ν−1/3 and exchanges s1 and

s2 to find the Ψ0,q coefficient in [267, Eq. (3.45)], if one fixes the third summand there.
A similar calculation can be carried out for the degenerate Whittaker vector associated
with instanton charges (0,m2); it simply amounts to interchanging the subscripts 1 and 2
everywhere thanks to the Dynkin diagram automorphism of sl(3,R).

9.6.4 Non-abelian Fourier coefficients

So far in this section we have only studied Fourier coefficients (or Whittaker vectors) on
N , but since the characters on N are trivial on the centre Z = N (2) = [N,N ] they do not
capture the complete Fourier expansion of E(χ, g) as discussed in section 6.2.3. To have a
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complete expansion we also need Fourier coefficients on Z, that is, Whittaker vectors on
Z, with non-trivial characters ψZ : Z(Q)\Z(A)→ U(1) parametrised by k ∈ Q×

ψZ(n(2)) = e2πikz n(2) =
(

1 0 z
0 1 0
0 0 1

)
∈ Z(A) . (9.96)

To avoid ambiguities, we will denote the character on Z by ψZ and the characters on N
by ψN .

Recalling (6.2.3), the Whittaker vectors on Z are defined by

W ◦
ψZ

(χ, g) =

∫
Z(Q)\Z(A)

E(χ, n(2)g)ψZ(n(2)) dn(2) . (9.97)

For the remaining parts of this section, we will drop the superscript for the spherical
property and write the charge explicitly as W

(k)
ψZ

for clarity.
We will now show that these Whittaker vectors on Z are determined by the Whittaker

vectors on N (that we calculated above) but before we can make an exact statement we
need to make a few definitions.

Let k,m2 ∈ Q with k = a1/b1 and m2 = a2/b2 in shortened form where ai ∈ Z and
bi ∈ N. Define

d = d(k,m2) :=
gcd(a1b2, a2b1)

b1b2

(9.98)

which is then strictly positive since k 6= 0 and let k′ := k/d = a1b2/ gcd(a1b2, a2b1) ∈ Z
and m′2 := m2/d = a2b1/ gcd(a1b2, a2b1) ∈ Z. Then, there exists integers α and β such
that

αm′2 − βk′ = gcd(k′,m′2) = 1 . (9.99)

The ambiguity in the definition of α and β is discussed in the proof of the following
proposition.

Proposition 9.8. Let k ∈ Q× with α, β, k′ and m′2 defined as above. Then

W
(k)
ψZ

(χ, g) =
∑

m1,m2∈Q

W
(m1,d)
ψN

(
χ, lg

)
l =

(
α β 0
k′ m′2 0
0 0 1

)
∈ SL(3,Z) (9.100)

where g = (g∞, g2, g3, . . .) is an arbitrary element of G(A).

We will consider the restriction g = (g∞, 1, 1, . . .) giving integer charges in

proposition 9.9. By W
(m1,d)
ψN

we mean the Whittaker vectors on N given by ψN with
instanton charges m1 and d for the simple roots, which were calculated in (9.85), (9.90)
and (9.95).

Proof. To show (9.100), let first l be defined as in that equation. We can expand W
(k)
ψZ

(χ, g)
further as

W
(k)
ψZ

(χ, g) =

∫
Q\A

E(χ,
(

1 0 z
0 1 0
0 0 1

)
g)e−2πikz dz =

∑
m2∈Q

∫
(Q\A)2

E(χ,
(

1 0 z
0 1 x2
0 0 1

)
g)e−2πi(kz+m2x2) dzdx2 .

(9.101)
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Using the automorphic invariance of E(χ, g) we can make the following conjugation with l

W
(k)
ψZ

(χ, g) =
∑
m2

∫
(Q\A)2

E(χ, l
(

1 0 z
0 1 x2
0 0 1

)
l−1lg)e−2πi(kz+m2x2) dzdx2

=
∑
m2

∫
(Q\A)2

E(χ,

(
1 0 −d(x2−α(kz+m2x2)/d)/k
0 1 (kz+m2x2)/d
0 0 1

)
lg)e−2πi(kz+m2x2) dzdx2

=
∑
m2

∫
(Q\A)2

E(χ,
(

1 0 x2
0 1 x3
0 0 1

)
lg)e−2πidx3 dx2dx3 ,

(9.102)

where we have made the substitution (kz+m2x2)/d→ x3 and then −d(x2−αx3)/k → x2

leaving the integration domain the same. According to (3.17) and (3.67) the measure is
also unchanged. We note that the ambiguity in α simply results in an extra shift in the
periodic variable x2.

We expand one more time

W
(k)
ψZ

(χ, g) =
∑

m1,m2∈Q

∫
(Q\A)3

E(χ,
(

1 x1 0
0 1 0
0 0 1

)(
1 0 x2
0 1 x3
0 0 1

)
lg)e−2πi(m1x1+dx3) d3x

=
∑
m1,m2

∫
(Q\A)3

E(χ,
(

1 x1 x2
0 1 x3
0 0 1

)
lg)e−2πi(m1x1+dx3) d3x

=
∑
m1,m2

W
(m1,d)
ψN

(χ, lg)

(9.103)

where we, in the second step, have made the substitution x2 + x1x3 → x2.

Note that when inserting g = (g∞, 1, 1, . . .) ∈ G(A) into (9.100), reducing the adelic
Eisenstein series on the left hand side to the real Eisenstein series, the arguments on the
right hand side become non-trivial at the finite places. To be able to use the expressions
for WψN above which require trivial arguments at the finite places, we need to factor out
these effects.

Proposition 9.9. Let τ = u1 + iv2
1/v2 ∈ H and

γ =
(
α β
k′ m′2

)
∈ SL(2,Z) γ(τ) =

ατ + β

k′τ +m′2
a′Im γ(τ) =

(
v′1 0 0

0 v′2/v
′
1 0

0 0 1/v′2

)
(9.104)

with v′1 =
√
v′2 Im γ(τ) and v′2 = v2, and g = (g∞, 1, . . .) ∈ G(A). Then W

(k)
ψZ

is non-
vanishing only for k ∈ Z for which

W
(k)
ψZ

(
χ, (g∞, 1, . . .)

)
=

∑
m1,m2∈Z

W
(m1,d)
ψN

(
χ, (a′Im γ(τ), 1, . . .)

)
e−2πi(m1 Re γ(τ)+m2u2+kz)

(9.105)
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Note that the sums over rationals have collapsed to sums over integers and that

l =
(
γ 0
0 1

)
. (9.106)

This proves the results of [314] and [274] reviewed in [258, 267] with only a few
manipulations using the compact framework of adelic automorphic forms.

Proof. In (9.100) the argument for W
(m1,d)
ψN

is lg = (lg∞; l, l, . . .) and since WψN (χ, n′a′k′) =
ψN(n′)WψN (χ, a′), we factorise lg at the archimedean and non-archimedean places into
their respective Iwasawa decompositions. We have that l ∈ SL(3,Z) which makes the
p-adic Iwasawa decomposition trivial with l ∈ Kp. This was the reason for choosing l on
this particular form.

We then use the following relation, similar to (9.19), to obtain conditions for m1 and
m2. For n̂ = (1; n̂2, n̂3, . . .) with n̂p ∈ N(Zp) ⊂ Kp we have that n̂ ∈ KA and

WψN (χ, a) = WψN (χ, an̂) = WψN (χ, an̂a−1a) = ψN(an̂a−1)WψN (χ, a) (9.107)

which requires that ψN(an̂a−1) = 1 for WψN (χ, a) to be non-vanishing.

Specifically, for W
(m1,d)
ψN

(χ, a) with a = (a∞; 1, 1, . . .) we require that

1 = ψN(an̂a−1) = ψN,∞(1)
∏
p<∞

ψN,p(n̂p) = exp

(
−2πi

∑
p<∞

[m1u1 + du2]p

)
(9.108)

for all u1, u2 ∈ Zp where

n̂p =
(

1 u1 z
0 1 u2
0 0 1

)
. (9.109)

This implies that
∑

p<∞[m1]p ∈ Z and
∑

p<∞[d]p ∈ Z, which, according to proposition
3.13, gives that m1, d ∈ Z. That d is integer means that, for all primes p

1 ≥ |d|p =
max(|a1b2|p , |a2b1|p)

|b1b2|p
= max(|k|p , |m2|p) (9.110)

according to (3.11), and hence, that k and m2 are also integers.
For the archimedean place we have the Iwasawa decomposition

lg∞ = ln∞a∞k∞ = l

(
1 u1 z
0 1 u2

0 0 1

)(
v1 0 0
0 v2/v1 0
0 0 1/v2

)
k∞ = n′∞a

′
∞k
′
∞ with

u′1 = − d2(m2 + ku1)v2
2

k3v4
1 + k(m2 + ku1)2 + v2

2

+
dα

k
u′2 =

m2u2 + kz

d

v′1 =
v1v2d√

k2v4
1 + (m2 + ku1)2v2

2

v′2 = v2

(9.111)

We define τ = u1 + iv2
1/v2 ∈ H, which, under the l-translation on g∞ above, transforms

as τ → τ ′ with

τ ′ = u′1 + i
(v′1)2

v′2
= γ(τ) γ =

(
α β
k′ m′2

)
∈ SL(2,Z) . (9.112)
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Putting it all together we obtain for k ∈ Z× and g = (g∞; 1, 1, . . .)

W
(k)
ψZ

(χ, (g∞; 1, . . .)) =

=
∑

m1,m2∈Z

W
(m1,d)
ψN

(χ, a′)ψ
(m1,d)
N (n′)

=
∑

m1,m2∈Z

W
(m1,d)
ψN

(χ, (a′∞; 1, . . .))
( ∏
p<∞

ψ
(m1,d)
N,p (n′p)

)
ψ

(m1,d)
N,∞ (n′∞)

=
∑

m1,m2∈Z

W
(m1,d)
ψN

(χ, (a′Im γ(τ); 1, . . .))e−2πi(m1 Re γ(τ)+m2u2+kz)

(9.113)

where a′Im γ(τ) is defined in (9.104).

The remaining Whittaker vectors on N with trivial arguments at the non-archimedean
places were computed in sections 9.6.2 and 9.6.3.

Remark 9.10. The physical intepretation of the SL(2,Z) action described by γ is
described by S-duality of type IIB string theory compactified on a Calabi-Yau threefold
[259,267,276]. In this setting the parameters z and u2 are scalar fields sourced by D5- and
NS5-branes with charges m2 and k (more generally denoted by p and q). The branes form
bound states that are often reffered to as (p, q) 5-branes. The two scalar fields transform
as an SL(2)-doublet under S-duality mirrored by their transformation under g → lg and
the charges p and q, which appear as m2 and k in (9.105), break the classical SL(2,R)
symmetry of the supergravity theory to the discrete SL(2,Z) symmetry of the quantum
corrected effective action described by Eisenstein series. In short, this tells us that if we
can compute the effects from a (p, 0) 5-brane, the results for any (p, q) 5-brane follow from
S-duality which is mirrored in the sum over matrices γ in (9.105).

9.7 The Casselman–Shalika formula and

Langlands duality*

In this section we provide an alternative view on the Casselman–Shalika formula (9.21).
For the present analysis it is useful to separate out the modulus character contribution
aρ = δ1/2(a) in formula (9.21) and write

awλ+ρ = aρawλ = δ1/2(a)awλ. (9.114)

Let ψ be an unramified character on N . The Casselman–Shalika formula (9.21) for the
p-adic spherical Whittaker vector on Qp evaluated at a ∈ A(Qp) is

W ◦(λ, a) =
1

ζ(λ)
δ1/2(a)

∑
w∈W

w

( |aλ|∏
α>0(1− p〈λ|α〉)

)
(9.115)

with

1

ζ(λ)
=
∏
α>0

(
1− p−1p−〈λ|α〉

)
. (9.116)
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The sum over the Weyl group in (9.115) resembles closely the Weyl character formula
(4.26) for highest weight modules. In order to make this resemblance exact, we compare
with the rewritten character formula in (4.27) that we reproduce here for convenience:

chΛ(b) =
∑
w∈W

w

(
bΛ∏

β>0(1− b−β)

)
, (9.117)

where β runs over the roots of the group whose representation is being constructed and b
is an element of its Cartan torus.

An important first observation now is that because of the way λ appears in the numerator
and in the denominator of (9.115) the comparison can only work if the character we are
trying to match onto is one of the Langlands dual group LG, or L-group for short, which is
a complex algebraic group canonically associated to G [216]. See also sections 11.7 and 12.5
for more details. The L-group is obtained by interchanging roots and co-roots [196], see
also [127] for a realisation in physics. The root systems of G and LG are in bijection and
the two groups have isomorphic Weyl groups.

Denoting the roots of the Langlands dual group by α∨ instead of β, we are therefore
looking for an element b of the dual torus LA such that |b−α∨ | = p〈α|λ〉. This condition
fixes uniquely an element b = aλ ∈ LA, where we emphasise that the particular element
depends on λ. To ensure that the numerator matches the character of an irreducible
highest weight module VΛ of LG we also need to evaluate (9.115) at a very specific point
a ≡ aΛ of A(Qp). This element aΛ is fixed by the requirement that the following (duality)
relation hold

aΛ
λ = aλΛ, (9.118)

where the left-hand side derives from evaluating the character chΛ at the place aλ and the
right-hand side is what one obtains by evaluating the spherical Whittaker vector at the
special point aΛ ∈ A.

We observe that Λ parametrises points in the space of co-roots h of G. By contrast, λ
is an element of the space of roots (or weights) h∗ of G from the start, so that one has to
consider aλ as an element of the dual torus LA of the Langlands dual group LG. Putting
everything together we can write the spherical Whittaker vector evaluated at aΛ in terms
of the character of the highest weight representation VΛ of LG as

W ◦(λ, aΛ) =

{
1

ζ(λ)
δ1/2(aΛ)chΛ(aλ) if Λ a dominant integral weight of LG,

0 otherwise.
(9.119)

The vanishing for non-dominant weights Λ of LG is a consequence of the vanishing
properties of Whittaker vectors discussed in section 9.2.2.

To summarise the main result of this section: Local spherical Whittaker vectors for a
principal series representations parametrised by a weight λ of G and evaluated at special
points aΛ associated with dominant weights Λ of the Langlands dual group LG can be
evaluated in terms of the character chΛ of the irreducible highest weight VΛ of LG evaluated
at a point aλ determined by the parameter of the principal series.
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The parameter aλ ∈ LA is called the Satake–Langlands parameter of the principal
series representation of G(Qp) determined by the weight λ and we will come back to it
in a slightly different guise in section 11.7. We also note that the element aΛ ∈ A(Qp)
actually corresponds to an equivalence class A(Qp)/A(Zp) due to sphericality (right K(Qp)
invariance) of the Whittaker function.

For the case of GL(n,Qp) one has LG = GL(n,C). If one considers the case when Λ is
the highest weight of the fundamental n-dimensional representation Cn, then the character
chΛ is given by the degree n Schur polynomial Sn

W ◦(λ, aΛ) =
1

ζ(λ)
δ1/2(aΛ)Sn(α1, . . . , αn), G = GL(n,Qp). (9.120)

Here, λ is thought of as the diagonal matrix λ = diag(α1, . . . , αn). This formula for
GL(n) was first proven by Shintani in 1976 [298], and it was subsequently generalised by
Casselman–Shalika in 1980 to (11.130) which holds for any G. Remarkably the general
formula was in fact conjectured by Langlands already in 1967 in a letter to Godement [220],
a fact that was apparently unknown to Casselman and Shalika at the time of their
proof [63].

Example 9.11: SL(2,Qp) spherical Whittaker vector and SL(2,C) characters

For the case SL(2,Qp) the spherical Whittaker vector for unramified ψ was given explicitly in (9.24) for
λ = (2s− 1)ρ and general a = vHα as

W ◦(λ, a) = γp(v
2)(1− p−2s)

|v|−2s+2 − p−2s+1|v|2s
1− p−2s+1

. (9.121)

In order to verify the expression (9.119) we need to evaluate them at the special values aΛ where
Λ = NHα/2 is a dominant integral weight of LSL(2,Qp) = SL(2,C) for N ∈ Z≥0. This means v2 = pN

and the Whittaker vector evaluates to

W ◦(λ, aΛ) = (1− p−2s)
p
N
2 (2s−2) − p−2s+1−Ns

1− p−2s+1
. (9.122)

The Whittaker vector vanishes if N is not in Z≥0 because of the factor γp(v
2).

Let us now determine the right-hand side of (9.119). For Λ = N
2 Hα, the character of the (N + 1)-

dimensional highest weight representation of LSL(2,Qp) ∼= PSL(2,C) is

chΛ = eNHα/2 + e(N−2)Hα/2 + . . .+ e−NHα/2 =
e−NHα/2 − e(N+2)Hα/2

1− eHα . (9.123)

This has to be evaluated at aλ = pλ = p(2s−1)Λα which leads to

chΛ(aλ) =
pN(2s−1)/2 − p−(N+2)(2s−1)/2

1− p−2s+1
, (9.124)

where we recall that the p-adic characters are evaluated with the p-adic norm such that for instance
eHα(aλ) = |p2s−1| = p−2s+1. For v2 = pN , the modulus character evaluates to δ1/2(aΛ) = |pN/2| = p−N/2
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and one also has 1
ζ(λ) = 1− p−2s from (9.116). Putting everything together in (9.119) leads to

W ◦(λ, aΛ) = (1− p2s)p−N/2
pN(2s−1)/2 − p−(N+2)(2s−1)/2

1− p−2s+1
= (1− p−2s)

pN(2s−2)/2 − p−2s+1−sN

1− p−2s+1
(9.125)

which equals (9.122).

Remark 9.12. Using formula (9.57) we can also reinterpret (9.119) in terms of a Whittaker
vector for the twisted character

ψΛ(n) := ψ(aΛna
−1
Λ ) (9.126)

as

W ◦
ψΛ

(λ, 1) = a
−wlongλ−ρ
Λ W ◦(λ, aΛ) =

1

ζ(λ)
a
−wlongΛ

λ chΛ(aλ), (9.127)

where we used (9.118).
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Chapter 10

Working with Eisenstein series

After having developed the formal theory of Eisenstein series and their Fourier expansion
in the previous chapters we would like to discuss Eisenstein series from a more practical
point of view in this chapter. In concrete examples this typically means obtaining as much
information as possible for a particular Eisenstein series E(χ, g), that is a particular given
χ. Many of the general theorems either simplify for such a χ or have to be evaluated
with much care as E(χ, g) might be divergent for the chosen χ. This chapter deals with
developing methods for addressing these issues. In particular, we exhibit methods for
efficiently evaluating the constant term formula (8.41) and formula (9.59) for the Whittaker
vectors of a given Eisenstein series. We will also discuss the pole structure of Eisenstein
series (as a function of χ) in examples, their residues as well as different normalisations.
In this chapter, the emphasis is on illustrating different methods through many examples;
for proofs of general statements we will typically refer to the appropriate literature.

Many of the properties of Eisenstein series are controlled by the completed Riemann
zeta function whose properties we briefly recall.

Proposition 10.1 (Properties of completed Riemann zeta function). As a
function of s ∈ C, the completed Riemann zeta function ξ(s) = π−s/2Γ(s/2)ζ(s) has
simple poles at s = 0 and s = 1 with residues −1 and +1, respectively. It is non-zero
everywhere else. It satisfies the functional relation ξ(s) = ξ(1− s).

Proof. The first statements follow directly from the definition and the properties of gamma
and zeta functions. The functional relation was shown originally by Riemann using analytic
continuation [275].

10.1 The SL(2,R) Eisenstein series as a function of s

We begin with the SL(2,R) Eisenstein series E(s, z) that was analysed in great detail in
chapter 7 with its complete Fourier expansion given in theorem 7.1. We repeat the result
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here for convenience:

E(s, z) = ys +
ξ(2s− 1)

ξ(2s)
y1−s +

2

ξ(2s)
y1/2

∑
m 6=0

|m|s−1/2σ1−2s(m)Ks−1/2(2π|m|y)e2πimx,

(10.1)

where z = x+ iy is an element of the upper half plane H = SL(2,R)/SO(2). The original
definition of E(s, z) only converged for Re(s) > 1 but by virtue of the functional relation
(cf. theorem 7.1)

E(s, z) =
ξ(2s− 1)

ξ(2s)
E(1− s, z) (10.2)

or through analytic continuation of the Fourier expansion (10.1) one can define E(s, z) for
almost all complex s. We restrict our discussion to real s for simplicity.

10.1.1 Limiting values in original normalisation

From the explicit form (10.1) one sees that special things might happen for the values
s = 0, s = 1

2
and s = 1. All of them are outside the original domain of convergence. Let

us note that the region 0 ≤ Re(s) ≤ 1 is often called the critical strip.

• s = 0: This is the limit where the inducing character χs(z) = ys becomes trivial.
Taking the limit in the expression (10.1) for the Fourier expansion one also
sees that all terms go to zero except for the first. This is due to the factors

1
ξ(2s)

that vanish linearly for s→ 0 while everything else stays bounded. The
proper limiting behavoiur is therefore

E(s, z) = 1 +O(s). (10.3)

The constant value 1 could have been expected from the triviality of the inducing
character but the definition in terms of a Poincaré sum is ill-defined. Only
after analytic continuation of the sum one obtains the constant E(0, z) = 1.

Representation theoretically, the function E(s, z) in the limit s→ 0 belongs to
the trivial representation of SL(2,R).

• s = 1
2
: Inspection of the Fourier expansion (10.1) shows that the non-zero Fourier

modes disappear in this limit due to the 1
ξ(2s)

prefactor. For the constant terms
one has to take the limit of the quotient of ξ-functions which is found to be
−1 and the two contributions to the constant term cancel, leading to

E(s, z) = 0 +O
(
s− 1

2

)
. (10.4)

The first order term is a member of the principle series. It is on the critical
line and is therefore almost unitary.
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• s = 1: This is the most interesting case. The Fourier expansion (10.1) shows that
the second constant term diverges in the limit s → 1 while all other terms
remain finite. The residue at the simple pole can be calculated easily from the
completed Riemann zeta functions:

E(s, z) =
3

π(s− 1)
+O

(
(s− 1)0

)
. (10.5)

The residue is therefore a constant function and is therefore also of the same
type as the limit s → 0 discussed above. This is not surprising since the
functional relation (10.2) relates the values s = 0 and s = 1 and one sees that
the prefactor introduces the additional pole. Representation theoretically, the
residue of the series E(s, z) at the simple pole s = 1 belongs to the trivial
representation of SL(2,R).

The term at order (s− 1)0 can also be evaluated from the Fourier expansion
using the fact that the modified Bessel function K1/2 has an exact asymptotic
expansion in terms of a simple exponential. One finds

E(s, z) =
3

π(s− 1)
− 6

π

(
− π

6
y + log(4π

√
y)− 12 logA (10.6)

−
∑
m>0

σ−1(m)e2πim(x+iy) −
∑
m>0

σ−1(m)e2πim(x−iy)

)
+O(s− 1).

Here, A is the Glaisher–Kinkelin constant that satisfies logA = 1
12
− ζ ′(1). The

expression can be rewritten by using the Dedekind η function

η(z) = q1/24

∞∏
n=1

(1− qn), (10.7)

where q = e2πiz = e2πi(x+iy) on the right-hand side. From the product formula
for η(z) one concludes

log η(z) =
1

24
log q +

∑
n>0

log(1− qn) =
πi

12
(x+ iy)−

∑
n>0

∑
k>0

k−1qkn

=
πi

12
(x+ iy)−

∑
m>0

∑
d|m

d−1qm =
πi

12
(x+ iy)−

∑
m>0

σ−1(m)qm. (10.8)

The s-independent term in (10.6) can therefore be written as

− 6

π

(
−π

6
y + log(4π

√
y)− 12 logA−

∑
m>0

σ−1(m)qm −
∑
m>0

σ−1(m)q̄m

)
= − 6

π

(
− 12 logA+ log(4π) + log

(√
y|η(z)|2

) )
, (10.9)
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leading to

E(s, z) =
3

π(s− 1)
+

6

π

(
12 logA− log(4π)− log

(√
y|η(z)|2

) )
+O(s− 1).

(10.10)

This formula is known as the (first) Kronecker limit formula. Even though
neither η(z) nor |η(z)|2 are SL(2,Z) invariant, the particular combination
appearing in this expression is invariant.

Remark 10.2. The particular combination of constants in the Kronecker limit for-
mula (10.10) depends on the way the Eisenstein series is normalised. The formula is more
commonly stated for the SL(2,Z) invariant lattice sum (cf. (1.1)) for which one finds∑

(c,d)∈Z2

(c,d)6=(0,0)

ys

|cz + d|2s = 2ζ(2s)E(s, z) (10.11)

=
π

s− 1
+ 2π

(
γE − log(2)− log

(√
y|η(z)|2

) )
+O(s− 1) (10.12)

if one uses the following relation between the Glaisher–Kinkelin constant A and the
Euler–Mascheroni constant γE: 12 logA− log(4π) = γE − log 2− ζ′(2)

ζ(2)
.

10.1.2 Weyl symmetric normalisation

The functional relation (10.2) suggests to define a completed Eisenstein series in analogy
with the completed Riemann zeta function by the definition

E?(s, z) = ξ(2s)E(s, z). (10.13)

This then has the simple property that

E?(s, z) = E?(1− s, z) (10.14)

and we call this the Weyl symmetric normalisation as it yields a function invariant under
Weyl transformations acting on the character. Indeed, the non-trivial Weyl reflection w of
SL(2,R) acts on the weight λs = (2s− 1)ρ by

wλs = −(2s− 1)ρ = (2(1− s)− 1)ρ = λ1−s (10.15)

and so exchanges s and 1−s. This was of course already used and apparent in the constant
terms in (10.1).

Since the normalising factor has poles and zeroes of its own, the discussion of the
behaviour of E?(s, z) as a function of s is slightly changed from the one above. More
precisely, the completed function E?(s, z) has a simple poles at s = 0 and s = 1, whereas
it has a non-trivial limit for s = 1

2
. Representation theoretically, E?(1

2
, z) belongs to the

principal series.
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10.2 Properties of Eisenstein series

The behaviour of the SL(2,R) Eisenstein series at the special values of s above was
completely controlled by the constant terms. This is a general feature due to the holomorphy
of the Fourier coefficients, see proposition 9.2. As we have full control of the constant
terms thanks to the Langlands constant term formula (theorem 8.1), we can in principle
completely determine the behaviour of an Eisenstein series E(λ, g) on a group G(R) as a
function of λ. As the number of constant terms is generically equal to the order of the
Weyl group W of G this can be quite tedious due to the large number of terms that have
to be considered. In section 10.3, we will present a method that makes the problem more
tractable for the case of non-generic λ when the Eisenstein series E(λ, g) is not attached
to the full principal series but to a degenerate principal series. The prime example of this
is when it becomes a maximal parabolic Eisenstein series as defined in section 5.6. Before
focussing on these cases in section 10.3, we offer a few general and cautionary remarks.

10.2.1 Validity of functional relation

As Langlands showed in his seminal work [218], the functional equation (8.44) repeated
here for convenience

E(λ, g) = M(w, λ)E(wλ, g) (10.16)

is valid for almost all λ ∈ h∗(C). The exceptions are affine hyperplanes in the complex
vector space h∗(C). These affine hyperplanes are associated with poles and zeroes of the
intertwining factor M(w, λ). Since all poles and zeroes are of finite order, one can make
sense of the functional relation even on these planes by treating also the Eisenstein series
as meromorphic functions with finite order poles and singularities.

Example 10.3: Functional relation for SL(2,R) Eisenstein series at a simple zero and pole

For SL(2,R) and general λ = (2s− 1)ρ, the intertwining factor for the non-trivial Weyl element w = wlong

is

M(wlong, λ) =
ξ(2s− 1)

ξ(2s)
(10.17)

and has a simple zero at s = 0 and a simple pole at s = 1. The functional relation (10.16) remains valid
even at these places if one considers

E(s, z) = 1 + sÊ0(z) +O
(
s2
)
,

E(s, z) =
3

π(s− 1)
+ Ê1(z) +O (s− 1) (10.18)

around s = 0 and s = 1, respectively. The expansion of the intertwining factor around these values is

ξ(2s− 1)

ξ(2s)
= −πs

3
+O(s2) =

3

π(s− 1)
+O

(
(s− 1)0

)
, (10.19)
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such that

E(s, z) = 1 + sÊ0(z) +O(s2) =
(
−πs

3
+O(s2)

)(
− 3

πs
+ Ê1 +O(s)

)
= 1− πs

3
Ê1 +O(s2) (10.20)

and so the functional relation relates Ê0(z) and Ê1(z) (as well as all higher order terms).

Of interest are also fixed planes of the action of the Weyl group action. In these cases,
the functional relation (10.16) constrains the Eisenstein series on the fixed plane.

Example 10.4: Functional relation for SL(2,R) Eisenstein series with λ = 0

For SL(2,R) and E(s, z) the fixed plane is s = 1
2 , corresponding to λ = λ1/2 = 0. The intertwining factor

at this place takes the value M(w, 0) = −1 such that the functional relation implies

E( 1
2 , z) = −E( 1

2 , z) =⇒ E( 1
2 , z) = 0, (10.21)

consistent with the analysis in section 10.1.1.

We consider also a few examples of functional relations for higher rank groups.

Example 10.5: Functional relation for SL(3,R) Eisenstein series

The most general Eisenstein series on G = SL(3,R) is given by a weight

λs1,s2 = 2s1Λ1 + 2s2Λ2 − ρ (10.22)

that is parametrised by two complex parameters s1 and s2. The Λi are as always the fundamental weights.
We denote the corresponding character by χs1,s2(a) = aλs1,s2+ρ and the Eisenstein series by

E(s1, s2, g) =
∑

B(Z)\SL(3,Z)

χs1,s2(γg). (10.23)

The sum is absolutely convergent for Re(s1) > 1 and Re(s2) > 1 [60]. The Weyl group of SL(3,R) is
isomorphic to the symmetric group on three letters and hence consists of six elements and the constant
terms were already given in (9.81). Denoting the fundamental reflections by w1 and w2 one finds that

w1λs1,s2 = (1− 2s1)Λ1 + 2(s1 + s2 − 1)Λ2 = λ
1−s1,s1+s2− 1

2
, (10.24a)

w2λs1,s2 = λ
s1+s2− 1

2 ,1−s2
. (10.24b)

The other Weyl images can be obtained similarly. One functional relation is therefore

E(s1, s2, g) = M(w1, λs1,s2)E(1− s1, s1 + s2 − 1
2 , g) =

ξ(〈α1|λs1,s2〉)
ξ(〈α1|λs1,s2〉+ 1)

E(1− s1, s1 + s2 − 1
2 , g)

=
ξ(2s1 − 1)

ξ(2s1)
E(1− s1, s1 + s2 − 1

2 , g). (10.25)
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83 4 51

2

6 7

Figure 10.1: The Dynkin diagram of E8 with labelling of nodes in the ‘Bourbaki convention’.

That this is a valid relation can be checked on the constant terms from (9.81). We can consider the limit
s1 → 1

2 to conclude

E( 1
2 , s2, g) = −E( 1

2 , s2, g) =⇒ E( 1
2 , s2, g) = 0. (10.26)

This is exactly as in the SL(2,R) case in example 10.4 above. Again s1 = 1
2 corresponds to a fixed plane

of a fundamental reflection and in this case one always obtains a vanishing Eisenstein series.

More involved examples are obtained for exceptional groups. These will play an
important role in section 12.1 in the context of string theory.

Example 10.6: Functional relation for E8(R) maximal parabolic Eisenstein series

Consider a (maximal parabolic) Eisenstein series on E8 with Dynkin diagram given in figure 10.1. For the
weight

λs = 2sΛ8 − ρ (10.27)

the associated character χs(a) = aλs+ρ = a2sΛ8 is invariant under the maximal parabolic subgroup with
semi-simple part E7. (Here, Λ8 denotes as always the fundamental weight associated with node 8.) We
therefore have a family of maximal parabolic Eisenstein series

E(s, g) ≡ E(λs, P, g) =
∑

γ∈P (Z)\G(Z)

χs(γg). (10.28)

There are many functionally related Eisenstein series. The Weyl group of E8 has order |W(E8)| =
696 729 600, but for the particular choice of parameter λs in (10.27) not all Weyl images of λs give different
Eisenstein series. Instead it suffices to consider elements of the coset W(E8)/W(E7) and representatives
that do not end on an element of W(E7). (This will be the main theme of section 10.3.) We consider as
an example the Weyl word

w = w1w3w4w5w6w7w8. (10.29)

Then

w(2sΛ8 − ρ) = (8− 2s)Λ1 + (2s− 5)Λ2 − ρ. (10.30)

The intertwining factor is

M(w, 2sΛ8 − ρ) =
ξ(2s− 7)

ξ(2s)
(10.31)
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and therefore

E(2sΛ8 − ρ, g) =
ξ(2s− 7)

ξ(2s)
E((8− 2s)Λ1 + (2s− 5)Λ2 − ρ, g). (10.32)

At s = 5
2 this specialises to

E(5Λ8 − ρ, g) =
ξ(3)

ξ(5)
E(3Λ1 − ρ, g) (10.33)

and therefore relates a specific maximal parabolic Eisenstein series ‘on node 8’ to another specific maximal
parabolic Eisenstein series, this time ‘on node 1’. The former appears in the discussion of minimal
theta series for E8 [126] while the latter version appears commonly in string theory, see chapter 2 and
section 12.1, and both are related to the minimal unitary representation as we will discuss more in
sections 10.3.2 and 12.1.1 below.

