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1 Introduction

Higher curvature corrections to general relativity are expected to play a role in quantum

theory of gravity. They arise in perturbative string theory and as such may change some

qualitative features of gravity familiar from general relativity. In flat space higher curvature

corrections typically improve renormalisability of the theory but also make it non-unitary [1,

2] due to the massive modes with negative kinetic terms. By now the canonical example of

a unitary gravitational theory is the new massive gravity (NMG) [3] in three dimensions.

In this case the unitarity can be achieved because in three dimensions the massless graviton

does not propagate local degrees of freedom. Therefore there is no harm in having kinetic

term for the massless graviton with the wrong sign. With this choice of the overall sign

the kinetic energy of the massive graviton is positive and unitarity is restored.

Generically one still expects that theories with (non-perturbative) higher curvature cor-

rections have certain pathologies like ghosts, non-unitarity, acausality [4, 5], etc. Neverthe-

less for some special theories some of these problems may not be present and then healthy

physical interpretation can be given. It is of its own interest to understand what kind of the-

ories suffer from what kind of problems and which theories could be physically acceptable.

In this paper we study the role of higher curvature corrections in the context of the

AdS/CFT correspondence. Properties of the dual CFT then can be reinterpreted on the

gravity side using holographic dictionary. More specifically we study the near-boundary ex-

pansion for the asymptotically locally AdS (AlAdS) solutions in theories involving quadratic

higher curvature corrections. Analysis of the near-boundary expansion is a crucial step to-

wards holographic renormalisation and hence understanding the dual CFT. In this paper

we focus on certain subsectors of the Hilbert space in the (putative) field theory duals.

In particular we emphasise that there are different universality classes of higher curva-

ture corrections. One large class of them has a subsector which is identical to the Hilbert
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space arising in field theories dual to general relativity. But there are infinite families of

theories for which the structure of the Hilbert space is qualitatively different and the results

from GR cannot be directly generalised.

In the context of AdS/CFT one distinguishes between the space of classical solutions

to the theory and the space of perturbations around a fixed background. The former gets

mapped to the Hilbert space of the theory whereas the latter corresponds to the spectrum

of excitations around a given state. In principle there is no simple relation between the

asymptotics of solutions and the spectrum of the theory.

Usual considerations of unitarity rely on the study of the perturbative modes around

a certain vacuum (usually pure AdS space). Small perturbations around AdS vacuum

(and other states) in higher curvature gravities have been studied extensively (see e.g. [6]

for a systematic analysis of different cases) and a variety of phenomena has been found.

Generically higher order corrections lead to massive ghost modes. Some special theories

were found, the so called critical gravities [6–8], where these massive modes become mass-

less/degenerate with the graviton. These are expected to violate unitarity and be dual to

logarithmic CFTs (see [9] for a review).

Also there is a significant body of work studying certain classes of solutions in theories

with higher curvature corrections. Black holes have been studied for example in [10–12],

non-relativistic backgrounds were constructed in [13, 14]. In most of these papers it was

realised that for certain values of parameters some special features emerge, e.g. certain

functions in the metric become arbitrary. Our analysis in this paper gives a more systematic

and general derivation of such special cases.

Linearised approximation provides a simple way to count the number of local degrees

of freedom. However there are cases when such counting is misleading. In particular

linearised equations might possess some accidental symmetries which are not present in

the full theory. This linearised instability occurred in several theories involving higher

curvature corrections (see e.g. [15]). The Hamiltonian formalism based on the analysis

of constraints provides a more systematic and robust method of analysing propagating

degrees of freedom. On the other hand it is technically more involved and often must be

performed on the case by case basis.

One way to proceed with the Hamiltonian analysis is to eliminate local symmetries

by fixing the gauge as completely as possible. This idea is at the heart of the Fefferman-

Graham (or Henningson-Skenderis [16]) type analysis for the asymptotically (locally) AdS

spaces. When the gravity is described by GR this method identifies in a straightforward

manner the degrees of freedom of the theory and is particularly well suited for holographic

considerations. In this paper we utilise this approach to analyse the role of the higher

curvature corrections for gravity in AlAdS spaces with a particular view towards AdS/CFT

interpretation. One advantage of this strategy is that we are able to follow it for the most

general theory of gravity involving corrections which are quadratic in the curvature.

One important aspect of any study of higher curvature corrections is the issue of

the well-posed variational problem and corresponding boundary terms. Generically higher

order theories propagate more degrees of freedom, meaning that it is not enough to consider

simple Dirichlet problem as for ordinary GR. In the language of AdS/CFT correspondence
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this just means that the metric in the bulk describes not only the stress-energy tensor on

the boundary but some additional operators as well. In particular these other operators

have independent sources and the variational problem in the bulk should take this into

account [17, 18]. One can of course avoid dealing with the variational problem if one treats

higher curvature corrections perturbatively.

Let us now describe the sectors under consideration in more detail. First of all we

assume asymptotic isotropy. More precisely we assume that different components of the

metric diverge at the same rate near the boundary. Second, we shall switch on the source

only for one of the modes, i.e. we allow for the general background metric on the boundary.

In principle, since field equations are generically fourth order in derivatives, one should

impose more boundary conditions. In particular one should allow for general sources for all

independent modes. We will determine the fall off behaviour of these additional modes, but

taking them into account in complete generality would lead us to consider many different

cases. Moreover it is often consistent to switch off some of them. This is in fact the

usual way to deal with the irrelevant deformations and we adopt it here. This can also be

interpreted as imposing special boundary conditions. Thus we are not studying the most

general asymptotic solution. But our analysis will be general enough to identify interesting

cases where special care should be taken. There is also no loss of generality when the field

equations are second order in derivatives, i.e. for the Lovelock family of gravities.

The paper is organised as follows. In the next section we review the AdS vacua of our

model and fluctuations around them. We derive the fall off behaviour for both independent

modes in the bulk and relate them to the masses of the linearised fluctuations around AdS.

In the third section we proceed to the near boundary analysis of the field equations. Gener-

ically the form of the subleading terms is the same as in GR. We identify special classes

of theories when the form of these terms or the form of the expansion has to be modified.

We discuss and conclude in section 4. Some technicalities are delegated to the appendices.

2 Vacua and linearised fluctuations around them

Consider the action

S =
1

16πGd+1

∫

dd+1x
√
−G

[

R+
d(d− 1)

L2
+L2(λ1RabcdR

abcd+λ2RabR
ab+λ3R

2)

]

. (2.1)

The particular case of Lovelock gravity is obtained for λ1 = λ3 = λGB, λ2 = −4λGB. In

four dimensions the Gauss-Bonnet (GB) term is topological. Above four dimensions the

GB term is the only quadratic correction which does not produce ghosts.

