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Abstract. The goal of the talk was to describe recent results in constructing Ricci-flat metrics
on complex cones over positively-curved complex surfaces.

There exist many explicitly known Ricci-flat metrics on noncompact Calabi-Yau manifolds
(the first examples being [?], [?], [?]). The reason is that these latter metrics possess sufficiently
many isometries. The role of these metrics is that they describe the geometry of the compact
Calabi-Yau manifold in the vicinity of a singularity, after it has been resolved. One particular
type of singularity that can occur for a complex Calabi-Yau threefold is that of a cone over
a complex surface. From the algebraic perspective, such complex surfaces are characterized
by the fact that they have an ample anticanonical bundle. They have been classified: such
surface is either ��1 × ��1, ��2 or the blow-up of ��2 in no more than eight sufficiently
generic points. The latter are called del Pezzo surfaces. The goal of the talk was to provide
a framework for constructing the most general Ricci-flat metric (with the relevant isometries)
on the anticanonical cone over the del Pezzo surface of rank one — the blow-up of ��2 at one
point. The metric of [?], which can be found by the so-called orthotoric ansatz of [?], fits in our
construction as a particular case. The results reported in the talk were obtained in [?].

1 The del Pezzo surface and the cone: geometry

We will be interested in the del Pezzo surface of rank one, further denoted by dP1. The del Pezzo
surface dP1 is a compact simply-connected Kähler manifold of complex dimension 2, such that

H2(dP1, Z) = Z
2, and the intersection pairing on H2(dP1, Z) has the form

(
1 0
0 −1

)
.

1.1 The differential-geometric model

The Kähler metric on the cone Y over the del Pezzo surface of rank one has the isometry group

Isom(Y ) = U(2) × U(1) (1)

In more practical terms, we will introduce three complex coordinates z1, z2, u on Y and, due
to the U(2) × U(1) isometry, we will assume that the Kähler potential depends on the two
combinations of them:

K = K(|z1|2 + |z2|2, |u|2) := K(et, es) (2)
∗Emails: dmitri.bykov@aei.mpg.de, dbykov@mi.ras.ru

1



It turns out useful to perform a Legendre transform, passing from the variables {t, s} to the
new independent variables

μ =
∂K

∂t
, ν =

∂K

∂s
(3)

and from the Kähler potential K(t, s) to the dual potential G(μ, ν):

G = μ t + ν s − K (4)

The usefulness of the new variables (3) to a large extent relies on the fact that they are the
moment maps for the following two U(1) actions on Y :

U(1)μ : ( z1 → eiα z1, z2 → eiα z2 ) U(1)ν : u → eiβ u (5)

The Ricci-flatness equation assumes the following form:

e
∂G
∂μ

+ ∂G
∂ν

(
∂2G

∂μ2

∂2G

∂ν2
−
(

∂2G

∂μ∂ν

)2
)

= ã μ (6)

Denoting (μ, ν) by (μ1, μ2), we can recover the metric from the dual potential G [?] using
the formula

ds2 = μ g��1 +
2∑

i,j=1

∂2G

∂μi∂μj
dμi dμj +

2∑
i,j=1

(
∂2G

∂μ2

)−1

ij

(dφi − Ai) (dφj − Aj) , (7)

where g��1 is the standard round metric on ��1, A2 = 0 and A1 is the ‘Kähler current’ of ��1,
i.e. a connection, whose curvature is the Fubini-Study form of ��1: dA1 = ω��1.

1.2 The moment ‘biangle’

Since (μ, ν) are moment maps for the U(1)2 action, the domain on which the potential G(μ, ν)
is defined is the moment polygon for this U(1)2 action. In this case it is an unbounded domain
with two vertices. Hence we may call it a ‘biangle’, and it is depicted in Fig. 1.2.