10.2.2 Weyl symmetric normalisation

For a general (minimal) Eisenstein series E(λ, g) on a split real simple group G one can
define a completed version according to

E?(λ, g) =

[∏
α>0

ξ(〈λ|α〉+ 1)

]
︸ ︷︷ ︸

Nλ

E(λ, g). (10.34)

The normalising factor Nλ is the denominator in M(wlong, λ). This function is completely
invariant under the action of the Weyl group W : For any w ∈ W one has

E?(wλ, g) = E?(λ, g). (10.35)

To see this it is sufficient to consider the action of a fundamental reflection wi ∈ W :

E?(wiλ, g) = NwiλE(wiλ, g) = NwiλM(wi, λ)−1E(λ, g) = NλE(λ, g) = E?(λ, g). (10.36)

The prefactor works as follows

NwiλM(wi, λ)−1 =
ξ(〈λ|αi〉+ 1)

ξ(〈λ|αi〉)
∏
α>0

ξ(〈λ|wiα〉+ 1)

=
ξ(〈λ|αi〉+ 1)

ξ(〈λ|αi〉)
ξ(−〈λ|αi〉+ 1)

∏
α>0
α6=αi

ξ(〈λ|α〉+ 1)

=
∏
α>0

ξ(〈λ|α〉+ 1) = Nλ, (10.37)

where we have used the fact that wi permutes the set of positive roots ∆+ \ {αi} as well
as the functional relation of the completed Riemann zeta function.

The normalising factor for minimal Eisenstein series has as many factors as the order
of W. When the character defined by a weight λ has a stabiliser that is larger than the
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Borel subgroup B, it is sufficient to use a normalising factor with fewer factors to obtain a
suitably symmetric combination. Consider the case of a non-minimal parabolic Eisenstein
series E(λ, g) where the stabiliser is given by a parabolic subgroup P (Z), see section 5.6.
Then the semi-simple part M of the Levi subgroup L of P = LU has a Weyl group W(M).
The normalising factor NP,λ in this case can be chosen to be the denominator (after
cancelling all factors) of M(w, λ) where w is defined by wlong(G) = wwlong(M) through
the longest words in W(G) and W(M). An alternative definition of w is as the longest
Weyl word in the W(G) orbit of λ+ ρ. The normalised Eisenstein series

E?(λ, P, g) = NP,λE(λ, P, g). (10.38)

This completed function then is either invariant under a reflection group isomorphic to
the Weyl group generated by the simple reflections in W(G) that do not belong to W(M),
or it maps to a similar one that is obtained by intertwining additionally by an (outer)
Dynkin diagram automorphism. Furthermore, the Weyl normalised series has a different
pole structure compared to the Eisenstein series E(λ, P, g) with standard normalisation as
the normalising factor has zeroes and poles.

In the case of maximal parabolic Eisenstein series with weight

λ = 2sΛi∗ − ρ (10.39)

this means a reflection symmetry s↔ 〈ρ|Λi∗ 〉
〈Λi∗ |Λi∗ 〉

− s. We illustrate this by two examples.

Example 10.7: Weyl normalisation of SL(3,R) maximal parabolic Eisenstein series

The first example contains a non-trivial diagram automorphism. Consider the group G = SL(3,R) and
the weight

λs = 2sΛ1 − ρ. (10.40)

The associated character χs(a) = aλs+ρ = a2sΛ1 is invariant under a maximal parabolic subgroup P with
Levi factor L = GL(1,R)×M with M = SL(2,R). Denote the associated maximal parabolic Eisenstein
series by

E(s, g) ≡ E(λs, P, g) =
∑

γ∈P (Z)\G(Z)

χs(γg). (10.41)

The Weyl word w that enters in the definition of the normalising factor NP,λs is given by the relation

w2w1w2︸ ︷︷ ︸
wlong(G)

= w2w1︸ ︷︷ ︸
w

w2︸︷︷︸
wlong(M)

(10.42)

such that

M(w, λs) =
ξ(2s− 2)ξ(2s− 1)

ξ(2s− 1)ξ(2s)
=
ξ(2s− 2)

ξ(2s)
=⇒ NP,λs = ξ(2s). (10.43)

The normalised series then has a reflection symmetry s↔ 3
2 − s but it maps to the maximal parabolic

Eisenstein series associated with the parabolic subgroup P ′ obtained by the diagram automorphism. In
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other words, the characters that are being related are

2sΛ1 − 1 ↔ 2
(

3
2 − s

)
Λ2 − ρ. (10.44)

The second example does not have any non-trivial automorphisms.

Example 10.8: Weyl normalisation of E8(R) maximal parabolic Eisenstein series

We consider the E8 Eisenstein series from example 10.6 with weight

λs = 2sΛ8 − ρ. (10.45)

The parabolic subgroup leaving the associated character invariant has semi-simple part E7. The normalising
factor in this case is associated with a Weyl word w of length `(w) = 57 that we do not spell out. The
normalising factor turns out to be

NP,λs = ξ(2s)ξ(2s− 5)ξ(2s− 9)ξ(4s− 28) (10.46)

and the thus normalised Eisenstein series E?(s, g) = NP,λE(s, g) is invariant under the reflection w8 that
leads to the reflection law

E?(s, g) = E?
(

29
2 − s, g

)
. (10.47)

This example is also discussed in [126] and we will say more about below in example 10.19. Here, we note
that the normalising factor (10.46) has introduced a pole at s = 5

2 (and also for other values). This means
that the special Eisenstein series from example 10.6 now appears as a residue of an Eisenstein series.

10.2.3 Square-integrability of Eisenstein series

Langlands provided a criterion for Eisenstein series to be square integrable [218, §5]. We
state the criterion for Eisenstein series E(λ, g) such that they are finite at λ, meaning that
they do not have a zero or pole as a meromorphic function of λ for the λ chosen.

Remark 10.9. If E(λ, g) has a pole or zero at a given λ one has to consider a one-
parameter family in the neighbourhood of λ and study a suitably normalised version such
that the zeroth order term becomes finite [233]. In the case of SL(2,R) and E(s, z) this
means multiplying by (s− 1) if one wants to study the square integrability of E(s, z) at
s = 1. Similarly, one would have to multiply by s−1 for the s = 0 case.

Under the assumption of a finite E(λ, g), the constant term formula of theorem 8.1
implies that ∫

N(Q)\N(A)

E(λ, ng)dn =
∑
w∈W

M(w, λ)awλ+ρ (10.48)

is well-defined and non-vanishing function of a.

Proposition 10.10 (Square integrability of Eisenstein series [218]). A finite
Eisenstein series E(λ, g) in the sense just described is square integrable if and only if

Re〈wλ|Λi〉 < 0 for all i = 1, . . . , rank(G) (10.49)

for all w ∈ W such that M(w, λ) 6= 0.
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The intuition behind this proposition is that the condition ensures that all terms fall
off fast enough as one approaches any cusp of G(Z)\G(R). A proof can be found in [218]
and we content ourselves here with some examples.

Example 10.11: Non square integrability of SL(2,R) Eisenstein series

Consider square integrability of Eisenstein series on SL(2,R). For λs = (2s− 1)ρ one has to check the
condition (10.49) for the Weyl words w = 1 and w = wlong. Plugging in the explicit expressions leads to

Re〈λs|Λ1〉 = Re
1

2
(2s− 1) < 0 and Re〈wlongλs|Λ1〉 = −Re

1

2
(2s− 1) < 0. (10.50)

Clearly, these two conditions cannot be satisfied simultaneously and therefore we recover the well-known
result that non-holomorphic Eisenstein series on SL(2,R) are never square integrable. There is, however,
a limiting case Re s = 1

2 , where the conditions are almost satisfied. This corresponds to the Eisenstein
series on the critical line s = 1

2 + it (for t ∈ R) that are δ-function normalisable. See for instance [117,308]
for a discussion of these properties of Eisenstein series on SL(2,R).

More interesting is the case when there are non-trivial square integrable functions
within a degenerate principal series.

Example 10.12: Square integrability of E8 maximal parabolic Eisenstein series for special λ

Consider the maximal parabolic E8 Eisenstein series E(s, g) with weight

λ = 2sΛ8 − ρ (10.51)

that was introduced in example 10.6. Computing the constant term one finds 240 non-vanishing M(w, λ).
Checking the criterion (10.49) one finds that it is satisfied for the values

s =
5

2
, s =

9

2
, s = 7 (10.52)

and hence these are normalisable Eisenstein series for E8 that belong to the discrete spectrum of the
Laplacian on G(R)/K(R) for G = E8.

The value s = 5
2 was also discussed in example 10.6 and it was shown there that E(s, g) for this

value is functionally related to another known normalisable maximal parabolic Eisenstein series [146] that
appears in string theory for the R4 correction, see also section 12.1.

The value s = 9
2 can be analysed using the functional relation

E(2sΛ8 − ρ) =
ξ(2s− 10)ξ(2s− 13)

ξ(2s)ξ(2s− 5)
E(2(7− s)Λ1 + 2(s− 9/2)Λ2 − ρ) (10.53)

that shows that for s = 9
2 , the adjoint E8 series is connected to the maximal parabolic series on node 1

with s = 5
2 . This is the case that appears in string theory for the D4R4 correction and it is known that

the function is associated with the next-to-minimal series [146].
The value s = 7 is interesting because it does not represent any simplification in the wavefront set

(compared to generic s) and so is just part of the residual discrete spectrum with orbit type A2. These
cases were also analysed in [233].
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10.3 Evaluating constant term formulas

Langlands’ constant term formula (cf. theorem 8.1)∫
N(Z)\N(R)

E(λ, ng)dn =
∑
w∈W

M(w, λ)awλ+ρ (10.54)

is nice and compact but evaluating it will a priori produce as many terms as there are
different elements in the Weyl group. Since the order of the Weyl group becomes large
very quickly as the rank of G(R) grows this can render the resulting expressions rather
unwieldy. However, by dint of choice of the parameter λ of the (degenerate) principal
series the sum over Weyl elements may simplify as then some of the coefficients M(w, λ)
appearing in (10.54) vanish. For convenience we also recall that the definition of the
intertwiner

M(w, λ) =
∏
α>0
wα<0

ξ(〈λ|α〉)
ξ(〈λ|α〉+ 1)

(10.55)

and its multiplicative property

M(w1w2, λ) = M(w1, w2λ)M(w2, λ) for any w1, w2 ∈ W . (10.56)

A convenient method for evaluating the Langlands constant term formula can then be
developed by exploiting the multiplicative relation (10.56). We first adumbrate this method
that we will refer to as the orbit method . Then we discuss a number of examples and finally
mention further simplifications that arise for constant terms in non-maximal unipotent
subgroups U ⊂ N . The corresponding constant term formula was given in section 8.9.

10.3.1 The orbit method

The factor M(w, λ) is, by its definition in (10.55), given by the product of factors of the
form

c(k) =
ξ(k)

ξ(k + 1)
, (10.57)

where k = 〈λ|α〉 and α runs over all positive roots that satisfy wα < 0. The function
c(k) is sometimes referred to as the Harish-Chandra c-function. It has a simple pole at
k = 1 and a simple zero at k = −1; otherwise it takes finite non-zero values for real k
and satisfies c(k)c(−k) = 1 as well as c(0) = −1. For vanishing M(w, λ), we are therefore
particularly interested in roots α which satisfy wα < 0 and 〈λ|α〉 = −1.

To characterize these α further, let us define the stabiliser of the weight λ

stab(λ) = {α ∈ Π | 〈λ+ ρ|α〉 = 0} , (10.58)

so that it is the subset of the simple roots Π for which λ+ ρ has vanishing Dynkin labels.
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Remark 10.13. If stab(λ) 6= {}, the corresponding Eisenstein series E(λ, g) belongs to
a degenerate principal series. Let P ⊂ G be the parabolic subgroup corresponding to
stab(λ) ⊂ Π as defined in section 4.1.3. Then

E(λ, g) = E(λ, P, g) =
∑

γ∈P (Z)\G(Z)

e〈λ+ρP |HP (γg)〉 (10.59)

as explained in section 5.6.2.

Example 10.14: Stabiliser of a maximal parabolic λ

As an example and referring back to section 5.6 we note that maximal parabolic Eisenstein series have
very large stabilisers, corresponding to stab(λ) = Π \ {αi∗} for the value i∗ that determines the maximal
parabolic subgroup under which χ(a) = aλ+ρ is left-invariant.

If wi is the fundamental Weyl reflection in the simple root αi defined in (4.14), it
clearly maps wi(αi) = −αi and this is the only positive root that is mapped to a negative
root by the fundamental reflection wi [186]. If furthermore αi ∈ stab(λ), then

αi ∈ stab(λ) ⇔ 〈λ|αi〉 = −1 ⇒ M(wi, λ) = c(−1) = 0. (10.60)

By the multiplicative property (10.56) one can then deduce that all Weyl words w that
end (on the right) on a fundamental reflection wi with αi in stab(λ) obey M(w, λ) = 0,
see also [146]. Another way of putting this is that only those w can have non-vanishing
M(w, λ) that lie in

C(λ) = {w ∈ W |wα > 0 for all α ∈ stab(λ)} . (10.61)

Depending on stab(λ) this set can be much smaller than W . In fact, its order is given by
|C(λ)| = |W|/|W(stab(λ))|, where W(stab(λ)) is the subgroup of W that is generated by
taking only words in the fundamental reflections associated with stab(λ) ⊂ Π. Moreover,
one then has the simplified constant term formula∫

N(Q)\N(A)

E(χ, ng)dn =
∑

w∈C(λ)

awλ+ρM(w, λ). (10.62)

The elements in C(λ) can be constructed using the Weyl orbit of a dominant weight Λ
that is defined as follows:

Definition 10.15. Let λ ∈ h∗ be a weight with stabiliser stab(λ) as defined in (10.58)
and r = dim h∗ denote the rank of the underlying group. Let I ⊂ {1, . . . , r} be such that
a simple root αi of g belongs to stab(λ) if and only if i ∈ I. Let Ī be the complement
of I in {1, . . . , r}. Then the dominant weight Λ associated to λ is defined as a sum over
fundamental weights as

Λ =
∑
i∈Ī

Λi. (10.63)

In other words, one considers the λ+ ρ and replaces all non-zero Dynkin labels by 1 to
obtain Λ.
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Clearly, W(stab(λ)) stabilises Λ thus defined and the number of distinct points in
the orbit W · Λ equals |W|/|W(stab(λ))|. Therefore the points in the Weyl orbit are in
bijection with the set C(λ).

In order to establish the bijection, we use the fact that for each element µ in the Weyl
orbit of Λ there is a shortest element w ∈ W that satisfies wΛ = µ. These elements
w are exactly the Weyl words that make up the set C(λ). They can also be seen as
specific representatives of the coset W/W(stab(λ)) whose size was already argued above
to determine the number of summands in (10.62). The shortest element leading to an
element µ is not necessarily unique but all choices of the same shortest length yield the
same factor M(w, λ).

A standard algorithm for constructing the Weyl orbit W · Λ of a dominant weight Λ is
as follows:

1. Define the initial set of orbit points as O = {Λ}. This is the ‘highest’ element (with
respect to the height function ht(µ) = 〈ρ|µ〉 on h∗) in the orbit and others will be
constructed by using lowering Weyl reflections.

2. For a given µ ∈ O compute the Dynkin labels pi = 〈µ|αi〉 with respect to all simple
roots αi.

3. If pi > 0 for some i = 1, . . . , rank(G), then construct µ′ = wiµ where wi is the
fundamental Weyl reflection in the simple root αi. If µ′ is not already in the orbit
O, add it.

4. For any weight µ in O for which steps 2 and 3 have not been carried out go to step
2.

Remark 10.16. As for the initial dominant weight Λ the Dynkin labels pi are zero
for all simple roots αi ∈ stab(λ), any Weyl word thus constructed will end on a letter
(fundamental Weyl reflection) wi that does not belong to W(stab(λ)).

Remark 10.17. In practice, it is very advisable to think of the Weyl orbit of Λ in terms of
a graph where nodes correspond to weights µ that lie in the orbit O and links are labelled
by the fundamental reflections that relate two such weights. This graph can be constructed
algorithmically starting from Λ which corresponds to the identity element 1 ∈ W by the
above algorithm and one also keeps track of the corresponding Weyl words in this way.
Elements µ that are farther from the dominant weight in this graph correspond to longer
Weyl words.

With the Weyl orbit W · Λ one has constructed all Weyl words that belong to C(λ)
and can therefore evaluate the constant term formula (10.62). We consider an example to
illustrate the method.
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Figure 10.2: The Dynkin diagram of SO(4, 4) with labelling of simple roots.

Example 10.18: Orbit method for SO(4, 4;R) maximal parabolic Eisenstein series

We consider the group SO(4, 4;R) with Dynkin diagram of type D4 shown in figure 10.2. The Weyl group
W is of order 192 in this case. Taking

λ = 2sΛ1 − ρ (10.64)

yields a maximal parabolic Eisenstein series and

stab(λ) = {α2, α2, α3} , (10.65)

such that W(stab(λ)) is of type W(A3) and order 24. The dominant weight Λ of (10.63) equals the sum
of all fundamental weights Λi such that αi /∈ stab(λ) and thus Λ = Λ1.

The Weyl orbit of Λ = Λ1 consists of only eight points. Figure 10.3 shows the graph of this Weyl
orbit.

The Weyl orbit can be calculated by starting from the highest weight Λ1 and applying fundamental
Weyl reflections in those simple roots whose Dynkin labels are positive. This is the implementation of the
algorithm above. For the example shown in figure 10.3 this allows only w1 acting on Λ1.

Considering now the weight λ = 2sΛ1 − ρ that defines the SO(4, 4) Eisenstein series E(λ, g), we see
that the eight Weyl elements potentially contributing to the constant term formula (10.62) are

C(λ) = {1, w1, w2w1, w3w2w1, w4w2w1, w4w3w2w1, w2w4w3w2w1, w1w2w4w3w2w1} . (10.66)

The corresponding factors M(w, λ) are:

w M(w, λ)
1 1
w1 c(2s− 1)

w2w1 c(2s− 1)c(2s− 2)
w3w2w1 c(2s− 1)c(2s− 2)c(2s− 3)
w4w2w1 c(2s− 1)c(2s− 2)c(2s− 3)

w4w3w2w1 c(2s− 1)c(2s− 2)2c(2s− 3)2

w2w4w3w2w1 c(2s− 1)c(2s− 2)2c(2s− 3)2c(2s− 4)
w1w2w4w3w2w1 c(2s− 1)c(2s− 2)2c(2s− 3)2c(2s− 4)c(2s− 5)

(10.67)

The table clearly reflects the multiplicative property (10.56) of the factors M(w, λ): Moving one step
down the Weyl orbit adds a single factor c(k) to M(w, λ).

Depending on the value of s some of the factors M(w, λ) can vanish leading to a further reduction in
the number of constant terms in (10.62). As already argued based on the multiplicative property (10.56)
we should start at the top of the Weyl orbit. Let us look at a few examples, keeping in mind that we are
looking for values of s where there are more factors c(−1) than c(+1) in the product.
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1 [ 0
1 0 0 ]

w1 [ 0
-1 1 0 ]

w2w1 [ 1
0 -1 1 ]

w3w2w1 [ 1
0 0 -1 ] w4w2w1 [ -1

0 0 1 ]

w4w3w2w1 [ -1
0 1 -1 ]

w2w4w3w2w1 [ 0
1 -1 0 ]

w1w2w4w3w2w1 [ 0
-1 0 0 ]

w1

w2

w3 w4

w4 w3

w2

w1

Figure 10.3: The Weyl orbit of the fundamental weight Λ1 = [ 0
1 0 0 ] under the D4 Weyl

group. For each image point in the orbit, we have listed the Dynkin labels and a choice of
shortest Weyl word that leads to the given point. The shortest Weyl words are those that
make up the set C(λ) for λ = 2sΛ1 − ρ that contribute to the constant terms in (10.62).
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The simplest case is of course s = 0. Then only w = 1 has a non-vanishing M(w, λ) = 1 and this is
the whole constant term. This is not surprising since s = 0 corresponds to λ = −ρ, yielding the trivial
constant automorphic function E(−ρ, g) ≡ 1.

The next simplest case is s = 1
2 . For this choice one the two Weyl words w = 1 and w = w1 contribute

to the constant term (10.62). Working out their contributions one finds that they cancel (using c(0) = −1)
and the constant term vanishes. (The same things happens for the SL(2,R) series; see section 10.1.1.)

For the value s = 1 the factor c(2s− 3) leads to a vanishing contribution but the factor c(2s− 1) has
a pole so one needs to the limit carefully. In all there are five non-vanishing contributions to the constant
term since the last three orbit points (out of the total eight) contain the factor c(2s− 3)2. Summing up
the non-vanishing contributions leads to

v2
1 +

6v2

π

(
γE − log(4π)− log

(
v1v
−2
2 v3v4

))
+ v2

3 + v2
4 (10.68)

where we parametrised a = vh1
1 vh2

2 vh3
3 vh4

4 . The logarithms arise when taking the limit s→ 1 and reflect
the confluence of the eigenvalues of two polynomial eigenfunctions of the Laplace operator.

Further simplifications occur for s = 3
2 and s = 2 that we leave to the reader to evaluate.

If one had started with a fixed value of s for which simplifications occur, it would have been sufficient
to construct the Weyl orbit up to the points where the M(w, λ) = 0.

10.3.2 Special λ-values and E(λ, g)

As we have seen in the SO(4, 4) example 10.18 just now and in section 10.1.1, there can be
special points λ ∈ h∗ where the constant terms (and the whole Eisenstein series) simplify.
Parametrising the weight λ in terms of (complex) parameters si, these special points
correspond to specific values for the si. These simplifications were already observed for
the exceptional group G2 by Langlands in his original work [218], see also [194].

In order to detect such simplifications, it is not efficient to calculate the whole set C(λ)
and then the coefficients M(w, λ) as in (10.67). Due to the partially ordered structure of
the Weyl orbit and the multiplicative property (10.56) it suffices to also calculate the factor
M(w, λ) at the same as one constructs w using the Weyl orbit method of section 10.3.1.
One need not construct further any path of the graph (of increasing word length) where
one of the intermediate words satisfies M(w, λ) = 0. This simplifies the calculation of the
constant term formula considerably [95].

Example 10.19: Orbit method for E8 maximal parabolic Eisenstein series in the minimal
representation

Consider again the maximal parabolic E8 Eisenstein series of example 10.6 with weight λs = 2sΛ8−ρ. For
calculating the constant term, we require the Weyl orbit of the dominant weight Λ8 = [0, 0, 0, 0, 0, 0, 0, 1]
in Dynkin label notation. In total, the Weyl orbit of Λ8 has 240 elements. The beginning of the Weyl
orbit, computed with the orbit method is depicted in figure 10.4.
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1 [ 0
0 0 0 0 0 0 1 ]

w8 [ 0
0 0 0 0 0 1 -1 ]

w7w8 [ 0
0 0 0 0 1 -1 0 ]

w6w7w8 [ 0
0 0 0 1 -1 0 0 ]

w5w6w7w8 [ 0
0 0 1 -1 0 0 0 ]

w4w5w6w7w8 [ 1
0 1 -1 0 0 0 0 ]

w2w4w5
w6w7w8 [ -1

0 1 0 0 0 0 0 ]

w3w2w4w5
w6w7w8 [ -1

1 -1 1 0 0 0 0 ]

w3w4w5
w6w7w8 [ 1

1 -1 0 0 0 0 0 ]

w1w3w4w5
w6w7w8 [ 1

-1 0 0 0 0 0 0 ]

w2w1w3w4
w5w6w7w8 [ -1

-1 0 1 0 0 0 0 ]

w8

w7

w6

w5

w4

w2

w3

w3

w1

w2

w2

w1

Figure 10.4: The Weyl orbit of the fundamental weight Λ1 = [ 0
0 0 0 0 0 0 1 ] under the E8

Weyl group. For each image point in the orbit, we have listed the Dynkin labels and a
choice of shortest Weyl word that leads to the given point. The shortest Weyl words are
those that make up the set C(λ) that contribute to the constant terms in example 10.19.
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The corresponding factors M(w, λ) for λ = 2sΛ− ρ are given by the following table:

w M(w, λ)
1 1
w8 c(2s− 1)

w7w8 c(2s− 1)c(2s− 2)
w6w7w8 c(2s− 1)c(2s− 2)c(2s− 3)

w5w6w7w8 c(2s− 1)c(2s− 2)c(2s− 3)c(2s− 4)
w4w5w6w7w8 c(2s− 1)c(2s− 2)2c(2s− 3)c(2s− 4)c(2s− 5)

w2w4w5w6w7w8 c(2s− 1)c(2s− 2)2c(2s− 3)c(2s− 4)c(2s− 5)c(2s− 6)
w3w4w5w6w7w8 c(2s− 1)c(2s− 2)2c(2s− 3)c(2s− 4)c(2s− 5)c(2s− 6)

w3w2w4w5w6w7w8 c(2s− 1)c(2s− 2)2c(2s− 3)c(2s− 4)c(2s− 5)c(2s− 6)2

w1w3w4w5w6w7w8 c(2s− 1)c(2s− 2)2c(2s− 3)c(2s− 4)c(2s− 5)c(2s− 6)c(2s− 7)
w2w1w3w4w5w6w7w8 c(2s− 1)c(2s− 2)2c(2s− 3)c(2s− 4)c(2s− 5)c(2s− 6)2c(2s− 7)

...
...

(10.69)

Simplifications arise as always for s = 0 and s = 1
2 . Another interesting case is s = 5

2 . One sees that
the nineth and eleventh entry in the table contain a factor c(2s − 6)2 that makes the corresponding
intertwiner vanish. Since the two Weyl words are the two bottom words in the orbit constructed thus far
in figure 10.4 one knows that all remaining Weyl words coming from the orbit method applied to Λ8 will
have vanishing M(w, λ) and therefore the constant term consists of nine terms. Taking the limit s→ 5

2
carefully again gives logarithmic terms as in (10.68) that we do not display here. The value s = 5

2 gives
the simplest possible constant and the Eisenstein series is attached to the minimal representation as was
already mentioned before.

Remark 10.20. Simplifications in the constant term have corresponding simplifications
in the Whittaker vectors as we will see in section 10.4. They are typically associated with
subrepresentations in the (degenerate) principal series called small representations. At
these places the functional dimension of the automorphic representation reduces. This is
discussed in more detail in section 12.1.1.

Example 10.21: Minimal representation of SL(3,R)

The Eisenstein series on SL(3,A) introduced in section 9.6 with weight

λ = 2s1Λ1 + 2s2Λ2 − ρ (10.70)

simplifies for special values of the parameters si. Putting

s1 = 0 or s2 = 0 or s3 = s1 + s2 −
1

2
= 0 (10.71)

or

s1 = 1 or s2 = 1 or s3 = s1 + s2 −
1

2
= 1 (10.72)

makes the generic Eisenstein series into one on a maximal parabolic subgroup as defined in section 4.1.3;
the case s1 = 0 corresponds to inducing from the maximal parabolic subgroup P1(A). In this case the
Fourier expansion simplifies considerably as can be seen be inspecting the expression of section 9.6. This is
already manifest from (9.82a) that appears in the expression of any generic Whittaker coefficient. Precisely
for the choices above 1/ζ(λ) vanishes identically, implying that all generic Whittaker coefficients vanish.
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For the degenerate Whittaker coefficients one also obtains shorter expressions: Out of the three Weyl
elements displayed in (9.91) two have a vanishing and one is left with a single modified Bessel function
with associated divisor sum. The non-abelian Whittaker vector also simplifies as is shown in [267].

10.3.3 Constant terms in maximal parabolic subgroups

Given a unipotent U ⊂ N and an Eisenstein series E(λ, g) on a group G one can define
the constant term along U , c.f. equation 6.16 and section 8.9 by

CU =

∫
U(Z)\U(R)

E(λ, ug)du. (10.73)

When U = Uj◦ is the unipotent of a maximal parabolic subgroup Pj◦ = Lj◦Uj◦ associated
with node j◦-th simple root, a general formula for this constant term was given in
theorem 8.8:∫

Uj◦ (Z)\Uj◦ (R)

E(λ, ug)du =
∑

w∈Wj◦\W

e〈wλ+ρ)‖j◦ |H(g)〉M(w, λ)EMj◦ ((wλ)⊥j◦ ,m). (10.74)

The Eisenstein series on the right-hand side is one on the semi-simple part Mj◦ of the Levi
subgroup Lj◦ = GL(1,R)×Mj◦ and the exponential prefactor is a function only on the
GL(1,R) factor. We note that it is the same numerical coefficient M(w, λ) as in (10.54)
that controls this constant term. As we have explained in section 10.3.1, one can restrict
the Weyl words to the set C(λ) that is in bijection with the Weyl orbit of λ + ρ (or an
equivalent dominant weight Λ defined in (10.63)). This bijection implies that it suffices to
consider Weyl words w in the left coset W/W(stab(λ)) ∼= C(λ). The addition quotient in
formula (10.74) then allows the restriction to the double coset [95, 126]

w ∈ Wj◦\W/W(stab(λ)). (10.75)

This double coset typically has very few representatives that allow for a swift evaluation
of formula (10.74).

Remark 10.22. The double coset (10.75) also depends on λ and there can therefore be
similar simplifications as those discussed in section 10.3.2.

Example 10.23: Constant term of SO(4, 4;R) Eisenstein series with respect to a maximal
parabolic subgroup

For the SO(4, 4;R) Eisenstein series considered in example 10.18 with weight λ = 2sΛ1 − ρ we compute
the constant term along the unipotent U3 of the maximal parabolic subgroup P3. The Weyl group of the
semi-simple Levi part is again of type W(A3) and generated by the fundamental reflections w1, w2 and
w4. Inspecting the list (10.66) of elements of C(λ) shows that the double coset (10.75) in this case has
only two representatives, namely

1 and w3w2w1. (10.76)
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If we denote the coordinate on GL(1,R) by

r = e〈Λ3|H(g)〉, (10.77)

we obtain for trivial representative the decomposition

(2sΛ1)‖3 =
〈2sΛ1|Λ3〉
〈Λ3|Λ3〉

Λ3 = sΛ3, (2sΛ1 − ρ)⊥3 = (2s− 1)ΛM3
1 − ΛM3

2 − ΛM3
3 (10.78)

(where ΛM3
i are the three fundamental weights of M3(R) = SL(4,R)) and a similar decomposition for the

other representative the following constant term∫
U3(Z)\U3(R)

E(λ, ug)du = rsE([2s− 1,−1,−1],m) + r3−s ξ(2s− 3)

ξ(2s)
E([−1,−1, 2(s− 1)− 1],m), (10.79)

where we have indicated the weight on the semi-simple subgroup M3 by its Dynkin labels and have
evaluated the intertwiner M(w3w2w1, λ) using (10.67).

10.4 Evaluating spherical Whittaker vectors

We now turn the question of efficiently evaluating degenerate Whittaker vectors that are
given by theorem 9.5 whose result we briefly recall. The final formula there was

W ◦
ψ(λ, a) =

∑
wcw′long∈W/W ′

a(wcw′long)−1λ+ρM(w−1
c , λ)W ′◦

ψa(w
−1
c λ, 1). (10.80)

We briefly recall the notation used in this formula. ψ denotes a degenerate character
on the maximal unipotent N ⊂ B ⊂ G. It has support supp(ψ) ⊂ Π given by (9.61)
and this subset of simple roots defines a semi-simple subgroup G′ ⊂ G with Weyl group
W ′ =W(supp(ψ)). The longest element W ′ is called w′long and wc ∈ W satisfies wcα > 0
for all α ∈ supp(ψ). The representative wc of the cosetW/W ′ can be constructed using the
orbit method of section 10.3.1. For any a ∈ A(A), the twisted character ψa(n) = ψ(ana−1)
restricted to the unipotent N ′ ⊂ G′ is generic and W ′◦

ψa(w
−1
c λ, 1) is the (generic) spherical

Whittaker vector on the G′ of the prinicipal series representation given by the restriction
of the weight w−1

c λ to G′ and evaluated at the identity. An example of this formula was
worked out for SL(3,A) in section 9.6.

