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Zusammenfassung 

 

Ziel dieser Arbeit war eine Rekonstruktion des holozänen Monsunklimas Indiens mithilfe 

biogeochemischer Analysen von Seesedimenten. In einem ersten Schritt werden auf 

Aminosäureanalysen basierende Abbau- und Quellindikatoren, die ursprünglich aus marinen 

Proben entwickelt wurden, auf ihre allgemeine Anwendbarkeit in Seen überprüft (Kapitel 3). 

Zusätzlich werden die heutigen hydrologischen und biogeochemischen Eigenschaften des 

zentralindischen Lonar Sees, der für die Paläoklimarekonstruktion ausgewählt wurde, 

untersucht (Kapitel 4). Schließlich werden die daraus ermittelten Klimaproxies für eine 

Paläoklimarekonstruktion an einem ca. 10 m langen Sedimentkern aus dem Lonar See genutzt 

(Kapitel 4).  

In Kapitel 3 erläutere ich die Ergebnisse der Aminosäure- und Hexosaminanalysen von 

Sediment-, Boden-, Gefäßpflanzen-, und Schwebstoffproben von vier indischen Seen aus 

unterschiedlichen Klimaregionen. Schwerpunkt liegt auf der Identifizierung von 

aminosäurebasierten Abbau- und Quellindikatoren, die universelle Anwendbarkeit in 

lakustrinen Ökosystemen zeigen. Anhand einer Hauptkomponentenanalyse wurde ein 

Seesediment-Abbauindikator berechnet, der für den Vergleich des Abbaugrades organischer 

Substanzen von Studienorten mit unterschiedlichen Umwelt- und Klimaeigenschaften 

geeignet sein sollte. 

Kapitel 4 fasst die Untersuchung der heutigen Umweltbedingungen des abflusslosen Lonar 

Sees im zentralindischen Staat Maharashtra zusammen. Der See ist eutroph, brackig, alkalisch 

und in Wassertiefen > 4 m permanent anoxisch. Aufgrund der hohen pH-Werte und 

anoxischen Bedingungen dominieren Denitrifikation und Ammoniak Verflüchtigung den 

gelösten anorganischen Stickstoffkreislauf und verursachen sehr hohe δ15N-Werte der in dem 

See wachsenden Organismen. Unterschiedliche Redoxbedingungen in den flachen ufernahen 

Sedimenten und den tiefen distalen Sedimenten führen zu unterschiedlichen 
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Abbaumechanismen und Aminosäurezusammensetzungen sowie δ
15N-Werten des 

organischen Materials. Basierend auf den Aminosäurezusammensetzungen des organischen 

Materials, welches unter oxischen beziehungsweise anoxischen Bedingungen abgebaut 

wurde, wird ein Redox-Index berechnet, der während der Paläoumwelt- und 

Paläoklimarekonstruktion in Kapitel 5 Anwendung findet. 

Die Ergebnisse der biogeochemischen und mineralogischen Analysen des Sedimentkerns 

aus dem Lonar See, der die holozäne Sedimentationsgeschichte des Sees wiedergibt, werden 

in Kapitel 5 vorgestellt. Die Ergebnisse der C/N-Verhältnisse, der stabilen Kohlenstoff- und 

Stickstoffisotopie, der Korngrößenverteilung, sowie der aminosäurebasierten Abbauindizes 

werden mit klimasensitiven Messgrößen anderer Datensätze aus Südasien und der 

Nordatlantikregion verglichen. Neben einem langfristigen Klimaübergang von feuchten 

Bedingungen im frühen Holozän zu trockeneren Bedingungen während des späten Holozäns 

in der Region des Lonar Sees, der mit der Veränderung der Sonneneinstrahlung auf der 

Nordhalbkugel korreliert, können mehrere Klimaveränderungen im Hundertjahresrhythmus 

identifiziert werden. Diese kleinerskaligen Klimaveränderungen korrelieren mit in der 

Literatur beschriebenen Klimaschwankungen in der Nordatlantikregion. Synchrone 

Veränderungen zu trockenerem Klima in Indien und kälterem Klima in der 

Nordatlantikregion implizieren eine Verbindung zwischen den beiden Klimasystemen oder 

gemeinsame Reaktionen auf identische Impulse. Korrelationen zwischen den 

Klimaveränderungen in beiden Regionen und der 14C-Nukleidproduktionsrate, einem 

Solarleistungsindikator, deuten darauf hin, dass Änderungen in der Solarleistung für die 

Verbindung zwischen den beiden Systemen verantwortlich sein könnten. Bezüglich der 

archäologischen Geschichte Indiens lässt sich vermuten, dass verringerte Niederschläge, die 

anhand der Untersuchungen der Seesedimente des Lonar Sees für 4,6 bis 3,9 cal ka BP 

rekonstruiert wurden, zum Niedergang der Induskultur etwa 3,9 ka BP beitrugen. 
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Abstract 

 

The studies presented in this thesis focus on the reconstruction of the Holocene Indian 

monsoon climate based on biogeochemical analyses on lake sediments. In a first step, amino 

acid-based organic matter degradation and source proxies are tested for their general 

applicability in different lacustrine environments in India (chapter 3). Additionally, the 

modern hydrological and biogeochemical properties of the central Indian Lonar Lake that was 

selected for the palao-climate reconstruction are investigated (chapter 4). Finally, the gathered 

information is integrated into the palaeo-climate reconstruction conducted on a ca. 10 m long 

sediment core (chapter 4). 

In chapter 3, I report the results of amino acid and hexosamine analyses of sediment, soil, 

vascular plant, and suspended matter samples of four Indian lakes from different climate 

regimes. Focus is on the identification of amino acid-based degradation and organic matter 

source proxies that show universal applicability in lacustrine environments. Based on a 

principal component analysis, a lake sediment degradation proxy is calculated that should be 

suitable for comparison of the state of organic matter degradation between study sites with 

different environmental and climatic properties. 

Chapter 4 summarises the investigation of the present day conditions of endorheic Lonar 

Lake in Maharashtra, central India. The lake is eutrophic, brackish, alkaline, and permanently 

anoxic at water depths > 4 m. Due to high pH and anoxic conditions, denitrification and 

ammonia volatilisation dominate the dissolved inorganic nitrogen cycle and cause very high 

δ
15N values of organisms that grow within the lake. Different redox condition in the 

sediments of the shallow, nearshore and the deep, distal sediments result in differing organic 

matter degradation mechanisms and related amino acid assemblages as well as δ15N values. 

Based on the different amino acid assemblages in organic matter degraded under oxic and 

organic matter degraded under sub- to anoxic conditions, a redox proxy is calculated that is 
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also applied to the Lonar Lake sediment core during the palaeo-environmental and palaeo-

climate reconstruction (chapter 5). 

The results of the biogeochemical and mineralogical analyses on the Lonar Lake sediment 

core that covers the Holocene sedimentation history of the lake are presented in chapter 5. 

The results of C/N ratios, stable carbon and nitrogen isotopes, grain-size, as well as amino 

acid derived degradation proxies are compared with climatically sensitive proxies of other 

records from South Asia and the North Atlantic region. In addition to a long term climate 

transition from humid conditions during the early Holocene to more arid conditions during the 

late Holocene at Lonar Lake, delineating the northern hemisphere insolation, several 

centennial scale climate shifts can be identified. These centennial scale climate shifts correlate 

with climate variations in the North Atlantic region that were reported in the literature. 

Contemporaneity of shifts to drier climate in India and colder climate in the North Atlantic 

region indicate connection between the two climate systems or reaction to identical forcings. 

A correlation of the climate shifts in both regions with the 14C production rate, a solar output 

proxy, suggest this forcing to be responsible for the connection between the two systems. 

Regarding the archaeological history of India, the strong dry phase during 4.6 – 3.9 cal ka BP 

as reconstructed from Lonar Lake sediments corroborates the hypothesis that severe climate 

deterioration contributed to the decline of the Indus Civilisation about 3.9 ka BP. 
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1. Introduction 

 

1.1. Indian Monsoon 

 

The Indian climate is dominantly driven by the Indian monsoon but also influenced by the 

mid-latitude westerlies in the north. The interaction between Indian monsoon and mid-latitude 

westerlies changes regionally, seasonally, as well as historically and to some extend controls 

the amount of precipitation and the occurrence of extreme events (Demske et al. 2009). The 

meteorological mechanism inducing the Indian monsoon is the seasonal shift of the 

Intertropical Convergence Zone (ITCZ). The ITCZ is a near-surface low pressure belt, which 

is characterised by ascending masses of warm air causing advection of the trade winds, 

usually associated with strong winds and precipitation in the regions that are located between 

the ITCZ and an adjoined ocean (Bookhagen et al. 2005a). The ITCZ shifts annually 

approximately between the tropic of Cancer and the tropic of Capricorn (Gupta et al. 2003) 

(Figure 1.1), due to changes in regional insolation driven by the declination of the sun 

(Bookhagen et al. 2005a). During boreal summer, the ITCZ is located above the Tibetan 

Plateau, causing the transport of warm and wet air masses from the Arabian Sea and the Bay 

of Bengal over the Indian subcontinent towards the Himalayan mountains. The Himalaya 

range, being an orographic barrier, induces heavy rainfall at its southern boundary during the 

summer or southwest monsoon and prevents significant moisture transport further north. This 

causes the arid to semi-arid climate conditions north of the mountain range (Wulf et al. 2010). 

During boreal winter, the ITCZ is located south of India on the southern hemisphere, thus the 

wind direction is inverted blowing from the high pressure cell over the Tibetan Plateau in the 

northeast towards the Indian Ocean. Hence, the winter or northeast monsoon is characterised 

by cool and dry weather over most of India (Clift and Plumb 2008). In northwest India, the 
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mid-latitude westerlies also contribute to the wind-regime and the related precipitation. The 

westerlies mostly bring in winter precipitation in the form of snow. 

 

 

 

1.2. Palaeo-monsoon and climate reconstructions 

 

Climate reconstruction becomes more and more important in unravelling the forcings and 

driving mechanisms of climate changes. This is especially important to understand and predict 

present and future climate changes in a global warming scenario. Palaeo-reconstruction in 

monsoon-influenced regions is most promising, since the monsoon is an annually occurring, 

relatively steady phenomenon. Thus, it shows periodic imprint on different environmental 

archives, and changes in its influence can comparatively reliably be identified. Hence, several 

studies have focussed on the variability of the monsoon climate since the last glacial 

maximum (see Clift and Plumb 2008). 

Driven by periodic variations in Earth’s orbital parameters, changes in solar energy are 

largely responsible for the long term, global climate changes as for example the intensity of 

Northern Hemisphere Glaciation (Shackleton and Opdyke 1977). Regional climate patterns, 

such as monsoon systems, are also strongly influenced by variations in the energy budget, and 

thus vary according to the glacial-interglacial cycles (Sirocko et al. 1993). It is suggested that 

Figure 1.1: Approximate location of the ITCZ and dominant 
wind directions during boreal summer (A) and boreal winter 
(B) (Fleitmann et al. 2007). 
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the large (millennial) scale monsoon variability is mostly driven by changes in northern 

hemisphere insolation and glacial boundary conditions (Prell and Kutzbach 1987). These 

linkages affect the temperature gradients between ocean and continent which account for the 

monsoon strength. Weaker temperature gradients not only reduce the wind speed and the 

amount of moisture transported from the ocean to the continent, but they also determine the 

pole-ward extension of the ITCZ, and thus of the monsoon precipitation (Fleitmann et al. 

2007). Large scale changes in monsoon strength and extend had severe influence on the 

natural environment and therefore on the livelihood of human beings and might have affected 

the development, prosperity, and decline of ancient cultures (Madella and Fuller 2006). The 

millennial scale monsoon development during the Holocene, as well as centennial monsoon 

strength variations, their potential causes and tele-connections, and the possible influence of 

monsoon strength variability on ancient civilisations are topic of the discussion of chapter 4. 

 

1.3. Lake sediments 

 

Compared to the oceans, lakes are relatively small, isolated ecosystems. This feature 

makes them prime candidates for the study of biogeochemical cycles and related researches. 

Important differences between lakes and oceans with respect to biogeochemical analyses are 

the usually larger contribution of material of terrestrial origin to lake sediments, the shallower 

depth of lakes compared to the open ocean, and the typically higher sedimentation rate in 

lakes. The two latter aspects account for the often enhanced incorporation of organic matter 

into lake sediments and its reduced state of degradation (Meyers and Ishiwatari 1993; Meyers 

1997). 

Lake sediments are suitable for palaeo-climate reconstructions due to their incorporation of 

both aquatic and terrestrial material. Thus, lake sediments contain information on changes of 

the hydrology and biology of the lake itself as also on changes in land plant vegetation and 
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erosion and transport of terrestrial sediment. Therefore, several more or less independent 

proxies can be obtained from lake sediment based analyses. Additionally, lakes can build up 

continuous, seasonally laminated sediments, which can help to construct reliable high-

resolution age models for the laminated parts of lake sediment records. 

