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The question of the uniqueness of energy-momentum tensors in the linearized general relativity
and in the linear massive gravity is analyzed without using variational techniques. We start from
a natural ansatz for the form of the tensor (for example, that it is a linear combination of the
terms quadratic in the first derivatives), and require it to be conserved as a consequence of field
equations. In the case of the linear gravity in a general gauge we find a four-parametric system
of conserved second-rank tensors which contains a unique symmetric tensor. This turns out to be
the linearized Landau-Lifshitz pseudotensor employed often in full general relativity. We elucidate
the relation of the four-parametric system to the expression proposed recently by Butcher et al.

“on physical grounds” in harmonic gauge, and we show that the results coincide in the case of
high-frequency waves in vacuum after a suitable averaging. In the massive gravity we show how
one can arrive at the expression which coincides with the “generalized linear symmetric Landau-
Lifshitz” tensor. However, there exists another uniquely given simpler symmetric tensor which can
be obtained by adding the divergence of a suitable superpotential to the canonical energy-momentum
tensor following from the Fierz-Pauli action. In contrast to the symmetric tensor derived by the
Belinfante procedure which involves the second derivatives of the field variables, this expression
contains only the field and its first derivatives. It is simpler than the generalized Landau-Lifshitz
tensor but both yield the same total quantities since they differ by the divergence of a superpotential.
We also discuss the role of the gauge conditions in the proofs of the uniqueness. In the Appendix,
the symbolic tensor manipulation software Cadabra is briefly described. It is very effective in
obtaining various results which would otherwise require lengthy calculations.

PACS numbers: 04.20.-q, 04.20.Cv, 04.25.Nx

I. INTRODUCTION

In relativistic field theories the most frequently used
method of constructing conserved quantities is based on
Noether’s theorems. If one starts from the Lorentz invari-
ant Lagrangian, one can employ its symmetries and form
(in general asymmetric) a canonical energy-momentum
tensor which can be symmetrized by adding the diver-
gence of a superpotential. Alternatively, one may rewrite
the Lagrangian in a manifestly covariant manner and ob-
tain, by inducing the variation of the metric by infinites-
imal coordinate transformations, the symmetric tensor
directly.

Although the quantities so derived are well established
and physically sound, there may exist other second-rank
tensors which may be useful just because they are con-

served as a consequence of the field equations. For ex-
ample, they may turn out to control the time evolution
of the Cauchy data more efficiently than “conventional”
expressions (e.g. the fourth-rank Bel-Robinson tensor
is used in the proofs of the global nonlinear stability of
Minkowski space). In addition, physical theories exist,
for which the field equations are not derivable from a
variational principle; this is the case with, for example,

the “already unified theory” of gravity and electromag-
netism by Rainich [1].

In the following, we consider, within linearized Ein-
stein’s theory and massive gravity, various second-rank
tensors involving fields and their first derivatives con-
served as the consequence of the field equations involv-
ing their second derivatives. Although we fully acknowl-
edge the significance of the expressions derived from the
variational principle as mentioned above, we take the lib-
erty to call sometimes such conserved second-rank ten-
sors “energy-momentum tensors” or “complexes” being
influenced, among others, by language used frequently in
general relativity.
The technique we use to construct expressions con-

served modulo field equations goes back to the work of
Fock. At the 1962 Warsaw conference on general rela-
tivity [2] and in the second (revised) edition of his influ-
ential monograph, Fock [3] summarized his work on the
uniqueness of the energy-momentum tensors of the elec-
tromagnetic field, of incoherent matter, and of a perfect
fluid in which a Lagrangian formalism is not used. The
uniqueness was proven assuming the energy-momentum
tensor is a symmetric tensor of the second order, formed
with the field variables, and conserved as a consequence
of field equations.

http://arxiv.org/abs/1602.04459v1
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Inspired by Fock’s work, one of us generalized this
method to the wave fields described by the equations
of the second order – neutral scalar meson field, vector
(Proca) field, linearized gravitational field and the grav-
itational field in full nonlinear Einstein’s theory [4], [5].
As one proceeds to more complicated theories, some sim-
plifying assumptions about the structure of the expres-
sions for the energy-momentum are made. In the case
of linearized Einstein’s equations when the metric ten-
sor, in a suitable coordinate system, can be written in
the form gik = ηik + hik, |hik| ≪ 1, the basic assump-
tion is that the energy-momentum tensor Tik depends
on 20 independent quantities quadratic in hik,l; however,
the symmetry of Tik was not assumed. Also, no spe-
cific gauge was chosen. It turned out that the resulting
expression conserved modulo linearized Einstein’s equa-
tions forms a four-parameter system. Among these, there
is the linearized Einstein’s complex; it is nonsymmetric
and can be derived from a Lagrangian. However, there
exists also a unique symmetric tensor which does not fol-
low from a variational principle. We show that it is the
linearized Landau-Lifshitz pseudotensor frequently used
in full general relativity and in approximation methods
going beyond the linear theory (cf. e.g. [6], [7], [8]).

Recently, Butcher et al. from the Cambridge Kavli
Institute for Cosmology published a series of papers on
“localized energetics of linear gravity” [9], [10], [11]. By
examining the transfer of energy and momentum between
local matter and the gravitational field within the lin-
earized theory, they constructed a symmetric energy-
momentum tensor of linearized gravity which exhibits
plausible physical properties and is quadratic in the first
derivatives hik,l; however, the whole framework leads
to the use of the harmonic gauge [9]. Later the same
authors extended their work to the study of the local-
ized angular momentum of linearized gravity [10]. They
also constructed a Fierz-Pauli Lagrangian for a mass-
less spin-2 field and made it covariant by introducing
the nonholonomic basis (tetrad) and connection which
in general led to nonflat backgrounds with torsion, cor-
responding to the Einstein-Cartan-Kibble-Sciama theory
treating the translational and rotational symmetries sep-
arately. By varying with respect to the tetrads and con-
nections they obtained the expressions [11] which in the
harmonic gauge reduce to the results found in [9], [10].
In this sense the expressions follow as Noether currents
associated with the symmetries under translations and
rotations.

The main motivations for the present paper have been
to find (i) relations between our past work [4], [5] to
the Landau-Lifshitz complex employed with an increas-
ing frequency in the literature (cf. e.g. the recent mono-
graph [8]), (ii) to give relations to new developments due
to the Cambridge group [9], [11] and (iii) to generalize our
method of studying the uniqueness of energy-momentum
tensors to the case of massive gravity. The massive grav-
ity has been studied with an “oscillatory interest” for the
past 70 years. It became popular again recently when it

was proven that the nonlinear theory of massive gravity is
ghost free [12], [13]; see also the reviews [14], [15]. Here,
we shall consider just the case of the linear Fierz-Pauli
theory; it represents the weak field limit of generic theo-
ries. As far as we are aware, no study of the uniqueness
of the energy-momentum tensor in massive gravity was
done so far. Last but not least, we wish to demonstrate
how long and tedious calculations which were necessary
to get results in [4], [5], and, also, how other procedures
like finding appropriate superpotentials can, at present,
be performed very effectively by the usage of symbolic
tensor manipulation software Cadabra.

The article is organized as follows. In the following
Sec. II we describe a general procedure of finding energy-
momentum tensors conserved as a consequence of a sys-
tem of equations of motion given by a system of partial
differential equations containing linearly second deriva-
tives of the second-rank tensor hik.