One sees from formula (10.80) that it is again an intertwining coefficient M(w−1
c , λ)

that controls possible simplifications in the degenerate Whittaker vectors. We know from
the discussion of the orbit method in section 10.3.1 that only those w−1

c give a non-trivial
M(w−1

c , λ) that are the minimal representatives of the coset W/W(stab(λ)) (constructed
by the orbit method). Due to the inverse w−1

c we are therefore again faced with a double
coset

W(supp(ψ))\W/W(stab(λ)). (10.81)

This has very few representatives one has to consider when evaluating (10.80) for a
non-generic λ and ψ.
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For which Eisenstein series E(λ, g) does formula (10.80) actually offer the prospect of
helping find complete information about the Fourier expansion? As mentioned already in
remark 9.7 this will happen when λ is such that E(λ, g) is not in the generic principal series
but in a degenerate one or even at one of the special λ values discussed in section 10.3.2.

10.4.1 Degenerate principal series and degenerate
Whittaker vectors

If λ is such that stab(λ) 6= {}, the Eisenstein series E(λ, g) is associated to the degenerate
principal series, see section 5.6. Prime example are maximal parabolic Eisenstein series
when stab(λ) = Π\{αj∗} where αj∗ is a single simple root that defines a maximal parabolic
subgroup Pj∗ ⊂ G. More generally, we define a parabolic subgroup

Pλ = LλUλ, (10.82)

such that the semi-simple part Mλ ⊂ Lλ has the simple root system given by stab(λ). Then
the Eisenstein series E(λ, g) belongs to the degenerate principal series with Gelfand–Kirillov
dimension

GKdim(I(λ)) = dim (Pλ\G) (10.83)

or even a subrepresentation of this in case λ sits at a special value.
For automorphic functions in a degenerate principal series one has that typically not

all Whittaker vectors are non-zero and often the generic ones are absent. In order to
determine which Whittaker vectors are non-zero we recall the notion of a wavefront set
introduced in section 6.4. The wavefront set is the set of nilpotent orbits of G(R) such
that there are non-trivial Fourier coefficients (or Whittaker vectors) associated with it.
Characters ψ are associated with nilpotent elements of g = g(R) and one has to consider
their G(R) orbits in an automorphic representation.

Nilpotent orbits of g under G(R) come with a certain (even) dimension and they
must be able to ‘fit into’ the automorphic representation of E(λ, g) for a non-trivial
(non-vanishing) Fourier coefficient to exist. There is a symplectic structure on a nilpotent
orbit [71] and only a Lagrangian subspace corresponds to the character ψ of a Fourier mode
or Whittaker vector. Let X ∈ g be a nilpotent element and OX its corresponding nilpotent
orbit under G(R). The constraint just explained means that there can be non-trivial
Fourier coefficients only if

1

2
dimROX ≤ dim (Pλ\G) . (10.84)

Remark 10.24. If λ is generic such that E(λ, g) is in the full principal series, then Pλ
equals the standard Borel subgroup B ⊂ G and the Gelfand–Kirillov dimension equals
1
2

(dim g− dim h). At the same time, the largest nilpotent orbit (called the principal orbit)
has dimension dim g− dim h, confirming the fact that such a generic Eisenstein series will
have generic Fourier coefficients in general.
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The condition (10.84) puts strong constraints on the orbits one has to consider for
a degenerate principal series representation. Moreover, if a nilpotent orbit OX has a
representative X that lies completely in [N,N ]\N such that there is a character ψX :
N → U(1) associated with it, one can test whether OX belongs to the wavefront set by
computing the (degenerate) Whittaker vector for ψX with formula (10.80).

Example 10.25: Minimal orbit and A1-type Whittaker vectors

Any simple group G(R) has a unique minimal non-trivial nilpotent orbit Omin that is given by the orbit
of a generator Eθ from the root space of the highest root θ. If G(R) is simply-laced, one can alternatively
choose as a nilpotent representative any simple step operator X = Eαi where αi is a simple root. The
corresponding character ψX is maximally degenerate and has supp(ψX) = {αi} and one can compute the
associated degenerate Whittaker vectors using (10.80) in terms of Whittaker vectors on SL(2,R) (which
are completely known). The minimal orbit is called type A1 in Bala–Carter terminology [7] and this
relates to the subgroup G′ that appears in the formula for degenerate Whittaker vectors.

As another example we consider the consequences of the condition (10.84) on a
degenerate principal series of the group E8.

Example 10.26: Wavefront sets of the adjoint E8 series

Consider the maximal parabolic Eisenstein series E(λ, g) of E8(R) given by the weight

λ = 2sΛ8 − ρ (10.85)

as in example 10.6. The degenerate principal series that E(λ, g) belongs to is of Gelfand–Kirillov dimension
(for generic s)

GKdim I(λ) = dim(E8)− dim(Pλ) = 248− (133 + 1 + 56 + 1) = 57. (10.86)

According to (10.84), the largest nilpotent orbit that can contribute to the wavefront set of E(λ, g) is
therefore of dimension 114. Here is a list of nilpotent orbits of (split) E8(R) of small dimension [71,256]

dimO Bala–Carter label weighted diagram over C

0 0 [ 0
0 0 0 0 0 0 0 ]

58 A1 [ 0
0 0 0 0 0 0 1 ]

92 2A1 [ 0
1 0 0 0 0 0 0 ]

112 3A1 [ 0
0 0 0 0 0 1 0 ]

114 A2 and (4A1)′′ [ 0
0 0 0 0 0 0 2 ]

...
...

...

The last entry corresponds to a single complex orbit of type A2 that splits into two real orbits [256]. All
these orbits have representatives X in [N,N ]\N and the associated Whittaker vectors can be calculated
using (10.80). More complicated Whittaker vectors are absent in this degenerate principal series. For
special s values not all the orbits in the above table appear in the wavefront set.

10.4.2 Whittaker vectors of maximal parabolic Eisenstein series

For maximal parabolic Eisenstein series one can also make statements about the vanishing
of some Whittaker vector. Consider an Eisenstein series on G(A) induced from a character
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χ : Pi∗(A)→ C×, i.e., one that is in the degenerate principal series and is parametrised by
a single complex parameter s ∈ C through the weight λ = 2sΛi∗ − ρ, see proposition 5.29.
The Whittaker integral for an arbitrary character ψ : N(Q)\N(A) → U(1) leads to (cf.
(9.11))

Wψ(χ, a) =
∑

w∈W(Pi∗ )\W

∫
Nw
{β}

ψ(nβ)dnβ ·
∫

Nw
{γ}

χ(wnγa)ψ(nγ)dnγ, (10.87)

where the important point is now that the set of contributing Weyl words is restricted
to the quotient W(Pi∗)\W from the outset. Again, the integral over Nw

{β} can make the
whole expression vanish and imposes constraints on w and ψ. Now the set of positive
roots β that appear in that integral is{

β > 0 |wβ ∈ ∆Pi∗

}
, (10.88)

where ∆Pi∗ denotes the subset of all roots in ∆ that belong to the maximal parabolic
Pi∗(A); it involves all positive roots and some negative roots. The set of β now always
involves a simple root for any w, therefore for a generic ψ the integral over nβ will vanish
and we conclude that the generic Whittaker vector for a maximal parabolic Eisenstein
series vanishes.

Another way to see this is by noting that the factor 1/ζ(λ) that appears in (9.22)
contains generally factors (1− p−(〈λ|αi〉+1)) = (1− p−2si) for all simple roots αi. For any
degenerate principal series Eisenstein series one of these factors vanishes identically, and
there is no pole a the same si values in the factor ε(λ) (see (9.22)). This is guaranteed by
the holomorphy of the local Whittaker vector [64].

We will come back to this in the discussion in section 10.4.4.

10.4.3 Examples of degenerate Whittaker vectors

We now present some explicit expressions for degenerate Whittaker vectors calculated with
the help of (10.80). The examples are taken mainly from [97]. The following notation will
be used

Bm(s, v) =
1

ξ(2s)
B̃m(s, v) =

2

ξ(2s)
|v|s−1/2|m|s−1/2σ1−2s(m)Ks−1/2(2π|m|v) (10.89)

for a Whittaker vector on an SL(2,R) subgroup. For an SL(3,R) subgroup we write
similarly

Bm1,m2(s1, s2, v1, v2) =
1

ξ(2s1)ξ(2s2)ξ(2s1 + 2s2 − 1)
B̃m1,m2(s1, s2, v1, v2). (10.90)

The explicit expression for B̃m1,m2(s1, s2, v1, v2) in terms of an integral over two Bessel
functions can be found in [60,267]. See also section 9.6. For our purposes we only need
to know that it is finite and non-zero for all values of s1 and s2. The same is true for
B̃m(s, v).
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Example 10.27: Degenerate Whittaker vectors of type A1 for Eisenstein series of En≥6(R)

We consider maximal parabolic Eisenstein series of the finite-dimensional exceptional groups En(R) with
weight vector λ = 2 · 3

2Λ1 − ρ for n = 6, 7, 8. As before we use the standard Bourbaki labelling of the
nodes of the Dynkin diagram. In these examples all non-vanishing (abelian) Whittaker vectors turn out
to be given by a finite sum of n Whittaker vectors on the SL(2,R) subgroup associated with each node of
the Dynkin diagram. The full expression for the Fourier coefficients will be given by∑

ψ 6=0

W ◦ψ(λ, na) =
∑
α∈Π

∑
ψα

cα(a)W ′◦ψaα(λ′α,1)ψα(n) , (10.91)

where W ◦ψ on the left-hand side is given by (10.80) and a detailed derivation of the right-hand side can be
found in [97]. For the maximally degenerate character ψα associated with the simple roots α, mα is the
only non-zero charge and cα(a) is a function of the variables parametrising the Cartan torus. Furthermore,
W ′◦ψaα is a generic Whittaker vector on SL(2,R) subgroup associated with the simple roots α and λ′α is the
projection of the weight λ onto this subgroup. We can then provide lists of the degenerate Whittaker
vectors for each case:

• E6:

ψα cα(a)W ′◦ψaα(χ′α,1)

(m, 0, 0, 0, 0, 0) v2
3v
−1
1 B3/2,m

(
v2

1v
−1
3

)
(0,m, 0, 0, 0, 0)

v22B̃0,m(v22v
−1
4 )

ξ(3)

(0, 0,m, 0, 0, 0)
ξ(2)v4B1,m(v23v

−1
1 v−1

4 )
ξ(3)

(0, 0, 0,m, 0, 0)
v4B̃1/2,m(v24v

−1
2 v−1

3 v−1
5 )

ξ(3)

(0, 0, 0, 0,m, 0)
v25B̃0,m(v25v

−1
4 v−1

6 )
ξ(3)v6

(0, 0, 0, 0, 0,m)
ξ(2)v36B−1/2,m(v26v

−1
5 )

ξ(3)

• E7 :

ψα cα(a)W ′◦ψaα(χ′α,1)

(m, 0, 0, 0, 0, 0, 0) v2
3v
−1
1 B 3

2 ,m

(
v2

1v
−1
3

)
(0,m, 0, 0, 0, 0, 0)

v22B̃0,m(v22v
−1
4 )

ξ(3)

(0, 0,m, 0, 0, 0, 0)
ξ(2)v4B1,m(v23v

−1
1 v−1

4 )
ξ(3)

(0, 0, 0,m, 0, 0, 0)
v4B̃1/2,m(v24v

−1
2 v−1

3 v−1
5 )

ξ(3)

(0, 0, 0, 0,m, 0, 0)
v25B̃0,m(v25v

−1
4 v−1

6 )
ξ(3)v6

(0, 0, 0, 0, 0,m, 0)
ξ(2)v36v

−2
7 B−1/2,m(v26v

−1
5 v−1

7 )
ξ(3)

(0, 0, 0, 0, 0, 0,m) v4
7B−1,m

(
v2

7v
−1
6

)
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• E8 :

ψα cα(a)W ′◦ψaα(χ′α,1)

(m, 0, 0, 0, 0, 0, 0, 0) v2
3v
−1
1 B3/2,m

(
v2

1v
−1
3

)
(0,m, 0, 0, 0, 0, 0, 0)

v22B̃0,m(v22v
−1
4 )

ξ(3)

(0, 0,m, 0, 0, 0, 0, 0)
ξ(2)v4B1,m(v23v

−1
1 v−1

4 )
ξ(3)

(0, 0, 0,m, 0, 0, 0, 0)
v4B̃1/2,m(v24v

−1
2 v−1

3 v−1
5 )

ξ(3)

(0, 0, 0, 0,m, 0, 0, 0)
v25B̃0,m(v25v

−1
4 v−1

6 )
ξ(3)v6

(0, 0, 0, 0, 0,m, 0, 0)
ξ(2)v36v

−2
7 B−1/2,m(v26v

−1
5 v−1

7 )
ξ(3)

(0, 0, 0, 0, 0, 0,m, 0)
v47B−1,m(v27v

−1
6 v−1

8 )
r38

(0, 0, 0, 0, 0, 0, 0,m)
ξ(4)v58B−3/2,m(v28v

−1
7 )

ξ(3)

The following provides and example of a degenerate Whittaker vector of type A2.

Example 10.28: Degenerate Whittaker vectors of type A2 for Eisenstein series of E8(R)

For the E8 series of example 10.26 we compute the Whittaker vector associated with the degenerate
character ψ on N with ‘charges’

ψ ↔ [ 0
0 0 0 0 0 m n ] . (10.92)

This choice of character ψ is associated with the 114-dimensional nilpotent orbit of type A2 from the table
in example 10.26. For simplicity we put the torus element a = 1. Then formula (10.80) gives

Wψ(λ,1) =
ξ(2s− 11)ξ(2s− 14)ξ(2s− 18)ξ(4s− 29)

ξ(2s)ξ(2s− 5)ξ(2s− 9)ξ(4s− 28)
B

6−s, 19
2 −s,m,n

(
1, 1
)
. (10.93)

(The contributing Weyl word has length 30 and we do not spell it out here.) As was argued in example 10.19,
the value s = 5

2 corresponds to a simpler Eisenstein series where the constant term simplifies. From
the above formula we can see this also in the Whittaker vector of type A2. The prefactor tends to
zero for s→ 5

2 while the SL(3,R) Whittaker function stays finite and hence the degenerate Whittaker
vector (10.93) disappears.

In the case s = 5
2 one check similarly that all Whittaker vectors but the ones of type A1 vanish,

consistent with the fact that the corresponding Eisenstein series belongs to an automorphic realisation of
the minimal representation.

10.4.4 Relation between Fourier coefficients and
Whittaker vectors

In this section we investigate, based on the methods of Miller–Sahi [235] and Ginzburg [123],
how to compute Fourier coefficients FψU on unipotent subgroups U (from definition 6.13)
in terms of Whittaker vectors WψN , the latter of which are known using the methods of
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chapter 9. Details can be found in [160] and similar ideas were discussed in section 6.5. As
we are discussing characters and Fourier coefficients on different subgroups we will adopt
the subscript notation used in section 9.6.4 to avoid ambiguities.

Since both Whittaker vectors on N and the constant term simplifies for autormorphic
forms in small representations as seen in the examples above, it is natural to also expect
simplifications for more general Fourier coefficients. Using the wavefront set and the
arguments in the previous sections one can tell for which representations a Fourier
coefficient is non-vanishing, but by rewriting FψU in terms of WψN it is also possible to see
how a non-vanishing FψU simplifies for smaller representations.

We have already seen an example of such a computation in proposition 9.8 where we,
for G = SL(3), showed how the Whittaker vector on Z = [N,N ] can be expressed as a
sum of G-translated Whittaker vectors on N . When restricting to Eisenstein series in the
minimal representation this expression simplifies as follows.

Example 10.29: Non-abelian SL(3) Whittaker vector in minimal representation

For the example G = SL(3) with λ = (2s1 − 1)Λ1 + (2s2 − 1)Λ2 the generic principal series has Gelfand-
Kirillov dimension GKdim(I(λ)) = dimG − dimB = 3, but for (s1, s2) = (s, 0) or (s1, s2) = (0, s) it
reduces to GKdim(I(λmin)) = 2 for which the Eisenstein series belongs to the minimal automorphic
representation.

The orbits of SL(3,C) are [71]

dimO Bala-Carter label weighted diagram

0 0
0 0

4 A1

2 2

6 A2

1 1

This means that for πmin we only have Whittaker vectors on N of type A1, that is, maximally
degenerate Whittaker vectors charged under a single simple root.

In proposition 9.8 it was shown that

W
(k)
ψZ

(χ, g) =
∑

m1,m2∈Q
W

(m1,d)
ψN

(χ, lg) (10.94)

where d = d(k,m2) as defined in (9.98) and l depends on k and m2 as described in the proposition. Recall

from section 9.6 that W
(m1,d)
ψN

for m1 6= 0 contains a convoluted integral of two Bessel functions, while

W
(0,d)
ψN

is simpler being proportional to a single Bessel function.
When restricting χ to χmin (parametrised by s), we get that the sum over charges in (10.94) collapses

to m1 = 0 since d 6= 0, simplifying the expression for W
(k)
ψZ

which then only contains single Bessel functions.
Note though that the sum over m2 (that is, over l-translates) still remains, that is,

W
(k)
ψZ

(χmin, g) =
∑
m2∈Q

W
(0,d)
ψN

(χmin, lg) . (10.95)
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When inserting the argument g = (g∞,1,1, . . .) the sum over rational charges becomes a sum over integers,
similar to what happens in proposition 9.9, since l ∈ SL(3,Z) by design.

Let us now consider another example for G = SL(3), but with Fourier coefficients on a
maximal parabolic subgroup. Here, the expression simplifies even further in the minimal
representation resulting in a single translated maximally degenerate Whittaker vector on
N .

Example 10.30: Maximal parabolic Fourier coefficient in minimal representation

Continuing with G = SL(3), we will now see that a Fourier coefficient FψU on the maximal parabolic
subgroup corresponding to the first simple root

P = P1 = LU =
( ∗ ∗ ∗

0 ∗ ∗
0 ∗ ∗

)
L =

( ∗ 0 0
0 ∗ ∗
0 ∗ ∗

)
U =

(
1 ∗ ∗
0 1 0
0 0 1

)
(10.96)

can be expressed as a single L-translated, maximally degenerate Whittaker vector in the minimal
representation. Let

u =
(

1 u1 u2
0 1 0
0 0 1

)
∈ U ψU (u) = e2πi(m1u1+m2u2) m1,m2 ∈ Q m1m2 6= 0 . (10.97)

Then, d = d(m1,m2) as defined in (9.98) is strictly positive and m′i := mi/d ∈ Z with gcd(m′1,m
′
2) = 1

which tells us that there exist integers α and β such that

l =

(
1 0 0
0 α β
0 −m′2 m′1

)
∈ L(Z) . (10.98)

Now we conjugate the Fourier coefficient with l as follows (cf. (6.78))

F
(m1,m2)
ψU

(χ, g) :=

∫
(Q\A)2

E(χ,
(

1 u1 u2
0 1 0
0 0 1

)
g)e−2πi(m1u1+m2u2) du2

=

∫
(Q\A)2

E(χ,
(

1 (m1u1+m2u2)/d −bu1+au2

0 1 0
0 0 1

)
lg)e−2πi(m1u2+m2u2) du2

=

∫
(Q\A)2

E(χ,
(

1 x1 x2
0 1 0
0 0 1

)
lg)e−2πidx1 dx2 = F

(d,0)
ψU

(χ, lg)

(10.99)

where we have made the substitutions (m1u1 +m2u2)/d→ x1 and −bu1 + au2 → x2. Note that there are
other matrices l ∈ L(Q) (explicitly given by m1 and m2) that would accomplish similar results, but if
l ∈ L(Z) the p-adic Iwasawa decomposition simplifies when inserting g = (g∞,1, . . . ,1) as in section 9.6.4.

Expanding further we obtain

F
(m1,m2)
ψU

(χ, g) =
∑
m3∈Q

∫
(Q\A)3

E(χ,
(

1 x1 x2
0 1 x3
0 0 1

)
lg)e−2πi(dx1+m3x3) d3x =

∑
m3∈Q

W
(d,m3)
ψN

(χ, lg) (10.100)

with d > 0 and where W
(d,m3)
ψN

is a Whittaker vector on N with charges d and m3 for the two simple roots.
Now restricting to χmin, only the maximally degenerate Whittaker vectors are non-vanishing. This

collapses the sum above to m3 = 0 giving

F
(m1,m2)
ψU

(χmin, g) = W
(d,0)
ψN

(χmin, lg) . (10.101)
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We note that for m2 = 0 and positive m1 we have that d = m1 and l = 1 giving

F
(m1,0)
ψU

(χmin, g) = W
(m1,0)
ψN

(χmin, g) . (10.102)

The same statement can be made for negative m1 as well and can be derived by directly making a further
expansion as in (10.100) without a conjugation with l. We conclude that, in the minimal representation,
a maximal parabolic Fourier coefficient charged only on the simple root α1 simplifies to the maximally
degenerate Whittaker vector charged on the same root.

In [160] it was similarly shown for SL(3) and SL(4) that all non-trivial Fourier
coefficients on any maximal parabolic subgroup automorphic forms in the minimal
representation simplify to a single translated maximally degenerate Whittaker vector
on N .

This was accomplished by relating Fourier coefficients to the orbit Fourier coefficients
defined in definition 6.33 and which vanish when the orbit does not belong to the wavefront
set of the considered automorphic representation. Then, the orbit coefficients were
expanded as sums of translated Whittaker vectors which were found to be maximally
degenerate for the minimal orbit coefficients and Whittaker vectors charged under two
strongly orthogonal roots for the next-to-minimal orbit coefficients. In the minimal
representation, the maximal parabolic Fourier coefficients picked up only one of these
maximally degenerate Whittaker vectors in the minimal orbit coefficient. In the same
paper the next-to-minimal representation for SL(4) is discussed as well.

Also, it was shown in [235] that, for E6 and E7, Fourier coefficients on certain maximal
parabolic subgroups of automorphic forms in πmin are determined by maximally degenerate
Whittaker vectors. From their proof, one may also deduce that, concretely, such a Fourier
coefficient is exactly a translate of a maximally degenerate Whittaker vector similar to the
results of [160] for SL(3) and SL(4).

From this it was conjectured in [160] that Fourier coefficients on maximal parabolic
subgroups for other simply-laced, simple Lie groups simplify in a similar way and that each
may be given in terms of a single, translated, maximally degenerate Whittaker vector on N .
In the remaining parts of this section we will explore some applications and verifications
of this statement.

We have seen in sections 9.2 and 9.4 that generic Whittaker vectors factorise

WψN (χ, g) =
∏
p≤∞

WψN,p(χp, g) , (10.103)

with WψN,p ∈ Ind
G(Qp)

N(Qp)ψN,p, but that degenerate Whittaker vectors, in general, do not and

are expressed as sums of factorising terms as seen in (10.80). As such, we cannot expect
that all Fourier coefficients on any parabolic subgroup should factorise, that is, we cannot
a priori expect that

Ind
G(A)
U(A)ψU =

⊗
p≤∞

Ind
G(Qp)

U(Qp)ψU,p (10.104)

However, in the minimal representation all but the maximally degenerate Whittaker
vectors on N vanish and the remaining simplify, becoming factorisable as seen for E6,
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E7 and E8 in the tables of example 10.27 from appendix A of [97]. This means that
if a Fourier coefficient on a maximal parabolic subgroup can be expressed as a single
translated maximally degenerate Whittaker vector (as in (10.101) above), then it does
indeed factorise.

This is interesting since, although not much is known in general about Ind
G(Qp)

U(Qp)ψU,p for
non-minimal parabolic subgroups, the image under the embedding

πmin,p ⊂ Ind
G(Qp)

P (Qp)χmin,p ↪→ Ind
G(Qp)

U(Qp)ψU,p , (10.105)

with χmin,p spherical, has multiplicity one [107] and the corresponding spherical vectors
f ◦ψU,p have been computed in several cases using representation theory [90,190,191,279].

Assuming the factorisation of maximal parabolic Fourier coefficients discussed above,
it is possible to rederive and extend these results by considering the spherical vectors
induced from πmin as coming from local factors of global Fourier coefficients.

Indeed, in [160] it was shown that the products of known spherical vectors f ◦ψU,p in
maximal parabolics for E6, E7 and E8 give exactly the expected translated maximally
degenerate Whittaker vectors in πmin giving strong support for the claim that (10.101)
can be generalised to all simply-laced simple Lie groups. Let us consider the case G = E7

below.

Example 10.31: E7 spherical vectors

Let G = E7 and P7 = LU be the maximal parabolic subgroup obtained by removing the simple root α7

using the Bourbaki labelling in figure 10.1. This was one of the parabolic subgroups studied in [235].
Then U is abelian and can also be obtained from the 3-grading

e7 = g−1 ⊕ g0 ⊕ g1 = 27⊕ (e6 ⊕ 1)⊕ 27 , (10.106)

with u = g1.

The unique spherical vectors in Ind
G(Qp)

U(Qp)ψU,p in the minimal representation have been computed at

the non-archimedean places by [279] and are here shown evaluated at the identity in G(Qp)

f◦ψU,p =
1− p3 |m|−3

p

1− p3
, (10.107)

where m ∈ Q× is the charge of ψU,p conjugated to the simple root α7 in U .
At the archimedean place we have instead, from [90], that

f◦ψU,∞ = m−3/2K3/2(m) , (10.108)

evaluated at the identity in G(R).
We will now rederive these results by instead viewing the spherical vectors as coming from local

factors of a global Fourier coefficient FψU of a spherical Eisenstein series in πmin. Such an Eisenstein
series may be realised from a parabolically induced representation IP1(λmin) with the maximal parabolic
subgroup obtained by removing α1 and λmin = 2sΛ1 − ρ with s = 3/2. We consider the Fourier coefficient
FψU with a character non-trivial only on the simple root α1. Similar to the examples above, it simplifies

to the single maximally degenerate Whittaker vector W
(α1)
ψN

charged only on the same root which, in turn,
factorises.
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From table A.1 of [97] we get that

W
(α1)
ψN

(λmin,1) =
2

ξ(4)
|m|−3/2

σ3(m)K3/2(m) =
2

ξ(4)

( ∏
p<∞

1− p3 |m|−3
p

1− p3

)(
|m|−3/2

K3/2(m)

)
(10.109)

where we recognise the first parenthesis as a product of the non-archimedean spherical vectors in (10.107)
and the second as the archimedean spherical vector in (10.108).

In [160], the spherical vectors are rederived in a similar way for E6, E7 and E8 in both the abelian
and Heisenberg realisations of the minimal representation with complete agreement.
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Chapter 11

Hecke theory and automorphic
L-functions

In this chapter, we outline the theory of Hecke operators and Hecke algebras. In a
nutshell, Hecke operators act on the space of automorphic forms on a group G, forming
a commutative ring called the Hecke algebra. The representation theory of this algebra
carries a wealth of information about automorphic forms and automorphic representations
that connect with many of the structures discussed in the preceding sections. We begin by
outlining the Hecke theory in the case of automorphic forms on real arithmetic quotients
G(Z)\G(R), providing detailed examples for the case of SL(2,R). After this treatment of
the classical Hecke theory, we consider the counterpart in the adelic context. The key object
here is the local spherical Hecke algebra H◦p which acts on the space of adelic automorphic
forms A(G(Q)\G(A)). We study the representation theory of the spherical Hecke algebra
and show how this relates to automorphic representations via the Satake isomorphism.
Our treatment is mainly done in the context of SL(2,A) and GL(2,A), but many results
carry over to arbitrary reductive groups. In particular, in section 11.7 we give some details
on the generalisation to GL(n,A) and we make contact to the Langlands program. The
starting point is the rewriting of the Casselman–Shalika formula that we encountered in
section 9.7. Finally, we end this section with a brief discussion of automorphic L-functions,
which form a cornerstone of the Langlands program.

11.1 Classical Hecke operators and Hecke ring:

the general idea

Besides the ring of invariant differential operators there is another set of operators that act
on the space A(G(Z)\G(R)) of automorphic functions on the group G(R) invariant under
the discrete group G(Z). These additional operators are called Hecke operators and we
sketch their general definition following [130]. Their power is worked out for SL(2,R) in
section 11.2 in the classical setting. Hecke operators and algebras can also be introducted
in the adelic setting and this will be the topic of sections 11.3 and beyond.
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Let g ∈ G(R) be a fixed element commensurable with G(Z), i.e., the intersection
g−1G(Z)g ∩ G(Z) has finite index in both G(Z) and g−1G(Z)g. We rewrite its double
coset with respect to the discrete group G(Z) as

G(Z)gG(Z) =
d⋃
i=1

G(Z)gδi. (11.1)

On the right-hand side we have written the double coset as a finite disjoint union of single
cosets with representatives δi for i = 1, . . . , d. The finiteness of this decomposition follows
from the commensurability of g.

Definition 11.1. The Hecke operator Tg associated with a G(Z)-commensurable g ∈ G(R)
acting on an automorphic function ϕ is defined by

(Tgϕ)(h) =
d∑
i=1

ϕ(gδih) with h ∈ G(R), (11.2)

where the δi are representatives of the double coset decomposition (11.1).

This operator is well-defined as a finite sum. One can check easily that Tg maps
G(Z)-invariant functions to G(Z)-invariant functions.

Remark 11.2. It is often useful to take a slightly larger group than the original G(R) if it
acts on the same space. For SL(2,R) acting on spherical automorphic functions that are
defined on the upper half plane SL(2,R)/SO(2,R) one can also also consider the action
of GL(2,R) on H and define Hecke operators for elements g ∈ GL(2,R) with respect to
SL(2,Z). This viewpoint will be useful in section 11.2 below.

Remark 11.3. The normalisation of the Hecke operators in (11.2) is not uniquely fixed.
The one used there yields the Hecke ring over Z. It can be useful to change the normalisation
and then obtain a Hecke algebra over the field Q.

The Hecke ring is formed by also allowing integer multiples mTg of Hecke operators for
m ∈ Z and defining the product of two Hecke operators Tg1 and Tg2 by representing the
combined double coset G(Z)g1G(Z) ·G(Z)g2G(Z) as the union of double cosets G(Z)hG(Z),
possibly with multiplicity. It turns out that a finite union suffices and the product of Tg1

and Tg2 is then the sum over the Th with integer coefficients. This operation turns the set
of Hecke operators into a Hecke ring .

The Hecke ring is usually defined together with a given choice of semi-group S of
commensurable elements g. A semi-group is a set with an associative product but not all
elements in S need to be invertible. The example to have in mind here is the set of matrices
with determinant equal to some positive integer. The semi-group needs to be chosen
such that G(Z) is a (proper) subgroup of S. Importantly, the Hecke ring (for the cases
of interest here) turns out to be commutative. For the precise statement see [130, Thm.
3.10.10].
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Furthermore, the Hecke operators also commute with the ring of differential operators.
This means that we can seek common automorphic eigenfunctions of the ring of differential
operators and the ring of Hecke operators. The action of the operators then puts additional
constraints on the Fourier coefficients that appear in the analysis of the automorphic
function and in fact captures much of the number-theoretic structure of these coefficients.
An example of this is worked out in the following section for the case of SL(2,R).

11.2 Hecke operators for SL(2,R)
In this section, we illustrate some basic features of the Hecke algebra as sketched in the
previous section and the way it interacts with the Fourier expansion in the case of SL(2,R).
The presentation here is based on [2, 130].

11.2.1 Definition of Hecke operators

Let f : H→ R be a Maass wave form, i.e., an SL(2,Z) left-invariant function on the upper
half plane H = SL(2,R)/SO(2) that is also an eigenfunction of the SL(2,R) invariant
Laplace operator ∆. defined in (5.38). For example f could be the non-holomorphic
Eisenstein series E(s, z) as considered in (5.45). As explained in section 5.1.4, Maass wave
forms can also be considered spherical automorphic forms on SL(2,R).