The field equations can be written in the trace subtracted form

0 = Eab = Rab +
d

L2
Gab (2.2)

+ L2

[

1

d− 1

(

− λ1Riem2 − λ2Ric2 − λ3R
2 − (2λ1 + λ2 + 2λ3)�R

)

Gab

+ 2λ1RacdeRb
cde + (4λ1 + λ2)�Rab − (2λ1 + λ2 + 2λ3)DaDbR

− 2(2λ1 + λ2)R
cdRc(ab)d − 4λ1RacRb

c + 2λ3RRab

]

.
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We use the radial-axial gauge for the bulk metric Gµν :

ds2 = Gabdx
adxb = dr2 + γij(r, x)dx

idxj . (2.3)

From Einstein’s equations we can derive the fall-off behaviour for the fields. Since the

field equations are fourth order (except the Lovelock case) we expect that there are four

independent boundary conditions one can impose on the metric. If the usual holographic

interpretation is still valid then two of them should correspond to the sources in the dual

field theory. Apart from the usual background metric there is a new source appearing.

Naively it seems that the fall-off behaviour of the bulk metric determines the dimension

of the dual operator. Since in principle it should be possible to switch both sources on we

propose the ansatz

γij = e2r/l
(

g(0)ij + e−nr/lg(n)ij

)

, (2.4)

where l stands for the radius of the corresponding AdS vacuum. Without loss of generality

we assume that g(0)ij represents the boundary metric, whereas g(n)ij is the source for the

second operator. The fall off behaviour of the second source depends on the couplings of

the theory in the bulk. At this point we do not make any assumption about the sign of n.

We just note that if n is negative than this would correspond to an irrelevant deformation

and thus could be treated only infinitesimally.

Let us start by analysing the Einsteinian branch of solutions. Plugging the ansatz into

the Einstein’s equations and neglecting the g(n)ij for now we find the biquadratic equation

λL2x2 − x

4
+

1

L2
= 0, (2.5)

where

x =
4

l2
, λ =

d− 3

8(d− 1)

(

λ1 +
d

2
λ2 +

d(d+ 1)

2
λ3

)

. (2.6)

Notice that when λ = 0 (which is more general scenario than just pure Einstein theory)

we get the solution

x =
4

L2
=⇒ l = L. (2.7)

One recognises immediately the familiar AdS fall-off of the metric. More generally from

the string theory perspective one needs all higher curvature couplings λi to be small in

order for the Planck length to be well below the AdS radius. In this case also λ ∼ 0. We

are going to treat higher curvature corrections non-perturbatively.

The algebraic equation (2.5) admits two real positive roots if and only if

0 ≤ λ ≤ 1

64
. (2.8)

The two roots are

x> =
1 +

√
1− 64λ

8λL2
, x< =

1−
√
1− 64λ

8λL2
(2.9)

and correspond to the two possible AdS vacua of the theory. The smaller root x< is

continuously connected to the pure AdS solution of Einstein’s gravity (i.e. when λ → 0).

– 4 –



J
H
E
P
0
3
(
2
0
1
6
)
1
6
6

It is known that in the Lovelock case only the AdS vacuum with the larger radius (smaller

root x<) is stable (see e.g. equations (2.16) and (2.19) below).

A special case appears when the cosmological constant term is absent in the original

action (2.1). Then the 1/L2 term is absent in (2.5) and one of the vacua is necessarily

flat while another one is (A)dS. Only the flat vacuum is stable [19]. If in addition the

Einstein-Hilbert term is also absent and λ = 0 then the theory admits (A)dS vacua with

arbitrary curvature (see e.g. [20] or [21] for particular examples). This is just a consequence

of underlying scale invariance.

How should one think about the two possible AdS solutions with the radii determined

by (2.9)? A priori one could have thought that the two roots (2.9) describe the graviton

and the second dynamical mode. We instead propose that the two roots describe two AdS

vacua and that the second mode cannot be switched on unless there is some non-degenerate

metric on the boundary. Thus we proceed to use the ansatz (2.4) in order to determine the

characteristic exponent for the second mode. Our proposal will be supported in the next

section by the explicit computation of the subleading terms.

Now let us return to our general ansatz (2.4) and focus on the terms of order e−nr/l

(see [22] for the special case of three-dimensional new massive gravity). From the trace

equation (we use equations in the Gauss-Codazzi form as presented in appendix B)

we derive

n(d+ 1− n)antr(g(n)) = 0, (2.10)

where the trace is taken using gij(0) and

an = 1 + 4
L2

l2

(

− 8λ+
n

2

d− n

d− 1
µ

)

, (2.11)

where

µ = 2λ1 +
d+ 1

2
λ2 + 2dλ3. (2.12)

Notice that µ vanishes in the Lovelock case. The (ij) equations give

n(n− d)âng(n)ij + . . . = 0, (2.13)

where we omitted the terms involving tr(g(n)) which can be restored by comparing it to

the trace equation. See also the next section for the explicit results for integer n. The ân
coefficient is

ân = 1− L2

l2

(

32
d− 1

d− 3
λ+ n(d− n)(4λ1 + λ2) + 4(2− d)λ1

)

. (2.14)

Finally the (ri) equation results in

nân∇jg(n)ij + . . . = 0. (2.15)

All these equations must be satisfied if some new independent sources can be introduced

at order n. First of all we see that these equations have trivial solutions corresponding to

n = 0 or n = d (provided that ad and âd do not vanish). These are just the usual Einsteinian
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modes. However there are new solutions for n when either an or ân vanish. These solutions

indicate the dimension of the operator which is dual to the ‘massive’ mode. In the next

section we will see that if an or ân vanish for small integer n then the expansions of the

graviton and of the massive mode mix and source each other. In such cases the usual

Fefferman-Graham expansion for the graviton breaks down and should be modified by

introducing logarithmic terms corresponding to explicit sources (or vacuum expectation

values (VEVs)) for the other mode. In particular any analysis of correlation functions of

the stress-energy tensor or Weyl anomaly based on GR-like expansions (e.g. [23–26]) does

not directly apply to these cases. It is clear that from the dual field theory perspective

in these special cases the new operator has small integer dimension and thus naturally

appears as a matter contribution to the Weyl anomaly or as a logarithmic partner of the

stress-energy tensor. It would be interesting to modify the cohomological analysis of [25]

to incorporate these special theories.

For Lovelock gravities the an and ân coefficients do not depend on n and there are

no new modes as expected. There is however a special Lovelock theory for which the

character of the Fefferman-Graham expansion drastically changes. This is the case in five

(and higher) bulk dimensions when both an and ân vanish for all n. We will say more

about this gravitational Chern-Simons theory in the next section.

