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Abstract

Arrays of trapped ultracold molecules represent a promising platform for implementing a universal quan-

tum computer. DeMille [Phys. Rev. Lett., 88, 067901 (2002)] has detailed a prototype design based on

Stark states of polar 1Σ molecules as qubits. Herein, we consider an array of polar 2Σ molecules which

are, in addition, inherently paramagnetic and whose Hund’s case (b) free-rotor states are Bell states. We

show that by subjecting the array to combinations of concurrent homogeneous and inhomogeneous electric

and magnetic fields, the entanglement of the array’s Stark and Zeeman states can be tuned and the qubit

sites addressed. Two schemes for implementing an optically controlled CNOT gate are proposed and their

feasibility discussed in the face of the broadening of spectral lines due to dipole-dipole coupling and the

inhomogeneity of the electric and magnetic fields.
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I. INTRODUCTION

Since its inception in 1982 by Feynman [1] and follow-up work by others [2–4], the idea of

a universal quantum computer has been pursued and amplified in many quarters. Whether for

reasons of fundamental interest [5–7] or because of the promise of a computational advantage

[8–12], these pursuits identified a number of physical systems [13–21] that meet the DiVincenzo

requirements [22] for the physical implementation of quantum computation [23].

Among the candidate systems has been an array of optically trapped ultra-cold polar molecules,

first proposed and investigated by DeMille [24]. This seminal work demonstrated how dipole-dipole

interactions between polar 1Σ molecules trapped in a one-dimensional optical array would allow

fast and efficient quantum control by resonant laser drive pulses with little decoherence. Our

subsequent work examined aspects of DeMille’s proposal for polar closed-shell molecules, whether

linear [25, 26] or symmetric tops [27].

Herein, we consider an array of trapped ultra-cold polar 2Σ molecules that are open-shell and

whose nonzero electronic spin makes them inherently paramagnetic. An array of such molecules

is entangled by the electric dipole-dipole interaction and subject to combinations of concurrent

homogeneous and inhomogeneous electric and magnetic fields. Since a sequence of single qubit

gates and CNOT gates is sufficient to build a unitary-evolution based universal quantum computer

[28], our objective is to assess the feasibility of implementing a CNOT logic gate, i.e., a gate that

flips the target qubit depending on the state of the control qubit.

We characterized the eigenstates of the array, including their mutually induced directionality,

by evaluating their eigenproperties via numerical diagonalization of the appropriate Hamiltonian

matrix, whose elements we found analytically. We also evaluated the concurrence of the states

as a measure of their entanglement in the presence and absence of fields. A key feature of the

system is that in the absence of fields, its states are all the maximally entangled Bell states.

Applying an inhomogeneous magnetic field disentangles these states and can be used to perform

a Bell measurement. This feature may be of consequence for superdense coding [29] and quantum

teleportation [30].

Our findings led us to propose two novel schemes for implementing an optically controlled

CNOT gate operation. Both schemes make use of the adiabatic theorem and can be classified as

adiabatic quantum computation [31, 32] (even though one of the three steps in both schemes is

not adiabatic).

Of key importance is the ability to resolve the transition frequencies involved in the optical
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control of the gate operations – in the face of the broadening due to dipole-dipole coupling and the

inhomogeneity of the electric and magnetic fields. We show that the former dominates over the

latter and set the criteria for the feasibility of the schemes.

The paper is organised as follows: In Section II, we briefly discuss the Hamiltonian of a system

of two 2Σ molecules interacting via electric dipole-dipole interaction in the presence of concurrent

electric and magnetic fields. We then describe our choice of qubits and explain the behavior of the

lowest four Ñ = 0 eigenstates of the system before illustrating the proposed schemes for quantum

CNOT logic gate implementation in Section III. Key results for a pair of NaO molecules as a model

system are presented in Section IV, wherein we also revisit the issue of broadening of spectral lines

due to dipole-dipole coupling and inhomogeneity of the field(s) at the two qubit sites. Finally, in

Section V we summarize our results and offer prospects for extensions and applications of the work

done so far.