According to the general discussion of Hecke operators in section 11.1, we have to
choose a semi-group S of SL(2,Z) commensurable elements. This we do by letting S be
the group of diagonal integer (2× 2)-matrices with positive integer determinant n. For
fixed n > 0 let

g =

(
m1m2 0

0 m2

)
(11.3)

be a parametrisation of such matrices. We will define a Hecke operator Tn not to a single
such element but to the union of all diagonal g with determinant equal to n. This Tn can
be thought of as the sum of all the individual Tg defined according to the formula (11.2).
According to (11.1), we require the double coset decomposition into right cosets [130, Eq.
(3.12.2)] ⋃

m2
1m2=n

SL(2,Z)

(
m1m2 0

0 m2

)
SL(2,Z) =

⋃
ad=n

0≤b<d

SL(2,Z)

(
a b
0 d

)
. (11.4)

in order to define Tn. Then to each n > 0 we can associate a Hecke operator Tn acting on
a Maass wave form f(z)

(Tnf)(z) :=
1√
n

∑
a≥1 ; ad=n

0≤b<d

f

((
a b
0 d

)
· z
)

=
1√
n

∑
d|n

d−1∑
b=0

f

(
nz + bd

d2

)
, (11.5)
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which maps f to a new function Tnf on the upper half plane. Here, we have slightly
changed the normalisation of the operator compared to the general discussion as anticipated
in remark 11.3. Note that the transformation of the argument is not in SL(2,Z) but has
determinant n. Defining the set

M2(n) =

{(
a b
0 d

) ∣∣∣∣ a, b, d ∈ Z with ad = n

}
(11.6)

of upper triangular integer (2× 2)-matrices, we can rewrite the Hecke operator also as

(Tnf)(z) =
1√
n

∑
γn∈SL(2,Z)\M2(n)

f(γn · z). (11.7)

The resulting function Tnf is also a Maass wave form since it is (i) invariant and (ii) an
eigenfunction of the Laplacian as we will now show.

(i) Invariance requires evaluating

(Tnf)(γ · z) =
1√
n

∑
γn∈SL(2,Z)\M2(n)

f (γnγ · z) (11.8)

for γ ∈ SL(2,Z). Using

γnγ = γ̃γ̃n (11.9)

for some other γ̃ ∈ SL(2,Z) and γ̃n ∈ M2(n) together with invariance of ϕ under γ̃ one
arrives at

(Tnf)(γ · z) =
1√
n

∑
γ̃n∈SL(2,Z)\M2(n)

f(γ̃n · z) = (Tnf)(z) (11.10)

and the function Tnf is SL(2,Z) invariant for any positive n. (See also chapters 6.8 and
6.9 of [2].)

(ii) Consider the action of the Laplacian (5.38) on Tnϕ. It is straight-forward to check
that

[∆(Tnf)](z) = [Tn(∆f)](z). (11.11)

Therefore, the Laplacian commutes with all the Hecke operators and if f is an eigenfunction
of ∆, so is Tnf and with the same eigenvalue.

Finally, we study the Fourier expansion of Tnf . Suppose that f has a Fourier expansion
of the form (cf. (6.2))

f(z) = f(x+ iy) =
∑
m∈Z

am(y)e2πimx. (11.12)
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Then one finds for Tnϕ

(Tnf)(z) =
1√
n

∑
d|n

d−1∑
b=0

f

(
n

d2
x+

b

d
+ i

n

d2
y

)

=
1√
n

∑
d|n

∑
m∈Z

am

( n
d2
y
)
e2πimnx/d2

d−1∑
b=0

e2πimb/d

=
1√
n

∑
m∈Z

∑
d|n,d|m

d am

( n
d2
y
)
e2πimnx/d2

=
1√
n

∑
m∈Z

∑
d|(n,m)

n

d
amn/d2

(
d2

n
y

)
e2πimx , (11.13)

where we have changed the divisor sum variable from d to n
d

in the last step and have
relabelled the m sum in between. The Fourier expansion of Tnf is therefore

(Tnf)(z) =
∑
m∈Z

ãm(y)e2πimx with ãm(y) =
1√
n

∑
d|(n,m)

n

d
amn/d2

(
d2

n
y

)
, (11.14)

where d|(n,m) means that d|n and d|m, i.e. divides the greatest common divisor of n and
m which is denoted as usual by (m,n) = gcd(m,n).

11.2.2 Algebra of Hecke operators

Importantly, the Hecke operators Tn satisfy a simple algebra on the space of Maass wave
forms: they all commute. Moreover, they satisfy the Hecke algebra

TmTn = TnTm =
∑
d|(m,n)

Tmn/d2 . (11.15)

Commutativity is manifest in this expression. To prove (11.15), one can first consider the
case (m,n) = 1 and use the explicit definition. In the next step one can consider the case
when both m and n are powers of the same prime. A proof can be found in [2, ch. 6.10]
where a different normalisation is used.

11.2.3 Common eigenfunctions of Tn and ∆

Suppose f : H→ R is an eigenfunction of all Hecke operators

Tnf = cnf (11.16)

for some eigenvalues cn and at the same time a cuspidal Maass wave form with Fourier
expansion

f(z) =
∑
m6=0

am(y)e2πimx . (11.17)
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Applying Tn to f gives, with (11.14),

cnf(z) =
1√
n

∑
m6=0

∑
d|(n,m)

n

d
amn/d2

(
d2

n
y

)
e2πimx (11.18)

Comparing the individual Fourier modes on both sides leads to

cnam(y) =
1√
n

∑
d|(n,m)

n

d
anm/d2

(
d2

n
y

)
(11.19)

Setting n = 1 gives c1am(y) = am(y) for all m 6= 0, implying c1 = 1 unless f vanishes.
Setting m = 1 implies

cna1(y) =
√
nan

(y
n

)
. (11.20)

If f is not constant, one has a1(y) 6= 0, otherwise all the Fourier coefficients would vanish.
From solving the Laplace condition on ∆f = s(s− 1)f (cf. appendix C.2) one knows

that the dependence of the Fourier coefficient am(y) on y is through the modified Bessel
function as

am(y) = amy
1/2Ks−1/2(2π|m|y) (11.21)

for some purely numerical coefficient am that we will now relate to the Hecke eigenvalues
cn. Rescaling f such that a1 = 1 (Hecke normalisation) the relation (11.20) above implies
that the Hecke eigenvalues equal the Fourier coefficients:

cn = an. (11.22)

Obtaining this simple relation was the reason for the choice of normalisation of the Hecke
operator Tn. Note that the cn are only defined for positive n but an for any n. The reality
of f relates an to a−n.

By virtue of the Hecke algebra (11.15) we have

TmTnf = cmcnf =
∑
d|(m,n)

cmn/d2f (11.23)

so that the Fourier coefficients of a normalized simultaneous eigenfunction satisfy

aman =
∑
d|(m,n)

amn/d2 . (11.24)

In particular, they must be multiplicative, i.e. for coprime m and n one has aman = amn.
This number-theoretic property of the Fourier coefficients follows from the action of the
Hecke operators and would not have been apparent from SL(2,Z) invariance alone. Note
that the constant term is not captured by these considerations.
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The algebra (11.24) allows determining all Fourier coefficients in terms of the ones for
prime numbers ap. We note for later reference that powers of primes can be calculated
recursively using the relation

apk+1 = apkap − apk−1 (11.25)

for k > 1 where again Hecke normalization a1 = 1 enters. The Hecke operators Tp
determine the full structure of the Hecke algebra and hence are the only relevant ones
for the development of the theory. We will see soon that they fit naturally into an adelic
framework.

Example 11.4: Fourier expansion of non-holomorphic Eisenstein series and Hecke algebra

We now use the Hecke algebra to rederive the Fourier expansion (1.16) of the Eisenstein series E(s, z).
Since the Eisenstein series E(s, z) is defined as a sum over an SL(2,Z) orbit it is easy to evaluate the
Hecke operators by multiplying the acting matrices

(TnE)(s, z) =
1

2

1√
n

∑
d|n

d−1∑
b=0

∑
gcd(p,q)=1

[
Im

((
n/d b

0 d

)(
∗ ∗
p q

)
· z
)]s

=
1√
n

∑
d|n

d−1∑
b=0

( n
d2

)s
E(s, z) =

∑
d|n

( n
d2

)s−1/2

E(s, z)

= ns−1/2σ1−2s(n)︸ ︷︷ ︸
cn

E(s, z) . (11.26)

We have used that the coset sum B(Z)\SL(2,Z) can be parametrised by two co-prime integers p and
q and the unspecified top row corresponds to an arbitrary representative of the coset. In particular,
the Eisenstein series is an eigenfunction of all Hecke operators and the relation (11.22) between the
Fourier coefficients and the Hecke eigenvalues immediately implies the form (1.16) for the non-zero Fourier
coefficients up to a normalization factor. The constant term is not fixed by these considerations. However,
this method of deriving the Fourier modes did not require any Poisson resummation nor adelic technology.

Let us verify the relation (11.24) for the explicit example of the Eisenstein series (1.16) to check
whether it is a simultaneous eigenfunction. There one has for n > 0

an = cn =
∑
d|n

d1−2sns−1/2 (11.27)

where Hecke normalization was used. Let m and n be coprime, then

aman =
∑
d|m

∑
d̃|n

d1−2sms−1/2d̃1−2sns−1/2 =
∑
d|mn

d1−2s(mn)s−1/2 = amn . (11.28)

The more general relation (11.24) can also be verified and the Eisenstein series is an eigenfunction of of
the Hecke operators (with eigenvalues given by the Fourier coefficients).

Remark 11.5 (Hecke operators for holomorphic modular forms). For holomorphic
modular forms f : H → C of weight k one can also define Hecke operators, see for
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example [2, Ch. 6]. In this case, they act by

(Tnf)(z) = nk−1
∑
d|n

d−k
d−1∑
b=0

f

(
bz + bd

d2

)
(f holomorphic of weight k) (11.29)

and map holomorphic modular forms to homomorphic modular forms. Note that the
normalization convention here is slightly different from the non-holomorphic case. The
multiplicative law (11.15) in this case reads

TmTn = TnTm =
∑
d|(m,n)

dk−1Tmn/d2 . (weight k Hecke algebra) (11.30)

One can again define Hecke normalized common eigenfunctions. If f is a common
eigenfunction with the Fourier expansion f(z) =

∑
m≥0 amq

n (with q = e2πiz as always),
then one has again

Tnf = anf (11.31)

when a1 = 1, i.e., the modular form is Hecke normalized. In this case the Fourier coefficients
satisfy

aman =
∑
d|(m,n)

dk−1amn/d2 (f holomorphic of weight k) (11.32)

because of (11.29). If f is a cusp form and its Fourier coefficients satsify the above
relation (11.32) one can show that it is automatically a common eigenfunction [2, Thm.
6.15]. For non-cuspidal forms this is not guaranteed. We record the following consequence
of (11.32) for later use

ap`ap = ap`+1 + pk−1ap`−1 (Fourier coefficients of weight k modular form) (11.33)

for ` ≥ 0. This is to be contrasted with (11.25) for non-holomorphic forms.

11.3 Hecke operators and Dirichlet series

Given the powerful applications of Hecke operators demonstrated in the previous
subsections, it is natural to wonder about the action of Hecke operators in the adelic
setting of automorphic forms on SL(2,Q)\SL(2,A). It turns out that this gives rise to an
even richer structure, and provides a link to the theory of automorphic representations. In
this section, we take the first steps toward such a theory by studying the Hecke operators
Tp for p a prime, based on [57,130].

Hecke’s original motivation to study Hecke operators was to find a way to encode the
properties of a holomorphic modular form in terms of its associated Dirichlet series [166,
167]. Given a weight k modular form f(z) =

∑
n≥0 an(f)qn (with q = e2πiz) one may form

the series

L(s, f) =
∑
n≥1

an(f)

ns
=
∏
p<∞

∑
`≥0

ap`(f)

p`s
, (11.34)
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which is called the Dirichlet series attached to f . The rewriting in the second step is the
application of prime factorisation under the assumption of absolute convergence of the L-
series. In the special case when the Fourier coefficients am(f) are completely multipliciative,
i.e. satisfy aman = amn for any m,n ∈ Z, then the L-function leads to the following Euler
product via geometric series

L(s, f) =
∏
p<∞

1

1− ap(f)p−s
, am(f) completely multiplicative. (11.35)

This is called a degree 1 Euler product since the denominator contains at most the
power p−s. The prime example of a degree 1 Euler product is the Riemann zeta function
ζ(s) =

∏
p<∞(1− p−s)−1, corresponding to am = 1 for all m ≥ 1, which, however, is not

associated with a holomorphic modular form on SL(2,R) but rather with GL(1,A) as was
explained in section 3.7.

Hecke showed that whenever the Fourier coefficients am(f) are multiplicative according
to (11.33) then the Dirichlet series can be written as an Euler product

L(s, f) =
∏
p<∞

Lp(s, f) =
∏
p<∞

1

1− ap(f)p−s + pk−1−2s
. (11.36)

The derivation of this formula is as follows. Let Lp(s, f) be a factor in the Euler product
as above. Then (11.33) implies

Lp(s, f) =
∑
`≥0

ap`

p`s
=

1

ap

[
ps
∑
`≥0

ap`+1

p(`+1)s
+ pk−1−s

∑
`≥0

ap`−1

p(`−1)s

]

=
1

ap

[
ps (Lp(s, f)− 1) + pk−1−sLp(s, f)

]
, (11.37)

which yields (11.36) after solving for Lp(s, f). The series L(s, f) is also called the L-
function of f and Lp(s, f) the local L-factor. The L-function L(s, f) in (11.36) is of degree
2, due to the factor p−2s.

Remark 11.6. In the case of non-holomorphic automorphic forms f one can go through
the same derivation of an L-function. Using the normalization of Hecke operators defined
in (11.5) and the Fourier coefficients am defined in (11.21) one obtains an L-function for a
common eigenfunction f in Hecke normalization of the form

L(s, f) =
∏
p<∞

1

1− app−s + p−2s
. (11.38)

The shifted exponent on the last term in the denominator is due to the normalization of
the Hecke operators. We assume for simplicity that f is even, i.e., f(−z) = f(z). Then
one can define a completed L-function via

L?(s, f) = π−sΓ

(
2s+ 2ν − 1

4

)
Γ

(
2s− 2ν + 1

4

)
L(s, f) (11.39)
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where ν is the eigenvalue under the Laplacian ∆f = ν(ν − 1)f . The completed L-function
satisfies the simple functional relation

L?(s, f) = L?(1− s, f) (11.40)

For a proof of this and extensions to odd Maass forms see [130, Prop. 3.13.5]. One should
think of the normalizing factors in (11.39) as arising from the archimedean place p =∞
and the completed L-function as a global one.

The L-function (11.36) attached to a modular form f therefore characterizes whether or
not the Fourier coefficients exhibit a multiplicative behaviour, something which is certainly
not guaranteed. When does this happen? It turns out that the Fourier coefficients
of a modular form f are multiplicative if and only if f is a Hecke eigenform, i.e., an
eigenfunction of the entire ring of Hecke operators Tn [2, Thm 6.15]. As was emphasised
above, the ring of Hecke operators is generated by the Tp for p prime and we will now
focus on these.

Remark 11.7. Weil [319,320] has resolved the problem of generalising the L-function to
automorphic forms for congruence subgroups Γ0(N) of SL(2,Z). In this case one needs to
twist the L-function by a Dirichlet character.

11.4 The spherical Hecke algebra

Recall from section 5.1 that to each modular form f(z) on the upper-half plane H we
have a corresponding automorphic form ϕf(g) on SL(2,Q)\SL(2,A). We now want to
find out how the action of the Hecke operator Tp lifts to the space of automorphic forms
A(SL(2,Q)\SL(2,A)).

As for the classical case in section 11.2, the Hecke operators in the adelic context are
associated with double cosets of matrices of determinant different from 1 and hence outside
of SL(2,Qp). For this reason, we consider the group GL(2,Qp). The convolution algebra
on GL(2,Qp). This algebra is given by the space of locally constant C-valued functions on
GL(2,Qp) with the (commutative) product given by convolution:

(Φ1 ? Φ2) (g) =

∫
GL(2,Qp)

Φ1(gh)Φ2(h−1)dh =

∫
GL(2,Qp)

Φ1(h)Φ2(h−1g)dh, (11.41)

where dh denotes the bi-invariant Haar measure on the uni-modular group GL(2,Qp).
Convolution turns the space of such functions into a ring, called the (local) Hecke algebra,
commonly denoted by H(GL(2,Qp)) or simply Hp for short. Although it is a ring it has
no unit. To see the connection with the classical Hecke algebra generated by the Tp’s,
we now restrict to bi-invariant functions with respect to the maximal compact subgroup
Kp = GL(2,Zp), i.e. we consider functions in Hp that satisfy

Φ(kgk′) = Φ(g), k, k′ ∈ Kp, g ∈ GL(2,Qp). (11.42)

We then obtain the spherical Hecke algebra H(GL(2,Qp))
Kp of Kp bi-invariant functions,

which we denote by H◦p. It is a central result that H◦p forms a commutative ring (see,
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e.g. [57]). If we fix the Haar measure on GL(2,Qp) such that Kp has unit volume, then
H◦p also has a unit given by the characteristic function on Kp:

charKp(g) =

{
1 g ∈ Kp,

0 otherwise.
(11.43)

To see this we calculate the convolution product of the characteristic function with any
Φ ∈ H◦p:

(Φ ? charKp)(g) =

∫
SL(2,Qp)

Φ(gh)charKp(h
−1)dh =

∫
Kp

Φ(gh)dh = Φ(g), (11.44)

where in the last step we used that f is bi-invariant under Kp and Kp has unit volume.
One says that the spherical Hecke algebra is idempotented .

The spherical Hecke algebraH◦p acts on the space of Kp-spherical functions on GL(2,Qp)
via right-translation. For any Φ ∈ H◦p and Kp-spherical function ϕ on GL(2,Qp) we define
a new function on GL(2,Qp) by

(π(Φ)ϕ)(g) =

∫
GL(2,Qp)

Φ(h)ϕ(gh)dh. (11.45)

One can check easily that this maps the right-regular action of GL(2,Qp) on functions
on GL(2,Qp) to a representation of the spherical Hecke algebra (with convolution
product (11.41)) according to

π (Φ1 ? Φ2)ϕ = π (Φ1) (π (Φ1)ϕ) . (11.46)

The space of Kp-spherical functions is therefore a representation of the spherical Hecke
algebra H◦p.
Remark 11.8. By taking the restricted direct product (with respect to Kp, see section
3.5) over all the local algebras H◦p we obtain the global, or adelic, spherical Hecke algebra

H◦ =
⊗
p≤∞

′
H◦p. (11.47)

For p = ∞, the spherical Hecke algebra H◦∞ is given by K(R)-bi-finite distributions
supported on K(R) [68, Lecture 3.1]. This includes the invariant differential operators on
G(R) lying in the universal enveloping algebra U(g). The global Hecke algebra H◦ acts on
A(GL(2,Q)\GL(2,A)) by the same formula (11.45). Our main interest in the following
lies with the spherical Hecke algebra H◦p at the finite primes p <∞.

We now investigate the structure of the (local) spherical Hecke algebra H◦p in more
detail. More explicitly, we define the elements Tp and Rp ∈ H◦p by the Kp-bi-invariant
functions

Tp = charKp( p 1 )Kp , Rp = charKp( p p )Kp . (11.48)
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It is an important result that Tp, Rp and R−1
p together generate the spherical Hecke algebra

H◦p. A proof of this statement can be found for example in [57, Prop. 4.6.5].
On functions ϕ : GL(2,Qp)→ C they act according to (11.45). To ease notation we

shall simply continue to call them Tp and Rp also when acting on spherical functions.

(Tpϕ)(g) =

∫
Kp( p 1 )Kp

ϕ(gh)dh, (11.49)

(Rpϕ)(g) =

∫
Kp( p p )Kp

ϕ(gh)dh. (11.50)

Even though written in terms of integrals, they act on functions on GL(2,Qp) by finite
sums after performing a decomposition of the double cosets into a finite union of left
cosets, similar to (11.4). This decomposition for the operator Tp is [57, Prop. 4.6.4]

Kp

(
p

1

)
Kp =

(
1

p

)
Kp ∪

p−1⋃
i=0

(
p i

1

)
Kp, (11.51)

such that for Kp-spherical ϕ

(Tpϕ)(g) = ϕ
(
g
(

1
p

))
+

p−1∑
i=0

ϕ
(
g
(
p i

1

))
. (11.52)

The connection with the classical Hecke operators now follows from the fact that if
f : H→ R is a Maass wave form with eigenvalue ap under Tp, then the associated adelic
automorphic form ϕf ∈ A(SL(2,Q)\SL(2,A)) defined in section 5.1.4 is an eigenform
under Tp with the same eigenvalue, up to a (convention-dependent) factor:

Tpf = apf ←→ (Tpϕf )(g) = p1/2apϕf . (11.53)

This will be verified for Eisenstein series in example 11.10 below but it is valid in general.

Remark 11.9. There is also a classical Hecke operator Rp acting on f which lifts to Rp,
but we shall not discuss this further here (see [57] for more details).

11.5 Spherical Hecke algebras and automorphic

representations

This and the following sections make use of the theory of automorphic representations
which was introduced in section 5.4.

Recall that GL(2,A) acts by right-translation on A(GL(2,Q)\GL(2,A)), such that at
the archimedean places it has the form of a (g∞, K∞)-module, while the finite places carry
a representation of GL(2,Af). The irreducible constituents (π, V ) in the decomposition
of A(GL(2,Q)\GL(2,A)) are called automorphic representations. But we have also just
seen that A(SL(2,Q)\SL(2,A)) carries an action of the adelic spherical Hecke algebra
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H◦. A natural question is then: Is there a relation between these representations? Not
surprisingly, the answer is yes, and we shall now sketch how to see this.

Suppose that (π, V ) = ⊗p≤∞(πp, Vp) is an unramified automorphic representation
(see definition 5.24); this implies that Vp contains a spherical vector f◦p (unique up to
multiplication by a complex scalar, see e.g. [57]), satisfying f◦p(k) = 1 for all k ∈ Kp. The

spherical vector therefore spans the complex one-dimensional space V
Kp
p consisting of

Kp-invariant vectors in Vp.
We can for example take πp to be the local induced representation with module

Vp = Ind
GL(2,Qp)

B(Qp) δ1/2µ, (11.54)

where δ is the modulus character of the Borel subgroup and the quasi-character µ :
B(Zp)\B(Qp)→ C? is defined by

µ(b) = µ(na) = µ(a), n ∈ N(Qp), a ∈ A(Qp). (11.55)

In the notation of (5.94) we have therefore χ(g) = µ(g)δ1/2(g). The explicit separation of
the modulus character in (11.54) turns out to be convenient for the forthcoming analysis,
and also facilitates comparison with the literature. In the notation of that section we
would write χ(a) = aλ+ρ, so that δ1/2(a) = aρ and µ(a) = aλ, where ρ is the Weyl vector
of the Lie algebra gl(2) and λ is a (complex) weight.

The spherical vector f◦p ∈ Vp is the standard section defined by the extension of δ1/2µ
to all of GL(2,Qp) via the Iwasawa decomposition (see also section 5.5):

f◦p(g) = f◦p(nak) = δ1/2(a)µ(a). (11.56)

The local spherical Hecke algebra H◦p acts on Vp via the action (11.45). By construction

this action preserves the one-dimensional space V
Kp
p of spherical vectors: indeed for any

Φ ∈ H◦p we have for all k ∈ Kp

(π(Φ)f◦p)(gk) =

∫
GL(2,Qp)

f◦p(gkh)Φ(h)dh =

∫
GL(2,Qp)

f◦p(ghk)Φ(khk−1)dh = (π(Φ)f◦p)(g),

(11.57)

since f◦p is spherical and Φ Kp-bi-invariant. This implies that V
Kp
p furnishes a representation

of H◦p. Since the spherical vector f◦p spans the one-dimensional space V
Kp
p , we conclude

that the action of H◦p must give back f◦p , up to a complex scalar:

(π(Φ)f◦p)(g) = λµ(Φ)f◦p(g), (11.58)

where the eigenvalue λµ(Φ) determines a (quasi-)character of the spherical Hecke algebra

λµ : H◦p −→ C×. (11.59)

As we have indicated, this character depends on the choice of µ in (11.54).
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To find an explicit description of the characters λµ we shall work out the action of
the Hecke operator Tp defined in (11.48). To proceed, we parametrise the Cartan torus
A(Qp) ⊂ GL(2,Qp) by

a =

(
v1

v2

)
, v1, v2 ∈ Q×p . (11.60)

We can further describe the unramified character µ explicitly by

µ(a) = µ

((
v1

v2

))
= |v1|s1p |v2|s2p (11.61)

where s1, s2 ∈ C. Note that the parametrisation in terms of s1 and s2 differs from the one
used in chapter 7. The reason here is to simplify some of the following expressions. The
corresponding value of the modulus character on B ⊂ GL(2,Qp) is

δ

(
v1

v2

)
=

∣∣∣∣v1

v2

∣∣∣∣
p

. (11.62)

This implies that the representation Ind
SL(2,Qp)

B(Qp) δ1/2µ is in fact completely determined by

αp ≡ p−s1 , βp ≡ p−s2 . (11.63)

Now we wish to compute

(Tpf◦p)(g) =

∫
Kp( p 1 )Kp

f◦p(gh)dh. (11.64)

Since we know that f◦p is an eigenfunction and is normalized so that f◦p(1) = 1, it suffices
to evaluate the action at the identity 1 ∈ GL(2,Qp), which then, via (11.58), directly
corresponds to the value of the character λµ:

λµ(Tp) =

∫
Kp( p 1 )Kp

f◦p(h)dh. (11.65)

To evaluate this we decompose the double coset space as in (11.51). Plugging the
decomposition into the integral (11.65) yields

λµ(Tp) =

p−1∑
i=0

f◦p

((
p i

1

))
+ f◦p

((
1

p

))
= (δ1/2µ)

((
p

1

))
+ · · ·+ (δ1/2µ)

((
p

1

))
︸ ︷︷ ︸

p terms

+(δ1/2µ)

((
1

p

))

= pp−1/2p−s1 + p1/2p−s2

= p1/2(αp + βp). (11.66)
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By a similar analysis one also shows that

λµ(Rp) =

∫
Kp( p p )Kp

f◦p(h)dh = αpβp, (11.67)

λµ(R−1
p ) =

∫
Kp

(
p−1

p−1

)
Kp

f◦p(h)dh = α−1
p β−1

p . (11.68)

These results imply that the one-dimensional representation λµ of the Hecke algebra

H◦p acting on V
Kp
p completely determines the unramified character µ, and thereby

the automorphic representation Ind
GL(2,Qp)

B(Qp) δ1/2µ. It is quite remarkable that this
infinite-dimensional automorphic representation can be encoded in the finite-dimensional
representations of H◦p. In the next subsection we shall further investigate the consequences
of this fact.

Example 11.10: Classical and p-adic Hecke operators for Eisenstein series on SL(2)

In this example, we come back to the mentioned relation (11.53) between the Hecke eigenvalue of a
non-holomorphic Eisenstein series E(s, z) on H under the classical Tp calculated in (11.26) and the action
of Tp ∈ H◦p on the associated adelic Eisenstein series E(χs, g) ∈ A(SL(2,Q)\SL(2,A)) defined in (5.146).

To begin with, we need to relate the parameters s1 and s2 of the GL(2,Qp) principal series (11.61) to
the parameter s occuring in E(s, z) and E(χs, g) via (7.10). Elements of the Cartan torus in SL(2,Qp)
are of the form a = diag(v, v−1), so that (11.61) yields

µ (( v v−1 )) = |v|s1−s2p . (11.69)

This has to be contrasted with (recall the general χ = δ1/2µ)

(δ−1/2χs) (( v v−1 )) = |v|2s−1
p (11.70)

that follows from (7.10). For symmetry reason one therefore deduces

s1 = −s2 = s− 1

2
. (11.71)

Plugging this into αp and βp in (11.63) one therefore finds from (11.66) that

λµ(Tp) = p1/2 (αp + βp) = p1/2
(
p−s+1/2 + ps−1/2

)
. (11.72)

This is the eigenvalue of the adelic Eisenstein series under Tp. From (11.26) one finds that for the classical
Hecke operator Tp acting on the classical E(s, z) the eigenvalues is

(TpE)(s, z) = ps−1/2
(
1 + p1−2s

)
E(s, z) =

(
ps−1/2 + p−s+1/2

)
E(s, z). (11.73)

This confirms the claimed relation (11.53) that

Tp ∼ p1/2 Tp, (11.74)

where we reiterate that the pre-factor is convention dependent.
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11.6 The Satake isomorphism

We recall from section 4.1.1 that the Weyl group W =W(g) acts on the Cartan torus A,
and consequently it also acts on the characters µ via

wµ(a) = µ(w−1aw), w ∈ W . (11.75)

Under this action the unramified principal series remains invariant

Ind
GL(2,Qp)

B(Qp) δ1/2w(µ) ∼= Ind
GL(2,Qp)

B(Qp) δ1/2µ. (11.76)

This is what the functional relation (8.44) for Eisenstein series expresses.
In terms of the parametrisation of µ by the complex numbers (αp, βp) the Weyl

group W = Z/2Z simply acts by (αp, βp) 7→ (βp, αp). Now notice that the characters
λµ(Tp) = p1/2(αp + βp), λµ(Rp) = αpβp and λµ(R−1

p ) = α−1
p β−1

p are Weyl-invariant. Hence,
at the level of the representations of the spherical Hecke algebra we have

λwµ = λµ, ∀w ∈ W . (11.77)

As a consequence, the image of the homomorphism H◦p → C lies in the polynomial C-ring
of Weyl-invariants

C[α±1
p , β±1

p ]W ∼= C[αp + βp, αpβp, α
−1
p β−1

p ]. (11.78)

It is an important result of Satake [278] that this homomorphism in fact yields
an isomorphism between the spherical Hecke algebra and the ring of Weyl-invariant
polynomials in (αp, βp):

H◦p ∼= C[αp + βp, αpβp, α
−1
p β−1

p ]. (11.79)

See [153] for a nice survey of the Satake isomorphism and its applications.
The key step in Satake’s analysis was to introduce the Satake transform

S : H◦p(GL(2,Qp)) −→ H◦p(A(Qp)) (11.80)

from the spherical Hecke algebra of GL(2,Qp) to the spherical Hecke algebra of the Cartan
torus A(Qp). The Satake transform is defined by

(SΦ)(a) = δ−1/2(a)

∫
N(Qp)

Φ(na)dn, Φ ∈ H◦p(GL(2,Qp)), (11.81)

where N(Qp) is the unipotent radical of the Borel subgroup B(Qp) ⊂ GL(2,Qp). Satake
then proved that the image of S lies in H◦p(A(Qp))

W , the Weyl invariant elements of the
spherical Hecke algebra of A(Qp). To see the connection with our previous analysis, we
consider again the formula for the eigenvalues λµ:

λµ(Φ) =

∫
GL(2,Qp)

f◦p(h)Φ(h)dh, (11.82)

which is (11.58) evaluated at the identity g = 1. We shall now manipulate this expression
in order to elucidate the role played by the Satake transform. To the best of our knowledge
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this calculation was first outlined by Langlands in [220], but here we follow the more
detailed exposition by Garrett [112]. We begin by splitting the integral according to the
Iwasawa decomposition GL(2,Qp) = B(Qp)Kp:∫

GL(2,Qp)

f◦p(h)Φ(h)dh =

∫
B(Qp)

∫
Kp

f◦p(b−1k)Φ(b−1k)dbdk, (11.83)

where dk and db are right-invariant Haar measures on Kp and B(Qp), respectively. Next,
we make the change of variables b → b−1, which brings out a factor of δ−1 from the
measure: ∫

B(Qp)

∫
Kp

f◦p(bk)Φ(bk)δ(b)−1dbdk. (11.84)

Using right Kp-invariance of f◦p and Φ as well as
∫
Kp
dk = 1 this further simplifies to∫

B(Qp)

f◦p(b)Φ(b)δ(b)−1db =

∫
B(Qp)

Φ(b)(δ−1/2µ)(b)db, (11.85)

where we used (11.56). To proceed we split the integral according to B(Qp) = N(Qp)A(Qp)
and use the fact that δ−1/2µ is trivial on N(Qp) acting on the left:∫

A(Qp)

∫
N(Qp)

Φ(na)(δ−1/2µ)(na)dnda =

∫
A(Qp)

∫
N(Qp)

Φ(na)(δ−1/2)µ(a)dnda. (11.86)

After reshuffling the integrand we finally arrive at the result

λµ(Φ) =

∫
A(Qp)

µ(a)

[
δ−1/2(a)

∫
N(Qp)

Φ(na)dn

]
da

=

∫
A(Qp)

µ(a)(SΦ)(a)da. (11.87)

This clearly shows that the Satake transform lies at the heart of the relation between

the unramified automorphic representation Ind
GL(2,Qp)

B(Qp) δ1/2µ and the one-dimensional
representation λµ of the spherical Hecke algebra H◦p, the essence of which is the Satake
isomorphism (11.79).