The important step in simplifying computations is to
consider, in Sec. III, Lorentz covariant expressions; this
does not mean any loss of generality. We construct a
general second-rank tensor quadratic in hik,l; it involves
20 free constant parameters. We discuss the conservation
of the tensor as a consequence of the field equations of
various types. It is here where the use of the Cadabra

software is indicated. More details are relegated to the
Appendix.

In Sec. IV, the method is generalized to the equations
of motion containing nonderivative terms hik which is the
case of the Fierz-Pauli theory of massive gravity.

It is well known that there may exist parts of energy-
momentum tensors which do not contribute to the total
quantities for insular systems with fields decaying suf-
ficiently rapidly at infinity. These “generalized” diver-
gences called superpotentials can be investigated again
by the modification of the method presented in the pre-
vious sections. In Sec. V a general expression with 13
arbitrary parameters is constructed and the form of the
master equation for the superpotential is given. It com-
bines the condition that the divergence of the superpo-
tential must yield the energy-momentum tensor as a con-
sequence of the field equations.

Sections VI and VII contain the results. Conserved
quantities in linearized gravity are discussed in Sec. VI.
First, a unique albeit nonsymmetric expression (and cor-
responding superpotential) without using equations of
motion is presented in Sec. VIA. It appears in a number
of subsequent expressions. Next, the linearized vacuum
Einstein’s equations are employed in Sec. VIB to ob-
tain a four-parametric family of energy-momentum ten-
sors quadratic in hik,l. The condition of symmetry leads
to the unique (up to a multiplicative constant) result
which is just the linearized Landau-Lifshitz pseudoten-
sor. We give also “the metric energy-momentum ten-
sor” (so automatically symmetric) which follows from the
variational principle and is covariantly conserved at any
background. However, it contains the second derivatives
hik,lm. In this first part of Sec. VI we proceed and find
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quantities conserved in a completely general gauge.

Within the linearized gravity we also investigate the
role of the harmonic gauge condition and generalized
gauge condition since we wish to analyze the uniqueness
of the energy-momentum tensor presented in [9]. Tak-
ing into account the harmonic gauge condition ab initio,
our procedure gives the five-parameter family of, gener-
ally nonsymmetric, conserved quantities. The condition
of symmetry leaves us with a three-parameter expres-
sion which contains the resulting tensor given in [9] as a
special case. However, starting from the unique symmet-
ric energy-momentum tensor obtained without any gauge
condition and applying then the harmonic gauge condi-
tion a posteriori, we do not arrive at the result in [9]. In
the most recent work [11], the authors rederive their sym-
metric tensor from a variational principle without a using
special gauge condition – they apply the harmonic gauge
condition a posteriori. The “initial” tensor obtained in
[11] is nonsymmetric; it follows as a special case from our
four-parameter family of energy-momentum tensors.

In [9] the authors start with a generalized gauge con-
dition, hab

,b = χh,a, where h = ηikhik = hi
i, and the

harmonic gauge condition is found to be a consequence
of their physical arguments leading to χ = 1

2 . Using
our procedure we also construct conserved expressions
for arbitrary values of χ. The case χ = 1 leads to
the four-parameter family and χ 6= 1 produces the five-
parameter family. The requirement that the resulting
energy-momentum tensor is conserved independently of
χ leads to a unique nonsymmetric expression.

Energy-momentum tensors for massive gravity stem-
ming from the equations following from the Fierz-Pauli
action are constructed in Sec. VII. Starting first with the
Klein-Gordon equation of the form �hik −m2hik = 0 in
Sec. VII A, we obtain a five-parameter family of con-
served expressions. If we add additional equations of
the Fierz-Pauli gravity, hab

,b = 0, h = 0, the system
of conserved energy-momentum tensors reduces to the
three-parameter family, and the condition of symmetry
yields a two-parameter family. However, we can arrive
at a unique expression in the following way. Rather than
from the Klein-Gordon equation for massive field hik, we
start from the field equation as it follows directly from
the Fierz-Pauli action. The resulting tensors are nonsym-
metric and form a two-parameter system. Nevertheless,
after inserting conditions hab

,b = 0, h = 0, and impos-
ing the symmetry of the energy-momentum tensor we
arrive at the unique expression. It is different from the
generalization of the linearized Landau-Lifshitz tensor to
the case of massive gravity but it yields the same total
quantities since both expressions differ by the divergence
of a superpotential. It also differs by the divergence of
a superpotential from the canonical energy-momentum
tensor derived from the variational principle based on
the Fierz-Pauli action.

II. THE METHOD OF FINDING A GENERAL

CONSERVED ENERGY-MOMENTUM

COMPLEX

We wish to construct a conserved energy-momentum
complex1 T ij for the linearized gravity which depends
quadratically on the first derivatives of the metric. So
we assume its form to be

T ij = tijabcrsthab,chrs,t, (1)

with tijabcrst being constant coefficients symmetric in
(a, b) and (r, s) and invariant with respect to the inter-
change of the triples (a, b, c) and (r, s, t). In vacuum it
has to satisfy the conservation law

T
ij
,j = 0 (2)

as a consequence of the equations of motion assumed,
just here, to be in the form

PA = pAmnophmn,op = 0; (3)

A is an arbitrary multi-index; p’s are constant coeffi-
cients. Using Lagrange multipliers λi

A these requirements
can be written as the following master equation

T
ij
,j = λi

AP
A (4)

which is assumed to be satisfied for arbitrary indepen-
dent field variables; hence the divergence of the energy-
momentum tensor is formed from a linear combination
of the field equations. Lagrange multipliers λi

A(x) are
in general functions of spacetime coordinates. Since
T

ij
,j = 2tijabcrsthab,chrs,tj , the Lagrange multipliers in

this case need to have the form

λi
A = Liabc

A hab,c, (5)

where L’s are constant coefficients. Writing master equa-
tion (4) in terms of coefficients t... and L...

A we have

(2tipabcmno − Liabc
A pAmnop)hab,chmn,op = 0. (6)

The last equation has to be satisfied for all hab and their
derivatives. Taking into account the obvious symmetries
we arrive at the condition

tip(ab)c(mn)o + tio(ab)c(mn)p − L
i(ab)c
A pA(mn)(op) = 0. (7)

Here () denotes symmetrization, [] used below – antisym-
metrization, both with 1

2 included. The final step in this
general method consists of eliminating Lagrange multi-
pliers Liabc

A employing known coefficients pAmnop and so
find the constants tijabcrst.

