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1 Introduction

The construction of Extended Geometry appeared in a series of works [1-6] and many others
has got a lot of attention recent years in particular in the context of string cosmology [7, 8],
searches for non-geometric solutions [9-16], generalized Scherk-Schwarz compactifications
and embeddings of Type II solutions [17-24] and many others. The basic idea of the model
is to turn the hidden U-duality symmetries of compactified (half-)maximal supergravities
into a manifest gauge symmetry of a full non-compactified theory. This is achieved by
introducing new coordinates in addition to the existing 10 or 11. In the string or M-
theory interpretation these new coordinates correspond to winding modes of strings and
D- or M-branes (see e.g. [2]). Geometric meaning of the extended space was investigated
in the works [25-29]. Very important direction of research is bound to the question of
finite coordinate transformations in the extended space. To the moment it is not clear how
to integrate infinitesimal generalized diffeomorphisms to a large transformation, however
there has been certain progress made [30-32]. In the work [33] attempts to construct the
algebra without the need of section condition were made. Construction of superspace for
DFT was considered in the work [34]. In the series of works [35-37] it was shown that the



string and M-theoretical extended objects can be understood as wave-like or monopole-like
solutions of Exceptional Field Theory.

Since the particular U-duality group FE,,) depends on the number of compact di-
rections n the full set of coordinates of EFT naturally splits into the so-called “external”
space-time coordinates denoted by z* and “internal” extended coordinates denoted by XM,
Here p runs over all would-be non-compact directions, i.e. from 1 to 11—n (for the maximal
case), while the capital Latin index labels the necessary representation of the U-duality
group, that catches all the translational and winding modes of the M2 and M5 branes.

Although, EFT is formulated as a non-compactified theory, one has always keep in
mind an additional condition, that forces us to either drop all or a subset of the extended
coordinates returning effectively to the conventional supergravity or its toroidal compactifi-
cations, or to perform a generalized Scherk-Schwarz reduction, leading to the (half)maximal
gauged supergravity [17-19, 21].

This condition, named section condition, appears in the algebra of generalized diffeo-
morphisms given by the so-called generalized Lie derivative [38]. These may be understood
as local U(T)-duality transformations and the theory should be (co)invariant with respect
to them. For more details the reader is referred to the reviews [39-41].

Special properties of generalized Lie derivatives allow to obtain the tensor hierarchy of
gauged supergravity as a natural consequence of the algebra and the section condition. It
was proposed in [42, 43] to let all the gauge parameters to depend on the whole set of coordi-
nates (z*,X™), and use the vector field AF]‘LJ of the corresponding supergravity to introduce
a derivative covariant with respect to generalized Lie transformations. Due to failure of
the Jacobi identity for these transformations one is required to deform the 2-form field
strength in the spirit of tensor hierarchy introducing a 2-form potential. Bianchi identities
uniquely determine the corresponding field strength and the sequence can be continued.

Based on these ideas is the Exceptional Field Theory formalism presented in the series
of papers [44-48] for the groups Eg76, SO(5,5) and SL(3)xSL(2), that correspond to
D = 3,4,5,6 and 8 maximal supergravities. The supersymmetric construction that includes
fermions is given in [49-51]. In this paper we aim at the construction for D = 7 and the
group SL(5). To the moment there has been large progress in investigation of the SL(5)
extended geometry [52, 53]. To be noted is the work [54] that considers the internal sector,
i.e. the so-called scalar potential, for SL(N) group for any N. In the current paper we
present the full EFT construction, including the gauge kinetic and topological sector.

This paper starts with the section 2, where the bosonic field content of the maximal
supergravity in D=7 is discussed. In section 3 we briefly review the construction of ex-
ceptional field theory and tensor hierarchy to set up our notation for further reference. In
section 4 we construct a duality covariant kinetic and topological Lagrangian and check
its invariance under external diffeomorphisms. We comment there on the feature of EFT
when all the numerical prefactors in the Lagrangian are fixed already at the bosonic level.
Embedding of the 11-dimensional and Type II supergravities into the formalism is consid-
ered in section 5. Finally, in the appendix we present the notations used, conventions on
the SL(5) algebra, provide some useful identities and explicitly check gauge invariance of
the topological Lagrangian.



2 Supergravity in D =7

Maximal ungauged supergravity in 7 dimensions with the global duality group SL(5) was
constructed in [55]. The field content after the 7 4 4 split is given by

{g,ulx’A,uaaQsabaCuupaBuuaaAuaba¢abc} ) (21)

where the internal indices a,b run from 1 to 4. We have a total of ten 1-form fields, A,,
and A, 44, which transform in the 10 representation of the duality group SL(5) (see [56] for
more details on how the supergravity fields are organized into irreps of U-duality group).
We will denote this representation as A{Y , M =1,...,10, where M may also be thought
of as a pair of SL(5) fundamental indices, Aljy = %Agﬂ, 1,7 = 1,...,5. More details on
how we treat the doubled indices can be found in the appendix A.

The duality relation between 3-forms and 2-forms in seven space-time dimensions al-
lows to collect the four fields By, , and the 3-form C,,, together, resulting in five 2-form
fields B, ; transforming in the fundamental representation of SL(5).

There are now 14 scalar fields, ¢qp and ¢gpe, whose dynamics may be formulated in
terms of the matrix Viaﬁ parameterizing the coset SL(5)/SO(5). The small Greek indices
a,f =1,...,4 label the fundamental representation of USp(4) ~ Spin(5). We require the
scalar matrix ViO"B to be antisymmetric in «, 8 and traceless with respect to the USp(4)
invariant tensor 2,3, ViO‘B Qa3 = 0 [57]. These constraints cut the number of degrees of
freedom of Via'g down to 25. Imposing additionally that detV = 1 we constrain V to
have the right number of degrees of freedom and to be an SL(5) element. To respect the
tracelessness condition,the inverse of Viaﬁ is defined by the following identities

« j j « 3 « 1 a
Vi ﬂvajﬁ - 637 Vi BV’y& = 67(? - ZQ 5975' (2.2)

One defines the SL(5) generalized metric as m;; = Viaﬁ Vjap, but sometimes it will be
convenient to use the generalized metric in the 10 of SL(5), defined as

Muyn = Myj i = migmj; — mgmgp,. (2.3)