11.7 The L-group and generalisation to GL(n)

It is illuminating to assemble the parameters (αp, βp) in a matrix

Aπp =

(
αp

βp

)
. (11.88)

This matrix belongs to GL(2,C) and since conjugation Aπp 7→ wAπpw
−1 by an element

w ∈ W will not alter the result (11.79) we find that the representation πp determines a
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(semi-simple) conjugacy class [Aπp ] ⊂ GL(2,C). This conjugacy class is called the Satake
parameter of the local representation πp.

The conclusion of the discussion in this and the previous sections is that unramified
automorphic representations πp of GL(2,Qp) are in bijection with semi-simple conjugacy
classes [Aπp ] ⊂ GL(2,C). The appearance of GL(2,C) in the context of local
representations of GL(2,Qp) may seem surprising, but is in fact a simple instance of
a more general phenomenon envisioned by Langlands [217]. Langlands suggested that to
each reductive algebraic group G over a number field F there exists an associated complex
group LG(C), called the L-group, or Langlands dual group. We have already encountered
the group LG briefly in section 9.7 in our discussion of the Casselman–Shalika formula but
we will now put this group into a more general context.

A precise definition of LG can be found in [26]; we here only recall the salient features.
For simple groups G the root system of LG is obtained from that of G by interchanging
the short and long roots. In other words, the co-weight lattice Λ∨ of the Lie algebra
g = LieG is identified with the weight lattice LΛ of the dual Lie algebra Lg = Lie LG.
This is captured by the isomorphism

Hom(LA,U(1)) ∼= Hom(U(1), A), (11.89)

between the lattice of characters on LA and the lattice of co-characters on A. For example,
in the case of G = GL(n,Qp) the L-group is GL(n,C), and for G = SL(n,Qp) we have
LG = PGL(n,C). The duality is even more drastic in the case when G = Sp(n) we have
LG = SO(2n+ 1). See also [56,63] for details.

Remark 11.11. The group LG we have introduced here is sometimes called the connected
L-group in order to distinguish it from the L-group in the more general context of field
extensions. If one considers a finite field extension E of F = Qp then the L-group LG
is defined with the inclusion of (finite) Galois group Gal(E/F) of the field extension.
This more general viewpoint is relevant for the global Langlands conjectures and will be
discussed in section 12.5.

The Satake parameter Aπp associated with the automorphic representation πp should
thus be viewed as an element of the Cartan torus LA(C) ⊂ GL(2,C) dual to the original
Cartan torus A(Qp). In fact, this holds more generally for any (split) reductive algebraic
group G. From this perspective, one gets the following reformulation of the Satake
isomorphism (adapted from [63]):

Theorem 11.12 (reformulated Satake isomorphism). There is a natural bijection
between the Weyl-invariant homomorphism H◦p(G)→ C and semi-simple LG(C)-conjugacy
classes in the dual torus LA(C).

Remark 11.13. The Satake parameter Aπp ∈ LA(C) already appeared in section 9.7
where it was denoted by aλ where λ parametrises an element of the principal series
representation of G(Qp) which is here denoted abstractly by πp.
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Let us briefly discuss some details on the generalisation of our analysis toG = GL(n,Qp).
We take πp to be the unramified principal series with module

Vp = Ind
GL(n,Qp)

B(Qp) δ1/2µ, (11.90)

where the inducing character is a straightforward generalisation of (11.61):

µ(a) = µ

 v1

. . .

vn

 =
n∏
i=1

|vi|sip . (11.91)

As before, this representation is determined by the n complex numbers:

αi := p−si , i = 1, . . . , n. (11.92)

(Note that the αi here are for fixed prime p that we do not indicate explicitly unlike
in (11.88).) Associated with the representation πp we then have the Satake parameter

Aπp =

 α1

. . .

αn

 ∈ LA(C) ⊂ GL(n,C) = LGL(n,Qp), (11.93)

on which the Weyl group W acts by permuting the αi’s. The generators of the spherical
Hecke algebra H◦p(G) act on elements ϕ ∈ Vp by (11.45), viz.

(Φiϕ)(g) =

∫
GL(n,Qp)

ϕ(gh)charKpτiKp(h)dh

=

∫
KpτiKp

ϕ(gh)dh, (11.94)

where we defined [56]

τi =

(
p1i

1n−i

)
, (11.95)

with 1r the r × r identity matrix. We use the convention that for i = n the double coset
is Kp(p1n)Kp. Thus, in the special case of n = 2 the definition (11.94) reduces to the
generators in section 11.3, i.e. Φ1 = Tp and Φ2 = Rp. Tamagawa has shown [303] that
the operators Φ1, . . . ,Φn together with Φ−1

n (which is the only invertible Φi) generate the
spherical Hecke algebra H◦p of GL(n,Qp).

As before, the one-dimensional space V
Kp
p = C·f◦p of Kp-invariant vectors in Vp furnishes

a representation of the spherical Hecke algebra, such that for any Φ ∈ H◦p and any v◦ ∈ V Kp
p

one has
π(Φ)v◦ = λµ(Φ)v◦, (11.96)

where λµ : H◦p → C× is a (quasi-)character. To evaluate the eigenvalue λµ(Φ) on all the
generators Φi we must decompose the double cosets in (11.94). The result can be written
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as follows using the finite Cartan decomposition (see for instance [56] for a nice and explicit
proof)

KpτiKp =
⋃
j

βi,jKp, (11.97)

where the matrices β,j are all integral and upper-triangular with diagonal entries are of
the form pη, where η ∈ {1, . . . , n} and j ranges over some finite set. These generalise the
matrices on the first line of (11.66) and similarly to that calculation we must evaluate the
spherical vector f◦p on all βi,j. Bump shows that this takes the form [56]

f◦p(βi,j) = (δ1/2µ)(βi,j) = p−
i(n+1)

2

i∏
`=1

pη`αη` , (11.98)

where η` ∈ {1, . . . , n} are determined by j and ordered such that η1 < η2 < · · · < ηi. The
αη` are the complex parameters (11.92) that determine the representation πp. There are
furthermore a total number of

pi(n−i−
1
2

)−
∑i
`=1 η` (11.99)

βi,j for each i ∈ {1, . . . , n}. Combining everything we find that the eigenvalue of the Hecke
operator Φi is given by

λµ(Φi) =

∫
KpτiKp

f◦p(h)dh =
∑
βi∈Λi

f◦p(βi)

=
∑

η1<···<ηi

pi(n−i−
1
2

)−
∑i
j=1 ηjp−

i(n+1)
2

i∏
`=1

pη`αη`

= pi(n−i)/2
∑

η1<···<ηi

αη1 · · ·αηn

= pi(n−i)/2ei(α1, . . . , αn), (11.100)

where ei(α1, . . . , αn) is the ith elementary symmetric polynomial in n variables. In fact, the
Satake isomorphism can be written in terms of these elementary symmetric polynomials

H◦p(GL(n,Qp)) ∼= C[e1(α1, . . . , αn), . . . , en(α1, . . . , αn), en(α1, . . . , αn)−1], (11.101)

corresponding to the values on the generators Φ1, . . . ,Φn and Φ−1
n of the spherical Hecke

algebra of GL(n,Qp). Indeed, for n = 2 we have

e1(α1, α2) = α1 + α2, e2(α1, α2) = α1α2, (11.102)

thus recovering (11.79).
Let us end this section with a comment on how these results fit into the general theory

of automorphic forms. Recall from definition 5.6 that an automorphic form ϕ on the
adelic quotient G(Q)\G(A) is required to be Z(g)-finite, i.e. that ϕ is an eigenfunction
of the entire ring of invariant differential operators in the center of U(g). This can be
viewed as a statement about the behavior of ϕ under the action of differential operators in
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the real group G∞ = G(R). For the case of automorphic forms attached to unramified
automorphic representations π = π∞ ⊗

⊗
p<∞ πp the spherical Hecke algebra provides the

non-archimedean analogue of this: for each finite place p, ϕ is an eigenfunction of the
ring of Hecke operators generated by Φi ∈ H◦p. These statements combine together in the
global Hecke algebra as mentioned in remark 11.8.

11.8 The Casselman–Shalika formula revisited

There is a close relation between the discussion above and the Casselman–Shalika formula
for the p-adic spherical Whittaker vector W ◦

ψ. Spherical Whittaker vectors were the central
objects in chapter 9 and a glimpse of the relation between them and representation theory
was already visible in section 9.7. Here, we recall and extend some of the notions in a
more general context. For an unramified character ψ : N(Zp)\N(Qp)→ U(1) we have an
embedding

Wψ : Ind
GL(n,Qp)

B(Qp) δ1/2µ −→ Ind
GL(n,Qp)

N(Qp) ψ (11.103)

of the unramified principal series into the space of functions W : GL(n,Qp)→ C satisfying

Wψ(δ1/2µ, ng) = ψ(n)Wψ(δ1/2µ, g), ∀n ∈ N(Qp), (11.104)

where, as in chapter 9, the first argument indicates the dependence on the inducing
character µ in the unramified principal series that was written there in terms of χ = δ1/2µ.
The image of the space V

Kp
p of Kp-fixed vectors in Vp is a one-dimensional space of spherical

Whittaker vectors . In particular, for the generator f◦p ∈ V Kp
p we obtain a canonical spherical

Whittaker vector via the explicit Jacquet integral (see chapter 9 for details)

W ◦
ψ(δ1/2µ, g) =

∫
N(Qp)

f◦p(w0ng)ψ(n)dn, (11.105)

where we used f◦p = δ1/2µ. This satisfies

W ◦
ψ(δ1/2µ, nak) = ψ(n)Wψ(δ1/2µ, a), (11.106)

and so is completely determined by its restriction to the Cartan torus A(Qp). For
GL(n,Qp) the vanishing properties of W ◦

ψ analyzed in section 9.2.2 can be simplified as
follows. Parametrising a according to

a = $J :=

 pj1

. . .

pjn

 ∈ A(Qp)/A(Zp), (11.107)

with J = (j1, . . . , jn) ∈ Zn, one finds that (see, e.g., [68])

W ◦
ψ(δ1/2µ, a) = 0. unless j1 ≥ j2 ≥ · · · ≥ jn. (11.108)
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The map (11.103) commutes with the Hecke action and therefore the spherical Whittaker
vector is an eigenfunction of all the Hecke operators with the same eigenvalue (11.100) as
before:

ΦiW
◦
ψ(δ1/2µ, a) = λµ(Φi)W

◦
ψ(δ1/2µ, a). (11.109)

This fact can be used to derive a recursive formula for the value W ◦
ψ(δ1/2µ, a) as we will

now show. This will give the connection with the Casselman–Shalika formula that we are
after.

The main difference with the calculation (11.100) is of course that a priori we do not
know the explicit value of W ◦

ψ on A(Qp), in contrast to the case of the original spherical
vector f◦p where we had the formula (11.56) at hand. The key is that we should parametrise
the decomposition of the cosets KpτiKp in such a way that we can make use of the defining
relation (11.106). Such a parametrisation was given by Shintani [298]; here we follow the
treatment by Cogdell [68], which reads

KpτiKp =
⋃
ε∈Ii

⋃
n∈Nε

n$εKp, (11.110)

where the set Ii is defined as

Ii = {ε = (ε1, . . . , εn) ∈ Zn | εj ∈ {0, 1},
n∑
j=1

εj = i}, (11.111)

and
Nε = N(Zp)/(N(Zp) ∩$εKp$

−ε). (11.112)

Using this result we can compute the left hand side of (11.109) explicitly:∫
KpτiKp

W ◦
ψ(δ1/2µ,$Jh)dh =

∑
ε∈Ii

∑
n∈Nε

W ◦
ψ(δ1/2µ,$Jn$ε)

=
∑
ε∈Ii

∑
n∈Nε

W ◦
ψ(δ1/2µ,$Jn$−J$J$ε)

=
∑
ε∈Ii

∑
n∈Nε

ψ($Jn$−J)W ◦
ψ(δ1/2µ,$J$ε), (11.113)

where we used that $Jn$−J ∈ N(Qp) combined with (11.106). In fact, because of the
constraint (11.108), which requires j1 ≥ · · · ≥ jn, we have that $Jn$−J ∈ N(Zp) and
consequently ψ($Jn$−J) = 1. The summand is therefore independent of n and the sum
yields only a factor corresponding to the size of the coset space (11.112). Cogdell shows
that [68]

|Nε| = pi(n−i)/2δ−1/2($ε), (11.114)

so we obtain for all i [68, Prop. 7.3]

λµ(Φi)W
◦
ψ(δ1/2µ,$J) =

∑
ε∈Ii

pi(n−i)/2δ−1/2($ε)W ◦
ψ(δ1/2µ,$J+ε). (11.115)

This is a recursive formula for the spherical Whittaker vector W ◦
ψ(δ1/2µ,$J)! We recall

that all the Hecke eigenvalues λµ(Φi) are known from (11.100).
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Example 11.14: Unramified Whittaker vectors for GL(2,Qp)

Let us determine some unramified spherical Whittaker vectors for GL(2,Qp) using the recursion
relation (11.115), starting from J = (0, 0). The recursion relation then reads for the two values i = 1, 2

p1/2(αp + βp)W
(0,0) = p1/2δ−1/2

(
$(0,1)

)
W (0,1) + p1/2δ−1/2

(
$(1,0)

)
W (1,0), (11.116)

αpβpW
(0,0) = δ−1/2

(
$(1,1)

)
W (1,1), (11.117)

where (11.66) and (11.67) were used and we have introduced the short-hand notations

W (j1,j2) ≡W ◦ψ(δ1/2µ,$J) and $(j1,j2) ≡ $J . (11.118)

Since W (0,1) = 0 according to (11.108) we can solve for W (1,0) and W (1,1) in terms of W (0,0) to obtain

W (1,0) = W (0,0)δ1/2
(
$(1,0)

)
(αp + βp), W (1,1) = W (0,0)δ1/2

(
$(1,1)

)
αpβp. (11.119)

We note that

αp + βp = Tr

(
αp

βp

)
= Tr(1,0)(Aπp) and αpβp = Tr

(
αpβp

)
= Tr(1,1)(Aπp) (11.120)

are the characters of the Satake parameter Aπp in the two- and one-dimensional representations of
GL(2,C) = LGL(2,Qp), respectively, that are labelled here by their Young tableaux indexed by J = (1, 0)
and J = (1, 1). The translation from non-increasing tuples (j1, . . . , jn) to a Young tableau is such that the
ith row has ji boxes. Therefore, we have

J = (1, 0)←→ and J = (1, 1)←→ ,

such that (1, 0) corresponds to the fundamental two-dimensional representation and (1, 1) to the one-
dimensional GL(2,C) representation of weight 1 (tensor density). The relation between spherical Whittaker
vectors and characters is no coincidence as we explain in the text.

The key to solving the recursion relation (11.115) for GL(n,Qp) is is to note that the
set of integers J = (j1, . . . , jn), subject to the condition j1 ≥ j2 ≥ · · · ≥ jn, is well-known
to parametrise the highest weights of irreducible representations VJ of GL(n,C), which,
we recall, is the L-group LG of GL(n,Qp). But the analogy goes even further than that.
Let χJ = TrVJ be the character of the representation VJ . This is a class function, meaning
that it is invariant under conjugation

TrVJ (g) = TrVJ (hgh−1), g, h ∈ GL(n,C), (11.121)

and so only depends on the conjugacy class of VJ . If we take VJ to be the fundamental
n-dimensional representation of GL(n,C) then we already have a conjugacy class at hand,
namely the Satake parameter Aπp ∈ LA(C) (11.93) of πp. From this perspective J is a
dominant weight in the weight lattice Λ∨ of Lg, which is the co-weight lattice of g. One
can then solve the recursion (11.115) in terms of the characters χJ with the result [68]

W ◦
ψ(δ1/2µ,$J) =

{
const× δ1/2($J)χJ(Aπp) if J ∈ Λ∨ is dominant

0 otherwise.
(11.122)
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We note that the recursion relation only determines the spherical Whittaker vector up to a
constant. At first sight this looks very different from the Casselman–Shalika formula (9.21)
we derived in chapter 9. To see that they indeed coincide we shall rewrite the formula
given there in a way similar to what was done in section 9.7. Setting a = $J in (9.21)
and doing some reshuffling we arrive at

1

ζ(λ)

∑
w∈W

ε(wλ)|awλ+ρ| = 1

ζ(δ1/2µ)
aρ
∑
w∈W

w

[
aλ∏

α>0(1− p〈λ|α〉)

]
=

1

ζ(δ1/2µ)
δ1/2($J)

∑
w∈W

w

[
µ($J)∏

α>0(1− µ($−α))

]
, (11.123)

where we rewrote the arguments as follows

aρ = e〈ρ|H($J )〉 = δ1/2($J), (11.124a)

aλ = e〈λ|H($J )〉 = p−〈λ|J〉 = µ($J), (11.124b)

p〈λ|α〉 = µ($−α), (11.124c)

To interpret the new form (11.123) of the Casselman–Shalika formula we recall that the
weight lattice of the L-group LG(C) is Λ∨, the co-weight lattice of G. We now identify
this with the character lattice X∗(LA) according to

Λ∨ ∼= X∗(LA) ∼= Hom(LA,U(1)) ∼= Zn. (11.125)

Under this identification a weight J = (j1, . . . , jn) ∈ Λ∨ can be interpreted as a character
J : LA(C)→ U(1). We can in particular evaluate this character on the Satake parameter
Aπp ∈ LA(C) with the result

AJπp = J(Aπp) = J

 α1

. . .

αn

 =
n∏
i=1

αjii , (11.126)

which further implies the equality

AJπp = µ($J). (11.127)

Remark 11.15. The standard notation being used here might be the source for confusions:
In general we denote the value of the character J on a ∈ LA by aJ or J(a) as in (11.126);
however this should not be confused with the matrix $J , which is defined in (11.107). We
trust that this will not cause any trouble since it should be clear from the context which
definition is referred to.

Next we compare (11.123) with the Weyl character formula for a representation VJ of
a Lie group G with highest weight J . According to (4.27), the character χJ evaluated at
z ∈ A is explicitly given by

χJ(z) =
∑
w∈W

w

[
zJ∏

α>0(1− z−α)

]
, z ∈ A. (11.128)

236



Eisenstein series and automorphic representations

We can therefore rewrite (11.123) as

1

ζ(δ1/2µ)
δ1/2($J)

∑
w∈W

w

[
µ($J)∏

α>0(1− µ($−α))

]
=

1

ζ(δ1/2µ)
δ1/2($J)χJ(Aπp). (11.129)

Comparing this with (11.122) we indeed find perfect agreement, provided that we fix the
overall constant there to be ζ(µ)−1. We conclude that the Casselman–Shalika formula for

the spherical Whittaker vector W ◦
ψ ∈

(
Ind

G(Qp)

N(Qp)ψ
)Kp

can be written in terms of the Weyl

character formula for an irreducible representation VJ of the Langlands dual group LG(C):

W ◦
ψ(δ1/2µ,Aπp) =

1

ζ(δ1/2µ)
δ1/2($J)χJ(Aπp). (11.130)

For GL(n,C) the characters of VJ is well-known to be given by symmetric polynomials
that can be expressed in the basis of Schur polynomials. Examples for GL(2) can be found
in 11.14.

11.9 Automorphic L-functions

Equipped with the adelic Hecke technology of the previous sections we shall now revisit
the discussion of Dirichlet series of section 11.3 in the more general context of GL(n,A).

Suppose first that f is a Maass form on the upper-half plane H which is an
eigenfunction of the classical Hecke operator Tp with eigenvalue ap. For instance,
f could be a non-holomorphic Eisenstein series. This lifts to an automorphic form
ϕf ∈ A(SL(2,Q)\SL(2,A)) which is an eigenfunction of Tp with eigenvalue λµ(Tp) =
p1/2(αp + βp) as we found in (11.66). According to (11.53) the relation between the
eigenvalues is thus

ap = αp + βp. (11.131)

This implies that we can rewrite the local factor in the Dirichlet series (11.38) as follows

(1− app−s + p−2s)−1 =
[
(1− αpp−s)(1− βpp−s)

]−1
= det

(
1− Aπpp−s

)−1
, (11.132)

where Aπp is the semi-simple Satake parameter (11.88) in the fundamental matrix
representation.

The relation (11.131) has a natural generalisation to higher rank groups. Suppose
ϕ ∈ A(G(Q)\G(A))KA , i.e., ϕ is a spherical automorphic form, is attached to an unramified
automorphic representation π. Suppose also that ϕ is an eigenfunction of the spherical
Hecke algebras H◦p = H(Qp)

Kp . This implies that for Φ ∈ H◦p we have π(Φ)ϕ = λπ(Φ)ϕ.
In this situation there exists a unique Satake class [Aπp ] ⊂ LG(C) such that

λπ(Φ) = p]Trπ(Aπp), (11.133)

where the prefactor is some power of the prime p. In particular, for G = GL(n) we see
from (11.100) that

λπ(Φ1) = λµ(Φ1) = p(n−1)/2(α1 + · · ·+ αn) = p(n−1)/2Trπ(Aπp), (11.134)
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where the semi-simple conjugacy class Aπp is given in (11.93).
We can now generalise the construction of the Dirichlet series to GL(n,A). To this

end let π =
⊗

p≤∞ πp be the unramified principal series Ind
GL(n,A)
B(A) δ1/2µ and Aπp be the

corresponding Satake parameter associated with each local factor πp. To this data we
attach the following local L-factor :

Lp(πp, s) = det
(
1− Aπpp−s

)−1
, (11.135)

and we define the standard L-function as

L(π, s) =
∏
p<∞

Lp(πp, s). (11.136)

Langlands has proven [218] that this can be completed by adding a certain factor for the
prime at infinity

L?(π, s) = L∞(π∞, s)
∏
p<∞

Lp(πp, s), (11.137)

which has an analytic continuation to a meromorphic function in the entire complex s-plane,
and satisfying a functional equation. This is a vast generalisation of the completed Riemann
zeta-function ξ(s) = ξ∞(s)

∏
p<∞(1− p−s)−1, where the prime at infinity corresponds to

the Gamma-factor ξ∞(s) = π−s/2Γ(s/2). For Maass wave forms on H the factors at infinity
were given in (11.39).

But Langlands suggested to generalise this even further. Suppose G is a reductive
algebraic group over Qp and πp is an unramified automorphic representation of G(Qp).
Let Aπp be the associated Satake parameter, giving a semi-simple conjugacy class [Aπp ] ⊂
LG(C). Let further

ρ : LG(C) −→ GL(n,C) = Aut(Cn) (11.138)

be an n-dimensional representation of the L-group. Note that the representation does not
depend on the prime p. In the case of G = GL(n,Qp) and ρ the fundamental representation,
ρ(Aπp) will just be the diagonal matrix (11.93), but in general this need not be the case.

Moreover, in general one has that for an unramified global representation π of G(A),
only for all but finitely many p the local representations πp are spherical, i.e. contain
vectors f◦p fixed under Kp = G(Zp). To take care of this complication we let S be a finite
set of places such that if p /∈ S, πp is spherical. The set S always includes the archimedean
place p =∞. For this data we now construct the Langlands L-function

LS(π, s, ρ) =
∏
p/∈S

1

det
(
1− ρ(Aπp)p

−s
) . (11.139)

In this situation the analytic continuation is more involved but Langlands has conjectured
that LS(π, s, ρ) can be completed at the unramified places S to obtain a meromorphic
function L?(π, s, ρ) of s, called the global Langlands L-function.
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Example 11.16: L-function for G = GL(2,Qp)

To give a simple example of how such an L-function would look like, let us consider G = GL(2,Qp) but
now take ρ to be the k:th symmetric power Symk(C2) of the fundamental representation C2 of GL(2,C)
(see, e.g., [118] for a nice discussion of this and other examples). The resulting L-function reads

L(π, s, Symk) =
∏
p<∞

1

det(1− ρ(Aπp)p−s)
=
∏
p<∞

k∏
j=0

1

1− αjpβk−jp p−s
. (11.140)

Using the formalism outlined above, Langlands thus provided a systematic procedure
for attaching L-functions to automorphic forms, a task that had previously only been
understood in special cases. The relation between automorphic forms on G, the L-group
LG and automorphic L-functions provides the cornerstone behind the Langlands program,
which are a set of far-reaching conjectures put forward by Langlands, of which only a
tiny fraction have been proven. In section 12.5 we briefly discuss some of the ideas in the
Langlands program, and how they relate and extend the theory we have presented in this
work.

11.10 The Langlands–Shahidi method*

It is important to study the functional properties of L-functions such as (11.140) since
these can be used to give estimates on Hecke eigenvalues (or Fourier coefficients) of cusp
forms. This application to number theory is reviewed for example in [118,292,294]; we will
content ourselves here with explaining the basic construction and its relation to Eisenstein
series and Whittaker vectors.

The starting point is the knowledge of the functional equation (8.44) for Eisenstein
series on G induced from a representation of the Levi subgroup L of some parabolic
subgroup P = LU of G. From this functional equation and the knowledge how the
L-function of interest arises in the Fourier expansion one can then deduce properties of
the L-function. This method was suggested by Langlands in [218,219] and then developed
in detail by Shahidi [288–290,292,294].

To motivate the procedure, we look at the Fourier expansion of the SL(2,R) Eisenstein
series (cf. (1.16))

E(s, τ) = ys +
ξ(2s− 1)

ξ(2s)
y1−s +

2y1/2

ξ(2s)

∑
n6=0

|n|s−1/2σ1−2s(n)Ks−1/2(2π|n|y)e2πinx. (11.141)

The Eisenstein series satisfies the functional equation (cf. (7.13))

E(1− s, τ) =
ξ(2s)

ξ(2s− 1)
E(s, τ) (11.142)

and the L-function whose properties one is interested in is the completed Riemann zeta
function ξ(k). As we have seen in chapters 7 and 8, this functional equation can be read
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off from the constant terms of the Eisenstein series and does not require the knowledge of
the completed Riemann zeta function beyond its definition in terms of an Euler product.

Additional properties of ξ(s) can be inferred from the first Fourier coefficient (n = 1).
The functional relation (11.142) for this Fourier coefficient reads

1

ξ(2(1− s))K1/2−s(2πy) =
ξ(2s)

ξ(2s− 1)

1

ξ(2s)
Ks−1/2(2πy). (11.143)

Using the property Kt(x) = K−t(x) of the modified Bessel function, one deduces that

ξ(2s− 1) = ξ(2− 2s) ⇔ ξ(k) = ξ(1− k). (11.144)

Thus, the functional equation of the completed Riemann zeta function ξ(s) is a consequence
of the functional equation of Eisenstein series. One can also deduce the non-vanishing of
ζ(s) on the line Re(s) = 1 from the holomorphy (in s) of E(s, τ) on the line Re(s) = 0 and
further properties of ζ(s) from the study of E(s, τ) [118]. (The higher Fourier coefficients
n > 1 provide no additional information.)

The more general realisation of this method relies on Eisenstein series on G induced
from a cuspidal automorphic representation πL of the Levi factor L of a maximal parabolic
subgroup P = LU ⊂ G. We assume that the representation πL is spherical at almost all
places p.

As before, we have that at the spherical finite places p one can characterize the
representation by means of its Satake parameter Aπp ∈ LA. Let also S be a set of places
that includes all the non-spherical places and the archimedean one. In the everywhere-
unramified case one would have S = {∞}. Since LL is a complex linear group, it admits
standard finite-dimensional complex representations ρL : LL → GL(n,C) where n is
the dimension of the representation. For any such pair (πL, ρL), the partial Langlands
L-function is given by

LS(s, πL, ρL) =
∏
p/∈S

Lp(s, πL, ρL) =
∏
p/∈S

1

det(1− ρL(Aπp)p
−s)

, (11.145)

where the determinant is taken in the representation associated with ρL. Formally, this
is the same as the definition (11.139) above but this time we have emphasised that this
is for the Levi part L of a parabolic subgroup P of G. The global Langlands L-function
requires the definition of factors for the places S that is less uniform and not known in
full generality. Important progress for the global L-functions for GL(n) and SO(2n+ 1)
can be found in [163,164,169,179].

The virtue of these L-functions is that they arise in the Fourier expansion of Eisenstein
series induced from a cuspidal representation πL of L. For an automorphic form φ ∈ πL
we let

E(s, φ, g) =
∑

γ∈P (Q)\G(Q)

φ(γg)δP (γg)s (11.146)

240



Eisenstein series and automorphic representations

be the Eisenstein series on G induced from φ ∈ πL. δP (g) is here (the trivial extension to
G of) the modulus character on P ⊂ G defined by

d(lul−1) = δP (l)du (11.147)

and δP (ulk) = δP (l). It can be given explicitly by δP (l) = l2ρP , where ρP is half the sum
of the positive roots contained in U . In the discussion above in section 5.6, we had taken
φ = 1 in the non-cuspidal trivial representation.

The Eisenstein series E(s, φ, g) on G has a Fourier expansion with respect to the
unipotent U that is simpler due to the fact that φ is taken from a cuspidal representation
of the Levi factor L. This arises because in the Bruhat decomposition of G most classes
have a vanishing contribution as φ is cuspidal. This is a collapse mechanism not unsimilar
to the one discussed for constant terms in section 10.3 and for Whittaker vectors in
section 9.5.

Langlands showed [219] that the constant term of E(s, φ, g) along P ′ (the opposite of
P ) is controlled by partial L-functions (11.145) and Shahidi extended this to non-trivial
Fourier coefficients [288–290,292,294]. Shahidi’s work relies also on the Casselman–Shalika
formula for (generic) Whittaker vectors of an Eisenstein series E(λ, g) at unramified
places (11.130).

We first explain why Langlands L-functions arise from formula (11.130). If (11.130) is
evaluated for the special case of Aπp = 1, corresponding to the trivial representation, one
obtains

W ◦(δ1/2µ, 1) =
1

ζ(δ1/2µ)
=
∏
α∨>0

(1− p−1−〈λ|α〉) =
∏
α∨>0

(1− p−1µ($α∨)) (11.148)

Now each µ($α∨) corresponds to the adjoint action of the Satake parameter Aπp on the
root space of α∨ which is nothing but the representation of the split torus LA on the Lie
algebra Ln. Denoting this action by ρ : LA→ End(Ln), we have that∏

α∨>0

(1− p−1µ($α∨) = det(1− ρ(Aπp)p
−1) (11.149)

since the representation ρ of LA decomposes into the direct sum of one-dimensional
representations labelled by the positive roots (and the determinant therefore factorises).
Hence

W ◦(λ, 1) =

∫
N(Zp)\N(Qp)

E(λ, n)ψ(n)dn =
1

Lp(1, λ, ρ)
, (11.150)

i.e., an L-function of the type (11.145). Here, we have labelled the representation πL of
the Levi LA of the minimal parabolic (Borel) LB by its quasi-character λ.

In the more general case of the Eisenstein series E(s, φ, g) induced from a cuspidal
representation πL of the Levi subgroup of a maximal parabolic P = UL ⊂ G one has to
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consider the adjoint action ρ of LL on the Lie algebra Lu of the unipotent LU . Under this
action, Lu decomposes into a finite number of irreducible representations according to

ρ =
m⊕
j=1

ρj, (11.151)

where m is the maximum coefficient (among all roots of G) of the simple root defining
the maximal parabolic subgroup P ⊂ G. Shahidi showed [289,294] that it is possible to
choose φ ∈ πL such that the generic Fourier coefficient of E(s, φ, g) at g = 1 is given (for
an unramified place p) by∫

U(Zp)\U(Qp)

E(s, φ, u)ψ(u)du =
m∏
j=1

1

Lp(1 + ajs, πL, ρj)
, (11.152)

where a is a fixed number that depends on the choice of parabolic subgroup. The shifts by
s in the argument of the L-function (compared to (11.150)) is due to the factor δP (γg)s in
the definition of the Eisenstein series.

