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We explicitly confirm that spatially flat non–singular bouncing cosmologies make

sense as effective theories. The presence of a non-singular bounce in a spatially flat

universe implies a temporary violation of the null energy condition, which can be

achieved through a phase of ghost condensation. We calculate the scale of strong

coupling and demonstrate that the ghost–condensate bounce remains trustworthy

throughout, and that all perturbation modes within the regime of validity of the

effective description remain under control. For this purpose we require the perturbed

action up to third order in perturbations, which we calculate in both flat and co-

moving gauge–since these two gauges allow us to highlight different physical aspects.

Our conclusion is that there exist healthy descriptions of non–singular bouncing

cosmologies providing a viable resolution of the big–bang singularities in cosmological

models. Our results also suggest a variant of ekpyrotic cosmology, in which entropy

perturbations are generated during the contracting phase, but are only converted

into curvature perturbations after the bounce.
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I. INTRODUCTION

Almost a hundred years ago the discovery that the universe is expanding brought about a

major paradigm shift in cosmological thinking: the universe is not static and eternal, but it

evolves and consequently it has a history. But the expansion of the universe also brought with

it a whole series of puzzles, the most famous one being the big bang singularity. Indeed,

the equations of general relativity, together with certain assumptions about the matter

content of the universe (in particular that it should obey the null energy condition, which is

the assumption that the sum of energy density ρ and pressure p is positive) imply that the

current expanding phase must be preceded by a singularity at which the spacetime curvature

blows up and where general relativity predicts its own breakdown [1]. A general expectation

is that quantum effects, and in particular quantum gravity, will be able to resolve this

singularity and shed light on the physics of the big bang – a recent attempt in this direction
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is, for instance, provided by [2]. However, there remains the interesting possibility that the

big bang might already be resolved at the classical level, via a relaxation of the assumptions

inherent in the singularity theorems. For example, one can obtain non-singular solutions in

which the universe bounces instead of crunches when the null energy condition is violated

[3–5]. Such solutions are of great intrinsic interest, but one may also hope that they capture

salient features of quantum resolved singularities (an example of this is provided by [6, 7]).

Regardless of whether that will turn out to be the case, these solutions are appealing because

they allow physical phenomena to remain fully calculable, all the way through the bounce.

This is of obvious interest for cosmology, as it allows one to ask questions such as: could

there have been a phase of cosmological evolution before the expanding phase (that is, before

the big bang)? If so, what can we find out about this pre-expansion phase? How does it

influence the post-bounce evolution?

These questions must be addressed within the context of particular models. It was long

believed, for example, that violations of the null energy condition go hand in hand with the

appearance of ghosts. If this were the case, the theory would be subject to a fatal growth

of instabilities, and its solutions would not be trustworthy. In recent years, new matter

models have been discovered, for example, the ghost condensate [8] and Galileons [9–11],

which in certain circumstances allow for violations of the null energy condition without the

appearance of ghosts. This is already very encouraging, but nevertheless other instabilities

might appear under such extreme conditions. In this context, it is important to realize

that these matter models are formulated as effective theories. In order to determine their

reliability it is, therefore, crucial to know their range of validity. This is the topic of the

present paper – to find out when the effective description is valid, and when it is not. This

turns out to be directly related to the cosmological questions alluded to above. In particular,

we want to answer the question: can a specific class of smooth, non–singular bounces be

trusted–not only at the classical level but when fluctuations in the associated scalar fields

and metric are included?

In this paper, we will focus on bounces caused solely by a ghost condensate. We do this

because not only do such models have the crucial property of allowing for ghost–free viola-

tions of the null energy conditions, but they are technically much simpler than pure Galileon

models and mixed Galileon/ghost condensate theories. Also, ghost condensate bounces have

been used in several cosmological models of interest, starting with the pre-inflationary model
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of Creminelli et al. [12] and the new ekpyrotic cosmology of Buchbinder et al. [3] (see also

[4]), and even have been found useful in quantum cosmology [13]. Furthermore they can be

embedded into supersymmetry [14] and supergravity [15–17]. Specifically, in the first part

of [17] we constructed classical bounce cosmologies based on a single real scalar field whose

kinetic terms are a ghost condensate coupled to a generalized third-order (L3) Galileon. The

scalar also possessed a potential energy of the ekpyrotic type. We analyzed the classical dy-

namics of this system in a flat Friedmann-Lemaitre-Robertson-Walker (FLRW) spacetime.

We then went on to show that theories of this type can be generalized to N = 1 local

supersymmetry. However, in this paper we will focus solely on the non-supersymmetric

theory. Furthermore, for specificity and simplicity, we will also set the coefficient of the

Galileon term to zero – that is, we will consider a scalar field with a pure ghost condensate

kinetic term and an ekpyrotic potential in flat FLRW spacetime. To make this paper as

self-contained as possible, we review the non-supersymmetric part of [17] in the beginning

of the next section – focussing specifically on the classical bounce solution arising from a

pure ghost condensate.

Having presented this non-singular, classical bouncing cosmology, we recognize that it is

essential to discuss both scalar and metric linearized perturbations in this background. This

analysis is required to ensure that these perturbations do not develop large amplitudes that

could disrupt the evolution of the bounce. In previous work with L. Battarra [18], we in-

vestigated linearized perturbation theory for non–singular ghost condensate bounces where

a (sub-dominant) Galileon term was also added. We demonstrated that long-wavelength

co-moving curvature perturbations pass through ghost condensate bounces essentially un-

changed. This remains true despite the fact that during the bounce phase the speed of

sound squared c2s becomes negative. For long-wavelength modes one can argue that the

bounce occurs on a length/time scale that is so short that this cannot possibly influence the

long-wavelength modes that are relevant for observations in ekpyrotic models. However, this

same argument suggests that short-wavelength modes–that is, modes whose wavelengths are

much shorter than the scale of the bounce–can grow significantly during the bounce phase.

This leads to the first of three important questions. The first is:

• Can the growth of these short sub-horizon co-moving curvature modes disrupt the bounce?

The quadratic action for the co-moving curvature perturbation contains terms that are

proportional to 1/H, where H is the Hubble rate. At the bounce, the Hubble rate passes
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through zero and, thus, there is an apparent singularity. However, it was shown in [18]

that this is really only “apparent”. An appropriate analysis reveals that the quadratic

action is actually completely well-behaved and non-singular through the bounce. However,

in determining the validity of the effective theory we will have to calculate the action to

cubic order in fluctuations. This will again contain terms involving inverse powers of the

Hubble rate. This leads to the second important question:

• Will the 1/H terms in the cubic action just be “apparent” singularities, or do they signal

the breakdown of the perturbative description?

Within the context of inflation and the calculation of non-Gaussianities, the cubic action

for perturbations has been calculated for a wide range of models, including ghost condensate

models [19]. The actions typically contain terms that are proportional to 1/c2s, that is, terms

that are inversely proportional to the speed of sound squared. As described above, the speed

of sound squared becomes negative in the vicinity of the bounce, implying that it passes

through zero both before and after the bounce. Hence, there is a third important question:

• It would appear that the cubic action becomes infinite at the moments when c2s = 0,

signaling the breakdown of the effective theory. Is this true – or are these singularities only

“apparent”, disappearing upon careful calculation of the cubic action?

We emphasize that all of the conclusions – and questions – just presented remain true

even in the case when the coefficient of the Galileon term is set to zero. Again, to make this

paper as self-contained as possible, we will review the above theory and questions in the

second part of the next section – focussing specifically on both scalar and metric linearized

perturbations within the specific context of the classical bounce solution arising from a pure

ghost condensate.

Having specified the results in [17] and [18] within the context of the pure ghost conden-

sate theory, the bulk of this paper is devoted to examining this theory so as to answer all

three of the above puzzles. We do this by calculating the strong coupling cut-off of the ghost

condensate theory. We show that it can be significantly above the scale of the bounce – so

that the bounce solution can be trusted – while still being low enough so that the dangerous

short wavelength modes described above lie outside the range of validity of the effective

theory. Hence, these modes can be disregarded. We also find that apparent singularities in

the cubic action can be resolved by a careful calculation of the perturbative action. Our

conclusion will be: there exist healthy descriptions of non-singular bounces, which can be
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used to replace the big bang singularity in cosmological models.

Finally, we note that the notation used in [17] and [18] is not entirely uniform. Further-

more, some of the notation used in those papers does not conform with more “standard”

notation in the cosmological literature. In order to make this paper completely consistent

throughout, we use a uniform, standard notation in all of the following analysis. The relation

of this notation to that used in [17] and [18] should be self-evident.

II. THE COSMOLOGICAL MODEL

The bounce model we consider in this paper consists of a single real scalar field φ with

non-canonical kinetic terms and a potential V (φ). It is identical to the model discussed in our

two previous papers [17, 18] on bouncing cosmology, with the important exception that–for

simplicity–we have set to zero the contribution from the Galileon term. In “natural” units

– defined by 8πG = M−2
P = 1, where MP is the “reduced” Planck mass – the Lagrangian is

given by

L =
√
−g
(R

2
+ P (X,φ)

)
, (1)

where R is the Ricci scalar and

P (X,φ) = κ(φ)X + q(φ)X2 − V (φ) (2)

with X ≡ −1
2
gµν∂µφ∂νφ. Since there are at most single derivatives acting on fields in the

Lagrangian, it is clear that the equations of motion will be of second order. The explicit

forms of the functions κ, q, V are chosen as follows.