As in the SO(5,5) case, duals for the 2-forms must be introduced as independent fields,
in order to facilitate the description of different possible gaugings. Thus we introduce a
set of 3-form fields CWpi, transforming in the 5 of SL(5). These are related by a duality
condition that will arise as an equation of motion. It will be convenient to redefine the 2-
and the 3-form fields with the indices labeling the 10 of SL(5), B, %L and C,,,,V- 5L

klmn
Buui = 26iklmnBuV )

mn,klrs

2.4
C,u,upm = —6€nkirs C;wp ( )

3 Tensor hierarchy and Bianchi identities

Let us now briefly review the EFT construction and setup our conventions. Transformation
of covariant objects in Exceptional Field Theory is defined by the usual rule

SAVM = (LM = (LAV)M 1 YMNONABVE = [A, VY, (3.1)



where [,]p denotes the Dorfman bracket. For the SL(5) U-duality group the Y-tensor is
given by
VG = ™MV e po, (3.2)

where ¢™M¥ is an SL(5) invariant tensor whose components are given by the alternating
symbol €™#P4. Note, that each large Latin letter parametrizes 10 representation of SL(5)
and through the paper is always equivalent to a pair of small Latin indices parameterizing
5 of SL(5) (see appendix A).
Since the Y-tensor is related to the projector on the adjoint it is straightforward to
write the generalized Lie derivative of a generalized vector in the following form
AVM = (LAV)M = AN VM — 3PM N oy AR VE 4 %(0KAK)VM. (3.3)
Here the last term plays the role of a weight term, that could be in principle added to any
transformation. However, here it directly follows from the algebra. Rewriting the projector
P explicitly as in the appendix B one obtains the following transformation of a field in the
fundamental 5 representation

1 1
(LAU)™ = ANoNU™ — Z(tgb)’;;akl/\mm + E(aKAK)Um. (3.4)

The weight A(U™) = 1/10 is a half of that for V""" as it should be since one may always
introduce a tensor U™U™ in 10 that has the weight 2A(U™). In what follows it will
prove useful to have transformation rules for the tensor B,, = emi . BEL obtained by
contraction of a 2-rank generalized tensor of weight A\(BX%) = 2/5 with the epsilon-tensor.
The resulting generalized tensor belongs to the 5 representation and transforms as

1 2
(LAB);m = ANONB,, + Z(t”m)];éﬁklquBn + g(aKAK)Bm. (3.5)

As expected, this differs from the above transformation for a tensor in 5 only by the weight
term.

It is important to mention the section condition YIJ(MLN Oy ® Oy = 0, that for the case
of SL(5) U-duality group can be written as

¢mnkly o @ O = 0. (3.6)

In this form the section condition implies existence of trivial generalized transformation
given by AJ"" = em"’flpaklgp, i.e. 60,VM™ =0 up to the section condition.

The E-bracket is introduced in the usual way via commutation of generalized Lie
derivative

[‘CAl ) £A2] = [’[Al,l\z}E’ (3'7)

and reads 1
(A1, As)p = [A1, As]p — 5Y}%LNaN(A{ng). (3.8)

Hence, the E-bracket is antisymmetric while the Dorfman bracket is not. Finally, we
mention following Jacobi identity for the E-bracket

1
[[Ap, Ao]p, Ayl = 6Y1]<MLN3N([A{1, Ao Ag). (3.9)



This failure of the Jacobi identity and lack of antisymmetric property of the D-bracket
naturally leads to tensor hierarchy in EFT. In other words, tensor fields of higher ranks
naturally appear to preserve covariance of expressions.

The long space-time derivative, covariant with respect to the D-bracket is defined in

the usual way

Dy =0y —La, =0, —[Ay,®]p, (3.10)
with the generalized vector field Afy transforming as
SAAY = 0,AM — A, ] = D AM. (3.11)

Note, that since D- and E-brackets differ by a trivial transformation (see (3.8)) the above
choice is matter of convention. The transformation in this form is taken to keep analogy
with the conventional Yang-Mills construction.

As usual, the commutator of covariant derivatives defines the field strength of the
gauge field that fails to be covariant, so one introduces a 2-form gauge field B, % whose
degrees of freedom are identified with those of the 2-form field B,,,,, via

Bywm = 8€mmnBu™ " = 2€mpgrs B 1. (3.12)
As a result one has the following tensor hierarchy [47]

[D}M DV] = _‘C]:Hy7

Fip = 200, A0 — A A + YRV on B,

KL KL 3 KL 4Py 4@ 1 P
Fuvp” " = 3 DBy +MYPQ A[u aI’Ap] _g[A[wAV]E( AP]Q)

- 3(0NCWPN’KL - ch% aNC;pr’PN)v

M,KL _ M,KL KL M KLy MN P
Fuvpo = 4DCpol + (QB - Fool = Bl Y pq ON Bl Q)
4 KL [ qM 4Pa 4@ L, m P 4Q

The higher rank field strengths are related to the lower rank field strengths via the following
Bianchi identities

3D, Fu = YN OnF "t
1
KL KL P N,KL KL PN
ADyFype = §YPQ Fluw }—pa]Q -3 (aN]'-quo T =Yhg aN]'-quoQ’ ) »(3.14)

10
N,KL N KL
5DH F =3 /—_[MV chm] + ...,

VPOK

where the dots in the last line denote terms that always drop from covariant expressions
below because of the section condition.



Under arbitrary variations of the p-form potentials the covariant field strengths trans-
form as follows:

0Fu™ = 2D, AAY - Y ONAB,, F,

Kty Ly 5 Fu " AAS

§Fup™ " = 3D, AB,, 5

ol

3.15
-3 (8NACMVpN KL YKL 8NACMW)Q’PN) , ( )
5]:“”/"’M7KL - 4D[uACVPU]M’KL + 18< ‘FU“’MAB ]KL - *f[quKLaA ]>
where it proves useful to define “covariant” transformations
AAY = sA),
KL _ KL _
B Bur OB =Y A[u le’ (3.16)

For the gauge transformations this gives

AAY = DAM + Y ONE Y,

_ 1
AB,, Nt = 2D, 2, K - 6Yf’fﬁVAM Fu™ 43 (080K — VLoD, N9

NGy K = 3Dy, R - M2 K ey, o (3.17)

The above transformations are constructed such that the covariant 2-, 3- and 4-form field
strengths are indeed covariant with respect to AM E#K L and \I/WN KL transformations.
Since the 2- and 3-forms above are related to the ones parameterizing the supergravity

degrees of freedom and duals used in [57] as

kl
Buui = 26iklmnBuV e

)

(3.18)

m mn,klrs
C/.wp = _6€nkl7“sC;wp )

it is convenient to rewrite the covariant transformation as
AAT™ = SAT™,
ABw/i = 6B/u/i - zezmnklAmnéAk}l (319)
kl
Acuypm = 6CMVP +35A[“ vpln — 2€nk-lrsA[u A 5AP]
Here one should take into account the factor 1/2, that is necessary to prevent double
counting when going from capital Latin indices to double small indices in a contraction.

