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I. INTRODUCTION

A characteristic property of the majority of quantum field theories (QFT) is the divergence
of integrals appearing in the perturbation theory for the calculation of physical quantities such
as mass and charge of the interacting particles. The divergences appear in the integrations over
momenta in intermediate states both on the lower limit (infrared divergence) and on the upper
limit (ultraviolet divergence). In order to circumvent this difficulty, a renormalization proce-
dure is used, which allows the redefinition of the initial parameters of the system through their
observable values. The renormalization scheme was firstly developed for quantum electrody-
namics (QED) [1] and later generalized to other QFT models [2]. These schemes can be used for
so-called renormalizable theories, for which the reconstructed perturbation theory can be built
in a way that the infinite values are included in the definition of “physical” charge and mass
and, therefore, do not appear in other observables of the system. However, even the founders
of QED anticipated “that the renormalization theory is simply a way to sweep the difficulties
of the divergences in electrodynamics under the rug.” (R. P. Feynman [3]). In many papers P.
A. M. Dirac wrote that this approach was in contradiction with logical principles of quantum
mechanics [4, 5].

Accordingly, the question arises whether these divergences are an intrinsic property of quan-
tum field models or they are caused by the application of perturbation theory for the calculation
of physical quantities, which are non-analytical functions of the coupling constant such as in the
theory of superconductivity [6]. A large number of works is devoted to this problem, neverthe-
less a solution still has not been found up to now. However, this question is of great importance
for a correct mathematical formulation of fundamental physical theories and is essential for ex-
amining the applicability of non-renormalizable theories [7] for the description of real physical
systems.

Let us recall that in standard perturbation theory the Hamiltonian of non-interacting fields
is used as a zeroth-order approximation, while Fock states of the free fields are employed for
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the calculation of the transition matrix elements in the subsequent corrections to observable
characteristics of the system. This approach is based on the assumption of an asymptotic switch
off of the interaction between the fields [8]. However, in a series of works it has been shown [9–
12] that the infrared divergence arises just because of the use of asymptotically free field states.
As follows from reference [9] and the subsequent publication [10], the infrared divergence
disappears in all orders of perturbation theory in QED if, in the zeroth-order approximation, the
coherent states of the electromagnetic field bound to the particle are used and the parameters of
these states are appropriately chosen.

At first glance, this may contradict representation theory in quantum mechanics, in accor-
dance to which the result of the calculation of the observable characteristics of the system should
not depend on the choice of basis states, provided that those form a full basis in a Hilbert space as
for free field states. However, this statement is correct only for the exact solution of the problem,
whereas individual terms of the perturbation series can change with a different choice of basis
in zeroth-order approximation. As was demonstrated in reference [13, 14] the transition from
one basis to another corresponds to the partial summation of a divergent series within standard
perturbation theory and allows for the non-perturbative calculation of subsequent corrections
in the form of a convergent sequence. A good example of how the basis choice influences the
approximate calculation of the characteristics of the quantum system with a continuous spec-
trum is given by the scattering at a Coulomb potential [15]. In this well known case, the wave
function of the system has no singularities. In contrast, Born’s scattering amplitude, approxi-
mately calculated via an asymptotically free basis, displays a singularity for scattering at small
angles. As was demonstrated in references [15], this singularity does not appear with the use of
non-asymptotic wave functions.

The main goal of our work is to investigate whether a proper choice of basis in zeroth-order
approximation allows to construct a calculation scheme free of ultraviolet divergences. In order
not to overload the proposed approach with details related to the internal degrees of freedom and
to render all calculations as transparent as possible, we investigate as a representative example a
model system, which consists of a non-relativistic particle without spin interacting with a scalar
quantum field. A standard-perturbation-theory series, in this case, does not exhibit infrared
divergence, contains however ultraviolet divergence. This results in a dependence of the energy
of the ground state on the undefined momentum cut-off, which is required for the calculation of
high-order corrections. Consequently, our task is to prove that the energy of the ground state
of the considered model system can be calculated without any additional parameters such as a
momentum cut-off. At the same time, it is important to show that the energy of the system is a
non-analytical function of the coupling constant and consequently can not be represented as a
series in the framework of conventional perturbation theory.

With the inclusion of a field polarization our employed model coincides with non-relativistic
QED [16] or if the field is scalar it has a physical realization in solids [17], where however, due
to the discrete structure of a crystal, a natural momentum cut-off intrinsically appears, defined
via the Brillouin-zone boundary. In free space this regularization is not present and has to be
artificially included, e.g., via lattice models [18], where the boundary momentum is defined
through an artificial lattice period. In contrast, in our formulation we will consider a system in
free space without neither natural nor artificial cut-off.

In addition, in a series of works [19–22] an analogous model of a particle interacting with
a scalar quantum field with the momentum cut-off was used for the investigation of the funda-
mental mathematical problem of the existence of the solutions of the Schrödinger equation.

The article is organized in the following way. In section II the model of a non-relativistic
particle without spin interacting with a scalar quantum field is described and its parameters
are calculated in the framework of conventional perturbation theory. In section III the basis of
non-asymptotic states is investigated and the iteration scheme of the calculations is presented.
The zeroth-order approximation, which is found to be free of ultraviolet divergence for the
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energy and effective mass is then worked out using this basis. In section IV the proposed
iteration scheme is employed for computing the correction to the zeroth-order approximation of
the energy. The convergence of all integrals is demonstrated and the character of the singularity
of the energy as a non-analytic function of the coupling constant is determined in the weak
coupling limit. In addition, the details of all calculations are presented in appendices.

II. MODEL DESCRIPTION

Let us examine the Hamiltonian of the system consisting of a non-relativistic particle inter-
acting with a scalar quantum field

H = H0 + Hint, (1)

H0 =
p2

2
+

∑
k

ωka†
k

ak, (2)

Hint =
g√
2Ω

∑
k

Ak
(
eik·rak + e−ik·ra†

k

)
. (3)

Here, we select the system of units in which m = 1, ~ = c = 1, the momentum operator p =

−i∇, normalization volume Ω, vertex function Ak = 1/
√
ωk, creation (annihilation) operators

a†
k

(ak) of the field mode with the frequency ωk = k = |k|, and the coupling constant g. The real
physical system, which is described via Hamiltonian (1) corresponds to an electron interacting
with acoustic phonons in a continuous model of a crystal [17]. If we choose ωk = 1, Ak = 1/k,
and g =

√
8πα, operator (1) corresponds to the Fröhlich Hamiltonian [23], which describes the

interaction of an electron with optical phonons in a crystal, i.e., the so-called “polaron” problem
[24–26].

The total momentum operator

P = −i∇ +
∑
k

ka†
k

ak (4)

commutes with the Hamiltonian of the system (1) and consequently the eigenvalues E(P ) and
eigenfunctions |ΨP 〉 are defined as solutions of the following system of equations

H|ΨP 〉 = E(P )|ΨP 〉, (5)
P|ΨP 〉 = P |ΨP 〉. (6)

In the conventional perturbation expansion over the coupling constant in the zeroth-order ap-
proximation the solution of the stationary Schrödinger equation with Hamiltonian (2) is simply
determined and corresponds to the free particle with momentum p and Fock states of the phonon
field with the set of occupation numbers {nk1 , nk2 , . . .} ≡ {nk}:

|Ψ(0)
p,{nk}〉 =

eip·r
√

Ω
|{nk}〉,

∑
k

a†
k

ak|{nk}〉 =
∑
k

nk|{nk}〉, (7)

E(0)(P , {nk}) =
1
2

P −∑
k

knk

2

+
∑
k

ωknk, P = p +
∑
k

knk. (8)

Let us suppose that the system is in the ground state of the phonon field {nk} = 0, which leads
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to the following eigenfunction and eigenvalue

|Ψ(0)
P ,0〉 =

eiP ·r
√

Ω
|0〉 (9)

E(0)(P , 0) =
P2

2
, P = p. (10)

The first non-vanishing correction to the system energy arises in the second order of perturba-
tion theory (single-phonon intermediate transitions) and corresponds to the self-energy diagram,
which defines the mass operator Σ(P ) and is determined as

Σ(P ) = ∆E(2)(P , 0) = − g2

2Ω

∑
k

1
ωk

1
k2/2 − P · k + ωk

= − g2

16π3

∫
dk

k[k2/2 − P · k + k]
.

(11)

In order to select bound state energy Eb = E(2)(0, 0) and effective mass m∗ of a particle we
expand the energy in a series over P up to second order

E(0)(P , 0) + ∆E(2)(P , 0) ≈ Eb +
P2

2m∗
≡ − g2

16π3

∫
dk

k[k2/2 + k]
+

P2

2
− g2

16π3

∫
dk

k[k2/2 + k]3 (P · k)2.

(12)

The first integral in equation (12) logarithmically diverges, that is the bound state energy
depends on the momentum cut-off K

Eb = − g2

2π2 ln
(K

2
+ 1

)
, (13)

and becomes infinite when K → ∞, such that the correction to the energy is undefined in the
framework of the perturbation theory for our model [27].