 

1.4. Biogeochemical proxies 

 

1.4.1. Ratio between organic carbon and total nitrogen (C/N) 

 

The ratio between organic carbon and total nitrogen (C/N) in environmental studies is 

commonly used to determine the dominant source of organic matter. This is due to the 

characteristic compositions of terrestrial and aquatic organic matter. Vascular plants, 

significantly contributing to terrestrial organic matter, are enriched in carbon-rich and 

nitrogen-poor cellulose and lignin, whereas the mostly nonvascular aquatic organic matter 

contains relatively large amounts of carbon- and nitrogen-rich proteins and lacks lignin and 

cellulose (Meyers and Ishiwatari 1993). Thus, aquatic OM is typically characterised by 

atomic C/N ratios of 4 to 10, whereas terrestrial OM usually shows atomic C/N ratios > 20 

(Meyers and Teranes 2002). And since degradation only has minor effects on the C/N ratio of 

OM (Meyers 1997), it is a good source proxy in sediments with varying contribution of 

terrestrial and aquatic OM. However, the most important limitation of C/N ratio as proxy of 

OM origin is associated with the contribution of inorganic nitrogen to the measured total 

nitrogen. Hence, in sediments showing low OM, and thus low organic carbon (ca. < 0.3 %) 

and nitrogen contents, the percentage of inorganic nitrogen, such as ammonium sorbed by 

clay minerals (Müller 1977), can contribute significant percentages to the total nitrogen 

portion, thereby considerably lowering the C/N ratio (Meyers and Teranes 2002). 
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1.4.2. Stable isotopes 

 

Stable isotope chemistry is used in environmental science as source and sink as well as 

process proxy (Peterson and Fry 1987). That is due to the fact that different isotopes of the 

same element show different physical characteristics, which can also slightly affect some of 

their chemical properties (Hoefs 2009). Isotopic fractionation occurs due to equilibrium or 

kinetic processes, with equilibrium processes not being accompanied by chemical reactions 

but by the exchange of different isotopes of an element between individual chemical 

compounds, different phases, or between molecules (Hoefs 2009). Kinetic effects drive 

different isotopic composition between products and educts of unidirectional or incomplete 

processes (Hoefs 2009). During chemical reactions, the compounds including light isotopes 

generally react more easily than those including heavy isotopes, due to the fact that light 

isotopes form weaker bonds than heavy isotopes (Hoefs 2009). Both equilibrium and kinetic 

processes affect the isotopic composition of several chemical compounds and complex 

materials that are commonly analysed during environmental investigations, and the isotopic 

composition of these materials can be determined and used to reconstruct the fractionating 

processes, which potentially allows for revelation or reconstruction of specific environmental 

patterns. 

The magnitude of isotope fractionation associated with an individual process is calculated 

in form of a fractionation factor (α). α is defined as the rate of the ratios of two isotopes (R) of 

an element, for example 13C and 12C, in two different chemical compounds (X, Y): 

Ry

Rx
 α y-x =  

(1.1) 

C

C
 R

12

13

=  

(1.2) 
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α is often dependent on external conditions, such as temperature. 

The isotopic composition of a chemical compound is commonly expressed as delta value 

(δ), which gives the ratio between the isotopic composition of the analysed compound and the 

isotopic composition of a reference standard in per mill: 

δ (‰) = [(Rsample / Rstandard) – 1] x 1000 
(1.3) 

During this study, the stable carbon and nitrogen isotopic composition of organic matter 

from different environmental samples was determined and interpreted. The most important 

processes driving isotopic differences of the two elements in organic matter are listed in the 

following paragraphs. 

 

1.4.2.1. Stable carbon isotopes 

 

Carbon plays a major role in natural biogeochemical cycles, since all organisms 

dominantly consist of water and different carbonic compounds. In terrestrial aqueous 

environments, carbon is mostly present in the form of dissolved inorganic carbon (DIC), 

dissolved organic carbon (DOC), and particulate organic carbon (POC). Usually, DIC is 

higher concentrated in natural terrestrial water (10 mmol/l) compared to DOC (1 – 2 mmol/l) 

(Darling et al. 2006). The distribution of the different DIC forms in water is pH-depending, 

with dissolved CO2 (CO2(aq)) dominating in acidic water (pH < 4.3), bicarbonate (HCO3
-) 

being the dominant form at pH values between 4.3 and 8.3, and carbonate (CO3
2-) being the 

dominating form in alkaline water (pH > 8.3) (Schlesinger 1997). 

Carbon exhibits two stable isotopes, 12C and 13C, which show natural abundances of 98.93 

% and 1.07 %, respectively (Berglund and Wieser 2011). The standard for carbon isotopic 

analyses is Vienna Pee Dee Belemnite (VPDB). 
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The δ13C values of DIC in surface waters are determined by several mechanisms, such as 

the exchange with atmospheric CO2, pH values that determine the dominant form of DIC, 

respiration of organic carbon, dilution of inorganic carbonate rocks, CO2 uptake during 

photosynthesis, redox conditions that influence the mechanisms and inorganic products of 

organic matter decomposition, and the development and stability of stratification. A brief 

overview of important sources and transformation processes that affect δ13C of DIC and OM 

in lakes is shown in Figure 1.2. In closed lakes, the δ13C values of DIC are very sensitive to 

factors like the precipitation/evaporation ratio and the geology and vegetation of the 

catchment area (Lei et al. 2012). A detailed description of the effects of these factors on the 

isotopic contribution of DIC is given in chapter 4.3.4.4. 

 

 

Terrestrial plants show characteristic δ13C values of -38 to -8 ‰. The CO2 fixation in plants 

is associated with two fractionating steps; the uptake and intracellular diffusion of CO2 and 

the enzymatic fixation or biosynthesis of organic carbon (Hoefs 2009). According to different 

Figure 1.2: Overview of δ13C values of major carbon sources to lakes and resulting δ13C values of 
DIC (modified after Martens (submitted) and Leng et al. (2006)). 
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CO2 uptake and fixation mechanisms, three types of plants can be discerned: C3 plants using 

the Calvin Cycle for carbon fixation usually show δ13C values between -38 and -22 ‰, C4 

plants using the Hatch-Slack-Cycle for carbon fixation typically have δ13C values of -15 to -8 

‰, and CAM plants using the Crassulacean Acid Metabolism cycle of carbon fixation show 

δ
13C values of -30 to -13 ‰ (Darling et al. 2006). With respect to climate variability, the 

growth of C3 plants is favoured during relatively wet conditions, whereas C4 and CAM plants 

usually dominate during relatively dry conditions. C4 plants dominantly comprise grasses and 

macrophyts growing in tropical environments, especially in savannas (Mariotti and 

Peterschmitt 1994). Concerning the environment, C4 plants are almost absent at elevations > 

3000 m above sea level (Tieszen et al. 1979). 

δ
13C values of phytoplankton is more diverse compared to terrestrial plants, even though 

most phytoplankton species use the Calvin Cycle pathway of CO2 fixation. However, the 

concentration of CO2, and thus the fractionation during photosynthesis, is much more variable 

in aquatic compared to subaerial environments. The same holds true for the δ13C values of the 

photosynthetic educt, which is transmitted into the photosynthetic product. Air CO2 shows 

almost universally δ13C values of about -7.8 ‰, whereas the δ13C values of DIC are much 

more variable, depending on various factors as mentioned above. 

 

1.4.2.2. Stable nitrogen isotopes 

 

Nitrogen is a crucial nutrient for the production of organic matter and alike silica and 

phosphorus occasionally growth limiting. Nitrogen is often the growth-limiting nutrient in 

eutrophic lakes, whereas phosphorus often is limiting in oligotrophic lakes (Chapin III et al. 

2011). The most important dissolved nitrogenous nutrient forms in aqueous systems are 

ammonium (NH4
+), ammonia (NH3), nitrate (NO3

-), and nitrite (NO2
-) (Talbot 2001). The 
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abundance of the different forms is closely linked to a couple of transformation processes, 

which are shown in Figure 1.3 and described below: 

- Nitrogen fixation: During this process, microorganisms transform the inert nitrogen 

molecule (N2) into bio-available nitrogenous nutrients (Hoefs 2009). Especially 

photoautotroph cyanobacteria are capable of fixing N2 in aqueous systems. 

- Nitrification: Nitrification describes microbially mediated oxidation that transforms 

ammonium via multiple intermediates into nitrite and nitrate, occurring under aerobic 

conditions (Wetzel 2001). 

- Denitrification: Under an- and suboxic conditions, microbes use oxidised nitrogen 

nutrient forms as oxygen source and reduce them to molecular nitrogen (N2) (Wetzel 

2001). 

- Ammonium and nitrogen assimilation: These are the uptake processes that convert the 

inorganic nitrogen nutrients into nitrogenous organic matter. In high productive lakes, 

these processes are capable to totally deplete nitrogenous nutrients in the photic zone. 

The uptake of ammonium is energetically more beneficial than the uptake of nitrate, 

and thus preferred (Talbot 2001). 

- Ammonification: Under anaerobic conditions, this microbially mediated process re-

mineralises organic-bound nitrogen. The organic nitrogen is converted to ammonium 

and ammonia (Talbot 2001). 

- Ammonia volatilization: This inorganic transformation process occurs to significant 

extent in waters showing pH values > 8.5 and elevated ammonium concentrations, the 

latter often linked to sub- or anoxic waters. Under these conditions, the equilibrium 

between ammonium and ammonia is shifted towards ammonia, which can escape the 

water column in gaseous state (Casciotti et al. 2011). 
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The natural abundance of the two stable nitrogen isotopes 14N and 15N is 99.64 % and 0.36 

%, respectively (Berglund and Wieser 2011). The standard of nitrogen isotope investigation is 

air N2. 

Due to the high complexity of chemical and biological processes involved in the nitrogen 

cycling in natural environments, the interpretation of nitrogen isotopic ratios is more difficult 

compared to carbon isotopic ratios. The fractionation factors associated with the different 

transformation processes are shown in Table 1.1. δ15N values might be altered during 

degradation. The degree of alteration depends on the redox conditions during degradation, 

with stronger enrichment of the heavy isotope under aerobic conditions (Lehmann et al. 

2002). Even though terrestrial plants show a wide range of δ15N values (Maksymowska et al. 

2000), lake sediments with high contribution of terrestrial organic matter are usually depleted 

in 15N compared to sediments with high aquatic organic matter contribution (Meyers 1997). 

Thus, δ15N of organic matter in lake sediments can give some source information, which, 

however, should be confirmed by other source sensible proxies. A brief overview of important 

sources and transformation processes that affect δ15N of DIN and OM in lakes is shown in 

Figure 1.4. 

 

Figure 1.3: Schematic nitrogen cycle (modified after Hensen et al. (2000)). 
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Process Fraktionation factor α Reference 

Inorganic processes   

N2 dissolution in water, 

N2(g) � N2(aq) 
1.00085 Collister and Hayes 1991 

Ammonia volatilisation, 

NH4
+

(aq) � NH3(g) 
1.020 – 1.035 Casciotti et al. 2011 

Biochemical processes   

Nitrogen fixation, N2 � Norg 0.998 – 1.002 Casciotti 2009 

Nitrate assimilation, 

NO3
- � Norg 

1.006 – 1.020 Granger et al. 2004 

Ammonium assimilation, 

NH4
+ � Norg 

1.011 – 1.014 
Hoch et al. 1992; 

Voss et al. 1997 

Ammonification, Norg � NH4
+ 1.001 Collister and Hayes 1991 

Nitrification (Ammonia 

oxidation), NH3 � NO2
- 

0.996 – 1.0194 Casciotti et al. 2003 

Nitrification (Nitrite oxidation), 

NO2
- � NO3

- 
0.9872 Casciotti 2009 

Denitrification, NO3
- � N2 1.022 – 1.030 Brandes et al. 1998 

 

Table 1.1: Fractionation factors (α) of different nitrogen transformation processes. 
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1.4.3. Amino acids 

 

The majority of nitrogen in organic matter is usually present in the form of amino acids 

(Wakeham et al. 1997), which are the building blocks of proteins. The individual amino acids 

are classified due to their reactive side chains (Figure 1.5). 

Figure 1.4: Overview of δ15N values of major nitrogen sources to lakes (modified after Martens 
(submitted) and Leng et al. (2006); values after Maksymowska et al. (2000) and Talbot (2001)). 
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Figure 1.5: Overview of analysed amino acids (modified after Martens (submitted)). 
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During degradation, amino acids are, in general, preferentially decomposed (Lee 1988). 

Thereby, not only the general amino acid concentration declines but also the composition of 

the amino acid assemblage alters (Lee 1988). Hence, the state of degradation can be identified 

from the amino acid assemblage of organic matter, and different amino acid-based 

degradation indices were invented. The most common are the degradation index (DI) (Dauwe 

and Middelburg 1998; Dauwe et al. 1999) and the reactivity index (RI) (Jennerjahn and 

Ittekkot 1997). A comprehensive investigation of amino acid-based organic matter 

degradation and source indices, with special focus on the applicability of such indices to 

lacustrine environments, is given in chapter 2. 