With the fields defined in (3.18) and the corresponding relation for the gauge parameters
the gauge transformations read

1 .
AAZ”L = ’DMAmn + —ezm"klakﬁm,

16
AB"“’i - 2D[HEV}2' o 26im”qumn‘Fquq - ami\ljw/mv (3.20)
AC/JJ/pm = 3D[M\I/Vp]m + 3.F[lujmn5p}n + Amnflwpn7



where the identity (C.5) has been used. Note that these have precisely the same form is
in the D = 7 maximal gauged supergravity up to the following mnemonic replacements of

Zmn,k

derivatives along extended coordinates by components Y;,,, and of embedding tensor.

eimnklaklw _ _16‘men,iV—i

5 ym_ 9y ym (3.21)
mn - 24 mn .
Certainly, the correct way to check that the transformations indeed match is to perform
Scherk-Schwarz reduction explicitly, possibly, dropping the trombone gauging. Although
being an interesting project by itself, this is beyond the scope of the present work.

The same is true for the Bianchi identities that for the fields (3.18) take the following

nice form

1 .
3D[,u"rl/p} mn _ _ Eﬁzmnklaklfuupiv

4D[p~7:upo'm — 6€mpqr5]:[ﬂl,pq]:pa—]rs + anm]:’w/pa.n’ (322)
5D[lu'fl’p0"{]m = _1O‘F[ul/mn pPOKN + ...

In the non-coordinate notation the above equations read

1 .
DFM — E61,7)11ﬁ,klakl‘/,—_~i’

DF = empgrsFP A FS + Oy F™, (3.23)
1
DF" =~ F"™ A Fut ...,

where we define a p-form w), in terms of its components in the usual way

1 . .
wp = Hwilmipdx“ A ANdx'. (3.24)

4 Covariant exceptional field theory

The full SL(5)-covariant Exceptional Field Theory Lagrangian has the following structure

~

EEFT = LEH(R) + Esc(Dumkl) + LV(Fuumn) + ET(Fqum)

(4.1)
+ ﬁtop - V<mkla g,uzz)'

Here the modified Einstein-Hilbert term Lggy written in terms of the modified curvature,
the kinetic terms for the scalar fields L. and for the vectors £y and the invariant potential
for the scalar fields V have the same structural form as in other EFT’s, see for example [42,
43, 46] for the modified EH term and [47] for the general form of the potential.

The kinetic term for the 2-form gauge potentials B, appears here as a proper La-
grangian governing dynamics of the corresponding degrees of freedom. Whereas, in the
SO(5,5) theory such a term was subject to a self-duality condition and for higher rank
U-duality groups was not there at all.

Finally, the topological term has always different structure depending on the dimension
and the duality group and hence has to be processed separately. While U-duality covariance



of the other terms is explicit, the topological term does not have a covariant form. Instead,
one may write its variation in a covariant form, that is the only relevant expression to
recover EOM’s.

We should mention here, that 6+1-dimensional diffeomorphisms for the scalar and
vector kinetic terms, the modified Einstein-Hilbert term and the scalar potential work
precisely as in [46, 47] and hence invariance is not explicitly checked here. However, we
perform explicit check of invariance of of the 2-form kinetic term and the topological
term with respect to external diffeomorphisms, that successfully fixes all the coefficients
in the Lagrangian. This is a known feature of EFT in contrast to the maximal gauged
supergravity, where all the coefficients become fixed only after imposing supersymmetry
condition. One may speculate that already the bosonic EFT contains some information
about the full supersymmetric theory.

4.1 Kinetic Lagrangian and invariant potential

The fully covariant Einstein-Hilbert term takes the following usual form
1 n,. 1D » 1 n, . 1D uw.vp ab
SEH = —3 d"zd”XeR = —3 d"xd” Xeeley Ry, ", (4.2)

where the modified curvature reads

R,u,uab = R,Lwab + -FuuMegaMepb- (43)

To ensure invariance of the Einstein-Hilbert term with respect to local Lorentz transfor-

b is set

mations depending on extended coordinates, the corresponding spin-connection w,*
to have weight zero. One should consider this general dependence of local transformations
since all fields in the theory depend on the extended coordinates.

The corresponding Lorentz-invariant Riemann scalar then differs from the usual ex-
pression and has the same form as in [46]. The usual equation that determines the spin-

connection can be written in the following covariant form
D et 1 ab _ 4.4
[Mey] — Zw[“ 61,]1, =0. ( . )

As was checked in [47] in general form invariance of the scalar potential implies, that the
external vielbein is a generalized scalar of weight A(ef,) = 1/5.

For the scalar degrees of freedom parametrized by the matrix M,y we just use the
general result and set ag = 3 [47]

1
ﬁsc = EegHVDMMMNDVMMNa

M opn kil = Mok Mt — My M-

(4.5)

As expected this is explicitly covariant under the local gauge transformation generated by
the generalized Lie derivative.



Finally, the kinetic terms for the 1-form potential Ai‘[f and the 2-form potential B,
take the following form

1 1
Ly = —*GMMN.FMVM.FHVN = —femmkmnl]:wmn}"’wkl,

! 1 ° (4.6)
Lr = 3. (16)2€mmn3 pwpmF

Each term here is separately covariant with respect to generalized diffeomorphisms and all
gauge transformations. It is explicitly shown further, that the numerical coefficient in L
is defined by invariance under 6+1-dimensional external diffeomorphisms.