1 In full general relativity one cannot form a true energy-
momentum tensor – various nontensorial objects suggested are
called “complexes” or “pseudotensors” ([6], [7]). In their lin-
earized versions, however, they transform as tensors under
Lorentz transformations though they are not invariant under the

gauge transformation xi → xi′ = xi + ξi.
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III. LORENTZ COVARIANT THEORIES

Assuming that field equations and the corresponding
energy-momentum tensor are Lorentz covariant the pro-
cedure described above considerably simplifies. Raising
and lowering indices will be performed by the Minkowski
metric ηab. Now we just need to find all different con-
tractions of the term hab,chrs,t to produce a tensor of
rank two. The most general form of a Lorentz covariant
energy-momentum tensor quadratic in the first deriva-
tives of the metric then turns out to contain 20 parame-
ters a1,..., a20. It reads as follows:

Tik = a1hik,ah
ab

,b + a2hik,ah
,a + a3hia

,ahkb
,b

+ a4hia,bhk
a,b + a5hia,bhk

b,a + a6hia,kh
ab

,b

+ a7hka,ih
ab

,b + a8hia,kh
,a + a9hka,ih

,a

+ a10hia
,ah,k + a11hka

,ah,i + a12hia,bh
ab

,k

+ a13hka,bh
ab

,i + a14h,ih,k + a15hab,ih
ab

,k

+ a16ηikh,bh
bc

,c + a17ηikhab
,ahbc

,c + a18ηikh,bh
,b

+ a19ηikhab,ch
ab,c + a20ηikhab,ch

bc,a. (8)

In order to simplify the notation of some expressions
in the following we shall denote a term appearing at a
particular coefficient aα by Aα ik (α = 1,..., 20). The
energy-momentum tensor and its divergence can thus be
written as

Tik =

20
∑

α=1

aαAα ik, T ik,
k =

20
∑

α=1

aαAα ik
,k. (9)

Let us now consider various types of equations of mo-
tion, in a “tensorial form,” depending on the number of
their free indices, Pab = 0 (e.g., the case of the linearized
Einstein equations), Pa = 0 (e.g., the equations charac-
terizing gauge conditions or field equations in the case of
massive gravity), and P = 0 (the case of massive gravity).
In the first case we assume that Pab = Pba con-

tain linearly hmn,op. Regarding our ansatz for energy-
momentum tensor (8) the right-hand of the master equa-

tion (4) acquires the form λ
rsqab
i hrs,qPab. After taking

into account the Lorentz covariance and considering all
relevant symmetries we find, explicitly, the resulting con-
tribution to the master equation:

6
∑

β=1

λβLβi = λ1 h
,aPia + λ2 h

ab
,bPia + λ3 hib

,bP a
a

+ λ4 h,iP
a
a + λ5 hi

a,bPab + λ6 h
ab

,iPab;
(10)

here λβ are scalar Lagrange multipliers and Lα i denote
corresponding terms.
Analogously, we proceed in the case of the field equa-

tion with the vectorial form Pa = 0. For our purposes
we consider the field equations linear in hab,c. There-
fore, in the master equation there will appear the term

µ
mnopa
i hmn,opPa with the explicit form

6
∑

β=1

µβ Uβ i = µ1 h,b
bPi + µ2 hab

,abPi + µ3 hia
,abPb

+ µ4 hia,b
bP a + µ5 h,i

bPb + µ6 hab,i
aP b,
(11)

where µβ are scalar Lagrange multipliers and the indi-
vidual terms are labeled as Uα i.
Finally, consider the equation P = 0. Our linearity

condition and the general form of the energy-momentum
tensor restrict the possible choice just to P = ha

a
,b
b.

Nevertheless, in the master equation there will arise the
term κ

qrs
i hrs,qP leading to two covariant terms called

Kα i, with Lagrange multipliers κα:

2
∑

β=1

κβKβ i = κ1 hia
,aP + κ2 h,iP. (12)

Summarizing the previous considerations, we find the
master equation in the following general form

20
∑

α=1

aαAα ik
,k =

6
∑

β=1

λβLβ i +

6
∑

β=1

µβUβ i +

2
∑

β=1

κβKβ i.

(13)
As a result we obtain equations for unknowns aα, λβ , µβ ,
and κβ which have to hold for arbitrary field variables
hij . We rewrite them in the form of general equation
(6), though Lorentz covariance substantially reduces the
number of terms. As a consequence of the linear inde-
pendence of the terms hab,chmn,op, we can extract linear
equations for variables aα, λβ , µβ , and κβ . This extrac-
tion can be assisted by the use of the Cadabra software.
We illustrate its use in our context in the Appendix.

IV. THE CASE OF MASSIVE GRAVITY

Above, we considered the equations of motion contain-
ing linearly hab,c or hmn,op. We now generalize the pro-
cedure to allow field hab itself to be present linearly in
equations of motion as, for example, in the Klein-Gordon-
type equation hab,c

c − m2hab = 0, or in the Fierz-Pauli
equation hab,c

c−hac,b
c−hbc,a

c+. . .−m2 (hab − ηabh) = 0
which we shall consider in detail in Sec. VII.
In this more general case we assume the energy-

momentum tensor to contain not only quadratic terms
in the first derivatives of the metric but also the terms of
the form habhcd appropriately contracted to give a tensor
of rank two.2 There are just four terms of this type

4
∑

β=1

cβ Cβik = c1 hikh+ c2 hiah
a
k + c3 ηikh

2+ c4 ηikhabh
ab,

(14)

2 Notice that the terms of the form habhcd,e will not yield a tensor
of rank two.
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where Cβ ik just denote terms explicitly seen on the right-
hand side.3 Therefore, the general form of the energy-
momentum tensor we consider, in the case of massive
gravity, for example, will read as follows:

Tik =

20
∑

α=1

aαAα ik +

4
∑

β=1

cβCβ ik. (15)

Considering next the equation of motion we have now
to modify relation (3) into Pab = pab

mnophmn,op +
qab

mnhmn = 0. The character of equations of motion
assumed and our ansatz for the energy-momentum ten-
sor imply that the Lagrange multipliers are linear in the
first derivatives of hab, λ

i
ab = λirst

ab hrs,t.
In the case of the vector-type field equations, Pa =

0, we now get an additional contribution to the mas-
ter equation, νmna

i hmnPa, which leads to two covariant
terms labeled by Vα, with Lagrange multipliers να:

2
∑

β=1

νβVβ = ν1 ha
aPi + ν2 hi

aPa. (16)

For the scalar-type field equation, P = 0, a new term
P = ha

a can arise. It will appear in Sec. VII A.

V. SUPERPOTENTIALS

It is of interest to know whether some part of an
energy-momentum tensor can be derived from a so-called
superpotential. Under suitable boundary conditions this
part does not contribute to total quantities. We now
describe the general method of constructing superpo-
tentials, later we use it in specific cases. The energy-
momentum tensor Tik is generated by the superpotential
Uikl = Ui[kl] if the following master equation holds

U ikl,
l = Tik + λik

APA; (17)

i.e. the divergence of a superpotential gives the given
energy-momentum tensor and a linear combination of
field equations PA = 0 with multipliers λik

A. The anti-
symmetry in indices (k, l) then implies the conservation
law T ik

,k = U i[kl]
,(kl) = 0. The terms habhcd present

in the case of massive gravity cannot be produced by a
divergence; hence we will restrict our attention to ten-
sors Tik quadratic in the first derivatives of the metric,
hab,chde,f – these can be produced by the divergence of
terms of the form habhcd,e.
The requirement of the Lorentz covariance, the anti-

symmetry, and the structure of superpotential Uikl ∝

3 We did not consider these Cβ -terms in the previous section since
they would vanish anyway, because the equations of motion in-
volve only the second derivatives and whatever choice of multi-
pliers λ···

A
will not produce the terms habhcd,e occuring in T ik

,k
.

habhcd,e lead to a general expression with 13 parameters
as follows:

Uikl =
13
∑

α=1

uα Uα ikl = u1hi[khl]a
,a + u2hi[kh,l]

+ u3hiah
a
[k,l] + u4ha[khl]i

,a + u5h
a
i,[khl]a

+ u6ha[kh
a
l],i + u7hhi[k,l] + u8ηi[khl]ah

ab
,b

+ u9ηi[khl]ah
,a + u10ηi[khhl]a

,a + u11ηi[kh
abhl]a,b

+ u12ηi[khh,l] + u13habh
ab

,[kηl]i. (18)

Considering the equations of motion with two indices,
Pab, which contain linearly the second derivatives of field
variables hab, the Lagrange multipliers λik

ab will be pro-
portional just to hab. The resulting Lorentz covariant
expression for λik

abPab is

λik
abPab = λ1hikP + λ2hiaP k

a + λ3hkaP i
a

+ λ4hPik + λ5ηikhP a
a. (19)

In practice we are solving just the equations involving
the second derivatives hab,cd, i.e.