 

1.5. Thesis outline and project 

 

The studies presented in this PhD thesis were conducted within the framework of the DFG-

funded HIMPAC (Himalaya: Modern and Past Climate) project. HIMPAC is an international 

project, with participation of primarily German and Indian research institutes. The scope of 

the HIMPAC research is to identify the Holocene climate variability over the Indian 

subcontinent by means of multi-proxy and multi-archive investigations. Additionally, extreme 

events, such as droughts and floods, and variations in the interaction between the Indian 

monsoon and large-scale climate phenomena, such as El Niño Southern Oscillation or North 

Atlantic Oscillation are subject of investigation. Therefore, several climate archives, as for 

example, lake sediments, speleothems, peat profiles, tree-rings, and the geomorphology were 

examined. The palaeo-climate reconstructions should help to identify the most prominent 

factors controlling the climate variability over the Indian subcontinent and further help to 

decipher future changes in climate and their influence on the natural and socio-economic 

environment against the background of prevailing global warming. 
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Subject of my research were lake sediments with focus on biogeochemical proxies, 

especially amino acids and stable carbon and nitrogen isotopes, which were used to identify 

modern lake processes and mechanisms controlling and influencing the biogeochemical 

cycles within the lakes. Based on these investigations, the applicability of individual 

biogeochemical proxies in reconstructing the palaeo-environment and palaeo-climate was 

assessed (chapters 2 and 3). Finally, by using the most promising biogeochemical proxies, a 

reconstruction of the Holocene palaeo-climate based on a continuous sediment record from 

the central Indian Lonar Lake was performed and compared with other regional and global 

palaeo-climate reconstructions whereupon possible mechanisms that could have controlled the 

identified changes were discussed and appraised (chapter 4). 

The three main chapters base on publications in international journals; these publications, 

in addition to others, are listed on page 156. 
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2. The use of amino acid analyses in (palaeo-) limnological investigations: A 

comparative study of four Indian lakes in different climate regimes 

 

 

 

 

 

 

 

 

Abstract 

 

In the present study, we report the results of comprehensive amino acid (AA) and 

hexosamine (HA) analyses of four Indian lakes from different climate regimes. We focus on 

the investigation of sediment cores retrieved from the lakes but data of modern sediment as 

well as vascular plant, soil, and suspended particulate matter samples from individual lakes 

are also presented. Commonly used degradation and organic matter source indices are tested 

for their applicability to the lake sediments, and we discuss potential reasons for possible 

limitations. A principal component analysis including the monomeric AA assemblages of all 

analysed samples indicates that differences in organic matter sources and the environmental 

properties of the individual lakes are responsible for the major variability in monomeric AA 

distribution of the different samples. However, the PCA also gives a factor that most probably 

separates the samples according to their state of organic matter degradation. Using the factor 

loadings of the individual AA monomers, we calculate a lake degradation index (LDI) that 

might be applicable to other palaeo-lake investigations. 
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2.1. Introduction 

 

Amino acid (AA) and hexosamine (HA) analyses yield reliable information about the state 

of organic matter degradation in modern as well as in palaeo-sediments especially from the 

marine environment (Lee 1988; Cowie and Hedges 1994; Wakeham et al. 1997; Dauwe et al. 

1999; Keil et al. 2000) but also from limnological and fluvial systems (Kemp and 

Mudrochova 1973; Gupta et al. 1997; Meckler et al. 2004; Unger et al. 2005; Das et al. 2010). 

The accumulation of individual AA monomers can be due to their production during specific 

degradation processes or to their relative accumulation due to their resistance to degradation 

processes (Lee and Cronin 1984; Lee 1988). They may, furthermore, be protected from 

degradation by incorporation into shell material or by sorption to mineral surfaces (Hecky et 

al. 1973; King 1977; Müller and Suess 1977; Carter and Mitterer 1978; Hedges and Hare 

1987; Henrichs and Sugai 1993). 

AA composition in marine samples is very similar in different regions and variations 

depend mostly on the degradation state of organic matter. In contrast, the variations in AA 

composition are much larger in terrestrial influenced systems where sources of organic matter 

have a stronger imprint on AA spectra potentially complicating their interpretation (Meckler 

et al. 2004; Gaye et al. 2007; Unger et al. 2013). 

Many attempts were made to summarise the degradation or source information that can be 

obtained by AA and HA analyses in terms of individual indices that have universal 

applicability. Early information about the state of organic matter degradation gathered from 

AA analyses was based on the diminished concentration of AA in marine sediments with 

progressing sediment depth and the reduced percentage of nitrogen associated with AA 

(Emery et al. 1964; Kemp and Mudrochova 1973; Rosenfeld 1979). Later, the enrichment and 

depletion of individual AA monomers was found to be related to progressing degradation 

(Whelan 1977; Lee and Cronin 1982). According to these findings, ratios between 
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proteinogenic AA monomers and their respective degradation products or intermediates were 

used to assess the state of organic matter degradation (Henrichs et al. 1984; Ittekkot et al. 

1984b). Also, the sensitivity of AA-based proxies to different stages of organic matter 

decomposition (Cowie and Hedges 1994; Unger et al. 2005; Davis et al. 2009) and to different 

environmental conditions (Cowie et al. 1995; Nguyen and Harvey 1997; Keil et al. 2000) was 

investigated. Based on the previous works, more complex degradation indices were invented 

as for example ratios of the sums of different protein and non-protein AAs (Jennerjahn and 

Ittekkot 1997; Gupta and Kawahata 2007) or the combination of the differences in molar 

percentage of individual AAs between samples and a reference data set, weighted on the basis 

of a principal component analysis (Dauwe and Middelburg 1998; Dauwe et al. 1999). In a 

next step, AA- and HA-based indices were also applied to terrestrial systems (Das 2002; 

Verma and Subramanian 2002; Jennerjahn et al. 2004), and the adopted indices were tested 

and adapted to the different environments (Meckler et al. 2004; Ingalls et al. 2006; Menzel et 

al. 2013). 

Early source information gathered from AA and HA analyses was based on the preferential 

association of individual AAs and HAs with specific organisms, as for example bacteria 

(Schleifer and Kandler 1972; Lee and Bada 1977; Kandler 1979), or biologically produced 

substances, such as chitinaceous (Degens and Mopper 1975; Müller et al. 1986), calcareous 

(King 1977; Müller and Suess 1977; Carter and Mitterer 1978; Ittekkot et al. 1984a), and 

siliceous (Hecky et al. 1973; King 1977) matter. Additionally, characteristic AA assemblages 

of terrestrial and aquatic organic matter were investigated (Degens and Mopper 1975; Cowie 

and Hedges 1992), and ratios and sums of individual AAs and HAs were invented to 

characterise the dominant origin of organic matter in sinking particles and sediments (Ittekkot 

et al. 1984b; Müller et al. 1986; Lomstein et al. 2006). 

In this study, we analysed the AA assemblages of sediment cores of four lakes from 

different climate regimes as well as samples from the vicinities of two of the investigated 
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lakes and tested the different AA-based degradation and organic matter source indices. The 

aim was to identify degradation and organic matter source indices that show universal 

applicability and to detect factors that potentially bias the use of individual indices in lake 

systems. 

 

2.2. Study sites 

 

 

 

Four Indian lakes were investigated during this study: The Tso Moriri in Leh district of 

Jammu and Kashmir state in northern India, the Mansar Lake in Udhampur district of Jammu 

and Kashmir state in northern India, the Lonar Lake in Buldhana district of Maharashtra state 

in central India, and the Pookode Lake in Wayanad district of Kerala state in south India 

(Figure 2.1). Table 2.1 summarises some general and environmental properties of the four 

lakes. 

 

 

 

Figure 2.1: Map showing the locations of the four investigated lakes. 
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 Tso Moriri Mansar Lake Lonar Lake Pookode Lake 

Latitude 32° 55’ N 32° 42’ N 19° 59’ N 11° 33’ N 

Longitude 78° 19’ E 75° 09’ E 76° 30’ E 76° 02’ E 

Elevation (m a.s.l.) 4500 650 480 770 

N-S Extension (km) 27a 1.2 (NW-SE)d 1.2g 0.3k 

E-W Extension (km) 5 – 7a 0.6 (NE-SW)d 1.2g 0.2k 

Surface area (km²) 150a 0.6d 1h < 0.1k 

Max. depth (m) 105a 38d 7i 7k 

pH 9 – 9.5a 8 – 8.5e 9 – 10.5i 6 – 7l 

Dissolved oxygen (mg/l) 5.4 – 6.6a 7.1 – 9.8e 0.1 – 16.4i 6.3 – 7.4l 

Conductivity (mS/cm) 1.6a 0.19 – 0.20e 13 – 21i 0.03 – 0.05l 

Annual Precipitation (mm) 100 – 300b 1500d 700j 4400l 

Min. annual air Temp. (°C) -40c +1f +11j +7k 

Max. annual air Temp. (°C) +30c +42f +42j +35k 
 

 

 

2.2.1. Tso Moriri 

 

The modern Tso Moriri is a closed, alpine lake. The lake is ice covered between ca. mid 

October and early March. It is fed by two perennial streams and several ephemeral melt water 

inflows. The lake water is oxic, alkaline, slightly brackish, and oligotrophic (Hutchinson 

1937; Chandan et al. 2008). Tso Moriri is located in the orographic rain shadow of the North 

Western Himalaya in a cold arid to semi-arid region. Ca. 70% of the annual precipitation falls 

during summer and is associated with the Indian summer monsoon, whereas 30% falls during 

winter in the form of snow and is brought in by the mid latitude westerlies (New et al. 2002; 

Bookhagen and Burbank 2010). The geological setting of the surrounding area is 

characterised by granitic intrusions and metamorphic rocks, such as gneisses, schists, marbles, 

quartzites, eclogites, and metasediments (Fuchs and Linner 1996; Rao and Rai 2002; Epard 

a: Mishra et al. (unpubl.); b: Bookhagen and Burbank (2010); c: Mishra and Humbert-
Droz (1998); d: Das et al. (2010); e: Al-Mikhlafi et al. (2003); f: Trivedi and Chauhan 
(2009); g: Prasad et al. (2014); h: Menzel et al. (2013); i: Basavaiah et al. (2014); j: 
http://indiawaterportal.org/met_data/; k : Veena et al. (2014); l: Nirmala et al. (1991) 

Table 2.1: Locations as well as hydrological and meteorological properties of the four 
lakes, Tso Moriri, Mansar Lake, Lonar Lake, and Pookode Lake. 
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and Steck 2008). The catchment of the lake is sparsely vegetated, with domination of steppe 

and desert-steppe vegetation (Leipe et al. in press). 

 

2.2.2. Mansar Lake 

 

Mansar Lake is a subtropical, tectonic, fresh-water lake situated in the Lesser Himalayas. 

The lake is fed by precipitation, runoff, and underground springs; no perennial stream enters 

the lake whereas one outlet exists in the northeast (Das et al. 2010). The annual precipitation 

is dominantly provided by the Indian summer monsoon. The lake is oxic and slightly alkaline 

with pH values varying seasonally with highest values during spring prior to the monsoon 

onset and lowest values during and shortly after the summer monsoon (Al-Mikhlafi et al. 

2003). Phosphate concentrations of > 0.03 mg/l indicate the eutrophic nature of the lake. The 

lake is eutrophic as indicated by phosphate concentrations > 0.03 mg/l (Kumar 2005). The 

surrounding area comprises of sedimentary rocks mainly sand-, silt-, and mud-stones (Das et 

al. 2010). The vegetation of the vicinity of Mansar Lake is characterised by forested slopes 

with Pinus roxburghii dominated forest on the slope crests and Quercus incana dominated 

forests around the lake (Trivedi and Chauhan 2009). 

 

2.2.3. Lonar Lake 

 

Lonar Lake is an almost circular, closed, tropical lake situated in a meteorite crater that 

formed on the ca. 65 Ma old Deccan Plateau basalts during the Pleistocene. The lake is fed by 

three perennial streams and by ephemeral runoff during the monsoon season (Anoop et al. 

2013b). The local climate is semi-arid with a long dry period between October and May 

(Riedel et al. submitted). Lonar Lake is situated in the so called ‘core monsoon zone’ (Gadgil 

2003), and thus receives its annual rainfall almost exclusively during the summer monsoon 
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period between June and September (Basavaiah et al. 2014). The modern lake water is 

hyposaline, alkaline, eutrophic (phosphate concentration = 4.4 – 6.7 mg/l), and exhibits sub- 

to anoxic bottom water (Basavaiah et al. 2014). Due to lake water eutrophication, Lonar Lake 

experiences annual phases of strong algal growth. The algal assemblage is strongly dominated 

by cyanophyta, which are growing under saline and alkaline conditions and which are capable 

of using HCO3
- as inorganic carbon source. The vicinity of the lake is vegetated with different 

forest types. The alluvial plain surrounding the lake hosts semi-evergreen forest with 

dominant invasive Prosopis juliflora forest near shore. The crater slopes are characterised by 

dry deciduous Tectona grandis forest, whereas the crater rim and the surrounding plains are 

dominated by thorn shrub vegetation like Acacia nilotica (Riedel et al. submitted). An alluvial 

fan formed in the northeast of the lake where two of the three perennial streams enter the lake. 