First, we take the kinetic function κ(φ) to be equal to unity everywhere except as it

approaches the origin of φ, where it smoothly switches sign; becoming −1 precisely at

φ = 0. We use the specific form

κ(φ) = 1− 2

(1 + 2κ̄φ2)2
, (3)

where κ̄ denotes a parameter that controls the width in field space over which the kinetic term

switches sign. This form is chosen so as to allow for a simple supersymmetric extension – see

[17]. The function q(φ) controls the strength of the term that is the square of the ordinary
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kinetic term. It is chosen to interpolate between 0 and a positive constant q̄ in precisely the

same interval where the ordinary kinetic term switches sign. We take

q(φ) =
q̄

(1 + 2κ̄φ2)2
, (4)

where, again, we have chosen a functional form that allows for a simple supersymmetric

extension. It is crucial that this function is already non-zero when κ(φ) passes through

zero, otherwise a singularity would develop at this point. Both functions κ(φ) and q(φ) are

illustrated in Fig. 1(a) for the choice

κ̄ =
1

4
(5)

which, for specificity, we will employ for the remainder of this paper. We should emphasize

that the specific functions written out above are chosen for convenience of supersymmetriza-

tion only–there is, in general, considerable freedom in their choices and, in particular, the

functional forms of κ and q need not be related in as simple a manner as they are in our

example. What is important, however, is that at φ = 0 the kinetic part of P (X,φ) simply

be

P (X, 0) = −X + q̄X2, (6)

that is, the canonical form for the “ghost condensate” [8]. It follows that in an interval

containing φ = 0 the so-called null energy condition (NEC) is violated, thus enabling a

“bounce” from a contracting to an expanding spacetime. Momentarily restoring mass di-

mensions in the Lagrangian density (2), we see that q̄ has mass dimension -4. It follows that

the ratio of the horizon length at the bounce to the “reduced” Planck length is ∼ MP q̄
1/4.

In order for the horizon length to be sufficiently “classical”, we want this ratio to be

MP q̄
1/4 & 102 , (7)

corresponding to a horizon mass of at most order 1016 GeV. Returning to natural units, we

henceforth, for specificity, take the horizon mass to be exactly order 1016 GeV and, therefore,

choose

q̄ = 108. (8)
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Figure 1. Graphs of the functions entering the scalar field Lagrangian. (a) The blue curve shows

κ(φ) while the yellow curve shows the normalized function q(φ)/q̄, both with κ̄ = 1/4. (b) The

ekpyrotic potential (9) with V0 = 100, λ = 3, φek−end = 15, c(φ) = 3. The ekpyrotic phase starts

at large positive φ, with the field rolling down the potential towards smaller values of the field.

Around φek−end the potential starts to come back up to zero, and is irrelevant from then on. In

this model, the bounce occurs at small values, φ ≈ 0.

The potential function V (φ) is taken to be an ekpyrotic potential [20] of the form

V (φ) = −V0v(φ)e−c(φ)φ, (9)

where V0 is a positive constant, c(φ) is a slowly varying function of φ, with c(φ) >
√

6 over

a significant field range, and v(φ) is a function chosen so that the potential turns off for

φ < φek−end. One can take, for example, v(φ) = 1
2
[1+tanh(λ(φ−φek−end))] for some positive

constant λ – see Fig. 1(b).

Throughout this paper, we will take the spacetime background to be a flat FLRW uni-

verse. In “physical” time t the metric is given by

ds2 = −dt2 + a(t)2δijdx
idxj . (10)

We will denote derivatives with respect to the (background) physical time by ˙ ≡ d
dt

. The

equations for the energy density, pressure and the field φ are given by

3H2 = ρ = 2XP,X − P , (11)

Ḣ = −1

2
(ρ+ p) = −XP,X , (12)

0 = P,φ − P,X(φ̈+ 3Hφ̇)− P,XX φ̈φ̇2 − P,Xφφ̇2 . (13)
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Figure 2. (a) The scale factor around the time of the bounce as a function of physical time t

minus tb, where tb denotes the time of the bounce (H(tb) ≡ 0). Our numerical evaluation starts

at φ0 = 17/2 with φ̇0 = −10−9, a0 = 1 and H0 is determined by the Friedmann equation. We

are using the parameters κ̄ = 1/4, q̄ = 108. The figure shows a zoom-in on the most interesting

time period, namely that of the bounce. One can clearly see that the bounce is smooth. (b) The

evolution of the scalar field φ during the bounce phase. The approximately linear evolution near

φ = 0 corresponds to the ghost condensate phase which is responsible for the bounce.

These equations were analyzed in [17], where we found that at large positive values of

φ the universe starts to undergo an ekpyrotic contraction phase. During this phase, the

kinetic term is approximately canonical and the universe contracts slowly. For c >
√

6 in

the potential (9), the equation of state of the scalar field satisfies w = p/ρ > 1 – thus

suppressing anisotropies [21]. Around φ = φek−end, the potential bottoms out and rises

back up to zero. At that time, the universe goes over into a kinetic phase; that is, a phase

where the energy density is dominated by the kinetic energy of the scalar field and the

potential becomes irrelevant. Subsequently, the ordinary kinetic term switches sign while

the higher-derivative term proportional to X2 is switched on simultaneously. The effective

ghost condensate (P ∼ −X + q̄X2) leads to a brief violation of the NEC, such that the

universe undergoes a “bounce” at small values of φ from a contracting to an expanding

phase. After the bounce, the universe is in a standard expanding phase, where the kinetic

term once again becomes canonical. We are assuming that reheating takes place around the

time of the bounce, and that this causes the universe to become filled with radiation. The

ordinary hot big bang cosmological model follows.

Figs. 2 - 3 present an explicit numerical example of the bounce phase. Here, and in the

remainder of this paper, we will choose for convenience and specificity the initial conditions
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Figure 3. The sum of energy density and pressure during the bounce phase. When this quantity

goes negative, the null energy condition is violated. This is a necessary condition for a non-singular

bounce in a flat FLRW universe, as is clear from inspecting Eq. (12).

for our differential equations to be1

φ0 =
17

2
, φ̇0 = −10−9, a0 = 1 . (14)

The numerical evaluation is started after the ekpyrotic phase has come to an end; that is,

at the time when the kinetic phase is underway and about to go over into the bounce phase.

As the figures show, a smooth bounce is obtained during the time period that the NEC

is violated. Furthermore, we note from Fig. 2(b) that during the time that the NEC is

violated, the scalar field evolves almost exactly linearly with time–this is a characteristic

feature of ghost condensation. A detailed analysis in [17] shows that during the bounce

period, when the scalar field reaches its highest velocity, our effective field theory treatment

remains consistent and applicable. We conclude that a smooth, singularity free solution of

the “classical” field equations of Lagrangian (2) corresponding to a bounce from a contracting

to an expanding flat FLRW spacetime exists and is trustworthy.

But what about quantum fluctuations in the scalar field and the metric? Could such fluc-

tuations have pathologies that preclude a consistent, singularity free bouncing cosmology?

A study of the quantum perturbations of the scalar field and the scalar components of the

metric in this class of bounce spacetimes was carried out in [18]. Specifically, we addressed

the question of the evolution of gauge invariant co-moving curvature perturbations of vari-

1 These initial conditions are equivalent to those used in our earlier papers [17, 18], but where φ̇0 is re-scaled

in accordance with the re-scaling of the ghost condensate mass from q̄ = 1 to q̄ = 108. We also point

out that, given that a0 = 1, the time derivative of φ takes the same numerical value in physical time,

conformal time and harmonic time at that initial moment.
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ous wavelengths through the non-singular bounce cosmology presented above. To keep the

notation in this paper consistent, we will analyze the results in [18] using “natural” units

and the Lagrangian density given in Eqs. (2)-(5). We will also choose the constant q̄ = 108

as specified in (8) above.

The linearized (Fourier space) equation for the gauge invariant curvature perturbation R

is given by [17, 18]

R̈+

(
2
ż

z
+H

)
Ṙ+ c2s

k2

a2
R = 0 , (15)

where k denotes the co-moving wavenumber (k/a thus being the physical wavenumber) and

we use the definitions

z2 = a2
Σ

H2
, (16)

Σ = P,XX + 2P,XXX
2 , (17)

c2s =
P,XX

Σ
. (18)

The quantities c2s and z2 are plotted in Fig. 4. We note that z2 appears as the coefficient

of the kinetic term of R in the perturbed action at quadratic order [17] (this action will be

re-derived in section IV) and, thus, its positivity is essential to ensure the absence of ghosts.

