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Abstract: We construct concrete counterterms of the Balasubramanian-Kraus

type for Einstein-scalar theories with designer gravity boundary conditions in AdS4,

so that the total action is finite on-shell and satisfy a well defined variational principle.

We focus on scalar fields with the conformal mass m2 = −2l−2 and show that the

holographic mass matches the Hamiltonian mass for any boundary conditions. We

compute the trace anomaly of the dual field theory in the generic case, as well as

when there exist logarithmic branches of non-linear origin. As expected, the anomaly

vanishes for the boundary conditions that are AdS invariant. When the anomaly does

not vanish, the dual stress tensor describes a thermal gas with an equation of state

related to the boundary conditions of the scalar field. In the case of a vanishing

anomaly, we recover the dual theory of a massless thermal gas. As an application

of the formalism, we consider a general family of exact hairy black hole solutions

that, for some particular values of the parameters in the moduli potential, contains

solutions of four-dimensional gauged N = 8 supergravity and its ω-deformation.

Using the AdS/CFT duality dictionary, they correspond to triple trace deformations

of the dual field theory.
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1 Introduction

A well-known check of the AdS/CFT duality [1] is the exact matching of the AdS5

vacuum energy and the Casimir energy of the large N limit of SU(N), N = 4 super

Yang-Mills on S3 [2, 3]. Technically speaking, this result was implemented by fixing

the boundary data, namely imposing Dirichlet boundary conditions. Indeed, AdS is

not globally hyperbolic, which means that besides initial conditions it is necessary

to also provide boundary conditions for the evolution of a given field so that is well-

defined. This was analyzed in-extenso for the linearized dynamics of spin-0, 1, and 2

fields in AdS [4], where, in particular, all the self-adjoint extensions for the relevant

spin-0 Sturm-Liouville operators were found for scalar fields of mass m, which satisfy

m2
BF +

1

l2
> m2 ≥ m2

BF , m2
BF = −(D − 1)2

4l2
(1.1)
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where l is the AdS radius, D is the spacetime dimension, andm2
BF is the Breitenlohner-

Freedman (BF) bound [5]. Furthermore, the backreaction of these generalized bound-

ary conditions was considered, and its contribution to the spacetime energy has been

computed in different ways [6–13].

One of the interesting outputs of [11] is the existence of logarithmic branches of

non-linear origin at certain values of the scalar field mass. In particular, this occurs

when the scalar field mass is the one of the scalars of four-dimensional gauged N = 8

supergravity, namely m2 = −2l−2. It is interesting to note that the interpretation

of the AdS invariant boundary conditions as a multi-trace deformation of the dual

theory was given before this exhaustive analysis in [14](see, also, the nice work [15]).

Some of these theories are equivalently defined by the requirement of the existence

of a soliton with a given value of the scalar field at the origin. Such constructions go

by the name of designer gravity [10]. Techniques for constructing exact hairy black

hole solutions that are relevant for our work can be found in[16–19].

In [3, 20, 21], the energy of the gravitational configuration is connected to the

gauge theory through the quasi-local Brown-York energy momentum tensor [22].

A non-trivial contribution to the mass when the boundary conditions break the

conformal symmetry is expected to imply a modification of the trace anomaly, as was

shown to be the case using the Hamilton-Jacobi equation in [23]. However, to the best

of our knowledge, the same construction has not been done in the spirit of the work

by Balasubramanian and Kraus [3], neither extended to the logarithmic branches of

non-linear origin at m2 = −2l−2, which is the main objective of this paper.1 We use

the Hamiltonian formalism as a guide for constructing the counterterms.

It is important to emphasize that, when the conformal symmetry is broken in

the boundary, the mass of Ashtekar-Magnon-Das (AMD)[27] does not match the

Hamiltonian mass [13] and so it also does not match the holographic mass. Therefore,

for AdS black hole solutions when the conformal symmetry is broken in the boundary,

e.g [28], the right mass is not the AMD mass. As a concrete application, we shall

consider a relatively simple family of hairy black hole solutions [29] that, however,

is general enough to include the single scalar field truncations of four-dimensional

gauged N = 8 supergravity as well as its ω-deformation [30] (see, also, [31–33]).

The remainder of the paper is organized as follows: in Section 2 we review mixed

AdS boundary conditions in the context of AdS/CFT duality. In Section 3 we provide

the counterterms that regularize the action and verify that the variational principle

is well defined when the action is supplemented with these counterterms. We com-

pute the free energy of a generic hairy black hole solution with mixed boundary

conditions of the scalar field and the relevant thermodynamical quantities. Section

4 contains the general formalism for computing the regularized quasilocal stress ten-

1In three dimensions, similar work was done in [24] and for the particular case of Dirichlet

boundary conditions see, e.g., [25, 26].
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sor (for both, the logarithmic and non-logarithmic branches). Using the AdS/CFT

duality dictionary, we then compute the stress tensor of the dual field theory and

the anomaly when the boundary conditions break conformal symmetry. In Section 5

we compare different types of constructions of gravitational mass in AdS for mixed

boundary conditions of the scalar field. When the conformal symmetry is broken

the holographic and Hamiltonian mass match, but do not match the AMD mass.

Then, we work out concrete examples of hairy black hole solutions that are dual to

triple trace deformations of the boundary field theory. Finally, we end with some

conclusions and future directions.

2 General AdS4 boundary conditions and multi-trace defor-

mations in the dual theory

In this section, we review the role of AdS boundary conditions in the context of

AdS/CFT duality [1]. According to ‘holographic’ dictionary, imposing mixed bound-

ary conditions on the scalar field (in the bulk) corresponds to perturbing the large N

boundary theory by a relevant, irrelevant or marginal multi-trace deformation [14].

Let us start by exhibiting some known facts about the AdS/CFT duality [1].

We would like to describe what kind of boundary conditions preserve the conformal

symmetry of the dual field theory and interpret them in the context of the AdS/CFT

duality [9, 11, 14]. First, we describe the AdS4 spacetime and explain how the

symmetries of the two dual theories match. That is, the isometry group SO(3, 2) of

AdS4 acts on the (conformal) boundary as the conformal group2 acting on Minkowski

spacetime.

AdS spacetime has the maximal number of isometries in every dimension. Hence,

it has a simple form in a large number of coordinate systems (see, e.g., [34] for a

discussion in the context of AdS/CFT duality). Depending on the choice of the

radial coordinate, the slices at constant radius can have a different geometry or even

a different topology. For example, one can foliate AdS4 with the following slices:

ds̄2 = ḡµνdx
µdxν = −

(
k +

r2

l2

)
dt2 +

dr2

k + r2

l2

+ r2dΣ2
k (2.1)

where k = {+1, 0,−1} for the spherical (dΣ2
1 = dΩ2), toroidal (dΣ2

0 = dx2 + dy2),

and hyperbolic (dΣ−1 = dH2) foliations, respectively. Here, dΩ2 and dH2 are the

unit metrics on the 2-dimensional sphere and hyperboloid, respectively. The radius

l of AdS4 is related to the cosmological constant by Λ = −3/l2.