Today, the fan is under agricultural use and crops, such as banana (Musa x paradisiaca), 

millet (Setaria italica, Sorghum bicolor), corn (Zea mays), custard-apple (Annona reticulata), 

and papaya (Carica papaya) are cultivated (Menzel et al. 2013). 

 

2.2.4. Pookode Lake 

 

Pookode Lake is a tropical, closed basin freshwater lake situated in the Western Ghat 

region. The lake has no tributary and is fed by monsoon rain and surface runoff. Most of the 

annual precipitation falls during the summer monsoon between June and September (Nirmala 

et al. 1991). The lake water is oxic, meso – eutrophic (phosphate concentration = 0.02 – 0.08 

mg/l) with neutral to slightly acidic pH (Nirmala et al. 1991). The surrounding rocks belong to 

the Wayanad Group and consist of charnockite and hornblende-biotite gneiss (Veena et al. 

2014) covered by ferruginous loamy soils (Sandeep et al. 2011). The phytoplankton 

assemblage comprises Chlorophyceae, Cyanophyceae, and Bacillariophyceae. The most 

abundant species is the Chlorophycea Ulothrix sp. (Nirmala et al. 1991). The zooplankton 
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community is represented by Protozoa, Rotifera, Arthropoda, and Plathyhelminthes; Pookode 

Lake also hosts fishes, snakes, turtles, and water birds (Nirmala et al. 1991). Macrophytes like 

Nymphaea nouchali grow within the lake, whereas its vicinity is characterised by densely 

forested hills (Sabu and Ambat 2007), with key dicotyledonous species of the Western Ghats, 

such as Syzygium caryophyllatum, Symplocos cochinchinensis, Meliosma simplicifolia, Litsea 

lavigata, Cinnamomum malabathrum, Leea indica, Aporusa lindleyana, Cyanotis sp., a 

monocotyledonous species of Pandanus and a pteridophyte species of Asplenium in addition 

to several species of grasses, sedges, and other herbs. 

 

2.3. Methods and material 

 

2.3.1. Sampling 

 

Surface sediments, soil, and terrestrial plant samples were collected in January 2007, May 

2008, and February 2011 from Lonar Lake and in July 2011 from Tso Moriri. Additionally, 

suspended particulate matter was filtered from Lonar Lake in February 2011 and sediment 

trap samples were collected for the intervals February to May 2011, and May to October 2011 

at Lonar Lake. Using a UWITEC piston corer, sediment cores were retrieved in December 

1998 from Mansar Lake, in May 2008 from Lonar Lake, in July 2011 from Tso Moriri, and in 

May 2012 from Pookode Lake. The sediment cores were opened and sub-sampled in the 

laboratory. All samples were freeze-dried and afterwards ground manually in an agate mortar. 

 

2.3.2. Analytical methods 

 

Total carbon (TC) and total nitrogen (TN) contents of the samples were determined on a 

Carlo Erba NC2500 element analyser. A fraction of grounded sample material was weighted 
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and wrapped into pre-combusted tin capsules and analysed via flash combustion in the 

element analyser. The total organic carbon (TOC) content of samples was determined 

following the same procedure after decalcification of sample fractions with 20% HCl in pre-

combusted silver capsules. Calibration standard for these measurements was acetanilide. 

Precision of this method is 0.05% for carbon and 0.005% for nitrogen. 

AA and HA analyses were carried out on a Biochrom 30 Amino Acid Analyser according 

to the method by Roth and Hampaǐ (1973). Before analysis, samples were hydrolysed for 22 

hours with 6 mol/l HCl under a pure argon atmosphere at 110°C. Un-reacted HCl was 

removed from the hydrolysate by evaporation using a vacuum rotating evaporator (Büchi). 

The residue was resolved into an acidic buffer (pH 2.2) and injected into the analyser. Using 

this method, we quantified the 18 AA monomers aspartic acid (Asp), threonine (Thr), serine 

(Ser), glutamic acid (Glu), glycine (Gly), alanine (Ala), valine (Val), methionine (Met), iso-

leucine (Ile), leucine (Leu), tyrosine (Tyr), phenylalanine (Phe), β-alanine (β-Ala), γ-

aminobutyric acid (γ-Aba), histidine (His), ornithine (Orn), lysine (Lys), and arginine (Arg) as 

well as the 2 HAs glucosamine (Gluam) and galactosamine (Galam). Asp and Glu potentially 

include the respective contributions from asparagine and glutamine after hydrolysis with HCl. 

All AA and HA molar concentrations were calculated against a standard (SIGMA AA-S-18 

with addition of Orn, β-Ala, γ-Aba, Gluam and Galam), which was analysed prior to the 

measurements. Duplicate measurement of the standard solution resulted in a relative error of 

0.1 to 1.3 % for the concentrations of individual AA monomers. Duplicate measurement of a 

single sediment sample revealed a relative error of < 1 % for AA and HA concentrations, < 10 

% for low concentrated (< 1 mol%) AA monomers, and < 2.5 % for higher concentrated (> 1 

mol%) AA monomers. 

 

 

 



Chapter 2 
 

 
25 

2.3.3. Approach 

 

AAs and HAs are commonly used to determine the state of OM degradation in sediments. 

Additionally, they can give information about the dominant organisms contributing to the 

deposited OM. The total AA and HA contributions to the samples are source and degradation 

indices. But, since the total amounts of AA in sediment and OM samples are highly dependent 

on the TOC and TN contents of the samples, we normalized the AA concentrations to TOC 

and TN content of the samples. These values are given in percent TOC and TN incorporated 

into AAs and are named AA-C and AA-N. And, whereas AA-C of sediment samples is 

influenced by the state of degradation but much more dependent on the ratio between TOC 

rich but AA poor terrestrial plant material and TOC and AA rich aquatic OM, AA-N is less 

source dependent but much more influenced by the state of organic mater degradation (Cowie 

and Hedges 1994).  

To assess the state of OM degradation, we also calculated ratios and indices based on the 

monomeric distribution of the AAs, the reactivity index (RI), which was invented by 

Jennerjahn and Ittekkot (1997), and the degradation index (DI), developed by Dauwe and 

Middelburg (1998) and Dauwe et al. (1999). 

Briefly, the RI is the ratio between the sum of the two aromatic AA Tyr and Phe and the 

sum of the two non-protein AA β-Ala and γ-Aba: 

Aba γ Alaβ

Phe Tyr 
 RI

−+−

+
=  

(2.1) 

Since the aromatic AA are relatively enriched in cell plasma, they are preferentially lost 

during decay processes (Hecky et al. 1973). The abundance of non-protein AA in fresh OM is 

minimal but increases during degradation due to the fact that the non-protein AA are 

metabolic products of microbial proteinogenic AA decay (Cowie and Hedges 1992). Hence, 

high RI values indicate fresh OM while low values characterise degraded OM. 
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The DI is calculated on the basis of the molar percentages of the 14 protein AA Asp, Thr, 

Ser, Glu, Gly, Ala, Val, Met, Ile, Leu, Tyr, Phe, His, and Arg. It compares the monomeric 

distribution of the AAs of a sample with the data set of Dauwe et al. (1999) according to the 

formula: 

i

i i

ii fac.coef.
STDvar

AVGvarvar
DI ×







 −
=∑  

(2.2) 

where vari is the original mole percentage of each AA in the sample, AVGvari and STDvari 

are the arithmetic average and the standard deviation, and fac.coef.i the factor coefficient of 

the first axis of a principle component analysis (PCA) of the individual AAs in the data set of 

Dauwe et al. (1999). Positive values indicate less degraded and negative values more 

degraded state of the OM compared with the average of the data set of Dauwe et al. (1999). 

In addition to the above mentioned AA-based indices, we performed principal component 

analyses of the 18 individual AA monomers for every investigated lake and for the combined 

data set to calculate a new, lake-specific AA index on the basis of the DI calculation (Dauwe 

and Middelburg 1998; Dauwe et al. 1999). 

In addition, we calculated other AA- and HA-based degradation indices, such as ratios 

between proteinogenic AAs and their non-protein degradation products (Henrichs et al. 1984; 

Ittekkot et al. 1984b), the Ox/Anox ratio, which distinguishes between aerobic and anaerobic 

degradation (Menzel et al. 2013), and the percentage of Gly of the sum of Gly, Ser, and Thr 

(Lomstein et al. 2006). Furthermore, organic matter source indices, such as the ratio between 

AAs and HAs (Ittekkot et al. 1984a; Müller et al. 1986), the ratio between the two measured 

HAs Gluam and Galam (Kandler 1979; Haake et al. 1992), the Asp/Gly ratio (Ittekkot et al. 

1984a; Ittekkot et al. 1984b), and the sum of Gly, Ser, and Thr (Lomstein et al. 2006), were 

calculated and their applicability examined. 
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2.4. Results 

 

The results of the AA analyses of the four lakes are summarised in Table 2.2. 

 

 
TOC 

(%) 

C/N 

(atomic) 

THAA 

(mg/g) 

AA-C 

(%) 

AA-N 

(%) 

Tso Moriri      

Vascular plants 46.2 31.6 92.1 9.3 52.7 

Soils 0.7 11.5 1.6 9.7 30.3 

Surface sediments 1.7 10.3 5.5 13.2 37.6 

Sediment core 0.8 10.2 1.7 7.9 21.3 

Section 0 m – 3.9 m 1.2 9.0 2.9 10.6 26.5 

Section 3.9 m – 7.3 m 0.4 11.2 0.5 5.6 16.8 

Mansar Lake      

Sediment core 3.6 12.0 5.8 7.4 23.7 

Section 0 m – 16.8 m 1.7 9.6 4.0 8.9 24.8 

Section 17 m – 24.3 m 6.4 15.2 8.2 5.5 22.2 

Lonar Lake      

SPM 31.9 6.5 283.9 40.0 77.6 

Vascular plants 43.1 39.6 85.6 8.7 51.2 

Soils 0.5 15.8 3.0 13.4 38.0 

Sediment trap material 24.1 6.9 196.4 35.9 64.5 

Sediment core 3.5 22.6 2.2 3.8 19.0 

Section 0 m – 3.1 m 1.6 14.0 3.7 9.2 33.9 

Section 3.1 m – 6.1 m 1.4 22.9 1.0 2.6 17.1 

Section 6.1 m – 9.1 m 4.7 26.6 2.4 2.1 14.8 

Section 9.1 m – 9.8 m 1.3 15.5 0.2 0.7 3.3 

Section 9.8 m – 9.9 m 0.4 13.1 0.2 1.7 6.8 

Pookode Lake      

Sediment core 16.7 13.6 45.2 11.8 44.1 

Section 0 cm – 42.5 cm 15.1 13.7 40.7 11.7 44.6 

Section 44 cm – 48.5 cm 28.3 12.4 76.9 12.0 40.8 

 

 

Highest AA concentrations are present in suspended particulate matter (SPM) samples, 

which were available only from Lonar Lake, followed by sediment trap samples, also 

collected from Lonar Lake (Table 2.2). The vascular plants, which were sampled at Tso 

Table 2.2: Average TOC, C/N, AA, AA-C, and AA-N values of specific 
groups of samples of the four lakes. 
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Moriri and Lonar Lake, show AA content of about one third of that of SPM. The AA-C values 

of the sediment core samples from Tso Moriri, Mansar Lake, and Pookode Lake are in the 

same range, whereas the Lonar Lake core sediments show lower AA-C values. On the other 

hand, similar average AA-N values are present in Tso Moriri, Mansar Lake, and Lonar Lake 

core sediments, whereas the Pookode Lake samples show higher values. The AA-C values of 

vascular plant samples are much lower compared to SPM and sediment trap samples, whereas 

AA-N values of vascular plants are less depleted with respect to SPM and sediment trap 

samples (Table 2.2). 

As shown in Figure 2.2 A, the monomers Gly, Asp, Ala, and Glu contribute most (> 9 

mol%) to the AA assemblages of the different lake core sediment samples. The Lonar Lake 

sediments are an exception; here, Leu, Ala, Val, and Gly are the most abundant (> 9 mol%) 

monomers. The vascular plant samples from Tso Moriri and Lonar Lake are characterised by 

high AA monomer contributions of Glu, Asp, Gly, Ala, and Leu (8.6 mol% – 13 mol%), 

whereas the soils of the vicinity of the two lakes show AA spectra dominated by Asp, Gly, 

Glu, and Ala (10.6 mol% – 16.7 mol%). Suspended particulate matter filtered from Lonar 

Lake is highly enriched in Glu (17.6 mol%), followed by Ala, Asp, and Gly (9 mol% – 11.5 

mol%). 
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 Figure 2.2: Monomeric AA and HA assemblages of the sediment core samples of the four lakes. 
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2.4.1. AA variability within the Tso Moriri sediment core 

 

The most pronounced differences concerning the AA results within the Tso Moriri core 

can be seen between the upper ca. 3.9 m of the sediment sequence and the underlying ca. 3.4 

m. 

The AA content of the upper part of the core shows a mean value of 2.9 mg/g dry 

sediment, whereas the lower part only contains 0.5 mg/g. The mean AA-C and AA-N 

percentages of the upper part of the core are 10.6 % and 26.5 %, respectively. The lower part 

of the core shows mean AA-C and AA-N values of 5.6 % and 16.8 %, respectively. 