Let us for completeness review the analysis of the linearised fluctuations hµν = gµν−ḡµν
around AdS vacuum (of radius l). The systematic analysis of such fluctuations has been

performed for instance in [6]. The equations of motions are

cGL
µν+(2λ1+λ2 + 2λ3)

(

ḡµν�̄− ∇̄µ∇̄ν −
d

l2
ḡµν

)

RL+(4λ1+λ2)

(

�̄GL
µν+

d−1

l2
ḡµνR

L

)

= 0,

(2.16)

where barred quantities are computed using the background AdS metric ḡ, we denote the

Einstein tensor as

Gµν = Rµν −
1

2
Rgµν −

d(d− 1)

2l2
gµν (2.17)

and its linearisaion is

GL
µν = RL

µν −
1

2
RLḡµν +

d

l2
hµν . (2.18)

The coefficient c in front of the linearised Einstein tensor is

c =
1

L2

[

1− 2
L2

l2

(

2(1− d)λ1 + (d− 1)λ2 + d(d+ 1)λ3

)

]

. (2.19)

Linearised curvatures are

RL
µν =

1

2
(∇̄σ∇̄µhνσ+∇̄σ∇̄νhµσ−�̄hµν−∇̄ν∇̄µh), RL = −�̄h+∇̄ν∇̄µhµν+

d

l2
h. (2.20)

Taking the trace of (2.16) we get
[

2µ�̄− d− 1

L2

(

1− 32
L2

l2
λ

)]

RL = 0. (2.21)

Notice that the mass of this mode is proportional to ad and hence directly related to

the fall-off behaviour of the trace mode as discussed before. Something special happens
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when µ = 0, in particular for Lovelock gravity. Scalar mode gets eliminated from the

spectrum. If in addition the second term also vanishes (which happens at the special point

λ = 1/64) then the RL is unconstrained. In the transverse traceless gauge the equations

for perturbations simplify to

(λ2 + 4λ1)

(

�̄+
2

l2
−M2

)(

�̄+
2

l2

)

hµν = 0, (2.22)

where

M2 = − 1

(4λ1 + λ2)L2

[

1− 2
L2

l2

(

− 2(d− 3)λ1 + dλ2 + d(d+ 1)λ3

)

]

(2.23)

= − 1

(4λ1 + λ2)L2

[

1− 4
L2

l2

(8(d− 1)

d− 3
λ+ (2− d)λ1

)

]

= − âd
(4λ1 + λ2)L2

.

(2.21) and (2.22) show that generically there are propagating massless graviton and massive

spin two and spin zero modes.

Importantly, this value of the mass (2.23) is exactly proportional to âd! This provides

the direct link between perturbative masses around AdS and the fall off exponents of the

massive modes! When the mass vanishes the new mode degenerates with the graviton and

as we shall see in the next section the terms in the near boundary expansion begin to mix.

If the parameters of the theory are such that the mass (2.23) vanishes one refers to the

theory as critical. The black holes have vanishing entropy and mass in critical theories [6, 8].

Massive graviton becomes a logarithmic partner of the massless graviton. This leads to

non-unitarity and the dual CFT is expected to be logarithmic.

3 The Fefferman-Graham expansion

In this section we solve the field equations close to the boundary. The equations in the

Gauss-Codazzi form are presented in appendix B.

Below we focus on the case when the dimensions of the two operators do not differ

by a small integer. This guarantees that the Fefferman-Graham expansions do not mix at

leading order.

We are mostly interested in 2 ≤ d ≤ 4. We choose the gauge (2.3) and expand the

metric as inspired by GR

gij = g(0)ij + e−2r/lg(2)ij + e−3r/lg(3)ij + re−4r/lh(4)ij + e−4r/lg(4)ij + . . . . (3.1)

g(3)ij is expected to appear in d = 3 only. Note that the gauge (2.3) in general is not con-

sistent with the transverse traceless gauge which was convenient for the linearised analysis

in the previous section. At this point this form of the near-boundary expansion (3.1) is an

assumption inspired by GR. Later we shall see when this assumption breaks down. Now

we proceed by analysing the field equations order by order.

The (rr) equation leaves the tr(g(2)) undetermined due to a non-trivial cancellation.

However the tr(g(2)) can be determined from the trace equation. The result is

a2(λi)(l
2R(0) + 2(d− 1)tr(g(2))) = 0, (3.2)

– 7 –
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where the trace here is taken using gij(0) and

a2(λi) = 1 + 4
L2

l2

(

λ1 + λ2 −
d(d− 5)

2
λ3

)

= 1 + 4
L2

l2

(

− 8λ+
d− 2

d− 1
µ

)

(3.3)

is of the same form as computed in the previous section (see equation (2.11)). Note that

µ (defined in (2.12)) vanishes for Lovelock gravities. Similarly from (ri) and (ij) we get

â2(λi)
(

∇itr(g(2))−∇jg(2)ij

)

+ 2
L2

l2
λ̂∇i

(

2(d− 1)tr(g(2)) + l2R(0)

)

= 0 (3.4)

where ∇ here denotes the covariant derivative with respect to g(0)ij and

â2(λi)

[

g(2)ij−
l2

d−2

(

R(0)g(0)ij

2(d−1)
−R(0)ij

)]

+ 4
L2

l2
λ̂
(

2(d−1)tr(g(2))+l2R(0)

)

g(0)ij=0, (3.5)

where

â2(λi) = a2(λi)− 4d
L2

l2
λ̂ and λ̂ = λ1 + λ2 + 3λ3. (3.6)

Notice that λ̂ vanishes identically for Lovelock gravities.

Now we immediately see important differences with respect to general relativity. There

are several cases to consider.

• In the case a2(λi) 6= 0 and â2(λi) 6= 0 the solution to the equations above coincides

with the well known result for GR:

tr(g(2)) = −
l2R(0)

2(d− 1)
, (3.7)

∇jg(2)ij = ∇itr(g(2)), (3.8)

g(2)ij =
l2

d− 2

(

R(0)

2(d− 1)
g(0)ij −R(0)ij

)

, (3.9)

where the last equation holds only if d 6= 2. It is clear however that for certain

combinations of the higher curvature couplings λi (some of) the equations above

leave some components of g(2)ij undetermined!