The conformal boundary is at r →∞, for which the induced metric is

habdx
adxb =

r2

l2
(−dt2 + l2dΣ2

k) (2.2)

2The conformal group of Minkowski spacetime is the invariance group of the light cone, in other

words all the transformations that leave ds2 = 0 invariant.
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and now it is clear that the background geometry where the field theory lives is

related to the boundary geometry by a conformal transformation. Therefore, a bulk

metric is associated with a conformal structure at infinity. The conformal factor is

going to play an important role when we are going to compute the boundary stress

tensor.

Even if different foliations of AdS4 are related by local coordinate transforma-

tions, the corresponding dual gauge theories are physically inequivalent (for example,

in the k = 1 case there is a Hawking-Page phase transition, but not for k = 0). This

is due to the fact that different spacelike foliations of the background geometry lead

to different definitions of the time coordinate (and so the Hamiltonian) of the dual

quantum system.

Starting with k = 0 form of AdS4 metric and using the change of coordinates

r = l2/z, we obtain

ds̄2 =
l2

z2
(dz2 − dt2 + dx2 + dy2) (2.3)

In these coordinates, which cover only part of AdS4 spacetime, the Minkowski space-

time appears naturally as the conformal boundary. The finite isometries of AdS4

map the boundary z = 0 to itself and, moreover, act as conformal transformations

in the boundary. In particular, the transformation (z, t, x, y) ← λ(z, t, x, y), which

leaves the metric (2.3) invariant, acts as the dilation (scale transformation) in the

boundary. Since the AdS spacetime is not globally hyperbolic, one has to impose

boundary conditions. Within the AdS/CFT duality, various deformations of the

AdS boundary conditions are interpreted as dual to deformations of the CFT. It is

well known [4, 5] that a scalar of arbitrary mass in AdS can have both normalizable

and non-normalizable modes. It was shown in [35, 36] that the normalizable modes

describe fluctuations in the bulk and the non-normalizable modes correspond to op-

erator insertions in the boundary dual field theory. We are interested in the case

when both modes are normalizable:

m2
BF +

1

l2
> m2 ≥ m2

BF , m2
BF = − 9

4l2
(2.4)

where m2
BF is the BF bound (1.1) in four dimensions.

In what follows we briefly review the boundary conditions that accommodate a

scalar field whose mass corresponds to the conformal one. We are interested in the

action

I[gµν , φ] =

∫
M
d4x
√
−g
[
R

2κ
− 1

2
(∂φ)2 − V (φ)

]
+

1

κ

∫
∂M

d3xK
√
−h (2.5)

where V (φ) is the scalar potential, κ = 8πG with G the Newton gravitational con-

stant, and the last term is the Gibbons-Hawking boundary term. Here, h is the

determinant of the boundary metric and K is the trace of the extrinsic curvature.
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The equations of motion for the scalar field and metric are

1√
−g

∂µ
(√
−ggµν∂νφ

)
− ∂V

∂φ
= 0 (2.6)

Eµν = Rµν −
1

2
gµνR− κT φµν = 0 (2.7)

where the stress tensor of the scalar field is

T φµν = ∂µφ∂νφ− gµν
[

1

2
(∂φ)2 + V (φ)

]
(2.8)

We work with the general ansatz

ds2 = −N(r)dt2 +H(r)dr2 + S(r)dΣ2
k (2.9)

As it was shown first in three dimensions [6], and then generalized in four and

higher dimensions [8, 9, 11, 12], in the presence of the scalar fields the standard

AdS boundary conditions are modified. One can obtain the right fall-off for the grr
component of the metric by considering the equations of motion and using the fall-off

of the scalar field. A general discussion for any mass of the scalar field in the range

(1.1) can be found in [11], but in this work we focus on the concrete case of the

conformal mass in four dimensions m2 = −2l−2. We start with the potential

V (φ) = − 3

κl2
− φ2

l2
+O(φ4) (2.10)

The fall-off of the scalar field in this case is

φ(r) =
α

r
+
β

r2
+O(r−3) (2.11)

In order to accommodate the black hole of Sec. 5.4 we consider the following asymp-

totic behavior for the N(r) and S(r) metric coefficients

N(r) = −gtt =
r2

l2
+ k − µ

r
+O(r−2) (2.12)

S(r) = r2 +O(r−2) (2.13)

Now, we use the combination of the equations of motion (2.7), Et
t − Er

r = 0, from

which we obtain

NS
′2H − 2NS

′′
HS + (NH)

′
S
′
S − 2κNHS2φ

′2 = 0 (2.14)

and then

H(r) = grr =
l2

r2
+
l4

r4

(
−k − α2κ

2l2

)
+
l5

r5

(
µ

l
− 4καβ

3l3

)
+O(r−6) (2.15)
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The reason we would like to obtain the fall-off of grr in this way is because the

Hamiltonian mass can be read off from it — if there is a contribution of the scalar

field to the mass, one should be able to identify it in grr.

From now on, we use the generic notation for the expansion of grr as

grr =
l2

r2
+
al4

r4
+
bl5

r5
+O(r−6) (2.16)

where a = −k − κα2

2l2
and b = µ

l
− 4καβ

3l3
. At this point, it is interesting to investigate

when the asymptotic conditions are AdS invariant and the Hamiltonian is well de-

fined. It seems that, for some special functional relationship on the coefficients α and

β of the modes of the scalar field, both conditions are satisfied. This was explicitly

done in [9, 11] and here we just present the result:

β = Cα2 (2.17)

Interestingly enough, one can also obtain a finite Hamiltonian when the boundary

conformal symmetry is broken.

A similar analysis can be done for the so-called logarithmic branch [8]. In what

follows we would like to carefully analyze this case and present details we are going

to use in the next sections.

It is well known that a second order differential equation has two linearly inde-

pendent solutions. When the ratio of the roots of the indicial equation is an integer,

the solution may develop a logarithmic branch. This is exactly what happens when

the scalar field saturates the BF bound, in which case the leading fall-off contains a

logarithmic term [8]. However, we are interested in a scalar field with the conformal

mass m2 = −2l−2. To obtain the logarithmic branch, a cubic term in the asymptotic

expansion of the scalar field potential is necessary [11]

V (φ) = − 3

κl2
− φ2

l2
+ λφ3 +O(φ4) (2.18)

so that the fall-off of the scalar field to be considered is

φ(r) =
α

r
+
β

r2
+
γ ln(r)

r2
+O(r−3) (2.19)

To obtain the fall-off of grr we use the same fall-off for the other components of the

metric and the same combination of the equations of motion as in the non-logarithmic

branch, Et
t − Er

r = 0. We get

H(r) = grr =
l2

r2
+
l4

r4

(
−k−κα

2

2l2

)
+
l5

r5

(
µ

l
−4καβ

3l3
+

2καγ

9l3

)
+
l5 ln r

r5

(
−4καγ

3l3

)
+O

[
ln (r)2

r6

]
(2.20)

Using again the generic notation for the asymptotic expansion of grr

H(r) =
l2

r2
+
l4a

r4
+
l5b

r5
+
l5c ln r

r5
+O

[
ln (r)2

r6

]
(2.21)
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we identify the relevant coefficients as

a = −k − α2κ

2l2
; b =

µ

l
− 4καβ

3l3
+

2καγ

9l3
; c = −4κγα

3l3
(2.22)

Now, let us check when the fall-off of the scalar field we have considered is compatible

with its equation of motion:

∂r

(
φ
′
S
√
N√

H

)
− S
√
NH

∂V

∂φ
= 0 (2.23)

In the asymptotic region, r →∞, this equation becomes

3α2l2λ+ γ

l2
+O(r−1) = 0 (2.24)

and so the coefficient γ is fixed by α as γ = −3l2λα2 (or, using the notation that we

shall use below, γ = Cγα
2, where Cγ = −3l2λ). This result is important because,

as we will see shortly, is also part of the conditions that preserve the conformal

symmetry of the boundary.