The monomeric AA assemblage of the upper part of the core is relatively enriched in Gly, 

Thr, Ser, Lys, and Ala and depleted in Met, Orn, β-Ala, γ-Aba, Glu, Arg, Ile, Val, Tyr, and 

Leu compared to the lower part (Figure 2.2 B). Furthermore, the ratio between the two HAs 

Gluam and Galam is lower in the upper part compared to the lower part of the Tso Moriri core 

(Figure 2.2 B). 

 

2.4.2. AA variability within the Mansar Lake sediment core 

 

The results of the AA analyses of the Masar Lake sediment core have been published by 

Das et al. (2010) and interpreted with respect to palaeo-climate variability. Broadly, the core 

can be divided into an upper part from 0 m – 16.8 m and a lower part from 17 m – 24.3 m. 

The mean AA content of the upper part of the core is 4.0 mg/g and generally decreases 

downcore. The lower part of the core shows a mean AA content of 8.2 mg/g with no marked 

internal trend. Average AA-C and AA-N percentages in the upper part are 8.9 % and 24.8 %, 

respectively. Similarly to the AA content, both AA-C and AA-N show a decreasing trend with 

increasing depth. The lower part of the core is characterised by mean AA-C and AA-N values 

of 5.5 % and 22.2 %, respectively. 
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The monomeric AA assemblage of the two parts of the core differs with Tyr, Gly, Asp, 

Glu, and Ser being relatively enriched in the upper part and γ-Aba, Orn, β-Ala, Ile, Val, Leu, 

Phe, Met, Lys, and Ala being enriched in the lower part (Figure 2.2 C). The ratio between the 

two HAs indicates slightly elevated contribution of Gluam to the upper part compared to the 

lower part of the core (Figure 2.2 C). 

 

2.4.3. AA variability within the Lonar Lake sediment core 

 

The Lonar Lake sediment core has been analysed for different proxies and interpreted with 

respect to palaeo-climate (Anoop et al. 2013b; Prasad et al. 2014; Menzel et al. submitted). 

According to the AA analyses and supported by the findings of the afore-mentioned authors, 

the Lonar Lake sediment core can roughly be divided into five subunits: the first subunit 

comprising the upper part of the core between 0 m – 3.1 m, the second subunit between 3.1 m 

– 6.1 m, the third subunit from 6.1 m to 9.1 m, the fourth subunit between 9.1 m – 9.8 m, and 

finally, the fifth subunit at the bottom of the core (9.8 m – 9.9 m) comprising a palaeosol and 

underlying hard clay. 

The mean AA content, AA-C, and AA-N values of the single subunits are given in Table 

2.2. The average monomeric AA assemblages of the individual subunits are shown in Figure 

2.2 D and reveal some major differences. Compared to the mean AA assemblage of the Lonar 

Lake sediment core, the first subunit is enriched in Arg, Thr, Asp, Ser, and Tyr and depleted 

in γ-Aba, β-Ala, Orn, His, and Lys. The second subunit is relatively enriched in Lys, β-Ala, γ-

Aba, and Orn and depleted in Met and Tyr. The third subunit shows relatively elevated 

percentages of Leu, Ile, His, Orn, and γ-Aba and diminished percentages of Asp, Thr, Arg, 

and β-Ala. The fourth subunit is enriched in β-Ala, γ-Aba, Asp, Gly, and Glu and depleted in 

Tyr, Ile, Leu, Arg, Phe, Val, and Lys, whereas the fifth subunit shows enrichment of Asp, β-

Ala, Gly, Glu, Ser, and Thr and depletion of Phe, Leu, Ile, Tyr, Lys, Orn, Arg, His, Val, Ala, 
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and γ-Aba. The Gluam/Galam ratio shows highest values in the third and lowest values in the 

fifth subunit (Figure 2.2 D). 

 

2.4.4. AA variability within the Pookode Lake sediment core 

 

According to the AA data, the Pookode Lake short core can be divided into a top part from 

0 cm to 42.5 cm and a bottom part from 44 cm to 48.5 cm. 

The mean AA content of the top part of the sediment core is 41 mg/g dry sediment, 

whereas the mean AA content of the bottom part of the core is 77 mg/g dry sediment. The 

AA-C and AA-N percentages of the two parts of the core are quite identical, being 11.7 % and 

44.6 % in the top part and 12.0 % and 40.8 % in the bottom part, respectively. 

In comparison, the monomeric AA assemblage of the top part of the core is relatively 

enriched in Gly, Ala, Asp, β-Ala, Met, and γ-Aba, whereas the bottom part is relatively 

enriched in Tyr, Arg, Lys, Phe, His, and Orn (Figure 2.2 E). 
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2.5. Discussion 

 

Several AA- and HA-based indices have been used in environmental science to decipher 

the state of OM degradation of and the OM source to different types of samples. Some of 

these indices are based on the overall AA and HA contribution to samples and ratios between 

AAs, HAs, or AA- and HA-bound compounds and other chemical constituents, whereas 

others are based on the contributions, amounts, and ratios of different AA and HA monomers. 

Most of these indices were first invented for marine samples, which often show negligible 

contribution of terrestrial OM, such as vascular plants, funghi, or soil OM, and thus are more 

uniform with respect to their OM sources and the related AA contribution and monomeric 

assemblages. Here, we test the different indices for their applicability to samples from 

different lacustrine environments. 

 

2.5.1. AA-C and AA-N 

 

The organic carbon and total nitrogen normalised AA contents of samples are occasionally 

used as degradation proxies (Cowie and Hedges 1994; Colombo et al. 1998; Lomstein et al. 

2006; Carstens and Schubert 2012). However, AA-C can only serve as a degradation proxy in 

environments that show comparable OM sources, since AA-C values of vascular plants and 

marine organisms are explicitly different (Haake et al. 1992; Verma and Subramanian 2002; 

Meckler et al. 2004; Menzel et al. 2013; Unger et al. 2013). AA-C values of suspended 

particulate material from Lonar Lake are in the range of 33 % – 49 %, whereas vascular plant 

samples from Lonar Lake (Menzel et al. 2013) and Tso Moriri show AA-C values of 2 % – 18 

% (Table 2.2). Thus, AA-C is less suitable as a degradation proxy in lake sediments, but can 

be used as source indicator, with low values relative to AA-N indicating higher amounts of 

vascular plants. 
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AA-N, on the other hand, shows less variation between aquatic and terrestrial OM than 

AA-C (Cowie and Hedges 1992; Cowie and Hedges 1994; Menzel et al. 2013), making it a 

better degradation proxy for bulk OM investigations. However, aquatic OM usually yields 

higher AA-N values than terrestrial OM; especially woody vascular plant samples show AA-

N values as low as 23 % (Cowie and Hedges 1992), apparently indicating that AA-N in 

samples that are dominated by woody OM might be biased. But, since woody OM usually 

account for negligible amounts of the overall AA and TN contribution of a sediment sample, 

due to the very low AA and TN concentration in wood compared to other OM (Cowie and 

Hedges 1992), AA-N can be used as a reliable organic reactivity index even in samples that 

are dominated by woody OM. This is corroborated by our data, which show comparable AA-

N values for the sediment cores from Tso Moriri (22.1 %), Mansar Lake (23.7 %), and Lonar 

Lake (19.0 %). Other indices indicate similar states of OM degradation within these three 

cores, as suggested by the AA-N values, whereas AA-C values are much higher in Tso Moriri 

(8.1 %) and Mansar Lake (7.4 %) compared to Lonar Lake (3.8 %) that shows the highest 

mean C/N ratio of the three lakes, indicating higher contribution of terrestrial OM. A cross-

plot of AA-C and AA-N shows that both values seem to be sensitive to degradation as they 

decrease linearly (Figure 2.3). Sediment samples from core sections that probably have 

comparable OM sources plot on a line through the origin, but the gradient of the line is 

depending on the amount of terrestrial vs. aquatic OM contributing to the sediments. For 

example, the samples from Lonar Lake core section > 3.1 m, which show a mean C/N ratio of 

25.3 lie on a much steeper line than those from the Lonar Lake core section 0 m to 3.1 m 

(Figure 2.3), which is characterised by less degradation and a lower mean C/N ratio (14.0) 

due to eutrophication induced phytoplankton growth (Anoop et al. 2013b). Thus, AA-N 

shows great potential in comparing the state of degradation between different samples and 

different sites, whereas AA-C can only be used as degradation proxy when the OM sources 

are almost constant. 
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2.5.2. Degradation indices: DI, RI, new Lake degradation index (LDI) 

 

The degradation index (DI) (Dauwe and Middelburg 1998; Dauwe et al. 1999) and 

reactivity index (RI) are often applied to environmental AA analyses to assess and compare 

the state of OM degradation (Unger et al. 2005; Gaye et al. 2007; Gupta and Kawahata 2007; 

Lahajnar et al. 2007; Möbius et al. 2011; Carstens and Schubert 2012). However, some 

studies on AA contribution to marine, fluviatile, and lacustrine sediments have shown that the 

DI and RI cannot universally be used to compare the state of OM degradation from different 

environments (Unger et al. 2005; Gupta and Kawahata 2007; Davis et al. 2009; Möbius et al. 

2011; Carstens and Schubert 2012). Only for the Pookode Lake we find a significant positive 

correlation between the two indices (Figure 2.4), and Lonar Lake sediments have highest DI 

values. 

Figure 2.3: Cross-plot of AA-N and AA-C-values of sediment core, 
vascular plant, plankton, suspended particulate matter, and macrophyte 
samples. Macrophyte, 6 plankton, and 11 vascular plant paired values 
reported by or calculated from Cowie and Hedges (1992). 
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Figure 2.5: Cross-plot of first and second PCA axis factors of the PCA of 
the monomeric AA contribution of the combined data set. 

Figure 2.4: Cross-plot of DI and RI values of the sediment core 
samples of the four lakes. 
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To decipher if the RI or the DI are suitable to assess the degradation rate, we performed 

PCAs of the AA assemblages of the four lakes separately as well as for the combined lake 

samples (Figure 2.5) and compared them to the original data set used for the DI calculation 

(Dauwe et al. 1999) (Table 2.3). Lonar Lake core sediments with unusually high DI values are 

enriched in Leu, Val, Ile, His, and Phe and depleted in Gly, Asp, Arg, Thr, Ser, and Glu 

compared to the DI data set of Dauwe et al. (1999). The fact that this deviation is most 

pronounced in core sections that show highest C/N ratios, indicating strongest contribution of 

terrestrial OM, suggests that the DI might in general not be suitable to decipher the 

degradation status of sediments from environments that show high contribution of terrestrial 

OM. The interpretation of the monomeric AA assemblages of the different sediment cores 

indicates that specific monomers show different behaviour during degradation in our data 

compared to their factor loadings for the DI calculation (Dauwe et al. 1999). Repeatedly, the 

negative loading, and thus the enrichment during degradation of the AA monomers Arg and 

Val as well as Thr could not be confirmed in our data set (Table 2.3). The enrichment of Arg 

during degradation in the DI data set might be related to the adsorption of basic AAs to clay 

minerals, which prevents them from degradation especially in fine grained deep sea sediments 

(Hedges and Hare 1987; Keil et al. 2000). This is a process not relevant in the investigated 

relatively coarser grained lake sediments. The negative DI factor loading of Thr is presumably 

related to the abundance of Thr in diatom cell walls (Hecky et al. 1973; King 1977). As most 

investigated lake sediments have low diatom content Thr is not significantly enriched. The 

different behaviour of Glu during degradation in some of our samples with much lower F1 

coefficients than in the DI (Table 2.3) might be linked to different redox conditions during 

degradation. Whereas Glu is often enriched in fresh planktonic material and preferentially lost 

during early degradation (Cowie and Hedges 1992; Keil et al. 2000; Menzel et al. 2013), it 

can be enriched during degradation under aerobic conditions (Cowie et al. 1995) especially in 
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gram-positive bacteria (Keil et al. 2000). Particularly in lake samples deposited under low 

oxygen concentrations, Glu is relatively depleted. 

 

 
DI 

coefficient 

Tso Moriri 

F1 coefficient 

Mansar Lake 

F1 coefficient 

Lonar Lake 

F1 coefficient 

Pookode Lake 

F1 coefficient 

Asp -0.102 0.051 -0.094 -0.141 -0.092 

Thr -0.129 -0.111 0.005 -0.088 0.032 

Ser 0.015 -0.098 -0.069 -0.072 0.090 

Glu 0.065 0.046 -0.069 -0.132 -0.051 

Gly -0.099 -0.117 -0.114 -0.133 -0.079 

Ala -0.043 -0.091 0.115 0.048 -0.048 

Val -0.044 0.101 0.131 0.103 -0.034 

Met 0.134 0.094 0.029 0.006 -0.046 

Ile 0.139 0.103 0.132 0.141 0.099 

Leu 0.169 0.084 0.108 0.143 0.103 

Tyr 0.178 0.060 -0.078 0.068 0.108 

Phe 0.134 0.049 0.102 0.131 0.123 

β-Ala  0.089 0.071 -0.095 -0.100 

γ-Aba  0.086 0.099 -0.026 -0.012 

His 0.158 -0.009 -0.028 0.039 0.110 

Orn  0.102 0.079 0.036 0.024 

Lys  -0.048 0.082 0.028 0.120 

Arg -0.115 0.079 -0.015 -0.043 0.114 

 

These deviations from the DI show that it is highly recommended to calculate an individual 

PCA of AA results from a specific study site, since the grouping of individual AA monomers 

could be used to identify specific causes for the AA monomer variability within the data set. 