The plot in Fig. 4(a) confirms the positivity of z2 and thus the absence of ghost fluctuations

in this background spacetime. However, z2 blows up at the bounce since the denominator

of (16) passes through zero when H = 0. Thus at the moment of the bounce the equation

of motion for R becomes singular. This singularity turns out to be entirely harmless, but

it motivated us to analyze the fluctuations in this bouncing spacetime in a manifestly non-

singular manner in our earlier paper [18]. Fig. 4(b) shows the time evolution of the speed of

sound squared c2s. During the phase where the NEC is violated, c2s becomes negative, which

is a signal of a gradient instability. Thus the last term in Eq. (15) switches sign, and will

admit growing (as opposed to oscillatory) solutions. For long-wavelength modes (small k)

one may argue that this effect can be ignored, but for short-wavelength modes (large k)

one may fear that the perturbation modes become amplified to such an extent as to disrupt

the background evolution. In order to circumvent the singularity of z2 and to investigate

the behaviour of the curvature perturbations across the bounce, we performed a calculation

in harmonic gauge in [18], where the evolution of the curvature perturbations is entirely
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Figure 4. (a) Evolution of z2 and (b) of the speed of sound squared in the non-singular bounce

background. The positivity of z2 demonstrates the absence of perturbative ghost fluctuations, while

the brief period over which c2s becomes negative indicates the presence of a gradient instability.

non-singular. For completeness, we repeat some of the main results here. As just stated, it

is useful to adopt harmonic gauge, in which the coordinates satisfy the defining relation

Γµ = gρσΓµρσ . (19)

For the background, this relation can be satisfied by choosing a “harmonic” time coordinate

th defined by

dt = a(th)
3dth . (20)

It follows that the flat FLRW metric becomes

ds2 = −a(th)
6dt2h + a(th)

2δijdx
idxj (21)

while the associated background scalar field is

φ = φ(th) . (22)

The specific classical bounce solution discussed above is easily re-expressed in harmonic

time. We then write the generic linearized scalar perturbations of our background fields as

ds2 = −a6(1 + 2A)dt2h + 2a4B,i dth dxi + a2
[

(1− 2ψ) δij + 2E,ij

]
dxidxj , (23)

φ = φ(th) + Φ(th, x) , (24)
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where, for the sake of clarity, metric and scalar field perturbations are written in boldface.

Furthermore, if one chooses the constraints

0 = A′ + 3ψ′ + k2
(
E′ − a2B

)
, (25)

0 =
(
a2B

)′
+ a4

(
A− ψ + k2E

)
(26)

where ′ ≡ d
dth

, then the perturbed metric continues to satisfy condition (19). This defines

the “harmonic” gauge for the perturbation calculation.

The differential equations, the initial conditions and numerical solutions for the pertur-

bation variables A, B, ψ, E and Φ in harmonic gauge were completely analyzed in [18].

Using these results, and the definition

R ≡ ψ +
H
φ′

Φ , (27)

we obtained singularity free expressions for the co-moving gauge invariant perturbations

R as they enter from the contracting phase, pass through the bounce, and then exit into

the expanding phase. This was accomplished for a wide range of initial parameters in the

classical effective field theory–including a non-zero Galileon term. For the initial parameters

being used, for specificity, in this paper – that is, no Galileon term and

κ̄ =
1

4
, q̄ = 108, φ0 =

17

2
, φ′0 = −10−9, a0 = 1 (28)

the results are plotted in Fig. 5 for co-moving wavenumbers k in the range 10−12 − 10−6,

alongside a plot of the horizon size.

The long-wavelength modes k = 10−12, 10−11, 10−10 are super-horizon at all times except

in the close vicinity of the bounce. Hence they can be described classically. These modes

can be seen in Fig. 5(a) to remain constant to high precision, and show explicitly that the

bounce occurs on a time-scale that is too short to affect them. This means, in particular,

that the modes of interest for cosmological perturbations – that is, modes that left the

horizon about 50 to 60 e-folds earlier during the ekpyrotic phase and thus corresponding to

wavenumbers k ∼ 10−30 – pass through the bounce unchanged. This was the main finding

in [18] and is of crucial importance in comparing the predictions of bouncing cosmologies to

observations. For k = 10−9, 10−8, 10−7 one can see from Fig. 5(b) that these modes leave
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Figure 5. (a) The evolution of the co-moving curvature perturbation Rk for various co-moving

wavenumbers k in the range 10−12−10−6, in the bouncing background of Figs. 2 - 4 and expressed

as a function of harmonic time th, with th,b denoting the time of the bounce. This figure is

adapted from [18]. The initial conditions for the perturbations are chosen to correspond to the

Bunch-Davies state appropriate for super-horizon perturbations, in particular Rk ∝ k−3/2. Long-

wavelength modes evolve essentially unchanged across the bounce. (b) The horizon size 1/|H|
(in black) vs. the various physical wavelengths a/k of the perturbation modes. Modes with

wavenumbers k ≤ 10−7 leave the horizon before the bounce, while shorter wavelength modes

remain sub-horizon throughout. The red dotted line corresponds to a wavelength a factor of 2

smaller than the minimum horizon size reached during the bounce phase. Its significance will

become clear in section III.

the horizon only shortly before the bounce. For these wavenumbers a classical description

is still fairly appropriate, and they are also little affected by the bounce.

We strongly emphasize, however, that one cannot simply ignore the behavior of shorter-

wavelength modes. For modes with k & 10−6 the negativity of c2s during the bounce phase

becomes increasingly relevant – see Fig. 6 which shows examples of the behavior of short-

wavelength modes during the brief time period when the NEC is violated. These short-

wavelength modes remain sub-horizon into the NEC violating phase (of course, right near

the bounce all modes become briefly super-horizon since 1/|H| momentarily blows up) and

thus a classical description is inappropriate. However, as Fig. 6 shows, these modes become

increasingly amplified. For instance, the mode with k = 10−4 gets amplified by about 10

orders of magnitude, while the mode with k = 10−3 gets amplified by nearly 100 orders of
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(b) Amplification of Short Modes

Figure 6. (a) The curvature perturbation modes Rk near the time of the bounce, expressed

as functions of physical time t. The initial conditions for these sub-horizon modes are taken to

correspond to the early time limit of the Bunch-Davies state, in particular Rk ∝ k−1/2. The period

of NEC violation extends from about t = −8000 to t = +14000, as can be seen from Fig. 3. During

this time period short modes with wavenumber k ≥ 10−5 are seen to be amplified significantly.

(b) The same plot, but with an expanded vertical scale. The mode with wavenumber k = 10−3

(and thus with a physical wavelength more than 3 orders of magnitude smaller than the minimum

horizon size) is seen to be amplified by almost 100 orders of magnitude near the bounce.

magnitude! Such an enormous amplification makes one wonder whether these modes render

a classical description of the background bouncing spacetime untrustworthy. In other words,

a large amplification of short-wavelength modes may be interpreted as significant particle

production – this can potentially invalidate the bounce solution, which was obtained by

solving the equations of motion in the absence of such additional matter.

Even though the numerical solutions shown in the figures were obtained via calculations

in harmonic gauge, we explicitly demonstrated in [18] that the results are gauge invariant,

as they should be. Thus, instead of calculating ψ and Φ first (as above), we may obtain

an estimate for the amplification by analyzing directly the equation of motion (15) for the

curvature perturbation R, which leads to the approximate solution

Rpost-bounce ∼ exp

(
k

∫
c2s<0

|cs|
a

dt

)
Rpre-bounce ∼ ek/k?Rpre-bounce . (29)

For the classical background considered here, numerical integration gives k? ' 9 × 10−5.
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This equation thus gives a quasi-analytic explanation for the results shown in Fig. 6. More

specifically, it indicates that the amplitudes for shorter wavelength modes – that is, modes

with wavelengths always smaller than the horizon (but larger than the Planck length) – grow

exponentially. Naively, this dramatic growth seems to imply that the effective field theory

and, hence, the bounce solution become wildly unstable at these scales – perhaps negating

the validity of the non-singular classical bounce discussed above. It is the purpose of the

present paper to prove that this is not the case and that a smooth bounce solution exists –

even including its scalar and metric perturbations.

III. STRONG COUPLING SCALE

The theories we are interested in are effective theories. As such, they are only valid up

to some energy scale Λ at which the fluctuations become strongly coupled. At this energy

scale quantum corrections to the theory become large, and we cannot trust the tree level

theory any further. Going to even higher energies would require an ultra-violet extension

of the theory. However, crucially, for energies below the cut-off scale the predictions of the

effective theory remain valid. One can determine the strong coupling scale by comparing

the size of the coefficients of the cubic action for fluctuations to those of the quadratic

action–keeping in mind that one loop corrections to scattering processes are determined

by the cubic vertex. Therefore, the strong coupling scale does not just tell us where the

classical description becomes hard to analyze, it also tells us the scale at which quantum

corrections will strongly modify the theory itself. The physics occurring at energy scales

above the strong coupling scale may be of great interest, but requires the use of a more

complete theory with a higher cut-off scale. We will not attempt such an analysis in this

paper.