At the same time, the corrected mass is well defined and equal to

1
m∗
' 1 − g2

6π2 ; m∗ ' 1 +
g2

6π2 . (14)

In contrast to this in the polaron problem all integrals are convergent because they contain
in the denominator the additional power of k. The corresponding quantities for the polaron
problem read as [24–26]

Eb ' −α; m∗ ' 1 +
α

6
. (15)

It is important to stress here that in our model, the interaction energy between particle and
field is observable and consequently, the infinite energy (12) can not be included in the mass
renormalization. Thus, we can conclude that the use of perturbation theory for two physically
close quantum-field models leads to qualitatively different results. Therefore, a modification of
the calculation method of subsequent corrections to the energy for our model is required and
appears achievable.

III. ITERATION SCHEME, BASIS CHOICE AND ZEROTH-ORDER
APPROXIMATION OF THE SYSTEM’S ENERGY

In order to build an iteration scheme not in the framework of perturbation theory we will
employ the operator method (OM) for the solution of the Schrödinger equation, which was
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introduced in reference [28] and its detailed explanation is given in the monograph [13, 14]. Let
us quickly revise here the basics of this method. Suppose, the eigenvalues Eµ and eigenvectors
|Ψµ〉 with a set of quantum numbers µ of the stationary Schrödinger equation need to be found:

H|Ψµ〉 = Eµ|Ψµ〉. (16)

In contrast to perturbation theory, where the Hamiltonian H of the system is split into the
zeroth-order approximation and perturbation parts, according to OM the total Hamiltonian is
taken into account as is, while however, the state vector is probed via an approximate state:

|Ψµ〉 ≈ |ψµ(ωµ)〉,
which depends on a set of variational parametersωµ. Then, the exact solution can be represented
as a series

|Ψµ〉 = |ψµ(ωµ)〉 +
∑
ν,µ

Cµν|ψν(ωµ)〉. (17)

Here we want to pay attention to the fact that for a given set of quantum numbers µ, the set ωµ
is fixed. By plugging the expansion (17) into Schrödinger’s equation (16) and projecting on dif-
ferent states |ψµ(ωµ)〉 and |ψν(ωµ)〉 one obtains the equations for the energies Eµ and coefficients
Cµν:

Eµ =

1 +
∑
ν,µ

CµνIµν

−1 Hµµ +
∑
ν,µ

CµνHµν

 ; (18)

Cµγ =
[
Eµ − Hγγ

]−1
Hγµ − EµIγµ +

∑
ν,µ,γ

Cµν(Hγν − EµIγν)

 ; (19)

Hµν ≡ 〈ψµ(ωµ)|H|ψν(ωµ)〉; Iµν ≡ 〈ψµ(ωµ)|ψν(ωµ)〉.
It is important to stress here that all matrix elements are calculated with the full Hamilto-

nian of the system and the set of vectors |ψµ(ωµ)〉 can be normalized, while not necessarily
being mutually orthogonal. The system of equations (18), (19) is the exact representation of
the Schrödinger equation. For the approximate solution of this system, in accordance with OM
the following concept is used: the closer the zeroth-order approximation of the state vector is
to the exact solution, the closer the matrix Hµν becomes to the diagonal one. Therefore, an
iteration scheme for the solution of the system (18), (19) can be built, for which convergence
is determined with the ratios of non-diagonal elements Hµν to the diagonal ones Hµµ in the
representation of the state vectors |ψµ(ωµ)〉. A sufficiently detailed discussion of the conver-
gence of the iteration scheme for different physical systems is given in the monograph [13].
Consequently, we find the system of recurrent equations

E(s)
µ =

1 +
∑
ν,µ

C(s−1)
µν Iµν

−1 Hµµ +
∑
ν,µ

C(s−1)
µν Hµν

 ; (20)

C(s)
µγ =

[
E(s−1)
µ − Hγγ

]−1
Hγµ − E(s−1)

µ Iγµ +
∑
ν,µ,γ

C(s−1)
µν (Hγν − E(s−1)

µ Iγν)

 ; (21)

C(−1)
µν = C(0)

µν = 0; E(0)
µ = Hµµ. (22)

As opposed to conventional perturbation theory, where the exact solution is defined as a sum
of corrections of all orders, in OM the exact value of the energy of the system is given as a limit
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of a sequence

Eµ = lim
s→∞ E(s)

µ ; s = 0, 1, . . . . (23)

In particular, for the first two iterations one can find

E(1)
µ = E(0)

µ = Hµµ; (24)

E(2)
µ =

1 +
∑
ν,µ

(Hνµ − E(0)
µ Iνµ)Iµν

E(0)
µ − Hνν

−1 Hµµ +
∑
ν,µ

(Hνµ − E(0)
µ Iνµ)Hµν

E(0)
µ − Hνν

 . (25)

The last equation looks analogously to the second-order correction of perturbation theory,
while the main difference is related to the denominators of equation (25), where the matrix
element Hνν is calculated with the full Hamiltonian of the system, whereas the perturbation
theory relations merely involve the diagonal element of the unperturbed Hamiltonian. As will
be shown below, this is exactly the reason, which determines the convergence of integrals over
intermediate states.

Before proceeding with the application of the iteration scheme, let us discuss the choice of
the parameters {ωµ} = {ω1

µ, . . . , ω
n
µ, . . .} in more detail. For this we note that the representation

(18-19) is exactly equivalent to the Scrödinger equation (16), provided that the set of states
{|ψµ({ωµ})〉} is a complete one. It is evident that if the state vectors {|ψµ({ωµ})〉} coincide with the
exact eigenstates |Ψµ〉 of the full Hamiltonian, the matrix Hµν is a diagonal one, i.e. Hµν = Eµδµν
and the coefficients Cµν = 0. The eigenvalues Eµ are determined exactly and are independent of
the set of parameters {ωµ}. Therefore, the relation

∂Eµ

∂ωn
µ

≡ 0, n = {1, 2, . . .} (26)

holds identically.
According to our initial assumption we choose the trial parameters {ωµ} in the basis states

|ψµ({ωµ})〉 such that they determine the best possible approximation for the exact solution |Ψµ〉
in the chosen class of functions. This is equivalent to the supposition that the off-diagonal
elements of the matrix Hµν are small numbers such that the ratios Hµν/Hµµ are proportional to
some effective small parameter ε. Therefore, the zeroth-order approximation of the operator
method is chosen as

E(0)
µ ({ωµ}) = Hµµ({ωµ}), C(0)

µν = 0, |Ψ(0)
µ 〉 = |ψµ({ωµ})〉. (27)

However, the matrix Hµν contains small off-diagonal elements, which need to be taken into
account. Hence, the subsequent approximations read

Eµ = Hµµ({ωµ}) +

∞∑
s=1

ε sE(s)
µ ({ωµ}), (28)

Cµν({ωµ}) =

∞∑
s=1

ε sC(s)
µν ({ωµ}), µ , ν. (29)

As the left-hand side of equation (28) does not depend on the parameters {ωµ} it is natural to
require that in each order in ε the right-hand side also does not depend on {ωµ}:

∂Eµ

∂ωn
µ

= 0, s = {0, 1, . . .} (30)
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for each ωn
µ. In the monograph [13] it was demonstrated that the recalculation of the parameters

{ωµ} in every order in ε speeds up the convergence of the iteration scheme, however does not
change the qualitative behaviour of the energy levels of the system. For this reason, in all
calculations below we will fix the parameters {ωµ} via the zeroth-order approximation:

∂E(0)
µ

∂ωn
µ

= 0. (31)

In what follows we apply the above approach to the description of our model. In accordance
with OM we choose a variational state vector, which incorporates the qualitative peculiarities
of the system. From a physical point of view a field can be considered as a system of an infinite
number of harmonic oscillators. Due to the interaction with a particle the equilibrium positions
of these harmonic oscillators are modified. In a representation of creation and annihilation oper-
ators the shift of equilibrium positions corresponds to the displacement of a classical component
uk on these operators [29], i.e. a†

k
→ a†

k
+ u∗k and ak → ak + uk, such that we choose a basis of

field oscillators consisting of coherent states. As a result a so-called localized state of a particle
in the field of these classical components arises. This means that during its existence the particle
becomes “dressed”, i.e. somewhat smeared out while still localized. Moreover, this “dressed”
state should be an eigenstate of the total momentum operator P, since P commutes with H.
Concluding, we formulate the following conditions for the state vectors: i) representation in the
basis of coherent states; ii) imposing the localization of the particle state; iii) use of variational
state vectors as eigenstates of P (4).