• In the case a2(λi) 6= 0 and â2(λi) = 0 the trace tr(g(2)) is still given by (3.7) however

∇jg(2)ij and g(2)ij are left undetermined by the near boundary analysis. This is

in contrast to GR where these components get expressed algebraically in terms of

boundary data as in (3.8) and (3.9). It is clear that this arbitrariness is due to the

appearance of the new mode at this order as discussed in the previous section: the

condition a2(λi) 6= 0 makes it traceless and that is why the trace of the g(2) does

not get modified. However the traceless part of the new mode is arbitrary due to

â2(λi) = 0. Presumably one would need to introduce a logarithmic mode at this

order in order to incorporate this new mode. This case is inconsistent with Lovelock

condition for which â2(λi) = a2(λi).
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• In the case a2(λi) = 0 and â2(λi) 6= 0 the trace tr(g(2)) is left undetermined, whereas

∇jg(2)ij and g(2)ij are expressed in terms of tr(g(2)):

∇jg(2)ij =
1

d
∇i

(

tr(g(2))−
l2

2
R(0)

)

, (3.10)

g(2)ij =
1

d(d− 2)

(

(d− 2)tr(g(2))g(0)ij + l2(R(0)g(0)ij − dR(0)ij)
)

. (3.11)

Again, this case cannot appear for Lovelock gravities.

Interestingly the critical point of the so-called new massive gravity (NMG) in three

bulk dimensions [3] is a particular member of this special family with

λ1 = 0, λ2 = 1, λ3 = −3

8
, so that λ = 1/64. (3.12)

It is also known that in NMG there is enhanced gauge symmetry on the level of

linearised field equations around (A)dS vacuum [7]. This gauge invariance is of an

unusual type and gives rise to partially massless (PM) fields [27, 28]. More concretely

the gauge parameter in this case is a scalar and removes one degree of freedom - the

trace of the metric. At the same time the equation for fluctuations degenerates and

logarithmic modes appear. In this case the ‘partially massless gravity’ is conjectured

to be dual to logarithmic CFT [29]. However this Weyl invariance cannot be promoted

to interacting theory [30, 31]. Moreover there is a no-go theorem prohibiting having

interacting PM fields coupled to gravity in a unitary theory [32, 33] and it is true

that NMG at the critical point is non-unitary. Our analysis confirms that there is no

non-linear extension of this linearised Weyl symmetry and what appears as a gauge

freedom is just the presence of an additional boundary condition for the trace mode.

• Finally in the case a2(λi) = 0 and â2(λi) = 0 all the components of g(2)ij are left

undetermined. For generic number of boundary dimensions d these conditions define

a one-parameter family of theories (the independent parameter can be conveniently

chosen to be λ3). Notice however that this last case cannot be realised if d = 2 or

d = 3 if the Einstein-Hilbert term is present in the action. However the conformal

gravity in four bulk dimensions is an example of this scenario with the cosmological

constant and the Einstein-Hilbert term absent in the action. From our analysis it

follows immediately that an = ân = 0 for n = 1 and n = 2. This confirms the

proposed ansatz of [20] for the near-boundary expansion.

For d = 2 everything gets determined by a single parameter λ̂. As a result either

tr(g(2)) or ∇jg(2)ij (or both) is (are) determined and the transverse traceless part of g(2)ij
is left arbitrary by the near-boundary analysis as expected. Lovelock term does not modify

the result with respect to GR.
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Let us now move on to the next order in the Fefferman-Graham expansion. For g(3)ij
we obtain:

0 = a3tr(g(3)), (3.13)

0 = â3(∇itr(g(3))−∇jg(3)ij) + 2
L2

l2
κ∇itr(g(3)), (3.14)

0 = â3((d− 3)g(3)ij + tr(g(3))g(0)ij) +
2(2d− 3)

d− 1

L2

l2
κtr(g(3))g(0)ij , (3.15)

where

a3 = 1 +
d− 3

d− 1

L2

l2

(

8λ1 + (d+ 3)λ2 − 2d(d− 5)λ3

)

= 1+4
L2

l2

(

− 8λ+
3

2

d−3

d−1
µ

)

, (3.16)

â3 = a3 −
2d

d− 1

L2

l2
κ, with κ = 4(d− 3)λ1 + (3d− 7)λ2 + 8(d− 2)λ3, (3.17)

once again in agreement with out general expressions (2.11) and (2.14). Gor general d the

analysis of different cases is analogous to that at the previous order. There is an important

difference however in d = 3. Recall that in d = 3 the parameter λ vanishes and there is

unique AdS vacuum with radius l = L. Moreover a3 is identically equal to one and hence

tr(g(3)) is forced to vanish, confirming the fact that in d = 3 there is no Weyl anomaly.

Nevertheless it is still possible for â3 to vanish. In any case λ1 drops out of the analysis

due to the (d − 3) prefactor. This presumably corresponds to the fact that in AdS4 the

non-dynamical Euler density can be added to the action to remove the λ1Riem2 term.

Actually there exists a well-known example of a theory for which â3 vanishes. This is

the logarithmic point of the so called critical gravity in four bulk dimensions [8] for which

λ1 = 0, λ2 = −3λ3 =
3

d(d− 1)
. (3.18)

In this case it is known that the graviton acquires a logarithmic partner and the near-

boundary expansion has to be modified by logarithmic terms.

Now we move to the next order. In AdS5 one has a logarithmic term h(4)ij already in

GR. With the higher curvature corrections we get for h(4)ij the following equations:

(d− 3)a4(λi)tr(h(4)) = 0, (3.19)

â4(λi)(∇itr(h(4))−∇jh(4)ij) + 4
L2

l2
ν∇itr(h(4)) = 0, (3.20)

â4(λi)
[

(d− 4)h(4)ij + tr(h(4))g(0)ij

]

+ 8
d− 2

d− 1

L2

l2
νtr(h(4))g(0)ij = 0, (3.21)

where

a4(λi) = 1 +
2

d− 1

L2

l2

(

2(3d− 13)λ1 + (d2 − 3d− 8)λ2 − d(d2 − 10d+ 29)λ3

)

(3.22)

= 1 + 4
L2

l2

(

− 8λ+ 2
d− 4

d− 1
µ

)
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and

â4(λi) = a4(λi)− 4
d

d− 1

L2

l2
ν with ν = (3d− 13)λ1 + (2d− 7)λ2 + 5(d− 3)λ3. (3.23)

Before we present the results for g(4)ij let us introduce some notation by reminding

the results for GR. The equations one obtains in GR are

0 = E = 4(d− 3)tr(g(4)) + (5− 2d)tr(g2(2))− tr(g(2))
2 − l2Rij

(0)g(2)ij (3.24)

+ (7− d)tr(lh(4))− l2γ,

0 = Ei = 2(∇itr(g(4))−∇jg(4)ij)−
3

4
∇itr(g

2
(2))−

1

2
g(2)ij∇jtr(g(2)) +∇j(g2(2))ij (3.25)

− 1

2
(∇itr(h(4))−∇jh(4)ij),

0 = Eij = 2(d− 4)g(4)ij + 2(g2(2))ij + tr(2g(4) − g2(2))g(0)ij +
(8− d)

2
lh(4)ij (3.26)