(

U ikl
,l
)

2nd derivatives
= λik

abPab. (20)

This restricts the coefficients uα in the general expression
(18). The resulting superpotential-generated tensors Tik

are then easily computed as Tik = U ikl
,l.

VI. CONSERVED QUANTITIES IN THE

LINEARIZED GRAVITY

In the first part of this section we find the second-
rank tensors constructed from the quadratic expressions
in hik,l and conserved as a consequence of the linearized
Einstein equations without choosing any particular gauge.
In the second part (Secs. VIB 3, VIB 4) we first impose
the harmonic and generalized harmonic gauges and look
for the expressions conserved under these conditions. In
this way we find, among others, under which conditions
we arrive at the results obtained by Butcher et al. [9],
[11].
It is well known that, in contrast to the linearized cur-

vature tensor, quantities involving the first derivatives
hik,l are gauge dependent. At the end of Sec. VI we note
that in the high-frequency case, after suitable averaging
introduced by Isaacson [16], [17], the expressions become
gauge invariant and can be calculated for all choices of
gauge.

A. Strongly conserved quantity

Let us first consider a possibility whether there exists a
combination of parameters ai for which the tensor (8) is
conserved identically, i.e., without using field equations.
It turns out that, indeed, such a tensor exists for the
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choice of constants ai vanishing except for a7 = −a13 =
−2a17 = 2a20. Denoting this one free parameter by α (=
a7 = . . . ), the resulting strongly conserved quantity is
uniquely given by

Tik = α

(

hka,ih
ab

,b − hka,bh
ab

,i −
1

2
ηikhab

,ahbc
,c

+
1

2
ηikhab,ch

bc,a

)

= αT
(strong)
ik , (21)

where, for future reference, we denoted the expression in

brackets as T
(strong)
ik .

This conserved tensor is generated by the superpoten-
tial

Uikl = α
(

ha[kh
a
l],i + ηi[khl]ah

ab
,b − ηi[kh

abhl]a,b

)

. (22)

B. Linearized vacuum Einstein’s equations

We now allow the divergence of the energy-momentum
tensor to be a general linear combination of the linearized
Einstein’s field equations: T ik

,k = λirsRrs, where Rrs is
the linearized Ricci tensor. The resulting tensor depends
on four free parameters which we denote α1, α2, α3, α4.
The relation between the constant parameters ai from
(8) and parameters αi is α1 = a9 = a15 = −2a19, α2 =
a7 = −2a17, α3 = −a11 = a14 = a16, α4 = a1 = −a3 =
a4 = a10 = −a12, a5 = a6 = 0, α1 − α3 = −a8, 2α1 +
α2 = −a13 = 2a20,

1
2α1 + α3 = −a16, α1 + α3 − α4 =

a2. The final form of a general tensor conserved as a
consequence of vacuum equations of linear gravity thus
looks as follows:

Tik = α1

(

hik,ah
,a − hia,kh

,a + hka,ih
,a − 2hka,bh

ab
,i

+ hab,ih
ab

,k −
1

2
ηikh,bh

,b − 1

2
ηikhab,ch

ab,c

+ ηikhab,ch
bc,a

)

+ α2 T
(strong)
ik +

α3

(

hik,ah
,a − hia,kh

,a − hka,
ah,i + h,ih,k

+ ηikh,bh
bc

,c − ηikh,bh
,b
)

+

α4

(

hik,ah
ab

,b − hik,ah
,a − hia

,ahkb
,b

+ hia,bhk
a,b + hia

,ah,k − hia,bh
ab

,k

)

. (23)

It involves a four-parameter freedom; one of the param-
eters can be fixed by the choice of units. A natural ques-
tion arises whether among these expressions there exist
quantities which are symmetric, Tik = Tki; this condition
imposes some restrictions on coefficients αi. We obtain
a unique (up to a multiplicative constant α) symmetric
tensor writing α1 = α, α2 = 0, α3 = −2α, α4 = 2α.
Putting αi’s into (23) we arrive at the final expression in

the form

T
(sym)
ik = α

(

2hik,ah
ab

,b − 3hik,ah
,a − 2hia

,ahkb
,b

+ 2hia,bhk
a,b + 2ha(i,k)h

,a + 4h,(ihk)a
,a

− 4hab,(ihk)
a,b − 2h,ih,k + hab,ih

ab
,k

− 2ηikh,bh
bc

,c +
3

2
ηikh,bh

,b

−1

2
ηikhab,ch

ab,c + ηikhab,ch
bc,a

)

. (24)

The four-parameter family of conserved quantities in
the linearized theory was in fact obtained in [4] already
without using Cadabra; however individual terms given
there contain a number of misprints4.

Notice that we could also start out from the “com-
plete” linearized Einstein’s equations Grs = 0, where Grs

is the Einstein tensor, and consider the master equation
T ik
,k = λirsGrs. The result, as expected, will not change;

it only leads to regular linear transformations of Lagrange
multipliers because of the following identity

λirsGrs = λ′ icdRcd, λ′ icd = λirs

(

δcrδ
d
s − 1

2
ηrsη

cd

)

.

(25)

If we look for superpotentials generating parts of the
conserved energy-momentum tensor in the linearized
gravity, we find that expressions multiplied by α2, α3,
and α4 can be expressed as a divergence of the following
expression:

Uikl = α2

(

ha[kh
a
l],i + ηi[khl]ah

ab
,b − ηi[kh

abhl]a,b

)

+

2α3

(

hhi[k,l] + ηi[khhl]a
,a − ηi[khh,l]

)

+

2α4

(

hi[khl]a
,a − hi[kh,l] + hiah

a
[k,l]

)

. (26)

Therefore, the general energy-momentum tensor (23) can
be written in the form

Tik = α1

(

hik,ah
,a − hia,kh

,a + hka,ih
,a − 2hka,bh

ab
,i

+ hab,ih
ab

,k −
1

2
ηikh,bh

,b − 1

2
ηikhab,ch

ab,c

+ ηikhab,ch
bc,a

)

+ U ikl
,l, (27)

where Uikl is given by (26), whereas the symmetric tensor

4 Denoting the parameters
i
α used in [4] by βi we obtain the

relationships between parametrization used above and in [4]:
α1 = 2β3, α2 = −2β4, α3 = β1, α4 = −β2. Condition of
symmetry yields β1 = 2β, β2 = 2β, β3 = −

1

2
β, β4 = 0.
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(24) can be written as

T
(sym)
ik = α

[

hik,ah
,a − hia,kh

,a + hka,ih
,a

− 2hka,bh
ab

,i + hab,ih
ab

,k −
1

2
ηikh,bh

,b

− 1

2
ηikhab,ch

ab,c + ηikhab,ch
bc,a

+ 4
(

hhi[k,l] + ηi[khhl]a
,a − ηi[khh,l]

− hi[khl]a
,a + hi[kh,l] − hiah

a
[k,l]

),l

]

, (28)

in which the terms in the round brackets form a super-
potential.