In the constant term, the same L-functions appear, cf. the intertwining factors M(w, λ)
in (8.42). Langlands showed [219] that the intertwiner appearing in the constant term for
a place p /∈ S is

m∏
j=1

Lp(ajs, πL, ρj)

Lp(1 + ajs, πL, ρj)
. (11.153)

Due to the cuspidality of πL this is the only non-trivial coefficient appearing in the constant
term and it plays the role of the coefficient of y1−s in (11.141) above. It also appears in the
functional equation satisfied by E(s, φ, g) and allows one to deduce a functional equation
for the partial L-function LS obtained from all the places p ∈ S:

m∏
j=1

LS(ajs, πL, rj) =
m∏
j=1

LS(1− ajs, πL, r̃j) ·
∏
p∈S

C(s, π̃v), (11.154)

which is called the crude functional equation [288, 289]. The factors C(s, π̃v) appearing
in this functional relation are called local factors and they can be determined from the
study of the intertwining operator for p ∈ S [288,289]. The tildes in the above formula
refer to the parabolic subgroup P̃ opposite to P . From this identification of the product of
m partial L-functions as a Fourier coefficient of an Eisenstein series one can also deduce
that the product extends to a meromorphic function (in s) and does not vanish on the
imaginary axis [294]. Moreover, it is possible to perform induction on m to deduce the
same statements for each of the individual factors. This produces a host of non-trivial
results for generalised L-functions in various representations ri that arise from all maximal
parabolic subgroups [291]. The results described here for split groups can also be extended
to so-called quasi-split groups [210,294].
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Remark 11.17. Besides the Langlands–Shahidi method just outlined, L-functions have
also been studied using converse theorems , most notably those of Cogdell and Piatetski-
Shapiro for the general linear group [69, 70]. The virtue of these converse theorems is that
they allow to conclude that an L-function satisfying certain technical conditions must be
a global L-function arising from an automorphic form on the general linear group. Such
converse theorems can be seen as the extensions of Hecke’s results for L-functions that
were discussed at the end of section 11.3.

Converse theorems make it possible to deduce Langlands functoriality in some examples.
As will be discussed more in section 12.5, Langlands functoriality deals with the question
of transferring automorphic forms from a group G to a group G′ in which G is a subgroup.
Concretely, one starts from an L-function that is tentatively associated with the group
G′ and takes the Rankin–Selberg product with automorphic L-functions on subgroups
G ⊂ G′. If certain technical conditions are fulfilled, one can conclude that there must be
a (cuspidal) automorphic representation of G′ whose L-function is the one under study,
thereby lifting the representations from G to G′. For a nice discussion of this we refer
to [118].
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Chapter 12

Outlook

It is a deeper subject than I appreciated and, I begin to suspect,
deeper than anyone yet appreciates.
To see it whole is certainly a daunting, for the moment even
impossible, task.

— Robert P. Langlands§

In this concluding chapter, we collect various topics and further directions that we decided
not to include in full detail but that are active fields of research providing interesting
context for the study of automorphic functions. The emphasis of the first topics discussed
here is mainly on theoretical physics, then we move on to more mathematical areas. We
will be much more sketchy in this chapter and refer to the cited literature for additional
details.

12.1 String scattering amplitudes and

automorphic forms

This section is a continuation of the discussion of string theory and automorphic forms in
chapter 2 which will elaborate on recent research on the topic. First, we will summarize
some of the results from chapter 2. In section 12.1.1 we will discuss how automorphic
representations are used to specify the coefficients E (D)

(p,q) and what this tells us about their

Fourier coefficients. Section 12.1.2 treats the D6R4 term which, as seen in (2.12c), has an
extra source term, and hints at a theory beyond the automorphic forms discussed here.

§A review of Haruzo Hida’s p-adic automorphic forms on Shimura varieties.
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As discussed in chapter 2, the four-graviton scattering amplitude can be expanded in
α′ as (2.9) reproduced here for convenience

A(D)(s, t, u, εi; g) =

[
E (D)

(0,−1)(g)
1

σ3

+
∑
p≥0

∑
q≥0

E (D)
(p,q)(g)σp2σ

q
3

]
R4 . (12.1)

where σ2 = s2 + t2 + u2 and σ3 = s3 + t3 + u3.
The coefficients E (D)

(p,q)(g) are functions on M = G(Z)\G(R)/K(R), where G(R) is the

classical symmetry group, K(R) its maximal compact subgroup, and G(Z) the discrete
U-duality subgroup shown in table 2.1. They satisfy the differential equations (2.12)

R4 :

(
∆G/K −

3(11−D)(D − 8)

D − 2

)
E (D)

(0,0)(g) = 6πδD,8, (12.2a)

D4R4 :

(
∆G/K −

5(12−D)(D − 7)

D − 2

)
E (D)

(1,0)(g) = 40ζ(2)δD,7, (12.2b)

D6R4 :

(
∆G/K −

6(14−D)(D − 6)

D − 2

)
E (D)

(0,1)(g) = 40ζ(3)δD,6 − (E (D)
(0,0)(g))2, (12.2c)

where ∆G/K is the Laplace-Beltrami operator on G/K, and are well behaved in the limits
corresponding to cusps in G/K.

As was also covered in chapter 2, there is strong evidence from various consistency
checks that they are given by (combinations of) maximal parabolic Eisenstein series defined
in section 5.6 and in particular in example 5.32. Specifically, for dimensions D = 5, 4, 3
corresponding to tori T d with d = 5, 6, 7 in table 2.1, if one considers the maximal parabolic
subgroups P of Ed+1 that have semi-simple Levi parts SO(d, d), then the solutions (2.13)

R4 : E (D)
(0,0)(g) = 2ζ(3)E(λ3/2, P, g), (12.3a)

D4R4 : E (D)
(1,0)(g) = ζ(5)E(λ5/2, P, g). (12.3b)

to equations (12.2a) and (12.2b) are the conjectured coefficient functions appearing in
the four graviton scattering amplitude and have been subjected to numerous consistency
checks [144,146,263].

The character defining the Eisenstein series is given by the weight (2.14)

λs = 2sΛP − ρ, (12.4)

where ΛP denotes the fundamental weight orthogonal to the Levi subgroup L of P = LU .

12.1.1 Small representations and string amplitudes

As automorphic representations the functions E (D)
(0,0) and E (D)

(1,0) appearing in (12.3) are

attached to so-called small representations . According to (5.195), the functional dimension
of the automorphic representation induced from a parabolic subgroup P (A) ⊂ G(A) is
given by

GKdimIP (χ) = dimG− dimP = dimU, (12.5)
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where χ corresponds to a generic character on the parabolic subgroup P (A) = L(A)U(A).
It turns out that for very special choices of the inducing character χ there may exist
unitarizable submodules of IP (χ) with smaller functional dimension. For example, it
is well-known that for any real semi-simple Lie group G(R) there exists a minimal
unitary representation which has the smallest non-trivial functional dimension among all
G-representations [181,182].

The notion of a minimal representation also extends to p-adic groups G(Qp) [107]
and globally one says that an automorphic representation π = ⊗pπp of an adelic group
G(A) is minimal if at least one local component πp has smallest non-trivial functional
dimension [126].

Minimal representations of a group G are closely related to minimal nilpotent G-orbits.
Specifically, via Kirillov’s ‘orbit method’ one can obtain πmin through the geometric
quantisation of the minimal nilpotent orbit Omin [55]. This implies that there exists a
sequence of small G-representations with increasing functional dimension associated with
nilpotent orbits of smaller dimension than than the regular orbit. See for example [154]
for an analysis pertaining to exceptional Lie groups of real rank 4.

Automorphic forms attached to small representations π are interesting both from a
mathematical and a physical perspective. It was shown in the seminal paper by Ginzburg–
Rallis–Soudry [126] that automorphic forms in the minimal representation πmin have
very few non-vanishing Fourier coefficients, a fact that has far-reaching consequences. In
particular, it allows to describe the complete Fourier expansion very explicitly, a task
which is generally very difficult for Lie groups beyond SL(2). One of the main applications
of the theory of small representations has been in the context of the so called theta
correspondence which is a method of lifting automorphic representations from one group
G to another G′. This lifting can be realized as an integral transform where the minimal
representation appears as the kernel. Ginzburg has also developed a method which uses
small automorphic representations for constructing new automorphic L-functions (see [125]
for a survey).

The functions (12.3) arising in string scattering amplitudes at lowest order in the
derivative expansion are associated with small representations. The physical reason is that,
as mentioned in chapter 2, the sum over characters ψU in the Fourier expansion of some
automorphic form with respect to a unipotent radical U ⊂ G may be viewed as a sum over
instanton charges. For certain special physical quantities preserving some supersymmetry,
there are constraints that forces many of the instanton configurations to be trivially realised,
implying that the entire Fourier expansion has support on a smaller set of charges. This
happens for instance in the case of four-gravitational scattering amplitudes in string theory
compactificed on a torus T d for the R4 and D4R4 couplings which is the case discussed
in section 12.1. For R4, the physical constraints go by the name 1

2
-BPS and have been

shown to be precisely those arising from the minimal representations of the exceptional
Lie groups En+1 [146,235,263] and indeed the function (12.3a) is known to be associated
with the minimal representation [126]. This means in particular that its wavefront set
(cf. section 6.4) is associated with the minimal nilpotent orbit of Bala–Carter type A1.
Similarly, the function (12.3b) corresponding to the D4R4 coupling of 1

4
-BPS type has a

wavefront set associated with the next-to-minimal nilpotent orbit of type 2A1 [146,263].
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Both the minimal and next-to-minimal orbit are special orbits and the automorphic
representation of special unipotent type. This connection with scattering amplitudes in
string theory has also spawned new developments in mathematics. In particular, the
paper [235] by Miller and Sahi, classifying character variety orbits of all classical and
exceptional Lie groups, was in part motivated by these developments in string theory.

12.1.2 D6R4-amplitudes and new automorphic forms

The inhomogeneous Laplace equation (12.2c) for the D6R4 coupling does not represent

a typical Z(g)-finiteness condition and therefore the coefficient function E (D)
(0,1)(g) is not

expected to be an automorphic form in the strict sense of definition 5.6. Its solutions have
nevertheless been investigated recently in detail by Green, Miller and Vanhove in [145]
(see [33,34,84,152] for earlier and related work). An SL(2,Z)-invariant solution was found
and its Fourier expansion has been studied.

Green, Miller and Vanhove have also succeeded in expressing the solution as a sum
over G(Z)-orbits similar to the standard form of Langlands–Eisenstein series [145]

E (10)
(0,1)(g) =

∑
γ∈B(Z)\G(Z)

Φ(γg), (12.6)

where Φ : G→ R is a right K = SO(2,R) invariant function and hence can be interpreted
as a function on B(R). It is furthermore invariant under B(Z). However, unlike the case
of Eisenstein series, the function Φ is not a character on the Borel subgroup B(R) but
rather a highly non-trivial function.

A proper framework for G(Z)-invariant functions that satisfy differential equations of
the type (12.2c) appears to be required in string theory. The class of functions extends
the notion of automorphic form discussed elsewhere here. The analysis in [145] points in
the direction of a relation to automorphic distributions [236–238,281,312].

The function E (10)
(0,1)(g) has the following constant terms [145, Eq. (2.25)]∫

N(Z)\N(R)

E (10)
(0,1)(ng)dn =

2ζ(3)2

3
y3 +

4ζ(2)ζ(3)

3
y +

4ζ(4)

y
+

4ζ(6)

27y3
+ non-poly. terms in y.

(12.7)

Here, we have used the usual coordinates from appendix A on SL(2,R). The non-
polynomial terms are of the form

∑
n>0 ane

−4πny/y2 and do not have an expansion around
weak coupling y →∞. These terms have an interpretation as instanton/anti-instanton
bound states. We see that the structure of constant terms is quite different from that of
Eisenstein series where, according to the Langlands constant term formula of theorem 8.1,
one has a sum of polynomial terms in y only and the number is bounded from above by
the order of the Weyl group W which would be |W| = 2 here.

In terms of string perturbation theory, the four polynomial terms in (12.7) correspond
to contributions from string world-sheets of genus h = 0, 1, 2, 3. We recognise the genus
h = 0 contribution from (2.31). The genus h = 2 contribution predicted here was
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recently compared to a first principles string theory calculation and found to agree [83,84],
where also remarkably a connection to the so-called Zhang–Kawazumi invariant on the
moduli space of genus h = 2 Riemann surfaces was found [189,325]. As a consequence of
equation (12.2c), [83,84] discovered that the Zhang–Kawazumi invariant must satisfy a
simple Laplace eigenvalue equation on the moduli space of Riemann surfaces. The genus
h = 3 term in (12.7) has been verified directly from a string perturbation calculation very
recently in [133] in the pure spinor formalism.

In terms of wavefront sets and automorphic representations it seems natural to associate
the D6R4 coupling to the (special) nilpotent orbits of type 3A1 and A2 [34]. A proper
interpretation of these wavefront sets for SL(2,R) is missing since the largest nilpotent
orbit is the regular A1-type orbit. D6R4 correction terms have been analysed recently in
various dimensions by different methods [16,17,31,35,84,140,147,148,265].

12.1.3 Wavefront sets of curvature corrections and their
reduction

In this section, we would like to collect and systematize some of the remarks on wavefront
sets and curvature corrections that have been made in the preceding discussion. We will
do this for the case G = E7(R) that is relevant for D = 4 space-time dimensions and
maximal supersymmetry. The closure diagram of nilpotent orbits of e7(C) can be found
for example in [300] and that of e7(R) in [255]. We display the closure (or Hasse) diagram
of the smallest nilpotent orbits of e7(C) in figure 12.1.

In the figure, we have also shown the wavefront sets of the various types of curvature
corrections D2kR4 following [31,32,34,146,263]. What is noticeable is that the wavefront
sets appear to be associated only with special orbits [32]. Preliminary investigations of
higher derivative terms in [31] suggest that correction terms with more than six derivatives
acting on R4 will generically have contributions from the orbit (A3 +A1)′′. The expansion
in increasing orders of derivatives seems to be related to an expansion in terms of size of
the associated wavefront set (with only special orbits as maximal orbits).

We note also that there can be several maximal nilpotent orbits contributing to a
given curvature correction, as in the case of D6R4. This is related to the fact the U-
duality invariant functions E (D)

(p,q) that arise are not necessarily automorphic functions
of the standard type but more general as discussed in section 12.1.2. The branching
of the diagram is associated in physics with the existence of independent (linearised)
supersymmetry invariants [35].

Let us also relate this discussion back to the analysis of small representations of
sections 10.4 and 12.1.1. In the case of E7(R) one has a degenerate principal series
representation of functional dimension 33 that can be realised with Eisenstein series by
choosing the weight λ = 2sΛ1 − ρ and we write the associated Eisenstein series as

E ([ 0
s 0 0 0 0 0 ]) . (12.8)

The wavefront set in the case of generic s is of type A2 of dimension 66. This is twice the
dimension of the coset P1\E7 where P1 is the maximal parabolic subgroup associated with
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Figure 12.1: The smallest nilpotent orbits of e7(C) and their closure ordering. The vertical
axis is the dimension of the orbit and on the left they are labelled according to the
Bala–Carter classification where we have denoted 2A2 +A1 ≡ 2A2A1 etc. for brevity. The
open circles indicate orbits that are not special. The figure is adapted from [31,34,300]. On
the right, the wavefront sets of the various curvature terms appearing in the four-graviton
scattering amplitude are shown on the same kind of diagram.

node 1 in the Dynkin diagram of figure 2.2. Reductions occur in this case for the values
s = 5

2
and s = 3

2
when the wavefront set collapses to the 2A1 and A1, respectively. The

reduction can be analysed using theorem 9.5 as discussed in section 10.4. The two cases
where the wavefront set reduces corresponds to the R4 and D4R4 curvature correction.
There is a contribution of this function to the D6R4 correction for a non-special value of s.

Remark 12.1. The most well-studied case of curvature corrections is that of D = 10
type IIB superstring theory where the symmetry group is SL(2,R) with U-duality group
SL(2,Z). The set of nilpotent orbits of sl(2,C) is very degenerate and consists only of either
the trivial or the regular (A1-type) orbit. Nevertheless, the various curvature corrections
of type D2kR4 come with very specific orders s of the non-holomorphic Eisenstein series
E(s, z). It is an open problem to understand the specific values that appear, notably
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s = 3
2

and s = 5
2
, from a mathematical point of view as there seems to be nothing special

happening for the automorphic representation for these values.

12.2 Automorphic functions and lattice sums

As discussed in the introduction, the non-holomorphic Eisenstein series E(χs, z) of SL(2,R)
(cf. (1.11)) can be equivalently written in terms of a sum over an integral lattice:

E(χs, z) =
∑

γ∈B(Z)\SL(2,Z)

χs(γ · z) =
1

ζ(2s)

∑
(c,d)∈Z2

(c,d)6=(0,0)

y2

|cz + d|2s . (12.9)

In physics, writing the Eisenstein as a lattice sum can sometimes be interpreted as the
sum over the lattice of all possible charges that define the U-duality group (cf. chapter 2).
The sum over the group coset B(Z)\G(Z), on the other hand, can be interpreted as the
contribution from a single U-duality orbit, if G(Z) is the U-duality group G(Z) of table 2.1
in chapter 2. From the latter point of view, the functions discussed in (12.3) represent
simply the U-duality orbit of the perturbative tree level scattering amplitude, whereas the
function in (12.6) is the U-duality orbit of a finite number of perturbative terms and an
infinite number of non-perturbative terms.

Having a representation of an automorphic function as lattice sum can be physically
intuitive and it certainly opens up the possibility of employing Poisson resummation for
performing the Fourier expansion of the function, as is done in the SL(2,R) example in
appendix B.

Lattice sums for more general groups G were considered by Obers and Pioline in [252].
They write the group element g ∈ G(R) in some linear finite-dimensional representation
R. In the same representation, a lattice ΛR is embedded that is preserved by the action
of G(Z). This can be constructed for example by starting from the highest weight vector
in the representation R. One can form a scalar invariant by considering

||g−1ω||2, (12.10)

where ω ∈ ΛR and the norm is computed using the K(R)-invariant inner product on R. In
the example (12.9) above, this is realised by working in the two-dimensional representation,

letting ω =

(
−d
c

)
∈ Z2 and using the Euclidean norm. Then

∑
(c,d)∈Z2

(c,d)6=(0,0)

y2

|cz + d|2s =
∑

06=ω∈ΛR

||g−1ω||−2s. (12.11)

The quantity (12.10) is well-defined by construction on G/K for any ω ∈ ΛR and one
can form a G(Z)-invariant function very generally by letting

ẼR,s(g) =
∑

06=ω∈ΛR

||g−1ω||−2s. (12.12)
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This function is K-finite, of moderate growth and G(Z) invariant. Moreover, it is directly
amenable to Poisson resummation on the lattice ΛR and this has been exploited widely
to obtain results about the constant terms and also partly the non-constant terms of
ẼR,s(g) [10, 157,211,212].

For some groups G(R) and some representations R it can happen that the function
ẼR,s(g) is proportional to a (maximal parabolic) Eisenstein series as defined in sections 5.3
and 5.6, and as is the case in the SL(2,R) example in (12.9) above. However, as was
already emphasised in [252], the function ẼR,s(g) will in general not be an eigenfunction
of the ring of invariant differential operators, i.e., it will not be Z(g)-finite and hence not
a proper automorphic form.

The failure of being an automorphic can be remedied by restricting the lattice sum
over R to an appropriate G(Z)-invariant subset. Such a subset can be found for example
by considering the symmetric tensor product R⊗R and then projecting to the largest
invariant subspace in there [252]. The symmetric tensor product arises because (12.10) is
computing a symmetric quantity in the R-valued ω. An automorphic form is then given
by

ER,s(g) =
∑

06=ω∈ΛR

δ(ω ⊗ ω)||g−1ω||−2s, (12.13)

where δ(ω ⊗ ω) projects on the invariant subspace in R⊗R defined above. In physical
applications, this projection has the interpretation of implementing certain conditions
that are called BPS conditions and correspond to considering contributions only from a
subset of all instantonic states. The presence of the projection δ(ω ⊗ ω) in the sum often
makes the direct application of Poisson resummation impossible and renders the Fourier
expansion much more difficult. Examples where the full Fourier expansion of a constrained
sum was carried out can be found in [12,13].

Another way of turning ẼR,s(g) into an automorphic form is by restricting to a single
G(Z)-orbit within ΛR and this leads back to Langlands’ definition.

12.3 Asymptotics of Fourier coefficients

In applications to physics one is often interested in extracting the asymptotic behavior
of Fourier coefficients. Asymptotic here refers to a chosen direction on the symmetric
space G(R)/K(R) on which the Eisenstein series and their Fourier coefficients are defined.
The symmetric space often has the interpretation as the moduli space, a point of which
corresponds to the vacuum expectation values of some fields in a physical theory, cf. the
discussion in chapter 2. In an effective description these values are turned into coupling
constants and similar parameters of the theory and therefore sending a certain coupling
constant to zero corresponds to a limit on the symmetric space G(R)/K(R). The
asymptotic behaviour then reveals the instanton action of a particular non-perturbative
object in the theory. In the case of SL(2,R) this was explained in the introduction in (2.19)
and in general one would like to know how the real part of the action behaves asymptotically
as a function of the coupling constants. String theory makes definite predictions for these
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coupling constants that were formalised as conjectures in [110, Appendix A.6]. In this
section we prove these conjectures by solving the relevant Laplace equations asymptotically.

The interesting coupling constants are associated with directions in the non-compact
abelian subgroup A(R). Choosing one direction in this space is tantamount to picking a
certain weight, or, equivalently, one chooses a maximal parabolic subgroup P (R) ⊂ G(R).
In order to find the asymptotic behavior of an automorphic function ϕ(g) and its Fourier
coefficients in this limit one can analyse the Laplace differential equation that it satisfies.
This equation reads

∆G/Kϕ(g) = µϕ(g) (12.14)

for some eigenvalue µ.
For a maximal parabolic P (R) we know from (4.40) that there is a GL(1,R) subgroup

in the Levi factor L(R) and we denote its Cartan subalgebra generator by d ∈ h. This
element can be used to introduce a grading of p(R) = m(R)⊕dR⊕u(R) with the properties

[d,m] = 0 for m ∈ m = Lie(M), (12.15a)

[d, u`] = `u` for u` ∈ u` with u =
⊕
`

u`. (12.15b)

(The decomposition of u is the same that arose in (11.151).) To now consider a ‘pure
instanton’ at degree ` means that we are interested in group elements g of the form
g = eφdeχE` where E` ∈ u` is a chosen fixed generator. Treating the expectation value of
eφ as the coupling constant, the weak coupling limit then corresponds to φ→ −∞. The
relevant part of the Laplacian for the directions φ and χ is

∆G/K ∝ ∂2
φ + β∂φ + e−2`φ∂2

χ + . . . , (12.16)

where β =
∑

` `dim(u`) and we have not fixed the normalization of the Laplace operator
as it can be absorbed into the eigenvalue µ. For an instanton of charge m we now make
the ansatz for the automorphic function that asymptotically for φ→ −∞

ϕm(φ, χ) = e−ae
−bφ+2πimχ

(
1 +O(eφ)

)
. (12.17)

This correspond to a Fourier coefficient for a character ψ
(
eχE`

)
= e2πimχ.

Acting with the relevant part (12.16) of the Laplace operator on this ansatz shows that
it can only be an eigenfunction (asymptotically) if

a = 2π|m| and b = `. (12.18)

Note that this reasoning is independent of the eigenvalue µ and of whether ϕ is an
Eisenstein series or any other automorphic function. The important point about (12.18) is
that it shows that the leading part of the instanton action is

SE(φ, χ) = logϕm(φ, χ) = 2π|m|e−`φ + 2πimχ+ sub-leading in eφ. (12.19)
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This is the typical of type ` instanton where ‘type’ here refers to the degree in u(R).
Making the link to the non-abelian Fourier expansion of section 6.2 shows that the more
non-abelian a Fourier coefficient is the faster its fall-off in the corresponding weak coupling
expansion.

The typical cases encountered in string theory are when eφ = gs is the string coupling .
Instantons with ` = 1 are then D-instantons and those with ` = 2 are NS-instantons [12,
13, 18, 138, 139, 267]. In low space-time dimensions one expects also instantons with
` > 2 [92,253].

12.4 Black hole counting and automorphic

representations

As explained in chapter 2, string theory compactified on a compact six-dimensional manifold
X gives rise to an effective supersymmetric gravitational theory in 4 dimensions. The
number of preserved supersymmetries, usually denoted by N , depends on the properties
of X. Previously we have mainly discussed the case of X = T 6, but there are other
interesting and relevant manifolds, such as X = K3 × T 2 and when X is a Calabi-Yau
threefold. The resulting theory has black hole solutions carrying electric and magnetic
charges taking values in a lattice Γ.

An important observable is the BPS-index Ω(γ) which is a function Ω : Γ→ Z that
counts the (signed) degeneracies of a certain class of black holes (called BPS-black holes)
with charge vector γ ∈ Γ. This index then provides a microscopic description of the black
hole entropy S(γ) via Boltzmann’s formula S(γ) = log Ω(γ)+ · · · , where the ellipsis denote
subleading corrections.

The BPS-index Ω(γ) holds the key to many interesting connections between string
theory and mathematics. The charge lattice Γ is nothing but the cohomology lattice
H∗(X,Z) of the compact manifold X and the index Ω(γ) can roughly be thought of as
counting certain submanifolds of X in the cohomology class [γ] ⊂ H∗(X,Z). It is therefore
naturally related to the enumerative geometry of X. Remarkably, the index also provides
a link to automorphic forms. To illustrate these statements we shall now consider a few
examples.

12.4.1 N = 8 supersymmetry

Let us first consider the case when X = T 6, the real six-dimensional torus. This leads to
N = 8 supersymmetry and is the case discussed in section 12.1. In four dimensions with
electric and magnetic charges taking values in a lattice Γ ∼= Z56. As reviewed in chapter 2
and section 12.1, this theory exhibits a classical E7(R)-symmetry which is broken in the
quantum theory to the E7(Z) = {g ∈ E7(R) | gΓ = Γ}. This implies that the weighted
degeneracy Ω(γ) of BPS-black holes of charge γ ∈ Γ must be invariant under E7(Z).

However, not all black holes have charges supported on the entire lattice Γ. For
example, the 1

2
-BPS black holes preserve half of the supersymmetries of the theory and
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can only have charges supported on a 28-dimensional (Lagrangian) subspace C1/2 ⊂ Γ.
Similarly, 1

4
-BPS black holes have support on a 45-dimensional subspace C1/4 ⊂ Γ.

Now denote by Ω1/A(γ) the index counting 1
A

-BPS-black holes (A = 2, 4). Due to the
E7(Z)-invariance it is natural to suspect that the index arises as the Fourier coefficient of
an automorphic form, constrained so that Ω1/A(γ) is non-vanishing only when γ ∈ CA.

Let us consider the A = 2 case for illustration. It turns out that all the expected
properties are fulfilled by an automorphic form ϕmin on E8(Z)\E8(R) attached to the
minimal representation πmin of E8(R) [159, 262, 264]. This representation has Gelfand-
Kirillov dimension 29 and can thus be realised as the unitary action of E8 on a space of
functions of 29 variables [158], say (p, k) ∈ Z28 × Z. These integers parametrise characters
on the Heisenberg unipotent radical UHeis ⊂ E8, which has an associated Levi factor
LHeis = E7 × R. The centre Z = [UHeis, UHeis] is one-dimensional and the integer k
parametrises a unitary character ψZ : Z(Z)\Z(R)→ U(1), trivial on the abelianization
Z\UHeis. On the other hand the electric and magnetic charges γ = (p, q) ∈ Γ ∼= Z56

parametrise characters ψ : UHeis(Z)\UHeis(R) → U(1), trivial on Z(R). Consider the
constant term of ϕmin with respect to Z:

ϕZ,min =

∫
Z(Z)\Z(R)

ϕmin(zg)dz. (12.20)

This is a function ϕZ,min : E7(R) → C invariant under E7(Z). By taking the constant
term with respect to Z we have effectively removed the dependence on the variable k. The
function ϕZ,min can be expanded further (see section 6)

ϕZ,min(g) = ϕUHeis +
∑
ψ 6=1

Fψ(ϕmin, g), (12.21)

where

Fψ(ϕmin, g) =

∫
UHeis(Z)\UHeis(R)

ϕ(ug)ψ(u)du. (12.22)

In general, such a Fourier coefficient might not be Eulerian (i.e. have an Euler product
factorisation); however, as we explained in section 10.4.4, for the minimal representation
that turns out to be the case:

Fψ(ϕmin, g) = Fψ∞(ϕmin, g∞)×
∏
p<∞

Fψp(ϕmin, gp). (12.23)

It was shown in [190,191] that these Fourier coefficients indeed have support on the
Lagrangian subspace C1/2. We can now state the relation to 1/2 BPS black holes:

Conjecture 12.2 ( [159, 262, 264]). The index Ω1/2(p, q) counting charged 1/2 BPS
black holes in four-dimensional, N = 8 supergravity is given by

Ω1/2(p, q) =
∏
p<∞

Fψp(ϕmin, 1), (12.24)

where Fψp(ϕmin, 1) is the p-adic spherical vector in the minimal representation πmin of E8

(obtained in [190]) and the electric-magnetic charges (p, q) parametrises the character ψp.

255



Chapter 12. Outlook

Similarly, for the 1/4 BPS black holes we have:

Conjecture 12.3 ( [159, 262, 264]). The index Ω1/4(p, q) counting charged 1/4 BPS
black holes is given by

Ω1/4(p, q) =
∏
p<∞

Fψp(ϕntm, 1), (12.25)

where ϕntm is an automorphic form in the next-to-minimal representation πntm of E8.

12.4.2 N = 4 supersymmetry

Let us now take X = K3 × T 2, where the first factor is a compact K3-surface. This
yields N = 4 supersymmetry in 4 dimensions, which admits 1

2
- and 1

4
-BPS-black holes

with electric magnetic charges γ = (p, q) taking values in Γ = H∗(X,Z). The quantum
symmetry of this theory is SL(2,Z)× SO(6, 22;Z) [282, 285,322] and we are interestested
in finding invariant BPS-indices Ω1/2(p, q) and Ω1/4(q, p). Mathematically, these indices
are counting special Lagrangian submanifolds of X in the class [γ] ⊂ H∗(X,Z). As we
shall see the counting works quite differently in this case compared to the N = 8 theory
considered above.

The 1/2 BPS-states are purely electric γ = (0, q) or purely magnetic γ = (p, 0) and
they are known to be exactly counted by [74,76]

Ω1/2(q, 0) = d(q2/2), (12.26)

where d(n) are the Fourier coefficients of the discriminant function (τ ∈ H):

∆(τ) =
1

η(τ)24
=

∞∑
n=−1

d(n)e2πinτ , (12.27)

which is a cusp form of weight 12 for SL(2,Z). Note that the index is automatically
invariant under SO(6, 22;Z) since it only depends on the invariant square q2 = q · q of
the charge vector q. On the other hand the SL(2,Z)-part of the quantum symmetry is
broken since (p, q) transforms in a doublet. Thus, in order to preserve the full symmetry
group we must consider both electric and magnetic charges, as is the case for the 1

4
-BPS-

index Ω1/4(p, q). Moreover, in order to preserve SO(6, 22;Z) this can only depend on the
invariant combinations q2, p2, p · q. The answer is that Ω1/4(p, q) is the Fourier coefficient
of the unique weight 10 cusp form for Sp(4;Z), known as the Igusa cusp form and usually
denoted by Φ10. The precise statement is [87,297]:

Ω1/4(p, q) = D(q2/2, p2/2, p · q), (12.28)

where the numbers D(m,n, `) are extracted from the expansion of the inverse of the Igusa
cusp form:

1

Φ10(ρ, σ, τ)
=
∑
m,n,`

D(m,n, `)e2πimσe2πinτe2πi`ρ, (12.29)

where (ρ, σ, τ) are complex variables parametrising the Siegel upper half plane. This can
be generalised to orbifolds of X = K3× T 2 by some discrete subgroup ZN , in which case
the counting is given by Siegel modular forms for paramodular groups (see [286] for a
review and further references).
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12.4.3 N = 2 supersymmetry

Finally, we consider the case when X is a Calabi–Yau 3-fold . This gives rise to N = 2
supersymmetry in 4 spacetime dimensions. The lattice Γ of electric and magnetic charges
is either Heven(X,Z) or H3(X,Z) depending on whether we consider type IIA or type IIB
string theory. According to Kontsevich’s homological mirror symmetry conjecture [203] a
BPS black hole with charge γ ∈ Heven(X,Z) can be viewed as a (semi-)stable object in the
(bounded) derived category of coherent sheaves DbCoh(X), while black holes with charges
γ ∈ H3(X,X) correspond to (semi-)stable objects (special Lagrangians) in the derived
Fukaya category DbFuk(X). The BPS-index Ω : Γ→ Z should then be identified with the
generalised Donaldson–Thomas invariants of X [104,184,202]. String theory predicts that
there should be an action of a discrete Lie group G(Z) on the categories DbCoh(X) and
DbFuk(X), which is very unexpected from a purely mathematical viewpoint. In general it
is not known what the group G(Z) should be but it must at least contain the “S-duality”
group SL(2,Z) (see, e.g., [75, 81]). For certain choices of X there are, however, precise
conjectures regarding the nature of G(Z).