The non-topological part of the Lagrangian is concluded by the so-called scalar poten-
tial. This depends only on the scalar and metric degrees of freedom and their derivatives
with respect to extended coordinates X™". This has a form universal for the duality groups
Eg 5, SO(5,5), SL(5) and SL(2)xSL(3):

1 1
V= —HdMMNaMMKLaNMKL + 5MMNaM/\/1KL(9LA/1NK
(4.7)
1 1 1
= 507 O g)ON MM — S M (g7 Or19) (97 Ong) — TMMN Ot g™ O g

where the terms in the first line are precisely those of [5] and the rest terms are needed to
ensure gauge invariance, and one should note the determinant \/—g in the action. For the
case in question one sets oy = 3. Covariance of the above expression has been explicitly
checked in [47].

4.2 Topological Lagrangian

To construct the topological term one notes that in the embedding tensor formulation of the
maximal D = 7 supergravity the field C\,,,,”" appears only under projection with the tensor

1

p(m,n) >

that parametrizes gaugings in the 15 of SL(5). Analyzing the expressions for the 3-form
field strength ]-'WPKL and for the covariant transformation ABWK L one arrives to the
following rule

YounCpurp™ = emicr, (ONCINE = YEFONCEEY). (4.9)

Indeed, since the field C,,,™*"s contains only the representation 5 of SL(5) one has

the identity 126pklmCme”’k"5 = Cuyp[még}. Now performing Scherk-Schwarz reduction
Chup” (a#, XM) = VI (XM)CT(2#) one obtains

it (ONCIRE = YEFONCEEN) = (VRO Vi) Coa". (4.10)

Using the SL(5) gaugings written in terms of twist matrices obtained in [18] the expres-
sion in brackets on the r.h.s. becomes precisely Yz (for the vanishing trombone gauging
and det V' = 1). Barred indices are used only in the paragraph above and denote the flat
directions of the Scherk-Schwarz twist matrix, see [18, 19].



Hence, inspired by these observations, we write variation of the topological Lagrangian
in the following simple form (cf. [57])

OTK OTK

0 Liop = AehvproTs [ ]:w/p)\i — ( ONACNKL _ YPI)(QL On ACQ,PN)

+ quyljfp,\aiAij — mfpupianrjdA?] + total derivatives. (4.11)

Here the coefficients are chosen for the variation to vanish on all gauge and U-duality
transformation. Since it is easier to work with the fields (3.18) we rewrite the above
expression as

0Liop = AePATEN F N0 ACT 4 6F Y ForgiABryj — 2FupiFaori0AZ |, (4.12)

OTK

where the overall prefactor will be fixed to A~! = 16 - 4! by invariance with respect to
6+1-dimensional external diffeomorphisms. Note, that e#*?7*7* here and always in the
paper is the alternating symbol, rather than the Levi-Civita tensor, and hence does not
contain the determinant e.

As for the topological terms of EFT’s in other dimensions (as well as of gauged super-
gravities) this expression cannot be written as variation of a covariant expression. However,
the above is enough to write equations of motion and to check invariance of the Lagrangian
with respect to 6+1-dimensional diffeomorphisms.

4.3 D = 6 + 1 diffeomorphisms

In the previous section we have established the explicit form of the kinetic Lagrangian for
the fields A,™", B,m and MMN “the modified Einstein-Hilbert term, the scalar potential
V(OM, M) and the topological term. These are invariant under duality transformations
as well as under all the gauge transformations resulting from the tensor hierarchy. This
invariance fixed for us all the mutual prefactors in the Lagrangian except the prefactor of
the topological term and the kinetic term of the 2-form gauge potential. It is known, that
the same situation appears in the maximal gauged supergravity models, where to fix the
remaining prefactor on needs to consider supersymmetry.

The case of Exceptional Field Theory is different due to dependence of all the fields
on the extra coordinates X™. This results in the fact, that external 6+1-dimensional
diffeomorphisms do not work automatically and one has to perform a certain check of
that. Remarkably, it is enough just to fix these two prefactors to satisfy the invariance
condition. The result is a completely fixed duality, gauge and external diffeomorphism
invariant Lagrangian. Another miracle appears, when one checks supersymmetry of the
(SUSY extended) Lagrangian and gets that for free. This has been checked explicitly for
the duality groups E7 6 in [49] and [50], however there is no reason to expect, that other
U-duality groups fail to follow this scheme.

,10,



Hence, let us start with the following external diffeomorphism transformations

dey, = §M'Dyef, + Dyu&ley,
IMyn =E"DyMun,
sAM = ¢ F, M 4 MMN g, 0ne, (4.13)
AByui = £ Fpuvis

m mn TR\
Ac,uup :_gefuypme)n'fgm F Tnv

where €, p5x0r = €€uporar is the Levi-Civita tensor in 7 dimensions. Transformation of
the 3-form potential is required to be of this particular form by off-shell invariance of the
Lagrangian (see remark at the end of this section).

One should note, that huge part of cancellations here works precisely as in the maximal
gauged supergravity and hence, does not need to be double checked. In contrast, the terms
that contain the derivative 0,,,&"* do not exist in the gauged models and hence need to
be processed explicitly. We will refer to them as new terms and work in the close analogy
to [46]. Next we note that diffeomorphism invariance of the universal scalar potential V'
has been checked in general form in [47], hence we just use the result here.

Let us start with variations of the 2- and 3-form field strengths and write for the former

1
OF ™" = 2D AAY™ — o€ Oy B

1
= QD[M(gprumn) + D[M(an’pqgﬂpapqu) B Eemnpqrgpqapq(gp}—wm) (4-14)
1
_ (Lﬁpfuvmn) - Eemnpqr}—w/wapqu + 21)[# (mmpmnqu}papqu)7

where we used the Bianchi identity for the field F,,,”" to organize the (conventional) Lie
derivative with respect to D), that is denoted by L?. Using the same arguments and the
Bianchi identity for the 3-form field strength we write for its variation

5 Fpm = 3DuABy i + mpars Fin "0 A" — Oy AC,," (4.15)
- 3D[u(£(jfupa]m) + 66771;)117‘3]:.[uypq]rap]Tsé.(7 + 3€mpqrsf[uupqMrsyklgpaaklga
— Omn AC,"

= (Lgpfp,upm> + 6€mpq7‘smrkmSlqupquoaklfU + faamnfp,upan - 8mnAcf,uupn-

Here the transformation of the 3-form gauge potential AC),,," was left inexplicit for further
convenience.