II. A UNIT QUANTUM CIRCUIT: A PAIR OF 2Σ MOLECULES

A. Hamiltonian

The Hamiltonian of a pair of 2Σ molecules in the presence of concurrent electric and magnetic

fields is the sum of the single-molecule Hamiltonians, Hi, and the electric and magnetic dipole-

dipole coupling terms. Upon neglecting the much weaker magnetic dipole-dipole interaction, the

Hamiltonian takes the form

H =
2∑
i=1

Hi + Vd−d, (1)

where i = 1, 2 and Vd−d is the electric dipole-dipole interaction.

The single-molecule Hamiltonian (apart from nuclear spin) is given by the sum of the rotational,

Stark and Zeeman terms [33, 34].

Hi = BiN
2
i + γiNi · Si −Bi(ηel)i cosθi +Bi(ηm)i(SZ)i (2)

where Bi is the rotational constant, Ni the rotational angular momentum operator, Si the electronic

spin angular momentum operator, γi the spin-rotation coupling constant and (SZ)i the space-fixed

Z component of the electronic spin of the i-th molecule. The dimensionless magnetic and electric

interaction parameter of the i-th molecule is given respectively by

ηm ≡
µmH
B

(3)
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Figure 1: The configuration for a system of two polar 2Σ molecules in an optical array with superimposed

(in)homogeneous and concurrent electric and/or magnetic fields. See text.

and

ηel ≡
µε

B
(4)

where µm = gSµB is the electronic magnetic dipole moment of the 2Σ molecule, gS ∼= 2.0023 the

electronic gyromagnetic ratio, µB the Bohr magneton, µ the body-fixed electric dipole moment,

and H the magnetic and ε the electric field strength.

The magnetic and electric fieldsH and ε are assumed to be collinear and their common direction

defines the space-fixed axis Z, see Figure 1. The electric dipole-dipole interaction potential is given

by [25]

Vd−d =
µ1 · µ2 − 3(µ1 · n)(µ2 · n)

r31,2
(5)

with µ1 and µ2 the electric dipole moments of the two molecules and r1,2 the relative position

vector of the centres of mass of the two molecules whose direction is given by the unit vector

n ≡ r1,2
r1,2

. As usual, r1,2 ≡ |r1,2| and µ1,2 ≡ |µ1,2|. Moreover, in our case, µ1 = µ2 ≡ µ.
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Eq. (6) can be recast in terms of the Wigner matrices D l
m 0 (φ, θ, χ) [35]:

Vd−d = −
√

6 Ξ
∑
ν λ

C(1, 1, 2; ν, λ, ν + λ)D 1
−ν 0 (φ1, θ1, χ1)D 1

−λ 0 (φ2, θ2, χ2)D 2
ν+λ 0 (φ, θ, χ) (6)

where C(J1, J2, J3;M1,M2,M3) are the Clebsch-Gordan coeffcients, J1 and J2 the angular momen-

tum qunatum numbers of molecules 1 and 2, M1 and M2 the projection of the angular momenta

of molecules 1 and 2 on the space fixed axis Z, (θ1, φ1) and (θ2, φ2) the rotational coordinates

of molecules 1 and 2, (θ, φ) the spherical coordinates of their relative position vector r1,2, and

Ξ ≡ µ1µ2/r
3
1,2 is a parameter that characterises the strength of the electric dipole-dipole interac-

tion.

The matrix elements of the Hamiltonian were calculated analytically in the cross product basis

set, |J1,Ω1,M1, S1,Σ1; J2,Ω2,M2, S2,Σ2〉, of the two molecule [35] and the eigenproperties of the

composite two-molecule system obtained by a numerical diagonalization of a truncated Hamiltonian

matrix, whose structure is shown in Figure 2. Note that the projection quantum numbers Ωi and

Σi (with i = 1, 2) of the electronic angular momenta on the body-fixed axis of each 2Σ molecule

coincide, i.e., Ωi = Σi. The number of pairs of states determines the size of the basis set and is

given by [2ΣJmax
Jmin

(2J+1)]2. For Jmin = 1
2 and Jmax = 7

2 , this means that the truncated Hamiltonian

matrix is of a 1600 rank.