The last step in our derivation is to investigate when the boundary conditions

are preserved under the asymptotic AdS symmetry. The corresponding asymptotic

Killing vector ξµ = (ξr, ξm) is

ξr = rηr(xm) +O(r−1) (2.25)

ξm = O(1)

where {m} is an index that run over the time an angular coordinates. The fall-off

of the scalar field should be invariant under the asymptotic AdS symmetries and so

we obtain:

φ′(x) = φ(x) + ξµ∂µφ(x) =
ᾱ

r
+
β̄

r2
+
γ̄ ln(r)

r2
+O(r−3) (2.26)

where

ᾱ =α− ηrα + ξm∂mα (2.27)

β̄ =β − ηr(2β − γ) + ξm∂mβ

γ̄ =γ − 2γηr + ξm∂mγ

If the coefficients in the series (2.26) are functionally related, the conformal symmetry

on the boundary fixes the functional relation between the coefficients so that the

equations above are compatible. Hence, one performs a Taylor expansion of γ̄ and β̄

to linear order in ηr and ξm to obtain:

ηr
(

2γ − α∂γ
∂α

)
+ ξm

(
∂α

∂xm
∂γ

∂α
− ∂γ

∂xm

)
= 0 (2.28)
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and

ηr
(

2β − γ − α∂β
∂α

)
+ ξm

(
∂α

∂xm
∂β

∂α
− ∂β

∂xm

)
= 0. (2.29)

Using the fact that ηr and ξm are independent, we get from (2.28) that 2γ = α ∂γ
∂α

,

which implies that γ = Cγα
2. This is the result obtained before from the equation

of motion for the scalar field. From the integration of (2.29) we obtain

β(α) = (−Cγ ln(α) + C)α2 (2.30)

When Cγ = 0 this result matches the condition found for the non-logarithmic branch

(2.17). Again, one can obtain a finite Hamiltonian even if the conformal invariance

is broken.

A precise formulation of the AdS/CFT duality [1] was proposed in [37, 38] and

developed for multi-trace deformations in [14]. The observables in the field theory

side of the duality are the correlation functions of gauge invariant operators, which

are composites of the elementary fields. Any supergravity field φ corresponds to

an operator O in the (boundary) field theory. The duality relates the generating

functional for correlation functions of the operator O with the string/gravity parti-

tion function on AdS space with the boundary conditions that are imposed on the

excitations in the bulk. In our case, the relevant fields in the bulk are the graviton

(metric perturbations) and scalar field. The corresponding operators in the dual field

theory are the stress-energy tensor Tµν of the dual field theory and a scalar operator

of dimension ∆, respectively.

Let us consider a massive scalar field. By solving the equation of motion close

to the boundary, we obtain:

φ(r) =
α

r∆−
+

β

r∆+
+ ... (2.31)

where α and β are the leading and sub-leading components of the asymptotic expan-

sion of the scalar field and ∆± = 3
2
±
√

9
4

+m2l2.

Depending of the value of the mass, the two modes (on the Lorentzian section)

can be divergent or finite. For example, for a positive squared-mass m2 > 0 the mode

β is divergent in the interior and finite at the boundary and the mode α is divergent

at the boundary but finite in the interior. Then, the mode β corresponds to source

currents in the boundary dual theory. On the other hand, by turning on the mode

α, the bulk geometry is modified while the AdS structure near the boundary may be

preserved — this is the type of deformation we are interested in this work. Since the

bulk gravity solution is changed, one has to perform a linearized analysis around the

new background to calculate the correlation functions. This is exactly what happens

when the ‘vacuum’ around which one expands to obtain the physical quantities is

changed. Then, in the dual theory, there is a similar situation: the dual field theory
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is expanded around a vacuum with non-trivial vacuum expectations values (VEV)

for the appropriate operators. Indeed, in the standard AdS/CFT dictionary [35, 36],

a bulk gravity solution with a non-trivial dilaton corresponds in the dual field theory

to the insertion of a source for an operator with conformal dimension ∆−, VEV α,

and current β = J(x).

The spectrum of operators in the dual field theory include all the gauge invariant

quantities, namely product of traces of products of fields (or the sum of such prod-

ucts). Single-trace operators in the field theory may be identified with single-particle

states in AdS, while multiple-trace operators correspond to multi-particle states. The

significance of the multi-trace deformations from a point of view of the gravity side

was investigated in [9, 14]. The mixed boundary conditions play an important role

because they correspond to a deformation of the field theory action by

ICFT → ICFT −
∫
d3xW [O(x)] (2.32)

where β(x) = dW
dα(x)

, and W is fixed by the boundary conditions of the string theory

side.

In section 5 we are going to apply this general framework to concrete analytic

hairy black hole solutions.

3 Counterterms and regularized action

The usual approach to computing thermodynamic quantities of black holes is to

analytically continue in the time coordinate in order to obtain a Euclidean solution

of the Einstein equations (with negative cosmological constant). In this way, the

periodicity of the Euclidean time is related to the temperature of the black hole and

the Euclidean action to the thermodynamical potential (in our case, the free energy).

In this section we explicitly construct counterterms that cancel the divergences of

the action for both logarithmic and non-logarithmic branches and check that the

variational principle is well possed. We apply the counterterm method to compute

the free energy of hairy black holes with a scalar field with the conformal mass

m2 = −2l−2.

3.1 Variational principle

Our goal is to construct counterterms (boundary terms) that regularize the action

so that the variational principle is well-posed. The boundary terms do not change

the equations of motion and so they can be incorporated in the action. To make our

point, let us first consider the action (2.5) when the scalar field is turned off. In this

case, the action has just two terms: the bulk action and the Gibbons-Hawking sur-

face term necessary to ensure that the Euler-Lagrange variation is well-defined. The

gravitational action computed in this way (even at tree-level) contains divergences
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that arise from integrating over the infinite volume of spacetime. In the AdS/CFT

context, the infrared (IR) divergences of gravity are interpreted as ultraviolet (UV)

divergences of the dual CFT. A well understood way of computing the bulk action

without introducing a background is to add local counterterms into the action, which

remove all divergences, leading to a finite action corresponding to the partition func-

tion of the CFT. For pure AdS gravity in four dimensions, the action should be

supplemented with the following counterterm [3]:

Ictg = −1

κ

∫
∂M

d3x
√
−h
(

2

l
+
Rl
2

)
(3.1)

Here, hab is the induced metric on the boundary and R is its Ricci scalar.