+ l2
(

∇k∇(ig(2)j)k −
1

2
∇i∇jtr(g(2))−

1

2
�g(2)ij

)

,

where

γ = �tr(g(2))−∇i∇jg(2)ij . (3.27)

Now in the presence of higher curvature corrections and if the result for g(2)ij is the

same as in GR (i.e. if a2 6= 0 and â2 6= 0) we get

0=a4(λi)E +
d− 3

d− 1
l2L2λ1Weyl2(0) − 8

L2

l2
(d− 8)(d− 3)

d− 1
µtr(lh(4)), (3.28)

0= â4(λi)Ei + 2
L2

l2
ν∇itr(4g(4) − g2(2))− 2

L2

l2
(d− 8)(4λ1 + λ2)∇jh(4)ij (3.29)

+ 2
L2

l2

(

(3d− 13)λ1 − 3(d− 5)λ2 + (47− 9d)λ3

)

∇itr(lh(4))

+
2L2l2

(d− 2)2
λ1

[

∇i

(

Ric2 − 1

2(d− 1)
R2

)

+Rij∇jR−2Rjk∇kRij+2(d−2)Rijkl∇lRjk

]

,

0= â4(λi)Eij + 2L2l2λ1

(

(Weyl2)ij −
1

2(d− 1)
(Weyl2)g(0)ij

)

(3.30)

+
4(d− 2)

d− 1

L2

l2
νtr(4g(4) − g2(2))g(0)ij + 2

L2

l2
(d− 8)(d− 4)(4λ1 + λ2)h(4)ij

+
L2

l2
2

d−1

[

2(5d2−47d+100)λ1+(7d2−61d+112)λ2+2(9d2−75d+124)λ3

]

tr(lh(4))g(0)ij .

The discussion here is similar to that we had at the previous orders. Again there are

four cases to consider depending on whether a4(λi) and/or â4(λi) are zero or not.

• a4(λi) 6= 0, â4(λi) 6= 0: the result is the same as in GR.

• a4(λi) = 0, â4(λi) 6= 0: the trace of g(4) is not determined while the ∇jg(4)ij and

the transverse traceless part are determined in terms of the trace in d > 4 (in d = 4

instead of g(4)ij the h(4)ij is determined).
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• a4(λi) 6= 0, â4(λi) = 0: the trace is determined while the divergence and transverse

traceless part are arbitrary.

• a4(λi) = 0, â4(λi) = 0: nothing gets determined.

In a generic theory the only non-trivial correction to the trace of g(4)ij is proportional

to λ1Weyl2(0). For four dimensional dual CFT this trace should give the trace (or Weyl)

anomaly (the exact expression however depends on the counterterm action). Thus we find

a shift in the c central charge of the trace anomaly. Interestingly only the Riem2 term in

the action contributes to this shift. This is consistent with the older result by [23, 24, 34].

Actually it is easy to see that only λ1 can destroy the equality between the c and a anomaly

coefficients. This is due to the fact that the usual Weyl anomaly E4 − Weyl2 (here E4

is the Euler density in four dimensions) involves the Ricci tensor only. Therefore c and

a can be non-equal to each other only if the anomaly gets modified by a square of the

Riemann tensor. This explains the special role of the λ1 coefficient. Curiously the Riem2

term is also the only one which cannot be brought back to GR (plus some matter) by a

local field redefinition. This is in line with the fact that central charges in CFT are field

redefinition invariant.

However, when a4(λi) = 0, the tr(g(4)) is not determined and tr(h(4)) is determined in-

stead. Something interesting happens when µ = a4(λi) = 0. In this case the equation (3.28)

appear to be inconsistent unless λ1Weyl2(0) = 0. However when µ = a4(λi) = 0 the form

of the expansion should have been modified already at the order of g(2)ij by allowing new

logarithmic terms. It seems that the two expansions begin to mix and the background

metric (or more precisely the background Weyl tensor) constrains the new mode.

To make contact with something familiar, notice that in Lovelock gravities the µ coef-

ficient vanishes and a4(λi) = a3(λi) = a2(λi). If moreover λ is such that a4(λi) = 0 (which

in 5 bulk dimensions corresponds exactly to the Chern-Simons gravity) than the coeffi-

cients g(2)ij , h(4)ij and g(4)ij are not determined by the field equations! This degeneracy

for Chern-Simons gravity appeared in the literature before [35, 36]. Moreover this arbi-

trariness is not due to some unidentified boundary condition since the field equations are

of second order. In fact there exist (asymptotically AdS) solutions involving unconstrained

functions of coordinates, i.e. field equations do not fix the metric entirely. Notice however

that such solutions necessarily have vanishing mass. Also the effective action for the fluc-

tuations around such solutions do not have standard quadratic terms. It is conceivable

that this degeneracy is related to the gauge symmetry enhancement, however the rigorous

(canonical) count of the number of degrees of freedom in the degenerate case cannot be

performed by the standard methods [37–39].

The Chern-Simons gravity can be defined in all odd spacetime dimensions and belongs

to the Lovelock family of gravities, i.e. the field equation are second order in derivatives.

Generically the field equations set some products of curvature two-forms to zero:

ǫa1...ad+1
(Ra1a2 + l−1ea1ea2) . . . (Rad−1ad + l−1ead−1ead) = 0, (3.31)

where ai stands for tangent space index. When

Ra1a2 + l−1ea1ea2 = 0 (3.32)
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is satisfied the quadratic part of the action for the fluctuations is vanishing, and thus

there is no propagation around such background in perturbative sense. In particular this

results in the families of solutions involving arbitrary functions. In Chern-Simons theory

based on gauge connection such solutions correspond to the unbroken phase, i.e. they are

gauge equivalent to the symmetric (non-geometric) background with e = ω = 0. However

such gauge transformations make the vielbein e non-invertible and hence are forbidden in

gravitational theory.

Technically speaking, some of the Hamiltonian constraints become dependent on such

degenerate backgrounds. In fact it is known [37, 38] that the constraint coming from radial

reparametrization invariance1 is not independent from other constraints. Actually the AdS

solution is a maximally degenerate background, i.e. the symplectic form vanishes at this

point in phase space and there are no local degrees of freedom propagating around such

backgrounds. Importantly, expanding the theory around pure (A)dS vacuum we find that

there is no quadratic piece in the action and thus the concept of the propagation is not

well defined (in the perturbative sense) [40]. We encountered related phenomenon when

we observed that near boundary analysis leaves coefficients in the expansion arbitrary. It

would be of great theoretical interest to understand better the canonical structure of the

gravitational Chern-Simons theory in 5d and the interpretation of this exotic gravitational

theory in the AdS/CFT context. Although our explicit analysis in this paper is limited

up to five dimensions only, the general structure of the field equations in Chern-Simons

gravity suggests that the degenerate behaviour of the near-boundary expansion persists

also in higher odd dimensions.