B. Choice of qubits

A schematic of the energy levels and basis states for a pair of molecules in adjacent qubit sites is

shown in Figure 3 and the eigenenergies of the composite two-molecule system in an inhomogeneous

magnetic field with and without an electric field are shown in Figure 4. The top-most of the four

Ñ = 0 states (red curve) exhibits an avoided crossing with one of the higher states for both ηel = 0

and ηel = 15. Due to the opposite signs of the Stark and Zeeman terms in our Hamiltonian, Eq.

(2), a concurrent electric field can be used to tune the position – and strength – of such an avoided

crossing, see also Refs [36, 37]. Based on these results, we chose the following states as qubits for

the two CNOT schemes,

|0〉 = Ψ

(
J̃ =

1

2
, Ñ = 0,M = −1

2

)
|1〉 = Ψ

(
J̃ =

1

2
, Ñ = 0,M = +

1

2

) (7)

The field free quantum numbers N and J are no longer good quantum numbers in the field(s), but

can be used as adiabatic labels, which is indicated by a tilde, |Ñ , J̃ ,M ; ηel, ηm → 0〉 → |N, J,M〉.
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Figure 2: Matrix representation of Hamiltonian of Eq. (1) in the cross product basis set

|J1,Ω1,M1, S1,Σ1; J2,Ω2,M2, S2,Σ2〉 of two Hund’s case (b) molecules, truncated such that Ji with i = 1, 2

ranges from 1
2 to 7

2 for molecules 1 and 2. Hence Mi ranges from −Ji to Ji while Σi = ± 1
2 . Same applies

for primed quantities. Note that J1 = J2 = 1
2 = J

′

1 = J
′

2 give rise to a 16× 16 sub-matrix; the bottom four

of the 16 states obtained by its diagonalization are the maximally entangled Bell states for our choice of

qubits. See text.

The chief motivation for this choice of qubit states is that the field-free rotor states of a 2Σ molecule

– which fall under Hund’s case (b) [34, 38] – are comprised of fully entangled combinations of such

states. As we will see below, this offers some advantages over the schemes presented in our previous

work [25–27]. In keeping with custom, we will refer to fully entangled combinations of qubit states

as Bell states.
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Figure 3: A schematic of the energy levels and basis states for a pair of molecules (labeled 1 and 2) in

adjacent qubit sites (labeled 1 and 2) subject to electric and magnetic fields ε and H. States |0〉 and |1〉
with eigenenergies E0 and E1 of the individual molecules are chosen as qubits. (a) Levels of individual

molecules; (b) Levels of the composite two-molecule system in the absence of dipole-dipole coupling; (c)

Levels of the composite two-molecule system in the presence of dipole-dipole coupling. Also show are the

transition frequencies between the states. See text.

C. Behavior of a two-qubit system in concurrent electric and magnetic fields

The lowest four eigenstates of the composite system of two 2Σ molecules can be written in

terms of the qubit states chosen above, Eq. (7). In the field-free case, these four eigenstates are

the maximally entangled Bell states, cf. Fig. 2 and panel (a) of Fig. 5.

As shown in Fig. 5, the Bell states are separated by the frequencies ω0,1, ω0,2 and ω0,3. When a

homogeneous magnetic field is applied, the lowest and the highest state undergoes a disentangle-

ment, while the states in between retain their maximal entanglement; the separation of the states

is characterised by the frequencies ωm,1, ωm,2 and ωm,3 , see panel (b) of Fig. 5). A superimposed

inhomogeneous magnetic field differentiates between the two molecules and disentangles even the
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Figure 4: Eigenenergies (in terms of the rotational constant B) of the composite two-molecule system with

Ξ/B ∼ 10−5 in an inhomogeneous magnetic field as functions of the magnetic field strength parameter ηm

for fixed values of the electric field strength parameter ηel = 0 (left) and ηel = 15. The inhomogeneity of

the magnetic field is such that (ηm)1 ≡ ηm = (ηm)2/1.15.

intermediate two states, see panel (c) of Fig. 5). The resulting four states are separated by fre-

quencies ωem,1, ωem,2 and ωem,3. We note that an electric field would couple more states, whereby

many more avoided crossings would be generated, cf. panel (b) of Fig. 4.