In the presence of the scalar field, this counterterm is not sufficient to cancel the

divergences in the action. For this case, an additional boundary term that depends

on the scalar is needed, namely Iφ. We are going to study the variational principle

of the following action:

I =

∫
d4x
√
−g
(
R

2κ
− (∂φ)2

2
− V (φ)

)
+

1

κ

∫
∂M

d3x
√
−hK−1

κ

∫
∂M

d3x
√
−h
(

2

l
+
Rl
2

)
+Ictφ

(3.2)

for a scalar field with the conformal mass m = −2l−2. In some previous work (for

example, see [39, 40]), the following counterterm that produces a finite action for the

non-logarithmic branch was proposed:

1

6κ

∫
∂M

d3x
√
−h
(
φnν∂νφ−

φ2

2l

)
(3.3)

However, it is problematic because it is not intrinsic to the boundary and also,

for mixed boundary conditions, the variational principle is not satisfied. Instead, we

propose new counterterms for both, the logarithmic and non-logarithmic branches, so

that the action is finite and there is a well-posed variational principle. These intrinsic

counterterms are constructed to be compatible with the Hamiltonian method in the

sense that the results match for any boundary conditions.

Let us start with the non-logarithmic branch with the boundary term associated

to the scalar field given by

Ictφ = −
∫
∂M

d3x
√
−h
[
φ2

2l
+
W (α)

lα3
φ3

]
(3.4)

Then, by using the boundary expansion of the metric and scalar field, the variation

of the action yields a boundary term evaluated at the cutoff r:

δI =

∫
d3x
√
−h
[

1

r

(
−
√
grrφ

′ − φ

l
− 3W (α)φ2

lα3

)(
1 +

1

r

d2W (α)

dα2

)
+

(
3W (α)

α
− β

)
φ3

lα3

]
δα

(3.5)
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It is easy to show then that the variational principle is well defined when the cutoff

goes to infinity:

lim
r→∞

δI = 0 (3.6)

For the logarithmic branch we should work with the following counterterm for the

scalar field:

Ictφ + Īctφ = −
∫
∂M

d3x
√
−h
[
φ2

2l
+
φ3

lα3

(
W − αγ

3

)
− φ3Cγ

3l
ln

(
φ

α

)]
(3.7)

where Īctφ is the counterterm necessary to provide a well possed acction principal

in the case of the logartithmic branch. Using the asymptotic expansions of the

metric and scalar field we also obtain that the variational principle is well-defined

for arbitrary boundary conditions when the cut-off surface is send to infinity. As

we shall show below, the same counterterms provide a finite on-shell action and the

right free energy.

3.2 Regularized action and free energy

Evaluating the action leads to a formally divergent result. Now, we would like to

show that, indeed, all the divergences can be eliminated by using the counterterms

proposed in the previous section and so the action is finite. We use the standard

technique of Wick rotating the time direction t = iτ . Then, the temperature is

related to the periodicity of the Euclidean time τ (∆τ = β = 1/T ) and the leading

contribution to the free energy is determined by evaluating the Euclidean action.

The action has four terms, the bulk part IEbulk, Gibbons-Hawking surface term

IEGH , and two boundary counterterms (Ictg , Ictφ ): I = IEbulk + IEGH + Ictg + Ictφ . Let us

compute these contributions for the non-logarithmic branch first.

Since we are going to study the properties of a large family of exact hairy black

hole solutions, let us start with the following generic metric ansatz

ds2 = Ω(x)

[
−f(x)dt2 +

η2dx2

f(x)
+ dΣ2

k

]
(3.8)

Concrete expressions for the functions Ω(x) and f(x) are presented in Section 5.4.

The computations in the (t, x,Σ) coordinate system (3.8) are related by a simple

coordinate transformation to (t, r,Σ) system (2.9). In what follows, xb and rb denote

the boundary, and x+ and r+ the horizon. The on-shell Euclidean bulk action can

be written as

IEbulk =

∫ 1/T

0

dτ

∫ xb

x+

d3x
√
gEV (φ) =

σk
2ηκT

d(Ωf)

dx

∣∣∣∣xb
x+

(3.9)

where σk is the area of Σk (e.g., for k = 1 σ1 = 4π) and gE is the metric on the

Euclidean section. The two coordinate systems (t, x,Σk) and (t, r,Σk) are related by

Ω(x)→ S(r); f(x)→ N(r)

S(r)
; dx→

√
NH

ηS
dr (3.10)
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and so we can rewrite the bulk integral result in the coordinates (t, r,Σk) as

IEbulk =
σk

2κT

S√
NH

dN

dr

∣∣∣∣rb
r+

(3.11)

Let us now compute the Gibbons-Hawking term. Consider a timelike hypersurface

x = x0, then the induced metric hµν = gµν − nµnν , normal, extrinsic curvature, and

its trace K = hµνKµν are

ds2 = habdx
adxb = Ω(x0)

[
−f(x0)dt2 + dΣk

]
(3.12)

na =
δxa√
gxx

∣∣∣∣
x=x0

; Kab =

√
gxx

2
∂xgab

∣∣∣∣
x=x0

; K =
1

2η

(
f

Ω

)1/2[
(Ωf)

′

Ωf
+

2Ω
′

Ω

]∣∣∣∣
x0

(3.13)

and using the transformation equations (3.10) the contribution of this term can be

rewritten as

IEGH = − σk
κT

Ωf

2η

[
(Ωf)

′

Ωf
+

2Ω
′

Ω

]∣∣∣∣
xb

= − σk
2Tκ

(
S√
NH

dN

dr
+

2N√
NH

dS

dr

)∣∣∣∣
rb

(3.14)

The contribution from the gravitational counterterm is

Ictg =
2σk
κT l

(
Ω3/2f 1/2 +

l2k

2
f 1/2Ω1/2

)∣∣∣∣
xb

=
2σk
κT l

S
√
N

(
1 +

l2k

2S

)∣∣∣∣
rb

(3.15)

Using the general formula for the temperature

T =
N
′

4π
√
NH

∣∣∣∣
r+

(3.16)

one can write the sum of these three contributions in the total action as

IEbulk+IEGH+Ictg = − 1

T

[
σkS(r+)T

4G

]
− σk

2κT

[
2N√
NH

dS

dr
− 4

l
S
√
N

(
1+

l2k

2S

)]∣∣∣∣
rb

(3.17)

which, for a scalar field with the conformal mass m2 = −2l−2 as in (2.11) and with

the metric fall-off (2.12) and (2.16), becomes

IEbulk + IEGH + Ictg = − A
4G
− σk
T

(
−µ
κ

+
4αβ

3l2
+
rα2

2l2

)∣∣∣∣
rb

(3.18)

Here, A = σkS(r+) is the horizon area.