A. Lagrangian of P (X,φ) form

As discussed above, in this paper we consider theories with a matter Lagrangian of the

P (X,φ) form, where X ≡ −1
2
gµν∂µφ∂νφ denotes the ordinary kinetic term of a scalar field
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φ of mass dimension 1. This is minimally coupled to gravity, with the full action given by

S =

∫
dtd3x

√
−g
(

M2
P

2
R + P (X,φ)

)
. (30)

Note that, henceforth, we no longer use “natural” units but, rather, explicitly display all

masses–such as the reduced Planck mass MP . Hence, for example, the functions κ(φ) and

q(φ) have mass dimensions 0 and -4 respectively. This will be the case for the remainder

of the paper. This class of theories includes the description of ordinary scalar fields with

potentials, but also allows for ghost condensates and bounces. It is most convenient to

employ the Arnowitt-Deser-Misner (ADM) decomposition of the metric,

ds2 = −N2dt2 + hij
(
dxi +N idt

) (
dxj +N jdt

)
, (31)

where N represents the lapse function, Ni the shift and hij the metric on spatial slices of

constant time. The action may then be written as

S =
1

2

∫
dtdx3

√
h

[
N
(
M2

PR
(3) + 2P (X,φ)

)
+

M2
P

N

(
KijKij −K2

)]
, (32)

where R(3) is the three-dimensional Ricci scalar formed from hij and where the extrinsic

curvature is defined as

Kij =
1

2
ḣij −

1

2
Ni,j −

1

2
Nj,i + ΓkijNk . (33)

We are interested in determining the scale at which strong coupling occurs–that is, we are

interested in determining the cut–off of the models under consideration, in order to assess

the validity and reliability of particular solutions. We will focus on scalar perturbations

here. In the Appendix we will treat vector and tensor perturbations, which turn out to

have no influence on the bouncing solution. For the scalar perturbations, there is as always

the question of which gauge to use. In our previous paper [18] dealing with linearized

perturbation theory, we found it convenient to work in harmonic gauge. However, in the

present paper, where we need to derive the cubic action in fluctuations, harmonic gauge

is too cumbersome. We have, in fact, found it convenient to use both “flat” gauge (used

throughout section III) and “co-moving” gauge (used throughout section IV), depending on

which physical aspect we want to highlight.
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We will start our calculation in flat gauge where the spatial metric hij = a(t)2δij is kept

fixed (by choosing the appropriate time and space reparameterisations of the coordinates) as

the spatial section of a flat FLRW universe. The remaining scalar perturbations are defined

as

φ = φ(t) + ϕ(t, xi), (34)

N = 1 + α(t, xi), (35)

Ni = ∂iβ(t, xi). (36)

The constraints arising from varying the shift and lapse functions are

M2
PR

(3) + 2P − 4P,XX −
M2

P

N2

(
hikhjlKijKkl −K2

)
= 0, (37)[

1

N

(
hjlKil −Kδij

)]
|j

= 0, (38)

where |j denotes a covariant derivative with respect to the three-dimensional metric hij and

K = hijKij. At linear order, which is all we will need, the constraints are given by

α =
φ̇

2M2
PH

P,X ϕ (39)

1

a
∂2β =

(
1

2M2
PH

P,φ +
φ̇

2M4
PH

2
PP,X −

φ̇3

4M4
PH

2
P 2
,X −

φ̇2

2M2
PH

P,Xφ +
φ̇5

4M4
PH

2
P,XP,XX

)
ϕ

+

(
− φ̇

2M2
PH

P,X −
φ̇3

2M2
PH

P,XX

)
ϕ̇, (40)

where ∂2 = δij∂i∂j is summed only over spatial indices and where in the constraint for β

we have already used (39) to replace α. The action in flat gauge and at quadratic order in

fluctuations is given by

S(2) =

∫
dtd3xa3

{1

2
ϕ̇2
[
P,X + P,XX φ̇

2
]
− 1

2a2
P,X(∂ϕ)2

+ ϕ2
[1

2
P,φφ +

3φ̇2P 2
,X

8M2
P

+
φ̇P,XP,φ
2M2

PH
+
φ̇4P 3

,X + φ̇6P 2
,XP,XX

8M4
PH

2
+
P 2
,X φ̇φ̈

2M2
PH

+
PP 2

,X φ̇
2

8M4
PH

2
+

3P,XP,XX φ̇
3φ̈

2M2
PH

+
9P,XP,XX φ̇

4

8M2
P

+
P,XP,XXPφ̇

4

8M4
PH

2
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+
P 2
,XX φ̇

5φ̈

4M2
PH

+
P,XφP,XX φ̇

5

4M2
PH

+
P,XP,XXX φ̇

5φ̈

4M2
PH

+
P,XP,XXφφ̇

5

4M2
PH

− 1

2
P,Xφφ̈−

1

2
P,XXφφ̇

2φ̈− 1

2
P,Xφφφ̇

2 − 3

2
P,XφHφ̇

]}
(41)

The speed of propagation (speed of sound) cs of the fluctuations can be read off from the

ratio of spatial to time derivative terms,

c2s =
P,X

P,X + P,XX φ̇2
. (42)

The quadratic action shows that for an ordinary scalar field with P = X, the canonically

normalized perturbation variable is ϕ. Note that the perturbation in the shift function (β)

simply does not appear here, and the perturbation in the lapse (α) has been eliminated via

the constraint equation.

At cubic order, the action is given by

S(3) =

∫
dtd3xa3

{
ϕ̇3

[
1

2
φ̇P,XX +

1

6
φ̇3P,XXX

]
+ ϕ̇2ϕ

[
−

φ̇P 2
,X

4M2
PH
− 2φ̇3P,XP,XX

M2
PH

− φ̇5P,XP,XXX
4M2

PH
+

1

2
P,Xφ +

1

2
φ̇2P,XXφ

]
+ ϕ̇ϕ2

[ φ̇3P 3
,X

4M4
PH

2
− φ̇2P,XP,Xφ

2M2
PH

+
1

2
φ̇P,Xφφ +

5φ̇5P 2
,XP,XX

8M4
PH

2

− φ̇4P,XP,XXφ
2M2

PH
+
φ̇7P 2

,XP,XXX

8M4
PH

2

]
+ ϕ3

[1

6
P,φφφ +

φ̇P,XP,φφ
4M2

PH
+

3φ̇3P 3
,X

8M4
PH
−

φ̇5P 4
,X

16M6
PH

3
+
φ̇4P 2

,XP,Xφ

8M4
PH

2

− φ̇3P,XP,Xφφ
4M2

PH
−
φ̇7P 3

,XP,XX

8M6
PH

3
+
φ̇6P 2

,XP,XXφ

8M4
PH

2
−
φ̇9P 3

,XP,XXX

48M6
PH

3

]
+
φ̇P,X
4a2H

ϕ
[
∂2β∂2β − β,ijβ,ij

]
+ ϕ2∂2β

[ φ̇2P 2
,X

4M2
PaH

+
1

2a
φ̇P,Xφ −

P,XP,XX φ̇
4

4M2
PaH

]
+ ϕ(∂ϕ)2

[
−

φ̇P 2
,X

4M2
Pa

2H
− 1

2a2
P,Xφ +

P,XP,XX φ̇
3

4M2
Pa

2H

]
− ϕ̇∂ϕ∂β 1

a

[
P,X + φ̇2P,XX

]
− 1

2a2
φ̇P,XXϕ̇(∂ϕ)2

}
(43)

We are now ready to analyze various special cases of interest.
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B. Example of a canonical scalar field

First, as a check on our formalism, we want to determine the strong coupling scale for a

scalar field with an ordinary kinetic term plus a potential, P (X,φ) = X − V (φ). For this

case, the quadratic and cubic actions simplify to

S(2+3) =

∫
dtd3xa3

{1

2

[
ϕ̇2 − 1

a2
(∂ϕ)

]
+ ϕ2

[
− 1

2
V,φφ −

φ̇V,φ
M2

PH
− V φ̇2

2M4
PH

2

]
− ϕ̇2ϕ

( φ̇

4M2
PH

)
+ ϕ̇ϕ2

( φ̇3

4M4
PH

2

)
+ ϕ3

(
−V,φφφ

6
− φ̇V,φφ

4M2
PH

+
3φ̇3

8M4
PH
− φ̇5

16M6
PH

3

)

+
φ̇

4a2H
ϕ
[
∂2β∂2β − β,ijβ,ij

]
+ ϕ2∂2β

( φ̇2

4M2
PaH

)
− ϕ(∂ϕ)2

( φ̇

4M2
Pa

2H

)
− ϕ̇∂ϕ∂β 1

a

}
, (44)

while the constraint reduces to

1

a
∂2β = − 1

2M2
PH

(V,φ +
φ̇

M3
PH

V )ϕ− φ̇

2M2
PH

ϕ̇ . (45)

The quadratic action shows that ϕ is already the canonically normalized perturbation vari-

able. One could, in principle, simplify the action further using integrations by parts. How-

ever, the main features are already clear in the present form; that is, if we define the

slow–roll/fast–roll parameter

ε ≡ − Ḣ

H2
, (46)

then we have that φ̇/H =
√

2εMP. The parameter ε is typically of order O(10−2)−O(102),

where this range encompasses a free scalar, a massive scalar and typical inflationary and

ekpyrotic models as well. One can see that all terms in the cubic action (including those

involving β) have coefficients that are of this order or smaller (some terms are suppressed

by additional factors of φ̇, which we take to be smaller than the Planck scale in magnitude).

The cut-off of the theory is determined by comparing the terms with the highest number

of derivatives at quadratic and cubic order, since at high energies the terms with the most
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derivatives are the most relevant ones. Writing the dominant terms as

S(2+3) ⊃
∫

dtd3xa3
{1

2
ϕ̇2 − ϕ̇2ϕ

( φ̇

4M2
PH

)
+ · · ·

}
(47)

≡
∫

dtd3xa3
{1

2
ϕ̇2 − 1

2Λs

ϕ̇2ϕ+ · · ·
}
, (48)

we can see that the strong coupling scale Λs of an ordinary scalar field minimally coupled

to gravity is given by

Λs =
2HM2

P

φ̇
=

√
2

ε
MP . (49)

That is, the cut-off is near the Planck scale–as intuitively expected.