The entanglement of the two molecules in the various eigenstates of the composite system can be

quantified by evaluating their concurrence. To this end, the Hamiltonian of the composite system

in the presence of the fields is set up in the composite basis set (i.e., {|00〉 , |01〉 , |10〉 , |11〉}), cf. Fig.

1, which gives rise to a 4×4 matrix whose elements are calculated numerically. The eigenproperties

of this matrix, obtained by a numerical diagonalization, are all that is needed in order to calculate

the pairwise concurrence from the equations below [39, 40]:

ρi = |Φi〉 〈Φi| (8)
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(a) (b) (c)

,

Figure 5: Eigenenergies of the composite system of two 2Σ molecules coupled by the electric dipole-dipole

interaction. The eigenstates are expressed in terms of the lowest four Ñ = 0 single-molecule eigenstates.

In the absence of fields, the system can exist in any of the four Bell states, shown in red, panel (a).

A homogeneous magnetic field is capable of disentangling the top and bottom states, leaving the two

intermediate states entangled, as shown in panel (b). An inhomogeneous magnetic field disentangles the

intermediate two states as well, panel (c). Frequencies important for effecting CNOT gate transitions are

shown in green.

ρ̃i = (σy ⊗ σy)ρ∗i (σy ⊗ σy) (9)

C(ρi) = max{0,
√

Λ1 −
√

Λ2 −
√

Λ3 −
√

Λ4} (10)

Here |Ψi〉 are the eigenvectors, ρi the density matrices, ρ∗i the complex conjugate transpose of the

density matrices, σy the Pauli matrix and Λi the eigenvalues (in decreasing order) of the non-

Hermitian matrix ρρ̃, with ρ̃ the density matrix of the spin-flipped state. The latter density matrix

ρ̃ can be readily obtained from a new 4×4 Hamiltonian written in the swapped combined eigenstate

basis, i.e., interchanging |00〉 and |11〉 and |01〉 and |10〉. Entanglement itself is a monotonously
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Figure 6: Concurrences Ci pertaining to the states Ψi for a pair of 2Σ molecules with Ξ/B ∼ 10−5 as a

function of an inhomogeneous magnetic field such that (ηm)1 ≡ ηm = (ηm)2/1.15. The concurrence of all

four states is unity at ηm = 0, indicating that these are maximally entangled Bell states.

varying convex function of concurrence (see Eq. 7 in [25]) that can only take values between 0 and

1. Thus, the concurrence is zero for unentangled states and unity for maximally entangled states.

Here we make the following observation regarding concurrence, which suggests how to tune

entanglement by engineering the “right” Hamiltonian, a non-trivial inverse problem. Consider a

general case of an eigenvector of the 4× 4 Hamiltonian matrix in the computational basis,

|Φi〉 =


ai

bi

ci

di

 , (11)

where ai, bi, ci, di are the expansion coefficients of the eigenfunction Ψi in the qubit basis states

that fulfil the normalisation a2i + b2i + c2i + d2i = 1. Then analytic eigenvalues of the matrix ρiρ̃i are

{0, 0, 0, 4(bici − aidi)2}. Thus, from Eq. 10, the concurrence corresponding to each qubit state is

given by

C(ρi) = max{0, 2|bici − aidi|} = 2|bici − aidi| (12)
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The concurrences for the field free case of a pair of molecules with Ξ/B = 10−5 were found to

be all equal to one, thus confirming our earlier observation that the four states in question were

maximally entangled. With an increasing magnetic field, all four states rapidly disentangle. The

drop in the concurrence of the two intermediate states is slower than that of the top- and bottom-

most states. Furthermore, if the magnetic field is homogeneous, i.e., H1 = H2, the concurrence for

the two intermediate states is found to be exactly equal to one, cf. panel (b) of Fig. 5. We note

that the application of an inhomogeneous magnetic field is akin to effecting a measurement on Mi

for both molecules that destroys their entanglement, cf. panel (c) of Fig. 5.