It is clear now that the gravitational counterterm is not sufficient to remove

the divergences at the boundary rb → ∞, but this new linear divergence can be

regularized with the following counterterm that depends on the scalar field:

Ictφ =

∫
∂M

d3x
√
hE
[
φ2

2l
+
W (α)

lα3
φ3

]
=
σk
T

(
W

l2
+
αβ

l2
+
rα2

2l2

)∣∣∣∣
r∞

(3.19)
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The renormalized Euclidean action can be rewritten then using β = dW/dα as

IE = IEbulk + IEGH + Ictg + Ictφ = − A
4G

+
σk
T

[
µ

κ
+

1

l2

(
W − α

3

dW

dα

)]
(3.20)

and so the free energy becomes

F = IET = M − TS (3.21)

The thermodynamic relations will provide the same mass and entropy for the black

holes:

M = −T 2∂I
E

∂T
= σk

[
µ

κ
+

1

l2

(
W − α

3

dW

dα

)]
(3.22)

and

S = −∂(IET )

∂T
=
A
4G

(3.23)

A similar computation can be done for the logarithmic branch. We work again with

a scalar field with the conformal mass m2 = −2l−2 with a fall-off (2.19) for which

the metric fall-off is (2.20). If we work with the counterterm (3.4), we obtain

IEbulk+IEGH +Ictg +Ictφ = − A
4G

+
σk
T

{
µ

κ
+

1

l2

[
W (α)− α

3

dW

dα
+

2αγ

9
− αγ

3
ln r

]}
(3.24)

and we see that there is still a logarithmic divergence. Therefore, one consider a new

contribution from the scalar field that will also cancel that divergence (3.7):

Ī ct
φ =

∫
∂M

d3x
√
hE
{
φ3γ

3α2l

[
ln

(
α

φ

)
− 1

]}
=
σk
T

[
−αγ

3l2
+
αγ ln r

3l2
+O(r−1 ln r)

]
(3.25)

We also obtain a finite action for the logarithmic branch

IE = IEbulk + IEGH + Ictg + Ictφ + Ī ct
φ = − A

4G
+
σk
T

[
µ

κ
+

1

l2

(
W − α

3

dW

dα
− αγ

9

)]
(3.26)

where γ = Cγα
2 and Cγ = −3l2λ.

The thermodynamic relations provide the right results:

M = −T 2∂I
E

∂T
= σk

[
µ

κ
+

1

l2

(
W − α

3

dW

dα
− αγ

9

)]
(3.27)

and

S = −∂(IET )

∂T
=
A
4G

(3.28)

The conformal symmetry of the boundary is preserved when W (α) = α3(C+l2λ lnα).
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4 Regularized Brown-York stress tensor

Within the AdS/CFT duality, the AdS graviton couples to the stress-energy tensor

of the CFT [41, 42]: ∫
∂M

d3xhab Tab (4.1)

Then, from a holographic point of view, the Brown-York stress tensor is interpreted

as the stress-energy tensor of the dual field theory. In this section we work in the

coordinates (t, r,Σ)k for which the metric was given in (2.9). For the bulk geometry

we use the foliation with the surfaces r = R = constant and the induced metric is

ds2 = habdx
adxb = −N(R)dt2 + S(R)dΣ2

k (4.2)

The Brown-York (quasilocal) stress tensor is defined as [22]

τab ≡ 2√
−h

δI

δhab
(4.3)

where I is the total action including the counterterms.

Since the metric where the dual field lives is related to the boundary metric by a

conformal factor, it is very important to emphasize that the CFT stress tensor is also

related to the Brown-York stress tensor up to a conformal factor. As an warm up

exercise, let us describe this method for the 4-dimensional Schwarzschild-AdS black

hole — we are going to follow the analysis of [43].

The black hole metric is

ds2 = −
(

1− m

r
+
r2

l2

)
dt2 +

(
1− m

r
+
r2

l2

)−1

dr2 + r2dΩ2 (4.4)

and if we consider the foliation r = R the induced metric hab of any ‘slice’ is

ds2 = −
(

1− m

R
+
R2

l2

)
dt2 +R2dΩ2 (4.5)

As we have pointed out before, the boundary metric is

ds2
boundary =

R2

l2
(−dt2 + l2dΩ2) (4.6)

but the background metric where the dual quantum field theory lives is γab defined

as

ds2
dual = γabdx

adxb = −dt2 + l2dΩ2 (4.7)

The metric γab is not dynamical and it is related by a conformal factor to the bound-

ary metric. The corresponding dual stress tensor is

〈τ dualab 〉 = lim
R→∞

R

l
τab =

m

16πGl2
[3δ0

aδ
0
b + γab] (4.8)
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Written in this way [43] it has the form of a thermal gas of a massless particles and,

as expected, its trace vanishes 〈τ dual〉 = 〈τ dualab 〉γab = 0.

A similar procedure can be used for the hairy black holes, but one should add the

boundary counterterms related to the scalar field. In the case of the non-logarithmic

branch, the complete action is (3.2) and the scalar counterterm was given in (3.3),

where Gab is the Einstein tensor for the foliation (4.2) given by Gab = δtaδ
t
bNk/S.

The regularized stress tensor is

τab = −1

κ

(
Kab − habK +

2

l
hab − lGab

)
− hab

l

[
φ2

2
+
W (α)

α3
φ3

]
(4.9)

Thus, the stress tensor components are

τtt =
l

R

[
µ

8πGl2
+

1

l4

(
W − αβ

3

)]
+O(R−2) (4.10)

τθθ =
l

R

[
µ

16πG
− 1

l2

(
W − αβ

3

)]
+O(R−2)

τφφ =
l sin2 θ

R

[
µ

16πG
− 1

l2

(
W − αβ

3

)]
+O(R−2)

The stress tensor of the dual field theory can be put in a similar form as for the

Schwarzschild-AdS black hole:

〈τ dualab 〉 =
3µ

16πGl2
δ0
aδ

0
b +

γab
l2

[
µ

16πG
− 1

l2

(
W (α)− αβ

3

)]
(4.11)

The trace can be easily computed and we get

〈τ dual〉 = − 3

l4

[
W (α)− αβ

3

]
(4.12)

Unlike the Schwarzschild-AdS black hole, for the hairy black holes there are two

different types of boundary conditions, namely that preserve or not the conformal

symmetry. As expected, when the conformal symmetry is preserved W = Cα3 the

trace of the dual stress tensor vanishes 〈τ dual〉 = 0.