C. Example of a pure ghost condensate

Another interesting example is provided by ghost condensate models, which can be used

to model accelerated expansion and, with slight modifications, cosmic bounces. Let us first

concentrate on the pure ghost condensate case, which allows for eternal “self-accelerated”

solutions despite the absence of a potential. The simplest model consists in choosing the

matter Lagrangian function to be P (X,φ) = −X + q̄X2, where q̄ is a constant of mass

dimension −4. In a homogeneous FLRW background, the scalar equation of motion is given

by
d

dt

(
a3P,X φ̇

)
= 0 . (50)

The ghost condensate solution corresponds to P,X = 0 – that is, X = 1/(2q̄). For this

solution, the null energy condition (NEC) is marginally satisfied since the sum of energy

density and pressure is zero,

ρ+ p = 2XP,X = 0. (51)

It follows that the energy density is given by

ρ = 2XP,X − P =
1

4q̄
. (52)

Thus 1/(4q̄) may be regarded as the energy density of the ghost condensate. If we now com-

pare the quadratic and cubic ϕ̇ terms, evaluating them on this ghost condensate background
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(at P,X = 0), we find the surprisingly simple result

S(2+3) =

∫
dtd3xa3

{
ϕ̇2 + q̄1/2 ϕ̇[ϕ̇2 − 1

a2
(∂ϕ)2]− 2

a
ϕ̇∂ϕ∂β

}
, (53)

where, for definiteness we have chosen the positive sign φ̇ = +
√
q̄. Almost all terms are

vanishing due to the fact that P,X = 0 at ghost condensation. In particular, the coefficient

of (∂ϕ)2 vanishes, indicating that the speed of sound of fluctuations is zero around the ghost

condensate2. The expression for the variation in the shift is also very simple,

1

a
∂2β =

√
12

MP

ϕ̇ . (54)

It demonstrates that ∂2β is of the same order as ϕ̇. Given this relationship between β and

ϕ, we may infer that ϕ̇∂ϕ∂β ∼ ϕ̇ϕ∂2β in magnitude. It follows that that the term involving

β in the cubic action has a coefficient of order 1 and is, therefore, sub-dominant regarding

the determination of the strong coupling scale. Taking into account that the constraint for

the lapse function (39) also implies that α ∝ P,X = 0 on the ghost condensate solution,

we discover an important feature: the metric perturbations decouple from the scalar field

perturbations to the extent that the ghost condensate scale q̄ −1/4 is separated from the

Planck scale MP. In the cubic Lagrangian, the term involving ϕ̇3 is then the dominant term.

In order to determine the strong coupling scale, we must compare its magnitude to that of

the ϕ̇2 kinetic term. We obtain the canonical normalization of the fluctuation field ϕ by

re-scaling it to ϕ ≡ 1√
2
χ. It follows that we may write the dominant terms in the action at

quadratic and cubic order as

S(2+3) ⊃
∫

dtd3xa3
{1

2
χ̇2 +

1

2

( q̄
2

)1/2
χ̇3 + · · ·

}
(55)

≡
∫

dtd3x
1

2
a3
{
χ̇2 +

1

Λ2
gc

χ̇3 + · · ·
}
, (56)

2 We note that one often considers the addition of higher–derivative terms ∼ (�φ)2 which then contribute

a k4 term to the dispersion relation, see for example the discussions in [3, 12].
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There is an overall 1
2
a3 factor multiplying the two relevant terms in the Lagrangian, which

simply cancels out of their ratio. Then the strong coupling scale Λgc is given by

Λgc =

(
2

q̄

)1/4

. (57)

Therefore, the energy density of the background, ρ = 1/(4q̄), and the strong coupling energy

scale, Λ4
gc = 2/q̄, are close together– with the background energy density being smaller by a

factor of 8. This order-of-magnitude difference is very important, since it allows the ghost

condensate solution to (just) lie within the regime of validity of the effective theory. Below,

however, we will show that this difference in energy scales can be increased through the

inclusion of a potential.

D. Ghost condensate bounces

Above, we analyzed the simplest model of a ghost condensate, where the ghost condensate

solution applies at all times. However, in a realistic cosmological context we are interested

in the situation where the ghost condensate occurs only over a brief period of time, during

which a smooth bounce may occur. This can be achieved by considering theories of the form

P (X,φ) = κ(φ)X + q(φ)X2 − V (φ) , (58)

where the functions κ(φ), q(φ) can be chosen such that they turn the ghost condensate on

and off – such as those presented in (3),(4) and Fig. 1 in Section II. In such a situation,

the onset of ghost condensation is determined by the condition P,X = 0. At that moment,

it follows from (42) that the speed of sound cs vanishes. Immediately afterwards, when

P,X turns negative, the null energy condition starts being violated (since the sum of the

energy density and pressure is given by ρ+ p = 2XP,X). The onset of NEC violation is the

most crucial moment for at least two reasons. First, previous treatments within the context

of inflation led to cubic actions containing terms proportional to 1/c2s, naively indicating

a singularity when c2s vanishes. We will return to this point later on. Second, during the

bounce phase, the energy density of the background becomes small. This follows from the

Friedmann equation 3M2
PH

2 = ρ and the fact that H = 0 at the bounce. Thus, any effects
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from the strong coupling regime are alleviated during the bounce phase. Also, before the

null energy condition is violated, we do not expect any troublesome effects, so that the most

stringent constraints may be expected right at the interface between NEC preservation and

the bounce phase. For these reasons, the strong coupling scale may be determined by looking

at the action at quadratic and cubic order at the moment when P,X = 0. The result is that

S(2+3) |P,X=0=

∫
dtd3xa3

{1

2
ϕ̇2
[
P,XX φ̇

2
]

+ ϕ̇ϕ
[
φ̇P,Xφ

]
+ ϕ2

[1
2
P,φφ

]
+ ϕ̇3

[
1

2
φ̇P,XX +

1

6
φ̇3P,XXX

]
+ ϕ̇2ϕ

[1

2
P,Xφ +

1

2
φ̇2P,XXφ

]
+ ϕ̇ϕ2

[1

2
φ̇P,Xφφ

]
+ ϕ3

[1

6
P,φφφ

]
+ ϕ2∂2β

[2
a
φ̇P,Xφ

]
− ϕ(∂ϕ)2

[ 1

2a2
P,Xφ

]
− ϕ̇∂ϕ∂β 1

a

[
φ̇2P,XX

]
− 1

2a2
φ̇P,XXϕ̇(∂ϕ)2

}
, (59)

while the constraint is given by

1

a
∂2β |P,X=0 =

(
1

2M2
PH

P,φ −
φ̇2

2M2
PH

P,Xφ

)
ϕ−

(
φ̇3

2M2
PH

P,XX

)
ϕ̇

= − ρ,φ
2M2

PH
ϕ−

(
φ̇3

2M2
PH

P,XX

)
ϕ̇ . (60)

Notice that, at this moment, the coefficient of (∂ϕ)2 vanishes again, so that the speed of

sound cs is zero. Nevertheless, since our formalism does not contain any 1/c2s factors, it is

evident that the perturbative action remains perfectly non-singular and well-behaved. The

dominant terms in the action are once again the ϕ̇2 and ϕ̇3 terms, as can be guessed from

the treatment of the pure ghost condensate in the previous section. This can also be verified

numerically for the bounce solutions we are interested in here. The strong coupling scale is

inferred by first normalizing the quadratic action via the redefinition ϕ ≡ (P,XX φ̇
2)−1/2χ, so

that the dominant quadratic and cubic terms can be written as

S(2+3) ⊃
∫

dtd3xa3
{1

2
χ̇2 +

1

2

P,XX φ̇+ 1
3
P,XXX φ̇

3

(P,XX φ̇2)3/2
χ̇3 + · · ·

}
(61)

≡
∫

dtd3x
1

2
a3
{
χ̇2 +

1

Λ2
χ̇3 + · · ·

}
. (62)
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We can then read off the strong coupling scale Λ, with the result that

Λ =
(P,XX)3/4φ̇

(P,XX + 1
3
φ̇2P,XXX)1/2

≈ (P,XX)1/4φ̇ . (63)

This scale should now be compared to the energy density of the background at that time,

which is ρ = −P. Using the condition that P,X = 0, which implies X = −κ(φ)/(2q(φ)), it

follows that

Λ4 =
2κ2

q
, ρ =

κ2

4q
+ V (φ) (64)

where the functions κ, q and V are evaluated at φ for which P,X = 0. In the absence of

a potential, we recover the same result as for the pure ghost condensate; namely that the

energy density of the background is a factor of 8 smaller than the strong coupling energy

density. Thus, once again, the bounce solution just fits into the regime of validity of the

effective theory. However, we now see that this (slightly uncomfortable) closeness of the

two energy scales can be significantly affected by the presence of a potential. In particular,

a negative potential during the bounce phase increases the separation between the energy

density of the background and the strong coupling scale. The two scales can, in fact, be

separated by an arbitrarily large factor – provided the potential can approach close to the

minimally allowed value of Vmin = −κ2/(4q).3 However, one would not want this separation

to become too large either, since it is essential that the potentially dangerous ultra-short

wavelength perturbation modes with large amplitude remain outside the regime of validity of

the effective theory. It is interesting to note that a negative potential is natural in ekpyrotic

models. Up to now it was typically assumed that this negative potential would be non-

vanishing during the contracting phase–but rapidly vanish before, and be irrelevant at, the

moment of the bounce [22]. See, for example, Fig. 1 in Section II. Our results suggest a new

perspective, in that we see here that the potential can still play an important role during

the bounce phase. This has implications for ekpyrotic model building, as we will discuss in

section V below.

