{ MAX-PLANCK-INSTITUT FUR PLASMAPHYSIK

GARCHING BEI MUNCHEN

| DTIOS Device Handlers

Reference Manual

K. Engelhardt
E. Miller
R. Lathe

4 IPP R/25 October 1977

Die nachstebhende Arbeit wurde im Rahmen des Vertrages zwischen dem

Max-Planck-Institut fiir Plasmaphysik und der Europiischen Atomgemeinschaft iiber die

Zusammenarbeit auf dem Gebiete der Plasmaphysik durchgefiibrt. |

R/ 25 DIOS Device Handlers
Reference Manual

K. Engelhardt
E. Mueller
R. Lathe

Abstract

This manual is designed to be
used by system programmers and
other advanced programmers
wishing to use standard DIOS
device handlers. It contains
a description of the functions
of all of the <currently sup-
ported standard DIOS devices.

DIOS Device Handlers
Reference Manual

Data Acquisition Project
Institute for Plasma Physics
8046 Garching
West Germany

Chapter

Chapter

Chapter

3]

(U8

WWWWwWwwwWwwWwwWwwwwwwww
e s ® 8 8 8 8 s 8 s ® & s » ®

NNMNMNNNODNNDNODNDNNNDNDNDNNDNDND

[\ N

AU bbb RN
s o e o & = s &® .

UTUT U S e b o B B L B R
i P 6w e W e . . o .

N =

(PSRN Iy

[N

NN NN N

NN NN

W b

BSOS IS

Table of Contents

Preface

Manual Objectives
Structure of the Manual

Introduction

CMDRV: IPP CAMAC Memory Module

Introduction

Loading the Module

MCE Format

Unloading the Module

QIO Functions to the Loaded Module
Standard Functions

Module-specific Functions

I0.INI - Initialize the CAMMEM
I0.TER - Terminate Operations on the CAMMEM
TO.RVB - Read Data from the CAMMEM
JIO.WVB - Write Data to the CAMMEM
Status Returns and Error Handling
First Status Word (low byte)

First Status Word (high byte)
Second Status Word

Programming Hints

CNDRV: Nuclear Enterprise CAMAC Memory

Introduction

External Input--Output Port

CAMAC Dataway Interface

Driver Capabilities

Loading the Module

MCB Format

Unloading the Module

QIO Functions to the Loaded Module
Standard Functions

Module-specific Functions

IO.INI - Tnitialize the Store
I0.TER - Terminate Operations on the Store
I0O.RVB - Read Data from the Store
I0O.WVB - Write Data to the Store
Status Returns and Error Handling
First Status Word (low byte)

First Status Word (high byte)

Chapter

CHAPTER

=9

(%]

W W W w
. e e

N N N T O N T = A A

oty au,

e e

e b DEAE AR ELBELBEARWNMNONHERFERHRERERF-

SOy Ln

LT U B D BB DD W RN

—

w N =

-

NN N

B b B B W N
e o @

[SESESENE NN SN SR SN SR SR SRS
e« o © s © o 8 & 8 ® @

=W

(U0 S I

B W RN NN
« o o e

Page 2

Second Status Word
Programming Hints

Using Byte Mode or Word Mode
Mode of Transfer

FKDRV: Function Keyboard

Introduction

Loading the Module

MCB Format

Unloading the Module

QI0 Functions to the Loaded Module
Standard Functions

Module-specific Functions

IO.INI - Initialize the FKB

IO.TER - Terminate Operations on the FKB
IO.RVB - Read Data from the FKB
IO.WVB - Write Data to the FKB
Status Returns and Error Handling
First Status Word (low byte)

First Status Word (high byte)
Second Status Word

MADRV: Canberra Model 8100

Introduction

Data Collection

Memory Capacity

Display

Serial Computer Interface
DL11 Interface

Command Output

Data Input

Loading the Module

MCB Format

Unloading the Module

QIO Functions to the Loaded Module
Standard Functions
Module-specific Functions
I0.INI - Initialize the MCA

w1 Device Dependent Parameters
2 Manual Mode (Mode=M)

3 Automatic Mode (Mode=A)

4 Flipped Mode (Mode=F)

5 Collecting Modes

I0.RVB - Read Data from Memory Group
i § Data Formats

2 Readout Sequences

JO.TER - Terminate MCA Operations
I0.CMD -~ Issue Command to MCA
Status Returns and Error Handling

Chapter

Chapter

Chapter

=]

~J

co

[eale W) We M) W e) We) Be TNe) e) We Be) Wea Rer B e)

jesloallosJos oo los Mo Mool

oo
L] L] L3 -

E B B B BES S e B BN U BC S B R |

B b B W RN
.

Ay Sy LT Un
. « o

[, 00, TN, IS, I S~ O O - SOl N S W=

T UT OO s s s B B W

3

°

.

LI B =

BN NN DN

W N

el

il
ol

NN NN N =
L] L] L] L]

L N

w o=

1

Page 3

First Status Word (Error Code)
Second Status Word

Programming Hints

Driver Assembly Options

MXDRV: IPP Multiplex ADC

Introduction

Loading the Module

MCB Format

Unloading the Module

QIO Functions to the Loaded Module
Standard Functions

Module-specific Functions

I0.INI - Initialize the MUXADC

IO.TER - Terminate Operations on the MUXADC
IO.RVB -~ Read Data from the MUXADC

IO.RRD - Read Random Data from the MUXADC
Status Returns and Error Handling

First Status Word (low byte)

First Status Word (high byte)

Second Status Word

PGDRV: Periodic Pulse Generator

Introduction

Loading the Module

MCB Format

Unloading the Module

QIO Functions to the Loaded Module
Standard Functions

Module-specific Functions

IO.INI - Initialize the PPG

IO.TER -~ Terminating Operations on the PPG
IO.RVB - Read Data from the PPG
Status Returns and Error Handling
First Status Word (low byte)

First Status Word (high byte)
Second Status Word

ODDRV: Ortec Charge Digitizer

Introduction

Loading the Module

MCB Format

Unloading the Module

QIO Functions to the Loaded Module
Standard Functions

Module-specific Functions

I0.INI - Initialize the QD808

Page 4

.2.2 IO.TER - Terminate Operations on the QD808
.2.3 I0.RVB - Read Data from the QD808
Status Returns and Error Handling
.1 First Status Word (low byte)
.2 First Status Word (high byte)
3 Second Status Word
Programming Hints

oo o o0 00
e e © 8 ©® 8 ®
UL U U

O

Chapter TGDRV: Experiment Trigger Input

DR-11 Interface

Introduction

Loading the Module

.1 MCB Format

Unloading the Module

QIO Functions to the Loaded Module
Standard Functions

Module-specific Functions

10.INI - Initialize the Trigger
I0.TER — Terminate Operations on the Trigger
I0.RVB - Read Data from the Trigger
Status Returns and Error Handling

w N =

O WO WO OO WO YLD WY YOO D

U e s bbb W
. L] L] L] - L] K] L]
NN N

1 First Status Word (low byte)
2 First Status Word (high byte)
3 Second Status Word
Chapter 10 TSDRV: Culham Time Sequence Generator
10.1 Introduction
10,2 Loading the Module
10.2.1 MCB Format
10.3 Unloading the Module
10.4 QIO Functions to the Loaded Module
10.4.1 Standard Functions
10, 4.2 Module-specific Functions
10.4.2.1 I0.INI — Initialize the TSG
10.4.2.2 IO.TER - Terminate Operations to the TSG
10.4.2.3 IO.RVB - Read Data from the TSG
10: 5 Status Returns and Error Handling
10.5.1 First Status Word (low byte)
10.5.2 First Status Word (high byte)
10.5.3 Second Status Word
10.6 Programming Hints
10.6.1 Precautions in Defining a Pulse Burst

Preface

0.1 Manual Objectives

This manual is designed to be used by system pro-
grammers and other advanced programmers wishing to use stan-
dard DIOS device handlers. It contains a description of the
functions of all of the currently supported standard DIOS
devices.

It is assumed that the reader is familiar with the op-
eration of standard RSX-11M device handlers and their relat-
ed executive directives. These points are fully covered in
the manuals RSX-11M Executive Reference Manual and RSX-11M
I1/0 Drivers Reference Manual. The user should also be fami-
liar with the information contained in the DIOS Operations
Manual, in particular, the loading and unloading procedures
and standard 1I/0 functions. It 1is recommended that the
reader also refer to the RSX-11M Guide to Writing an 1I/O
Driver.

0.2 Structure of the Manual

This manual is organized into chapters. The first
chapter gives a description of the format of the remaining
chapters. The remainder of the manual consists of detail
descriptions of each of the DIOS standard device handlers.

CHAPTER 1

Introduction

Each of the following chapters gives a detailed des-

cription
system.
which is

1.

of a specific device handler supported by the DIOS
The descriptions adhere to a standardized format
outlined here.

Introduction to the Hardware and Software

This section gives a brief description of the
hardware operation and the features which are sup-
ported by the software. The reader should note the
restrictions mentioned, as in many cases, not all
hardware functions are supported. The reader
should also note that some hardware functions are
changed somewhat (in the software) in order to sim-
plify the wuser interface; these changes are also
described here.

Loading the Module

The next section provides information on how the
device handler can be loaded. The MCB format deta-
ils deserve particular attention as 1its contents
are critical for the proper functioning of the DIOS
system. Note that only the device specific MCB
parameters are described and that general informa-
tion about MCB's is contained in the DIOS Opera-
tions Manual.

Unloading the Module

The third section gives a brief summary of the pro-
cedure used for unloading a module.

QIO Functions to the Loaded Module

This section provides information of high impor-
tance for the proper functioning of the module.
The I/0 functions specific to the device are des-
cribed in detail, in particular, the device specif-

Introduction Page 1-2

: ters associated with a device initializa-
tioiafigguest (I0.INI). The reader Shogld note
that, although only one form of the QIO directive
macro is given, all forms ($, $C, $S) of the 010 as
well as QIOW macro may be used. Care should be
taken that the parameter lists associated with the
macros have the proper form. These points are dis-
cussed 1in the DIOS Operations Manual and the
RSX-11M I/O Drivers Reference Manual.

5. Status Returns and Error Handling
The fifth section gives a description of the error
codes which may be returned in the I/0 Status Block
and their possible causes.

6. Programming Hints

The_final section gives useful hints on using the
device and warnings concerning common pitfalls.,

CHAPTER 2

CMDRV: IPP CAMAC Memory Module

2.1 Introduction

The CAMMEM is a random access memory in CAMAC norm with
2048 (CAMAC single width module) or 4096 (CAMAC double width
module) 1l6-bit words. The CAMMEM may be accessed via the
Dataway or from an external data bus. Addressing for access
via the dataway is done by setting an address register and
then transferring the data or in auto-increment mode.
Loading memory from the external bus is always done with au-
tomatic address increment. Mutiple CAMMEMs may be arranged
up to 32K words capacity, where 2K and 4K modules may be in-
termixed. Multiple CAMMEMs connected to form one logical
CAMMEM must occupy consecutive CAMAC stations.

The DIOS driver for the CAMMEM, CMDRV, operates on the
module as follows: at initialization time the user deter-
mines the physical configuration of the logical CAMMEM to be
used, and whether access 1is via the dataway or from the
external bus. A read or write function always switches the
access lines to the dataway, starting I/O at the address
specified at initialization time. Any number of data
(16-bit words) available may be read or written with a sin-
gle QIO.

CMDRV: IPP CAMAC Memory Module Page 2-2

2.2 Loading the Module

The module is loaded by either of the two macro calls
QIO0SS #I0.LOD, #SLDR,....,<mcb,1lmcb,lun>
or
LOAD lun,mcb,sts,flg

The use of the macros and meaning of the arguments are given
in the DIOS Operations Manual.