In order to incorporate the first two conditions in the state vector, we choose it as the product
of the square integrable wave function of a particle, localized near an arbitrary pointR in space,
and a coherent state of the field, analogous to the polaron problem [24, 30]:

|Ψ(r,R)〉 = φ(r −R) exp

∑
k

(
u∗ke−ik·Ra†

k
− ukeik·Rak

) |0〉. (32)

In the state (32) the classical component of the field uk and the wave function φ(r −R) can
be considered as the variational parameters {ωµ} of OM. In accordance with the above described
procedure of the choice of the parameters {ωµ}, the functional derivative over these parameters
from the functional 〈Ψ(r,R)|H|Ψ(r,R)〉 should be equal to zero. This yields an equation for
the classical components of the field uk and the wave function φ(r −R):

δ

δuk
[〈Ψ(r,R)|H|Ψ(r,R)〉] =

δ

δφ(r −R)
[〈Ψ(r,R)|H|Ψ(r,R)〉] = 0. (33)

By calculating the functional with the Hamiltonian (1) and corresponding derivatives one
obtains the connection between the classical components of the field and the wave function of
the particle:

uk = − g√
2Ωω3

k

∫
dr|φ(r)|2e−ik·r. (34)

In the general case, the second equation in (33) leads to the integral equation for the function
φP (r). However, according to reference [13], the convergence of the iteration scheme of OM
does not depend on the particular choice of variational parameters, under the condition that the
approximate state vector takes into account qualitative characteristics of the system. Therefore,
for the analytical investigation of the energy E(0)

L (P , g) we replace the exact numerical solution
with a trial wave function, which depends on the single parameter λ and is equal to

φ(r) =
λ

3
2

π
3
4

e−
λ2r2

2 . (35)
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We notice that in the polaron problem the application of OM with the trial wave function
(35) yields an accuracy of the order of 1% in the calculation of the bound state energy and the
effective mass [30]. With this choice of wave function, we proceed to calculate the classical
component of the field uk and the Fourier transform of the wave function (35), which will be
required below:

uk = − g√
2Ω

1√
k3

∫
dr|φ(r)|2e−ik·r = − g√

2Ω

e−
k2

4λ2

√
k3

; (36)

φk =

∫
drφ(r)e−ik·r = 2

√
2
π

3
4

λ
3
2

e−
k2

2λ2 = φ0e−
k2

2λ2 . (37)

Furthermore, the states (32) are not the eigenstates of the total momentum operator P of the
system, i.e. they are not translationary invariant. Moreover, these states are degenerate, as they
do not depend on the localization point R of the particle in space. The choice of the correct
linear combination of these states allows one to build a set of states which are not degenerate
and are eigenstates of the total momentum operator P:

|Ψ(0)
P1,nk
〉 =

1

NP1,nk

√
Ω

∫
dRφP1 (r −R) exp {i(P1 − knk) ·R} exp

∑
q

(uqe−iq·Ra†q − u∗qeiq·Raq)

 |nk〉,
(38)

P|Ψ(0)
P1,nk
〉 = P1|Ψ(0)

P1,nk
〉.

Here Ω is the normalization volume and P1 the total momentum of the system, |nk〉 are Fock
field states with occupation number nk, φP1 (r−R) is the wave function of the particle localized
at point r = R and the classical component of the field uk is defined via equation (34). The
normalization constant for the state |Ψ(0)

P1,1k
〉 is defined as

|NP1,1k |2 =

∫
dR1dρφ∗P1

(ρ)φP1 (ρ −R1)ei(P1−k)·R1+
∑

k |uk |2(e−ik·R1−1)
(
2|uk |2(cosk ·R1 − 1) + 1

)
.

(39)

In addition the set of states (38) forms a complete and an orthonormal basis in Hilbert space.
The completeness of these states follows from the fact that they are eigenstates of a Hermitian
operator P, with an explicit proof given in Appendix A. Concluding, the set of states (38) takes
into account physical peculiarities of the system, forms the complete set of states in Hilbert
space for arbitrary functions φP (r) and uk, which are an analog to the parameters {ωµ}, and,
therefore, can be usable in the iteration scheme (20-22).

The zeroth-order approximation for the ground state vector following above procedure then
reads as

|Ψ(L)
P
〉 =

1

NP
√

Ω

∫
dR φP (r −R) exp

iP ·R +
∑
k

(
u∗ke−ik·Ra†

k
− ukeik·Rak

) |0〉, (40)

whereas equations (24), (25) look like

E(2) =
E(0)

L +
∑
P1,{nk,0}C

(1)
P1,{nk}〈Ψ

(L)
P
|H|ΨP1,{nk}〉

1 +
∑
P1,{nk,0}C

(1)
P1,{nk}〈Ψ

(L)
P
|ΨP1,{nk}〉

; (41)

C(1)
P1,{nk} =

E(0)
L 〈ΨP1,{nk}|Ψ(L)

P
〉 − 〈ΨP1,{nk}|H|Ψ(L)

P
〉

HP1,{nk};P1,{nk} − E(0)
L

; (42)

HP1,{nk};P2,{n1k} = 〈ΨP1,{nk}|H|ΨP2,{n1k}〉, E(0)
L = 〈Ψ(L)

P
|H|Ψ(L)

P
〉.
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We want to emphasize once more that all matrix elements are calculated with the full Hamil-
tonian of the system

H =
1
2

P 2 − 2
∑
k

a†
k

akk · P +

∑
k

a†
k

akk

2 +
∑
k

ωka†
k

ak +
g√
Ω

∑
k

1√
2ωk

(
eikrak + e−ikra†

k

)
.

(43)

Let us calculate the ground state energy E(0)
L of the system in this basis. The details of the

calculations can be found in appendix C. The ground state energy reads accordingly

E(0)
L (P , g) =

P2

2
− P ·Q + G + Ef(P ) + Eint(P ), (44)

with

Q =
1
|NP |2

∑
k

k|uk|2
∫

dRdr φ∗P (r)φP (r −R)eΦ(R)+i(P−k)·R;

G =
1
2

1
|NP |2

∑
m,l

m · l|um|2|ul|2
∫

drdRφ∗(r)φ(r −R)eiP ·R+Φ(R)−i(m+l)·R;

Ef(P ) =
1
|NP |2

∑
k

(
k +

k2

2

)
|uk|2

∫
dRdr φ∗P (r)φP (r −R)eΦ(R)+i(P−k)·R;

Eint(P ) =
g
|NP |2

∑
k

uk√
2kΩ

∫
dRdr

(
φ∗P (r +R)φP (r) + φ∗P (r)φP (r −R)

)
eΦ(R)+i(P ·R+k·r);

Φ(R) =
∑
k

|uk|2(e−ik·R − 1);

|NP |2 =

∫
dRdr φ∗P (r)φP (r −R)eΦ(R)+iP ·R.

Actually, the iteration scheme (20), (21), (22) can be used for arbitrary coupling constants
[13]. However, as was described above, in the framework of our model we are interested in the
behavior of the ground state energy E(0)

L in the weak coupling limit. In this limit we can neglect
the function

Φ(R) =
∑
m

|um|2
(
e−im·R − 1

)
∼ g2,

in the exponent of all integrals in equation (44) as g � 1.
First of all, we investigate the situation of a particle at rest, i.e. P = 0. In this case for

the weak coupling limit the integrals in equation (44) can be expressed through the Fourier
transforms of the wave function φ(r):∫

dR1dρφ∗(ρ)φ(ρ −R1)e−ik·R1 =

∫
dρφ∗(ρ)e−ik·ρ

∫
dRφ(R)eik·R = φ∗kφ−k = φ2

k, (45)∫
dR1dρφ∗(ρ)φ(ρ −R1) = |φ0|2 = φ2

0, (46)∫
dR1dρφ∗(ρ)φ(ρ −R1)e−ik·ρ = φ∗kφ0 = φkφ0.

(47)
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With the use of equations (44), (45-47) we can rewrite the energy of the ground state in a
form

E(0)
L (0, g) =

1
2

∑
m,l

m · l|um|2|ul|2
φ2
l+m

φ2
0

+
∑
k

(
k +

k2

2

)
|uk|2

φ2
k

φ2
0

+
2g√
2Ω

∑
k

uk√
k

φk
φ0
, (48)

which up to fourth order in g yields

E(0)
L (0, g) =

g2

24π2

(
λ(−4 +

√
2)
√

3π + λ2
)

+ O(g4). (49)

By minimizing the energy with respect to λ one finds

E(0)
L (0, g) = −g2 (−4 +

√
2)2

32π
; λ =

√
3π
2

(4 −
√

2). (50)

In the weak-coupling limit it is also possible to obtain a renormalization for the mass of the
particle. This is accomplished by expanding the energy (44) in a series over P up to second
order. The details of the calculation can be found in appendix D. The result reads

E(0)
L (P, g) ≈ E(0)

L (0, g) +
P2

2

1 − g2

9π2

17 − √2
21

 ; m(0)∗ = 1 +
g2

9π2

17 − √2
21

. (51)

From this equation we can conclude that the factor, which determines the corrected mass is
half the one via the leading second-order term from perturbation theory, see e.g. equation (14).

IV. SECOND ORDER ITERATION FOR THE ENERGY AND CONVERGENCE

In the previous section we have found the energy of the ground state and the renormalized
mass, which are proportional to the square of the coupling constant in zeroth-order approxima-
tion. However, the correction to the energy coming from single-phonon intermediate transitions
is of the same order with respect to the coupling constant. Consequently, its contribution should
also be taken into account, thus requiring the calculation of the energy of the system in the
second iteration (41).

In order to calculate the second order iteration for the energy we notice (appendix E) that the
matrix elements 〈ΨP1,{nk}|Ψ(L)

P
〉 and 〈ΨP1,{nk}|H|Ψ(L)

P
〉, which are found in equations (41), (42) are

proportional to the delta function of the total momentum of the system δ(P1 − P ). Therefore,
during the evaluation of the sum over P1 in equation (41) for the energy we have used the usual
procedure [8]: one of the delta functions in its square was replaced through the normalization
volume Ω, and the integration over the remaining one yields P = P1, thus expressing the
conservation of momentum.