More generally, our interpretation of g(n)ij as a source or VEV of some new operator

in the dual CFT breaks down when an and ân (as defined in (2.11) and (2.14)) vanish for

all n. The example of gravitational Chern-Simons theory suggest that this behaviour is

exceptional and should be linked to the breakdown of the predictive power of the theory

(at least in the usual geometrical sense).

4 Conclusions

In this paper we have studied the influence of the higher curvature corrections on the form

of the near-boundary expansion of the metric in asymptotically locally AdS spaces. Our

starting point of this analysis is the ansatz

γij = e2r/l
(

g(0)ij + e−nr/lg(n)ij

)

, (4.1)

where g(0)ij is the background metric, whereas g(n)ij is the source (or the VEV) of the new

operator. The theory determines for us the possible values of l and n. The characteristic

exponent n is linked to the mass of massive mode around the AdS vacuum. We emphasise

that both these parameters have to be determined simultaneously since one necessarily

needs a non-degenerate metric g(0)ij in order to introduce physical position-dependent

1In [37, 38] the backgrounds of the form R×M4 were considered and R was referred to as ‘time’ direction.

In the present context R corresponds to the radial direction.
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couplings g(n)ij . This ansatz serves as a seed for subsequent determination of subleading

terms. Clearly this analysis can become intricate due to the mixing of the Einsteinian and

the new mode.

For a general theory involving corrections which are quadratic in the Riemann tensor

we identified the fall-off behaviour of the additional modes. There are infinite classes of

theories for which the new modes mix with the GR-like mode. In our explicit analysis this

phenomenon manifests itself as arbitrariness of certain subleading terms. Relatively well

understood examples of the special cases are the new massive gravity in 3d, critical gravity

in 4d and conformal gravity in 4d. Partial holographic dictionary in these cases has been

established in [41–43].

The theories with arbitrary terms in the near boundary expansion provide counterex-

ample to a statement that this near boundary terms are completely universal [25]. They

are universal only if there are no operators with small integer dimension which spoil the

cohomological analysis. The methods of computing correlations functions or Weyl anomaly

assuming this universal behaviour [23–26] do not apply directly to the special cases.

In the AdS5 case we found that if the logarithmic modes do not appear then only

λ1 coefficient shifts the c central charge. In particular we found that the ‘R2’ anomaly

- characteristic feature of scale but not conformally invariant theories - does not appear

in the trace anomaly in QFTs dual to gravity with quadratic curvature corrections. This

extends the old result of [16] beyond pure GR.

This identification of the space of asymptotic solutions is just a first step in the program

of holographic renormalisation. The next obstacle on the way is the well-posedness of the

variational problem. Our results should be helpful in this direction. In the ansatz (4.1)

the sources of the boundary theory are manifest and hence exactly these terms in the near-

boundary expansion should be held fixed in the variational problem. The bulk-covariant

form of the last statement would allow us to determine necessary boundary terms. For

now this problem remains open.

For Lovelock gravities arbitrary coefficients appear only at one special point: the grav-

itational Chern-Simons theory. In the Chern-Simons case the ambiguity in the expansion

coefficients can be partly understood from the degeneracy of the AdS vacuum. For generic

Lovelock theory there are two maximally symmetric vacua with different radii. The two

radii coincide at the Chern-Simons point. Viewing Fefferman-Graham expansion as a per-

turbation around AdS vacuum we see that the degeneracy at the Chern-Simons point is due

to the fact that there are two branches of solutions emanating from the doubly degenerate

vacuum. Clearly starting from this degenerate solution there is no unique way to extend

it into the bulk. It would be of great theoretical interest to see how exotic properties of

five-dimensional Chern-Simons theory reflect themselves in the dual field theory.
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A Some technical details

Here we collect some technical results.

In the formulas below the Christoffel symbols are associated with the bulk metric Gab,

indices from the beginning of the alphabet a, b, c, e, f refer to the bulk coordinates (r, xi),

while the indices from the middle of the alphabet i, j refer to the boundary directions only.

In the gauge (2.3) the extrinsic curvature is given by

Kij =
1

2
γ′ij , (A.1)

where prime denotes the radial derivative. The Christoffel symbols are

Γr
rr = Γr

ri = Γi
rr = 0; Γr

ij = −1

2
γ′ij = −Kij ; Γi

rj = Ki
j ; Γi

jk[G] = Γi
jk[γ]. (A.2)

We note the following useful relation:

DrKij = ∂rKij − 2(K2)ij (A.3)

Gauss-Codazzi decomposition of the Riemann tensor is

Rijkl[G] = Rijkl[γ] +KjkKil −KikKjl, (A.4)

Rrijk[G] = ∇kKij −∇jKik, (A.5)

Rrirj [G] = −DrKij −KikK
k
j = −K ′

ij + (K2)ij , (A.6)

where ∇ here denotes the covariant derivative w.r.t. γ. Similarly the components of the

Ricci tensor are

Rij [G] = Rij [γ]−K ′

ij + 2(K2)ij − tr(K)Kij , (A.7)

Rri[G] = ∇jKij −∇itr(K), (A.8)

Rrr[G] = tr(K2 −K ′) = −∂rtr(K)− tr(K2), (A.9)

where the trace here is taken with γij . Finally,

R[G] = R[γ] + tr(3K2 − 2K ′)− tr(K)2 = R[γ]− tr(K2)− tr(K)2 − 2∂rtr(K), (A.10)

where we have used

tr(K ′) = ∂rtr(K) + 2tr(K2). (A.11)

We shall also need

Ric2[G] = Ric2[γ] + 2∇nK
in
(

∇jKij − 2∇itr(K)
)

+ 2∇itr(K)∇itr(K) (A.12)

+ 2Rij [γ]
(

−K ′

ij + 2(K2)ij − tr(K)Kij

)

+ tr(K ′2 − 4K ′K2 + 4K4)

+ tr(K ′)tr(K ′ − 2K2) + 2tr(K)tr(KK ′ − 2K3) + tr(K2)
(

tr(K2) + tr(K)2
)

,
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and

Riem2[G] = Riem2[γ] + 2Rijkl[γ](KjkKil −KikKjl) (A.13)

+ 8∇kKij
(

∇kKij −∇jKik

)

+ 2tr(K2)2 + 2tr(K4 + 2K ′2 − 4K ′K2),

where we use the notation

tr(K ′2) = K ′

ijK
′

lmγilγjm (A.14)

and similarly for other traces. Also

�GR[G] =
(

∂2
r + tr(K)∂r +�γ

)[

tr(3K2 − 2K ′)− tr(K)2 +R[γ]
]

.