2.2.1 MCB Format

In the macro calls above, mcb is the address of the Mo-
dule Control Block, described in the DIOS Operations Manual.
The device specific portions of the MCB should be set as
follows:

Offset Contents
M.TYP "CM" == 2-letter type code for CAMMEM
M.UNIT Unit number of CAMMEM.
M.ACP 2-Letter code of ACP containing the CAMMEM driver.
M.CTL Control bits, set as follows:
MC.CAM=1 Indicates the CAMMEM is a CAMAC module.
MC. INT=0 Indicates interrupt service is not re-

quired by the CAMMEM.

M.ADR CAMAC address in BCNA format (A=0) of the module.
2.3 Unloading the Module
The module is unloaded by either of the two macro

calls:

QIOSS $#I0.UNL, #lun,...

or

CMDRV: IPP CAMAC Memory Module Page 2-3

UNLOAD 1lun,sts,flg

The use of these macros and the meaning of the arguments are
given in the DIOS Operations Manual.

2.4 QIO Functions to the Loaded Module

This section summarizes the standard and
device-specific QIO requests processable by the driver.

2.4,1 Standard Functions

Format Function
QIOSS #I0.VAT,... sAttach Module
QIOSS #I0.VDT, ... ;Detach Module
QIO0SS #I0.KIL, ... ;Cancel I/0 on Module
QIOSS #I0.UNL,... ;Unload Module

2.4.2 Module-specific Functions

Format Function
QIOSS #I0.INI,...,<ddp,lpm> ;Initialize CAMMEM
QIOSS #I0.TER,...,<0,2> ;Terminate CAMMEM
QIO0SS #I0.RVB,...,<buf,lbuf> ;Read data from CAMMEM

QIONSS $#I0.WVB,...,<buf,lbuf> ;:Write data to CAMMEM ‘

where

ddp is the address of a block of device-dependent param-— {
eters defining the mode in which the CAMMEM is ini- i
tialized.

lpm is the length of the block in bytes.

buf is the address of the buffer into which data are

read or from which data are written.
lbuf is the length of the data buffer in bytes.

CMDRV: IPP CAMAC Memory Module Page 2-4

2.4,2.1 1I0.INI - Initialize the CAMMEM

ified in the parameter 1list

. sses a buffer specifie ' i

of théOQ§gIcg§taining device—dependgnt parameters specifying
the mode of initialization. Depending upon the contents of

the buffer, the following actions are performed:

1 One or more physical CAMMEMs are logically connect-
: ed to create a single, large external storage mo-

dule.

2. The start address, from which data will be read or
into which data will be written, is established.

3. The data bus, either the CAMMEM bus or the CAMAC
Dataway, is enabled.

The buffer consists of 8 bytes which are formatted as
follows:

Offset WName Type Meaning

0 CORMAP [D] CAMMEM core map; this is a bit pat-—
tern which describes the physical
modules of one logical CAMMEM. The
word consists 8 entries of two bits
each, where the low one is the logi=-
cal online bit (bit set means module
online) and the high bit shows the
storage capacity of the module (bit
set means 4K module, bit clear means

2K module).

2 RELADR [D] Memory start address relative to the
first module.

4 ACCESS [A] set to "E" if external access is de-

sired, or set to "I" if I/0 is done
via the dataway.
5 RESRV reserved for future use.

The drive : sets the status as defined by the device de-
pendent parameters, where all parameters are checked for le-
gality. Errors are reported via setting the status block
accordingly.

2.4.2.2 1I0.TER - Terminate Operations on the CAMMEM

I0O.TER always sets the logical CAMMEM, defined by a
prior IO.INI function, to be accessed via the dataway. The
start address is reset to zero.

CMDRV: IPP CAMAC Memory Module Page 2-5

2.4.2.3 I0.RVB - Read Data from the CAMMEM

The CAMMEM I/O 1lines are switched to the dataway.
Reading is done in auto-increment mode and starts at the lo-
cation set by an IO.INI or IO.TER function or one word be-
hind the address of the last read/write cycle. External
input does not alter the location counter for a read func-—
tion. Data are read and returned to the user buffer until
the given buffer length is exhausted or until the physical
end of the logically connected CAMMEMs is detected.

2.4.2.4 JO.WVB - Write Data to the CAMMEM

The same actions are taken as with IO.RVB, except that
data are written from the user buffer to the CAMMEM. If
more data are to be written than the capacity of the CAMMEM
allows, an error status is returned and all following at-
tempts to write data are ignored until the next IO.INI.

CMDRV: IPP CAMAC Memory Module Page 2-6

2.5 Status Returns and Error Handling

When a QIO function is completed, status information
about the functions is returned in the I/O status block if
specified in the QIO macro call.

2.5.1 First Status Word (low byte)

The error codes listed below may be returned by the
CAMMEM Driver.

Code Meaning

IS5.50C A QIO for I0.INI, IO.TER, IO.RVB or IO.WVB was
successfully completed.

IE.IFC A function code other than IO.INI, TIO.TER IO.RVB
or TIO.WVB or the standard functions was encoun-
tered.

IE.BAD Returned from IO.INI, IO.TER, IO.RVB or IO.WVB 1if
any bad parameters were encountered.

IE.OFL Returned from IO.INI or IO.TER if the module is
not at the given CAMAC station or the crate is
offline.

IE.EOV Returned from IO.RVB or IO.WVB if the storage ca-
pacity becomes exhausted during a read or write
operation.

2.5.2 First Status Word (high byte)

DIOS drivers use this byte to group error conditions.
Bit n on selects error code group n+l. All error codes used
by the CMDRV belong to error code group zero.

2.5.3 Second Status Word

This word shows in all cases the number of bytes actu-
ally transferred to or from the user buffer.

CMDRV: IPP CAMAC Memory Module Page 2-7

2.6 Programming Hints

In DIOS the CAMMEM is provided to be filled from the
external bus (e.g. with experimental data) and then to be
read out via the data way. For this purpose the wuser ini-
tializes a 1logical CAMMEM for external access as outlined
obove (IO.INI). After information is stored in the CAMMEM
the user merely has to perform succeeding QIOs with function
code IO.RVB to obtain the data stored in the CAMMEM, where
the amount of data to be read each time is given by the
user's buffer length. Data are returned in the same order
as they are transferred to the CAMMEM, so the user is not
concerned with any addressing. However, if the user wants
to specify his own start address he might do so with another
initialization, which does not alter the contents of the
CAMMEM.

il

CHAPTER 3

CNDRV: Nuclear Enterprises CAMAC Memory Module

3.1 Introduction

The Nuclear Enterprises CAMAC Random Access Store (CN) is a
double-width CAMAC module capable of storing either 2048 or
4096 16-bit words, depending on whether it is a 2K or 4K
model. The memory is accessible via 2 ports: an external
port which allows other hardware modules to store their data
directly 1in the memory via a special I/0 interface, and the
CAMAC Dataway, over which data may be transferred between
the memory and the computer.

3.1.1 External Input/Output Port

The external I/0 port has the following features:

1. Data is transferred by way of a 52-pin Cannon plug
for which sockets are mounted on the front and back
of the module. Among the pins are 12 address
lines, 5 control lines and 16 I/0 data bus lines.

2. External modules may transfer data in 16-bit words
or 8-bit bytes. It is up to the external module to
supply the address on the address lines, as well as
to set the byte/word control line properly.

3. The external port provides for a memory increment
option, with which an external module may cause the
contents of a selected word location to be incre-
mented by one: this may serve, for example, as a
multi-channel counter/store for PHA.

4, Access to the external port may be enabled and dis-
abled by CAMAC commands from the computer.

CNDRV: Nuclear Enterprises CAMAC Memory Module Page 3-2

3.1.2 CAMAC Dataway Interface

The Dataway interface allows the following operations:

1. Loading an address register prior to reading or
writing, thus providing for random addressing to
any word or byte location.

2. Reading or writing the contents of the memory cur-
rently addressed by the address register, either in
byte or work mode (depending on the subaddress in
the CAMAC command). The address is then increment-
ed in one of the following modes, also selected by
the subaddress:

Increment by 1 word or 1 byte
Increment by 64 words or 2 bytes
Decrement by 1 word or 1 byte
Decrement by 64 words or 2 bytes

3. Reading or writing in masked mode, in which the
logical "and" of the data and the contents of a
preloaded mask register are transferred. The same
conventions as otherwise apply to a normal read or
write hold here.

4. Loading the contents of the mask register.

5. Enabling and disabling external address.

6. Reading the address register.

7. Enabling, disabling, clearing, and testing the mo-
dule LAM. LAM is set whenever the module is ready

to accept a read or write command and LAM was en-
abled.

3.1.3 Driver Capabilities

The driver for the CN, CNDRV, utilizes a limited number
of these hardware options, allowing the user to perform the
following basic functions:

1. Read and write successive blocks of data bytewise
or wordwise.

2. Initialize the memory to accept input from or de-
liver data to external modules.

CNDRV: Nuclear Enterprises CAMAC Memory Module Page 3-3

3. Optionally fill the memory with zeros on initiali-
zation.

4. Specify a starting address at initialization at
which subsequent reads and writes are to begin.

3.2 Loading the Module

The module is loaded by either of the two macro calls:
QI0SS #70.LOD, #SLDR,,<mcb,1lmcb,lun>
or
LOAD lun,mcb,sts,flg

The use of the macros and meaning of the arguments are given
in the DIOS Operations Manual.

3.2.1 MCB Format

In the macro calls above, mcb is the address of the Mo-
dule Control Block, described in the DIOS Operations Manual.
The device specific portions of the MCB should be set as
fellows:

Offset Contents

M.TYP "CN" == 2--letter module type code for the Nuclear
Enterprise Memory.

M.UNIT Unit number of Nuclear Enterprise Memory.

M.ACP 2-Letter code of the ACP containing the Nuclear En=-
terprise Memory driver.

M.CTL Control bits, set as follows:

MC.CAM=1 Indicates the Nuclear Enterprise Memory
is a CAMAC module.
MC. INT=0 Indicates interrupt service is not re-

quired by the Nuclear Enterprise Memory.

M.ADR CAMAC address in BCNA format (A=0) of the module.

CNDRV: Nuclear Enterprises CAMAC Memory Module Page 3-4

3.3 Unloading the Module

The module is unloaded by either of the two macro
calls:
QIOSS #10.UNL, #lun, ...
or

UNLOAD 1lun,sts,flg

The use of these macros and the meaning of the arguments are
given in the DIOS Operations Manual.

3.4 QIO Functions to the Loaded Module
This section summarizes the standard and

device-specific QIO requests processable by the driver.

3.4.1 Standard Functions

Format Function
QIOSS #I0.VAT, ... s:Attach Module
QIOSS $#10.VDT, ... :Detach Module
QIOSS #I0.KIL, ... :Cancel I/0 on Module
QIOSS $#I0.UNL, ... :Unload Module

3.4.2 Module-specific Functions

Format Function
QIOSS $10.INI,...,<ddp,lpm> sInitialize Module
QIOSS $I0.TER, +..,€0,2> :Terminate Module

QI0SS $I0.RVB,...,<buf,lbuf> :Read data from Module

CNDRV: Nuclear Enterprises CAMAC Memory Module Page 3-5

3.4.2.1 TIO.INI - Initialize the Store

I0.INI passes a buffer specified in the parameter 1list
of the QIO containing device-dependent parameters specifying
the mode of initialization. Depending upon the contents of
the buffer, the following actions are performed:

1. One or more storage modules are logically connected
to create a single logical store.

2. The start address, from which data will be read or
into which data will be written, is established.

3. Either the External Port or the CAMAC Dataway is
established for use in data transfers.

4. Byte or word width transfers are enabled.
5. The store is cleared.

The buffer consists of 8 bytes which are formatted as fol-

lows:

0 CORMAP [D] Core map. Bit 0 is always set; bit
1 is set if the module is a 4K
(word) memory, clear if it is a 2K
unit.

2 RELADR [D] Start address. The byte 1location
from which to begin reading or writ-
ing in the first transfer after the
I0.INI.