Firstly, we consider the case, when a particle is at rest, i. e. P = 0. The results, which are
expressed through the Fourier components of the particle wave function in the weak coupling
limit read:

E(2)(0, g) =
A
B
, (52)
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where

A = E(0)
L +

∑
k

1
φ2
k
φ2

0

[
−ukφ2

k

(
k2

2
+ k

)
− g√

2Ω

φkφ0√
k
− ukφ2

k

(
g2Ik + g4Jk − E(0)

L

)]
×

[
ukφ2

k

(
k2

2
+ k

)
+

g√
2Ω

φkφ0√
k

+ ukφ2
k

(
g2Ik + g4Jk

)
− E(0)

L ukφ2
0

]
×

[(
k2

2
+ k

)
+ g2Ik + g4Jk − E(0)

L

](−1)

, (53)

and

B = 1 +
∑
k

1
φ2
k
φ2

0

[
−ukφ2

k

(
k2

2 + k
)
− g√

2Ω

φkφ0√
k
− ukφ2

k

(
g2Ik + g4Jk − E(0)

L

)]
uk(φ2

k − φ2
0)(

k2

2 + k
)

+ g2Ik + g4Jk − E(0)
L

.

(54)

In equations (53- 54) we have introduced the following notations

∑
m

m|um|2φ2
m+k ≡ g2φ2

kI
(1)
k

; I (1)
k

=
k

k2

λ2

32π2

4k − e
2
3

k2

λ2
√

6πλErf
√

2
3 k
λ

k
; (55)

∑
m

(
m2

2
+ m

)
|um|2φ2

m+k ≡ g2φ2
kI(2)
k

; I(2)
k

=
λ2

96π2

√
6πλe

2
3

k2

λ2 Erf
√

2
3 k
λ

+ 6πErfi
√

2
3 k
λ

k
;

(56)

gφk√
2Ω

∑
m

um√
m

(φm+k + φm−k) ≡ g2φ2
kI(3)
k

; I(3)
k

= − λ
2

4π

Erfi k√
3λ

k
; (57)

Ik = k · I (1)
k

+ I(2)
k

+ I(3)
k

; (58)

1
2

∑
l,m

l ·m|ul|2|um|2φ2
l+m+k ≡ g4φ2

kJk; Jk ≈ 51/2λ2

4(2π)335 e
4
5

k2

λ2

2
15

k2

λ2 − 1

(1 + 4
45

k2

λ2 )3
, (59)

where Erf(x) = 2/
√
π
∫ x

0 e−z2
dz and Erfi(x) = −iErf(ix) are the error function and the imaginary

error functions, respectively. When we calculated the energy of the ground state, we dropped all
terms with power in g larger than g2. Consequently, we can neglect the term g4Jk in comparison
with g2Ik, which can be confirmed by the direct numerical calculation of the integral.

Prior to the numerical evaluation of the integrals (53) and (54), let us understand their struc-
ture through the approximate analytical calculation. We investigate the behavior of the numer-
ator and denominator of the quantities A and B. We start from breaking the integration region
into two parts, namely [0, k0] and [k0,∞). The value k0 will be fixed below. Let us work out the
behavior of the quantity Ik for small and large values of k. First of all we notice that g2I0 gives
exactly the ground state energy E(0)

L . For small values of k, with the increase of k the value of
g2Ik ∼ −g2k2/(18π2) + E(0)

L , i.e, it grows quadratically in absolute value, while being negative.
Therefore, due to the presence of g2, this term is small in comparison with k2/2 + k for small
values of k, so that, in the denominator of quantity A, the leading term is k2/2 + k. For large

values of k, the quantity g2Ik exponentially grows as Ik ∼ e
2
3

k2

λ2 /k and becomes the leading
contribution in comparison with k2/2 + k, despite the higher power of g.
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In analogy, we can analyze the numerator of the quantity A. For small values of k we can
neglect in every square bracket in equation (53) the large powers of g, i.e. terms with exponents
larger than 1. Consequently, for small values of k, the integrand within A looks like

−

[
ukφ2

k

(
k2

2 + k
)

+
g√
2Ω

φkφ0√
k

]2

φ2
k
φ2

0

(
k2

2 + k
) . (60)

For large values of k, the numerator is exponentially decreasing, with the leading term being

(− g√
2Ω

φkφ0√
k

)(−E(0)
L uk). This follows from the fact that uk ∼ e−

k2

4λ2 and φk ∼ e−
k2

2λ2 . Consequently,
the integrand for large values of k can be presented as

(− g√
2Ω

φkφ0√
k

)(−E(0)
L uk)

g2φ2
k

Ik
. (61)

Combining all together, we find that the quantity A can be approximately calculated as

A ≈ E(0)
L +

∑
k<k0

−
(
uk

φk
φ0

(
k2

2 + k
)

+
g√
2Ω

1√
k

)2

( k2

2 + k)
+

∑
k>k0

(− g√
2Ω

φkφ0√
k

)(−E(0)
L uk)

φ2
k

g2Ik
. (62)

In this expression, both sums are well defined and remain finite. The sum over the region
k > k0 is finite and convergent, while the ratio of numerator and denominator in the integrand is

exponentially decreasing as e−
5k2

12λ2 .
In equation (62) the point k0 is determined as a solution of the equation

k2

2
+ k + g2Ik − E(0)

L = 0, (63)

or employing the asymptotic behavior for the function Ik (appendix F)

k2
0

2
+ k0 = g2 λ

3
√

6π
48π2

e
2
3

k2
0
λ2

k0
, (64)

and by finding the following logarithm

ln
( k2

0
2 + k0)k0

a
= −2| ln g| + 2

3
k2

0

λ2 , (65)

with

a =
λ3
√

6π
48π2 .

In the limit of extremely small g, we can build the solution of equation (65) via iterations,
thus yielding

k0 ∼ λ
√

3| ln g|. (66)

The estimation of quantity B can be performed in a similar fashion and one finds

B ≈ 1 +
∑
k<k0

−
(
uk

φ2
k

φ2
0

(
k2

2 + k
)

+
g√
2Ω

φk

φ0
√

k

)
uk(φ2

k − φ2
0)

φ2
k

( k2

2 + k)
+

∑
k>k0

(− g√
2Ω

φkφ0√
k

)uk( φ
2
k

φ2
0
− 1)

φ2
k

g2Ik
. (67)
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At first sight, it may appear that the quantity B features an infrared divergence, because the
term g√

2Ω

φkuk
φ0
√

k
/(φ2

k( k2

2 + k)) ∼ 1/k3 as k → 0. However, this additional power of k in the

denominator is cancelled through the difference φ2
k − φ2

0 ∼ k2/λ2. The convergence at infinity is

manifested with the exponential decrease of the integrand ∼ e−
5k2

12λ2 .
By plugging into equations (62) and (67) the values of φk and uk, which are defined in

equations (36- 37) and calculating the integrals (appendix F) we find the approximate analytical
formula for the second iteration for the ground state energy

A ≈ E(0)
L −

 g2λ

24π2

√6πErf


√

3
2 k0

λ

 + λ − λe−
3k2

0
2λ2

 − g2λ

2
√

3π3/2
Erf

 √3k0

2λ


 − g2

2π2 ln
(

k0

2
+ 1

)
+ E(0)

L
12
√

6π
5λπ

e−
5k2

0
12λ2 ,

(68)

B ≈ 1 +
g2

12π2 (1 − e−
3
2

k2
0
λ2 ) − g2 f

(
k0

λ

)
− 144

√
6π

25λπ

1 +
5
12

k2
0

λ2

 e−
5k2

0
12λ2 , (69)

f (x) =
1

4π2

∫ x

0

tdt
1 + t/2

e−
3
4 t2
.

Within the accuracy of the approximate formulas, we can set B ≈ 1. Therefore, one finally
obtains

E(2)(0, g) ≈ A. (70)

The use of our simple analytical expressions allows to establish the behavior of the energy as a
function of the coupling constant and consequently to determine the character of the singularity.
In order to select the singularity, we investigate the limit

lim
g→0

E(2)(0, g).

In this limit, the value of k0 logarithmically grows. Consequently, we can approximately set
k0 → ∞ both in the expression in square brackets and in the last term of equation (68). This
way, the square bracket becomes equal to the energy of the ground state (appendix F) and
cancels E(0)

L . The last term also does not contribute to the energy as being exponentially small.
Consequently, the only term remains, which exactly determines the character of the singularity
and is equal to

E(2)(0, g) −→
g→0
− g2

2π2 ln
(

k0

2
+ 1

)
; (71)

k0 ≈ λ
√

3| ln g|. (72)

We observe that this term exactly coincides with the result via perturbation theory, i.e. equation
(13), however, here with a well specified “cut-off”. Moreover, the most contributions to the
integral in the energy arise from the region k < k0 and this is exactly the reason for the natural
“cut-off”, which is determined self consistently and is directly related to the only parameter of
the Hamiltonian, namely the coupling constant. Let us mention here that the corrections to the
energy of the system (71) arise in the subsequent iteration and are related to the transitions into
intermediate states with two phonons. These contributions are proportional to g4.