Now, one notices that terms in the variation of the Lagrangian containing the (con-
ventional) Lie derivative of the 2- and 3-form potentials together with variations of the

determinant of the vielbein det e and the scalar matrix m™"

in the corresponding kinetic
terms give just full derivative. This is exactly the same as in the gauged theories and in
other EFT’s. Next, from the analysis of EFT’s for the other U-duality groups one con-
cludes that the last term in the last line of (4.14) will cancel against the corresponding

contribution from the variation of the modified Einstein-Hilbert term.

— 11 —



Hence, what is left are the following six terms

1
(1) = 4. 16emmkmnwmnpqrfwklfpuw Tpg€”
1
O3 e g g0

3 —emmn}"’w” (ggamkfp,upa'k — amkAC#I/Pk)7 (4.16)

3) =

(4) = Aewwﬂ%pA O ACT!
(5) =

(6

OTRK?
5 QAEIWW\UTK}— me]:)\a'rn (5 ]:wnmn + 9 Tl)m mnlakl£¢)
) = 6Ae“l’p}‘m—lifuymnfp)\crmfwrﬁng

where the first line comes from the variation of the kinetic term for the 1-form gauge
potential, the second and third lines comes from the kinetic term for the 2-form gauge
potential. The last three lines result from the expression (4.12), with the line (5) resulting
from the term with §A4,™" and the line (6) from the term with AB,,,,,. One immediately
notes here, that the first term in brackets in the line (5) together with the line (6) forms
an expression with the 8 indices {urpAorri} fully antisymmetrized, and hence cancels.

Next, the lines (1) and (2) cancel against each other since the scalar matrix m € SL(5).
Indeed, as a consequence of det m = 1 we may write

m™m e pars = € mimy,, (4.17)
that after substituting into (2) gives the desired cancellation. Note, that the identity above
can be understood as a rule for raising and lowering the indices of the alternating symbol,
however we will not need this.

Now, we note that the first term [3.1] in the line (3) and the term in the line (4) can
be combined into a full derivative. Indeed, using the transformation of the 3-form gauge
potential we write

[3.1] + (4) =

1 nk -uvp ¢o A HVPAOTTK P Xﬂu nk
:_Eem FHPRE anm‘/__‘;uxpa _ge ]:Vp)\ 8mn(€607m/;xﬂu§ F )

1
= —Eem"kf“”pkg"anmpram — A AN F o™ O (e€H FVP7 om ¥ (4.18)

Setting the prefactor A=! = 16 - 4! and taking into account two minus signs resulting from
necessary permutation, one arrives to a full derivative, that drops from the variation of the
action.

With the prefactor A being fixed we are left with check of the cancellation between
the second terms in the lines (3) and (5). This is straightforward, however one should take
care of the det e prefactors. Hence, we write (multiplied by (32 - 3!) for convenience)

(32 3!)([3.2} + [5_2]) _

A kl A k [
= —2em"" F"P O (eeuupmﬁATEU]:H Tim ) — e aTK]:qum]:)\UTngmbmm m" ak:lgw
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A kl A k l
= _2€quUH>\Tamk (emmn]_—,uypn)e]:ﬁ 7—lTn 7—e- 5uupz\a7'f€f#ypm]: aTnmm m'" aklglki

= _6uupm€)\ramk (62mmnfuupn]:ﬁ)\7lmkl€a) = 0. (419)

Note the use of the Levi-Civita tensor €, 5,7« in the second expression, that produces an
extra factor of e times the (constant) alternating symbol.

As the final remark in this section let us look at the equations of motion for the
(non-dynamical) field C,,,,", that read

1
T P a0

The result is that the 3-form gauge potential does not give dynamical field equations in the
external 6+1-dimensional space-time. Rather, it results in restricting of the 3- and 4-form
field strength behavior in the internal extended space. After Scherk-Schwarz reduction
the above equation results in the known duality relation between the 3- and 4-form field
strengths. This is an expected result, as the fifth component of the 2-form gauge potential
was introduced as a dualization of the 11-dimensional 3-form gauge field with all indices
external. Since one was always allowed to dualize the 2-form gauge degrees of freedom to get
a 3-form gauge potential, to keep the story duality covariant one should introduce both the
2- and the 3-form gauge potentials. This doubling of fields is the price for having the theory
duality covariant. The final field content of the model depends on the gauging chosen.

Finally, let us note, that upon imposing the following dualization constraint
1
emmnfuupn - ZEMVp)\UTH]:)\O'THm7 (421)

the diffeomorphism transformation rule for the 3-form field strength takes its conventional
form

Aﬁcuypm = é-ofauupm- (4.22)

5 Embeddings of D=11 and Type 1IB supergravity

The field content of the 11-dimensional and Type IIB supergravity can be naturally em-
bedded into the field content of the exceptional field theory upon a correct choice of the
solution of the section condition. Depending on the duality group one gets a different split-
ting of the coordinates of the resulting theory. As was shown in [46] for the Eg exceptional
field theory the resulting Lagrangian does not preserve the full D=10 Lorenz invariance
due to this coordinate split. Since there is no reason to expect that on the level of the
Lagrangian the construction works only for the Eg duality group, where it has been checked
explicitly, we perform here only the check of the field content. However, in principle one
would be interested in having an explicit picture of how the Lagrangian of all the EFT’s
reduces to the known supergravities.

Let us start with embedding of the 11-dimensional supergravity field content. The
corresponding solution of the section condition breaks the U-duality group SL(5) to GL(4)
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and provides the following decomposition of the relevant representations

SL(5) — SL(4) x GL(1) ~ GL(4);
10 — 4_3 + 69;
5 — 41+ 1 4
24 — 19+ 45 +4_5 + 150,

(5.1)

where the subscripts denote weights with respect to the GL(1) subgroup. Since the ex-
tended coordinates X" transform under the representation 10 they decompose according
to the second line above, that gives

XMy {X5a7Xab} N {xa7€abcdycd}’ (52)

where eabed

is the alternating symbol in 4 dimensions. The coordinates x® have the in-
terpretation of the usual geometric coordinates, while y,;, correspond to winding modes
of the M2-brane. It is straightforward to check that dropping dependence on the winding

coordinates solves the section condition
eim"kl&m ® O = 0. (5.3)

Hence, all the fields of the theory depend only on eleven coordinates: the space-time
external coordinates z# and the internal ones z®.