A similar, but more complicated, procedure can be applied for the logarithmic

branch. The action (3.2) has a new contribution (3.25) that cancel the logarithmic

divergence, and the new regularized quasilocal stress tensor is

τab = −1

κ

(
Kab − habK +

2

l
hab − lGab

)
− hab

l

[
φ2

2
+
φ3

α3

(
W − αγ

3

)
+
φ3γ

3α2
ln

(
α

φ

)]
(4.13)

– 15 –



with the following components

τtt =
l

R

[
µ

8πGl2
+

1

l4

(
W − αβ

3
− αγ

9

)]
+O

[
(lnR)3

R2

]
(4.14)

τθθ =
l

R

[
µ

16πG
− 1

l2

(
W − αβ

3
− αγ

9

)]
+O

[
(lnR)3

R2

]
τφφ =

l sin2 θ

R

[
µ

16πG
− 1

l2

(
W − αβ

3
− αγ

9

)]
+O

[
(lnR)3

R2

]
and so the stress tensor of the dual field theory becomes

〈τ dualab 〉 =
3µ

16πGl2
δ0
aδ

0
b +

γab
l2

[
µ

16πG
− 1

l2

(
W (α)− αβ

3
− αγ

9

)]
(4.15)

Its trace is

〈τ dual〉 = − 3

l4

(
W − αβ

3
− αγ

9

)
(4.16)

and, as expected, it vanishes for the boundary conditions that preserve the conformal

symmetry:

〈τ dual〉 = 0⇒ γ = −3l2λα2; W (α) = α3[C + l2λ lnα] (4.17)

5 Hamiltonian mass and holographic mass

In AdS spacetime there exist different methods of computing the gravitational mass

and a comparison between them is going to be useful — for Dirichlet boundary

conditions this was done in great detail in [44] and up to some ambiguities related to

constant boundary terms, the Hamiltonian formalism, AMD mass, and holographic

method produce the same result. Though, as was pointed out in [13], when the

conformal symmetry is broken in the boundary the AMD mass is not the correct

physical mass and one should compute the Hamiltonian mass of the system. In

this section we provide details of computing the Hamiltonian mass and show that it

matches the holographic mass even when the conformal symmetry in the boundary

is broken.

5.1 Hamiltonian formalism

We consider the Regge-Teitelboim approach [45] to compute the mass of static scalar

hairy asymptotically locally AdS spacetimes. A summary of this method is provided

below. We are considering the action (2.5) for which the Hamiltonian constraints

H⊥ and Hi, with i = 1, 2, 3, contain contributions from the gravitational term and

from the matter sector that in this case corresponds to a minimally coupled scalar

field with a self-interaction potential V (φ). These constraints are functions of the

canonical variables: the three-dimensional metric gij and the scalar field φ, and their
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corresponding conjugate momenta πij and πφ. The Hamiltonian constraints are given

by

H⊥ =
2κ
√
g

[
πijπ

ij − 1

2

(
πii
)2
]
− 1

2κ

√
g (3)R

+
1

2

(
πφ

2

√
g

+
√
ggijφ,i φ,j

)
+
√
gV (φ) (5.1)

Hi = −2πji |j + πφφ,i (5.2)

The three-dimensional metric gij can be recognized from the line element written in

its ADM form

ds2 = −(N⊥)2dt2 + gij
(
dxi +N idt

) (
dxj +N jdt

)
(5.3)

and, g, (3)R and vertical bar | denote the determinant, the scalar curvature, and the

covariant derivative associated to the spatial metric, respectively.

The canonical generator of an asymptotic symmetry defined by the vector ξ =

(ξ⊥, ξi) is a linear combination of the constraints H⊥,Hi plus a surface term Q[ξ]

H[ξ] =

∫
∂M

d3x
(
ξ⊥H⊥ + ξiHi

)
+Q[ξ] (5.4)

Q[ξ] is chosen in order to cancel out the surface terms coming from the variation of

the generator with respect to the canonical variables. In this way, the generator H[ξ]

possesses well-defined functional derivatives [45]. The general form of Q[ξ] for the

generator (5.4) [11] is given by

δQ[ξ] =

∮
d2Sl

[
Gijkl

2κ
(ξ⊥δgij |k − ξ⊥,kδgij) + 2ξkδπ

kl

+(2ξkπjl − ξlπjk)δgjk − (
√
gξ⊥gljφ,j +ξlπφ)δφ

]
(5.5)

where

Gijkl ≡ 1

2

√
g(gikgjl + gilgjk − 2gijgkl) (5.6)

The normal and tangential components of the allowed deformation (ξ⊥, ξi) are related

with the spacetime components (ξ⊥, (3)ξi) in the following way

ξ⊥ = N⊥ξt, ξi = (3)ξi +N iξt (5.7)

The following step is to note that the Hamiltonian generator (5.4) reduces to the

surface term Q[ξ] when the constraints hold. Thus, the value of the generators —

the conserved charges associated the the asymptotic symmetries — are just given by

Q[ξ]. Since the charges are defined by a surface term at the boundary, they need just

the behaviour of the canonical variables and symmetries close to the boundary. i.e.
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their asymptotic behavior. Thus, the charges obtained from the Hamiltonian method

are appropriate for a holographic interpretation. Additionally, one can remark that

the canonical generators provide the charges for all the solutions sharing the same

asymptotic behaviour.

We focus now in the static case. By definition there is a timelike Killing vector

∂t, and the corresponding conserved charge associated with this symmetry —time

translation— is from first principles the mass M . In the static case all the momenta

vanish and the expression (5.5), evaluated for ξ = ∂t, reduces to

δM ≡ δQ[∂t] =

∮
d2Sl

[
Gijkl

2κ
(ξ⊥δgij |k − ξ⊥,kδgij)−

√
gξ⊥gljφ,j δφ

]
(5.8)

We note an explicit contribution of the scalar field in the mass that, in general,

yields a non-vanishing amount. In order to achieve a better understanding of this

contribution, it is convenient to separate it from the usual gravitational contribution

by writing δM as

δM = δMG + δMφ (5.9)

where

δMG =

∮
d2Sl

Gijkl

2κ
(ξ⊥δgij |k − ξ⊥,kδgij) (5.10)

and

δMφ = −
∮
d2Sl
√
gξ⊥gljφ,j δφ (5.11)

As mentioned before, the variation of the mass, given by surface integral (5.8),

needs just the asymptotic behavior of the canonical variables and symmetries. How-

ever, this variation usually requires more information to be integrated, and boundary

conditions must be imposed. The necessity of boundary conditions is expected from

physical grounds, since the mass of a system is well defined after imposing suit-

able boundary conditions. The effect of a slow fall-off scalar field on the mass of

asymptotically hairy spacetimes have been studied in [6, 8, 11] using the Hamilto-

nian formalism described above. Other approaches and methods [7, 9, 12, 46, 47]

have confirmed this effect.

One step further was made in [13] where the computation of the mass of these

hairy configurations was done by considering the additional information provided by

the remaining field equations. For this work, we focus on the analysis on the class of

potentials having a mass term corresponding to the conformal mass m2 = −2l−2 in

four dimensions. For completeness and because the boundary conditions and the way

the divergences cancel in the construction of the Hamiltonian mass provide helpful

intuition for constructing the counterterms, in the next subsection we present the

details of the analysis of [13].
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5.2 Non-logarithmic and logarithmic branches for m2 = −2/l2

Expanding the potential as a power series around φ = 0, it was shown [11] the absence

of logarithmic branches in the asymptotically behavior of the metric and scalar field,

provided the series does not contain a cubic term. This set of asymptotic conditions

accommodates exact scalar black hole solutions [17, 29, 48, 49] whose asymptotic

behavior belong the chosen one. The fall-off of the scalar field and metric at infinity

was obtained in Section 2.