In addition we note here that the absence of the ultraviolet divergence in the energy of the
ground state in equations (52, 53, 54) is due to the fact that as in the zeroth-order approximation
and in the second-order iteration in the resolvent [E(0)

µ − Hνν]−1 of equation (25) the dressed
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Figure 1. (Color online) (a)) The dependence on the coupling constant of the ratio of the exact numerical
evaluation to the approximate analytical formula of the second iteration for the energy. The value k0 in
the analytical approximation is equal to k0 = λ

√
3| ln g|. (b)) The dependence of the imaginary part of the

energy of the system on the coupling constant. The imaginary part corresponds to the finite lifetime of the
state.

wave functions (38) were used. This leads to the effective momentum cut-off k0(g), which is
determined as the solution of equation (63). This cut-off is a function of the coupling constant
and is not a phenomenological parameter, which needs to be introduced for the removal of the
ultraviolet divergence. Moreover, as follows from equation (71), the energy of the ground state
has a logarithmic singularity as g → 0. It is clearly seen that this dependence can not be sorted
out in the framework of perturbation theory, which yields a power series over the coupling
constant g.

In order to ensure that our interpretation is correct, we have evaluated the integrals numeri-
cally and have found in the limit of extremely small g the ratio of the results via exact numerical
versus analytical evaluations. This ratio is almost constant and is approximately equal to one,
as presented in Figure 1. Therefore, we can conclude that the main reason why conventional
perturbation theory fails is related to the fact that the energy of the system is a non-analytical
function of the coupling constant and consequently can not be expanded in a series over g near
a singular point.

The second interesting consequence of the numerical evaluation of the integral is related to
the fact that the energy of the system contains a small imaginary part, which means that the
state has a finite lifetime and is quasi-stationary. To prove this, we have calculated the transition
probability to the state |ΨP1,1k〉 for the case when a particle is at rest, i.e.

w0→1

2
= π

∫
|〈ΨP1,{nk}|H|Ψ(L)

P
〉|2δ

(
HP1,1k;P1,1k − E(0)

L

) Ωdk
(2π)3

=
Ω

2π
k2

|k + 1 + g2I′
k
|

[
ukφ2

k

(
k2

2 + k
)

+
g√
2Ω

φkφ0√
k

+ ukφ2
kg2Ik − E(0)

L ukφ2
0

]2

φ2
0φ

2
k

∣∣∣∣∣∣ k2
2 +k+g2Ik−E(0)

L =0
.

(73)

The result of evaluation is presented in Figure 1. As can be seen from the figure the two
curves coincide exactly. This can be interpreted via the diagram technique [8]. The second order
iteration for the energy of the particle can be presented via the diagram depicted in Figure 2.
If the diagram is split by the dashed line, the imaginary part will correspond to the transition
probability to the state |ΨP1,1k〉.

Here, we need to stress that contrary to standard perturbation theory in our formulation the
conservation of energy is governed not by the free Hamiltonian H0, but through the expectation
value of the total Hamiltonian HP11k;P11k . Therefore, for certain values of k and for certain
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P1 1

HP11k ;P11k
�E(0)

L

Figure 1: Feynman diagram of the first-order scattering process in the field of a
plane electromagnetic wave.

asdasdsadasasdsasdasdsadasdsa

Figure 2. (Color online) Feynman diagram of the process. If the diagram is split by the dashed line,
the imaginary part will correspond to the transition probability to the state |ΨP1 ,1k 〉. However, in the
intermediate states the resolvent of the full Hamiltonian instead of a free one is used.

coupling constants g this energy level might appear to be below the energy E(0)
L , featuring a

so called quasi-intersection of energy levels. If the transition probability to the state |ΨP1,1k〉
were large, the description of the system with the state vectors (38) would not be applicable
and the reconstruction of the states would need to be performed, which takes into account the
degeneracy between the energies E(0)

L and HP11k;P11k . In our case, however, the transition prob-
ability is small and consequently the description with a complex energy, with small imaginary
part, is valid, in analogy to the theory of a natural line width of the atomic states or anharmonic
oscillator p2/2 + x2/2 − µx4, with µ > 0.

In order to conclude our formulation we have calculated the renormalized mass in the second
iteration. In terms of the introduced abbreviations the second order iteration for the particle
energy can be written as

E(2)(P , g) =

P2

2 + Ẽ(0)
L (P , g) + AP

BP
, (74)

with

Ẽ(0)
L (P , g) = −P ·

∑
m

m|um|2
φ2
P−m
φ2
P

+
∑
m

(
m2

2
+ m

)
|um|2

φ2
P−m
φ2
P

+
2g√
2Ω

∑
m

um√
m
φP−m
φP

.

(75)

The quantity AP reads as

AP =
∑
k

[
P2

2
uk

(
φ2
P−k − φ2

P

)
+

(
k2

2
+ k − P · k

)
ukφ2

P−k +
g√
2Ω

φP−kφP√
k

+ g2ukφ2
P−kIP−k − Ẽ(0)

L (P , g)ukφ2
P

]
×

[
Ẽ(0)

L (P , g)ukφ2
P−k −

((
k2

2
+ k − P · k

)
ukφ2

P−k +
g√
2Ω

φP−kφP√
k

+ g2ukφ2
P−kIP−k

)]
1

φ2
P−kφ

2
P

×
[(

k2

2
+ k − P · k

)
+ g2IP−k − Ẽ(0)

L (P , g)
]−1

, (76)

and the quantity BP is equal to

BP = 1 +
∑
k

[
Ẽ(0)

L (P , g)ukφ2
P−k −

((
k2

2
+ k − P · k

)
ukφ2

P−k +
g√
2Ω

φP−kφP√
k

+ g2ukφ2
P−kIP−k

)] uk
(
φ2
P−k − φ2

P

)
φ2
P−kφ

2
P

×
[(

k2

2
+ k − P · k

)
+ g2IP−k − Ẽ(0)

L (P , g)
]−1

. (77)
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To proceed, we again break the limit of the integration into two parts, however, now we
know that the main contribution to the energy of the system comes from the region [0, k0]. In
this region, we again drop all terms, with power of g larger than one. We recall here that the
classical component of the field uk is proportional to g and the energy E(0)

L (P , g) ∼ g2. In
addition, the limit P � 1 is considered. Moreover, as the quantity BP , after expansion over
momentumP , will have a form BP = 1−g2F(P2), we can setP = 0 in BP , in order to preserve
the same accuracy.

In this approximation, the quantity AP takes the form

AP = − P2

2

∑
k<k0

uk

(
φ2
P−k − φ2

P

)
φP−kφP

uk φP−kφP
+

g√
2Ω

1√
k

(
k2

2
+ k − P · k

)−1


−
∑
k<k0

[(
k2

2
+ k − P · k

)
uk
φP−k
φP

+
g√
2Ω

1√
k

]2 (
k2

2
+ k − P · k

)−1

(78)

and

BP = B0 = 1 −
∑
k<k0

(
uk

φ2
k

φ2
0

(
k2

2 + k
)

+
g√
2Ω

φk

φ0
√

k

)
uk(φ2

k − φ2
0)

φ2
k

( k2

2 + k)
. (79)

If the definition of E(0)
L (P , g) (75), together with equations (78) and (79), is used in equation

(74), the second iteration for the energy of a moving particle is obtained

E(2)(P , g) = E(2)(0, g) − g2

2Ω

∑
k<k0

(P · k)2

k(k2/2 + k)3

+
P2

2

1 −
∑
k<k0

u2
k

φ2
k

φ2
0

− 1
 +

g√
2Ω

uk√
k(k2/2 + k)

(
φ2
k − φ2

0

)
φkφ0




×
1 − ∑

k<k0

u2
k

φ2
k

φ2
0

− 1
 +

g√
2Ω

uk√
k(k2/2 + k)

(
φ2
k − φ2

0

)
φkφ0



−1

, (80)

or after simplification, taking into account the fact that the sum in the denominator is propor-
tional to g2, one finally obtains

E(2)(P , g) = E(2)(0, g) +
P2

2
− g2

2Ω

∑
k<k0

(P · k)2

k(k2/2 + k)3 . (81)

From here, we see that the second iteration for the renormalized mass

m(2)∗ ≈ 1 +
g2

6π2 (82)

coincides with the one via perturbation theory.

V. CONCLUSION

In current methods of renormalization in QFT, the momentum cut-off plays an important role
[31], which in fact is an additional and undefined parameter of the theory. Usually, the inclusion
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of such parameter for a concrete model is justified with the argument that the theory becomes
incorrect on a small scale, where a more general theory must be used instead. For example,
in the case of QED it is widely accepted that on a small scale the Standard Model, with its
own characteristic length, should be rather used. However, in the Standard Model, as in its
possible generalizations, for the renormalization of perturbation theory the cut-off is required.
Consequently, we come to the requirement of the inclusion of some “fundamental length” or
unobservable parameter of any QFT.