1. Energy-momentum tensor obtained by variational

principle

It is worth to mention the result indicated in the text of
a lecture in [5]. We start from the covariant Lagrangian
density for the tensor field hab representing linear pertur-
bations of the vacuum background spacetime metric gab.
It has the form

(−g)−
1

2L =
1

2
hab;ch

ab;c − 1

2
h;ah

;a + h;ah
ab

;b − hab;ch
bc;a,

(29)
where covariant derivatives are done with respect to the
background metric gab. The metric energy-momentum
tensor following from the variational principle reads

Tik =
2√−g

δL

δgik
= gik

(

1

2
hab;ch

ab;c − 1

2
h;ah

;a

− hab;ch
bc;a − h;abh

ab

)

− hab;ih
ab

;k + h;ih;k

− 2h;(ihk)a
;a + 4hab;(ihk)

a;b − 2hia;bhk
a;b

− 2hia;bhk
b;a + 2hik;ah

ab
;b + hik;ah

;a

+ 2h;a(ih
a
k) − 4ha(ihk)b

;ab + 2hik;abh
ab + hikh;a

a.

(30)

The resulting energy-momentum tensor contains the sec-

ond derivatives of field hab and, even with flat back-
ground, cannot thus be obtained by our procedure. How-
ever, it is worthwhile to notice that it is covariantly con-
served in a general background spacetime.

2. Linearized Landau-Lifshitz pseudotensor

Consider the Landau-Lifshitz energy-momentum pseu-
dotensor in the full general relativity (see e.g. [6], [7], [8])

16π (−g) tab = ĝab,c ĝ
cd

,d − ĝac,c ĝ
bd

,d +
1

2
gabgcd ĝ

ce
,f ĝ

fd
,e

− gcd ĝ
ce

,f

(

gaf ĝbd,e + gbf ĝad,e
)

+ gcdg
ef ĝac,eĝ

bd
,f +

1

8

(

2gacgbd − gabgcd
)

·

·
(

2gefgmn − gfmgen

)

ĝen,c ĝ
fm

,d, (31)

where gab is a spacetime metric and ĝab denotes
√−g gab;

g = det(gab). If we now use the linearization ansatz
gab = ηab + hab, g

ab = ηab − hab, where hab = ηacηbdhcd,
we find that ĝab,c = 1

2η
abh,c − hab

,c + O(h2). Writing
out the terms up to the second order in Landau-Lifshitz
pseudotensor (31), which is tedious but straightforward,
we get the symmetric energy-momentum tensor (24).

3. Harmonic gauge condition

We now wish to analyze the uniqueness of the energy-
momentum tensor suggested recently in [9]. Since there
the assumption of the linearized harmonic gauge condi-
tion

hab
,b =

1

2
h,a (32)

plays a fundamental role, we have to generalize the previ-
ous procedure to include this possibility. A similar condi-
tion will become the field equation in the case of massive
gravity considered in Sec. VII.

We could just add the gauge condition and its deriva-
tives multiplied by another set of Lagrange multipliers.
However, with this simple gauge condition our procedure
is equivalent to the following. First, regarding the gauge
condition (32), we replace all terms hab

,b appearing in gen-

eral expression (8) by 1
2h

,a. Then, we observe that some
terms in (8) will become equal: 2A1 = A2, 4A3 = 2A10 =
2A11 = A14, 2A6 = A8, 2A7 = A9, 2A16 = 4A17 = A18.
As a consequence of these relations some terms in (8) be-
come redundant which we take into account by putting
a1 = a3 = a6 = a7 = a10 = a11 = a16 = a17 = 0. Analo-
gously, we have to consider the derivatives of the gauge
condition (32) and thus replace the terms of type hab

,bc

by 1
2h,a

c.

Employing the linearized harmonic gauge in the field
equations implies a Ricci tensor equal to Rab = − 1

2hab,c
c,

Ricci scalar R = − 1
2h,c

c, and Einstein tensor 2Gab =

−hab,c
c + 1

2ηabh,c
c. Using Cadabra and some simple

rearrangements we arrive at a five-parameter tensor with
coefficients given by α1 = a2, α2 = a4 = −a12, α3 =
a9 = − 1

2a13 = a20, α4 = a14, α5 = a15 = −2a19, a8 =



8

−α1 − 1
2α2, a18 = − 1

4 (α1 + α3 + 2α4). Explicitly,

Tik = α1

(

hik,ah
,a − hia,kh

,a − 1

4
ηikh,bh

,b

)

+

α2

(

hia,bhk
a,b − hia,bh

ab
,k −

1

2
hia,kh

,a

)

+

α3

(

hka,ih
,a − 2hka,bh

ab
,i + ηikhab,ch

bc,a

− 1

4
ηikh,bh

,b

)

+ α4

(

h,ih,k −
1

2
ηikh,bh

,b

)

+

α5

(

hab,ih
ab

,k −
1

2
ηikhab,ch

ab,c

)

. (33)

Therefore, the energy-momentum tensors for the lin-
earized gravity with the harmonic gauge condition chosen
ab initio form a five-parameter system – hence, with one
additional free parameter as compared with the case not
involving any gauge condition. The above expression is
in general nonsymmetric. By putting − 1

2α2 − α1 = α3,
−α2 = −2α3, we arrive at the symmetric expressions
which form a three-parameter system. Introducing new
constant parameters by α = 1

2α1 = − 1
2α2 = −α3,

β = α4, γ = α5, we get the symmetric tensor in the
form

Tik =α

(

2hik,ah
,a − hia,kh

,a − hka,ih
,a − 1

4
ηikh,bh

,b

− 2hia,bhk
a,b + 2hia,bh

ab
,k + 2hka,bh

ab
,i

− ηikhab,ch
bc,a

)

+ β

(

h,ih,k −
1

2
ηikh,bh

,b

)

+

γ

(

hab,ih
ab

,k −
1

2
ηikhab,ch

ab,c

)

. (34)

The tensor suggested in [9] follows after choosing α = 0,
β = − 1

8 , γ = 1
4 . Hence, our procedure based just on

the linear gravity and harmonic gauge shows how the
energy-momentum tensor introduced by Butcher et al.
[9], [11] is contained in a larger (three-parameter) family
of conserved symmetric tensors. Accepting the physical
arguments presented in [9], [11], we arrive at the unique
expression.
Hence, our procedure shows that the energy-

momentum tensor introduced in [9] based on the lin-
earized gravity and harmonic gauge is not unique.
It is worth to emphasize that starting from the unique

symmetric energy-momentum tensor (24) derived with-

out any gauge condition we do not arrive at the tensor
proposed in [9] if we apply the harmonic gauge condi-
tion in the expression (24) a posteriori. In their most
recent work, Butcher et al. [11] rederive their symmetric
expression

8Tik = −h,ih,k + 2hab,ih
ab

,k +
1

2
ηikh,bh

,b − ηikhab,ch
ab,c

(35)
found in the harmonic gauge from a variational formula-
tion not involving a special gauge condition. They arrive

at the result [see (13a) in [11]]

4Tik = − 2hka,ih
ab

,b + hka,ih
,a + hka

,ah,i − h,ih,k

+ hab,ih
ab

,k − ηikh,bh
bc

,c + ηikhab
,ahbc

,c

+
1

2
ηikh,bh

,b − 1

2
ηikhab,ch

ab,c, (36)

which under the harmonic gauge condition turns into
their original result (35). Notice that (36) is not symmet-
ric. It is contained in our general form (23): we obtain
(36) by putting −2α1 = α2 = 2α3 = − 1

2 and α4 = 0 in
(23).
A general superpotential for linearized gravity in the

harmonic gauge reads as follows:

Uikl = α1

(

ha[kh
a
l],i +

1

2
ηi[khl]ah

,a − ηi[kh
abhl]a,b

)

+

2α2

(

hhi[k,l] −
1

2
ηi[khh,l]

)

+

2α3

(

−1

2
hi[kh,l] + hiah

a
[k,l]

)

. (37)

Hence, it can be obtained directly from (26) by imposing
the harmonic gauge condition.