One should verify that the most stringent constraint indeed arises at the moment where

c2s = 0. We do this by numerically evaluating the strong coupling scale for a time period

starting before, passing through, and then ending after the interval of NEC violation. From

3 An even more negative potential would not allow for a bounce solution.
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Figure 7. Ghost condensate bounce without a potential, V0 = 0, for the bouncing background

described in Section II and expressed in Figs. 2 - 4. Plotted here are the strong coupling scale

Λ and the energy density ρ1/4 against physical time t, relative to the time of the bounce tb. Also

plotted is the sum of the energy density and pressure (to the quarter power). At the two moments

where this quantity vanishes the null energy condition is marginally satisfied, while in the time

interval in between the NEC is violated. This plot confirms that Λ and ρ1/4 are closest to each

other precisely at the moments when the NEC starts and ends being violated.
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Figure 8. Plot of the ratio of strong coupling scale to background energy density (to the quarter

power) against physical time. As expected from our analytical treatment, we see that at the

moments where the NEC starts and ends being violated, this ratio reduces to a factor of 8. Thus

the bouncing background solution lies within the regime of validity of the effective theory, while

dangerous short wavelength modes lie outside.

the ϕ̇2 and ϕ̇3 terms in the general actions (41) and (43), we find – after normalizing the

scalar field as above – that the strong coupling scale is given by

Λ =
(P,X + P,XX φ̇

2)3/4

(φ̇P,XX + 1
3
φ̇3P,XXX)1/2

. (65)

Note that we have now reinstated the P,X term. This was set to zero above where we limited
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the calculation precisely to the times when P,X = 0. We can now check numerically that

the energy density of the background solution comes closest to the expression (65) precisely

when P,X passes through zero. The specific example was introduced in the beginning of

Section II. That is, we will choose the super-bounce model [17], but with the Galileon term

set to zero and the coefficient κ̄ = 1/4. Additionally, we take the coefficient q̄ = 108 M−4
P .

It then follows that the kinetic part of the Lagrangian is specified by

P (X,φ) = κ(φ)X + q(φ)X2 − V (φ) , (66)

κ(φ) = 1− 2

(1 + 1
2
φ2

M2
P

)2
, (67)

q(φ) =
108M−4

P

(1 + 1
2
φ2

M2
P

)2
. (68)

The potential energy is chosen to be in the generic form presented in (9). However, for

reasons to become clear, here we take the associated functions to be c =
√

20 (which satisfies

the ekpyrotic constraint that c >
√

6) and v(φ) = 2/(1 + e
−2
√
20 φ

MP ). It follows that the

potential energy can be expressed as

V (φ) = − 2V0

e
−
√
20 φ
MP + e

√
20 φ
MP

, (69)

where V0 has mass dimension 4. Eq. (69) is of a form previously used by Cai et al. [23] in

their closely related bounce model. Note that the kinetic function κ switches sign, thereby

allowing the null energy condition to be violated and, thus, enabling the presence of bouncing

solutions. That we do not end up with ghost fluctuations is due to the second kinetic function

q(φ), which contributes fluctuations of sufficiently large positive energy during the bounce

phase.

We first consider the example of a ghost condensate induced bounce without a potential;

that is, V0 = 0. The corresponding plots for the strong coupling scale (65) and the energy

density of the background are shown in Fig. 7. Moreover, the ratio between the two scales is

plotted in Fig. 8. The plots clearly show that the most stringent moments are indeed those

where the NEC starts and ends being violated. Moreover, the strong coupling scale Λ4 is

larger than the background energy density ρ by a factor of 8 precisely at those moments, as

expected.
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Figure 9. Plot of the ekpyrotic-type potential (68) with V0 = 0.2× 10−8 M4
P.
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Figure 10. The bouncing background solution with the new potential Eq. (68) and V0 =

0.2 × 10−8 M4
P. We have fixed the initial conditions at the moment of the bounce, H = 0, and

have chosen φbounce = 0. The Friedmann equation then determines the time derivative of the scalar

field at that moment, since it implies 0 = 3M2
PH

2 |bounce= ρ |bounce= −1
2 φ̇

2
bounce + 3

4 φ̇
4
bounce − V0.

Fig. 10 (a) shows the scale factor around the time tb of the bounce as a function of t− tb. Fig. 10

(b) shows the evolution of the scalar field φ during the bounce phase.

We now analyze how these results are modified when a non-vanishing potential is added.

The potential (69) we have chosen is of the ekpyrotic form, and turns on and then off

symmetrically around the bounce. For specificity, we will choose V0 = 0.2× 10−8 M4
P . This

potential is plotted in Fig. 9. The numerically evaluated background solution for the scale

factor and the scalar field is displayed in Figs. 10(a) and (b) respectively. These plots are

qualitatively very similar to the case in Fig. 2 where the potential is absent. The strong

coupling scale and background energy density for V0 = 0.2× 10−8 M4
P are shown in Fig. 11,

while the ratio between these two scales is plotted in Fig. 12. As can be seen, the strong

coupling scale is now further separated from the background energy density. In this specific
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example, the ratio Λ4/ρ is always bigger than a factor of about 40. This corresponds to a

factor of about 2.5 in frequency. Thus, perturbation modes with a wavelength at least 2.5

times smaller than the horizon size at the onset of the bounce are beyond the cut-off of the

theory. It follows that the modes whose amplitudes grow dangerously during the bounce

period–that is, modes with wavelengths more than two orders of magnitude shorter than the

horizon size at the onset of the bounce–are well outside of the range of validity of the effective

theory. Hence, the bouncing spacetime solution can be trusted. Note that an even more

negative potential would enhance the separation between the two scales further. As long as

this separation remains smaller than a factor of about two orders of magnitude in frequency,

that is, a factor 108 in energy density, one need not worry about potentially dangerous short

wavelength modes. For such theories the bouncing spacetime solution remains trustworthy.

The results of this Section definitively answer the first of the three important questions

that were discussed in the Introduction. That is

• Can the growth of these short sub-horizon co-moving curvature modes disrupt the bounce?

The answer is no – the short wavelength sub-horizon co-moving curvature modes with am-

plitudes sufficiently large to disrupt the bouncing cosmology all lie in the region of strong

coupling, where the effective action is no longer valid. One may now go back to Figs. 5 and

6 to see how this result affects the interpretation of the graphs shown there. In particular,

the previous discussion has led to the conclusion that the strong coupling scale is about a

factor of 2 smaller in size than the minimum horizon size reached during the bounce phase.

This scale is plotted via the red dotted line in Fig. 5(b). Perturbations modes with longer

wavelengths (k ≤ 10−6 in that example) form a part of the effective theory, but are little

affected by the bounce, while modes with shorter wavelengths (k > 10−6) lie outside of the

range of validity of the effective theory, and thus their dramatic growth can be ignored.

IV. THROUGH THE BOUNCE

We now want to address the remaining two questions presented in the Introduction re-

garding “apparent” singularities in the perturbative action. In the above analysis–which was

carried out in flat gauge–the action contained terms inversely proportional to the Hubble

rate. Thus, it appears that a perturbative treatment might break down in the vicinity of the

bounce, exactly the period we are most interested in. It turns out that it is rather difficult
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Figure 11. Analogous plot to Fig. 7, but with a potential of strength V0 = 0.2×10−8 M4
P included.

Again the zeroes of the curve plotting (ρ + p)1/4 indicate the start and end of the NEC violating

phase.
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Figure 12. When a negative potential is included, the background energy density and the strong

coupling scale are further separated from each other. For V0 = 0.2 × 10−8 M4
P the ratio Λ/ρ1/4

always remains above a factor of about 40. This implies that the background solution lies more

comfortably inside the regime of validity of the effective theory, compared to the case where no

potential is present during the bounce.

to prove directly in flat gauge that these are simply apparent singularities. It is, in fact,

much easier to prove this by calculating the action for the co-moving curvature perturbation

in co-moving gauge. Note that, as shown by Maldacena [24], it is possible to transform

the perturbative action from flat gauge to co-moving gauge via a time reparameterization.

However, the re-writing of the perturbative action is highly non-trivial, as it involves many

integrations by parts and the use of the perturbative equations of motion. It is, in fact,

much easier to directly calculate the cubic action in co-moving gauge, which is what we now

do.
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In co-moving gauge the scalar field perturbation is set to zero,

δφ = 0 , (70)

so that hypersurfaces of constant scalar field are also hypersurfaces of constant time. Again

employing the ADM formalism, one can implement co-moving gauge by expanding the lapse,

shift and spatial metric as

N = 1 + α(t, xi), (71)

Ni = ∂iβ(t, xi), (72)

hij = δija
2(t)e2R(t,xi), (73)

where R is the co-moving curvature perturbation. The extrinsic curvature is then given by

Kij = hij

(
H + Ṙ

)
− β,ij +R,iβ,j +R,jβ,i − δij∂R · ∂β , (74)

where ∂R · ∂β ≡ δij∂iR∂jβ.4 At linear order, the constraints are given by [19]

−M2
P∂

2R−M2
PH∂

2β + a2
[
3M2

PH
(
Ṙ −Hα

)
+
(
P,XX + 2P,XXX

2
)
α
]

= 0, (75)

α =
Ṙ
H
. (76)

At quadratic order in fluctuations, plugging in the constraints and discarding total deriva-

tives, the action becomes

S(2) =

∫
dtdx3a3

[
P,XX + 2P,XXX

2

H2

(
Ṙ
)2

+
M2

PḢ

a2H2
(∂R)2

]
(77)

=

∫
dtdx3a3

(P,XX + 2P,XXX
2)

(
Ṙ
H

)2

+
2M2

P

a2
∂

(
Ṙ
H

)
· ∂R+

M2
P

a2
(∂R)2

 .(78)

The reason for rewriting the last term using integration by parts will become obvious mo-

4 We will sometimes write summed spatial indices on the same line, where it is understood that they are

contracted with the Kronecker delta alone.