Let X be a rigid Calabi-Yau 3-fold (h2,1(X) = 0) of CM-type, i.e. admitting complex
multiplication by the ring of algebraic integers Od in the quadratic number field Q(

√
−d).

In this case the intermediate Jacobian of X is an elliptic curve:

H3(X,R)/H3(X,Z) ∼= C/Od. (12.30)

We then have:

Conjecture 12.4 ( [12,13]). For type IIB string theory compactified on a rigid Calabi-Yau
3-fold X of CM-type the “U-duality group” G(Z) is the Picard modular group

SU(2, 1;Od) := SU(2, 1) ∩GL(3,Od). (12.31)

In particular, this group acts on the charge lattice H3(X,Z) and consequently on DbFuk(X).

If correct, this suggests that the BPS-index Ω(γ) should arise as the Fourier coefficient
of an automorphic form on SU(2, 1) in a similar vein as for N = 8 and N = 4 supergravity
discussed above. Constraints from supersymmetry further imply that there exists a class
of 1/2 BPS-states that have support only on charges γ such that Q4(γ) ≥ 0, where Q(γ) is
a quartic polynomial in the charge vector γ. In other words, the BPS-index is constrained
such that

Ω(γ) =

{
n 6= 0 Q4(γ) ≥ 0

0 Q4(γ) < 0.
(12.32)

It turns out that this constraint is precisely satisfied for Fourier coefficients of
automorphic forms attached to the quaternionic discrete series of Lie groups G in their
quaternionic real form [154,155,317]. This leads to the following:

Conjecture 12.5 ( [12,13,259]). The generalised Donaldson-Thomas invariants Ω(γ)
of a CM-type rigid Calabi-Yau threefold X are captured by the Fourier coefficients of an
automorphic form attached to the quaternionic discrete series of SU(2, 1).
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Another interesting case is when X is a Calabi-Yau threefold with h1,1 = 1. One then
expects that the U-duality group is an arithmetic subgroup G2(Z) of the split real form
G2(R). Automorphic forms on G2 associated with the quaternionic discrete series have
been analysed in detail by Gan, Gross, Savin [106], and one has:

Conjecture 12.6 ( [259,267]). There exists Calabi-Yau 3-folds X with h1,1 = 1 whose
Donaldson-Thomas invariants Ω(γ) are captured by automorphic forms attached to the
quaternionic discrete series of G2, as analysed by Gan-Gross-Savin.

Remark 12.7. For large values of the charges the index should reproduce the macroscopic
entropy of the black hole which is known to be given by S(γ) = π

√
Q4(γ). Translated into

mathematics this implies that the Fourier coefficient should have an asymptotic growth
given by

Ω(γ) ∼ eπ
√
Q4(γ) as γ →∞. (12.33)

This gives rise to the following interesting puzzle. In general, Hecke eigenforms always give
rise to Fourier coefficients that grow polynomially, and hence the growth in (12.33) does
not seem to be compatible with the fact that the automorphic forms of Gan-Gross-Savin
are indeed Hecke eigenforms. One possible resolution to this problem is that one should
not consider honest automorphic forms in the quaternionic discrete series but rather some
analogue of mock modular forms for G2, a possibility suggested by Stephen D. Miller. This
might also be consistent with the fact that the BPS-index Ω(γ) jumps discontinuously
at certain co-dimension one walls in parameter space (known as wall-crossing) and this
phenomenon is closely related to mock modularity (see, e.g., [77, 227,228]).

12.5 The Langlands program

Any survey on automorphic forms would be incomplete without at least mentioning some
of the key ideas involved in the Langlands program, the collective name given to the
visionary conjectures outlined by Langlands in his letter to Weil in 1967 [216], and later
expanded upon in the lecture notes “Problems in the theory of automorphic forms” [217].
To give a complete account of these conjectures goes far beyond the scope of this survey.
However, we would like to give a heuristic discussion of some of the ingredients and their
implications. This section leans on the discussions in sections 11.7 to 11.9. We will also
make a few remarks on the geometric version of the Langlands program along with some
speculative remarks on the connection with physics.

12.5.1 The classical version

The context of Langlands’ letter to Weil was reductive groups G defined over an arbitrary
number field F that can be either local (like Qp) or global (like Q). Let us focus on the
global situation. As usual we restrict our treatment to F = Q, and we let G be a split
group over Q; for example GL(n,Q). Recall that being split over Q means that there exists
a maximal torus which is a product of GL(1,Q)s. However, Langlands also considered
groups G that were only quasi-split , meaning that they contain a Borel subgroup which is
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defined over Q. Equivalently, a quasi-split group is split over an unramified finite extension
E/F. We recall that finite extension of a field F is another field E that contains F and
which has finite dimension as a vector space over F, so in this case it is a finite-dimensional
vector space over Q. The group of automorphisms of the extension E is called the Galois
group and denoted by Gal(E/F). In this more general context the L-group of G(Q) is
really defined as the semi-direct product

LG = Ĝ(C) n Gal(E/F), (12.34)

where the first factor is the complex group that we discussed in section 11.7. In the case
when G is split over F = Q, like for GL(n,Q), the Galois group acts trivially and the

L-group becomes a direct product LG = Ĝ(C) × Gal(E/Q). In this situation one can
take the representation ρ : LG→ GL(n,C) that enters in the construction of L-functions
L(π, s, ρ) defined in (11.139), to have a trivial projection on the second Galois factor in
LG, and we therefore recover the description of L-functions in section 11.9 where we had
simply assumed LG = Ĝ(C), see also remark 11.11.

One of the main parts of Langlands conjectures is the principle of functoriality . To
state it, let G and G′ be reductive groups over Q. The principle of functoriality asserts
that whenever we have a group homomorphism between the associated L-groups

Ψ : LG −→ LG′, (12.35)

there should be a close relation between the associated automorphic forms on G(Q)\G(A)
and G(Q)\G(A). What does “close relationship” mean? Suppose π is an automorphic
representation of G associated with a Satake class [Aπ] in the dual group LG. Functoriality
implies that there exists an automorphic representation π′ of G′ with Satake class [Aπ′ ] ⊂
LG′, such that

[Aπ′ ] ∼= [Ψ(Aπ)]. (12.36)

It turns out that this has far-reaching consequences even for the case when the first group
is taken to be trivial. Suppose for example that G = {1} and G′ = GL(n). In this
situation the dual group of G is simply the Galois group Gal(Q̄/Q), where the extension is
E = Q̄, the algebraic closure of Q. (Recall that algebraic closure F̄ of a number field F is
obtaining by adjoining to F all roots of all polynomials over F. This not a finite extension
and so generalises the discussion above.) The L-dual group of G′ is the direct product
LG′ = GL(n,C) n Gal(Q̄/Q). The map Ψ then yields a homomorphism

Ψ : Gal(Q̄/Q) −→ GL(n,C). (12.37)

This has the remarkable consequence that to each automorphic representation π of GL(n,A)
there should exist an associated n-dimensional representation R of Gal(Q̄/Q) such that

L(s, π) = LA(s, R), (12.38)

where the object on the left is the standard L-function of π discussed in section 11.9 (i.e.
corresponding to ρ in section 11.9 being the fundamental representation of GL(n,C)) and
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the object on the right is the so called Artin L-function of the Galois representation R.
We shall not go into the details of Artin L-functions but rather refer to [215] for a nice
discussion of the two sides of (12.38) and also to remark 11.17.

There are numerous sources which give overviews of various aspects of the Langlands
program; we would like to especially mention [4, 63, 116,196,215]. See also the two papers
by Knapp [197,198] which summarizes the key references in the field.

12.5.2 The Langlands program and physics

As we have indicated at several occasions in this treatise, automorphic forms occur in
abundance in string theory (see [12, 13,138–141,195,252,259,267] for a sample). Despite
this fact the physical role of the classical Langlands program remains unclear. We know
that automorphic representations play a role in understanding BPS-states and instantons
in string theory, but we have no clue as to what is the physical interpretation of the dual
side, involving representations of the Galois group. It would be very interesting to find
out whether such an interpretation exists. Given that automorphic L-functions lie at the
heart of the Langlands program, a very natural question, posed by Moore in [246], is the
following:

Open question: Is there a natural role for L-functions in BPS-state counting problems?

For some speculations on this and related issues, see [234,247], and for a conjectured
connection between BPS-states in string theory and Galois representations, see [316].

12.5.3 The geometric version

We should also mention that there exists a version of the Langlands program which does
not have its roots in number theory, but rather in the geometry of Riemann surfaces. This
is commonly referred to as the geometric Langlands program (for a nice survey see the
lectures notes by Frenkel [98]). To each object in the original (or, “classical”) Langlands
program there exists geometric counterparts; for instance, the role of the Galois group is
played by the fundamental group of the Riemann surface, while automorphic forms are
replaced by certain “automorphic sheaves” on the moduli space of principal bundles on the
Riemann surface. Remarkably, Kapustin and Witten have shown [187] that the geometric
Langlands program can be naturally understood in the context of quantum field theory
(more precisely, a twisted version of N = 4 supersymmetric quantum field theory in four
spacetime dimension). In this context the analogue of the “Langlands duality” (12.37)
corresponds to a variant of (homological) mirror symmetry.
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12.6 Whittaker vectors, multiple Dirichlet series and

statistical physics

In this section, we discuss some issues related to a fascinating connection between Whittaker
vectors and statistical mechanics. Starting from a rewriting of the Casselman–Shalika
formula, generalisations of Whittaker vectors to metaplectic groups will be given. Their
relation to Weyl group multiple Dirichlet series will be discussed and an alternative
interpretation in terms of lattice models. This is an active area of research that has
received a lot of momentum through the work of Brubaker, Bump, Chinta, Friedberg,
Gunnells, Hoffstein and many others. We rely in our exposition mainly on the collection [58]
and on [50] and refer the reader also to [53] for an overview.

12.6.1 Generalisations of the Weyl character formula

The Casselman–Shalika vector for spherical Whittaker vectors W ◦(λ, a) on the group G(Qp)
was discussed in detail in chapter 9 and given an interpretation in terms of characters
chΛ of the Langlands dual group LG in equation (9.119). This formula can actually be
inverted to give an alternative formula for highest weight characters of LG through

chΛ(aλ) =
W ◦(λ, aΛ)δ−1/2(aΛ)∏

α>0(1− p−1aαλ)
. (12.39)

Here, λ is a weight of the original group G parametrising the principal series representation
and aλ and aΛ distinguished elements of A and LA, respectively. These distinguished
elements were defined in section 9.7.

Formula (12.39) resembles the standard Weyl character formula (4.27), in particular
the denominator. Independent of Whittaker vectors, Tokuyama [310] considered a one-
parameter family of deformations of the Weyl character formula that can be written
as

chΛ(aλ) =

∑
v∈BΛ+ρ

G(v, t)a
wt(v)+ρ
λ∏

α>0(1 + taαλ)
(12.40)

where t ∈ C. In this expression, all quantities refer to the Langlands dual group LG. The
sum here is over all v in the crystal BΛ+ρ. The crystal BΛ+ρ is a directed graph with
vertices v given by all the weights (with multiplicity) of the irreducible highest weight
representation VΛ+ρ of LG, where the ρ shift is important, and the edges labelled by
simple roots. The map wt : BΛ+ρ → h identifies the vertices with points in the weight
lattice of LG. Crystals were introduced by Kashiwara [188] in his study of the quantum
deformed universal enveloping algebra Uq(

Lg) (closely related to quantum groups [226]) and
possess a canonical basis in the sense of Kashiwara and Lusztig [188,225]. The operators
corresponding to the edges are the simple step operators fi in the limit q → 0. Kashiwara
introduced also the crystal B∞ that is modeled on the canonical (free) Verma module of
U(Ln−).
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Following [52], we will call the complex function G(v, t) a Tokuyama function and it is
the main object of interest in this expression. In the original paper [310], the numerator
was not written in terms of the crystal BΛ+ρ but in terms of Gelfand–Tsetlin patterns [119]
with top row Λ+ρ and the analysis restricted to the special linear group. We will comment
later on the status for other groups.

Interesting special cases of the deformed character formula (12.40) are

• t = −1. This is the value for the standard character formula (4.27). In this case the
sum over the crystal collapses to a sum over the Weyl orbit of the shifted highest
weight Λ +ρ. In other words, G(v,−1) = 0 unless wt(v) = w(Λ +ρ) for some w ∈ W
and in that case G(v,−1) = ε(wwlong).

• t = 1. In this case one obtains a relation to the original formulation of Gelfand-Tsetlin
patterns.

• t = 0. The denominator trivialises and Tokuyama use this case to recover a relation
of Stanley’s [301] between Gelfand-Tsetlin patterns and ‘most singular’ values of
Hall–Littlewood polynomials. In the crystal formulation, the only contributing terms
arise from the embedding of BΛ → BΛ+ρ [58] and the sum then becomes the character
in the form (4.22).

• t = −p−1. This is the case relevant for the Casselman–Shalika formula and will be
discussed in more detail below.

The first three cases were originally studied by Tokuyama [310]. The last case in relation
to Whittaker vectors was first explored by Bump, Brubaker, Bump, Friedberg and
Hoffstein [43], see also [161] for combinatorial aspects.

In the case t = −p−1, we can compare (12.40) and (12.39) to deduce that we have
an alternative description of Whittaker vectors in terms of a sum over a crystal with a
Tokuyama function G(v,−p−1):

W ◦(λ, aΛ) = δ1/2(aΛ)
∑

v∈BΛ+ρ

G(v,−p−1)a
wt(v)+ρ
λ . (12.41)

In order to ease notation, we will suppress the t-value in the Tokuyama function in the
sequel and will simply write G(v) instead of G(v,−p−1).

The identity (12.41) in some sense defines the Tokuyama function G(v) given the
spherical Whittaker. But it is desirable to have an independent description of the function
G(v). This was achieved in crystal form in [50] and can be given in terms of so-called
decorated Berenstein–Zelevinsky–Littelmann paths (BZL paths) in the crystal [21, 223]. A
BZL path of a vertex v ∈ BΛ+ρ is given by first fixing a choice of a reduced expression of
the longest Weyl word wlong:

wlong = wi1 · · ·wi` , (12.42)

where ` = `(wlong) is the length of the longest Weyl word and wi is the i-th fundamental
reflection. The BZL path BZL(v) of a crystal vertex v ∈ BΛ+ρ is then obtained by following
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the simple lowering operators fi as far as possible through the crystal in the order given
in the reduced expression of wlong. Let b1 be the largest integer such that f b1i1 v 6= 0, that
is, b1 is the maximum number of steps in the direction of fi1 one can take in the crystal
without leaving it. Starting from the point obtained in this way one then constructs b2

as the maximum number of steps in the fi2 direction and so. This yields a sequence of
non-negative integers

BZL(v) = (b1, b2, . . . , b`) (12.43)

and the endpoint of the crystal always corresponds to the ‘lowest weight’ v− ∈ BΛ+ρ with
wt(v−) = wlong(Λ + ρ). A vertex v is uniquely characterised by its string BZL(v) (for a
fixed choice of reduced expression (12.42)).

For determining the function G(v), the BZL string (b1, . . . , b`) needs to be decorated
further. In the case of G = GL(r + 1) of rank r this is described in [50] for two choices of
reduced wlong words. We will give here the version for

wlong = w1w2w1w3w2w1 · · ·wrwr−1 · · ·w2w1 (12.44)

and note that ` = 1
2
r(r + 1).

Remark 12.8. There is another common choice of reduced expression wlong =
wrwr−1wrwr−1wr−2 · · ·wr · · ·w2w1 that is obtained by starting at the other end of the
Dynkin diagram [51]. We will not use it here—it corresponds to ∆-ice in a statistical
mechanics interpretation whereas the choice here corresponds to Γ-ice.

The numbers in the BZL string BZL(v) of (12.43) are then arranged in a triangular
(Gelfand–Tsetlin-like) pattern according to

BZL(v) =


. . . . . . . . .
b3 b2

b1

 , (12.45)

such that the i-th column contains all numbers associated with the wi fundamental
reflection. Littelmann proved that the numbers along a fixed row are weakly increasing [223].
Entries in this tableaux now get circle or box decorations according to the following rules:
(i) if an entry bk is equal to its left neighbour (or equal to 0 if it does not have one) it is

circled; (ii) if the crystal point f
bk−1

ik−1
· · · f b1i1 v does not have a neighbour in the eik direction,

i.e. it sits on the boundary, then bk is boxed. An example of this description is given in
figure 12.2 for the case r = 3. The boxing and circling rules can be given a geometrical
interpretation in terms of the embedding of BΛ+ρ into B∞ [59].

The decorated BZL string can then be used to define the Tokuyama function G(v)
via [58]

G(v) =
∏

bk∈BZL(v)


1 if bk is circled but not boxed
−p−1 if bk is boxed but not circled

1− p−1 if bk is neither boxed nor circled
0 if bk is boxed and circled

(12.46)
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Figure 12.2: The crystal BΛ+ρ for SL(3) and Λ = 0. The ρ-shift turns this into the weight
diagram of the adjoint representation and we label the different vertices of the crystal by
filled Young tableaux. The arrows with numbers indicate the action of the operators f1

and f2. The two tableaux in the center correspond to the multiplicity two weight space of
the adjoint representation associated with the two-dimensional Cartan subalgebra. For the

choice of vertex v = 1 1
3

, and the reduced expression wlong = w1w2w1, the BZL path is

BZL(v) = (2, 1, 0) =
{

0 1

2

}
, where we have circled and boxed the entries according to the

rules described in the text.
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More complicated versions of this rule exist for other values of the Tokuyama deformation
parameter t [50]. An equivalent description of G(v, t) directly in terms of Gelfand-Tsetlin
patterns was given in [43,48,51].

Example 12.9: Crystal description of SL(2,Qp) Whittaker vector

We consider the case G = SL(2,Qp) and verify formulas (12.41) and (12.46). The Whittaker vector
W ◦(λ, aΛ) is (cf. (9.125))

W ◦(λ, aΛ) = (1− p−2s)
psN−N − p−2s+1−sN

1− p−2s+1
. (12.47)

To work out the crystal sum we fix the longest Weyl word as wlong = w1 and the highest weight is
Λ + ρ = (N + 1)ρ where we recall that everything refers to Langlands dual group of SL(2,Qp). Then the
crystal BΛ+ρ consists of the vertices v ∈ {(N+1)ρ, (N−1)ρ, . . . ,−(N+1)ρ} that we label vk = (N+1−2k)ρ
for k = 0, . . . , N + 1. The highest weight representation VΛ+ρ is of dimension N + 2. The BZL path of a
vertex vk is

BZL(vk) = (N + 1− k) (12.48)

and its single entry is circled for k = N + 1 and boxed for k = 0, otherwise it is undecorated. Therefore

G(vk) =

 −p−1 for k = 0
1 for k = N + 1

1− p−1 otherwise
(12.49)

The right-hand side of equation (12.41) becomes therefore (aρλ = p−(2s−1)/2)

p−N/2
N+1∑
k=0

G(vk)a
(N+2−2k)ρ
λ = p−sN−2s+1

(
−p−1 + (1− p−1)

N∑
k=1

pk(2s−1) + p(N+1)(2s−1)

)

= p−sN−2s+1

(
−1 + (1− p−1)

1− p(N+1)(2s−1)

1− p2s−1
+ p(N+1)(2s−1)

)
= p−sN−2s−1 + p2s + p(N+1)(2s−1) − p(N+1)(2s−1)+2s

1− p2s−1

= p−(N+2)s(1− p2s)
1− p(N+1)(2s−1)

p2s−1 − 1

= p−sN (1− p−2s)
pN(2s−1) − p−2s+1

1− p−2s+1
, (12.50)

which agrees with (12.47).

Tokuyama’s formula for the Tokuyama function G(v) of (12.46) gives a purely
combinatorial description of the spherical Whittaker vector W ◦(λ, aΛ) for the case
G = GL(r + 1,Qp). One may wonder whether other choices of Tokuyama function
G(v) also correspond to objects related to automorphic forms. An affirmative answer to
this was provided by Bump, Brubaker and Friedberg and we will discuss this now in a
broader context [58].

265



Chapter 12. Outlook

12.6.2 Weyl group multiple Dirichlet series

In sections 11.3 and 11.9 we introduced Dirichlet series and automorphic L-functions. Both
are meromorphic functions of a single complex variable s, satisfy functional equations for
s↔ 1− s and have an Euler product form. They correspond to multiplicative sequences
an of numbers, in the simplest case of an SL(2,Z) cuspidal Hecke eigenform f these are
just the Fourier coefficients of f , cf. (11.34), so there is a close connection between Fourier
expansions of automorphic forms and Dirichlet series, see sections 11.9 and 11.10 for more
details.

It is natural to wonder whether these concepts can be generalised to functions of
several complex variables s1, . . . , sr. This is a non-trivial problem and it turns out that
multiplicativity of the coefficients cannot be maintained, see [58] that also discusses the
history of the subject. One way of constructing such multiple Dirichlet series is as so-called
Weyl group multiple Dirichlet series [52].

To introduce them we again restrict to G = GL(r + 1) of rank r and introduce the
following additional definitions [46]. Let F be a number field that contains the group
µ2n of 2n-th roots of unity. Let S be a finite set of places of F such that S includes all
archimedean places (e.g. p =∞) and all divisors of n. We denote by Fp the completion
of F at a place p and by op the corresponding integers for p non-archimedean. The ring
of S-integers oS in F are those x ∈ F whose component xp is in op for all p /∈ S. We
can enlarge, if necessary, S such that the S-integers oS are a principal ideal domain. We
denote FS =

∏
p∈S Fp.

A general form for a multiple Dirichlet series is then given by

ZΨ(s,m) =
∑

ideals(Ci)

Ψ(C1, . . . , Cr)H(C1, . . . , Cr;m1, . . . ,mr)|C1|−2s1 · · · |Cr|−2sr (12.51)

for s = (s1, . . . , sr) ∈ Cr and m = (m1, . . . ,mr) ∈ (oS)r. Here, Ψ : (F×S )r → C and
H : (F×S )r × (oS)r → C are functions with multiplicativity properties that ensure that the
sum over ideals in the principal ideal domain oS is well-defined. These properties rely on
the properties of the n-order Hilbert symbol and on n-th order reciprocity. We will make
no further use of the precise conditions here and refer the reader to [46] for the details.
We note, however, that the conditions make Ψ a member of a finite-dimensional vector
space M and that this space carries an action of the Weyl group W [46].

The function H satisfies an additional multiplicative property, called twisted
multiplicativity , that ensures that it is completely determined by its values on prime
powers H(pk1 , . . . , pkr ; pl1 , . . . , plr). The parameters m appearing in (12.51) are called the
twisting parameters and they enter crucially in the twisted multiplicativity relation. The
problem of finding interesting multiple Dirichlet series is then reduced to specifying the
H(pk1 , . . . , pkr ; pl1 , . . . , plr). One requirement one would naturally impose on them is that,
when viewed as a function of one si alone, one obtains sums of single Dirichlet functions
with standard functional relations. (Since we are working over a field that contains µ2n

these will actually be so-called Kubota Dirichlet series [208] and we refer again to [46] for
the details.)
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This requirement will ensure that the multiple Dirichlet series ZΨ(s,m) will satisfy a
functional relation under the fundamental Weyl reflection wi of the form

ZΨ(wis,m) = ZΨ′(s,m), (12.52)

where Ψ′ is some other element of the finite-dimensional space M. By choosing a suitable
normalisation

Z?
Ψ(s,m) =

(∏
α>0

ζα(s)Gα(s)

)
ZΨ(s,m) (12.53)

in terms of factors of the Dedekind zeta function of F and appropriate Γ-function factors
evaluated at places parametrised by the positive roots α and s one can bring this functional
relation into the nicer form

Z?
wΨ(ws,m) = Z?

Ψ(s,m) (12.54)

by using the action of W on M. A functional equation of this type allows meromorphic
continuation of the multiple Dirichlet series from the domain of convergence of (12.51) to Cr

by means of a variant of Bochner’s theorem about complex functions in tube domains [52].
Finding H(pk1 , . . . , pkr ; pl1 , . . . , plr) that satisfy this requirement is a non-trivial

combinatorial problem. Essential information on the multiple Dirichlet series is contained
in the so-called p-part of ZΨ that is defined by suppressing Ψ:

∞∑
ki=0

H(pk1 , . . . , pkr ; pl1 , . . . , plr)|p|−2k1s1−...−2krsr . (12.55)

The p-part depends on the si and on the twisting parameters that are now given in terms
of the integers li. We would like to interpret the p-part as an expression evaluated on
a crystal of LG evaluated at a special point aλ as in (12.41). To this end, we consider
the case when the non-negative integers (k1, . . . , kr) correspond to a vector κ linking a
(strongly dominant) highest weight Λ + ρ to one of its Weyl images, i.e.,

κ =
∑
i

kiαi = Λ + ρ− w(Λ + ρ) (12.56)

for some w ∈ W, such that the second term in (12.55) is basically δ1/2(aΛ)aκ+ρ
λ . The

highest weight Λ here is determined by the integers li through Λ =
∑

i li$i, where $i

are the fundamental weights of LG. Suppose now that the twisting parameters li and
hence Λ are fixed, then one can evaluate for H(pk1 , . . . , pkr ; pl1 , . . . , plr) for those ki for
which (12.56) is satisfied as finite product of Gauss sums [47]

H(pk1 , . . . , pkr ; pl1 , . . . , plr) =
∏
α>0
wα<0

g2(p〈Λ+ρ|α〉−1, p〈Λ+ρ|α〉), (12.57)

where all elements now refer to the Langlands dual group and g2 is a certain Gauss sum [47].
The points ki for which one thus has a relatively simple formula for the value of H on the
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Weyl orbit of the highest weight Λ + ρ. It is an important observation that the only other
values of ki for which H(pk1 , . . . , pkr ; pl1 , . . . , plr) can be non-zero are the other points of
the crystal BΛ+ρ. We are thus in a very similar situation to the discussion of the Weyl
character formula and its generalisations above. For the strict Weyl character of the
highest weight representation VΛ+ρ the crystal sum (12.40) only had support on the Weyl
images of Λ + ρ, but for the spherical Whittaker vector one needed to consider also the
other points of BΛ+ρ, in particular those in its interior.

Determining H(pk1 , . . . , pkr ; pl1 , . . . , plr) at the other points of BΛ+ρ is non-trivial and
a number of approaches to this problem exist.

• One approach is called the averaging method of Chinta–Gunnells [58, 65, 66] that
employs a deformed character constructed using the averaged Weyl group action on
the field of rational functions in several variables. This approach works uniformly
for any type of root system. It has also been extended to the affine case in [221].

• The approach by Bump, Brubaker and Friedberg [47, 50] starts from the just
mentioned analogy with the crystal sum and finds rules for computing the Tokuyama
function G(v) on the crystal. These resemble the rules (12.46) above but instead
one gives different weights to the various parts of the BZL path. These weights are
not simple powers of p but instead involve n-th order Gauss sums. In this approach
one has to treat each type of root system separately. For the various classical and
some exceptional types we refer the reader to [19,20,45,67,100–102].

• Given a Tokuyama function G(v) on the crystal one might wonder, in view of (12.41),
whether the crystal sum can be interpreted as the Whittaker vector of some Eisenstein
series. It turns out that in order for this to be true one needs to consider metaplectic
Eisenstein series. These are functions defined over the group G(F) where F is
the number field that contains the roots of unity µ2n. One can define Eisenstein
series over G(F) and consider their Whittaker vectors in the same way as we did for
G(Qp). However, it turns out that for n > 1 one no longer has a multiplicity one
theorem for Whittaker vectors and that over a global field the Eulerian property
is similarly no longer guaranteed. The multiplicative property of standard (non-
metaplectic) Whittaker vectors is replaced by the twisted multiplicativity that we
have already encountered above. The metaplectic Whittaker vectors are sources
for the coefficients of multiple Dirichlet series as shown by Brubaker, Bump and
Friedberg [44,50,58,231,232]. This approach works for all types of root system.

• Finally, one can interpret the crystal sum as the partition function of a statistical
mechanical mode, as done by Brubaker, Bump and Friedberg in [49, 58]. In the case
n = 1, this opens up new tools from the theory of integrable systems, most notably
the Yang–Baxter equation. This goes back to work of Kostant on the (quantum)
Toda lattice and representation theory [206]. In this approach one has to treat
different types of root system differently.

The equivalence of these different approaches has been shown in many cases and we refer
to [58] for an overview.
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12.7 Extension to Kac–Moody groups

In this article we have concentrated on the study of automorphic forms and in particular
Eisenstein series defined on finite-dimensional Lie groups, as categorised in the Cartan
classification. In this section we give a short summary of what happens as one makes the
extension to infinite-dimensional Kac–Moody groups , which are generated by an infinite
number of raising and lowering operators. A complete classification of Kac–Moody groups
is at present not known and we will restrict our attention here mainly to Eisenstein
series defined on affine, hyperbolic and Lorentzian Kac–Moody groups. Full accounts of
Kac–Moody algebras can be found in the books [128,186,209,245,315]. The motivation for
studying Eisenstein series defined on infinite-dimensional Kac–Moody groups is twofold.

12.7.1 String theory motivation: infinite-dimensional U-duality

In string theory, Kac–Moody groups appear, for example, in the list of U-duality groups
encoding discrete symmetries of type II string theory compactified on a (10−D)-dimensional
torus from ten down to D space-time dimensions. The list of these groups was given in
table 2.1 in chapter 2 and consists of the groups in the exceptional series of the Cartan
classification, where in D ≥ 3 dimensions the respective U-duality group is given by the
finite-dimensional and discrete group E11−D(Z). In D = 2, 1 and 0 dimensions, however,
the corresponding U-duality groups are infinite-dimensional and are conjectured to be given
by the affine, hyperbolic and Lorentzian Kac–Moody groups E9(Z), E10(Z) and E11(Z),
respectively [171]. In particular, the groups E10 and E11 are of special relevance [78,321],
since they have been conjectured as fundamental symmetries of M theory [272, 322], a
theory whose low-energy limit is eleven-dimensional supergravity and from which the five
different known types of string theories can be derived as particular limits.

12.7.2 Mathematical motivation: new automorphic L-functions

From a mathematician’s perspective one motivation to study Kac–Moody Eisenstein series
is to consider them as a potential source for deriving new L-functions in a Fourier through
a Fourier expansion of the series. It is however not precisely clear if this extension of the
theory of Eisenstein series will yield necessarily to new types of L-functions and the focus
of the discussion has so far been on series defined on affine groups. In fact in [293] an
argument was provided that no new functions will be found, while in [111] a new method
for obtaining such functions was devised. This new method relies on an expansion of the
series with respect to “lower triangular parabolics”, instead of only “upper triangular
parabolics”.

In recent years there has been some work, developing the theory of Eisenstein series
for Kac–Moody groups. The most well developed part is that of Eisenstein series defined
on affine Kac–Moody groups which was started by Garland [108,109]. While for the finite-
dimensional groups convergence with respect to the (complex) defining weight λ was proven
over almost all of the complex plane, c.f. (5.100), for the infinite-dimensional Kac–Moody
groups convergence is restricted and the defining weight has lie inside the Tits cone [186].
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Furthermore, a restriction on the group element forming the argument of the series has
to be imposed [109]. First steps towards a definition of Eisenstein series on hyperbolic
Kac–Moody groups have been made in [61], where the case of rank 2 hyperbolics was
considered. Furtheromore, in [95,97] Eisenstein series defined on the hyperbolic E10 group
(along with E9 and E11), were discussed. A general proof of convergence of Eisenstein
series on general hyperbolics remains to be developed, however.