Now, we evaluate the general expressions (5.10) and (5.11) for static configura-

tions, using the above asymptotic conditions. We consider a boundary located at

r = ∞. Integrating the ‘angular coordinates’, we obtain the gravitational contribu-

tion

δMG =
σk
κ

[rδa+ lδb+O(1/r)] (5.12)

and the contribution from the scalar field

δMφ =
σk
l2

[rαδα + αδβ + 2βδα +O(1/r)] (5.13)

By adding both contributions we have the variation of the mass

δM =
σk
κl2

[r(l2δa+ καδα) + l3δb+ κ(αδβ + 2βδα) +O(1/r)] (5.14)

It is important to remind that this expression for δM is meaningful only in the case

of vanishing constraints. In the static case, there is a single nontrivial constraint,

H⊥ = 0, which for the asymptotic conditions displayed above yields

k + a

κ
+
α2

2l2
= 0 (5.15)

The linear divergent piece in (5.14) is removed by replacing (5.15) into (5.14). Then,

the asymptotic variation of the mass becomes finite

δM =
σk
κl2

[l3δb+ κ(αδβ + 2βδα)] (5.16)

In order to integrate the variations in (5.16) boundary conditions on the scalar

field are necessary. In particular, the integration of (5.16) requires a functional

relation between α and β. If we define β = dW (α)/dα, the mass of the spacetime is

given by

M = σk

[
lb

κ
+

1

l2

(
α
dW (α)

dα
+W (α)

)]
(5.17)

We note that the mass in (5.17) is defined up to a constant without variation. This

constant is set to be zero in order to fix a vanishing mass for the locally AdS spacetime

because in four dimensions there is no Casimir energy.
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To obtain the logarithmic branch, it is necessary to use the self-interaction po-

tential (2.18) so that the fall-off of the scalar field to be considered is (2.19). The

Hamiltonian constraint H⊥ = 0 is satisfied if (5.15) and

lc

κ
− 4α3λ = 0 (5.18)

are fulfilled.

Now, we evaluate (5.10) and (5.11). In this case we find

δMG =

{
lδb

κ
+
δa

κ
r +

lδc

κ
ln(r) +O

(
ln(r)2

r

)}
σk (5.19)

and

δMφ =

[
αδβ + 2βδα + 3α2l2λδα

l2
+ r

αδα

l2

−12λα2δα ln(r) +O

(
ln(r)2

r

)]
σk (5.20)

Both contributions contain linear and logarithmic divergences. Adding (5.19) and

(5.20), the linear divergence cancels out by virtue of (5.15) and the logarithmic

divergence vanishes by considering (5.18). Thus, we obtain a finite expression for the

variation of the mass,

δM =

[
lδb

κ
+
αδβ + 2βδα + 3α2l2λδα

l2

]
σk (5.21)

Again, we need a boundary condition, a functional relation between α and β, in order

to integrate δM . We consider the general relation β = dW
dα

, so that the Hamiltonian

mass is given by

M =

[
lb

κ
+

1

l2

(
α
dW

dα
+W (α) + α3l2λ

)]
σk (5.22)

The mass can be related with the first subleading term of gtt by using (2.22).

Thus the mass can be written as

M =

[
µ

κ
+

1

l2

(
W (α)− 1

3
α
dW

dα
+

1

3
α3l2λ

)]
σk (5.23)

Therefore, the expression M = µσkκ
−1 is obtained only for α = 0 or

W (α) = α3
[
C + l2λ ln(α)

]
(5.24)

which correspond to AdS invariant boundary conditions [11].
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5.3 Holographic mass matches Hamiltonian mass

Armed with the Brown-York formalism supplemented with counterterms, one can

obtain the energy of a hairy black holes. The boundary metric can be written, at

least locally, in ADM-like form. Provided the boundary geometry has an isometry

generated by the Killing vector ξa = (∂t)
a , the energy is, as usual, the conserved

charge.

Concretely, we are going to use the coordinates (t, r,Σk) with the metric (2.9)

and the foliation (4.2) parametrized as

dΣ2
k =

dy2

1− ky2
+ (1− ky2)dφ2 (5.25)

The energy

E =

∫
dσiτijξ

j =

∫
dydφSuiτijξ

j (5.26)

is associated with the surface t = constant, for which the induced metric is

ds2 = σijdx
idxj = SdΣ2

k (5.27)

with the normal vector ua = N−1/2(∂t)
a.

For the non-logarithmic branch, using the quasilocal stress tensor (4.9), one

obtains

E = σk

[
µ

κ
+

1

l2

(
W − α

3

dW

dα

)]
(5.28)

With a similar computation for the logarithmic branch, but with the quasilocal stress

tensor (4.13), we obtain the following energy of the hairy black hole:

E = σk

[
µ

κ
+

1

l2

(
W − 1

3
α
dW

dα
− αγ

9

)]
= σk

[
µ

κ
+

1

l2

(
W − 1

3
α
dW

dα
− α

3Cγ
9

)]
(5.29)

This shows perfect agreement with the Hamiltonian mass even if the conformal sym-

metry is broken in the boundary — with both methods it is possible to obtain a

finite energy in this case and the corresponding results match. However, the AMD

prescription [27] for computing the mass of a hairy spacetime is not suitable when

the scalar field breaks the asymptotic anti-de Sitter invariance [13].

5.4 Exact hairy solutions and triple-trace deformations

As a concrete example, we discuss the boundary conditions and some holographic

properties of the exact solutions of [17, 29]. We consider the following scalar poten-

tial, which for some particular values of the parameter Υ it becomes the one of a

truncation of ω-deformed gauged N = 8 supergravity [29, 31, 50]:

V (φ) =
Λ(ν2 − 4)

6κν2

[
ν − 1

ν + 2
e−φlν(ν+1) +

ν + 1

ν − 2
eφlν(ν−1) + 4

ν2 − 1

ν2 − 4
e−φlν

]
(5.30)

+
Υ

κν2

[
ν − 1

ν + 2
sinhφlν(ν + 1)− ν + 1

ν − 2
sinhφlν(ν − 1) + 4

ν2 − 1

ν2 − 4
sinhφlν

]
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Using the metric ansatz (3.8), the equations of motion can be integrated for the

conformal factor [16–18, 51]:

Ω(x) =
ν2xν−1

η2(xν − 1)2
(5.31)

where Υ, ν, κ and Λ = −3l−2 are parameters of the potential and η is an integra-

tion constant. All of them characterize the hairy solution. With this choice of the

conformal factor, it is straightforward to obtain the expressions for the scalar field

φ(x) = l−1
ν lnx (5.32)

and metric function

f(x) =
1

l2
+ Υ

[
1

ν2 − 4
− x2

ν2

(
1 +

x−ν

ν − 2
− xν

ν + 2

)]
+

x

Ω(x)
(5.33)

where l−1
ν =

√
(ν2 − 1)/2κ.