31

mentarily. Often the quadratic action is expressed as

S(2) =

∫
dtdx3a3

Σ

H2

[(
Ṙ
)2
− c2s
a2

(∂R)2
]
, (79)

where we employ the conventional definitions

Σ ≡ P,XX + 2P,XXX
2, c2s ≡ P,X/(P,X + 2P,XXX) = −M2

PḢ/Σ . (80)

The linearized equation of motion for the curvature perturbation is then given by

H
d

dt

(
Ṙ
H

)
+

(
3H2 +H

Σ̇

Σ
− Ḣ

)
Ṙ
H

+
M2

PḢ

a2Σ
∂2R = 0 . (81)

At the bounce, where H = 0, we therefore obtain the useful relation

Ṙ
H

=
M2

P

a2Σ
∂2R at H = 0. (82)

From this, we learn that the crucial quantity Ṙ/H is finite when H becomes zero. Moreover,

it is small for long-wavelength modes due to the double spatial derivative. This result has the

immediate implication that the quadratic action in Eq. (78) is perfectly finite everywhere

and, in particular, at the bounce. We note here that one can also solve the equation of

motion for the curvature perturbation perturbatively around the bounce [18]. The result,

written in Fourier space, is that near H = 0

Rk = c1

(
1− 1

2
c2sk

2t2 + · · ·
)

+ c2t
3 + . . . , (83)

where c1, c2 are integration constants. This solution is consistent with (82) above.

In co-moving gauge, the cubic action is found to be

S(3) =

∫
dtdx3a3

[(
3M2

PH
2 − P,XX − 4P,XXX

2 − 4

3
P,XXXX

3

)
α3 − 6M2

PHα
2Ṙ

+
(
−9M2

PH
2 + 3P,XX + 6P,XXX

2
)
α2R+ 3M2

PαṘ2 + 18M2
PHαRṘ

+

(
27

2
M2

PH
2 +

9

2
P − 9P,XX

)
αR2 − 2M2

P

a2
αR∂2R− M2

P

a2
α(∂R)2

−9M2
PṘ2R− 27M2

PHṘR2 +
9

2

(
−3M2

PH
2 + P

)
R3 − M2

P

a2
R2∂2R− M2

P

a2
R(∂R)2
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+
M2

P

a2

(
2RṘ − 2αṘ+HR2 − 2HαR+ 2Hα2

)
∂2β

+
2M2

P

a2

(
Ṙ −Hα +HR

)
∂R · ∂β

−M2
P

2a4
(R+ α)

(
β,ijβ,ij − ∂2β∂2β

)
− 2M2

P

a4
R,iβ,jβ,ij

]
. (84)

Terms proportional to the second order perturbation of the lapse function multiply a con-

straint, and thus do not appear. Substituting α = Ṙ/H, integrating by parts, discarding

total derivatives and employing the background equations of motion we obtain

S(3) =

∫
dtdx3a3

(−P,XX − 4P,XXX
2 − 4

3
P,XXXX

3

)(
Ṙ
H

)3

+
(
3P,XX + 6P,XXX

2
)(Ṙ

H

)2

R

−2M2
P

a2
Ṙ
H
R∂2R− M2

P

a2
Ṙ
H

(∂R)2 +
M2

P

a2
R(∂R)2

+
M2

P

2a4
(3R− Ṙ

H
)
(
β,ijβ,ij − ∂2β∂2β

)
− 2M2

P

a4
(∂R · ∂β)∂2β

]
. (85)

A few comments. We have performed fewer integrations by parts than Seery and Lidsey

[19] and other authors [25]. By doing this, we find that no dangerous–looking 1/c2s terms

appear5. When H = 0, there are again several apparently singular terms, but notice that

they all involve powers of Ṙ/H, which we have shown to be finite at the bounce. We still

have to discuss the behaviour of the shift function β at the bounce. The linear constraint

(75) “appears” as though it might cause β to blow up at the bounce. Since β drops out

entirely from the quadratic action, any singularity in β would have gone unnoticed to this

order. However, it follows from (85) that β blowing up at the bounce would render the cubic

action singular. We can combine the constraint for β with the equation of motion for R to

obtain
M2

PḢ

a2Σ
H∂2β = H

d

dt

(
Ṙ
H

)
+

(
3H2 +H

Σ̇

Σ

)
Ṙ
H

. (86)

5 Such dangerous terms can appear by performing integrations by parts of the following form:
∫

Σ
H2α

2R =∫
ε
c2s
α2R =

∫
d
dt (

1
H ) 1

c2s
α2R = −

∫
1
c2sH

α2Ṙ+ · · · , where the dots include a “boundary” term localised at

c2s = 0. If one were to keep this boundary term, the total action would be manifestly non-singular, but

often such terms are dropped, leading to naively singular–looking actions.
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Since Ṙ/H is momentarily constant when H = 0, we find from the relation above that

M2
P∂

2β =
a2Σ̇

Ḣ

Ṙ
H

=
Σ̇

ΣḢ
∂2R at H = 0. (87)

There is only one independent perturbation variable for systems of gravity coupled to a

single scalar field. This is true because out of the 5 scalar perturbations of the metric and

scalar field, two are eliminated by time and space reparameterizations, and two more are

eliminated by the constraints. Hence the perturbation β must vanish when R does, implying

that

M2
Pβ =

Σ̇

ΣḢ
R at H = 0. (88)

Keeping in mind that Σ = M2
PH

2 ε
c2s
, we can conclude that Σ̇ = 0 at the moment of the

bounce. Hence, we prove the stronger result that

β = 0 at H = 0. (89)

Therefore, we can safely ignore all terms involving β in our discussions of the behavior of

the physical system at and very close to the bounce. That is, we see that the perturbative

analysis is indeed non-singular throughout the bouncing spacetime solution.

The results of this Section definitively answer the second and third important questions

raised in the Introduction. That is,

• Will the 1/H terms in the cubic action just be “apparent” singularities, or do they signal

the breakdown of the perturbative description?

• It would appear that the cubic action becomes infinite at the moments when c2s = 0, signaling

the breakdown of the effective theory. Is this true–or are these singularities only “apparent”,

disappearing upon careful calculation of the cubic action?

The answer to the second question is that terms proportional to 1/H in the cubic action

are actually explicitly finite and, hence, only “apparent” singularities. A careful analysis of

the cubic action also reveals that there are, in our context, no terms proportional to 1/c2s.

This answers the third question. The apparent 1/c2s divergences on either side of the NEC

violating region simply do not exist. The positive answer to both of these questions means

that the effective theory of the bounce cosmology is completely finite, singularity free and

trustworthy.
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V. DISCUSSION

Our results show that there exist effective theories for a non-singular bouncing cosmology

where all perturbation modes that lie within the regime of validity of the theory evolve

through the bounce in a controlled manner. This includes, in particular, the modes of

observational interest in ekpyrotic cosmology. This is a non-trivial result because, in a flat

universe, the existence of a bounce requires the null energy condition to be violated. This

can be achieved through a temporary phase of ghost condensation, at the expense of a very

brief instability due to an imaginary speed of sound. In previous work with L. Battarra [18],

we had shown that this instability is in fact too brief to significantly affect long wavelength

modes. On the other hand, the same work had also indicated an increasing amplification

of ever shorter modes, specifically those whose wavelengths are smaller than the horizon

size at the onset of the bounce – see Fig. 5. Hence, one may worry whether these small

wavelength, large amplitude modes could destabilize the background evolution. Through

a derivation – carried out in flat gauge – of the action up to third order in perturbation

theory, we have calculated the scale of strong coupling and shown that it is higher than

the background energy density throughout the bounce. We then show that the problematic

modes are so short that they are outside of the range of validity of the classical effective

theory and, hence, do not disrupt the bouncing spacetime background. This establishes that

the bounce solution is trustworthy.

An important aspect of the calculation is that it reveals a decoupling limit (reminiscent

of that in Galileon models [26]), in which the scalar field perturbations decouple from the

metric perturbations to the extent that the ghost condensate scale is separated from the

Planck scale. It is interesting that this decoupling, which intuitively rests on the notion that

over sufficiently short distances the metric may be approximated as being flat, also operates

in a bouncing spacetime. Furthermore, we have studied the appearance of inverse powers of

the Hubble rate and the speed of sound in calculations of the cubic perturbation action –

see, for example, [19]. Both H and c2s necessarily pass through zero during the evolution of

the type of bounces that we are studying. Hence, one may wonder whether this will cause

perturbation theory to completely break down. Resorting to co-moving gauge to analyze

this problem, we have shown that each inverse power of the Hubble rate gets multiplied by

the time derivative of the co-moving curvature perturbation, and that this product remains
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finite. Furthermore, we demonstrated that the dangerous cubic terms proportional to 1/c2s

simply do not appear in our effective action. It follows that the perturbative analysis is valid

throughout the bounce solution.