4 ACCESS [A] External/internal mode selection.

"Contains an ASCII "E" if the memory
is to be initialized with external
access enabled; contains an "I" if
external access is to be disabled.

5 MODE [Y] Mode bits. Bit 0 is set if the mem-
ory should be read/write bytewise
and cleared if wordwise read/write

is desired. Bit 1 1is set if the
memory should be cleared on initial-
ization.

6 RETRY (Y] Repeat count. This value gives the

maximum number of times an access to
a given location should be retried
before a hardware error is declared.
Failure is signalled by a Q-response
of =zero from an attempted CAMAC
read/write operation. If a zero is
given in this field, the driver re-
peats the attempt up to 256 times.
7 RESRV Reserved for future use.

CNDRV: Nuclear Enterprises CAMAC Memory Module Page 3-6

On initiation, subsequent read and write operations are en-
abled if they were disabled due to a proceding I0.TER.
Further actions (clearing the memory, enabling external ac-
cess, etc.) are carried out as implied in the description of
the buffer above.

3.4.2.2 1I0.TER =~ Terminate Operations on the Store

Access to the external port 1is disabled. Read/write
access to the memory is prevented until another IO.INI is
issued.

3.4.2.3 T0O.RVE - Read Data from the Store

The contents of the memory are read starting at the
current address, and transferred to the user buffer speci-
fied in the parmeter list of the QIO by buf, lbuf as above.
On the first read after an IO.INI, the current address is
the start address specified in the initialization. After
the read operation is completed, the new current address po-
ints to the byte after the last one read, or to one byte
after the end of memory if an end of volume occurred.

Thus successive reads read out consecutive blocks of
memory. Also note that if the memory is read in byte mode,
the high byte of each word is transferred to the user buffer
before the 1low byte, thus the bytes in each word are
swapped.

Before reading the memory, IO.RVB causes the external
access to be disabled if it was enabled.

3.4.2.4 IO.WVB - Write Data to the Store

The contents of the user buffer specified in the QIO
parameters are transferred to the memory starting at the
current address. The current address is initialized and up-
dated as in IO.RVB. The effect of choosing the byte or word
mode is identical to that in IO.RVB. The current address is
the same for read or write - this means that a read follow-
ing a write starts where the write left off, and vice-versa.

CNDRV: Nuclear Enterprises CAMAC Memory Module Page 3-7

3.5 Status Returns and Error Handling

When a QIO function is completed, status information
about the functions is returned in the I/0 status block if
specified in the QIO macro call.

3.5.1 First Status Word (low byte)

The error codes listed below may be returned by the Nu-
clear Enterprises Memory driver.

Code Meaning
I8,8UC A QIO was successfully completed.
IE.IFC This code is returned if an 1I/0 function other

than IO.RVB, IO.WVB, IO.INI, IO.TER or one of the
standard functions was submitted to the module.

IE.OFL The module is nonexistent, or the crate is off-
line. This code may be retured from IO.INI,
IO.TER, IO.RVB or IO.WVB.)

IE.EQV An attempt was made to read or write past the phy-
sical end of the memory as determined by the 2K/4K
bit passed on I0.INI. The current address is left
at the end of memory, and all bytes between the
previous address and the end are transferred.

IE.FHE Returned from IO.RVB or IO.WVB if the driver was
unable to read or write a given location of the
memory after repeated attempts. The maximum

number of retries is set by the Repeat Count field
of the IO.INI buffer. This error may also occur
on IO.INI if Clear was specified and a given loca-
tion could not be cleared within the allowed
number of retries.

IE.DNR Returned from IO.RVB or JO.WVB if issued after an
IO.TER and before the next IO.INI.

IE.BAD Returned from IO.INI if one of the following is
true:

1. Bit 0 of the Core Map is 0

2. The Start Address is past the end of mem-
ory

3. Word mode is specified and an odd start
address is given.

4. The buffer passed on IO0.INI 1is shorter
than 12(8) bytes.

CNDRV: Nuclear Enterprises CAMAC Memory Module Page 3-8

3.5.2 First Status Word (high byte)

DIOS drivers use this byte to group error conditions.
Bit n on selects error code group n+l.

3.5.3 Second Status Word

On IO.RVB of IO.WVB the second status word always con=-
tains the actual number of bytes transferred successfully;
if an error occurred this number is less than the number re-—
quested. On IO.INI and IO.TER, this word is set to zero.

3.6 Programming Hints

3.6.1 Using Byte Mode or Word Mode

If the memory is used to return byte data entered by an
external module, using byte mode ensures the data are re~-
turned in the correct order. 1If word mode were used, the
bytes would be switched within each word from the correct
order. Using byte mode also allows reading an odd number of
bytes and starting at an odd address.

On the other hand, byte mode is slower than word mode,
and for time «critical applications it may be advisable to
switch the bytes per software after issuing a read in word
mode.

3.6.2 Mode of Transfer

Since the transfers are processed synchronously in sys-—
tem state, RSX is held up for the duration of the transfer.
This manifests itself only for long transfers; for example,
a single read for 8192 bytes in byte mode requires about 1
second.

CHAPTER 4

FKDRV: Function Keyboard

4,1 Introduction

The Function Keyboard (FKB) is a simple Input/Output
device with 16 keys, each associated with a lamp. It is de-
signed to be connected to PDPlls via the general interface
DR11A or DR11C. The keys with associated lamps are consi-
dered to be connected to the I/0 registers of the interface,
where key n is attached to the respective bit of the input
register and lamp n is attached to the respective bit of the
output register.

The DIOS driver for the FKB, FKDRV, operates on the mo-
dule as follows: Initialization and termination functions
cause the interrupt logic to be disabled and output and
input buffer to be cleared, thus turning off all lamps and
setting the status to no key pressed. More than one datum
(equal one byte) may be transferred with a single QIO. A
read function enables the interrupt logic. On occurance of
an interrupt the 1lamp of the pressed key is turned on and
the key number is returned to the wuser buffer. A write
function causes the 1lamps of the key numbers given in the
user buffer to be turned on.

FKDRV: Function Keyboard Page 4-2

4,2 Loading the Module

The module is loaded by either of the two macro calls
QIO0SS $I0.LOD, #SLDR,...<mcb,1lmcb,lun>
or
LOAD lun,mch,sts,flg

The use of the macros and meaning of the arguments are given
in the DIOS Operations Manual.

4,2.1 MCB Format

In the macro calls above, mcb is the address of the Mo-
dule Control Block, described in the DIOS Operations Manual.
The device specific portions of the MCB should be set as
follows:

Of fset Contents
M.TYP "FK" -- 2-letter module type code for FKB.
M.UNIT Unit number of FKB.
M.ACP 2-Letter code of the ACP containing the FKB driver.
M.CTL Control bits, set as follows:
MC.CAM=(Indicates the FKB is not a CAMAC module.
MC.INT=1 Indicates interrupt service is required

by the FKB.

M.ADR CSR address of the module.

4.3 Unloading the Module

The module is unloaded by either of the two macro
calls:

QIOSS #I0.UNL, #lun,...

or

UNLOAD 1lun,sts,flg

FKDRV: Function Keyboard Page 4-3

The use of these macros and the meaning of the arguments are
given in the DIOS Operations Manual.

4,4 QIO Functions to the Loaded Module

This section summarizes the standard and
device-specific QIO requests processable by the driver.

4.4,]1 Standard Functions

Format Function
QIOSS $I0,VAT, ... sAttach Module
QIOSS #10.VDT, ... :Detach Module
QIOSS $#10.KIL,... :Cancel I/0 on Module
QIO0SS #I10.UNL, ... :Unload Module

4.4.2 Module-specific Finctions

Format Function
QI0SS #IO.INI,...,(ddé,lpm> ;:Initialize FKB
QIOSS IO, TER,, .« vu , €0,2> :Terminate FKB
QIOSS #I0.RVB,...,<buf,1lbuf> ;Read data from FKB

QIOSS $#I0.WVB,...,<buf,lbuf> ;:Write data to FKB

where

ddp is the address of a block of device-dependent param-
eters defining the mode in which the Function Key-
board is initialized.

lpm is the length of the block in bytes.

buf is the address of the buffer into which data are

read or from which data are written.
lbuf is the length of the data buffer in bytes.

FKDRV: Function Keyboard Page 4-4

4.4.2,1 IO,.INI - Initialize the FKB

I0.INI passes a buffer specified in the parameter 1list
of the QIO containing device-dependent parameters specifying
the mode of initialization. The buffer consists of four
bytes which are at present not significant, but are reserved
for future use. The driver disables the interrupt logic of
the module and clears the input and output buffer registers
of the interface.

4.4.2.2 1IO.TER =~ Terminate Operations on the FKB

The same action is taken as with I/0O operation code
IO, INI.

4.4,2.3 TI0.RVB - Read Data from the FKB

The interrupt logic of the module is enabled. On occu-
rance of an interrupt, further interrupts are locked out and
the input buffer register is scanned for a bit set beginning
with the 1least significant bit. The lamp associated with
the key number attached to the bit, which was first found
set, is turned on and the key number is returned in the user
buffer. 1If there are more selections requested, the inter-
rupt 1logic is reenabled and the next interrupt is accepted.
This procedure is repeated until all selections are re-—
ceived.

4.4.2.4 TI0.WVB - Write Data to the FKB

Key numbers are taken from the wuser buffer and the
lamps, associated with the keys are turned on. Key numbers
given by the user must range from zero to 15.

4.5 Status Returns and Error Handling

When a QIO function is completed, status information
about the function 1is returned in the I/0 status block if
specified in the QIO macro call.

FKDRV: Function Keyboard Page 4-5

4.5.1 First Status Word (low byte)

The error codes listed below may be returned by the FKB
Driver. »

Code Meaning

IS.S0C A QIO for I0.INI, IO.RVB, IO.WVB or IO.TER was
successfully completed.

IE.IFC A function code other than I0.INI, IO.RVB, IO.WVB
IO.TER or the standard functions was encountered.

IE.BAD Returned from IO.WVB if a key number was found,
which was greater than 15.

IE.ABO Returned from IO.KIL if a read operation was 1in

progress.

4,5.2 First Status Word (high byte)

DIOS drivers use this byte to group error conditions.
Bit n on selects error group n+l. All error codes returned
by the FKDRV belong to error code group Zzero.

4.5.3 Second Status Word

This word shows in all cases the number of bytes actu-
ally transferred to the user buffer.

CHAPTER 5

MADRV: Canberra Model 8100

5.1 Introduction

The Canberra Model 8100 MCA allows the experimentalist
to collect, display, and record pulse-height spectra or
pulse-frequency vs. time data. If provided with Option 14
(Serial Computer Interface), the MCA may be controlled from
a PDP-11 wvia a DL11-E asynchronous line interface.
Collected data may be read from the MCA, or the MCA may be
pre-loaded with data from the computer.

The MCA is incorporated into the DIOS system as module
type MA, with corresponding driver MADRV, described in the
following.