From the perspective of the equation (6), it is the singularities of the function G that
determine the polytope. It is known [?] that in the simplest case of a (generally non-Ricci-flat)
metric induced by a Kähler quotient of flat space with respect to an action of a complex torus,
the potential G takes the form of a superposition of ‘hyperplanes’:

Gtoric =
M∑
i=1

Li (log Li − 1) with Li = αiμ + βiν + γi . (8)

In general, a potential G satisfying (6) will not have this form. However, we will assume that it
has the corresponding asymptotic behavior at the faces of the moment polytope. More exactly,
when we approach an arbitrary face Li, i.e. when Li → 0, we impose the asymptotic condition

G = Li (log Li − 1) + . . . as Li → 0, (9)

where the ellipsis indicates terms regular at Li → 0. Despite being subleading, they are impor-
tant for the equation (6) to be consistent even in the limit Li → 0. Consistency of the equation
as well requires that αi + βi = 1.

The fiber over a generic point of the moment polytope shown in Fig. 1.2 is ��1 × T
2. We

will now demonstrate how the angles of the moment polytope are detemined by the normal
bundles to the two ��1’s ‘located’ in the corners.
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Figure 1: The trapezium – the moment polygon of dP1 – and the (μ, ν) plane section of the
moment polytope for the cone over dP1.

A corner of the moment polytope may be given by the equations

λi = αiμ + βiν + γi = 0, i = 1, 2 . (10)

Moreover, according to the discussion above we assume that the behavior of the potential G
near the corner is as follows:

G = λ1(log λ1 − 1) + λ2(log λ2 − 1) + . . . , (11)

where . . . denotes less singular terms. Compatibility with the Ricci-flatness condition (6) implies

αi + βi = 1, i = 1, 2 (12)

We wish to determine what the behavior (11) implies for the metric near a given embedded
��1. The Kähler potential corresponding to the asymptotic behavior (11) looks as follows:

K = κ log
(|z1|2 + |z2|2

)
+
(|z1|2 + |z2|2

)n |u|n′
+
(|z1|2 + |z2|2

)m |u|m′
+ . . . , (13)

where κ = 2 γ2β1−γ1β2

β2−β1
and

n =
2β2

β2 − β1
, m = − 2β1

β2 − β1
, (14)

n′ = −2(1 − β2)
β2 − β1

, m′ =
2(1 − β1)
β2 − β1

Upon changing the complex coordinates we can bring the Kähler potential to the form

K = κ log
(
1 + |w|2)+

(
1 + |w|2)n |x|2 +

(
1 + |w|2)m |y|2 + . . . , (15)

For κ > 0 this implies that the normal bundle N��1 to the ��1 parametrized by the inhomo-
geneous coordinate w and located in a given corner of the moment polytope is1

N��1 = O(−n) ⊕ O(−m), n + m = 2 (16)

Note that n + m = 2, as required by the Calabi-Yau condition.
In the del Pezzo cone case the two corners of the moment biangle in the (μ, ν)-plane cor-

respond to the two bases of the trapezium representing the moment polytope of the del Pezzo
surface itself. This is emphasized in Fig. 1.2. These two bases of the trapezium correspond to
the two ��1’s embedded in the del Pezzo surface:

• One ��1 is inherited from ��2, hence the normal bundle inside dP1 is N = O(1). This
implies that the normal bundle inside the cone over dP1 is N = O(1) ⊕ O(−3)

• The second ��1 is the exceptional divisor of the blow-up and is embedded with normal
bundle N = O(−1). The normal bundle inside the cone over dP1 is therefore N =
O(−1) ⊕ O(−1).

These two spheres generate the second homology group of the del Pezzo surface, and their

intersection matrix is
(

1 0
0 −1

)
.