As for example the grouping of relatively labile AA monomers opposing a group of relatively 

stable AA monomers indicates sensitivity to degradation state (Dauwe and Middelburg 1998; 

Dauwe et al. 1999), whereas grouping of AA monomers most abundant in specific OM 

compounds, such as siliceous, calcareous, microbial, or terrestrial plant OM, most probably 

indicates sensitivity to OM source variation (Ingalls et al. 2006; Gaye et al. 2007). The 

incorporation of other data into such a PCA might further enhance its interpretability, as for 

example incorporation of the C/N ratio can be used to identify the sensitivity of the AA 

Table 2.3: AA monomer DI coefficients (Dauwe et al. 1999) and first PCA 
axis loadings of individual PCAs of the four lake sediment cores. 
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monomeric assemblage of a data set with respect to variability in aquatic and terrestrial OM 

contribution. Hence, degradation indices that are calculated on the basis of an individual AA 

monomer-based PCA should be limited to the PCA axis that shows highest sensitivity to the 

state of degradation, and thus separates most labile AA monomers and most stable AA 

monomers. 

 

 
Avg 

(mol%) 

SD 

(mol%) 

fac. coeff. 

 

Tyr 1.78 0.76 -0.223 

Phe 4.08 1.21 -0.177 

Arg 3.31 1.02 -0.153 

Leu 8.18 3.12 -0.109 

Ile 5.10 1.96 -0.103 

Ser 5.63 1.36 -0.092 

Val 8.06 2.21 -0.061 

Thr 5.46 1.50 -0.056 

Ala 11.43 1.44 -0.018 

Lys 4.14 0.81 -0.008 

Glu 11.01 2.50 0.020 

His 2.42 0.92 0.058 

Asp 11.97 3.30 0.114 

Gly 13.16 3.05 0.128 

Met 0.70 0.41 0.149 

Orn 1.16 0.70 0.194 

γ-Aba 1.02 0.79 0.203 

β-Ala 1.13 0.65 0.376 

 

The results of a PCA comprising the AA analyses of the whole data set, including the four 

lake sediment cores and the surface sediment, soil, vascular plant, SPM, and sediment trap 

samples, indicates that the first axis, explaining 49.3 % of the variability of the data, seems to 

be sensitive to redox conditions and the contribution of degraded terrestrial, especially woody, 

OM to the samples, whereas the second axis of this PCA seems to be most sensitive to the 

Table 2.4: Average molar percentages (Avg.), 
standard deviations (SD), and factor coefficients (fac. 
coeff.) of each AA monomer used for LDI 
calculation. 
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state of OM degradation. Therefore, we calculated a lake degradation index (LDI) based on 

the factor loadings of the second axis of the PCA of our whole data set. The arithmetic mean, 

standard deviation, and second PCA-axis factor loading of the individual AA monomers are 

listed in Table 2.4. This index characterises the state of OM degradation of the samples from 

the four investigated lakes and might be applicable to other terrestrial aquatic environments, 

especially other lake sediments, too. The LDI produces positive values for relatively degraded 

and negative values for relatively fresh samples. The LDI, therefore, correlates negatively 

with indicators of organic matter freshness such as the AA-N, RI, and, with some limitations 

(as discussed above) with the AA-C as well as with ratios between proteinogenic AAs and 

their degradation products (Table 2.5). It correlates positively with the %Gly/(Gly+Ser+Thr) 

and the Ox/Anox indicator, which both rise with increasing degradation (see below). 

Additionally, the LDI is independent of terrestrial and aquatic source indicators such as C/N 

and Gly+Ser+Thr (Table 2.5). 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 2 
 

 
41 

 

 C/N AA-C AA-N AA/HA 
Asp/ 

β-Ala 

Glu/ 

γ-Aba 

Arg/ 

Orn 

Gluam/ 

Galam 

Thr+Ser+ 

Gly 

%Gly 

(T+S+G) 

Ox/ 

Anox 
RI DI 

LDI -.059 -.515** -.658** -.377** -.545** -.327** -.421** -.387** .048 .686** .491** -.531** -.198** 

C/N 1 -.486** -.162* .067 -.205** -.221** .043 .505** -.535** -.020 -.576** -.120 .688** 

AA-C  1 .819** .239** .770** .657** .375** -.017 .351** -.446** .160* .724** -.342** 

AA-N   1 .432** .650** .476** .475** .275** .273** -.606** -.018 .578** -.198** 

AA/HA    1 .493** .192** .514** .685** -.057 -.434** -.027 .284** .040 

Asp/ 

β-Ala 
    1 .753** .646** .333** .063 -.516** -.004 .900** -.083 

Glu/ 

γ-Aba 
     1 .465** .101 .079 -.357** .067 .896** -.123 

Arg/ 

Orn 
      1 .603** .002 -.442** -.018 .554** -.005 

Gluam/ 

Galam 
       1 -.227** -.454** -.255** .216** .306** 

Thr+Ser+ 

Gly 
        1 -.134 .598** -.057 -.878** 

%Gly 

(T+S+G) 
         1 .133 -.458** .123 

Ox/ 

Anox 
          1 -.137 -.834** 

RI            1 .050 

 

The results of the PCA of the combines lake samples indicate that the RI is suitable to 

decipher the state of degradation of OM in lakes as the aromatic AAs are the most labile 

(most negative LDI factor loadings), whereas the non-protein AAs are the most stable AAs 

(most positive LDI factor loadings). This is due to the fact that the aromatic AAs are enriched 

in cell plasma, which is easily degradable, and the non-protein AAs β-Ala and γ-Aba become 

Table 2.5: Correlation between different AA- and HA-based OM source and degradation indices as 
well as C/N ratio of the combined data set. 
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enriched during degradation as they are decomposition products of Asp and Glu, respectively 

(Ittekkot et al. 1984b). However, OM of terrestrial origin can be enriched in γ-Aba compared 

to OM of aquatic origin (see chapter 5.4), especially when vascular plants undergo 

environmental stress, as for example extreme temperature, drought, highly alkaline or saline 

soils (Kinnersley and Turano 2000). At Tso Moriri, the vascular plant samples show higher 

contribution of γ-Aba than all other samples, including soil and sediment core samples. 

Nevertheless, this effect is to some extent countered by elevated aromatic AA content, 

especially Phe (see chapter 4.5.4), in undegraded terrestrial OM (Cowie and Hedges 1992), 

making RI a reliable proxy to evaluate the state of OM degradation in environments with 

different OM sources. However, it should be noted here that if non-protein AAs are 

considered individually, only β-Ala content should be taken as an indicator of organic matter 

degradation. 

 

2.5.3. Specific organic matter source indices 

 

The most important difference in OM origin in lacustrine environments certainly is the 

ratio between aquatic and terrestrial OM contribution to the sediments. Several studies have 

deciphered the differences in AA assemblages of various aquatic and terrestrial organisms 

(Hecky et al. 1973; King 1977; Ittekkot et al. 1984a; Ittekkot et al. 1984b; Cowie and Hedges 

1992), suggesting that these differences are transferred into the sediments. However, to 

estimate the percentage of aquatic versus terrestrial OM contribution to sediments, the 

calculation of the simple ratio between organic carbon and total nitrogen usually shows 

universal applicability (Meyers 1994). C/N ratios of all samples correlate positively with Leu, 

Ile, Val, Phe, His, γ-Aba, and Orn and negatively with Asp, Gly, Arg, Thr, Glu, and Ser, 

suggesting that the former are enriched in land plants and soils whereas the latter are enriched 

in aquatic material. In Lonar lake that shows highest C/N ratios, and thus highest terrestrial 



Chapter 2 
 

 
43 

contribution, the correlation is positive between C/N and Orn, Leu, His, γ-Aba, and Ile and 

negative between C/N and Asp, Thr, Ser, Arg, and Glu. The missing correlation between C/N 

and Val, Phe, and Gly in Lonar Lake sediments is probably due to the exceptional plankton 

assemblage in Lonar Lake, comprising mostly of cyanophyceae, which are relatively enriched 

in Val and Phe and depleted in Gly (Becker 2007) compared with most other phytoplankton 

(Lee 1988), especially those including substantial contribution of diatoms (Cowie and Hedges 

1992). 

We also tested other AA-based OM source indices used to identify high contribution of 

specific organisms to environmental samples. Dominance of Asp over Gly in suspended and 

sinking material was interpreted as being evidence of high calcareous OM contribution, 

whereas dominance of Gly over Asp was interpreted as being evidence of high siliceous OM 

contribution (Ittekkot et al. 1984a; Ittekkot et al. 1984b; Müller et al. 1986). This is based on 

findings that show high contribution of Gly to siliceous organisms (Hecky et al. 1973; King 

1977; Cowie and Hedges 1992) and high contribution of Asp to calcareous organisms 

(Degens 1976; King 1977; Carter and Mitterer 1978). However, these indices of siliceous and 

calcareous OM sources can only be applied to relatively undegraded OM. Gly can be highly 

enriched during degradation, due to its significant contribution to microbial produced OM 

(Keil et al. 2000) and its relatively reduced decomposability compared to most other AAs 

(Sigleo and Shultz 1993), whereas Asp might be preferentially enriched during aerobic 

degradation (Cowie et al. 1995). To assess the contribution of specific OM sources to 

sediments, other indices are needed. The relative contribution of siliceous OM to even more 

degraded sediments can be reconstructed from the molar percentage of Gly, Ser, and Thr of 

the total AA assemblage in combination with the percentage of Gly of the afore mentioned 

three AA monomers [%Gly/(Gly+Ser+Thr)] (Lomstein et al. 2006). Since siliceous OM is 

enriched in Gly, Ser, and Thr (Hecky et al. 1973; King 1977), sediments with high 

contribution of siliceous OM show contributions of the sum of Gly, Ser, and Thr of ca. >27 
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mol%, as for example in the Pookode Lake sediment core and the upper parts of the Tso 

Moriri and Mansar Lake sediment cores. To assure that the high values of this sum are not 

driven by strong contribution of microbial-originated or degradation-related enrichment of 

Gly, %Gly/(Gly+Ser+Thr) needs to be calculated. Percentages of ca. > 60% might indicate 

Gly enrichment due to enhanced degradation, which should be confirmed by relatively low 

AA/Galam ratios (see below) or high β-Ala content of the respective samples. 

Since none of the four lakes investigated during this study shows high contribution or 

evidences of former dominance of calcareous organisms, related AA-based indices could not 

be tested. 

 

2.5.4. HA-based indices 

 

Aminosugars showed the potential to be used as indices of microbial degradation and 

microbial contribution to the OM of different environmental samples (Benner and Kaiser 

2003; Niggemann and Schubert 2006; Carstens et al. 2012). The ratio between the HAs 

Gluam and Galam can, however, also be an indicator of chitinaceous or microbial OM source. 

Gluam/Galam ratios > 4 usually indicate high contribution of chitinaceous OM to sinking 

particulate matter (Haake et al. 1992; Haake et al. 1993; Lahajnar et al. 2007), since chitin is a 

polymer of Gluam (Benner and Kaiser 2003). On the other hand, Gluam/Galam ratios of < 3 

usually indicate relatively high contribution of microbial OM (Benner and Kaiser 2003). 

However, chitin in aqueous systems is prone to microbial recycling (Davis et al. 2009) so that 

Gluam/Galam ratios of surface sediments usually fall to 1.2 – 1.9 (Liebezeit 1993; Benner and 

Kaiser 2003) even at locations that show Gluam/Galam ratios > 4 of sinking particles 

(Lahajnar et al. 2007). To avoid this bias induced by microbial reworking, Müller et al. (1986) 

used the AA/Gluam ratio of suspended particulate matter and sediment trap samples to 

estimate the contribution of chitinaceous OM in the marine environment. 
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Gluam/Galam ratios are < 2.5 in lake surface and core sediment samples. In sediments, 

decreasing Gluam/Galam ratios may indicate the decomposition-related accumulation of 

microbial OM, since Galam is most abundant in microbial cell walls (Kandler 1979). 