5.1.1 Data Collection

Data may be collected in one of five modes:

1. PHA-add: accumulate a pulse-height spectrum in the
selected group of memory channels.

2. PHA-subtract: subtract the accumulating spectrum
from the previous data in memory.

3. MCSS (Multi-scaling, single sweep): sample and re-
cord the rate of incoming pulses as a function of
time, for a single cycle of the process being ana-
lyzed.

4. MCSR (Multi-scaling, repetitive sweep): same as
MCSS, but add in data from repeated sweeps to aver-
age over several cycles.

MADRV: Canberra Model 8100 Page 5-2

5. MMCS (Multi-input multi-scaling): accumulate
multi-scaling data from several sources concurrent-
ly, with each source directing its data to its as-
signed memory group.

The driver supports all of these modes except MMCS.

5.1.2 Memory Capacity (see ref. 1, sec. 2.2)

Data are accumulated and stored in a semiconductor (op-
tionally core) memory, consisting of 1024 channels (4096
with core), each capable of holding up to 999,999 counts.

Memory is further subdivided into the following groups:

Group Cch. 0 Size
A 1/1 Whole Memory 0 n
B 1/2 First Half 0 n/2
C 2/2 Second Half n/2 n/2
D 1/4 First Quarter 0 n/4
E 2/4 Second Quarter n/4 n/4
F 3/4 Third Quarter 2n/4 n/4
G 4/4 Fourth Quarter 3n/4 n/4
n = 1024 for semiconductor memory; n = 4096 for core.

It is possible to specify the group in which data is to be
collected or from which to read data. In addition, it is
possible to have an external routing module specify into
which half or quarter of the memory to send a given datum:

H A/2 Collect into half given by routing module
I A/4 Collect into quarter given by routing module

5.1.3 Display

The data from one of the memory groups (A - G) may be
displayed on a 5 x 5 inch screen on the front of the MCA.
The display may include several options, allowing the user
to specify and intensify certain bands of consecutive chan-
nels. An integral mode displays the integral across the se-
lected bands.

To enter the special display modes from the computer,
it is necessary to include the I0.CMD option when the driver

MADRV: Canberra Model 8100 Page 5-3

is assembled, allowing the special display commands to be
given.

5.1.4 Serial Computer Interface

The MCA may be interfaced to the PDP-11 by including
options 4 (Basic I/0), 12 (Memory I/0), and 14 (Serial Line
Interface) in the MCA. The PDP-11 must be equipped with a
DL11-E Asynchronous Line Interface.

5.1.4.1 DL11 Interface -

Commands and Data are transferred via the DL11-E inter-
face as sequences of ASCII characters. The basic techniques
are described in ref. 2. 1In addition, the following things
should be noted:

== All transactions are asynchronous, interrupt-driven.

-~ The transmitter interrupt is enabled only when a command
string is being output.

-~ The receiver interrupt is enabled only when data is
being input, or ‘the driver is waiting for a command to be
acknowleged by a "!" character from the MCA.

~~ The parity of incoming characters is not checked, and
the parity bit (bit 7) is cleared.

—- Dataset control in the DL11-E is not used.

5.1.4.2 Command Output -
Commands consist of sequences of 5 ASCII control char-

acters preceded by a "#" character. The exact format and
meaning of the commands are described in Ref. l, Sec. 5.5.

5.1.4.3 Data Input =-

Data are input in two stages: first the MCA is set
into "Remote Out" mode by issuing the I/0 command

#mxxIB

MADRV: Canberra Model 8100 Page 5-4

where m denotes the memory group to be read, xx are arbitra-
ry, I sets the I/0 mode, and B has no effect.

Then the contents of the memory group are read, start-
ing with channel 2zero and ending with the last channel in
the group. The transmission of each channel is started by
outputting a "$" character to the MCA. The contents are
then received as ASCII strings of the following form:

[<RO>},nl,n2,n3,n4,n5,n6,<SP>I<CR><LF>

where

<RO> is ASCII rubout -- 177 (8)

<SP> is a blank -- 40(8)

<CR> is a carriage return -- 15 (8)

<LF> is a line feed -- 12(8)

nl-né6 are the six ASCII decimal digits of the
value.
Rubout is omitted in the first number of each 1line; Space

follows each number not at the end of a line; the last
number in each line is finished by the <CR><LF> combination.

The transmission of each channel is started by sending
a "%" character to the MCA; the characters of the number
are then received until the closing space or 1line-feed is

seen; at this point the MCA waits for the next "g" char-
acter.

The first "%" after the I/0 command causes a leading
<CR><LF> combination to be sent to the computer. The driver
ignores these two characters.

When the last channel has been read, the MCA sends a
"!" in response to the next "%" to indicate no more data are
available.

Channel 0 contains special timing data, depending on
the collect mode used.

MADRV: Canberra Model 8100 Page 5-5

5.2 Loading the Module

The module is loaded by either of the two macro calls
QIOSS #10.LOD, #SLDR, ..., <mcb,lmcb,lun>
or
LOAD lun,mcb,sts,flg

The use of the macros and meaning of the arguments are given
in the DIOS Operations Manual.

5.2.1 MCB Format

In the macro calls above, mcb is the address of the Mo-
dule Control Block, which has the following contents.

Offset Contents

M.TYP "MA" --— 2-character type code for MCA.
M.UNIT Unit number of MCA

M.ACP 2-character id of ACP containing MA driver.
M.CTL Control Bits

MC.CAM
MC.INT

0 not a CAMAC module
1 uses interrupts

.VCT <receiver interrupt vector address>/4
. PRI <interrupt priority> x 40(8) (in upper 3 bits)
.ADR Address of Receiver CSR of the DL11-E
.DLN 4 if only double integer data wanted.

1 if ASCII data or IO.CMD function desired.
M.DFM 2 -— Integer Data

TEEX

5.3 Unloading the Module

The module is unloaded by either of the two macro calls
QIOSS #JO.UNL, #lun, ...
or

UNLOAD 1lun

The use of these macros and the meaning or the arguments are
given in the DIOS Operations Manual.

MADRV:

5.4 QIO Functions to the

5.4.1 Standard Functions

Format

QIOSS #IO.VAT,...
QIOS$S #10.VDT,...
QIOSS #I0.KIL,...

QIOSS #IO0.UNL,...

5.4.2

Format

Canberra Model 8100

Page 5-6

Loaded Module

Function

Attach Module

Detach Module

Cancel outstanding I/O

Unload Module (Ref. 3)

Module-specific Functions

Function

QIOSS #I0.INI,...,<ddp,lpm> Initialize the MCA

QIOSS #IO.TER,...,<#0,#10> Terminate MCA operations

QIOSS #I0.RVB,...,<buf,lbuf> Read data from MCA store

where

ddp is the address of a block of device-dependent param-
eters defining the mode in which the MCA is initial-
ized.

lpm is the length of the block in bytes.

buf is the address of the buffer into which data are
read.

lbuf is the length of the data buffer in bytes.

MADRV: Canberra Model 8100 Page 5-7

5.4.2.1 IO.INI -~ Initialize the MCA

I0.INI passes to the driver a buffer containing device
dependent parameters specifying the mode in which to ini-
tialize the MCA. Depending on these parameters, the follow-
ing actions are taken.

1. The transmit interrupt vector is linked to the
driver.

2. The module is reset: any ongoing processes are
stopped.

3. The memory group specified in GROUP is shown on the
screen.

4. If CLEAR is set, the memory group is cleared.
5. If automatic or flipped mode is specified, the

driver begins collecting data into the specified
memory group.

5.4.2.1.1 Device Dependent Parameters -

The DDP's are passed in a buffer specified in the QIO,
with the following contents:

Offset Name Type (+) Meaning
0 MODE [A] . Desired operating mode:
M Manual Collect
A Automatic Collect
F Flipped Collect
1 GROUP [A)] Memory group into which data are

collected (MODE = A and F) and from
which they are read (all modes).

A (1/1) Whole memory
B (1/2) First half
C (2/2) Second half
* D (1/4) First guarter
* E (2/4) Second quarter
* F (3/4) Third gquarter
* G (4/4) Fourth gquarter
* These groups are illegal for

MODE = F.

MADRV: Canberra Model 8100 Page 5-8

2 COLMOD
3 TIMO
4 TIM1

5:Bit0 ASCII

5:Bitl CLEAR

6 TIME

10 FTIME

(+) Type Codes:

[A]

[A]

[A]

(B]

[B]

[D]

(Yl

A

D = Decimal Word.

5.4.2.1.2 Manual Mode (MODE = M) -

Initialization in Manual Mode allows the user to col-
lect data by manual controls on the MCA, then read the col-
lected data to the computer. The IO.INI may be done either
before or after collecting the data. The following actions

are performed:

Collect mode:

A PHA - add

B PHA - subtract
C MCSS

D MCSR

Note: Mode E (MMCS) is not allowed.

One-digit mantissa of preset time.
Range: 0 to 9.

One-digit exponent of preset time:
Range: 0 to 5.

1f set, return data directly in
ASCII form on IO.RVB.
If clear, return data as Integer*4.

If set, clear memory group if MODE =
A or F. 1Ignored if MODE = M.

Total time in seconds to collect

data.

If TIME = 0, collect indefinitely.
1f MODE = A, collect until TIME ex-
pires.

If MODE = F, complete current full

period (first half / second half)
and stop collecting when TIME has
expired.

Flip interval in seconds: amount of
time to collect data in each half of
the memory group before flipping to
the other half.

Used for MODE = F only.

= ASCII Byte, B = Bit, Y = Octal Byte,

MADRV: Canberra Model 8100

—— The selected memory group is displayed.

==~ The driver is prepared to read the desired group
the next IO.RVB is issued.

The following should be noted:

—= CLEAR is ignored -~ it is assumed the data are or
be in the proper form after the manual phase is over.

—-—~ TIME, FTIME, COLMOD, TIM1, and TIMO are all ignored
Data may be collected in any mode (including MMCS)
any memory group allowed by the manual controls. Care

be taken when specifying GROUP to be sure the correct
are being read.

5.4.2.1.3 Automatic Mode (MODE = A) -

The selected memory group is displayed. If CLEAR
it is then cleared. Within two seconds, a command is i
to the MCA to begin collecting data in the desired mode
memory group (sec. 4.1.5)

After issuing the collect command, the driver b
timing the collect period; if TIME = 0, no timing is 4

Collection is stopped by one of the following:
—-~ TIME expires, causing the driver to display GROUP.

—— The preset time specified by TIMO and TIMl exp
causing the MCA to display the collected group.

~=— An IO.RVB is issued, causing the driver to display
then read out GROUP,.

—-= An IO.TER, IO.INI, or IO.CMD function is issued.

5.4.2.1.4 Flipped mode (MODE = F) -

when

will

and
must
data

= 1 ‘
ssued
and

egins
one.

ires,

and

In flipped mode, the specified memory group is divided

in half and each half collected separately; thus only
ups A, B, or C may be specified.

The selected memory group is displayed. TIf CLEAR
it is cleared. Within two seconds, the driver begins
lecting data in the following sequence:

gro-

= 1,
col-

MADRV: Canberra Model 8100 Page 5-10

1. Collect the first half by issuing the collect com-
mand for the first half group.

2. Wait n seconds, where n is given in FTIME.
3. Collect the second half group.
4., Wait n seconds.
5. Repeat the above cycle.
Collection is stopped by one of the following:
—— The interval specified by TIME expires.
~— An IO.RVB is issued.
—-— An IO.INI, IO.TER, or IO.CMD is issued.
The first two conditions stop collecting only after the sec-
ond half group of the collect cycle has finished. This en-
sures that data are collected into each memory half for the
same total length of time. The memory group is then displa-
yed. On IO.RVB, the MCA is set into I/0 mode and the data

are read.