The corresponding decomposition of the gauge fields works as follows

A= ALY Apaps

(5.4)
B/uxm - B;Wa B/uza-

Here we do not include the field C,,™ as it completely drops from the theory on the
solution of the section condition. This decomposition nicely fits into the decomposition of
the metric Gy and the 3-form field Cyzz in 11 dimensions (see (2.1))

GIVIN — {g,u,l/a Auaa Soab}a

(5.5)
CIVINK — {CuVm B,uuav A,uabv Qpabc}

The 3-form field C},,, is obtained by dualization of the 2-form B, in 7 dimensions. The
14 scalars g and @qpe is the above decomposition are identified with the components of
the generalized metric my,, that lives in the 24 of SL(5) factorized by the 10 of SO(5)
considered as its subgroup. Hence a combination of 45 and 4_g is factored out as well as
the SO(4) part of the 159. The latter together with the singlet 1 form the coset space
GL(4)/SO(4), while the remained 4 gives the fields ¢q5.. The easiest way to see this is to
look at decomposition in the matrix representation of the groups SL(5) and SO(5)

SL(4) 45
41_5 19

SO(4) 4

P (5.6)

SL(5) : [ ] ., SO(5):

The other possible branching SL(5)—GL(3)xSL(2) gives the field content of the ten-
dimensional Type IIB supergravity with 743 split. As usual for EFT’s, the explicit SL(2)
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symmetry is identified with the S-duality symmetry of the theory. Branching rules for the
relevant representations take the following form

10 — (1, 1)—6 + (3, 1)4 + (3, ].)_17
5—(1,2)_3+(3,1)2, (5.7)
24 — (1,1)0+ (1,3)0 + (3,2)5 + (3,2)_5 + (8,1)0,

where the first irrep corresponds to the SL(3) subgroup of GL(3) and the subscript denotes
weight with respect to its GL(1) subgroup. The first line above implies the following
decomposition of the extended coordinates X"

X [Xab K08 X}y fetbeg, ot (002, (5.8)

where €22 and €% are the alternating symbols for the SL(3) and SL(2) groups respectively
Supergravity interpretation of the above decomposition in terms of the geometric coordi-
nates and winding modes of various Type II branes needs more careful consideration.
First, one should note that breaking the SL(2) symmetry explicitly and leaving only the
coordinates {z,, y""*!} results in the O(d,d) theory, that is the Double Field Theory [58].

The DFT section condition 5 5
Oxg © oye -

is a direct consequence of the SL(5) section condition. Hence, as it is known from DFT, to

0 (5.9)

return to the Type ITA theory one just drops dependence on the x, coordinates, that corre-
spond to winding of the fundamental string of Type ITA. Alternatively, to end up with Type
IIB theory one drops the dual coordinates y¢ and interprets what remains as the normal
geometric coordinates. In the recent work [22] this procedure was used to obtain consistent
truncations of Type ITA and IIB supergravities from the SL(5) extended geometry.

With this in mind we return back to the decomposition (5.8) and identify the z, with
the geometric coordinates while the doublet y2% is identified with the doubled of winding
modes for the fundamental string and the D1 brane. The latter are indeed dual with respect
to an S-duality rotation. Finally the coordinate z is understood as winding mode for the D3
brane in 3 dimensions. It is important to mention that the SL(2) symmetry is not broken.

To identify the fields of the SL(5) EFT let us look at the 7+3 decomposition of the

(bosonic) fields of Type IIB supergravity

Gy —  Guv, A,uga Pab;
Ca —  Ya;
“ e (5.10)

Bwa — Buwas Auaa, Pabas

CMNKL — B,quLb’ A,u: Cuupaa C,ul/pg-
Note that die to the self-duality of the 4-form gauge potential in 10 dimensions only the
half of d.o.f. in the last line above survives. The branching rule imply the following
decomposition of the EFT gauge fields

A = { A Apas Aug&}’

(5.11)
B,uum — {B,uugv By,l/d}'
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Considering only the fields C\ypq and A, of the last line in (5.10) as physical we identify
them with the field A, of EFT and the dual of B,,,. Note that the underlined indices
labeling the 3 of SL(3) can be raised and lowered by the scalar matrix. With this in hand
one directly identifies the remaining gauge fields.

The generalized metric m,,, represented by the coset element can be decomposed as

follows

Mann = {Mab, Mag, M55} (5.12)
Here the fields m,4 are directly identified with those coming from the 2-form in 10 dimen-
sions up to contraction with the alternating symbol €2¢. The element mgp of the coset

GL(3)/SO(3) give the internal part ¢, of the 10-dimensional metric, while the 2 fields
mep parameterizing the coset SL(2)/SO(2) match the axion-dilaton C4. One may come
to the same conclusions by analyzing the coset decomposition of the generalized vielbein,
however we find the above analysis more transparent.

Hence, we conclude that the expected result of recovering the 11-dimensional super-
gravity and Type IIB supergravity by different solutions of the section condition holds for
the SL(5) theory as for the other EFT’s. The same procedure has been used in [20] to
explicitly obtain the Lagrangian for Type IIB and 11-dimensional supergravities from the
internal sector of EFT, developed in [4] and [5]. One is still interested in doing the same
for the full SL(5) EFT and for its supersymmetric extension.

6 Discussion and outlook

In this work the construction of SL(5) Exceptional Field Theory was presented, that fills
the empty slot in the chain of EFT’s for the groups Egr7g, SO(5,5) and SL(3)xSL(2)
already constructed. These correspond to the maximal supergravities in D = 3,4,5,6 and
D = 8 respectively. Hence, the presented model adds the D = 7 case and fulfills the chain.
The U-duality groups for D = 9,10 supergravity are too simple and the extended space
can not be constructed. On the other end one meets the Fg group to be expected as the
U-duality group for D = 2 maximal supergravity. This is infinitely dimensional, and hence
the extended geometry in its known form ruins here as well.

For some applications, such as searches for solutions or classification of gaugings, mod-
els with SL(5) U-duality group seem to be more convenient as these provide less extended
coordinates and carry more simple algebraic structure.