III. CNOT IMPLEMENTATION SCHEMES

The conditional quantum dynamics needed to implement a CNOT gate is provided by a bipartite

two-state system with a mutual interaction. Entangled spin systems in NMR [41], meanwhile

banished as impractical for implementing a quantum computer [42], offer ideas and guidance for

the study of isomorphous systems, such as spin 1
2 molecules entangled by the electric dipole-dipole

interaction, considered here.

In both schemes that we describe below, an initial state of the system is prepared in the presence

of an inhomogeneous magnetic field (an electric field may or may not be present) and given as input

to the ‘black-box’ that performs the gate operation. This initial state may exist in any one of the

four states shown in panel (c) of Fig. 5 or in a superposition.

|Ψinput〉 = a |00〉+ b |01〉+ c |10〉+ d |11〉 (13)

A CNOT operation on this initial state results in the following final state:

|Ψoutput〉 = a |00〉+ b |11〉+ c |10〉+ d |01〉 (14)

where the state of the second molecule (molecule 2), cf. Fig. 3, acted as a control qubit and the

state of the first molecule (molecule 1) as the target qubit: If the control qubit is “high” (i.e., 1),

the target qubit gets flipped (i.e., changes from 0 to 1 or from 1 to 0), whereas if the control qubit

is “low” (i.e., 0), the target qubit remains unaltered.

A. Scheme I

The first scheme that we propose takes direct advantage of the electric dipole-dipole coupling

that results, in the absence of a magnetic field, in maximally entangled states. Figure 7 outlines the
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2
(|00i + |11i)1p

2
(|00i + |11i)

Figure 7: Scheme I for CNOT quantum logic gate implementation, with the second qubit used as a control

bit. A three step process that involves adiabatically removing and re-applying an inhomogeneous magnetic

field. Green arrows depict a change in state due to an operation and the key Bell states involved in the gate

operation are boxed in red (cf. also Fig.5).

three-step process. Beginning with an initial state of the two-molecule system in the presence of an

inhomogeneous magnetic field (an electric field may or may not be present as well), the first step

is to adiabatically reduce the magnetic field to zero. We expect the initial state to adiabatically

evolve into its corresponding Bell state as shown in Fig. 5. Next, we apply a π pulse resonant with

the energy difference between the states |Ψ1〉 = 1√
2
(|00〉 − |11〉) and |Ψ2〉 = 1√

2
(|01〉 − |10〉), i.e.,

corresponding to a frequency ω0,3. This results in interchanging the populations of the top two

states while leaving the remaining states unchanged. In the third and final step, the inhomogeneous

magnetic field is adiabatically re-introduced, whereby the Bell state is transformed into one of the

four decoupled basis states (which form the computational basis). The advantage of this scheme

is the high degree of entanglement between the two qubits, available in the field free case.
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B. Scheme II

According to Scheme II, given an initial state of the system, a CNOT operation consists of

three steps. Firstly, an inhomogeneous magnetic field is adiabatically increased to bring the system

beyond an avoided crossing. This step allows to operate the gate under conditions where the key

frequencies needed for the system’s optical control are well resolved. The next step is to apply

a π pulse resonant with the desired shift in order to interchange the populations of the |01〉 and

|11〉 states. Panel (a) in Figure 8 illustrates the three step process for the case when the second

molecule acts as a control qubit. Hence, the frequency of the π pulse is ωem,3. In panel (b), the

first molecule is taken to be the control qubit and hence a π pulse of frequency ωem,2 + ωem,3 is

required in order to interchange the populations of the |10〉 and |11〉 states. In the third and final

step, the system is adiabatically brought back to a pre-avoided crossing state for final readout of

the individual qubits. We note that a read out of the individual qubits beyond the avoided crossing

would not be possible because of the mixing with higher states there.