On IO.INI or IO.TER (also IO.CMD, for test version of
MADRV only), collection is stopped immediately.

The assignment of memory halves is as follows:

GROUP first second
half half

(1/1) B (1/2) C (2/2)
(1/2) D (1/4) E (2/4)
(2/2) F (3/4) G (4/4)

QWP

5.4.2.1.5 Collecting Modes -
These parameters are ignored for MODE = M.

For MODE = F or MODE = A, the computer initiates data
collection with a collect command of the following form:

mtecB

where

m is the desired memory group (GROUP for mode A;
first or second half for mode F) into which to col-
lect data.

MADRV: Canberra Model 8100 Page 5-11

t is the contents of TIMO, specifying the preset time
mantissa.

e is the contents of TIM1, the preset time exponent.

o is the contents of COLMOD, giving the desired mode
of collection.

B is required but has no effect in a collect command.

For the PHA modes (COLMOD = A or COLMOD = B), TIMO and
TIM1 specify the total time during which to analyze pulses,
as follows:

TIM1
preset time = TIMO x 10

Note that in A and F modes, if preset time 1is shorter
than the expiration times TIME or FTIME, respectively, the
MCA will stop collecting before the computer issues a stop
command. If this is undesirable, TIMO and TIM1 should spec-
ify a longer preset time, most conveniently 9 and 5 (the
longest possible). Note that the MCA timing is slightly
more accurate than computer timing, thus sometimes TIMO and
TIM1 should be used.

For Multiscaling modes (COLMOD = C or D), TIMO and TIM1
specify the dwell time as described in ref. 1:

-TIM1
dwell time = TIMO x 10

Their value depends on the experiment, and does not af-
fect driver function.

NOTE

In modes A and F, data collec-
tion occurs as an autonomous
driver process. No QIO is ac-
tive on the module. It is
dangerous to unload the MCA
while data collection is going
on -~ it should be terminated
with IO.TER first.

MADRV: Canberra Model 8100 Page 5-12

5.4.2.2 I0.RVB - Read Data from Memory Group
On the first IO.RVB after an IO.INI:

1. Stop the collect process if mode A or F. (See sec-
tions 4.1.3 and 4.1.4 for details)

2. Display the memory group Selected.

3. When ready, set the MCA in I/O mode by 1issuing an
I1/0 command of the form:

$mxxIB

where m is the group in GROUP and I the I/O command
character. The I/0 light on the MCA should go on
at this point.

4., Read the data from the memory as described in sec-
tion 1.4.3. Convert each channel to the proper
form (see below) and place in user buffer.

Subsequent IO.RVB functions continue reading from the
next channel. The MCA is still in I/0 mode from the previ-
ous IO.RVB.

When all the data from the given group have been read,
the MCA returns to display mode. If any further data are
requested, an end of message character is received: this is
reported to the user and the IO.RVB is broken off. Further
IO.RVB's without intervening IO.INI also report end of mes-
sage. -

If an error is encountered (a "?" is received, or a
bad character is received) this is reported and the IO0.RVB

is broken off. Subsequent IO.RVB's without intervening
I0.INI continue to report an error.

5.4.2.2.1 Data Formats =

ASCII = O:

Each number is converted to a Integer*4,. Only entire
numbers are transferred to the buffer. The buffer length
must be a multiple of 4.

MADRV: Canberra Model 8100 Page 5-13

ASCII = 1: (only if ASCII option is assembled)

The ASCII characters received (See section 1.4.3) are
copied to the user buffer after stripping off the parity bit
(bit 7). As many bytes as are requested are returned (up to
end of message). If the buffer will only hold part of a
number, the rest is saved and transferred on the next
IO.RVB.

Numbers are either 7, 8 or 9 characters long. Each 9
character number is followed by a 7-character number. The

user should allow 8 characters per number in the data
buffer.

5.4.2.2.2 Readout Sequences -
MODE = A:

Channel 0 is read first, followed by channels 1 to n-1
where n is the size of the memory group.

Channel 0 contains the collect time in seconds (PHA
modes) or the number of sweeps recorded (Multiscaling
modes) .

Channels 1 to n-1 contain the count data.

MODE = F:

Channel 0 is read first, followed by channels 1 to n-1
where n is the size of the memory group.

Channel 0 contains the collect time or sweep count of
the first half of the memory group. Channel n/2 contains
the collect time or sweep count of the second half.

MODE = M:

Channel 0 always contains a collect time or sweep
count. If data were manually collected into subgroups of
the selected memory group, the corresponding channels (n/2
or n/4,...) will contain the channel 0 data from the follow-
ing memory subgroup.

MADRV: Canberra Model 8100 Page 5-14

5.4.2.3 IO.TER - Terminate MCA Operations
This function does the following:
1. Stop any ongoing collect process.
2. Display the entire memory (group A) if possible.

3. Reset the transmit interrupt vector.

It is strongly recommended to issue an IO.TER before
unloading the module.

5.4.2.4 TIO.CMD - Issue Command to MCA
(Allowed only if IO.CMD option is assembled)

The buffer specified in the QIO must contain a
5-character command which is simply issued to the MCA. The
format of the command string is as follows:

<CR1>,<CR2>,<CR3>,<CR4>,<CR5>

where each of the CRn entries denotes the contents of the
corresponding command register as described in ref. 1 sec
5.5. The individual characters are not checked. The neces-
sary "#" character is added to the front of the command by
the driver.

If the fourth character <CR4> 1is an F (display), K
(clear) or L (clear channel 0), the MCA must send an ack-
nowlege; the driver waits for this character. If it is not
received, the IO.CMD will time out.

If data is being collected following an I0.INI, the
I0.CMD function will break off the process.

MADRV: Canberra Model 8100 Page 5-15

5.5 Status Returns and Error Handling

When a QIO function is completed, status information
about the function 1is returned in the I/0 status block if
specified in the QIO macro call. The first word contains an
error or success code; the second word contains the number
of bytes transferred in a transfer operation.

5.5.1 First Status Word (Error Code)

Code Meaning

IE.IFC INVALID FUNCTION CODE
This code is returned if a QIO function other than
the standard functions, IO.RVB, IO.INI, or IO.TER is
submitted. If the option was assembled into the
driver, IO.CMD is also allowed.

TJE.BAD BAD PARAMETERS
From I0,CMD -- The command passed in the buffer 1is
shorter than 5 characters.
From IO.INI:
-— the DDP buffer may be shorter than 11(8) bytes.
—-- MODE is illegal (must be A, F, or M).
-- COLMOD is illegal (must be A -~ D).
-- GROUP is illegal
If MODE = A or M, may be A - G.
If MODE = F, may be A - C.
-- TIMO is other than 0 - 9,
-=- TIM1 is other than 0 - 5.
—-— TIME is less than 0.
-- FTIME is equal to 0 (checked only if MODE = F).

IE.RBG ILLEGAL RECORD SIZE
Returned from IO.RVB if the buffer length specified
is not a multiple of 4 bytes, unless ASCII = 1 was
specified on IO, INI.

IE.IDS INCONSISTENT WITH DEVICE STATE
Returned from IO.RVB if an I0.INI was not completed
successfully since the module was loaded or the last
IO.TER operation was done.

IE.OFL DEVICE OFFLINE
Returned from a LOAD if the DL11-E does not exist at
the specified CSR address.

IE.DNR DEVICE NOT READY
The MCA is not turned on.

MADRV: Canberra Model 8100 Page 5<16

IE.FHE FATAL HARDWARE ERROR
Returned from all functions if:

~=- a "?" character was sent by the MCA in response
to a command or a request for the next channel con-
tents. This most likely means that the MCA is not
set in external I/0 mode.

—-— If an overrun or framing error takes place on
receiving a character (see ref. 2). Thislcould
mean trouble with the DL11 or the MCA 1line inter-
face.

Note: TIf IE.FHE has been returned from an IO.RVB
function, subsequent TIO.RVB'S continue to report
IE.FHE until an IO.INI is performed.

IE.EOV END OF VOLUME DETECTED
Returned from IO.RVB if all channels from the group
specified in GROUP on the last IO.INI have been
read. Once 1IE.EOV has been reported, further
IO.RVB's continue to return IE.EOV until another
IO.INI is performed.

IE.ABO QIO ABORTED
The previous I/0 request was aborted by an IO.KIL
function issued by the task.

IE.PWF POWERFAIL ABORT
The previous I/O operation was aborted due to power -
fail. No recovery is done; however, an IO.INI in
MODE = M may be done to re-read the data stored
(core only).

5.5.2 Second Status Word

On IO.RVB, the second word of the I/0 Status Block al-
ways contains the number of bytes of data actually trans-
ferred to the user buffer. In ASCII mode, this is equal to
the number of characters read from the MCA. In Integer mode
(ASCII=0), this is equal to 4 times the number of channels
actually read. (No partial double integers are trans-
ferred).

On IO.INI, IO.TER, and I0.CMD, this word is always
equal to zero.

MADRV: Canberra Model 8100 Page 5-17

5.6 Programming Hints

5.6.1 Driver Assembly Options

The standard version of the driver does not allow the
following:

—-- executing an I0.CMD function
~-- reading data in ASCII.

To include these features, the driver must be reassem-

bled, preceding the driver source with the following defini-
tions:

ASSSC

]
o

;ASSEMBLE CODE TO READ DATA IN ASCII
C$SMD

[}
o

;ASSEMBLE CODE TO DO IO.CMD FUNCTION

5.7 References

1. Multichannel Analyzer Model 8100 Instruction Manu-
al, (Canberra Industries).

2. DL11 Asynchronous Line Interface Manual, (Digital
Equipment Corporation)

CHAPTER 6

MXDRV:IPP Multiplex ADC

6.1 Introduction

The MUXADC (MUX) is a double width CAMAC module con-
sisting of a Multiplexer with Sample and Hold and ADC (Ana-
log to Digital Converter). There are 16 single ended inputs
(channels) to the Multiplexer on the front panel, where the
maximum throuput rate is 100KHz at 12 bit resolution. Three
operation modes are supported by the MUX: Random, Sequen-
tial Triggered and Sequential Scan mode.

Random:

The number of the channel to be converted is written
to the MUX CSR, which causes the selected channel to
be displayed on the front panel. An internal
trigger pulse 1is generated to initiate the conver-
sion of the selected channel. 1l0usec after writing
the CSR, the converted value can be read from the
data register via the Dataway.

Sequential Triggered:

In this mode, all channels starting with channel
number zero and ending with a presettable end chan-
nel are converted. The conversion is initiated via
an external trigger; for each external trigger
pulse one channel is converted and the Multiplexer
is advanced to the next channel. After conversion
of the selected endchannel, the Multiplexer is reset
to channel zero.

Sequential Scan:

Same as with Sequential Triggered mode, with the ex-
ception that for one external trigger pulse all
channels, starting from channel zero up to the se-

MXDRV:IPP Multiplex ADC Page 6-2

lected endchannel, are converted. This mode may be
used for the fastest conversion.

A MUX operated in Random Mode may be attached to ex-
tenders to increase the number of single ended inputs. The
extender type presently supported is a 32 channel extender
manufactured by DORNIER Electronics. Each of the single
ended inputs of the MUX may be attached to a DORNIER ex-
tender, thus increasing inputs to a maximum of 512 channels.
MUX and extenders must occupy sequential station numbers al-
ways starting with the MUX. Hardware characteristics, spec-
ification and operation may be obtained from the reference
documentation.