Although the initial construction of extended geometry has resulted from investigation
of the toroidal backgrounds in supergravity, it is in general believed, that Scherk-Schwarz
compactifications are able to catch non-toroidal and even non-geometric backgrounds.
There was large progress in the direction of uplifting Type IIB solutions and solutions
of 11-dimensional supergravity into EF'T by choosing an appropriate Scherk-Schwarz re-
duction scheme [22-24]. However, there is still discussion in the literature, whether one
should use other approaches to describe non-toroidal backgrounds. One of them is the so
called WZW Double Field Theory, that attempts to construct a DF'T on a group mani-
fold [59-62]. hence, in this context it would be interesting to expand the ideas of exceptional
field theory to DF Tz and look for possible uplifts.

,16,



The presented theory is essentially bosonic and one may be interested in extending it
to include fermions in a supersymmetry invariant way. For the E¢7 EFT’s this was done
in [49, 50]. The interesting point here is that in contrast to the maximal gauged theories
the bosonic Lagrangian is completely fixed already one the bosonic level with no need of
supersymmetry. Hence, the fermionic sector should be constructed in such a way to fit
nicely in the existing theory. With such theory in hands one may be able to investigate
BPS solutions of the theory and geometry of Killing spinors.

In [54] extended geometry for the group SL(N) was constructed, that may be inter-
preted as internal sector of a corresponding EFT. One may be interested in merging this
work and the present results to end with an SL(N) “exceptional” field theory. The question
is, to what extent one expect the known structures of tensor hierarchy to appear there,
and is it possible to construct a Lagrangian.
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A Notations and conventions

All the notations for indices used in this paper are as follows

M,N,...=0,...10, 11-dimensional space-time indices;

M,N,...=0,...9, 10-dimensional space-time indices;

wv,p...=0,...6, 7-dimensional space-time indices;

a,b,é...=0,...6, 7-dimensional space-time flat indices;

a,bye...=1,...4, 4-dimensional internal curved indices; (A1)
a,byc...=1,...4, 4-dimensional internal curved Type 1B indices;

a=1,2, SL(2) Type IIB index;

M,N,K...=1,...10, indices of the 10 of SL(5) labeling the extended space;
m,n,k,l=1,...5, indices of the 5 of SL(5);

a,B=1,...4, indices of the 4 of USp(4);

The extended space of the SL(5) EFT is parametrized by the coordinates X™ with the
capital Latin indices labeling the representation 10. However, it is often more convenient
for explicit calculations to label the representation by an antisymmetric pair of indices in
the fundamental X" = —X""_ To prevent double counting one should either write sum
with the condition m < n, or to write the 1/2 prefactor explicitly. To make the calculations
more straightforward and more machine-friendly we choose the second way.
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Hence, one observes the following rules to go from the capital Latin indices labeling

the irrep 10 to an antisymmetric pair of small Latin indices each labeling the irrep 5

™ — 7mn any tensor;
1
UMV — 5U“”mvm; (A.2)
oMy — 207 only for the Kronecker delta.

The Kronecker delta symbol is required to be processed separately because 9,7 = 10 as well
as 6% = 10, while one should introduce an extra 1/2 factor when going from contraction
of capital Latin indices to contraction of a pair of small indices.

B The algebra of SL(5)

Generators of the SL(5) group in the fundamental representation and in the representation
10 are given by
A 1 .
(F i = 076, — 67, )
(F7)"" 0 = A(E)[ o)

These are traceless and satisfy the following commutation relations
[t™,, 5] = omek, — oFtmy. (B.2)

It is important to note, that when contracting generators in the 10 representation one
should use the capital Latin indices and the same is true for the projectors below. L.e. one
writes

(15850 v = ()M i (#5)x = (7)) (B3)

This results in a different coefficient in the definition of the generator in 10 with respect
to [18], however we find such conventions more natural.

Now it is useful to write the explicit form of the projector on the 10 representation of
SL(5) that reads

1 . .
PMyR L = 3 DMK L (B.4)
The identifying property of the projector then can be written as
1 .
PM K PLy P = ZPMNkZijPUklPQ L PM P (B.5)

This fixes the overall prefactor in the projector and implies the correct identity
1
PM NNy = ipmnklk’mn = 24 = dim(adj). (B.6)

Let us now check explicitly the defining relation for the Y-tensor derived in [38], that
for the SL(5) group reads

1
eMNe or = YN = _3pM K, 4 55% oK 4 oMK (B.7)

,18,



amnkl

where e denotes the 5-dimensional alternating symbol e . Taking into account the

above notations we rewrite the expression as

4 i i
2gmngkl | g5mng

ki kl
e eapgrs = =3P pg s + 5 P4 pg>

(B.8)

note the prefactor 4 of the Kronecker symbols. Substituting the expression for the projector
in terms of the generators and writing them explicitly in terms of the Kronecker symbols
we have for the r.h.s.

i \[m snlg [k sl 4 mn skl mn gkl
(— 16(¢ )™ 07 (17,)! [,,531) SOk + 40T o
16 4
mn ckl mn skl mn ckl mn skl mn ckl
- ( — 804y Oglp + 80y Oy + ngpq 67“8) + g‘qu Ops + 4075" 0 (B.9)

— —BO Sk, + 8OO, + AS)a OFL + AS]I G = A1

This is precisely what one has on the Lh.s. of the identity, i.e. eam”kleapqm = 4!6},’;?51.

C Useful identities

The 4-form field strength FM XL helongs to the representation 10 ® 5 = 5 + 45 since
the indices K L by construction contain only the 5. Moreover, the representation 45 is not

contained in the field strength. Hence, in the fundamental indices one may write F7m[kirs],
And finally projecting out all the redundant representations one has
f‘m — _6fmn,klr56nklrs. (Cl)

Consider now the following expression that is relevant for the Bianchi identity of the
3-form field strength FXE

circ i (OnFNHKL — YA ONFOPN)

1 (C.2)

)kl P
- g(amn‘/—:mn 7'S‘Eiklrs - 6€ipqrsamnfrs pqmn).

Let us show, that this is proportional to aij]:j . Indeed, considering antisymmetrization

of the indices {nikirs} in the first term, that is identically zero, and taking into account

J—_'mn,klrs

symmetries of the indices of we may write the following

mn,klrs _ mn,klrs n,klrs
OmnF Eikirs = OmiF Enkirs + 40mpJ €inlrs- (C?’)