12.7.3 Fourier coefficients and small representations

Despite the absence of a mathematically rigorous definition of Kac–Moody Eisenstein
series, quite a bit can be said about the Fourier expansion of these series. The foundation
for this work was laid in [108], where the analogue of Langlands’ formula (8.41) for the
constant term, was developed for the case of affine Kac–Moody Eisenstein series. While
for Eisenstein series on finite-dimensional groups we have explained how to evaluate
Langlands’ formula in section 10.3, it is not clear how to apply this formula in the case
of affine Kac–Moody Eisenstein series. The reason for this is that the sum over Weyl
words appearing in the formula is an infinite sum due to the infinite-dimensional nature of
affine groups and their associated Weyl groups. The same problem of course also appears
when considering the extension of Langlands’ formula for the cases of hyperbolic and
Lorentzian Kac–Moody groups. This question was taken up in [95], see also [96] for a
summary of this work, where it was shown that for special types of Kac–Moody Eisenstein
series, the naively infinite sum ‘collapses’ to finite sum and can be explicitly computed.
On a more technical level, to evaluate Langlands’ formula, one proceeds just as in the
case of a finite-dimensional group and one successively constructs Weyl words in the set
C(λ) by the orbit method, c.f. section 10.3. It can then be shown that for particular
types of Eisenstein series, which we will discuss in a moment, only the coefficients M(w, λ)
associated with the first few Weyl words w in the carefully constructed orbit, are non-zero.
All other coefficients associated with the infinite number of Weyl words that follow in the
orbit are however zero and therefore do not contribute to the constant term.

The Eisenstein series for which this collapse of the constant term happens are of the
general form (5.196) defined on the groups E9, E10 and E11. More specifically, the defining
weight λ is of the form λ = 2sΛ1 − ρ, such that the series is defined with respect to
the maximal parabolic subgroup P1 associated with the first node of the E11−D Dynkin
diagram in Bourbaki labelling. In order to observe collapse, the generically complex
parameter s has to take real values of s = 3

2
, 5

2
, . . . , see [95] for an extended list.

Remark 12.10. Let us mention as an aside that these particular Eisenstein series appear
as the automorphic couplings of the R4 and D4R4 curvature correction terms in the
low-energy effective action of type IIB string theory in D = 2, 1 and 0 dimensions, in
line with the discussion in section 12.1. Since the R4 and D4R4 term are 1

2
- and 1

4
-BPS

protected terms, it is a reassuring confirmation that the corresponding constant terms only
contain a finite number of perturbative contributions. Furthermore, these Eisenstein series
are associated with small representations which we discuss in some detail in section 12.1.1.
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Developing an understanding of the structure of Fourier coefficients of Kac–Moody
Eisenstein series is an open problem and part of ongoing work. However, it is possible to
apply formula (9.59) for the degenerate Whittaker vectors also to Kac–Moody Eisenstein
series (with slight modifications in the affine case) and use this to make some statements
about the Fourier coefficients. This was done in [97], where the formula for the degenerate
Whittaker vectors (9.59) was derived, applied to the cases of the particular maximal
parabolic Eisenstein series just mentioned above and explicit expressions for the Whittaker
vectors were computed. In particular it was found that in the case of s = 3

2
the (abelian)

Fourier coefficients are completely determined by maximally degenerate Whittaker vectors.
The collapse property discussed for the case of the constant term above, also plays a
central role in computing these Whittaker vectors. Related work, with a focus on the rank
2 affine case, can be found in [224]. We formalise the observations of [95,97] as:

Conjecture 12.11 (Small representations for Kac–Moody groups). Kac–Moody
groups possess a minimal unitary representation that can be realised automorphically. In
the case of En(R) (for n ≥ 9) this can be achieved by inducing from the maximal parabolic
subgroup of with semi-simple Levi group of type Dn−1 that is obtained by deleting the first
node of the En Dynkin diagram. The canonically associated Eisenstein series for s = 3

2

(obtained by analytic continuation) is the spherical vector in the minimal automorphic
representation. The wave-front set is of Bala–Carter type A1.

A similar next-to-minimal representation is obtained for s = 5
2

and its wave-front set
is of Bala–Carter type 2A1.

12.7.4 Langlands program for Kac–Moody groups

Braverman and Kazhdan have also started to develop the local theory for affine Kac–Moody
groups (see [37] for a survey). In particular, they have constructed the local spherical
Hecke algebra [39], as have Gaussent and Rousseau [115]. With Patnaik they have proven
an affine version of the Satake isomorphism [38]. These results were recently used in [36]
to prove a Gindikin–Karpelevich formula for affine Kac–Moody groups and in [193,257]
the Casselman–Shalika formula has been generalised to the affine setting.

As formulated in [37], the dream is to have a fully developed representation theory
and an associated Langlands correspondence for any (symmetrizable) Kac–Moody group.
Although at present this remains a dream, the recent developments reviewed above certainly
provides hope that such a theory is within reach.
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Appendix A

SL(2,R), H and SL(2,Z)

This appendix serves as a reference for our conventions on notation related to SL(2,R).

A.1 SL(2,R) Lie group and sl(2,R) Lie algebra

We take SL(2,R) to be the real Lie group defined (in its fundamental representation) by

SL(2,R) =

{
g =

(
a b
c d

) ∣∣∣∣ a, b, c, d ∈ R and det(g) = ad− bc = 1

}
. (A.1)

The maximal compact subgroup is K = SO(2,R) corresponding to the orthogonal matrices
within SL(2,R).

The Lie algebra sl(2,R) has the standard Chevalley basis

e =

(
0 1
0 0

)
, h =

(
1 0
0 −1

)
, f =

(
0 0
1 0

)
(A.2)

with commutation relations

[h, e] = 2e , [h, f ] = −2f , [e, f ] = h . (A.3)

The generator h acts diagonally and is called the Cartan generator; e is a positive step
operator and f a negative step operator. The compact subgroup SO(2,R) is generated by
the combination e− f .

The universal enveloping algebra U(sl(2,R)) has a distinguished second order element,
called the Casimir operator and that we define by

Ω =
1

4
h2 +

1

2
ef +

1

2
fe =

1

4
h2 − 1

2
h+ ef. (A.4)

This definition is unique up to normalisation. The Casimir operator commutes with all
Lie algebra elements.

The Iwasawa decomposition of SL(2,R) can be chosen in the form SL(2,R) = NAK;
where N is in the image of the exponential map exp applied to e; the maximal torus is in
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the image of exp applied to h and K is the compact subgroup SO(2,R) whose identity
component is the exponential of e − f . Concretely that means that we can write any
element g of SL(2,R) as

g = nak = exp (xe) exp

(
1

2
log(y)h

)
exp (θ(e− f))

=

(
1 x
0 1

)(
y1/2 0

0 y−1/2

)(
cos θ sin θ
− sin θ cos θ

)
(A.5)

with k ∈ K = SO(2,R) and y > 0.

A.2 The upper half plane H and SL(2,Z)
A main object of interest to us is the two-dimensional coset G/K = SL(2,R)/SO(2,R); a
representative for any point of this space is given by the first two factors in (A.5). The
coset space can therefore be parametrised by elements of the upper half plane

H = {z = x+ iy | x, y ∈ R and y > 0} ∼= G/K. (A.6)

The coset space G/K (or, equivalently, the upper half plane H) carries an action of
SL(2,R) by left multiplication: An element γ ∈ G transforms a g into g′ = γg. The action
on the explicit parameters z ∈ H can be read off from writing the new element in Iwasawa
form g′ = n′a′k′. Performing this calculation one finds

z′ = γ · z =
az + b

cz + d
for γ =

(
a b
c d

)
∈ SL(2,R). (A.7)

Using the Iwasawa decomposition (A.5), we see that the point i is left invariant by the
maximal compact subgroup K = SO(2,R) and that

g · i = x+ iy = z. (A.8)

For SL(2,R) automorphic forms one requires functions f(g) that are invariant under the
action of a discrete subgroup Γ ⊂ SL(2,R). Taking Γ = SL(2,Z) to consist of the SL(2,R)
matrices with integral entries, the invariance f(γg) = f(g) for all γ ∈ SL(2,Z) means
we requires the double quotient SL(2,Z)\SL(2,R)/SO(2,R) where SL(2,Z)-equivalent
points are identified. Using the upper half plane H presentation of SL(2,R)/SO(2,R) one
can give a very explicit description of the double quotient.

The group SL(2,Z) is well-known to be generated by [86].

T =

(
1 1
0 1

)
and S =

(
0 −1
1 0

)
. (A.9)

When acting on z ∈ H, they generate

T · z = z + 1, S · z = −1

z
. (A.10)
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x
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0 11
2
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1

y

Figure A.1: A fundamental domain for the action of SL(2,Z) acting on the upper half
plane (grey region). The cusp is at y →∞.

Therefore, T is a translation by one unit and S is inversion in the unit circle combined
with a reflection in the y-axis. A fundamental domain for the action of SL(2,Z) on the
upper half plane is depicted in figure A.1. The fundamental domain clearly displays a
single cusp where it touches the boundary of the space. This cusp corresponds to the limit
y →∞. For discrete groups Γ different from SL(2,Z) there can be multiple cusps [86].

Remark A.1. What we are dealing with is effectively PSL(2,Z) rather than SL(2,Z),
where the ‘P ’ indicates that a matrix has to be identified with minus itself. The reason is
that the two matrices have identical action on the upper half plane as easily verified from
(A.7).

A.3 Action of SL(2,R) on smooth functions on SL(2,R)
The group SL(2,R) acts on functions on SL(2,R) via the right-regular action. Let g′

be an element of SL(2,R) and ϕ(g) a function on SL(2,R). The right-regular action is
defined by: (

π(g′)ϕ
)

(g) = ϕ(gg′). (A.11)

The action of the Lie algebra sl(2,R) is then given by differential operators acting on
smooth functions. Using (A.11) one finds the following differential operators corresponding
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to the Chevalley basis generators:

h = −2 sin(2θ)y∂x + 2 cos(2θ)y∂y + sin(2θ)∂θ,

e = cos(2θ)y∂x + sin(2θ)y∂y + sin2 θ∂θ,

f = cos(2θ)y∂x + sin(2θ)y∂y − cos2 θ∂θ. (A.12a)

The compact generator e− f of SO(2,R) acts by ∂θ. We record also the inverse relations

y∂x =
1

2
((e+ f) cos(2θ) + e− f − h sin(2θ)), (A.13a)

y∂y =
1

2
((e+ f) sin(2θ) + h cos(2θ)), (A.13b)

∂θ = e− f. (A.13c)

The Casimir operator (A.4) then becomes a second order differential operator, namely
the Laplacian

∆ = y2
(
∂2
x + ∂2

y

)
− y∂x∂θ. (A.14)

In section 5.1 of the main text, the so-called compact basis for sl(2,R) is discussed as
well. This is a representation of sl(2,R) in terms of (2× 2)-matrices different from (A.2)
and given explicitly by

H = −i(e− f), E =
1

2
(h+ i(e+ f)) , F =

1

2
(h− i(e+ f)) , (A.15)

that is,

H = i

(
0 −1
1 0

)
, E =

1

2

(
1 i
i −1

)
, F =

1

2

(
1 −i
−i −1

)
. (A.16)

The generators satisfy the standard sl(2,R) commutation relations

[H,E] = 2E, [H,F ] = −2F, [E,F ] = H. (A.17)

The Cartan generator H is Hermitian in this basis and this is the reason for the name
compact basis.

The representation (A.16) of sl(2,R) is unitarily equivalent to the standard representa-
tion (A.2) through the transformation

UHU † = h, etc. for U =
1

2

(
−1 + i 1 + i
−1 + i −1− i

)
. (A.18)

The differential operators associated with this basis are then given by

H = −i∂θ, (A.19a)

E = 2ie2iθ

(
y∂z −

1

4
∂θ

)
, (A.19b)

F = −2ie−2iθ

(
y∂z̄ −

1

4
∂θ

)
, (A.19c)
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where we have used standard holomorphic and antiholomorphic derivatives:

∂z =
1

2
(∂x − i∂y) , ∂z̄ =

1

2
(∂x + i∂y) . (A.20)

Because the compact basis is unitarily equivalent, the Casimir operator does not change.

Remark A.2. The change of basis is basically that induced by the Sekiguchi isomor-
phism [204,283] that enters in the description of real nilpotent orbits.
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Appendix B

Fourier expansion of SL(2,R) series
by Poisson resummation

In this appendix we perform the Fourier expansion of the series (1.1)

fs(z) =
∑

(c,d)∈Z2

(c,d)6=(0,0)

zs2
|cz + d|2s (B.1)

that is related to the standard SL(2,R) Eisenstein series through fs(z) = 2ζ(2s)E(s, z),
cf. (1.10). Here, z = x+ iy lies on the upper half plane H as defined in appendix A.

The invariance of fs(z) under shifts z → z + 1 implies that it should have a Fourier
expansion

fs(z) = C(y) +
∑
m 6=0

am(y)e2πimx . (B.2)

The ‘constant term(s)’ C(y) and the non-zero Fourier coefficients am(t) are determined in
the following. We suppress the label s on the constant terms and Fourier coefficients for
ease of notation.

The technique to be used rests on Poisson resummation whose fundamental equation
here is (cf. [272, Eqn. (8.2.210])∑

m∈Z

exp(−πam2 + 2πibm) = a−1/2
∑
m̃∈Z

exp

(
−π(m̃− b)2

a

)
. (B.3)

Another useful form of this same formula is∑
m∈Z

exp
(
−π
t

(m+ nx)2
)

= t1/2
∑
m̃∈Z

exp
(
−πtm̃2 − 2πim̃nx

)
. (B.4)

Note that the sums are over all integers and not constrained to a single SL(2,Z)-orbit.
We will also use the following representation of powers for Re(s) > 0 and Re(M) > 0

M−s =
πs

Γ(s)

∫ ∞
0

dt

ts+1
e−

π
t
M . (B.5)
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Finally, we require the following integral representation of the modified Bessel function for
real a, b 6= 0 ∫ ∞

0

dt

ts+1
e−πta

2−π
t
b2 = 2

∣∣∣a
b

∣∣∣sKs(2π|ab|) . (B.6)

B.1 Constant term(s)

First extract the term c = 0 from (B.1). Then d 6= 0 and

fs(z) = ys
∑
d6=0

|d|−2s + ys
∑
c 6=0

∑
d∈Z

|cz + d|−2s

︸ ︷︷ ︸
f

(1)
s (z)

= 2ζ(2s)ys + f (1)
s (z) . (B.7)

The power |cz + d|−2s appearing in the second term can be rewritten as an integral
using (B.5). Then one can Poisson resum over d ∈ Z using (B.4):

f (1)
s (z) =

πs

Γ(s)
ys
∑
c 6=0

∑
d∈Z

∫ ∞
0

dt

ts+1
exp

(
−π
t
|cz + d|2

)
(B.8)

=
πs

Γ(s)
ys
∑
c 6=0

∑
d∈Z

∫ ∞
0

dt

ts+1
exp

(
−π
t

((cx+ d)2 + (cy)2)
)

=
πs

Γ(s)
ys
∑
c 6=0

∑
d̃∈Z

∫ ∞
0

dt

ts+1
t1/2 exp

(
−πtd̃2 − 2πid̃cx− π

t
(cy)2

)
.

In the final line of (B.8) one can separate out the term with d̃ = 0 by

f (1)
s (z) =

πs

Γ(s)
ys
∑
c6=0

∫ ∞
0

dt

ts+1/2
exp

(
−π
t

(cy)2
)

+ f (2)
s (z) (B.9)

since it does not have any x dependence and where f
(2)
s are the terms with d̃ 6= 0:

f (2)
s (z) =

πs

Γ(s)
ys
∑
c 6=0

∑
d̃6=0

∫ ∞
0

dt

ts+1/2
exp

(
−πtd̃2 − 2πid̃cx− π

t
(cy)2

)
. (B.10)

The integral in the term with d̃ = 0 can be undone using (B.5) and the sum over c 6= 0
can be carried out afterwards. Hence the first term in (B.9) becomes

πs

Γ(s)
ys
∑
c 6=0

∫ ∞
0

dt

ts+1/2
exp

(
−π
t

(cy)2
)

=
πs

Γ(s)

Γ(s− 1/2)

πs−1/2
ys−2(s−1/2)

∑
c6=0

c−2(s−1/2)

= 2ζ(2s)
π−(s−1/2)Γ(s− 1/2)ζ(2s− 1)

π−sΓ(s)ζ(2s)
y1−s = 2ζ(2s)

ξ(2s− 1)

ξ(2s)
y1−s , (B.11)

where we have pulled out the same overall factor as in (B.7) and regrouped the π-factors
to use the definition of the completed Riemann zeta function ξ(k) = π−k/2Γ(k/2)ζ(k).
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B.2 Non-zero Fourier modes

The current status of the Fourier expansion is then

fs(z) = 2ζ(2s)

(
ys +

ξ(2s− 1)

ξ(2s)
y1−s

)
+ f (2)

s (z) , (B.12)

with the non-zero mode part f
(2)
s given by (B.10). The t-integral appearing in that

expression is a Bessel integral and can be evaluated using (B.6) as

f (2)
s (z) =

2πs

Γ(s)
ys
∑
c 6=0

∑
d̃6=0

∣∣∣∣∣ d̃ny
∣∣∣∣∣
s−1/2

Ks−1/2(2π|d̃c|y)e−2πid̃cx

=
2πs

Γ(s)
y1/2

∑
c 6=0

∑
d̃ 6=0

∣∣∣∣∣ d̃c
∣∣∣∣∣
s−1/2

Ks−1/2(2π|d̃c|y)e−2πid̃cx . (B.13)

To find the Fourier coefficient am(y) of a mode e2πimx we transform the double summation
to one over m 6= 0 and the (positive) divisors d|m. Then

f (2)
s (z) =

4πs

Γ(s)
y1/2

∑
m6=0

∑
d|m

d1−2s|m|s−1/2Ks−1/2(2π|m|y)e2πimx

= 2ζ(2s)
2y1/2

ξ(2s)

∑
m 6=0

|m|1/2−sσ2s−1(m)Ks−1/2(2π|m|y)e2πimx , (B.14)

again pulling out the same overall factor 2ζ(2s) and using the divisor sum

σs(m) =
∑
d|m

ds (B.15)

where only positive divisors are included.
The full Fourier expansion is therefore given by

fs(z) = 2ζ(2s)

[
ys +

ξ(2s− 1)

ξ(2s)
y1−s +

2y1/2

ξ(2s)

∑
6=0

|m|1/2−sσ2s−1(m)Ks−1/2(2π|m|y)e2πimx

]
.

(B.16)

The term in the square brackets is the full expansion of the Eisenstein series E(s, τ) for
SL(2,R). This agrees with the adelic derivation of theorem 7.1.
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Appendix C

Laplace operators on G/K and
automorphic forms

In this appendix, we briefly review the connection between the scalar Laplace operator
on the symmetric space G(R)/K(R) and the quadratic Casimir. We do this first for a
general simple, simply-laced split group G(R) and then give a very explicit analysis for
G = SL(2,R).

C.1 Scalar Laplace operator and quadratic Casimir

For a simple, simply-laced split G(R) we denote by h a fixed Cartan subalgebra of the Lie
algebra g(R) of G(R). With respect to h and a choice of simple roots αi (i = 1, . . . , r with
r = dimR(h)) the remaining generators arrange into positive and negative step operators,
cf. (4.15). We denote by Eα the step operator of a given root α. In Iwasawa gauge we
choose to write an arbitrary element g ∈ G(R)/K(R) as

g = na = exp

(∑
α>0

uαEα

)
r∏
i=1

vhii , (C.1)

where hi are the Cartan generators associated with the choice of simple roots cf. (4.17).
The variables vi (for = 1, . . . , r) and uα (for α ∈ ∆+) are coordinates on the symmetric
space G(R)/K(R).

The G(R)-invariant metric on the symmetric space can be constructed from

ds2
G/K = 2〈P|P〉, (C.2)

where we chose a convenient normalisation and

P =
1

2

(
g−1dg − θ(g−1dg)

)
(C.3)

is the coset projection of the Maurer–Cartan form g−1dg associated with the vector space
decomposition g = p ⊕ k. Here, k is the Lie algebra of K. The (Cartan) involution θ
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leaving k fixed can be defined by

θ(Eα) = −E−α, θ(hi) = −hi. (C.4)

With this convention, k and p have the bases

k = 〈Eα − E−α |α > 0〉,
p = 〈Eα + E−α |α > 0〉 ⊕ 〈hi | i = 1, . . . , r〉. (C.5)

We further choose the normalisation (Aij is the Cartan matrix (4.18) of the simply-laced
g(R))

〈Eα|E−β〉 = δα,β, 〈hi|hj〉 = Aij. (C.6)

Working out the Maurer–Cartan form for the element (C.1) one finds

g−1dg =
r∑
i=1

v−1
i dvihi + a−1

(∑
α>0

DuαEα

)
a

=
r∑
i=1

v−1
i dvihi +

∑
α>0

a−αDuαEα (C.7)

where Duα = duα+. . . and the dots represent finitely many terms coming from commutator
terms when expanding out the Baker–Campbell–Hausdorff identity

e−Xd(eX) = dX − 1

2!
[X, dX] +

1

3!
[X, [X, dX]] + . . . (C.8)

for the nilpotent Eα. The expression (C.7) together with (C.6) leads to a block-diagonal
metric of the form

ds2
G/K = gµνdx

µdxν = 2
r∑

i,j=1

v−1
i v−1

j dvidvjAij +
∑
α>0

a−2α(Duα)2. (C.9)

The scalar Laplacian associated with this metric is (∂µ ≡ ∂
∂xµ

and
√
g =

√
det(gµν))

∆G/K =
1√
g
∂µ (
√
ggµν∂ν)

=
1

2

r∑
i,j=1

(A−1)ija2ρvi∂i
(
a−2ρvj∂j

)
+
∑
α>0

a2α∂2
α + . . . , (C.10)

where the dots come from inverting the metric in the duαduβ sector and (A−1)ij is the
inverse of the Cartan matrix. We have used the relation

∑
α>0 α = 2ρ for the Weyl vector,

cf. (4.5). The Laplace operator (C.10) is G(R)-invariant since the Maurer–Cartan form
trivially is: The transformation of g ∈ G(R)/K(R) is given by g → g0gk

−1 with constant
g0 ∈ G(R) and k ∈ K(R) such that g−1dg → k(g−1dg)k − dkk−1 is independent of g0.
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We can evaluate the eigenvalue of the Laplacian (C.10) when acting on an Eisenstein
series E(λ, g) as defined in (5.99). Due to the invariance of the Laplacian, it suffices to
evaluate it on the summand χ(g) = χ(a) = aλ+ρ, corresponding to γ = 1. For this term,
the derivatives ∂α with respect to the coordinates uα vanish and one finds

∆G/Ka
λ+ρ = ∆G/K

r∏
i=1

v2si
i =

1

2

r∑
i,j=1

(A−1)ij2si(2sj − 2)aλ+ρ

=
1

2
(〈λ|λ〉 − 〈ρ|ρ〉) aλ+ρ, (C.11)

where we stress that we assumed g to be simply-laced. As already mentioned, G(R)-
invariance implies that this is also the eigenvalue for the full Eisenstein series:

∆G/KE(λ, g) =
1

2
(〈λ|λ〉 − 〈ρ|ρ〉)E(λ, g). (C.12)

This agrees up to a factor with the standard quadratic Casimir evaluated on a lowest
weight representation with lowest weight Λ = λ+ ρ [186].

C.2 Automorphic forms on SL(2,R) as Laplace eigen-

functions

For the case of SL(2,R) we can give fully explicit expressions. Using

g = na = exp(ue)vh (C.13)

one finds from (C.2)

ds2
G/K = 4v−2dv2 + e−4vdu2 ⇒ ∆G/K =

1

4
e2vv∂v

(
e−2vv∂v

)
+ e4v∂2

u. (C.14)

This can be brought into a more familiar form by using v = y1/2 and u = x, cf. (A.5).
This leads to

∆G/K = y2
(
∂2
x + ∂2

y

)
, (C.15)

which agrees with the Laplacian on the upper half plane H given in (A.14).
Consider now a real eigenfunction ϕ(z) of the Laplace operator with eigenvalue s(s−1):

∆G/Kϕ(z) = s(s− 1)ϕ(z). (C.16)

If the function is furthermore invariant under SL(2,Z), this implies ϕ(z) = ϕ(z + 1) and
one has a Fourier expansion of the form

ϕ(z) =
∑
m∈Z

am(y)e2πimx (C.17)
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where m ∈ Z denotes the ‘instanton charge’ of the character in the terminology of section 6.2
and a0(y) is the constant term. This Fourier expansion is due to the translations x→ x+ 1
contained in the action of SL(2,Z) acting on SL(2,R). Reality of ϕ(z) implies that
am(y) = a−m(y) for all m > 0. We therefore restrict to m ≥ 0.

Plugging the Fourier expansion (C.17) into the Laplace equation (C.16) and analysing
each mode individually leads to the following equations

m = 0 : y2∂2
ya0(y) = s(s− 1)a0(y), (C.18a)

m 6= 0 : y2
(
∂2
y − 4π2m2

)
am(y) = s(s− 1)am(y). (C.18b)

The equation (C.18a) for the constant term has two linearly independent solutions

s 6= 1

2
: a0(y) = ys or a0(y) = y1−s, (C.19a)

s =
1

2
: a0(y) = y1/2 or a0(y) = y1/2 log y. (C.19b)

All these solutions are at most power laws when y approaches any cusp, e.g. y →∞.
Equation (C.18b) for the non-zero modes becomes more familiar when one uses

am(y) = y1/2bm(y) which leads to

y2∂2
ybm(y) + y∂ybm(y)−

(
4πm2y2 +

(
s− 1

2

)2
)
bm(y) = 0. (C.20)

After a rescaling of the y coordinate this becomes the modified Bessel equation with
the two modified Bessel functions Ks−1/2 and Is−1/2 as linearly independent solutions.
Translated back to am(y) these are

am(y) = y1/2Ks−1/2(2π|m|y) or am(y) = y1/2Is−1/2(2π|m|y). (C.21)

If one insists on at most power law growth near the cusp y →∞ the solution involving
the function Is−1/2 is disallowed. This is an instance of the ‘multiplicity one theorem’
mentioned in chapter 6.

Putting everything together, we see that any real function ϕ(g) on SL(2,R) that is
right-invariant under SO(2,R) and satisfies the three conditions stated for automorphic
forms in the introduction can be expanded as

ϕ(z) = a
(s)
0 ys + a

(1−s)
0 y1−s + y1/2

∑
m6=0

amKs−1/2(2π|m|y)e2πimx (C.22)

with am = a−m and these are purely numerical coefficients. For cusp forms one has that

the numerical coefficients a
(s)
0 and a

(1−s)
0 vanish identically. The above expansion is valid

for s 6= 1
2
; for s = 1

2
one has to replace the constant terms by the solutions of (C.19b).

As shown in section 11.2, the coefficients am can also be determined for cusp forms if
one demands in addition to the Laplace condition that ϕ(z) is also an eigenfunction of all
the Hecke operators. These can be thought of as the analogues of the Laplace operator
for finite p < ∞ and therefore an automorphic function that obeys simple equations
for all p ≤ ∞ is uniquely fixed (up to an overall normalisation), cf. remark 11.8 and
example 11.10.
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Appendix D

Local-to-global principle

In this appendix we provide some background on the local-to-global principle, also known
as Hasse’s principle. This principle forms the basis of a powerful approach to problems in
arithmetic which we are going to illustrate in the following.

The local-to-global principle is nicely motivated by the study of algebraic equations.
For instance, consider the polynomial

f(x) = 7x3 − 2x+ 2 (D.1)

which has integer coefficients. Then the question of whether the equation f(x) = 0 has
any integer solutions can be answered by considering a reduction of the polynomial’s
coefficients modulo 3 leaving us with

f̃(x) = x3 + x+ 2 . (D.2)

Since it is only necessary to test three integers, one quickly verifies that f̃(x) = 0 possesses
no solution in Z/3Z. Now, since Z → Z/nZ is a ring homomorphism, any solution of
f(x) = 0 in Z is mapped to a solution of f̃(x) = 0 in Z/3Z we have also shown that
f(x) = 0 has no integer solutions.

Considering an algebraic equation over Z, such as the one above, modulo a prime
number p is referred to as seeking solutions locally in other words in Z/pZ. If no solution
is found locally it is then possible to deduce also that no solution exists globally namely in
Z. The approach presented above provides a simple example for what is known as the
local-to-global principle. Although the method has worked nicely in this simple example
it actually has limited applicability. In order to develop a more powerful method that
realises the local-to-global principle it is useful to introduce p-adic numbers.

To this end consider for instance the quartic equation

7y4 = 22x6 + 2 · 73x2 + 74 (D.3)

and we ask the question whether this equation possesses any non trivial solutions (x, y) ∈
Q2. In a first attempt we may try to proceed in an analogous way to above and reduce
the equation modulo 2 or modulo 7. In the first case this leaves us with

y4 = 1 (D.4)
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which implies that (x,±1) is a solution for all x ∈ Q. From the second reduction we obtain

4x6 = 0 (D.5)

implying as solution (0, y) for all y ∈ Q. Using the simple method of reducing the equation
with respect to prime numbers thus does not help us in answering the question posed.
Instead we will now use p-adic numbers to show that no solution to the equation exists in
Qp and since Q ↪→ Qp also no solution can exist in Q.

Specifically we will work with p = 7 and define the 7-adic valuations of the variables
x and y as ν7(x) = n and ν(y)7 = m with m,n ∈ Z. Taking the 7-adic valuation of the
left-and right-hand-sides of our algebraic equation we thus find

ν7(l.h.s.) ≡ ν7(7y4) = 1 + 4m (D.6)

and from the right-hand-side

ν7(r.h.s.) ≡ ν7(22x6 + 2 · 73x2 + 74) ≥ min(4, 3 + 2n, 6n) , (D.7)

where we have used property (3.8) of the p-adic valuation. In fact, since none of the
arguments of the minimum function are equal, the inequality sharpens to an equality,
ν7(r.h.s.) = min(4, 3 + 2n, 6n). The value of the 7-adic valuation of the left-hand-side
ν7(l.h.s.) is odd and we would thus require that ν7(r.h.s.) = 3 + 2n. However note that
for n ≥ 1 we have that ν(r.h.s.) = 4 and for n < 1 we have ν7(r.h.s.) = 6n. Either case is
in contradiction with the value of the 7-adic valuation of the left-hand-side and we thus
conclude that no solution in Q7 exists. As a consequence also no solution in Q exists,
providing another realisation of the local-to-global principle.

Even though the introduction of p-adic numbers improves our ability to analyse
algebraic equations, there is still a major limitation to our analysis. In particular neither
of the above methods is able to prove the existence of a global solution, meaning a solution
in Q. In other words, if we find a solution of an algebraic equation locally in Qp for some
prime p, this does not imply that a solution in Q exists. In fact one can give examples of
algebraic equations where a local solution exists for every prime p, but no global solution
exists. See for instance [284].

Nevertheless, in some cases one can go further and prove theorems which provide
information about the existence of global solutions from the local analysis. An example of
such a case is the Hasse–Minkowski theorem for quadratic forms. Although the theorem
holds for general number fields K we will content ourselves to stating the theorem for
quadratic forms over the rationals which we also define for completeness.

Definition D.1 (Quadratic form). A quadratic form f over Q is a polynomial of degree
two in the variables xi ∈ K with i = 1, ..., n, where n is called the rank of the form. Given
some y ∈ Q, we say that the quadratic form f represents y if there exists a solution
(X1, ..., Xn) ∈ Qn with (X1, ..., Xn) 6= (0, ..., 0), such that

y = f(X1, ..., Xn) . (D.8)
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With this definition we can then state the Hasse-Minkowski theorem which applies to
non-degenerate quadratic forms.

Theorem D.2 (Hasse–Minkowski). Let f be a quadratic form over Q and for a prime
number p let fp be the form over Qp. Then f represents zero if and only if fp represents
zero for all prime numbers p including the prime at infinity.

Put differently, the theorem states that for f to have a global zero it is necessary and
sufficient for f to have a local zero at all places. We refer the reader to [287] for more
details and a proof of this theorem.
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http://dx.doi.org/10.1007/978-0-8176-8334-4_5.

[68] J. W. Cogdell, Lectures on L-functions, Converse Theorems, and Functoriality for GL(n).

[69] J. W. Cogdell and I. I. Piatetski-Shapiro, “Converse theorems for GLn,” Inst. Hautes
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pp. Exp. No. 346, 547–552. Soc. Math. France, Paris, 1995.

[321] P. C. West, “E(11) and M theory,” Class.Quant.Grav. 18 (2001) 4443–4460,
arXiv:hep-th/0104081 [hep-th].

[322] E. Witten, “String theory dynamics in various dimensions,” Nucl.Phys. B443 (1995)
85–126, arXiv:hep-th/9503124 [hep-th].

[323] D. Zagier, “Elliptic modular forms and their applications,” in The 1-2-3 of modular forms,
Universitext, pp. 1–103. Springer, Berlin, 2008.
http://dx.doi.org/10.1007/978-3-540-74119-0_1.

[324] A. V. Zelevinsky, “Induced representations of reductive p-adic groups. II. On irreducible
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