The DIOS driver for the MUX, MXDRV, operates on the mo-
dule as follows: At initialization time the user determines
the mode of operation and a possible end channel. If the
selected mode is one of the Sequential modes, it is assumed
that the MUX delivers data not to the MXDRV but to an exter-
nal device such as the CAMMEM. This is provided by the
MXDRV because of the possible high operation speed in these
modes, which cannot be satisfied by the driver under all
circumstances. The MXDRV supports two distinct Random
modes, Random and Programmed Random, where the latter mode
is used to read data in sequence starting with channel zero.
The other random mode allows the user to specify the se-
quence in which channels shall be read. In both modes any
number of channels available may be read with a single QIO.
Data returned are formatted, where the low 12 bits represent
the converted value and the high 4 bits give the MUX channel
number from which the datum derives.

MXDRV:IPP Multiplex ADC Page 6-3

6.2 Loading the Module

The module is loaded by either of the two macro calls
QIOSS $10.LOD, #SLDR,....,<mcb,1lmcb,lun>
or
LOAD lun,mcb,sts,flg

The use of the macros and meaning of the arguments are given
in the DIOS Operations Manual.

6.2.1 MCB Format

In the macro calls above, mcb is the address of the Mo-
dule Control Block, described in the DIOS Operations Manual.
The device specific portions of the MCB should be set as
follows:

Offset Contents
M.TYP "MX" -~ 2-letter module type code for MUX.
M.UNIT Unit number of MUX.
M.ACP 2-Letter code of ACP containing the MUX driver.
M.CTL Control bits, set as follows:
MC.CAM=1 Indicates the MUX is a CAMAC module.
MC. INT=0 Indicates interrupt service is not re-

quired by the MUX.

M.ADR CAMAC address in BCNA format (A=0) of the module.

6.3 Unloading the Module

The module is unloaded by either of the two macro
calls:
QIONSS #I0.UNL, #1lun, ...

or

UNLOAD 1lun,sts,flg

MXDRV:TPP Multiplex ADC Page 6-4

6.4 QIO Functions to the Loaded Module

This section summarizes the standard and
device-specific QIO requests processable by the driver.

6.4.1 Standard Functions

Format Function
QIOSS #I10.VAT,... ;Attach Module
QIOSS $I0.VDT,... ;Detach Module
QIOSS #I0.KIL, ... ;Cancel I/0 on Module
QIOSS #I0.UNL, ... ;Unload Module

6.4.2 Module-specific Functions

Format Function
QIOSS #I0.INI,...,<ddp,lpm> ;Initialize MUX
QIO0SS $I0.TER,...,<0,2> :Terminate MUX
QIO0SS $I0.RVB,...,<buf,lbuf> :Read in sequence

QIOSS #I0.RRD,...,<buf,lbuf> ;Read random

where

ddp is the address of a block of device-dependent param-
eters defining the mode in which the MUXADC is ini-
tialized.

1pm is the length of the block in bytes.

buf is the address of the buffer into which data are
read or from which data are written.

1buf is the length of the data buffer in bytes.

MXDRV:IPP Multiplex ADC Page 6-5

6.4.2.1 TI0.INI - Initialize the MUXADC

10.INI passes a buffer specified in the parameter list
of the QIO containing device-dependent parameters specifying
the mode of initialization. Depending upon the contents of
the buffer, the following actions are performed:

1. The logical multiplexer configuration consisting of
one or more physical multiplexers is established.

2. The end channel for scanning modes is set. This is
indicated on the MUXADC front panel.

3. The multiplexing mode is set.

The buffer consists of 8 bytes which are formatted as
follows:

Of fset Name Type Meaning

0 EXTMAP [D] MUX extender map. This is a bit
pattern which shows, whether ex-
tenders are connected to the MUX and
if any, to which MUX channels they
are attached. Bit n set means a
DORNIER extender 1is connected via
MUX channel n. MUX and extenders
have to be arranged as outlined in
the introduction. Extenders have to
be arranged as follows: The ex-—
tender coupled to the lowest num-—
bered MUX channel is placed in the
station immediately following the
MUX, followed by the extender con-
nected to the next higher numbered
MUX channel and so on.

2 ECHAN (Y] End channel of MUX, which 1is only
relevant for Sequential modes.
3 MUXMOD [A] ASCII mode key, where "R" indicates

Random, "T" Sequential Triggered and
"S" Sequetial Scan mode.
4 RESEV Reserved for future use.

The driver sets the status as defined by the device de-
pendent parameters, where all parameters are checked for le-
gality. Errors are reported via setting the status block
accordingly.

MXDRV:IPP Multiplex ADC Page 6-6

6.4.2.2 TIO.TER - Terminate Operations on the MUXADC

IO0.TER always sets the MUX to Random mode with channel
zero selected.

6.4.2.3 TIO.RVB - Read Data from the MUXADC

The mode of the MUX is checked and, if it is not set to
Random mode the read request is rejected with an appropriate

error code set in the user status block. Otherwise MUX
channels are read in sequence starting with channel number
zero and the contents are returned to the user buffer. Each

datum (equal two bytes) consists of 12 bit data and 4 bits
MUX channel indicator. For example if a user wants to read
20 channels and MUX channel one is connected to an extender,
one datum is taken from MUX channel zero and the remaining
19 data are taken from MUX channel one. Thus the user must
differentiate between MUX channel numbers and logical chan-
nel numbers.

6.4.2.4 TO.RRD - Random Read Data from the MUXADC

This function enables the user to determine his own se-
quence in reading logical channels. The logical channel
numbers are specified in the user buffer as integers, where
each word holds one number. On completion of the request,
the words are overwritten with the contents of the previous-
ly specified channels. The user is reminded that one physi-
cal MUX channel attached to an extender is considered as 32
logical channels, where all 32 data are marked as deriving
from that MUX channel.

MXDRV:IPP Multiplex ADC Page 6-7

6.5 Status Returns and Error Handling

When a QIO function is completed, status information
about the functions is returned in the I/O status block as
specified in the QIO macro call.

6.5.1 First Status Word (low byte)

The error codes listed below may be returned by the MUX
Driver.

Code Meaning

IS.50C A QIO for IO.INI, IO.TER, IO.RVB or IO.RRD was
successfully completed.

IE.IFC A function code other than IO.INI, TIO.TER TIO.RVB
or IO.RRD or the standard functions was encoun-
tered.

IE.BAD Returned from IO.INI, IO.TER, IO.RVB or IO.RRD if
any bad parameters were encountered.

IE.OFL Returned from IO.INI, IO.TER, IO.RVB or IO.RRD 1if

module(s) 1is(are) not at the given CAMAC station
or the crate is offline.

IE.IDS Returned from IO.RVB or IO.RRD if the MUX was not
set to Random mode by a prior IO.INI operation.

6.5.2 First Status Word (high byte)

DIOS drivers use this byte to group error conditions.
Bit n on selects error code group n+l. All error codes used
by the MXDRV belong to error code group Zzero.

6.5.3 Second Status Word

This word shows in all cases the number of bytes actu-
ally transferred to or from the user buffer.

CHAPTER 7

PGDRV: Periodic Pulse Generator

7.1 Introduction

The Periodic Pulse Generator (PPG) 1is a single-width
CAMAC module which delivers a pre-programmed sequence of
pulse bursts of the following form:

Each burst consists of z pulses separated by intervals
of t*m micro-seconds where
0 < z < 4096.
0 < t < 1024.
and m is a range multiplier equal to 1, 10, 100, or 1000.
There may be up to 16 bursts in the sequence. The sequence
may be started by a CAMAC command or by an external trigger
signal. The pulses are delivered at a LEMO socket on the
front panel. They have a potential of -5 volts, width 330

nano-seconds, and 50 Ohm output impedance.

The DIOS driver for the PPG, PGDRV, allows the user to
program the PPG with a pulse sequence defined in a more in-
tuitive way. A sequence of up to 16 bursts 1is defined by
giving for each burst its duration and the number of pulses
it contains. The driver decomposes these burst specifica-
tions into a sequence in a hardware-compatible form which
reproduces the requested sequence up to rounding errors.

The rounding errors may be compensated during the data
analysis by reading back the exact sequence with the func-
tion IO.RVB processed by the driver. The pulse sequence is
read back from the PPG, converted and returned to the user
buffer in a format identical to that in which the initial
values were specified. If the rounding errors (between .03
and .3 percent) can be neglected, this function need not be
used.

PGDRV: Periodic Pulse Generator Page 7-2

7.2 Loading the Module

The module is loaded by either of the two macro calls:
QIOSS #I0.LOD, #SLDR,....,<mcb,1lmcb,lun>
or
LOAD lun,mcb,sts,flg

The use of the macros and meaning of the arguments are given
in the DIOS Operations Manual.

7.2.1 MCB Format

In the macro calls above, mcb is the address of the Mo-
dule Control Block, described in the DIOS Operations Manual.
The device specific portions of the MCB should be set as
follows:

Offset Contents
M.TYP "PG" ~- 2-letter module type code for PG.
M.UNIT Unit number of PG.
M.ACP 2-Letter code of ACP containing the PG driver.
M.CTL Control bits, set as follows:
MC.CAM=1 Indicates the PG is a CAMAC module.
MC. INT=0 Indicates interrupt service is not re-

quired by the PG.

M.ADR CAMAC address in BCNA format (A=0) of the module.

7.3 Unloading the Module

The module is unloaded by either or the two macro
calls:
QIOSS #I0.UNL, #1un, ...

or

UNLOAD 1lun,sts,flg

PGDRV: Periodic Pulse Generator Page 7-3

The use of these macros and the meaning of the arguments are
given in the DIOS Operations Manual.

7.4 QIO Functions to the Loaded Module
This section summarizes the standard and

device-specific QIO requests processable by the driver.

7.4.1 Standard Functions

Format Function
QI0SS #I0.VAT,... :Attach Module
QIOSS #10.VDT, ... :Detach Module
QIONSS $#I0.KIL, ... ;Cancel I/0 on Module
QI0SS #I0.UNL, ... :Unload Module

7.4.2 Module-specific Functions

Format Function
QIOSS #10,.INI,...,<ddp,lpm> :Initialize Module
QIOSS $I0.TER ;s a0 €0, 2> :Terminate Module

QIOSS $I0.RVB,...,<buf,lbuf> ;Read data from Module.

where

ddp is the address of a block of device-dependent param-
eters defining the mode in which the PPG is initial-
ized.

lpm is the length of the block in bytes.

buf is the address of the buffer into which data are
read.

lbuf is the length of the data buffer in bytes.

PGDRV: Periodic Pulse Generator Page 7-4

7.4.2.1 I0.INI - Initialize the PPG

IO.INI passes a buffer specified in the parameter 1list
of the QIO containing device-dependent parameters specifying
the mode of initialization. The buffer has the following
format:

0 TIME [E] Floating point value of the duration
(in seconds) of the first pulse
burst.

4 PULSE [E] Floating point value of the number
of pulses to be output in the first
burst.

4i TIME [E] Duration of the (i+1)th pulse burst.

4i+4 PULSE [E] Number of ©pulses in the (i+1)th
burst.

s Bk (Up to a maximum
of 16 bursts).

The driver then converts these values to
hardware-compatible burst specifiers and loads them into the
module with the following algorithm:

1. Find the interval between pulses desired by divid-
ing the duration by the number of pulses.

2. Find the proper range for the multiplier m as fol-
lows:

For 1 micro-second < interval < 1024 micro-seconds,
m=1

For 1.03 milli-seconds g interval < 10.24
milli~seconds, m=10

For 10.3 milli-seconds < interval < 102.4
milli-seconds, m=100

For 103 milli-seconds < interval < 1024
milli-seconds, m=1000

3. Convert the interval to an integer value expressing
the time in units of m micro-seconds.

4. Obtain the logarithm (10) of m: code this wvalue
along with the interval in units of m micro-seconds
into a single word.