1See [?] for a detailed discussion of how the Kähler potential encodes the normal bundle to a ��1 in the
analogous situation, when the ��1 is embedded in a complex surface.
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2 An expansion away from the vertex of the cone

We aim at building an expansion of the metric at ‘infinity’, i.e. far from the ‘vertex’. For this
purpose, instead of the {μ, ν} variables, we will use a ‘radial’ variable ν and an angular variable
ξ (by introducing the constant μ0 we shift the origin to the intersection point of the two outer
lines of the moment ‘biangle’): {μ, ν} → {

ν, ξ = μ−μ0

ν

}
. We propose the following expansion

for the potential G at ν → ∞ (b is a constant):

G = 3ν(log ν − 1) + ν P0(ξ) + b log ν +
∞∑

k=0

ν−k Pk+1(ξ) (17)

Substituting this expansion in the Monge-Ampere equation, we obtain a ‘master’ equation,
which can then be expanded in powers of 1

ν and solved iteratively for the functions Pk(ξ):

∞∑
k=0

ν−k P ′′
k (ξ) ×

(
3 − b

ν
+

∞∑
k=2

k(k − 1)Pk(ξ)ν−k

)
−
( ∞∑

k=1

kP ′
k(ξ) ν−k

)2

= (18)

= a
(
ξ +

μ0

ν

)
e
− b

ν
+

∞P

k=0
((ξ−1) P ′

k+(k−1) Pk) ν−k

2.1 Leading order

The first equation is obtained from (18) in the limit ν → ∞ and has the solution

P0(ξ) = log
(
−a

9

)
−

2∑
i=0

ξ − ξi

ξi − 1
log (ξ − ξi), (19)

where ξi are the roots of the polynomial

Q(ξ) = ξ3 − 3
2
ξ2 + d, (20)

and d is a constant of integration, which plays a crucial geometric role that we will now reveal.
We will assume that d �= 1

2 .
The function P0(ξ) determines the metric at infinity by means of the formulas (17) and (7).

Tthe ‘radial’ part of the metric looks as follows (r = 2
√

3ν):

[
ds2
]
μ

:=
∂2G

∂μi∂μj
dμidμj = 3

dν2

ν
+ ν P ′′

0 (ξ) dξ2 = dr2 + r2 P ′′
0

12
dξ2 (21)

In particular, we see that positivity of the metric requires P ′′
0 > 0.

The potential corresponding to this metric may be written in the (μ, ν) variables as follows:

G0 =
2∑

i=0

μ − ξi ν

1 − ξi
(log (μ − ξi ν) − 1) (22)

The slopes of the three lines involved are defined by the roots ξi:

Slopei =
(μ

ν

)
i
= ξi . (23)

In the notations (10) of the moment polytope, which we used before, one has

ξ1 = − β1

1 − β1
and ξ2 = − β2

1 − β2
(24)
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On the other hand, from the normal bundle formulas (14) and Fig. 1.2 it follows that

1 − β2

β3
= −2, 1 − β1

β3
= 2 (25)

Hence β2

β1
= −3. This implies the following relation for ξ1, ξ2:

− ξ2

1 − ξ2
=

3ξ1

1 − ξ1
(26)

One can show that it has two solutions: (ξ(1)
1 , ξ

(1)
2 ), (ξ(2)

1 , ξ
(2)
2 ). However, for ξ ∈ (ξ(2)

1 , ξ
(2)
2 )

one has P ′′
0 < 0 and for ξ ∈ (ξ(1)

1 , ξ
(1)
2 ) one has P ′′

0 > 0, so the positivity of the metric requires
that we choose the first solution. It corresponds to

d =
16 +

√
13

64
. (27)

The third root of Q(ξ) = 0, which we will denote ξ0, is smaller than the two other roots.

2.2 Regularity requirement

Recall that we required that near each edge Li = 0 of the moment polytope the function G
should behave as in (9):

G = Li (log Li − 1) + . . . as Li → 0 (28)

By placing the origin at the intersection point of the lines 1, 2 of Fig. 1.2, we make sure that
the equations of these lines have the form

Line 1 : μ − μ0 = ξ1 ν, Line 2 : μ − μ0 = ξ2 ν, (29)

to all orders of perturbation theory. Indeed, the lines clearly cannot change their slopes,
and ξ1, ξ2 are their slopes at infinity. The only thing that could happen in higher orders of
perturbation theory is that the lines could shift and no longer pass through the origin μ = ν = 0.
Precisely to account for this modification we shift the origin to the new intersection point of
the two lines. To summarize, G can be written as