Unlike in Scheme I, in Scheme II the entanglement between the two qubits is low during the

entire gate operation. However, entanglement may be induced dynamically [25, 26]. As indicated

below, Scheme II scores over Scheme I in terms of practicality.

IV. RESULTS AND DISCUSSION

In this section we describe the results of our quantitative study of Schemes I and II for CNOT

gate implementation using a pair of NaO molecules. The molecular constants of NaO relevant

to this study are listed in Table I. We note that for Scheme I to be successfully implemented,

the frequencies ω0,1 and ω0,3 must be well resolved. This condition is met at high values of the

dipole-dipole interaction parameter Ξ/B, Eq. (6). In the case of NaO, this would require an

intermolecular distance that is significantly less than the benchmark value of 500 nm given by

what is attainable in optical lattices produced by fiber lasers operating at about a µm (however, cf.

recent work in refs. [43, 44]). In contrast, Scheme II is not as demanding in regard to the strength

of the electric dipole-dipole coupling and so conditions for its implementation are met even at the

benchmark intermolecular separation of 500 nm.
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Initial  
States

Final  
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Step 1: Increase 
magnetic field past 

the avoided crossing

Step 3: Decrease 
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avoided crossing state

Step 2:

Step 2:

⇡ pulse
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Figure 8: Scheme II for CNOT quantum logic gate implementation, with the second (first) molecule used as

the control qubit in the top (bottom) panel. Scheme II, a three-step process, involves an adiabatic evolution

of the system beyond an avoided crossing, applying a π pulse of requisite resonance frequency, and finally

devolving the system back to a pre-avoided crossing state for readout of individual qubits.
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Table I: Rotational constant, B, spin-rotation constant, γ, electric dipole moment, µ, and values of the

dimensionless interaction parameters ηel and ηm at electric and magnetic fields of 100 kV/cm, 1 Tesla,

respectively, for NaO(A2Σ); also shown is the value of the electric dipole-dipole interaction parameter Ξ,

see Eqs. (3)-(6). Compilation based on Refs. [45] and our own calculations. aCalculated using Gaussian

09. bBecke3LYP type calculation using TZP-DKH basis [46, 47].

B [cm−1] γ [cm−1] µ [D] ηel @ 100 kV/cm ηm @ 1 T Ξ [cm−1] @ 500 nm

0.462 0.193 7.88a,b 3.63 2.02 2.49× 10−6

A. Scheme II for a pair of NaO molecules

Here we present results for a pair of NaO(2Σ) molecules trapped in an optical array 500 nm apart

and subject to an inhomogeneous magnetic field (in the absence of an electric field). Throughout

the operation, an inhomogeneity in the magnetic field is maintained between the two sites such that

(ηm)2/(ηm)1 = 1.1. By making use of the procedure outlined in Section II B, we track the bottom

four states of the system adiabatically while increasing (ηm)1 and (ηm)2. For the case of zero

fields, the bottom-most states are Bell states in which the qubits of our choice are fully entangled.

An inhomogeneous magnetic field decouples them and puts the system in any of the composite

basis states, {|00〉, |01〉, |10〉, |11〉}. The upper panel of Figure 9 shows the four eigenenergies of

these tracked states while the lower panel shows three transition frequencies and the key frequency

difference, ∆ω. It can be seen that an avoided crossing is encountered between ηm = 2.63 and