4. Generalized gauge condition

The authors of [9] consider also the generalized gauge
condition of the form hab

,b = χh,a, where χ is a con-

stant parameter, which may be called a generalized (or
parametrized) harmonic condition. We wish to apply our
method also in this more general case. The resulting
Ricci and Einstein tensors now read 2Rbc = (2χ−1)∂bch−
∂a

ahbc and 2Gbc = (2χ−1)∂bch−∂a
ahbc−ηbc(χ−1)∂a

ah.
We follow the same procedure as in Sec. VIB3. Recall-
ing the consequences of the gauge condition applied anal-
ogously as before, we find that a1, a3, a6, a7, a10, a11,
a16 and a17 vanish. Next, we multiply the field equations
by Lagrange multipliers, write down the master equation,
and employ Cadabra. Observing the results we can eas-
ily eliminate a number of Lagrange multipliers except for
λ4 [cf. (10)]. Also, we find very simple relations for the
following constants: a5 = 0, a4 = −a12, a13 = −2a20,
a15 = −2a19. The remaining parameters entering the
problem have to satisfy four linear equations:

0 =χa2 + χa9 + a14 + 2a18 + a8(2χ− 1),

0 = a2 + a8 + a12(χ− 1),

0 = a14 + (χ− 1) [−a8 + 2λ4 + 2a19 − χa12] ,

0 = a9 − 2χa20 − 2a19(2χ− 1). (38)

Considering first χ = 1, the solution is simple: a9 =
2(a19 + a20), a2 = −a8, a14 = 0, a9 = −2a18. Introduc-
ing now four parameters αi and using the system (38), we
find α1 = a8 = −a2, α2 = a12 = −a4, α3 = a19 = − 1

2a15,
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α4 = a20 = − 1
2a13, a9 = −2a18 = 2α3 + 2α4. The con-

served energy-momentum tensor acquires the following
form

Tik =α1 (−hik,ah
,a + hia,kh

,a) + α2

(

−hia,bhk
a,b

+hia,bh
ab

,k

)

+ α3

(

2hka,ih
,a − 2hab,ih

ab
,k

− ηikh,bh
,b + ηikhab,ch

ab,c
)

+ α4

(

2hka,ih
,a

− 2hka,bh
ab

,i − ηikh,bh
,b + ηikhab,ch

bc,a
)

. (39)

The requirement of symmetry leads to the conditions
α1 = 2α3 + 2α4 and α2 = −2α4; i.e. it leaves us with a
two-parameter system.
For χ 6= 1, the system of equations (38) has the follow-

ing solution

a9 =2(2χ− 1)a19 + 2χa20, (40)

a2 = − a8 + (1− χ)a12, (41)

a14 =(1− χ)a8 + χ(χ− 1)a12 − 2a18

− 2χ(2χ− 1)a19 − 2χ2a20. (42)

Notice that the third equation in the system (38) can
just be used to express the multiplier λ4 and does not
restrict the form of the energy-momentum tensor. Let
us now introduce five parameters as follows α1 = a8,
α2 = a12 = −a4, α3 = a18, α4 = a19 = − 1

2a15, α5 =

a20 = − 1
2a13. Collecting all the previous results for the

coefficients ai [regarding also Eqs. (40), (41) and (42)] we
find the following expression for the energy-momentum
tensor when a generalized harmonic gauge condition is
used:

Tik =α1 (−hik,ah
,a + hia,kh

,a + (1 − χ)h,ih,k)+

α2

(

(1 − χ)hik,ah
,a − hia,bhk

a,b + hia,bh
ab

,k

+χ(χ− 1)h,ih,k) +

α3

(

−2h,ih,k + ηikh,bh
,b
)

+

α4 (2(2χ− 1)hka,ih
,a + 2χ(1− 2χ)h,ih,k

− 2hab,ih
ab

,k + ηikhab,ch
ab,c

)

+

α5

(

2χhka,ih
,a − 2hka,bh

ab
,i + ηikhab,ch

bc,a

− 2χ2h,ih,k

)

. (43)

The requirement of symmetry yields conditions α1 =
2(2χ − 1)α4 + 2χα5 and α2 = −2α5, so (43) becomes
a three-parameter system.
The resulting expression (43) is meaningful also for

χ → 1; however, we obtain the solution (39) for χ = 1
after choosing α4 = −2α3. The three-parameter system
of symmetric tensors for χ 6= 1 then goes over to the
two-parameter system.
Imagine we demand the independence of the result (43)

on the parameter χ, i.e., we require the same conserved
tensor for any χ. There are three terms that are χ depen-
dent: h,ih,k, hik,ah

,a, and hka,ih
,a. Writing out explicitly

the corresponding part of the energy-momentum tensor

we find

Tik = [(α1 − 2α3) + χ(−α1 − α2 + 2α4)

+χ2(α2 − 4α4 − 2α5)
]

h,ih,k +

[(α2 − α1) + χ(−α2)]hik,ah
,a+

[(−2α4) + χ(4α4 + 2α5)]hka,ih
,a + . . . (44)

Therefore, the resulting energy-momentum tensor will
be independent of χ if the coefficients satisfy α2 = 0,
α1 = 2α4, α5 = −2α4, forming thus a two-parameter
system. This tensor cannot be made symmetric. Fi-
nally, adding the condition that the χ-independent ten-
sor is conserved also for χ = 1, i.e. α4 = −2α3, we
obtain a unique nonsymmetric energy-momentum tensor
in linearized gravity with parametrized gauge condition
hab
,b = χh,a which is conserved for arbitrary χ. It reads

Tik = α
(

− 2hik,ah
,a + 2hia,kh

,a − 2hka,ih
,a

+ 3h,ih,k −
1

2
ηikh,bh

,b − 2hab,ih
ab

,k

+ ηikhab,ch
ab,c + 4hka,bh

ab
,i − 2ηikhab,ch

bc,a
)

.