However, the Fröhlich Hamiltonian demonstrates the absence of a cut-off in the polaron the-
ory. In this QFT all corrections are determined through convergent integrals and, consequently,
the cut-off is not required. Here we considered a more general QFT than the one associated
with the polaron problem, for which standard perturbation theory gives rise to divergences. The
main result of the present work consists in the construction of a calculation scheme for this
more general QFT that only leads to convergent integrals. In addition to that, the regulariza-
tion of all integrals is related to the effective-cut-off momentum, which is defined through the
parameters of the system itself. Moreover, the divergences of standard perturbation theory are
explained through the energy being a non-analytical function of the coupling constant, of a form
ln(

√| ln g|/2 + 1), around zero, and, therefore, can not be represented as a power series around
this singular point. It is also important that the character of the singularity, defined in equation
(71) in the weak coupling limit does not depend on the particular choice of the wave functions
φP (r) of the zeroth-oder approximation.

From a formal point of view, the convergence of all integrals is explained as follows: i) the use
of the decomposition (17), i.e. the special state vectors, which are the product of the wave func-
tion of a localized particle and a coherent state of the field and ii) the calculation of the energy of
the system with the iteration scheme (25), in which the resolvent of the operator [Hkk − E(0)]−1

contains the matrix elements of the full Hamiltonian of the system. In standard perturbation
theory the Hamiltonian of non-interacting fields is used in the analogous expressions.

From a physical point of view the argument i) corresponds to avoiding an adiabatic switch off

of the interaction. This means that a particle during its existence time is considered as “dressed”,
i.e. to be in a localized state which is created due to the interaction between the particle and the
field. The argument ii) leads to the “cutting” of all integrals for a large momentum due to the
reconstruction of a localized state in intermediate states, caused by the quasi-intersection of the
ground and the single-phonon states.

Our approach should not be considered and does not pretend to be the full solution of the
renormalization problem in QFT, specifically, because of the use of a simple, non-relativistically
covariant model. Nevertheless, it demonstrates an alternative, succeeding without introducing
any phenomenological momentum cut-off.
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APPENDIX A: PROOF THAT THE STATES (38) ARE EIGENSTATES OF THE
TOTAL MOMENTUM OPERATOR

In this appendix we present an explicit proof that the total momentum operator

P = −i∇r +
∑
k

ka†
k

ak
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commutes with the Hamiltonian

H = −1
2

∆ +
∑
k

ka†
k

ak +
g√
2Ω

∑
k

Ak
(
eik·rak + e−ik·ra†

k

)
of the system and that the states (38) are eigenstates of P

P|Ψ(0)
P1,nk
〉 = P1|Ψ(0)

P1,nk
〉, (83)

consequently forming a complete set in the Hilbert space.
Let us begin with the commutator:

[H,P] =

 g√
2Ω

∑
k

Ak
(
eik·rak + e−ik·ra†

k

)
,−i∇


+

 g√
2Ω

∑
k

Ak
(
eik·rak + e−ik·ra†

k

)
,
∑
k

ka†
k

ak


=

g√
2Ω

∑
k

Ak
(
akeik·r(−k) + a†

k
e−ik·rk

)
+

g√
2Ω

∑
k

Ak
(
akeik·rk + a†

k
e−ik·r(−k)

)
= 0, (84)

which was to be proven.
Now we will demonstrate that the relation (83) holds. Also, we will introduce the notations

D(R) = exp

∑
q

(uqe−iq·Ra†q − u∗qeiq·Raq)

 , with (85)

D†(R)D(R) = D(R)D†(R) = 1, (86)

D†(R)akD(R) = ak + uke−ik·R, (87)

D†(R)a†
k

D(R) = a†
k

+ u∗keik·R, (88)

i
∂D(R)
∂R

= D(R)
∑
q

q
(
uqe−iq·Ra†q + u∗qeiq·Raq

)
(89)

Consequently, with the help of equations (85-89) we may write

P|Ψ(0)
P1,nk
〉 =

−i∇r +
∑
q

qa†qaq

 1

NP1,nk

√
Ω

∫
dRφP1 (r −R) exp {i(P1 − knk) ·R}D(R)|nk〉

=
1

NP1,nk

√
Ω

∫
dR(−i∇r)(φP1 (r −R)) exp {i(P1 − knk) ·R}D(R)|nk〉

+
1

NP1,nk

√
Ω

∫
dRφP1 (r −R) exp {i(P1 − knk) ·R}

∑
q

qa†qaqD(R)|nk〉. (90)

By noticing that −i∇r(φP1 (r − R)) = i∇R(φP1 (r − R)) and transforming
∑
q qa†qaqD(R) =
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D(R)D†(R)
∑
q qa†qaqD(R) one obtains

P|Ψ(0)
P1,nk
〉 =

1

NP1,nk

√
Ω

∫
dR(i∇R)

[
φP1 (r −R) exp {i(P1 − knk) ·R}D(R)

] |nk〉
− 1

NP1,nk

√
Ω

∫
dRφP1 (r −R)(i∇R)

[
exp {i(P1 − knk) ·R}D(R)

] |nk〉
+

1

NP1,nk

√
Ω

∫
dRφP1 (r −R) exp {i(P1 − knk) ·R}D(R)

×
∑
q

q
(
a†q + u∗qeiq·R) (

aq + uqe−iq·R)
|nk〉.

(91)

The first term in equation (91) vanishes due to the square-integrability of the function φP1 (r −
R). The derivative in the second term is equal to

(i∇R)
[
exp {i(P1 − knk) ·R}D(R)

]
= −(P1 − knk) exp {i(P1 − knk) ·R}D(R)

+ exp {i(P1 − knk) ·R}D(R)
∑
q

q
(
uqe−iq·Ra†q + u∗qeiq·Raq

)
(92)

and, therefore, the terms which are not proportional to P1 in equation (92) cancel the last term
in equation (91). As a result, equation (91) transforms into

P|Ψ(0)
P1,nk
〉 = P1|Ψ(0)

P1,nk
〉, (93)

which was to be proven.
According to reference [32], the eigenstates of a Hermitian operator form a complete and

orthogonal set of functions in the Hilbert space. As the functions (38) are eigenstates of the
Hermitian operator P, they form a complete orthogonal set for arbitrary generalized parameters
φP1 (r −R) and uk.

APPENDIX B: MATRIX ELEMENTS CALCULATION

In all subsequent calculations, the matrix elements of a type

〈nj | exp

−∑
m

a†mume−im·R′ − amu∗meim·R′
∑
l

f (al, a
†
l
)

× exp

∑
m

a†mume−im·R − amu∗meim·R
 |nk〉 (94)

need to be evaluated. By using the identities

D = eβa†−β∗a = e−|β|
2/2eβa†e−β

∗a = e|β|
2/2e−β

∗aeβa† , (95)

D−1aD = a + β, D−1a†D = a† + β∗, (96)
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equation (94) can be transformed into the form

exp(
∑
m |um|2(e−im·(R−R′) − 1))√

nk!nj!

× 〈0|(aj − uje−ij·R′ + uje−ij·R)nj
∑
l

f
(
al + ule−il·R, a†

l
+ u∗le

il·R′)
× (a†

k
+ u∗keik·R′ − u∗keik·R)nk |0〉. (97)

The evaluation of equation (97) is performed in the usual manner, i.e, by noticing that a|0〉 =

〈0|a† = 0 and the vacuum average is not equal to zero only if the number of creation operators
is equal to the one of annihilation operators and is an even number.

APPENDIX C: GROUND STATE ENERGY

According to equation (42) of the manuscript, the ground state energy is defined as

E(0)
L = 〈Ψ(L)

P
|H|Ψ(L)

P
〉 (98)

with the wave function

|Ψ(L)
P
〉 =

1

NP
√

Ω

∫
dR φP (r −R) exp

iP ·R +
∑
k

(
uka†

k
e−ik·R − 1

2
u2
k

) |0〉 (99)

and Hamiltonian

H =
1
2

P2 − 2
∑

k

a†kakk · P +

∑
k

a†kakk

2 +
∑
k

ωka+
kak

+
g√
Ω

∑
k

1√
2ωk

(
eikrak + e−ikra+

k

)
. (100)

The normalization constant NP is found from the condition

〈Ψ(L)
P
|Ψ(L)
P
〉 = 1. (101)

In order to evaluate equation (101), we use equation (97), in which nk = nj = 0 and f (al, a
†
l
) =

δl,0. This gives immediately the result

|NP |2 =

∫
dR

∫
dr φ∗P (r)φP (r −R) exp

∑
k

|uk|2(e−ik·R − 1) + iP ·R
 . (102)

The expectation value of the energy is performed in exactly the same way. First of all, the
matrix elements of the field states are calculated with the help of equation (97). For example, if
the function f is chosen as f = la†

l
al, nk = nj = 0, we immediately find

Q = 〈
∑
l

la†
l
al〉

=

∫
dRdR′drφ∗(r −R′)φ(r −R)

∑
l

l|ul|2

× exp

∑
m

|um|2(e−im·(R−R′) − 1) + i(P − l) · (R −R′)
 . (103)
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Then by carrying out the change of variablesR −R′ = R1 and r −R′ = ρ, we obtain

Q =
1
|NP |2

∑
k

k|uk|2
∫

dRdr φ∗P (r)φP (r −R)eΦ(R)+i(P−k)·R, (104)

Φ(R) =
∑
k

|uk|2(e−ik·R − 1).