G =
μ − μ0 − ξ1 ν

1 − ξ1
(log (μ − μ0 − ξ1 ν) − 1)+

μ − μ0 − ξ2 ν

1 − ξ2
(log (μ − μ0 − ξ2 ν) − 1)+Δ, (30)

where Δ is a function regular at μ−μ0 = ξ1ν and μ−μ0 = ξ2ν. In terms of the (ν, ξ) variables
the statement is that Δ(ν, ξ) is regular at ξ = ξ1, ξ2 for any fixed ν. In the forthcoming analysis
of the higher orders of perturbation theory around infinity we will make the crucial assumption
that each term of the expansion of Δ(ν, ξ) in powers of 1

ν is a function of ξ, regular at the two
points ξ = ξ1, ξ2.

2.3 Arbitrary order

It will be explained in the following sections that the function G satisfying eq. (6) has the
following structure:

G = 3ν (log ν − 1) + ν P0(ξ) + b log (ν(ξ − ξ0)) +
∞∑

k=1

ν−k Pk+1(ξ) (31)

with Pk(ξ) = bk

(
(−1)k

k(k − 1)

(
1 − ξ0

ξ − ξ0

)k−1

+ Polynk−3(ξ)

)
, k ≥ 2 (32)
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As it should be clear from the notation, Polynk−3(ξ) is a polynomial of degree k − 3 for k ≥ 3
(and is zero for k < 3).

The terms in (31)-(32) singular in ξ − ξ0 can be easily summed to produce the following:

G =
μ̃ − ξ1 ν

1 − ξ1

(
log
(

μ̃ − ξ1 ν

1 − ξ1

)
− 1
)

+
μ̃ − ξ2 ν

1 − ξ2

(
log
(

μ̃ − ξ2 ν

1 − ξ2

)
− 1
)

+ (33)

+
(

μ̃ − ξ0 ν

1 − ξ0
+ b

) (
log
(

μ̃ − ξ0 ν

1 − ξ0
+ b

)
− 1
)

+ b

∞∑
k=2

(
b

ν

)k

Polynk−2(ξ)

Here the variable μ has been shifted in such a way that the new origin is located at μ̃ = ν = 0
and ξ = μ̃

ν .

2.4 Singular points of the Heun equation and eigenfunctions

We proceed to describe in more detail the equations that arise in higher orders of perturbation
theory. Our goal is to explain the formula (33) and elaborate on it.

In the M -th order of perturbation theory we arrive at the following equation:

DMPM :=
d

dξ

(
Q(ξ)

dPM

dξ

)
− ((M − 2)2 − 1

)
ξPM = r.h.s., (34)

where
Q(ξ) = ξ3 − 3

2
ξ2 + d (35)

and the right hand side depends on the previous orders of perturbation theory, i.e. on PM−1, . . . , P0

and their derivatives. As discussed above, the del Pezzo cone corresponds to

d =
16 +

√
13

64
. (36)

As we claimed in (31)-(32), the inhomogeneous equation (34) has a polynomial solution of degree
M−3. The general solution, however, is produced by adding to this particular solution a general
solution of the homogenized equation DMΠM = 0. The roots ξi, i = 0, 1, 2 of the polynomial

Q(ξ) =
2∏

i=0
(ξ − ξi), as well as ∞, are singular points of this equation. Hence DMΠM = 0 is a

Fuchsian equation with 4 singular points – a particular case of the so-called Heun equation.
The question we wish to pose is whether the homogenized equation DMΠM = 0 has a

nontrivial solution regular at two of the singular points, say ξ1, ξ2. This is necessary in order
to comply with the regularity requirement of § 2.2. We claim that the answer is positive only
for M = 3, 4:

Π3 = α (37)
Π4 = β(ξ − 1), (38)
where α, β = const.

It will be convenient to parametrize the first two nonzero polynomials in (31) as follows:

Polyn0(ξ) = α, Polyn1(ξ) = −2
3

α + β(ξ − 1) (39)

Here α and β are the parameters of the metric.