(45)

5. High-frequency waves

In the physically most important case of high-
frequency waves propagating in vacuum, the quantities
quadratic in hik,l become gauge invariant after being
averaged suitably. This result goes back to the semi-
nal work by Isaacson [16], [17] which entered also clas-
sical textbooks; see [6], [7], for example. In general, the
condition requires the characteristic wavelength to be
short compared to the background curvature of space-
time. This is easily satisfied in the linear theory when
the background is flat. The “Brill-Hartle averaging” is
the appropriate technique of constructing the average of
an oscillating tensor field in a general background. (In
flat backgrounds, one can just average over one period
of oscillation in time and one wavelength of distance in
spatial directions; see [18], p. 254.) Under the change of
gauge, x → x′ = x+ξ, the perturbation h → h′ = h+∂ξ,
so

(∂h′)(∂h′) → (∂h)(∂h) + (∂h)(∂2ξ) + (∂2ξ)(∂2ξ), (46)

but the last two terms are negligible after averaging.
Moreover, since the averaging makes divergences small,
we may convert various products of (∂h)(∂h) into other
terms. For example,

hk
a,bhbi,a = −hka

,bahbi + (hk
a,bhbi),a, (47)

so after averaging and choosing the gauge with hab
,b =

0 (see below) this term drops out. In addition, in the
curved backgrounds in the high-frequency approximation
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the covariant derivatives commute (see [17], Sec. 4 and
the Appendix there for the details).
Regarding these results, it is clear that after averag-

ing, we may omit the divergence of the superpotential
in our general energy-momentum tensor (27) in the lin-
ear gravity. In addition, since the averaging makes the
resulting expressions gauge invariant we may choose a
simple gauge. Assuming that we are in a vacuum region
we may choose the Lorenz gauge in which hab

,b = 0 and
ha

a = 0 so that the harmonic gauge condition (32) is au-
tomatically satisfied. Then the terms involving h in (27)
drop out, and rewriting the fourth and last two terms
in (27) in the way indicated above and using the Lorenz
gauge, we arrive at the following simple expression:

〈Tik〉 = const · 〈hab,ih
ab

,k〉, (48)

where the brackets 〈 〉 denote the averaging; the same ex-
pression follows from the symmetric tensor (28). And it
is easy to see that the averaged energy-momentum ten-
sor introduced by Butcher et al [9], [11] leads to exactly
the same result. In fact, even in the case of a curved
vacuum spacetime the averaging of the “metric energy-
momentum tensor” (30) in the the generalized Lorenz
gauge hab

;b = 0, ha
a = 0 implies (48) with partial deriva-

tives replaced by covariant ones.

VII. MASSIVE GRAVITY

Finally, we turn to the case of the massive gravity in
a vacuum. We start from the Fierz-Pauli action for the
massive gravity (a massive spin-2 particle – see, for ex-
ample, [14]) described by symmetric tensor hab:

SFP =

∫

[

− 1

2
hab,ch

ab,c + hab,ch
bc,a − hab

,ah,b

+
1

2
h,ah

,a − 1

2
m2

(

habh
ab − h2

)

]

d4x. (49)

The equations of motion following from this action have
the form

δS

δhab
= hab,c

c − hac,b
c − hbc,a

c + ηabhcd
,cd + h,ab

− ηabh,c
c −m2 (hab − ηabh) = 0. (50)

The divergence of the last equation with respect to a free
index implies, for m 6= 0, hab

,b − h,a = 0. Substituting
back into (50) and making contraction in free indices we
find that the trace h has to vanish, h = 0. Equations
(50) are thus equivalent to the following set of equations:

hab,c
c −m2hab = 0, hab

,b = 0, h = 0. (51)

A. Klein-Gordon equation

Starting first just with the Klein-Gordon equation,

hab,c
c −m2hab = 0, (52)

we obtain the following five-parameter result for con-
served tensors: a1 = a3 = a5 = a9 = a11 = a16 = 0,
α1 = a7 = −a13 = −2a17 = 2a20, α2 = 1

m2 c1 =

a2 = −a8 = −a10, α3 = 1
m2 c2 = a4 = −a6 = −a12,

α4 = 1
m2 c3 = − 1

2a14 = a18, α5 = 1
m2 c4 = − 1

2a15 = a19,
where the meaning of the constants ci is explained in
(14) and (15). The explicit expression for the energy-
momentum tensor looks as follows:

Tik = α1 T
(strong)
ik +

α2

(

m2hikh+ hik,ah
,a − hia,kh

,a − hia
,ah,k

)

+

α3

(

m2hiahk
a + hia,bhk

a,b − hia,kh
ab

,b

− hia,bh
ab

,k

)

+

α4

(

m2ηikh
2 − 2h,ih,k + ηikh,bh

,b
)

+

α5

(

m2ηikhabh
ab − 2hab,ih

ab
,k + ηikhab,ch

ab,c
)

.

(53)

The five-parameter system (53) reduces just to a two-
parametric one with α1 = α2 = α3 = 0 if we require the
energy-momentum tensor to be symmetric.
Applying the additional conditions h = 0 and hab

,a = 0
on the resulting expression (53) we arrive at

Tik = α1

(

−hka,bh
ab

,i +
1

2
ηikhab,ch

bc,a

)

+

α3

(

m2hiahk
a + hia,bhk

a,b − hia,bh
ab

,k

)

+

α5

(

m2ηikhabh
ab − 2hab,ih

ab
,k + ηikhab,ch

ab,c
)

.

(54)

The requirement of symmetry implies α3 = α1, which
leads to the following expression

Tik = α1

(

m2hiahk
a + hia,bhk

a,b − hia,bh
ab

,k

− hka,bh
ab

,i +
1

2
ηikhab,ch

bc,a

)

+

α5

(

m2ηikhabh
ab − 2hab,ih

ab
,k + ηikhab,ch

ab,c
)

.

(55)

By choosing α1 = 1, α5 = − 1
4 , we obtain the “general-

ized” linearized Landau-Lifshitz pseudotensor:

T
(LL)
ik =

1

2
hab,ih

ab
,k −

1

4
ηikhab,ch

ab,c +
1

2
ηikhab,ch

bc,a

+ hia,bhk
a,b − hia,bh

ab
,k − hka,bh

ab
,i

+m2

(

hiahk
a − 1

4
ηikhabh

ab

)

. (56)

Putting m = 0 we recover the symmetric energy-
momentum tensor of the Einstein linearized theory (24)
after we substitute therein the second and the third con-
dition in Eq. (51); i.e. we obtain the standard Landau-
Lifshitz pseudotensor (31) linearized and with these two
conditions taken into account.
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If we use the same procedure as in Secs. VIB 3 and
VIB 4, i.e., we first apply the equations hab

,b = 0 and
h = 0 in the general form of energy-momentum tensor
(14) and (15), only nonvanishing terms are then A4, A5,
A12, A13, A15, A19, A20, C2 and C45. The resulting three-
parameter energy-momentum tensor is again (54).

B. A unique symmetric energy-momentum tensor

from the Fierz-Pauli equation

Finally, starting from the field equation (50) and gen-
eral form of energy-momentum tensor (14) and (15),
we find that the tensor is conserved modulo the Fierz-
Pauli equation (50) provided that the following relations
between the corresponding nonvanishing coefficients are
satisfied: α1 = a7 = −2a17, α2 = a9 = a11 = −a14 =
a15 = −a16 = 2a18 = −2a19 = 2

m2 c3 = − 2
m2 c4,

a13 = −α1 − 2α2, a20 = 1
2α1 + α2. These relations lead

to the following explicit form of the energy-momentum
tensor:

Tik = α1T
(strong)
ik + α2

(

hka,ih
,a + hka,

ah,i

− 2hka,bh
ab

,i − h,ih,k + hab,ih
ab

,k − ηikh,bh
bc

,c

+
1

2
ηikh,bh

,b − 1

2
ηikhab,ch

ab,c + ηikhab,ch
bc,a

+
1

2
m2ηikh

2 − 1

2
m2ηikhabh

ab

)

. (57)

Notice that this result, after putting m = 0, coincides
with the part of the energy-momentum tensor for the
linearized gravity (23). However, to see it, we must, be-
cause of a different parametrization, make the change
α1 → α2, α2 → α1, α3 → −α2, and α4 → 0 in (23);
then (57) follows. It is noteworthy to observe that the
inclusion of massive terms reduces the nonuniqueness of
resulting conserved tensors.