Next we move to analyse the terms RacdeRb
cde:

Ricde[G]Rj
cde[G]=

1

2
Riklm[γ]Rj

klm[γ] + 2KmnKj
lRimnl[γ] +∇iK

mn∇jKmn (A.15)

+∇nKi
m
(

2∇nKjm −∇mKjn − 2∇jKmn

)

+ tr(K2)(K2)ij

− 2(K2K ′)ij + γmnK ′

inK
′

jm + (i ↔ j),

Ricde[G]Rr
cde[G] = 2

[

Riklm[γ]∇mKkl +Ki
lKmn(∇kKmn −∇nKlm) (A.16)

+ (K ′ −K2)mn(∇iK
mn −∇mKi

n)
]

.

Rrcde[G]Rr
cde[G] = 2

[

∇lKij(∇lKij −∇jKil) + tr(K ′2 − 2K2K ′ +K4)
]

. (A.17)

The next term we analyse is �GRab[G]. The general formula is (from now on we drop

the argument of the Riemann curvatures - the reader can easily figure out which metric is

meant from the form of indices)

�GRab =
1

2
DrDrRab + γij

[

1

2
∂i∂jRab −

1

2
Γe
ij∂eRab −Rbe∂jΓ

e
ai − 2Γe

ai∂jRbe (A.18)

+ Γe
ijΓ

f
aeRbf + Γe

aj(Γ
f
ieRbf + Γf

ibRef )

]

+ (a ↔ b),

where

DrDrRab =
1

2
∂2
rRab −Rbc∂rΓ

c
ar − 2Γe

ar∂rRbe + Γe
ar(Γ

c
reRbc + Γc

rbRce) + (a ↔ b). (A.19)

The particular components are

�GRrr=
(

∂2
r+tr(K)∂r+�γ−2tr(K2)

)

Rrr−(2∇iK
ij+4Kij∇i)Rrj+2(K2)ijRij , (A.20)

�GRri=
(

DrDr+tr(K)Dr+�γ−tr(K2)
)

Rri+(∇jKji+2Kij∇j)Rrr−3(K2)i
jRrj (A.21)

− (∇jK
jl + 2Kjl∇j)Ril,

�GRij=
1

2
(DrDr + tr(K)Dr +�γ)Rij (A.22)

+ (K2)ijRrr + (∇nKjn + 2Kj
n∇n)Rri − (K2)j

nRin + (i ↔ j).
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It is useful to note that

DrRij =
1

2
∂rRij −Ki

nRjn + (i ↔ j), (A.23)

DrDrRij =
1

2
∂2
rRij +Ki

nKj
mRmn +

(

(K2)i
n − ∂rKi

n − 2Ki
n∂r

)

Rjn + (i ↔ j). (A.24)

In these formulas we implicitly assume that the (d+1)−dimensional curvatures (R[G]) has

been decomposed into d−dimensional ones (R[γ]).

The terms DaDbR:

DrDrR = ∂r∂rR, (A.25)

DiDrR = ∇i∂rR−Ki
j∇jR, (A.26)

DjDiR = ∇j∇iR+Kij∂rR. (A.27)

The next term is RacRb
c:

RrcRr
c =

(

tr(K ′ −K2)
)2

+∇itr(K)∇itr(K) +∇jK
ij(∇nKin − 2∇itr(K)), (A.28)

RicRr
c =

(

tr(K ′ −K2)
)

(∇itr(K)−∇jKij) (A.29)

+ (Rij −K ′

ij + 2(K2)ij − tr(K)Kij)(∇nK
jn −∇jtr(K)),

RicRj
c =

1

2

(

∇mKim∇nKjn+∇itr(K)∇jtr(K)+(R2)ij+γmnK ′

imK ′

jn

)

+2(K4)ij (A.30)

− 2tr(K)(K3)ij +
1

2
tr(K)2(K2)ij −∇itr(K)∇nKjn − (RK ′)ij + 2(RK2)ij

− tr(K)(RK)ij − 2(K ′K2)ij + tr(K)(KK ′)ij + (i ↔ j).

Finally, the RcdRc(ab)d terms give:

RcdRcrrd=tr(RK ′ −RK2 + 3K2K ′ − 2K4 −K ′K ′) + tr(K)tr(K3 −KK ′), (A.31)

RcdRc(ri)d=(∇jtr(K)−∇nK
jn)(K ′

ij − (K2)ij) (A.32)

+ (Rmn −K ′

mn + 2(K2)mn − tr(K)Kmn)(∇iK
mn −∇nKi

m),

RcdRc(ij)d=tr(K2−K ′)(K ′

ij−(K2)ij)+(Ki
mKj

n+Ri
m
j

n)(K ′

mn−2(K2)mn−Rmn) (A.33)

+ tr(K)(KmnRminj + (K3)ij)− 2(∇nKij −∇(iKj)
n)(∇ntr(K)−∇mKmn)

+ tr(2K3 −KK ′ +KR)Kij − tr(K)tr(K2)Kij .

We expand the metric (in d = 4) as

γij = e2r/l
[

g(0)ij + e−2r/lg(2)ij + re−4r/lh(4)ij + e−4r/lg(4)ij + . . .
]

, (A.34)

γij = e−2r/l
[

gij(0) − e−2r/lgij(2) − re−4r/lhij(4) + e−4r/l(g(2)g(2) − g(4))
ij + . . .

]

, (A.35)

where the indices of g(a) and h(a) are raised and lowered using g(0). The extrinsic curvature

then is

Kij =
1

l
e2r/l

[

g(0)ij − re−4r/lh(4)ij + e−4r/l

(

l

2
h(4)ij − g(4)ij

)

+ . . .

]

. (A.36)
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B Gauss-Codazzi decomposition of the field equations

The (rr) component of the Einstein equations (2.2) now reads

0 = tr(K2 −K ′) +
d

L2
(B.1)

+ L2

[

−
λ1Riem2

γ+λ2Ric2γ
d−1

+

(

2(2−d)λ2

d−1
−4λ1

)

tr(RK ′)+

(

12λ1+
4(d− 2)λ2

d−1

)

tr(RK2)

+
2λ2

d− 1
tr(K)tr(RK)− 4λ1

d− 1
RijmnKjmKin − λ3

d− 1

(

R2 + 2R(tr(3K2 − 2K ′)− tr(K)2)
)

+

(

4(d− 2)λ3 − λ2

d− 1
− 4λ1

)

tr(K ′)2 +
(28d− 30)λ1 + 4(2d− 3)λ2

d− 1
tr(K4)− λ3

d− 1
tr(K)4

+
(8d− 12)λ1 + (2d− 3)λ2

d− 1
tr(K ′2) + 4λ1

d− 3

d− 1
∇nKij(∇nKij −∇jKin)