We would like to point out that this potential is symmetric under ν → −ν.

For x = 1, which corresponds to the boundary, we can show that the theory has a

standard AdS vacuum 2κV (φ = 0) = 2Λ. In the limit ν = 1, one gets lν → ∞ and

φ→ 0 so that the Schwarzschild-AdS black hole is smoothly obtained.

To compare with the results presented in the previous section, we should work

with the canonical coordinates of AdS. Let us discuss the branch x ∈ (1,∞) for

which the scalar field is positively defined. We change the r-coordinate so that the

function in front of the transversal section, dΣk, has the following fall-off:

Ω(x) = r2 +O(r−3) (5.34)

This choice is motivated by the fact that the term O(r−2) generates a lineal term in

the fall-off of Ω. The first three subleading terms are

x = 1 +
1

ηr
+
m

r3
+
n

r4
+
p

r5
+O(r−6) (5.35)

and they can be computed by considering the expansion around r =∞:

Ω(x) = r2−24mη3 + ν2 − 1

12η2
−24nη4 − ν2 + 1

12η3r
+

720m2η6 − 480pη5 + ν4 − 20ν2 + 19

240η4r2
+O(r−3)

(5.36)

After a straightforward computation we obtain

x = 1 +
1

ηr
− (ν2 − 1)

24η3r3

[
1− 1

ηr
− 9(ν2 − 9)

80η2r2

]
+O(r−6) (5.37)

and the following asymptotic expansions for the metric functions:

− gtt = f(x)Ω(x) =
r2

l2
+ 1 +

Υ + 3η2

3η3r
+O(r−3) (5.38)
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grr =
Ω(x)η2

f(x)

(
dx

dr

)
=
l2

r2
− l4

r4
− l2(ν2 − 1)

4η2r4
− l2(3η2l2 + Υl2 − ν2 + 1)

3η3r5
+O(r−6)

(5.39)

The asymptotic expansion of the scalar field becomes in these coordinates

φ(x) = l−1
ν lnx =

1

lνηr
− 1

2lνη2r2
− ν2 − 9

24η3r3
+O(r−4) (5.40)

and then, in the standard notation, we obtain α = 1/lνη, β = −1/2lνη
2. Both modes

are normalizable and, since β = Cα2 with C = −lν/2, the conformal symmetry in

the boundary is preserved. Now, we can easily compute the Hamiltonian mass of the

system as was proposed in [13]

M = σ

[
µ

κ
+

1

l2

(
W − α

3

dW

dα

)]
(5.41)

and by considering W = −lνα3/6, σ = 4π, and l−1
ν =

√
(ν2 − 1)/2κ we obtain

M = −σ
κ

(
3η2 + Υ

3η3

)
(5.42)

that matches the holographic mass.

Let us end up this subsection with the interpretation of these hairy solutions

within AdS/CFT duality. That is, since W = −lνα3/6, they correspond to adding

a triple trace deformation to the boundary action as in (2.32) (similar examples can

be found in [9, 52]):

ICFT → ICFT +
lν
6

∫
d3xO3 (5.43)

For different hairy black holes, which are characterized by the hairy parameter ν, the

relation between α and β does not change and so there are triple trace deformations,

but with different couplings lν/6.

6 Conclusions

Since the paper is self-contained and each section contains detailed computations and

interpretations, we would like only to present some general conclusions and possible

future directions.

The counterterm method [3], which was obtained in the context of AdS/CFT

duality, is by now a textbook example of regularizing the gravitational action. Ini-

tially it was proposed for asymptotically AdS solutions [21, 53, 54] and then it was

generalized to asymptotically flat solutions [55–62] and even dS solutions [63–66],

though in the last two cases it is fair to say that there is no valid holographic in-

terpretation generally accepted. Interestingly, this method provides the quasilocal
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stress tensor and conserved charges in a very similar way with the well understood

holography of asymptotically AdS spacetimes.

When the theory contains scalar fields, there is a diversity of mixed boundary

conditions that can be imposed, in particular boundary conditions that break the

conformal symmetry of the boundary. The ‘holographic renormalization’ method [20,

21, 53, 54] that uses the Fefferman-Graham expansion was generalized for the mixed

boundary conditions that correspond to the non-logarithmic branch of solutions in

[23].

In this work we have constructed explicit covariant counterterms that are similar

with the ones proposed by Balasubramanian and Kraus [3] and generalized this

method for theories (moduli potentials) that contain also the logarithmic branch

of solutions. To construct these counterterms we were guided by the Hamiltonian

method that provides the correct boundary conditions (in particular, the fall-off of

the scalar field) so that the conserved charges are finite. We did also check that

the variational principle for the gravitational action is well-posed. It may then not

be surprising that the holographic mass matches the Hamiltonian mass for all the

boundary conditions. However, when comparing with AMD formalism there is a

drastic change when the boundary conditions do not preseve the conformal symmetry

and, as was shown in [13], the AMD mass is not suitable for this case.

As future directions we would like to consider counterterms for other conformal

masses of the scalar field and for theories in higher dimensions. It will be useful, if

possible, to provide a general algorithm for constructing the counterterms by using

the Hamiltonian method — it is not at all clear if that is possible for gravity solutions

that are asymptotically dS. For the extremal black holes, there exists a different

method to compute the conserved charges, the entropy function formalism proposed

by Sen [67–69] (for spinning black holes it was generalized in [70] and in the context

of AdS/CFT duality, see e.g. [71–75]). However, this method provides the charges

by using the near horizon geometry data and, when there is a non-trivial RG flow

in theories with scalars turned on, it will be interesting to compare the conserved

charges computed at the horizon with the ones obtained at the boundary by the

counterterm method. The counterterm method was already used in [76] to study the

phase diagram of a general class of hairy black holes with spherical horizon geometry

and we also plan to study the phase transitions for the case k = 0 [77] when a ‘hairy’

AdS soliton can be constructed.

A different perspective, which naturally arises when scalar fields and gravity

interact, is the classical issue of hairy black holes. Indeed, it was very early shown

that in asymptotically flat spacetimes and when the scalar field potential is convex,

the only spherically symmetric black hole is the Schwarzschild solution [78, 79], which

was later generalized to non-negative self interactions [80, 81], for a recent review see

[82]. These no-hair theorems were not expected to hold when, asymptotically, there

is a non-trivial cosmological constant. The numerical existence of asymptotically
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AdS black holes has been verified in a number of papers [9, 83, 84] (a number exact

hairy black holes has been found when the scalar field mass is m2 = −2l−2 [17,

29, 48, 49, 85–88]). Some of these black holes are linearly stable [83, 89]. Another

interesting direction is on boson star solutions and the relation with the instabilities

of some AdS solutions (and AdS itself) [90–94].

We hope to report in the near future some progress in these directions.
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