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Our wish is to understand the AdS/CFT
correspondence away from the maximally
supersymmetric case, but in situations where
dual theories can still be under control

(W =1)

However, in this talk we will mainly
concentrate on the geometric aspects of the
problem
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Classical example of AdS/CFT: AdSs x S°,
dual to N =4 SYM in d = 4 Maldacena [1997]

There exist extremal black hole solutions to
IIB supergravity preserving N/ = 1 SUSY,
whose ‘near-horizon’ geometry is AdS5 x X°
Morrison, Plesser [1998]

X? is a Sasaki-Einstein manifold (this implies
the existence of one Killing spinor)
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X is Sasaki-Einstein iff the cone over it is
K&hler and Ricci-flat:

ds® = dr? + r? (ds?)

ds® Kahler & Ricci-flat <
(ds?)x Sasaki—Einstein, of positive curvature

where (dsz) v 1s Kdhler-Einstein (but not
necessarily smooth), J is the Kéhler current

r = 0 — singularity
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It is possible to resolve the singularity of the
conical metric by ‘blowing-up’ the vertex, i.e.
by replacing it with a cycle of non-zero size
The metric at infinity, i.e. at r — oo, will still
be asymptotic to the cone:

ds® = dr? + r?(ds?)y for r — o
Apart from simplest cases, resolved metrics on
the cones are not known = Our study
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Eguchi, Hanson, 1978
Complex dimension 2, singularity of the form

C?*/Zy:  (z1,22) ~ (—21,—22)
Introducing invariant coordinates
X =22,Y = 22,7 = 2,25, we get an
equation
This corresponds to the cone in the
embedding of CP' by the linear system
|O(2)|, i.e. the anticanonical embedding
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One can look for the Kahler potential of the
form K = K(|z1|* + |22]°).

The metric is, as usual, ds?> = 8;0, K dz'dz’
For a Kahler metric the Ricci tensor can be
expressed as Pitees —0;0jlogdet g

Set R,; = 0, solve for the Kéhler potential:

The Eguchi-Hanson metric

= V1?2 + 42? + r log (V) p > 0

Steklov Mathematical Institute, Moscow € Max-Planck-Institut fiir Gravitationsphysik (AEI), Potsdam-Gc

Ricci-flat metrics on complex cones



2d case: Eguchi-Hanson—anticanonical cone over
CPl = SE X3 = Sg/Zz

‘3d Eguchi-Hanson’= anticanonical cone over
CP2 = SE X5 = S5/Z3

3d case: Candelas-de la Ossa [1990] = anticanonical
cone over CP' x CP"' (resolved conifold)

. 1,1 _ SU(2)xSU(2)
= SE X5 =T = T
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One can only build Ricci-flat cones over
complex manifolds of ‘positive curvature’ (i.e.
with ample anticanonical class)

For the cone to be of dimc = 3, we take the
underlying base to be of dim¢ = 2

Apart from CP? and CP' x CP', there are
only 8 other positively curved complex
surfaces — the del Pezzo surfaces

dP,, ..., dPsg
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e
dP,

dP,, can be seen as CP?, blown-up in n
sufficiently generic points

We will consider the simplest
non-homogeneous case, i.e. the cone over dP;

Any metric on dP; should have at least two
parameters — the sizes of CP? and of the
blown-up CP*

Do these parameters persist
in the cone over dP?
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Whereas the automorphism group of CP? is
PGL(3,C), the automorphism group of the
del Pezzo surface is reduced to

Aut(dPy) = P (1)

e o o
e o o
e O O

The isometry group of the metric on the cone
is the maximal compact subgroup of the
parabolic subgroup shown above, i.e.

Isom = U(1) x U(2)
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We will looszor a Iziéhler pzotential of the form
K = K(|u|", |z1]" + |z2]") := K(e", €*)
Just as in the case of the Eguchi-Hanson

metric, we can write out a Ricci-flatness
equation

More convenient to perform a Legendre

transform w.r.t. ¢, s, introducing the dual
momentum maps g = ‘&, v = %—Ij and a

dual potential G =ty + sv — K
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The equation

eGutGy (GH“G,,,, — wa) =

The domain — the moment polygon

o(1)
¢

O(1)@0(-3) |

OC-1)@0(-1)-
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Q0

We can solve the equation exactly at large
pt, v with fixed ‘angle’ £ = ., assuming the
conical form of the metric

INTENAEN G = 3v(logy — 1) + v Py(€)
Py(€) satisfies an ODE and can be found
exactly. It provides a Sasaki-Einstein metric,
which in the dP; case is the Y %' manifold
Gauntlett, Martelli, Sparks, Waldram [2004]
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Mth

We can build a systematic perturbation theory

00
G = 3v(logv—1)+v Py(¢) +logr+ Yv=" Puy1(8)
k=0

M

In order " we obtain the equation

4 (Q(g)d%> _ ((M _2)?_ 1) £ Py = r.hs.,

where Q&) =¢*-3¢2+d

This is a Heun equation — an analogue of
hypergeometric equation with 4 Fuchsian
singularities on CP*!
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All resolution parameters should arise as
(coefficients in front of) the solutions to the
homogeneous equation in some order of
perturbation theory

The equation is solved in a ‘physical’ interval

€ € [&1,8] Q®

/\ Ne &
N\ /
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Regularity of the metric at the boundaries of
the moment polytope requires that the
solutions should be regular at & = &, &,

= Eigenvalue problem

Solutions exist for M = 3, 4:
P3=a, P4=,6(€—1)
Conjecture:

For other M solutions do not exist
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When 3 = —2%0, the resolved metric is known
Calderbank, Gauduchon [2006], Chen, Lu, Pope [2006]

In general, topology imposes one more
relation between 3 and « Martelli, Sparks [2007]

Hence the general situation is as follows:

B
Cone over dP; //
/‘\

L

Ry

Orthotoric
ansatz
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Can one obtain an exact formula with both
parameters o, 37

As we discussed, there is an exact formula

when 3 = —2%0. Is there a generalization?

Dual field theories for AdSs; x X° have been
conjectured Feng, Hanany, He, 2000

Interpret the new parameter in terms of these
N = 1 gauge theories
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Thank youl
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