However, the fact that Gluam is present in varying amounts in most OM sources (Benner and 

Kaiser 2003) may bias the interpretation of Gluam/Galam ratios with respect to microbial 

contribution. For example, the Tso Moriri core sediments show a relatively low mean 

Gluam/Galam ratio of 1.3, theoretically indicating high contribution of microbial OM, 

whereas the Lonar Lake core sediments show a mean ratio of 2.3, indicating less microbial 

contribution, even though both sediment cores show similar contribution of β-Ala, which 

suggests similar microbial contribution to the two core sediments (Lee and Cronin 1982). The 

high contribution of terrestrial OM to Lonar Lake sediments might be the reason for high 

amounts of Gluam. Fresh leaf samples from Tso Moriri and Lonar Lake catchments reveal 

relatively low Gluam contents and have AA/Gluam ratios of 112 – 880. But, a sample of dry 

grass from Lonar Lake reveals an AA/Gluam ratio of 9.5, and wood samples potentially show 

similar or even lower AA/Gluam ratios, which is corroborated by the positive correlation of 

Gluam/Galam ratios and C/N (Table 2.5). The mean ratio between AA and Galam of the Tso 

Moriri core samples is 29.3, which is very similar to the mean AA/Galam ratio of 27.8 of 

Lonar Lake. We surmise that the AA/Galam ratio may be a better proxy of microbial 

contribution than the Gluam/Galam ratio in lakes, as it is not biased by high variability of 

Gluam contents in land plants.  

 

 

 

 

 

 



Amino acids in limnological investigations 
 

 
46 

2.5.5. Redox index 

 

Different degradation mechanisms during aerobic and anaerobic decomposition potentially 

affect the monomeric AA assemblage of OM (Cowie et al. 1995; Menzel et al. 2013). 

According to findings of changes in monomeric AA assemblages due to different redox 

conditions (Cowie et al. 1995), Menzel et al. (2013) calculated a simple ratio between AAs 

that become relatively enriched and those that become relatively depleted during aerobic 

degradation: 

Phe Tyr  Leu   Ile Met  Ser 

Lys  Aba- γ Ala-β Glu   Asp
Ox/Anox 

+++++

++++
=  

(2.3) 

The Ox/Anox ratio of the sediment core samples of the four lakes reveals aerobic 

degradation of OM in the whole Tso Moriri core, in the upper 16.8 m of the Mansar Lake 

core, in the bottommost 85 cm of the Lonar Lake core, and, to a lesser extent, in most of the 

samples of the uppermost 42.5 cm of the Pookode Lake core, whereas less oxygenated 

conditions are indicated for most of the samples of the lower 7.6 m of the Mansar Lake core 

and for the bottommost ca. 6 cm of the Pookode Lake core. Lowest Ox/Anox values, 

suggesting anaerobic conditions during degradation, are found in Lonar core sediments down 

to 9.1 m, especially in the sections 0.85 m – 3.1 m and 6.2 m – 9.1 m. These findings agree 

with palaeo-environmental reconstructions of Tso Moriri (Mishra et al. submitted), Mansar 

Lake (Das et al. 2010), Lonar Lake (Prasad et al. 2014; Menzel et al. submitted), and Pookode 

Lake (Veena et al. 2014). 

 

2.5.6. Ratios between proteinogenic AAs and their non-proteinogenic degradation products 

 

Commonly, ratios between protein AAs and their non-protein degradation products or 

intermediates, namely Asp/β-Ala, Glu/γ-Aba, and Arg/Orn, or equivalent combinations of 
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these (Gupta and Kawahata 2007) are used to compare the state of degradation of different 

samples (Lee and Cronin 1982; Cowie and Hedges 1994; Dauwe and Middelburg 1998; Das 

et al. 2010). However, varying OM sources in terrestrial environments potentially bias these 

ratios by contributing relatively high amounts of non-protein AAs, as for example elevated γ-

Aba and Orn percentages of terrestrial OM. Also, the relative enrichment of Asp and Glu 

during aerobic degradation (Cowie et al. 1995) might lead to elevated Asp/β-Ala and Glu/γ-

Aba ratios, as for example in the bottommost part of the Lonar Lake sediment core, which 

comprises a palaeosol on top of an underlying hard clay. Both samples indicate strong 

microbial degradation under aerobic conditions, and whereas the palaeosol shows respective 

Asp/β-Ala and Glu/γ-Aba ratios of 4.0 and 5.3, indicating strong degradation, the hard clay 

shows ratios of 8.0 and 16.1. A low to moderate degradation of the hard clay is not supported 

by other indices, such as AA-N, RI, Ox/Anox, Gluam/Galam, or %Gly/(Gly+Ser+Thr). 

Hence, the ratios between protein AAs and their non-protein degradation products and 

intermediates exhibit some weaknesses in deciphering the state of OM degradation in 

terrestrial environments. 

Nevertheless, the contribution of β-Ala to fresh OM of both aquatic and terrestrial origin is 

relatively low and increases during progressing degradation with slightly elevated values in 

surface sediments and higher values in more degraded sediment core samples (Cowie and 

Hedges 1992; Menzel et al. 2013). Hence, the contribution of β-Ala seems to be more 

sensitive to OM degradation than to OM origin and might be used to trace OM decomposition 

even in less degraded samples, whereas the ratios between protein AAs and their non-protein 

degradation products, the molar percentage of γ-Aba, or the sum of non-protein AAs might 

only be useful to identify moderately or highly degraded samples. However, different redox 

conditions during OM degradation can have considerable influence on the formation of β-Ala 

and other non-protein AAs in sediments and should be considered during interpretation 

(Cowie et al. 1995). 
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2.6. Conclusions 

 

The investigation of sediment cores of four Indian lakes from different climatic regimes 

confirms that AA-based indices are capable of deciphering the state of OM degradation and 

can also be used to identify specific sources of OM to lake sediments. However, some 

commonly used proxies show limitations in lacustrine environments, dominantly due to their 

interference with varying amounts of different OM sources. During our study, the following 

proxies have proven to be applicable to lake sediment studies comprising samples from 

different climate regimes with varying contribution of aquatic and terrestrial OM and of 

different OM degradation state. 

- AA-N shows high potential in deciphering the state of OM degradation. Fresh OM 

dominantly shows AA-N values of ≥ 50 %, linearly decreasing with progressing 

degradation. AA-C on the other hand is highly depending on the percentage of 

terrestrial vs. aquatic OM, typically showing values ≥ 30 % in aquatic and values ≤ 15 

% in terrestrial OM, and should not be used as a degradation proxy. 

-  The RI and the newly calculated LDI are applicable to identify the freshness of OM in 

lake sediments. The DI, invented on the basis of marine sediment, shows some 

weaknesses in sediments with high terrestrial OM contribution. Thus, the use of RI 

and LDI should be preferred. 

- The relative contribution of the non-protein AA β-Ala to the AA assemblage of 

sediments seems to be dominantly attributed to the state of OM degradation. The non-

protein AAs γ-Aba and Orn, which also accumulate during degradation, can be 

significantly enriched in terrestrial OM compared to β-Ala and might therefore 

potentially be biased when it comes to the assessment of OM degradation. 
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- To identify the percentage of terrestrial and aquatic OM contribution to lake 

sediments, the commonly used C/N ratio should be used, since AA-based indices 

might not contribute superior information. 

- The accumulation of microbial OM, often a by-product of progressing OM 

degradation, might be assessed using %Gly/(Gly+Ser+Thr), with values > 60 % 

usually pointing to enhanced microbial contribution. Also, the AA/Galam ratio might 

be used to decipher the contribution of microbial OM to sediment samples. In our data 

set, an AA/Galam ratio of approximately 30 seems to sub-divide the samples, with 

samples showing ratios < 30 being relatively enriched in microbial OM and samples 

showing ratios > 30 being relatively depleted. 

- Sediments that show notable contribution of siliceous OM are usually characterised by 

elevated percentages Gly+Ser+Thr. Values of > 27 mol% seem to identify such 

sediments in our data set, as long as %Gly/(Gly+Ser+Thr) does not indicate prominent 

contribution of microbial OM, which would bias this interpretation. Thus, 

Gly+Ser+Thr might also be applicable to other lacustrine studies and more reliable 

than the Asp/Gly ratio, which can be biased by microbial OM contribution, different 

state of degradation, as well as different redox conditions during degradation. 

- The use of the Ox/Anox ratio provides reliable information about the dominant redox 

conditions during OM degradation in our data set, with approximate values > 1 

indicating aerobic degradation and < 1 indicating anaerobic degradation. Thus, this 

ratio might be applicable to other study sites too. 

- Furthermore, the calculation of an individual PCA of any AA data set is highly 

recommended, as it yields fundamental information about the most important factors 

controlling the variability in AA assemblages and might help to identify anomalies 

within the investigated system. 
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3. Influence of bottom water anoxia on nitrogen isotopic ratios and amino acid 

contribution of recent sediments from small eutrophic Lonar Lake, central India 

 

 

 

 

 

Abstract 

 

Lonar Lake is a eutrophic, saline soda lake with permanently anoxic deep water. The high 

pH and deoxygenation result in very elevated δ15N of suspended particulate matter (SPM) and 

sediments due to denitrification and pH related loss of gaseous ammonia. SPM and sinking 

particles are predominantly aquatic in origin, whereas surface sediments are of mixed 

terrestrial plant and planktonic source. An indicator of degradation intensity was derived from 

a principal component analysis of the spectral distribution of amino acids and named Lonar 

degradation index (LI). A ratio of individual amino acids (Ox/Anox ratio) was additionally 

used to determine the relative degree of aerobic vs. anaerobic degradation. These two 

biogeochemical indicators can be used to detect changes in degradation intensity and redox 

conditions in the geological history, and thus the palaeo-climatic interpretation of Lonar 

sediments. Surface sediments can be divided into three zones: (1) a near shore, oxic zone of 

predominantly aquatic organic matter, in which oxidation leads to a strong diagenetic increase 

of δ15N; (2) an alluvial zone with a predominance of isotopically depleted land plant and soil 

organic matter degraded under oxic conditions, and (3) an anoxic, deep zone, which receives 

aquatic organic matter and land plant derived material transported near the bottom and in 

which organic matter is well preserved due to anoxic diagenetic conditions. 
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3.1. Introduction 

 

Lonar Lake is a crater lake with small streams and surface runoff as major water sources 

and no outflow. It is saline, alkaline, eutrophic, and below ca. 4 m water depth permanently 

sub- to anoxic, which is typical for closed basin saline lakes (Eugster and Hardie 1978). The 

laminated sediments in the deep, permanently anoxic part of the lake provide one of the very 

scarce climate records in Central India (Prasad et al. 2014). Due to their high resolution, these 

sediments provide an excellent archive of recent climate change. We tested common 

productivity and degradation proxies that are based on nitrogen isotopic ratios and amino acid 

assemblages for their applicability in Lonar Lake. For the current investigation, terrestrial 

plants and soils from the inner Lonar crater as well as suspended particulate matter (SPM) 

were sampled. Sediment traps were installed to sample sinking particles in seasonal resolution 

and to study the effect of early degradation on sinking organic matter (OM). Surface 

sediments were analysed to determine the state of degradation and to understand the 

differences in effect of early degradation under oxic and sub- to anoxic conditions. 

Furthermore, the ratio of the two stable carbon isotopes was used to determine the percentage 

of terrestrial and aquatic OM in the surface sediments and the pathways of CO2 uptake of 

different plants. 

The nitrogen cycle in aquatic systems is often investigated using the ratio of nitrogen 

isotopes 15N/14N of OM. This ratio, expressed as δ15N, can serve as an indicator of the 

inorganic nitrogen source of aquatic plankton, and it reflects isotopic fractionation of the 

different transformation processes within the nitrogen cycle (Brandes and Devol 2002). In 

small, isolated waterbodies short-term changes in the water chemistry, catchment ecology, or 

nitrogen source or cycle can alter the δ15N of the sediment quickly (Hodell and Schelske 

1998). Trend and magnitude of OM nitrogen isotopic ratio alteration during early degradation 

depend on the availability of oxygen (Macko and Estep 1984; Freudenthal et al. 2001; 
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Lehmann et al. 2002). In this study, the differences of aerobic and anaerobic degradation of 

similar source sediments in a natural environment were discovered. 