ηm = 2.64, where the highest state changes its character from a low-field seeker to a high-field

seeker. The frequency difference ∆ω shows a sharp rise after the avoided crossing (see the blue in

the lower panel of Fig. 9). As a result, at such enhanced ∆ω the frequencies ωem,1 and ωem,3 can

be resolved. Hence, a CNOT operation according to Scheme II would involve the application of a

pulse resonant with the frequency ωem,3, with molecule 2 acting as a control qubit. Table II lists

the three key frequencies as well as the frequency ∆ω before and after the avoided crossing. For

a readout of the individual qubits, the system has to be adiabatically devolved to a state before

the avoided crossing (at, say, ηm = 2.63). In Table III, we list the frequencies needed to flip the

individual molecules between their |0〉 and |1〉 states. Furthermore, we find that the contribution

to the frequencies due to the dipole-dipole coupling term is very small. Consequently, diagonalising

the Hamiltonians of the individual molecules separately and using the eigenenergies thus obtained

to cast the system Hamiltonian in the composite basis was a very good approximation to make in
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Figure 9: In the upper panel, the four eigenenergies of the system for the field parameters (ηel)1 = (ηel)2 = 0

and (ηm)2/(ηm)1 = 1.1 are shown as functions of ηm. The three transition frequencies ωem,1, ωem,2, and

ωem,3 along with the key frequency difference ∆ω = ωem,3 − ωem,1 are plotted as functions of ηm in the

lower panel. Note the change in behaviour of Ψ1 and ∆ω at the avoided crossing.

Refs. [25, 27]). Thus

〈Ψinitial|HSystem|Ψfinal〉 ≈ 〈Ψinitial|H1|Ψfinal〉+ 〈Ψinitial|H2|Ψfinal〉

+ 〈Ψinitial|Vd−d|Ψfinal〉 (15)

where Ψinitial and Ψfinal refer to the eigenstates of the combined two molecule system. The matrix

elements 〈Ψinitial|Vd−d|Ψfinal〉 comes out to be six orders of magnitude smaller than the other two

terms. As a result, the weak dipole-dipole coupling and the small entanglement in the presence of an

inhomogeneous field are actually responsible for helping us achieve individual qubit addressability.

B. Feasibility of Schemes I and II

1. Broadening

An important issue regarding the feasibility of the proposed schemes is the broadening of the

spectral lines of the system. Figures 10 and 11 illustrate the broadening of spectral lines when

treating the two molecules as a composite system or individually. In the former case, the broadening

arises due to the dipole-dipole coupling between the molecules and the (linear) inhomogeneity of the

16



Table II: Exploiting the occurrence of an avoided crossing in Scheme II

Before avoided crossing After avoided crossing

Molecule 1 Molecule 2 Molecule 1 Molecule 2

ηm 2.63 2.893 2.64 2.904

H 1.302 T 1.432 T 1.307 T 1.438 T

ωem,1 36.427 GHz 36.427 GHz

ωem,2 3.643 GHz 3.656 GHz

ωem,3 36.427 GHz 36.368 GHz

∆ω = ωem,1 − ωem,3 1.662 Hz 198.429 MHz

Table III: Addressing individual molecules for readout in Scheme II. Here ∆E is the energy difference

between the eigenenergies of |0〉 and |1〉 states of the individual molecules.

Before avoided crossing

Molecule 1 Molecule 2

ηm 2.63 2.893

H 1.302 T 1.432 T

∆E 36.427 GHz 40.069 GHz

external field(s). The spread in the translational confinement of each molecule over the range ∆rb in

the trap gives rise to two extreme cases as illustrated in Fig. 10. Case (a) pertains to the minimum

and case (b) to the maximum possible value of r1,2. Recall that the intermolecular separation r1,2

directly influences the frequencies ω1, ω2 and ω3, cf. panel (c) of Fig. 5 (the smaller r1,2, the

greater the dipole-dipole coupling element, and hence the greater the energy differences between

the four states). For determining the maximum possible broadening, it is sufficient to consider

the minimum and maximum values of r1,2 and compare the corresponding broadening with the

key frequency difference ∆ω = ωem,3 − ωem,1. In each of the two extreme cases, the system can

occupy one of the four possible states, with eigenenergy Eij , for i = {a, b} and j = {1, 2, 3, 4}. For

any given transition between two of these four states, the maximum possible broadening due to

Table IV: Broadening of the three key frequencies when addressing the composite two-molecule system at

ηm=2.64, where i ∈ {1, 2, 3}. See Fig. 10.