Our results are in line with the non-perturbative numerical treatment of Xue et al. [27],

where perturbations were also seen to be little affected by their passage through the bounce.

However, their study employs a model with a ghost field and, hence, is ill-defined at the

quantum level. In contrast, Peter et al. [28] found that for curvature-induced bounces in

closed universes – that is, FLRW metrics with curvature parameter K = +1 – perturbations

are strongly affected by the bounce. For example, unacceptably large non-Gaussianities

are typically generated. We note, however, that such curvature-dominated bounces are

highly tuned because matter, radiation and, in particular, anisotropies scale faster than

homogeneous curvature in a contracting universe. This makes such curvature-dominated

bounces highly unlikely. Our results demonstrate that for flat FLRW bounces, which in the

context of ekpyrotic cosmologies are natural6, perturbations are essentially unaffected by

the bounce. In order to comment on the issue of non-Gaussianity, we should first discuss

the implications of our results for model building.

One of our main findings is that the background and cut-off are further separated in

the presence of a negative potential during the bounce7. This is noteworthy, since negative

potentials are natural in ekpyrotic cosmology [20, 29]. However, with regard to the genera-

tion of primordial curvature perturbations, the presence of a negative potential during the

bounce suggests a small modification of existing scenarios. During the ekpyrotic phase, cur-

vature perturbations are not amplified [30–33]. However, in the presence of a second scalar

field, nearly scale-invariant entropy perturbations may be generated [34–37]. Note that such

a second spectator field does not affect the background evolution and, hence, does not af-

fect the calculations of the present paper. So far, it has typically been assumed that the

entropy perturbations get converted into curvature perturbations in between the end of the

ekpyrotic phase and the bounce. Were they to get converted while the ekpyrotic potential

still dominates the dynamics, the resulting non-Gaussianities could be unacceptably large

[38, 39]. This conversion can, for example, occur via a turn in the scalar field trajectory

6 This follows from the fact that the ekpyrotic phase strongly suppresses both homogeneous and anisotropic

curvature.
7 It would also be interesting to see if the two scales can be further separated in more elaborate models

including, for instance, Galileon terms, as in the full super-bounce model [17]. We leave this question for

future work.
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– see [40, 41] for a concrete model. However, our results now indicate that the bounce is

under better control when the ekpyrotic potential is significant throughout the entire NEC

violating phase. Hence it may be more natural for the ekpyrotic phase to lead directly into

the bounce, with no intermediate kinetic phase. In that case, the potential would turn off

again after the bounce, and the conversion of entropy into curvature fluctuations could oc-

cur after the bounce. In this scenario, all adiabatic modes would remain in their quantum

vacuum throughout the contracting phase and would only be negligibly amplified during

the bounce. There would be entropy perturbations present during the bounce phase, but

with no effect on the bouncing spacetime itself. Then, after the bounce, and perhaps during

reheating [42], the entropy perturbations would be converted into curvature perturbations

and the universe would eventually reach thermal equilibrium, with the hot big bang phase

following. In this case, the non-Gaussianity of the curvature perturbations would also be

generated after the bounce. In future work, it will be interesting to see whether any of

the predictions, in particular those regarding non-Gaussianities [43–45], are changed when

the conversion of entropy into curvature fluctuations occurs after the bounce, rather than

before. This will require a separate study.
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Appendix A: Vector and tensor perturbations in a bouncing spacetime

In the main part of the paper, we focussed on scalar fluctuations, which allowed us to

calculate the strong coupling scale of the theories we are interested in. However, in general

one has to consider not just scalar fluctuations, but also vector and tensor perturbations

(by which we mean perturbations transforming as vectors or tensors from the spatial three-

dimensional point of view). In this Appendix, we will analyze the behavior of vector and

tensor perturbations in a bouncing spacetime. As we will see, these perturbations are

not amplified and, hence, we need not consider them in assessing the validity of bouncing
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solutions. We will comment on the observational significance of this result below.

Under a change of coordinates xµ → xµ + ξµ the metric changes as

gµν → gµν −∇µξν −∇νξµ = gµν − gσν∂µξσ − gσµ∂νξσ − gµν,σξσ . (A1)

One can decompose ξµ into scalar (2 degrees of freedom) and vector parts (also 2 degrees of

freedom):

ξµ = (ξ0, ξi) with ξi = ξiT + ξ,i where ∂iξ
i
T = 0. (A2)

Now consider a perturbed metric in conformal time τ , where we only write out the vector

and tensor perturbations at this point. We find

ds2 = a(τ)2
[
−dτ 2 + 2Sidτdx

i + (δij + Fi,j + Fj,i + γij)dx
idxj

]
. (A3)

Here we impose that the vector perturbations are transverse, ∂iS
i = 0 = ∂iF

i and the tensor

perturbations are both transverse and traceless γij,i = 0 = γii. Then, under a change of

coordinates (where we are now only interested in the vector part ξiT ), these perturbations

change as follows:

Si → Si − δijξjT,τ (A4)

Fi → Fi − δijξjT (A5)

γij → γij . (A6)

The tensor perturbations are immediately gauge invariant, but the vector perturbations are

not. However, it is easy to see that there exists a gauge-invariant quantity, namely

Vi ≡ Si − Fi,τ . (A7)

To obtain the equations for Vi, the simplest procedure is to use ξiT to fix the gauge such that

Fi = 0, since we can then just replace Si with Vi. The perturbed Einstein tensor is given in

Fourier space by

δG00 = 0 (A8)
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δG0i = Vi(−2H,τ −H2) +
1

2
k2Vi (A9)

δGij = −1

2
[(Vi,jτ + Vj,iτ ) + 2H(Vi,j + Vj,i)] (A10)

+γij(−2H,τ −H2) +
1

2

[
γij,ττ + 2Hγij,τ + k2γij

]
, (A11)

where H ≡ a,τ
a
. For a P (X,φ) theory, the perturbed stress-energy tensor is

δT00 = 0 (A12)

δT0i = a2ViP (A13)

δTij = a2γijP (A14)

Using the background Einstein equation 2H,τ +H2 + a2P = 0, the linearized equations

of motion then become

k2Vi = 0 (A15)

(Vi,jτ + Vj,iτ ) + 2H(Vi,j + Vj,i) = 0 (A16)

γij,ττ + 2Hγij,τ + k2γij = 0. (A17)

Thus, there is no source for either the vector or tensor perturbations. The first equation

above then implies that we have no vector perturbations to worry about. Even if there were

initial vector perturbations, according to the second equation they would scale as Vi ∝ 1/a2.

Thus they cannot compete with the ekpyrotic background (which scales as ρ ∝ a−2ε with

ε > 3), and would also do very little during a non-singular bounce, as the scale factor evolves

very little during the bounce. For long-wavelength modes – that is, ignoring the k2 term –

the tensor equation above has two solutions; either γ = constant or γ ∝ 1/a2. Again both

are harmless. Short-wavelength tensor fluctuations (large k) simply oscillate but are not

amplified. Note also that they always propagate at the speed of light, and thus, in contrast

to the scalar modes, they do not suffer from any gradient-type instability near the bounce.

Thus our flat cosmological bounce does not generate any vector or tensor perturbations, nor

does it amplify any pre-existing ones.

The fact that vector perturbations are not amplified in ekpyrotic models is easy to un-

derstand: first note that vector perturbations imply a preferred direction in space. But the

ekpyrotic phase renders the universe increasingly isotropic and in doing so it suppresses any
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existing vector perturbations. As discussed above, no additional vector perturbations are

then created during the bounce phase. For tensor perturbations, we have a similar outcome.

The growth of tensor perturbations is solely dependent on the behavior of the metric. In

inflationary models, for instance, the tensor perturbations are amplified because the back-

ground spacetime expands in an accelerated fashion [46]. In ekpyrotic models, we have a

rather different situation: the contraction phase proceeds with a very small Hubble rate –

that is, it is a phase of very slow contraction during which the scalar field rolls down a steep

and negative potential. A rough approximation to the background spacetime is in fact sim-

ply Minkowski space. This rough approximation immediately explains why tensor modes are

not amplified in ekpyrotic models [47] – they are not amplified around us in our living rooms

either! Rather, during the ekpyrotic phase, at linear order in perturbation theory the tensor

modes remain in their quantum vacuum state just like the adiabatic modes [33]. Thus, to

linear order, the tensor-to-scalar ratio r is simply zero. Once curvature fluctuations have

been generated (which, as we have discussed, could occur either before or after the bounce),

these scalar fluctuations act as a source for the tensor modes at second order in perturbation

theory, leading to a small tensor-to-scalar ratio of r ≈ 10−6 [48]. As we have just discussed,

even if this tiny tensor spectrum is produced before the bounce, it will not get amplified

by the non-singular bounce. Thus ekpyrotic models combined with non-singular bounces

predict that no primordial gravitational waves (nor the associated B-mode polarization of

the CMB photons) should be detected by near-future experiments (which will optimistically

probe down to values of r ≈ 10−3). It remains to be seen when our observational tech-

nologies will be developed enough to detect the tiny r value implied by all currently known

ekpyrotic models.

The conclusion of the present Appendix is that it is enough to look at the behaviour of the

scalar perturbation modes in assessing the validity of the effective description of non-singular

bounces.
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