5. Load the number of pulses into the corresponding
subaddress with a CAMAC Write command.

6. Load the time interval word into the proper subad-
dress with a CAMAC Write command.

“a

PGDRV: Periodic Pulse Generator Page 7-5

After loading the pulse sequence, the driver enables
the external trigger of the PPG and enables the pulse out-
puts. The QIO request is then finished, leaving the module
armed to produce the pulses on receipt of the external
trigger signal.

7.4.2.2 1I0.TER - Terminating Operations on the PPG

The pulse output is arrested if in progress and the
first pulse number register is cleared to prevent further
triggers from starting a burst sequence.

7.4.2.3 I0.RVB - Read Data from the PPG

The pulse sequence actually loaded is read from the PPG
with CAMAC read commands and returned to the user buffer in
pairs of floating point numbers identical in format to the
parameter buffer passed to the module on initialization.
The user program may use these values as the actual time in-
tervals and numbers of pulses produced by the PPG.

7.5 Status Returns and Error Handling

When a QIO function is completed, status information
about the functions is returned in the I/O status block if
specified in the QIO macro call.

7.5.1 First Status Word (low byte)

The error codes listed below may be returned by the PPG

Driver.

Code Meaning

IS.50C A QIO for I1I0.INI, IO.TER, or IO.RVB has been suc-
cessfully completed.

IE.IFC A function code other than IO.RVB, IO.INI, IO.TER
or the standard funtions was encountered.

IE.BAD Returned from IO.INI if any of the following are
true:

PGDRV: Periodic Pulse Generator Page 7-6

1. An illegal burst duration was specified.
The time must lie in the range

1 micro-second <= duration <= 4195 sgec-
onds.

2. An illegal pulse number was specified.
The limits are:

1 <= number of pulses <= 4096,

3. The time between Pulses is 1less than 1
micro-second or greater than 1.024 sec-
onds.,

IE.OFL Returned from I0.INI, IO.RVB or IO.TER if the mo-
dule 1is not at the given CAMAC station or the
crate is offline.

IE.EQV Returned from IO.INI if the number of pulse bursts
exceeds 16. This error code is also returned from
IO.RVB if the user requested more data than the
total number of pulse bursts actually defined, at
8 bytes per defined burst.

IE.DAOD Returned from IO.RVB in case the wuser requested
fewer than the number of bytes needed to define
all the actual pulse bursts.

IE.IDS Returned from IO.RVB if the module was producing
pulses at the time the request was processed.

7.5.2 First Status Word (high byte)

DIOS drivers use this byte to group error conditions.
Bit n on selects error code group n+l.

7.5.3 Second Status Word

On IO.INI, the second status word contains the total
number of pulses actually defined. For all errors but
IE.EOV, this will be zZero. For IE.EOV and IS.80C, the
number will be less than or equal to the total number re-
quested. On IO.RVB, the second status word containg the
total number of bytes actually passed to the user buffer, at
8 bytes per defined burst.

CHAPTER 8

ODDRV: Ortec Charge Digitizer

8.1 Introduction

The QD808 Charge Digitizer is a single width CAMAC mo-
dule with eight charge sensitive 8 bit analog-to-digital
converters (ADC's) that operate with a common gate input.
The outputs of the 8-bit scalers are paired to form l16-bit
data words (QD808 Module Registers). The pairing pattern is
scalers 0 and 4, 1 and 5, 2 and 6 and 3 and 7. Within each
pair, the output from the higher numbered scaler is fed to
the data way lines Rl to R8 and from the other scaler to R9
to R16. Hardware characteristics, specifications and opera-
tion may be obtained from the reference documentation.

The DIOS driver for the QD808, OQDDRV, operates on the
module as follows: Input from the QD808 CAMAC module is
done via interrupts (LAM's). More than one datum (equal to
one byte) may be read with a single QIO. Because one signal
to the common input gate produces a maximum of 8 significant
digitized wvalues, it must be kept in mind, that there must
be [(n-1)modulo 8]+1 pulses to the common input gate to ob-
tain n data. For example, three pulses are required for the
successful completion of a request to read 20 values. Data
are returned in a ordered manner, starting with the datum of
scaler zero, followed by the datum of scaler one and so on.

QDDRV: Ortec Charge Digitizer Page 8-2

8.2 Loading the Module

The module is loaded by either of the two macro calls:
QIOSS #I10.LOD, #$SLDR,....,<mcb,1lmcb,lun>
or
LOAD lun,mcb,sts,flg

The use of the macros and meaning of the arguments are given
in the DIOS Operations Manual.

8.2.1 MCRBR Format

In the macro calls above, mcb is the address of the Mo-
dule Control Block, described in the DIOS Operations Manual.
The device specific portions of the MCB should be set as
follows:

Offset Con*=2nts
M.TYP "OD" —--— 2-letter module type code for QDS80S.
M.UNIT Unit number of QDS80S8.
M.ACP 2-Letter code of ACP containing the QD808 driver.
M.CTL Control bits, set as follows:
MC.CAM=1 Indicates the QD808 is a CAMAC module.
MC.INT=1 Indicates interrupt service is required

by the QD808.

M.ADR CAMAC address in BCNA format (A=0) of the module.

8.3 Unloading the Module

The module is unloaded by either of the two macro
calls:
QI0SS #I0.UNL, #1lun, ...

or

UNLOAD 1lun,sts,flg

ODDRV: Ortec Charge Digitizer Page 8-3

The use of these macros and the meaning of the arguments are
given in the DIOS Operations Manual.

8.4 QIO Functions to the Loaded Module
This section summarizes the standard and

device—-specific QIO requests processable by the driver.

8.4.1 Standard Functions

Format Function
QIOSS #10.VAT,... sAttach Module
QIOSS #I0.VDT,... :Detach Module
QIODSS $#I0.KIL,... :Cancel I/0 on Module
QI0$S #I0.UNL, ... ;Unload Module

8.4.2 Module-specific Functions

Format Function
QIOSS #10.INI,...,<ddp,lpm> :Initialize QD808
QIOSS $#10.TER,...,<0,2> sTerminate QD808

QIOSS $I0.RVB,...,<buf,lbuf> ;Read data from QD808

where

ddp is the address of a block of device-dependent param=
eters defining the mode in which the QD808 is ini-
tialized.

lpm is the length of the block in bytes.

buf is the address of the buffer into which data are
read.

lbuf is the length of the data buffer in bytes.

QODDRV: Ortec Charge Digitizer Page 8-4

8.4.2.1 IO.INI - Initialize the QD808

I0.INI passes a buffer specified in the parameter 1list
of the QIO containing device~dependent parameters specifying
the mode of initialization. The buffer consists of Ffour
bytes which are at present not significant, but are reserved
for future use. The driver disables the interrupt logic of
the module and clears the four module registers.

8.4.2.2 I0.TER =~ Terminate Operations on the QD808

The same action is taken as with 1/0 operation code
I0.INI.

8.4.2.3 IO.RVB - Read Data from the QD808

The interrupt logic of the module is enabled. On occu-
rance of a LAM signal all four module registers are read,
cleared and the contents stored locally. If the user count
is not satisfied, LAM's are reenabled and the next interrupt
is accepted. Once the user count is satisfied, the 1locally
stored data are returned to the user.

QDDRV: Ortec Charge Digitizer Page 8-5

8.5 Status Returns and Error Handling

When a QIO function is completed, status information
about the functions is returned in the I1/0 status block if
specified in the QIO macro call.

8.5.1 First Status Word (low byte)

The error codes listed below may be returned by the
QD808 Driver.

Code Meaning

IS.80C A QIO for IO.INI, IO.RVB or I0.TER was successful-
ly completed.

IE.IFC A function code other than IO.INI, I0O.RVB, IO.TER
or the standard functions was encountered.

IE.OFL Returned from IO.INI, IO.TER or IO.RVB if the mo-

dule is not at the given CAMAC station or the
crate is offline.

IE.UPN Returned from IO.RVB if insufficient dynamic sto-
rage is available for storing data locally. If
this error occurs permanently or often, the re-
quest count should be reduced or the system pool
space should be increased.

IE.ABO Returned from IO.KIL or from IO.RVB if power fai-
lure has occured.

8.5.1.1 First Status Word (high byte) -

DIOS drivers use this byte to group error conditions.
Bit n on selects error group n+l. All error codes returned
by the QDDRV belong to error code group zero, except for
code IE.UPN, which belongs to DIOS error code group one.

8.5.2 Second Status Word

This word shows in all cases the number of bytes actu-
ally transferred to the user buffer.

QDDRV: Ortec Charge Digitizer Page 8-6

8.6 Programming Hints

CAUTION

The user should notice that there has to be a
delay between two signals to the common gate
input to obtain proper measurement results with
the (QD808. This delay depends on the computer
on which the QDDRV runs. For a PDP11/45 the
minimum delay is 1 msec, for a PDP11/20 the
delay time should be about 1.6 msec.

For proper functioning the QD808 module
should be arranged within a CAMAC crate, so that
it will be cooled optimally.

CHAPTER 9

TGDRV: Experiment Trigger Input - DR-11 Interface

9,1 Introduction

The TRIGGER (TG) module merely consists of a interface
to a PDP1ll, so the TGDRV is designed to operate with stan-
dard PDP11 interfaces DR11A and DR11C. Its purpose is not
to perform any I/0 via the interface but to inform the user
about external lvents, which are signalled via the interrupt
logic of the interface. Hardware characteristics, specifi-
cations and operation may be obtained from the reference do-
cumentation.

The DIOS driver for the TG, TGDRV, operates on the mo-
dule as follows: 1Initialization and termination functions
cause the interrupt logic to be disabled and output and
input buffer to be cleared. A read function enables the in-
terrupt logic. On occurance of an interrupt further inter-
rupts are disabled, buffer registers are cleared and the
read request is finished, thus informing the user about the
external event by setting his WAIT flag.

9.2 Loading the Module

The module is loaded by either of the two macro calls:
QIOSS #70.LOD, #SLDR,....,<mcb,1lmcb,lun>
or

LOAD lun,mcb,sts,flg

The use of the macros and meaning of the arguments are given
in the DIOS Operations Manual.

TGDRV: Experiment Trigger Input - DR-11 Interface Page 9-2

9.2.1 MCB Format

In the macro calls above, mcb is the address of the Mo-
dule Control Block, described in the DIOS Operations Manual.
The device specific portions of the MCB should be set as
follows:

Of fset Contents

M.TYP "TG" ~= 2-letter module type code for TG.
M.UNIT Unit number of TG.

M.ACP 2-Letter code of ACP containing the TG driver.

M.CTL Control bits, set as follows:

MC.CAM=0 Indicates the TG is not a CAMAC module.
MC.INT=1 Indicates interrupt service is required
by the TG.

M.ADR CSR address of the module.

9.3 Unloading the Module

The module is unloaded by either of the two macro
calls:
QI0SS #IO.UNL,#lun,...
or

UNLOAD lun,sts,flqg

The use of the macros and the meaning of the arguments isg
given in the DIOS Operations Manual.

9.4 QIO Functions to the Loaded Module

This section Summarizes the standard and
device=-specific QI0 requests processable by the driver.