Quantity Broadening (=ωai - ωbi)

ωem,1 0.069 Hz

ωem,2 0.013 Hz

ωem,3 2.461 kHz

17
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Figure 10: Maximum possible broadening of spectral lines when addressing the composite two-molecule

system. See text.

the spread in the translational confinement of the molecules will be the difference of corresponding

frequencies in cases (a) and (b). Thus, the condition for feasibility of CNOT gate operation in

Scheme II is that there be no overlap of these frequency ranges,

[ωa3, ωb3] ∩ [ωa2, ωb2] ∩ [ωa1, ωb1] ∈ {∅}, (16)

where ωi1, ωi2 and ωi3 denote the differences Ei1 − Ei2, Ei2 − Ei3 and Ei3 − Ei4 respectively, for

i = {a, b}. For the microkelvin optical trap conditions envisaged in our setup [24, 48–50], we take

∆rb = 30 nm, and find that the broadening due to the dipole-dipole coupling is about six orders

of magnitude greater than that due to the inhomogeneity of the fields. Broadening values of the

three key frequencies are listed in Table IV. Note that the broadening of ωem,3 is five orders of

magnitude smaller than that of the key frequency shift ∆ω at ηm = 2.64.

In the latter case of addressing both molecules individually, broadening can be defined as the

difference of the ‘flipping frequencies’ of the molecule at the two extremes of the optical trap,

see Fig. 11. Thus, the feasibility criteria for the individual addressability of the qubits can be
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Figure 11: A schematic view of the maximum possible broadening of spectral lines, ˜̃ω−ω̃, for each individual

molecule. Panel (a) shows the broadening for transitions between high- and low-field seeking states. Panel

(b) shows the linear dependence of the applied field strength on the longitudinal coordinate, r, along the

array. Adjacent wells confining molecule 1 and molecule 2 are separated by a distance r1,2 = λ/2, with λ

the wavelength of the optical trapping field. In this figure, the interaction parameter η stands for both ηm

and ηel.

expressed in the form of the following inequalities for the two molecules:

∆ω1 = |ω̃1 − ˜̃ω1| � |∆E0(η1)−∆E1(η2)| (17)

∆ω2 = |ω̃2 − ˜̃ω2| � |∆E0(η1)−∆E1(η2)| (18)

where the indices 1 and 2 refer to the two molecules (also see Table III, 3rd row); i.e. the broadening

for each molecule must be very small compared to the difference of the flipping frequencies of the

two molecules. Both of the above conditions are met by our candidate system of a pair of NaO

molecules.
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V. CONCLUSIONS

We have examined the eigenproperties of a pair of 2Σ molecules in the presence of superimposed

electric and magnetic fields and proposed two schemes for the implementation of the controlled-

NOT quantum gate. Preliminary results for a pair of NaO molecules show a non-zero transition

dipole moment corresponding to the transition frequency ωem,3 and a feasibility of an optical control

in the face of the line broadening arising from the dipole-dipole interaction and the inhomogeneity

of the fields. Our choice of qubits is consistent with the possibility of implementing field-free two

qubit Bell states or multi-qubit highly entangled states (cluster states, GHZ states or W states) in

two-dimensional and three-dimensional arrays for one-way quantum computation [21, 51, 52]. In

our forthcoming work the schemes proposed will be tested by invoking multi-target optimal control

theory (MTOCT) [26, 53–55] as a means of optimizing the initial-to-target transition probability

via a tailored optical control field and evaluating the attainable fidelity.

We note that the second step of both schemes could be replaced by the more robust Adiabatic

Population Transfer process [56], whereby all three steps would be rendered adiabatic. Furthermore,

we note that by choosing the highest Ñ = 0 and the lowest Ñ = 1 states as the |0〉 and |1〉 qubits,

respectively, the avoided crossing between them could be used for adiabatic quantum computation,

as in Ref. [57], or even for holonomic quantum computation [58, 59].
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