All other matrix elements are evaluated in exactly the same fashion. Consequently, we obtain
expression (44) of the manuscript:

E(0)
L (P , g) =

P2

2
− P ·Q + G + Ef(P ) + Eint(P ); (105)

Q =
1
|NP |2

∑
k

k|uk|2
∫

dRdr φ∗P (r)φP (r −R)eΦ(R)+i(P−k)·R;

G =
1
2

1
|NP |2

∑
m,l

m · l|um|2|ul|2
∫

drdRφ∗(r)φ(r −R)eiP ·R+Φ(R)−i(m+l)·R;

Ef(P ) =
1
|NP |2

∑
k

(
k +

k2

2

)
|uk|2

∫
dRdr φ∗P (r)φP (r −R)eΦ(R)+i(P−k)·R;

Eint(P ) =
g
|NP |2

∑
k

uk√
2kΩ

∫
dRdr

(
φ∗P (r +R)φP (r) + φ∗P (r)φP (r −R)

)
eΦ(R)+i(P ·R+k·r);

Φ(R) =
∑
k

|uk|2(e−ik·R − 1);

|NP |2 =

∫
dRdr φ∗P (r)φP (r −R)eΦ(R)+iP ·R.

We notice here one more time that the Fourier component of the function reads

φ(r) =
λ

3
2

π
3
4

e−
λ2r2

2 . (106)

and the classical component of the field look like

uk = − g√
2Ω

1√
k3

∫
dr|φ(r)|2e−ik·r = − g√

2Ω

e−
k2

4λ2

√
k3

; (107)

φk =

∫
drφ(r)e−ik·r = 2

√
2
π

3
4

λ
3
2

e−
k2

2λ2 = φ0e−
k2

2λ2 . (108)

In order to calculate the energy, we firstly neglect the function

Φ(R) =
∑
k

|uk|2(e−ik·R − 1) = g2 1
4π2

∫ ∞

0
dt

e−
t2
2

t

(
sin λRt
λRt

− 1
)
∼ g2 (109)

in equation (105). The remaining quantities can be rewritten employing the Fourier transform
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of the function φ(r). As for example∫
dR1dρφ∗(ρ)φ(ρ −R1)e−ik·R1 =

∫
dρφ∗(ρ)e−ik·ρ

∫
dRφ(R)eik·R = φ∗kφ−k = φ2

k, (110)∫
dR1dρφ∗(ρ)φ(ρ −R1) = |φ0|2 = φ2

0, (111)∫
dR1dρφ∗(ρ)φ(ρ −R1)e−ik·ρ = φ∗kφ0 = φkφ0,

(112)

and by plugging equations (110-112) into equation (105), one finds

E(0)
L (0, g) =

1
2

∑
m,l

m · l|um|2|ul|2
φ2
l+m

φ2
0

+
∑
k

(
k +

k2

2

)
|uk|2

φ2
k

φ2
0

+
2g√
2Ω

∑
k

uk√
k

φk
φ0
. (113)

By insertion of the definitions of the classical component of the field uk and the Fourier
transform of the function φk, defined in equations (107) and (108), we find

E(0)
L (0, g) =

g4

8(2π)6

∫
dldm

m · l
m3l3

e−
3
2

m2

λ2 − 3
2

l2

λ2 − 2m·l
λ2 +

g2

2(2π)3

∫
dk
k2

(
1 +

k
2

)
e−

3
2

k2

λ2

− g2

(2π3)

∫
dk
k2 e−

3
4

k2

λ2 =
g4

8(2π)5

∫
dl
l2

e−
3
2

l2

λ2

∫
dme−

3
2

m2

λ2
−2lmλ2 cosh 2lm

λ2 + λ4 sinh 2lm
λ2

2l2m2

+
g2

24π2

(
λ(−4 +

√
2)
√

3π + λ2
)

=
g4λ2

16(2π)4

∫ ∞

0

du
u2

4u − e
2
3 u2 √

6πErf

√2
3

u

 e−
3
2 u2

+
g2

24π2

(
λ(−4 +

√
2)
√

3π + λ2
)

= −g4λ2

28π4α +
g2

24π2

(
λ(−4 +

√
2)
√

3π + λ2
)
, (114)

where α = 0.736559.
To find λ, we minimize the energy, which results in the equation

∂E(0)
L (0, g)
∂λ

= −2g4λ

28π4 α +
g2

24π2

(
(−4 +

√
2)
√

3π + 2λ
)
, (115)

from here we find

λ = −
√

3π
2

(−4 +
√

2)
1

1 − 3αg2

32π2

≈ −
√

3π
2

(−4 +
√

2)
(
1 +

3αg2

32π2

)
(116)

and by plugging λ in equation (114)

E(0)
L (0, g) = −g2 (−4 +

√
2)2

32π
− 3αg4(−4 +

√
2)2

210π3 + O(g6). (117)
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APPENDIX D: MASS RENORMALIZATION IN ZEROTH-ORDER
APPROXIMATION

In the weak coupling limit we find the renormalized mass in zeroth-order approximation. For
this purpose, we rewrite the energy through Fourier components for the case P , 0. This yields

E(0)
L (P , g) =

P2

2
− P ·Q + G + Ef(P ) + Eint(P ); (118)

Q =
1
|NP |2

∑
k

k|uk|2φ2
P−k; (119)

G =
1
2

1
|NP |2

∑
m,l

m · l|um|2|ul|2φ2
P−l−m; (120)

Ef(P ) =
1
|NP |2

∑
k

(
k +

k2

2

)
|uk|2φ2

P−k; (121)

Eint(P ) =
g
|NP |2

∑
k

uk√
2kΩ

(φP φP−k + φP φP+k); (122)

|NP |2 = φ2
P . (123)

From here we can immediately conclude that the quantity G yields only a correction of the
order of g4 and can be neglected. Let us expand the Fourier transform of the function φ(r) into
Taylor series over P up to second-order

φ2
P = φ2

0e−
P2

λ2 ≈ φ2
0

(
1 − P2

λ2

)
, (124)

φ2
P−k = φ2

0e−
(P −k)2

λ2 = φ2
0

(
e−

k2

λ2 + e−
k2

λ2
2P · k
λ2 + e−

k2

λ2
2(P · k)2

λ4 − e−
k2

λ2
P2

λ2

)
, (125)

φP−k = φ0e−
(P −k)2

2λ2 = φ0

(
e−

k2

2λ2 + e−
k2

2λ2
P · k
λ2 + e−

k2

2λ2
(P · k)2

2λ4 − e−
k2

2λ2
P2

2λ2

)
. (126)

By plugging equations (124-126) into equations (119-123) and taking into account only the
terms of the order of P2, we find for the vectorQ

Q =
1

1 − P2/λ2

2
λ2

∑
k

k|uk|2e−
k2

λ2 (P · k) =
1

1 − P2/λ2

g2

λ2

P

4π2

∫ ∞

0
dkke−

3
2

k2

λ2

∫ 1

−1
t2dt

=
g2

9π2

P

2
(127)

and for the field energy

Ef =
1

1 − P2/λ2

∑
k

(
k +

k2

2

)
|uk|2

(
e−

k2

λ2 + e−
k2

λ2
2P · k
λ2 + e−

k2

λ2
2(P · k)2

λ4 − e−
k2

λ2
P2

λ2

)
. (128)

In this expression, in round brackets the first and the last terms cancel each other after decom-
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position of the normalization constant in the Taylor series in P . The result reads as

Ef = Ef(0) +
2
λ2

∑
k

(
k +

k2

2

)
|uk|2e−

k2

λ2 (P · k)2

= Ef(0) +
g2

λ4

P2

4π2

∫ ∞

0
k
(
k +

k2

2

)
e−

3
2

k2

λ2 dk
∫ 1

−1
t2dt

= Ef(0) +
P2

2
g2

9π2

1
6λ

(
√

6π + 2λ). (129)

The remaining energy is calculated in exactly the same way

Eint =
g√
2Ω

1
1 − P2/(2λ2)

∑
k

uk√
k

[
e−

k2

2λ2 + e−
k2

2λ2
P · k
λ2 + e−

k2

2λ2
(P · k)2

2λ4 − e−
k2

2λ2
P2

2λ2

+e−
k2

2λ2 − e−
k2

2λ2
P · k
λ2 + e−

k2

2λ2
(P · k)2

2λ4 − e−
k2

2λ2
P2

2λ2

]
. (130)

In a full analogy to the field energy Ef, the first and the last terms are cancelled. The remaining
terms are

Eint = Eint(0) +
g√
2Ω

1
λ4

∑
k

uk√
k

e−
k2

2λ2 (P · k)2

= Eint(0) − g2

λ4

P2

8π2

∫ ∞

0
k2e−

3
4

k2

λ2 dk
∫ 1

−1
t2dt

= Eint(0) − g2

9π2

1
λ

√
π

3
P2

2
. (131)

By combining all results together, we find the equation for the total energy of the system with
a renormalized mass, in the zeroth-order approximation:

E(0)
L (P , g) = E(0)

L (0, g) +
P2

2

1 − g2

9π2

1 +
1
λ

√
π

3
− (
√

6π + 2λ)
6λ


= E(0)