TGDRV: Experiment Trigger Input - DR-11 Interface Page 9-3

9.4.,1 Standard Functions

Format Function
QIO0SS $I0.VAT, ... :Attach Module
QIO0SS $10.VDT,... ;:Detach Module
QIO0SS #$I0.KIL,... :Cancel I/0 on Module
QIONSS #I0.UNL, ... :Unload Module

9.4.2 Module-specific Functions

Format Function
QIOSS $I10.INI,...,<ddp,lpm> ;Initialize TG
QIONSS ETO.TERy s s <0, 2> :Terminate TG

QIO0SS #10.RVB,...,<buf,l1buf> ;Await external event

where

ddp is the address of a block of device-dependent param-
eters defining the mode in which the Triggr is ini-
tialized.

1pm is the length of the block in bytes.

buf is the address.of the buffer into which data are
read.

lbuf is the length of the data buffer in bytes.

9.4.2.1 I0.INI - Initialize the Triggr

I0.INI passes a buffer specified in the parameter list
of the QIO containing device-dependent parameters specifying
the mode of initialization. The buffer consists of four
bytes which are at present not significant, but are reserved
for future use. The driver disables the interrupt logic of
the interface and clears its input and output buffer regis-
ters.

TGDRV: Experiment Trigger Input - DR-11 Interface Page 9-4

9.4.2.2 IO.TER - Terminate Operations on the Trigger

The same action is taken as with I/0 operation code
IO.INI.

9.4.2.3 I0.RVB - Read Data from the Trigger

The interrupt logic of the module is enabled. On occu-
rance of an interrupt, further interrupts are locked out.
Input and output buffer registers of the interface are
cleared and the request is finished.

9.5 Status Returns and Error Handling

When a QIO function is completed, status information
about the functions is returned in the I/O status block if
specified in the QIO macro call.

9.5.1 First Status Word (low byte)

The error codes listed below may be returned by the TG
Driver.

Code Meaning

IS.SsUC A QIO for I0.INI, IO.RVB or IO.TER was successful-
ly completed.

IE.IFC A function code other than TI0.INI, IO.RVB, TIO0O.TER
or the standard functions wWas encountered.

IE.ABO Returned from TIO.KIL if a read operation was in
progress,

9.5.2 First Status Word (high byte)

DIOS drivers use this byte to group error conditions.
Bit n on selects €rror group n+l. All error codes returned
by the TGDRV belong to error code group zero.

TGDRV: Experiment Trigger Input - DR-11 Interface Page 9-5

9.5.3 Second Status Word

This word shows in all cases the number of bytes actu-
ally transferred to the user buffer.

CHAPTER 10

TSDRV: Culham Time Sequence Generator

10.1 Introduction

The Culham Time Sequence Generator (TSG) is a
single-width CAMAC module which delivers a pre-programmed
sequence of pulse bursts of the following form:

Each burst consists of 2**m pulses separated by inter-
vals of 2*%*n*100 nano-seconds where 0<m<8 and 0<n<1l6. There
may be up to 32 bursts in the sequence. The sequence may be
started by a CAMAC command or by an external trigger signal.
The pulses are delivered in parallel at 6 LEMO sockets on
the front panel. They have a potential of -5 volts, width
50 nano-seconds and 50 Ohm output impedance.

The DIOS driver for the TSG, TSDRV, allows the user to
program the TSG with 'a pulse sequence defined in a more in-
tuitive way. A sequence of up to 7 bursts is defined by
giving for each burst its duration and the number of pulses
it contains. The driver decomposes these burst specifica-
tions into a sequence of a hardware-compatible form which
approximately reproduces the requested sequence.

Since the interval between pulses must be chosen from
15 discrete powers of 2 (x 100 nano-seconds), not every com-
bination of burst duration and pulse number can be repro-
duced. The driver attempts to fit the next lower number of
pulses and next lower pulse frequency to come as close to
the time interval as possible. This means that the actual
sequence delivered is different from the one requested. A
read function is provided to make the correct sequence ava-
ilable to the user's data analysis programs.

D

TSDRV: Culham Time Sequence Generator Page 10-2

10.2 Loading the Module

The module is loaded by eithr of the two macro calls:
QI0SS #I0.LOD, #SLDR,....,<mcb,1lmcb,lun>
or
LOAD lun,mcb,sts,flg

The use of the macros and meaning of the arquments are given
in the DIOS Operations Manual.

10.2.1 MCB Format

In the macro calls above, mcb is the address of the Mo-
dule Control Block, described in the DIOS Operations Manual.
The device specific portions of the MCB should be set as
follows:

Offset Contents

M.TYP "TS" -- 2-letter module type code for TS.

M.UNIT Unit number of TS.

M.ACP 2-Letter code of ACP containing the TS driver.

M.CTL Control bits, set as follows:
MC.CAM=1 Indicates the TS is a CAMAC module.
MC.INT=0 Indicates interrupt service is not re-

quired by the TS.

M.ADR CAMAC address in BCNA format (A=0) of the module.

10.3 Unloading the Module

The module is unloaded by either of the two macro
calls:

QIOSS #I0.UNL,1lun,...
or

UNLOAD 1lun,sts,flg

I..!l..-IIlllllllllIllIIlIIllllIlll.IIl.lllll.ll................l..lllllllll.lllll

TSDRV: Culham Time Sequence Generator Page 10-3

The use of the macros and the meaning of the arguments are
given in the DIOS Operations Manual.

10.4 QIO Functions to the Loaded Module
This section summarizes the standard and

device-specific QIO requests processable by the driver.

10.4.1 Standard Functions

Format Function
QIO0SS #I0.VAT,... ;Attach Module
QIOSS #10.VDT, ... ;Detach Module
QIOSS #I10.KIL,... :Cancel I/0 on Module
QIOSS #I0.UNL, ... ;Unload Module

10.4.2 Module-specific Functions

Format Function
QIOSS #I0.INI,...,<ddp,lpm> :Initialize Module
QIOSS $LO0.TER; : w5 5€0; 25 ;Terminate Module

QIOSS #I0.RVB,...,<buf,lbuf> ;Read data from Module.

where

ddp is the address of a block of device-dependent param-
eters defining the mode in which the TSG is initial-
ized.

lpm is the length of the block in bytes.

buf is the address of the buffer into which data are
read.

lbuf is the length of the data buffer in bytes.

TSDRV: Culham Time Sequence Generator Page 10-4

10.4.2.1 TIO.INI - Initialize the TSG

I0.INI passes a buffer specified in the parameter 1list
of the QIO containing device-dependent parameters specifying
the mode of initialization. The buffer has the following
format:

0 PULSE [E] Duration (in seconds) of the first
pulse burst.
4 FREQ [E] Number of pulses to be output in the

first burst

4i PULSE [E] Duration of the (i+1)th pulse burst.

4i+4 FREQ [E] Number of pulses in the (i+l)th
burst.

The driver then converts these values to

hardware-compatible burst specifiers and loads them into the
module with the following algorithm:

1. Find the interval between pulses desired in wunits
of 100 nano-seconds, by dividing the duration by
the number of pulses.

2. Find the next higher pure binary multiple of 100
nano-seconds, i.e., the next larger actually real-
izable pulse spacing interval.

3. Recompute the total number of pulses needed to fill
the duration of the burst at this spacing interval,
by dividing the duration by the new spacing inter-
val.

4. Decompose this number of pPulses into a sum of pure
binary numbers between 2 and 128, code the exponent
of each along with the pulse spacing interval into
a hardware burst specifier and load the word into
the TSG.

In short, it is attempted to keep the time interval
close to the desired value, adjusting the number of pulses
downward when needed to match the nearest possible pulse in-
terval.

After loading the pulse sequence, the driver enables
the external trigger of the TSG and enables the pulse out-
puts. The QIO request is then finished, leaving the module
armed to produce the pulses on receipt of the external
trigger signal.

TSDRV: Culham Time Sequence Generator Page 10-5

10.4.2.2 TO.TER -~ Terminate Operations on the TSG

The trigger input and pulse output of the TSG are dis-
abled so that no further pulse trains can be produced.

10.4.2.3 IO.RVB - Read Data from the TSG

The actually calculated pulse sequence is returned to
the user buffer in pairs of floating point numbers identical
in format to the parameter buffer passed to the module on
initialization. The user program may use these values as
the actual time intervals and numbers of pulses produced by
the TSG.

NOTE

After IO.INI, the information
from IO.RVB is available only
until the next I0.TER or
IO.UNL is requested. Any sub-
sequent IO.RVB's will produce
an error.

10.5 Status Returns and Error Handling

When a QIO function is completed, status information
about the functions is returned in the I/0 status block if
specified in the QIO macro call.

TSDRV: Culham Time Sequence Generator

10:5.1

Page 10-6

First Status Word (low byte)

The error codes listed below may be returned by the TSG

Driver.
Code

IS.S8U0C
IE.IFC

IE.BAD

IO.OFL

IE.EOV

IE.DAO

IE.IDS

Meaning

A QIO was successfully completed.

A function code other than IO.RVB, IO.INI, 1IO.TER
or the standard functions was encountered.
Returned from IO.INI if any of the following are
true:

1. An illegal burst duration was specified.
The time must lie in the range:
500 nS <= duration <= 13.4218 seconds.

2. An illegal pulse number was specified.
The limits are:
2 <= number of pulses <= 4096.

3. The time between pulses is less than 200
nano-seconds or greater than 3.2768
milli-seconds.

Returned from IO.INI or IO.TER if the module is
not at the given CAMAC station or the crate is
offline.

Returned from IO.INT if the number of pulse bursts
exceeds 7, or if more than 32 hardware bursts are
needed to reproduce the sequence. 1In either case,
the maximum number of pulses possible is defined,
the sequence being cut off at the end. The module
is armed to deliver the partial pulse train. On a
subsequent IO.RVB, the actual pulse sequence de-
fine will be returned.

IE.EOV is returned from IO.RVE if the user
requested more data than the total number of pulse
bursts actually defined, at 8 bytes per defined
burst.

Returned from IO.RVB in case the user requested
fewer than the number of bytes needed to define
all the actual pulse bursts.

Returned from IO.RVB if the module was unloaded or
terminated since the last IO.INI.

TSDRV: Culham Time Sequence Generator Page 10-7

10.5.2 First Status Word (high byte)

DIOS drivers use this byte to group error conditions.
Bit n on selects error code group n+l.

10.5.3 Second Status Word

On IO0.INI, the second status word contains the total
number of pulses actually defined. For all errors but
IE.EOV, this will be =zero. For IE.EOV and 1IS.SUC, the
number will be 1less than or equal to the total number re-
quested.

On IO.RVB, the second status word contains the total
number of bytes actually passed to the user buffer, at 8
bytes per defined burst.

10.6 Programming Hints

10.6.1 Precautions in Defining a Pulse Burst

Since the actual values loaded into the TSG wusually
differ from the assigned values, the user should always read
back the pulse sequence and make sure the bursts are accept-
able before validating any data generated by modules using
the pulses from the TSG.

DIOS Device Handlers
Reference Manual

READER'S COMMENTS

NOTE: THIS FORM IS FOR DOCUMENT COMMENTS ONLY.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable and well
organized? Please make suggestions for improvement.

Is there sufficient documentation on associated system
programs required for use of the software described in
this manual? If not, what material is missing and where

should it be placed?

Please turn over

Please indicate the type of user/reader that you most nearly
represent.

[1 Assembly lanquage programmer

[1 Higher-level language programmer

[] Occasional programmer (experienced)

[] User with little programming experience
[] Student programmer

[] Non-programmer

If you desire to have your name put on the PDE documentation
mailing list, please indicate so here......
[]

NAME DATE

ORGANIZATION

STREET

CITY

STATE ZIP CODE

COUNTRY

RETURN TO:

PDE PROJEKT DATENERFASSUNG

INSTITUTE FOR PLASMAPHYSICS
D-8046 GARCHING

WEST GERMANY