Conjecture 1. The homogeneous Heun equation DMΠM = 0 has no polynomial solutions
for M ≥ 5 and d given by (36).
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We have checked the validity of this conjecture numerically up to M = 100. Regarding
non-polynomial solutions, in [?] we prove the following statement:

Proposition 1. The homogeneous Heun equation DMΠM = 0 has no non-polynomial
solutions, which are analytic at the two singular points ξ = ξ1, ξ = ξ2 for M ≥ 5 and d given
by (36).

3 An example: the orthotoric metric

In the previous sections we have demonstrated that there exists a Ricci-flat metric with U(2)×
U(1) isometry on the complex cone over dP1 with at most two parameters, which we termed
α and β. There exists a closed expression for G, and hence for the metric, in a particular case
when the parameters α and β are related in a certain way — this is the metric obtained in [?],
as well as in [?] by means of the so-called ‘orthotoric’ ansatz developed in [?].

The dual potential for the orthotoric metric may be written as follows:

Gortho=
3∑

i=1

(x − xi)(y − xi)
1 − xi

log |x − xi|+
3∑

i=1

(x − yi)(y − yi)
1 − yi

log |y − yi|−3 (x + y), (40)

where xi, yi are respectively the roots of the following two cubic polynomials:

Tc(x) = x3 − 3
2
x2 + c, Td(y) = y3 − 3

2
y2 + d = Q(y) (41)

In particular, yi = ξi are the roots of Q(y) that we encountered before. The moment maps μ, ν
are related to the auxiliary ‘orthotoric’ variables x, y by means of the following formulas:

μ = x y, ν − ν0 = x + y − 1 (42)

The potential (40), expressed in terms of μ, ν, satisfies the Ricci-flatness equation (6) with
a = −9. One can now introduce new variables {ν, ξ}, as before, and expand the function G at
ν → ∞. The expansion of the orthotoric potential G in powers of 1

ν has the following form:

Gortho = 3ν (log ν − 1) − 3ξ0 log (ν (ξ − ξ0)) + ν
2∑

i=0

1
1 − ξi

(ξ − ξi) log (ξ − ξi) +

+
9ξ2

0(1 − ξ0)
2(ξ − ξ0)

1
ν

+
(

d − c

2
+

9 ξ3
0(1 − ξ0)2

2 (ξ − ξ0)2

)
1
ν2

+ (43)

+
(

27 (1 − ξ0)3ξ4
0

4 (ξ − ξ0)3
+ (d − c)(ξ0 +

3
4
(ξ − 1))

)
1
ν3

+ . . .

We see that this expansion has the general structure of (31) with b = −3 ξ0. Moreover, we can
identify the parameters α, β of (39):

α =
1
2

d − c

(−3 ξ0)3
, β =

3
4

d − c

(−3 ξ0)4
(44)

The fact that α and β are related in this way means that the orthotoric metric is a special case
of a more general metric, in which the parameters α and β are independent.

It might seem from this discussion that the orthotoric potential Gortho still possesses one
nontrivial parameter c. However, it turns out that this parameter has to be fixed to a particular
value by the requirement that the 3-rd line of the biangle in Fig. 1.2 passes at a correct angle
with respect to the other two lines (meaning that the topology of the manifold is indeed the one
of a cone over dP1). Even in the general case, when we do not impose the orthotoric relation
(44) between α and β, we expect there to be an additional tolopogical relation between these
parameters.
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4 Conclusion

In the talk we presented a summary of the results reported in [?], related to the analysis of the
parameter space of Ricci-flat metrics on the complex cone over a del Pezzo surface of rank one.
Using an expansion at infinity, we have found two potential parameters, α and β, and proven,
up to the validity of Conjecture 1, that there can be no further parameters in the metric. In
general we conjecture that there is a particular relation between β and α that preserves the
correct topology of the cone, i.e. β = β(α). In this case the remaining parameter is related to
the size of the blown-up ��1 in the base of the cone, i.e. in the del Pezzo surface.
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