Considering antisymmetrization of the indices {mnkirs} in the second term above we
rewrite the above expression as

Oran P ity = O F 5 s L Dok Pt 30 P g (C.4)
Finally, substituting back into the expression (C.2) this gives the desired identity
i (OnFNKE Y isboy FAPN) iaijﬂ. (C.5)
The Bianchi identity itself is then written as
4Dy Fopoli = ﬁeimnklﬁ'sz%] + OmiFuvpo - (C.6)
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D Gauge invariance of the topological Lagrangian

In this appendix explicit check of invariance of the topological Lagrangian under all gauge
transformations is provided. Let us for convenience recall the variation of the topological
Lagrangian

0 Liop = AP F L A0 ACT L+ 6F Y ForgiABryj — 2FupiFaori0AZ . (D.1)

OTK

Note, that the above expression is written completely in covariant terms, while this is not
true for the topological Lagrangian itself. The only way to have a covariant form is to
introduce a fictitious 8-dimensional space-time with a 7-dimensional and write a covariant
expression, whose variation becomes a full derivative. Hence, one obtains an integration
over the 7-dimensional boundary, that is formally identified with the usual space-time.

Let us start first with generalized diffeomorphisms parametrized by AM, that give
for (D.1)

5A£t0p = -Fuup)\mamn(Ankfaka) - 12€npqrs]:,u1/mn]:p)\amqu]:ﬂirs

(D.2)
- 2Fuupmf)\UTnDHAmn-

Here and everywhere in this section we omit the space-time alternating symbol e#*PA77% to
preserve space and for clarity of notations. Hence, the corresponding antisymmetrization of
all the dummy space-time indices is always undermined. In addition, since one is actually
dealing with the action rather than the Lagrangian, that involves integration over the space-
time coordinates x* as well as the extended coordinates X', all full-derivative terms in
D,, or Oy are dropped.

Hence, performing integration by parts in the first term with respect to 0,,, and in
the last term with respect to D,, and taking into account the hidden contraction with the
alternating symbol we have

- amnFquAmAnk]:aTnk - 125npqrs]:uumn-/rp)\amqu]:TnTs + 4(Dp,]:up)\m)]:a7'l-enAmn
= 66mpqrsfuuqup)\rsAmnf(ﬂ%n + 126mpqrsfuumnfp)\o'nquanrs (D3)
= 18€mpqrsfuy[qup)\rsAmn]faﬂin =0.

Here we have used the Bianchi identity for F,,,, in the second line and organized a full
antisymmetrization of six SL(5) indices {mnpqrs} labeling the 5 ensuring vanishing of the
expression.

For gauge transformations parametrized by the 1-form parameter Z,; we write

5E£ = Bfuyp)\mamn(farnkEnk> + 12f,uymnfp/\amDTEnn
1 (D.4)

mnpqr g —
- gfuupmf)\afne pa 'Dq=rKr1 -

Performing integration by parts in all the terms and relabeling indices we obtain
- 3anmfuupAnF0TmnEnn + 12fUTmnDuFup/\mEnn - 12D7fuumanAomEnn
1 -
+ Zaquuupmf)\aTnemnqu:nr (D5)

mn rs— mn rsl=
= 185mpqrsfa7— ]:;wqup/\ Skn — 18€mpqrsfo7—[ F,uupq]:p)\ }':‘mz =0.
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Here the second and the last terms in the first expression cancel dues to the Bianchi identity

for the 2-form field strength JF,,,”", while the Bianchi identity for the 3-form field strength

results in a single term. Following precisely the same arguments as above one observes the

indices {mnpgrs} are fully antisymmetrized, and hence the term vanishes identically.
Finally, for the 3-form gauge transformations parametrized by ¥,,™ we have

5\II£ = 3‘Fuup)\8mnDcf\IlTHn - Gmnfp/\amaknq/’rnk

= 3D, FuvonOmn Ve — 6F T ForomOkn Wit = 0 (D6)
- o’ prpAUmn ¥ 7k pv 4 pAomUkn ¥tk = U-

Here in the first line we used the fact that 0,,,Ds¥,,," = DyOpmn ¥, and in the second
line the Bianchi identity for the 4-form field strength.

Let us now show that the used identity indeed holds, i.e. that one is allowed to swap
derivatives in such expression. Effectively, this identity can be rewritten just as 0y, LA V" —
LAOmn¥"™ = 0 for some generalized tensor ¥ in the 5 of SL(5) with generalized weight
A[¥] = 3/5. One notes, that this condition is nothing else but just a condition for Op,, U™
to be a generalized tensor transforming under 5. Hence, one indeed expects this to hold as
precisely this term appears in the transformation AB,,,, and in the Bianchi identity for
Fuvpm- Since all other terms in these expressions are generalized tensors the term 0, ¥"
should be a generalized tensor of weight A[0p,, V"] = +2/5.

However, let us check this explicitly and write first supposing 0,,, V" is a generalized
tensor of weight +2/5

1
Z(t",.)klmamnakmpq\pr

OOy AP+ =20 AP, 07 (D7)

1 1
O LAY = 2 0 AP0 U™ 4 S AP0, 0y 0"
1 3

kl
- Z(tnr) pq Ot AP0y ¥ + 5.9

1 1 2
LA(Opn¥") = iqu('?pq@mn\I'” + Z(trm)klpq(‘)kl/\pqam‘lin + ﬁc{)pq/\pqﬁmn@”.
We now show that these expressions are equivalent up to terms vanishing under the section
condition. Taking difference of these expressions one notes, that there are terms of the form

OAOV and JOAVY that should vanish separately. Indeed, we have for the first type

1 1 1 1
= 5(97,mz\pqam\11" - Z(t",«)"?lma,dz\pqam\IW" - Z(t’"m)k’pqa,d/wqa.n\If" + Toaqupqamnxp"

1 1
= 5 Oun AP0 U — DA 0y U — By AP0 U™ + - D Ay T
— 30 AP0, U = 0, (D.8)

where in the second line the explicit form of the SL(5) generators and in the last line the
section condition were used.

The similar calculation can be performed for the terms of the second type and one gets
the following

1 3
= _Z(tnr)klpqamnaklqu\Ijr + EamTaqupq\I/T

mp~rq

T 1 T T —
= —OuupOr AP + S0y Opg APIUT = =30}, 0, AP = 0.
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Hence, this concludes the explicit proof of invariance of the topological Lagrangian.

This invariance fixes all internal coefficients, while leaving the overall prefactor arbitrary.

The latter will be fixed by invariance under external 1+6-dimensional diffeomorphisms.
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