L (0, g) +
P2

2

1 − g2

9π2

2
3

+
1
λ

√
6π(
√

2 − 1)
6

 , (132)

or by plugging in for λ according to equation (116) we finally obtain

E(0)
L (P , g) = E(0)

L (0, g) +
P2

2

1 − g2

9π2

17 − √2
21

 . (133)

Concluding, the renormalized mass is equal to

m∗(0) = 1 +
g2

9π2

17 − √2
21

. (134)

APPENDIX E: CALCULATION OF MATRIX ELEMENTS IN THE SECOND
ITERATION FOR THE ENERGY OF THE SYSTEM

The calculation of the second iteration of the energy of the system requires the evaluation
of the transition matrix elements 〈Ψ(L)

P
|H|ΨP1,{nk}〉, 〈Ψ(L)

P
|ΨP1,{nk}〉 and 〈ΨP1,{nk}|H|ΨP1,{nk}〉 from
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the full Hamiltonian of the system, equation (100), with the function

|Ψ(0)
P1,nk
〉 =

1

NP1,1k

√
Ω

∫
dRφP1 (r −R) exp {i(P1 − knk) ·R}

× exp

∑
k

(uke−ik·Ra†
k
− u∗keik·Rak)

 |nk〉
=

1

NP1,1k

√
Ω

∫
dRφP1 (r −R) exp

i(P1 − knk) ·R − 1
2

∑
k

|uk|2 +
∑
k

uke−ik·Ra†
k


× (a†

k
− u∗keik·R)nk

√
nk!

|0〉. (135)

The normalization constant in equation (135) is calculated with the help of equation (97) and
has the form

|NP1,1k |2 =

∫
dR1dρφ∗P1

(ρ)φP1 (ρ −R1)ei(P1−k)·R1+
∑

k |uk |2(e−ik·R1−1)

×
(
2|uk|2(cosk ·R1 − 1) + 1

)
. (136)

The calculation of the transition matrix element is performed with the help of equation (97):

〈ΨP1,nk |H|Ψ(L)
P
〉 =

(2π)3δ(P − P1)
N∗
P1,1k

NPΩ

∫
dR1dρφ∗P1

(ρ)φP (ρ −R1)

× eiP ·R1+
∑

k |uk |2(e−ik·R1−1) unk
k

(e−ik·R1 − 1)nk

√
nk!

×
[

P2
1

2
+

(
1
2

k2 + k − P1 · k
)

nke−ik·R1 (e−ik·R1 − 1)−1

+
g√
2Ω

e−ik·ρ
√
ωk

nku−1
k (e−ik·R1 − 1)−1

+
∑
m

m|um|2e−im·R1 ·
(
−P1 + knke−ik·R1 (e−ik·R1 − 1)−1

)
+

∑
m

(
1
2

m2 + m
)
|um|2e−im·R1 +

1
2

k2nk(nk − 1)e−2ik·R1 (e−ik·R1 − 1)−2

+
1
2

∑
m

m|um|2e−im·R1

2

+
g√
2Ω

∑
m

umeim·ρ
√
ωm

(e−im·R1 + 1)
]
. (137)

We further obtain the cover integral

〈ΨP1,nk |Ψ(L)
P
〉 =

(2π)3δ(P − P1)
N∗
P1,1k

NPΩ

∫
dR1dρφ∗P1

(ρ)φP (ρ −R1)eiP ·R1+
∑

k |uk |2(e−ik·R1−1)

× unk
k

(e−ik·R1 − 1)nk

√
nk!

(138)
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and the expectation value of the Hamiltonian

〈ΨP1,1k |H|ΨP1,1k〉 =
P2

1

2
+

1
|NP1,1k |2

∫
dR1dρφ∗P1

(ρ)φP1 (ρ −R1)ei(P1−k)·R1+
∑

k |uk |2(e−ik·R1−1)

×
{

k2|uk|2e−ik·R1

+
(
2|uk|2(cosk ·R1 − 1) + 1

) [
−

∑
m

P1 ·m|um|2e−im·R1 +
∑
m

(
m2

2
+ m

)
|um|2e−im·R1

+
1
2

∑
m

m|um|2e−im·R1

2

+
g√
2Ω

∑
m

umeim·ρ
√
ωm

(e−im·R1 + 1)
]

+
(
2|uk|2(e−ik·R1 − 1) + 1

) [
− k · P1 +

∑
m

k ·m|um|2e−im·R1 +
k2

2
+ k

]

+
g√
2Ω

[
ukeik·ρ
√
ωk

(e−ik·R1 − 1) +
u∗ke−ik·ρ
√
ωk

(1 − eik·R1 )
]}
. (139)

Equations (137-139) are valid for arbitrary coupling constants. However, in the weak cou-
pling limit they are significantly simplified as they can be expressed via Fourier transforms.
Another significant simplification comes from the fact that the action of one field mode on
the system is inversely proportional to the square root of the normalization volume Ω, that is
uk ∼ 1/

√
Ω. Consequently, such terms can be kept only within the sum. Within this approxi-

mation, equations (137-139) can be rewritten as

〈ΨP1,nk |Ψ(L)
P
〉 =

(2π)3δ(P − P1)
Ω

uk(φ2
P−k − φ2

P )
φP φP−k

, (140)

and

〈ΨP1,nk |H|Ψ(L)
P
〉 =

(2π)3δ(P − P1)
Ω

1
φP φP−k

×
[

P2
1

2
uk(φ2

P−k − φ2
P ) +

(
k2

2
+ k − P1 · k

)
ukφ2

P−k +
g√
2Ω

φP−kφP√
k

− uk(P1 − k)
∑
m

m|um|2φ2
P−m−k

+ uk
∑
m

(
m2

2
+ m

)
|um|2φ2

P−m−k +
uk
2

∑
l,m

l ·m|ul|2|um|2φ2
P−l−m−k

+
g√
2Ω

uk
∑
m

um√
m
φP−k(φP−k−m + φP−k+m) − ukφ2

P Ẽ(0)
L

]
, (141)

as well as

〈ΨP1,nk |H|ΨP1,nk〉 =
P2

1

2
+

1
φ2
P−k

[
φ2
P−k

(
−k · P1 +

k2

2
+ k

)
− (P1 − k) ·

∑
m

m|um|2φ2
P−m−k

+
∑
m

(
m2

2
+ m

)
|um|2φ2

P−m−k +
g√
2Ω

∑
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um√
m
φP−k (φP−m−k + φP+m−k)

+
1
2

∑
l,m

l ·m|ul|2|um|2φ2
P−m−l−k

]
. (142)
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In equations (140-142) we have used expressions for the normalization constants

NP = φP , NP1,1k = φP1−k (143)

and sorted out the energy of the zeroth-order approximation

Ẽ(0)
L = −P

∑
m

m|um|2
φ2
P−m
φ2
P

+
1
2

∑
l,m

m · l|um|2|ul|2
φ2
P−m−l
φ2
P

+
∑
m

(
m2

2
+ m

)
|um|2

φ2
P−m
φ2
P

+
g√
2Ω

∑
m

um√
m
φP

(φP−m + φP+m)
φP

. (144)

APPENDIX F: SECOND ITERATION FOR THE ENERGY OF THE SYSTEM WITH
PARTICLE AT REST

For the evaluation of the second iteration for the particle energy the knowledge of the behavior
of different terms in expressions (140-142) is required. In order to determine those, we will carry
out the summations overm. For the first sum we can write

I (1)
k

=
1

g2φ2
k

∑
m

m|um|2φ2
m+k =

φ2
0

g2φ2
k

g2

2(2π)3

∫
dm


m sin θ cos φ
m sin θ sin φ
m cos θ

 e−
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2λ2

m3 e−
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λ2

=
1

8π2
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k

∫
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3
2
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−2kmλ2 cosh 2km

λ2 + λ4 sinh 2km
λ2

2k2m2

=
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k
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4k − e
2
3

k2

λ2
√
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√

2
3 k
λ

k2 −→
k→∞
− λ2

32π2

k

k3

(
−4k + e

2
3

k2

λ2
√

6πλ
)

∼ − φ
2
0

φ2
k

λ3
√

6π
32π2

e−
1
3

k2

λ2

k3 k (145)

as for the second

I(2)
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k

∑
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√
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(146)
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and for the third

I(3)
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In the above expressions Erf(x) = 2/
√
π
∫ x

0 e−z2
dz and Erfi(x) = −iErf(ix) are the error func-

tion and the imaginary error functions, respectively.
Consequently, we can introduce the abbreviations, which where used in equations (55-59) of

the manuscript, namely

Ik = k · I (1)
k

+ I(2)
k

+ I(3)
k
∼

k→∞
−λ

3
√

6π
48π2

e
2k2

3λ2

k
. (148)

After the determination of the asymptotic behavior of the different terms, we can find the
second iteration for the energy of the system

E(2) =
A
B
. (149)

For the numerator we have

A = E(0)
L +
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(150)

and for the denominator we obtain

B = 1 +
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(151)

Further explicit calculations yield
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= E(0)
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and
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∑
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with

f (x) =
1

4π2

∫ x

0

tdt
1 + t/2

e−
3
4 t2
.
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