Curiously enough, the energy-momentum tensor con-
served as a consequence of the Fierz-Pauli equation in its
original form (50) cannot be made symmetric for any
choice of parameters α1, α2. However, applying dif-
ferential operations on the original Fierz-Pauli equation
(which give rise to the appearance of the third deriva-
tives) we know that Eqs.(51) are implied. Using the sec-
ond and the third equation of (51) the tensor (57) then

5 The terms vanishing due to the equations hab
,b = h = 0 can

be added with any coefficient to the resulting tensor, but if the
above field equations are satisfied the energy-momentum tensor
does not, of course, change.

turns into the following expression

T̃ik = α1

(

−hka,bh
ab

,i +
1

2
ηikhab,ch

bc,a

)

+

α2

(

−2hka,bh
ab

,i + hab,ih
ab

,k −
1

2
ηikhab,ch

ab,c

+ ηikhab,ch
bc,a − 1

2
m2ηikhabh

ab

)

. (58)

This tensor can be made symmetric by the choice α =
α2 = − 1

2α1 obtaining thus a unique symmetric tensor
for linear massive gravity in the form

T̄ik = α

(

hab,ih
ab

,k −
1

2
ηikhab,ch

ab,c − 1

2
m2ηikhabh

ab

)

.

(59)
Observe that the resulting unique symmetric tensor does
not coincide with the linearized Landau-Lifshitz pseu-
dotensor generalized to massive gravity. It is simpler.
It is interesting to compare the expressions (57)–(59)

with the standard results following from the variational
principle and Noether’s theorem. With the Lagrangian
density L determined by the Fierz-Pauli action (49) (with
a multiplicative constant omitted), the canonical energy-
momentum tensor

T i
k (can) = L δi

k − ∂L

∂hab,k

hab,i, (60)

turns out to be exactly the expression multiplied by α2

in (57). Substituting then from the second and the third
equation of (51) as before, we get

T
(can)
ik = hab,ih

ab
,k − 2hab,ihk

a,b + ηik

(

−1

2
hab,ch

ab,c

+ hab,ch
bc,a − 1

2
m2habh

ab

)

. (61)

Therefore, Eq. (58) can be written in the form

T̃ik = α1T
(strong)
ik + α2T

(can)
ik . (62)

Putting then α2 = − 1
2α1 we arrive at (59). Since the

first, strongly conserved part can be derived from the
superpotential (22), the total quantities can be evalu-

ated by using just T
(can)
ik . The same total quantities will,

of course, result also from the uniquely given symmet-
ric tensor (59). The “metric energy-momentum tensor”
following from the variational principle by the same pro-
cedure as the expression (30) was obtained, contains the
second derivatives ∂2h. The Belinfante procedure of the
symmetrization (i.e. the metric energy-momentum ten-
sor) in the case of higher spin fields gives rise to new
types of contributions to energy-momentum tensors, in
our case ∝ h ∂2h, absent in the lower spins. Our method
of a systematic construction of superpotentials enabled
us to find such an expression which makes the canonical
tensor symmetric and the tensor involves fields and their
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first derivatives only. The unique expression (59) follow-
ing from the Fierz-Pauli equation (action) is thus to be
preferred. Putting m = 0 and α = 1

4 in (59), we arrive
at the tensor (35) advocated in [9], with h = 0.
Finally, let us note that our simple symmetric tensor

(59) differs from the Landau-Lifshitz tensor (56) by the
divergence of a superpotential; hence, both expressions
lead to the same total (integrated) quantities provided
that the field falls off appropriately at infinity. Regard-
ing the superpotential (22) – which leads to the strongly
conserved tensor – and puting hab

,b = 0 and α = −1, it
reads

Uikl = ηi[kh
abhl]a,b − ha[kh

a
l],i. (63)

Introduce then another superpotential

Ūikl = 2hiah
a
[k,l], (64)

and use the first two field equations in (51) when evalu-
ating its divergence. As a result we find that

T
(LL)
ik = T̄ik +

(

U ik
l + Ū ik

l
)

,l
, (65)

where T
(LL)
ik is given by (56) and T̄ik by (59) with α = 1

2 .
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Appendix A: Cadabra

Cadabra is a computer algebra system designed for
solving the problems in field theory (see [19], [20]). Here
we used its effectiveness in manipulating complicated ten-
sor expressions. In particular with Cadabra software it
is easy to obtain equations for multiplicative coefficients
ai (and ci, λi,...) at specific covariant terms. In our case
this would be a very tedious task because of the over-
whelming number of terms. In Cadabra each term has
to be converted into its “canonical” form6. Grouping
the terms and collecting their coefficients generates a set
of linear equations as coefficients at each term have to
vanish in order to satisfy the master equation (13).

6 The concrete appearance of every term depends on internal work-
ing of Cadabra algorithms and the way of storing tensorial
structures.

To illustrate our use of Cadabra we shall briefly
describe the code which leads to the resulting energy-
momentum tensor (23) of the linearized gravity. We first
define tensor indices, metric tensor gab = ηab, field vari-
ables hab, and its dependence on the partial derivative:

{a,b,c,d,e,f,i,k,l#}::Indices.

{a,b,c,d,e,f,i,k,l#}::Integer(1..N).

g_{a b}::Metric. g^{a b}::InverseMetric.
g^{a}_{b}::KroneckerDelta.

g_{a}^{b}::KroneckerDelta.

h_{a b}::Symmetric.
\partial_{#}::PartialDerivative.

h_{a b}::Depends(\partial).

The next step is to insert the equation of motion Rbc =
0 and corresponding Lagrange multipliers forming the
right-hand side of the master equation (13):

EQM := \partial_{b a}{ h^{a}_{c} }

+ \partial_{c a}{ h^{a}_{b} }
- \partial_{b c}{ h_{a}^{a} }
- g^{a d} \partial_{a d}{ h_{b c} };

L:=(\lambda_1 g_{i}^{b}

\partial^{c}{h_{a}^{a}} + ... +
\lambda_6 \partial_{i}{h^{b c}}) @(EQM);

The following set of Cadabra commands converts all
terms into the canonical form:

@distribute!(%): @eliminate_metric!(%):

@eliminate_kr!(%): @prodsort!(%):
@canonicalise!(%): @rename_dummies!(%);

The last input is the general form of the energy-
momentum tensor:

EMT := A_{1} \partial_{a}{ h_{i k} }

\partial_{b}{ h^{a b} } + ... +
+ A_{20} g_{i k} \partial_{c}{ h_{a b} }

\partial^{a}{ h^{b c} };

Now we need to calculate its divergence and convert it
to its canonical form to obtain the left-hand side of the
master equation:

divEMT := \partial^{k}{ @(EMT) }:

@distribute!!(%): @prodrule!(%):
@unwrap!(%): @sumflatten!(%):

@eliminate_metric!(%): @eliminate_kr!(%):
@prodsort!(%): @canonicalise!(%):

@rename_dummies!(%);

Subtracting the computed terms and collecting the co-
efficients in front of canonicalized terms leads to the de-
sired linear equations determining the coefficients and
thus the conserved tensor:
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@(divEMT) - @(L):

@distribute!(%):
@factor_in!(%){A_{1},...,A_{20},

\lambda_1,...,\lambda_6};

Finally, the Cadabra output looks explicitly as fol-

lows:

1 := (A1 +A3 − λ2)∂
aha

b ∂b
chic + . . .+

(A15 + λ6)∂ih
ab ∂c

chab ; (A1)
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