+

(

− 4λ1 −
2λ2

d− 1

)

(

∇jK
ij(∇nKin − 2∇itr(K)) +∇itr(K)∇itr(K)

)

+

(

2dλ2 + (22− 10d)λ3

d− 1
+ 16λ1

)

tr(K ′)tr(K2) +

(

2(d− 2)λ2

d− 1
+ 4λ1

)

tr(K)tr(KK ′)

+

(

− 12λ1 −
4(d− 2)λ2

d− 1

)

tr(K)tr(K3) +
(8− 2d)λ3 − λ2

d− 1
tr(K)2tr(K2)

+
3(2d− 5)λ3 − (2d− 1)λ2 − 2(6d− 5)λ1

d− 1
tr(K2)2 +

2(d− 3)λ3

d− 1
tr(K ′)tr(K)2

− 2λ1 + λ2 + 2λ3

d− 1

(

d∂2
r + tr(K)∂r +�γ

)(

tr(3K2 − 2K ′)− tr(K)2 +R
)

+
4(9− 7d)λ1 + 4(3− 2d)λ2

d− 1
tr(K2K ′) + 2λ3Rtr(K2 −K ′)

+ (4λ1+λ2)
(

(∂2
r+tr(K)∂r+�γ)tr(K

2 −K ′)− (2∇iK
ij+4Kij∇i)(∇nKjn −∇jtr(K))

)

]

.

Taking the trace of (2.2) we obtain

0 = R+ tr(3K2 − 2K ′)− tr(K)2 +
d(d+ 1)

L2
+ (B.2)

+
d− 3

d− 1
L2

[

λ1

(

Riem2
γ + 4RijmnKjmKin + 8∇nKij(∇nKij −∇jKin)

)

+ λ2

(

Ric2γ+2(∇itr(K)−∇nK
in)(∇itr(K)−∇jKij)+2Rij(2(K2)ij−K ′

ij−tr(K)Kij)
)

+ λ3

(

R2
γ+2Rγ(tr(3K

2−2K ′)−tr(K)2)
)

+(2λ1+λ2+9λ3)tr(K
2)2+2(λ1+2λ2)tr(K

4)

+ (4λ1+λ2)tr(K
′2)−4(2λ1+λ2)tr(K

′K2)+(λ2+4λ3)tr(K
′)2−2(λ2+6λ3)tr(K

′)tr(K2)

+ 2λ2tr(K)tr(KK ′ − 2K3) + (λ2 − 6λ3)tr(K
2)tr(K)2 + 4λ3tr(K

′)tr(K)2 + λ3tr(K)4

− 1

d− 3

(

4λ1 + (d+ 1)λ2 + 4dλ3

)(

∂2
r + tr(K)∂r +�γ

)(

R+ tr(3K2 − 2K ′)− tr(K)2
)

]

.
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The (ij) components of the Einstein equations (2.2) is

0 = Rij −K ′

ij + 2(K2)ij − tr(K)Kij +
d

L2
γij+ (B.3)

+ L2

[

1

2(d− 1)
ρ2γij + 2(4λ1 + λ2)tr(K

2)(K2)ij + (2λ1 + λ2)tr(K
′ −K2)K ′

ij

+ 2λ1

(

1

2
RilmnRj

lmn + 2KmnKj
lRimnl − (R2)ij +∇iK

mn∇jKmn −∇mKim∇nKjn

+∇nKi
m(2∇nKjm −∇mKjn − 2∇jKmn)−∇itr(K)∇jtr(K) + 2∇itr(K)∇nKjn

)

− 2(3λ1 + λ2)tr(K
′)(K2)ij − 4(3λ1 + λ2)(K

2K ′)ij − λ2(RK ′)ij + 2λ2(K
2R)ij

+ 2(2λ1 + λ2)tr(K)(KK ′)ij + (2λ1 + λ2)tr(K)2(K2)ij − 2(7λ1 + 3λ2)tr(K)(K3)ij

+ (4λ1 + λ2)

(

1

2
(∂2

r + tr(K)∂r +�γ)(Rij −K ′

ij + 2(K2)ij − tr(K)Kij) + γmnK ′

imK ′

jn

− 2Ki
n∂r(Rjn −K ′

jn + 2(K2)jn − tr(K)Kjn) + (∇nKjn + 2Kj
n∇n)(∇mKim−∇itr(K))

)

+ 2(3λ1 + λ2)Ki
n(Rmn −K ′

mn + 2(K2)mn)Kj
m + 4(2λ1 + λ2)(K

4)ij − λ2tr(K)(KR)ij

− 1

2
(2λ1 + λ2 + 2λ3)(Kij∂r +∇i∇j)

(

R+ tr(3K2 − 2K ′)− tr(K)2
)

− (2λ1 + λ2)
(

Rm
ij
n(Rmn −K ′

mn + 2(K2)mn − tr(K)Kmn) + tr(2K3 −KK ′ +KR)Kij

− 2(∇nKij −∇(iKj)
n)(∇ntr(K)−∇mKmn)− tr(K)tr(K2)Kij

)

+ λ3(R+ tr(3K2 − 2K ′)− tr(K)2)
(

Rij −K ′

ij + 2(K2)ij − tr(K)Kij

)

+ (i ↔ j)

]

,

where

ρ2 = −λ1Riem2[G]− λ2Ric2[G]− λ3R
2[G]− (2λ1 + λ2 + 2λ3)�GR[G] (B.4)

= −(λ1Riem2
γ + λ2Ric2γ) + 2λ2R

ij(K ′

ij − 2(K2)ij + tr(K)Kij)− 4λ1R
ijmnKjmKin

− λ3

(

R2 + 2R(tr(3K2 − 2K ′)− tr(K)2)
)

− 8λ1∇nKij(∇nKij −∇jKin)− λ3tr(K)4

− 2(λ1 + 2λ2)tr(K
4)− (4λ1 + λ2)tr(K

′2) + 4(2λ1 + λ2)tr(K
′K2)− (λ2 + 4λ3)tr(K

′)2

− 2λ2

(

∇nK
in(∇jKij − 2∇itr(K)) +∇itr(K)∇itr(K)

)

+ 2(λ2 + 6λ3)tr(K
′)tr(K2)

− (2λ1 + λ2 + 9λ3)tr(K
2)2 − 2λ2tr(K)tr(KK ′ − 2K3) + (6λ3 − λ2)tr(K)2tr(K2)

− 4λ3tr(K
′)tr(K)2

− (2λ1 + λ2 + 2λ3)(∂
2
r + tr(K)∂r +�γ)

(

R+ tr(3K2 − 2K ′)− tr(K)2
)

.
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