Amino acids are important components in biochemical research as they are ubiquitous in 

OM and are the major constituent of nitrogen in fresh OM (Lee 1988). Frequently they are 

used to determine the state of degradation in marine OM since the distribution of individual 

amino acids shows characteristic changes during degradation. Hence, degradation indices 

based on the amino acid assemblages in OM were developed, such as the degradation index 

(DI) introduced by Dauwe and Middelburg (1998) and Dauwe et al. (1999) as well as the 

reactivity index (RI) established by Jennerjahn and Ittekkot (1997). These proxies were also 

applied to terrestrial aquatic systems (Verma and Subramanian 2002; Meckler et al. 2004; 

Unger et al. 2005). However, due to differences in amino acid spectra between terrestrial and 

marine OM, common degradation indices have to be tested and possibly modified in 

terrestrial dominated environments (Gaye et al. 2007). Differences in amino acid assemblages 

of OM degraded under aerobic and OM degraded under anaerobic conditions as observed by 

Cowie et al. (1995) could also be detected in Lonar Lake sediments. Therefore, we used the 

ratio between the amino acids that become relatively enriched during aerobic decomposition 

and the amino acids relatively enriched during anaerobic decomposition. This results in high 

ratios if sediments are degraded under aerated conditions and low ratios if degraded in 

permanently anoxic sediments; this ratio might also be applicable to palaeo-records. 
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3.2. Study site 

 

3.2.1. Geology 

 

Lonar Lake, located at 19°58’N and 76°30’E, occupies the floor of a Middle to Late 

Pleistocene meteorite impact crater on the Deccan Plateau in Buldhana District, Maharashtra, 

Central India (Figure 3.1 A). Origin and formation age of the crater were subject to various 

investigations (Misra et al. 2010). The crater is almost circular and its rim to rim diameter 

averages 1880 m (Figure 3.1B). The modern crater floor is located at ca. 470 m above sea 

level, which is around 140 m below the rim crest elevation. The inner rim wall is fairly steep 

with slopes of 15° – 18° in the east and up to ~ 30° in the west and southwest. The shape of 

the crater floor is almost planar dipping only very slightly to the west due to the impact 

direction of the meteorite, which struck the target rock from the east with an angle of 30° – 

45° (Misra et al. 2010). The inner crater wall is characterised by erosion features such as rills 

and gullies. In the northeast, an incised channel developed in consequence of two small 

streams flowing into the lake. Erosion by these streams has led to an incision on the scale of 

30 – 40 m depth and some 300 m distance. 
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3.2.2. Climate and hydrology 

 

Lonar Lake is located in India’s core monsoon zone. The annual climate can be divided 

into three periods: (1) hot (average temperature: 31°C) and dry weather during the pre-

monsoon from March to beginning of June, (2) hot (average temperature: 27°C) and wet 

weather from June to end of September (south west monsoon) with strong winds and rainfall 

Figure 3.1: Location map showing the position of 
Lonar Lake on the Deccan Traps in Central India 
(A). Map of Lonar Lake showing the bathymetry (m) 
and surface sediment sampling points (B). 
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averaging 680 mm, and (3) relatively cool (average temperature: 23°C) and dry weather 

during post-monsoon from October to February (Basavaiah et al. 2014). 

The lake itself covers an area of nearly 1 km² and is fed by three perennial streams (Figure 

3.1 B). Two of them, the Dhara spring and the Sitanahani spring, are entering the crater from 

the northeast. They formed the Dhar Canyon, an erosive incision, and built up an alluvial fan 

into the lake. On this fan, crops such as banana (Musa X paradisiaca), millet (Setaria italica), 

corn (Zea mays), custard-apple (Annona reticulata), and papaya (Carica papaya) are 

cultivated. The third stream feeding the lake springs from the inner crater wall and enters the 

lake from the eastern shore. Today the three streams are diverted toward the Dhara fan to 

irrigate the agricultural fields. Apart from these streams, ephemeral runoff during the 

monsoon rainfalls and seepage of water from the country rocks are contributing to the water 

supply. Water discharge is only conducted by evapotranspiration. No outflowing stream is 

present and no seepage lost occurs since the lake level is below the local groundwater level 

(Nandy and Deo 1961). 

During our investigations, the lake water was brackish (salinity: 8.0‰ – 12.3‰) and 

alkaline with pH values between 8.7 and 10.7 (Basavaiah et al. 2014). The lake groups into 

the Na-Cl-CO3 subtype of saline lakes (Eugster and Hardie 1978). Since no outflow is 

present, the lake level fluctuates seasonally with highest level after and lowest level before the 

southwest monsoon. However, since 1985 the lake level has increased significantly (Badve et 

al. 1993), which is obvious from dead trees drowned in the shallow water of the modern lake. 

Given that precipitation has been relatively reduced during the first half of the 1980s (Badve 

et al. 1993), the main cause of the lake level increase is likely to be seepage of water along 

fractures into the lake from the Kalapani Dam, a large rainwater reservoir that was 

constructed near the southwestern rim of the crater in 1970 – 1973 (Surakasi et al. 2007). This 

seepage may also explain the gradual reduction of the lake’s salinity as noticed by Badve et 

al. (1993) and Surakasi et al. (2007). Enhanced lake level fluctuation in the recent past is not 
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only indicated by the drowned trees but also by trona (Na3(HCO3)(CO3) × 2H2O) precipitates 

covering the walls of shore temples, which were built in medieval times during the rule of the 

Yadavas (Malu et al. 2005). 

 

3.2.3. Biology 

 

The algal assemblage is dominated by Cyanophyceae (> 98%); minor species are largely 

pennate diatoms, such as Cymbella, Cocconeis, Nitzschia, and Navicula, as well as 

Euglenophyceae and Chlorophyceae (Badve et al. 1993). The non-nitrogen-fixing, 

filamentous Arthrothrix fusilini (formerly Spirulina platensis) was reported to be the major 

Cyanophyceae species in Lonar Lake; also Planktothrix agardhii (formerly Oscillatoria 

agardhii) and Dactylococcopsis sp. were found to be abundant (Badve et al. 1993; Mahajan 

2005). Dense and locally surface-floating blooms were observed particularly after the 

monsoon (Badve et al. 1993). Mahajan (2005) reported that zooplankton in Lonar Lake are 

restricted to a few species and are generally low in number. Beside some protozoans, mainly 

ciliates, identified zooplankton species are the rotifers Brachionus sp., Philodina sp., and 

Testudinella sp., culicid larvae, and very few exemplars of the ostracod Cypris subglobosa 

(Badve et al. 1993; Mahajan 2005). Branchiopoda have not been observed (Mahajan 2005). 

The lake is fishless, and only one gastropod species (Lymnea acuminate) was found (Badve et 

al. 1993). The non-Cyanophyceae microbial community consists of thermophilic, halophilic, 

and alkalophilic bacteria (102 to 104 viable cells mL-1; Joshi et al. 2008). Also, methanogenic 

archaea were reported (Surakasi et al. 2007). 

The vicinity of Lonar crater is characterised by semi arid vegetation, but at the present time 

most of the area is under agricultural land use. Within the crater, the vegetation is more 

diverse. The rim is overgrown by grass, shrub, and dry deciduous forest. A plain of alluvial 

material surrounding the lake has formed at the crater floor. This plain predominantly hosts 
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semi-evergreen forest and is ca. 5 – 100 m broad except at the Dhara fan in the northeast, 

where it reaches a breadth of > 300 m. The Dhara fan is mostly under land use with crop 

plantations and meadows for grazing cattle. Also, swamp vegetation is common on the Dhara 

fan. Most trees growing in the Lonar crater were afforested during 1986 to 1992 by the Forest 

Department (Malu et al. 2005). In addition to native species, like Acacia nilotica, Azadirachta 

indica, Dendrocalamus strictus, and Tectona grandis, non-indigenous species were planted, 

such as Eucalyptus sp., Delonix regia, and Prosopis juliflora. 

 

3.3. Methods 

 

3.3.1. Sampling 

 

Surface sediment samples were collected in January 2007 and May 2008 at 68 locations 

using a Wildco Ponar-type grab sampler with a maximum penetration depth of 5 – 7 cm. 

Additionally, 28 samples were taken along the shoreline consisting of soil, terrestrial plants, 

and plankton. 

Water samples were taken in May 2008 and February 2011 with a Niskin 1011 water 

sampler activated by a General Oceanics Devil messenger (model 1000MG) attached to a 

hydrocable that was marked in 10 cm intervals. The samples were filtered immediately after 

retrieval onto pre-combusted and pre-weighed Whatman GF/F filters (0.45 µm) and air dried. 

Water samples were stored frozen until further analysis in the laboratory. 

Sediment traps were deployed at two stations from February 2011 to May 2011 and from 

May 2011 to October 2011~ 70 cm above the lake floor. The trap bottles were not poisoned 

because the study location is a natural heritage site, and the use of toxic chemicals is 

prohibited. 
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Data on air temperature, rainfall, evapotranspiration, wind speed, and wind direction were 

acquired from the India Meteorological Department, Pune, and from the India Water Portal 

(http://indiawaterportal.org/met_data/) 

Surface samples from the Himalayan lakes Rewalsar, Renuka, and Mansar were taken with 

grabs or short corers by B. K. Das over the last decades, and sampling details as well as 

further information on the lakes are available in Das et al. (2008). 

 

3.3.2. Analytical methods 

 

Prior to analyses, the surface sediment, soil, and plankton samples were rinsed with 

distilled water and centrifuged at 4000 revolutions min-1 until the supernatant water was clear 

and attained an electrical conductance coefficient of < 1000 µS. This treatment was done to 

remove any salts dissolved in the pore water. Subsequently, the samples were freeze-dried for 

72 hours and aliquots were ground manually in an agate mortar. 

Total carbon and nitrogen (TC, TN) were measured on a Carlo Erba Nitrogen Analyzer 

(NA) 1500 elemental analyzer; the standard deviation of the duplicate analyses was 0.15% for 

carbon and 0.005% for nitrogen. Total organic carbon (TOC) analyses were performed on the 

same instrument after pre-treating the samples with 2 mol L-1 HCl to eliminate inorganic 

carbon. The relative error of this method was ± 5%. Inorganic carbon (IC) was defined as the 

difference between total and organic carbon; the values were converted to calcite as this was 

the only carbonate phase detected in the sediments. 

13C/12C isotope ratios were determined using a Finnigan MAT 252 gas isotope mass 

spectrometer after high-temperature flash combustion in a Carlo Erba NA-2500 elemental 

analyzer at 1100°C. Values are expressed as: 

δ
13C (‰) = [(Rsam / Rstd) − 1] × 103 

(3.1) 
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With Rsam = 13C/12C ratio of the sample and Rstd = 13C/12C ratio of the reference standard 

VPDB (Vienna Pee Dee Belemnite). Analytical precision was better than 0.1‰ based on 

replicate measurements of a reference standard; duplicate measurements of samples resulted 

in a mean deviation of 0.2‰. 

The ratio of the two stable nitrogen isotopes (15N/14N) is expressed as δ15N after 

determining the abundance of the two isotopes in samples (after combustion and reduction of 

NOx to N2) by mass spectrometry: 

δ
15N (‰) = [(Rsam / Rstd) − 1] × 103 

(3.2) 

With Rsam = 15N/14N ratio of the sample and Rstd = 15N/14N ratio of the reference standard, 

atmospheric N2 (δ
15N = 0‰). δ15N values were determined using a Finnigan MAT 252 gas 

isotope mass spectrometer after high-temperature flash combustion in a Carlo Erba NA-2500 

elemental analyzer at 1100°C. Pure tank N2 calibrated against two reference standards of the 

International Atomic Energy Agency (IAEA), IAEA-N-1, and IAEA-N-2, as well as a 

sediment standard was used as a working standard. Analytical precision was better than 0.1‰ 

based on replicate measurements of a reference standard. Duplicate measurements of samples 

resulted in a mean standard deviation of 0.11‰. 

Nitrate and nitrite concentrations of filtered water samples were measured with standard 

colorimetric techniques (Grasshoff et al. 1999) on an AutoAnalyzer 3 by Bran and Luebbe. 

Detection limit of nitrate and nitrite concentration was 0.15 and 0.02 µmol L-1, respectively. 

Amino acid analyses were carried out on a Biochrom 30 Amino Acid Analyzer according 

to the method described in chapter 2.3.2 and in Lahajnar et al. (2007). 
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3.4. Results 

 

3.4.1. TOC, TN, IC, C/N 

 

The TOC, TN, IC, and atomic TOC/TN (C/N) ratio values of the analysed samples are 

shown in Table 3.1. The surface sediment data were reported by Basavaiah et al. (2014). TOC 

and TN of the surface sediments show values of 0.25% to 6.28% and 0.02% to 0.88%, 

respectively. IC values of the sediments vary between 0.23% and 2.48% and the atomic C/N 

ratios range from 7.8 to 17.6. 

 

Sample type 
TOC 

(%) 

TN 

(%) 

C/N 

(atomic) 

IC 

(%) 

δ13C 

(‰) 

δ15N 

(‰) 

THAA 

(mg/g) 

AA-C 

(%) 

AA-N 

(%) 

THHA 

(mg/g) 

Surface sediments (n=66; 26*) 
2.65 

±1.47 

0.30 

±0.19 

10.71 

±1.66 

1.23 

±0.42 

-18.32 

±1.81 

12.62 

±2.64 

11.33 

±7.35 

18.23 

±5.02 

49.98 

±8.32 

0.82 

±0.63 

Soil samples (n=17; 6*) 
0.52 

±0.62 

0.08 

±0.07 

15.77 

±24.03 

0.33 

±0.54 

-22.56 

±2.95 

5.84 

±1.53 

3.02 

±3.77 

13.39 

±9.90 

38.01 

±24.31 

0.59 

±0.83 

Suspended particulate matter (SPM)           

Shallow water SPM (0.5 m; n=2) 
28.72 

±2.48 

4.54 

±0.24 

7.41 

±1.02 
nd 

-8.79 

±0.83 

10.18 

±0.15 

250.18 

±15.95 

38.90 

±5.82 

73.55 

±1.23 

2.40 

±0.23 

Deep water SPM (4 m; n=2) 
35.17 

±5.39 

5.23 

±0.69 

7.99 

±2.26 
nd 

-8.97 

±0.61 

10.59 

±0.35 

317.55 

±38.45 

41.02 

±10.88 

81.67 

±0.66 

2.24 

±0.29 

Sediment trap samples           

Western trap Feb – May 2011 17.24 3.21 6.26 0.24 -4.96 16.09 135.15 34.48 56.42 2.04 

Eastern trap Feb – May 2011 26.82 5.68 5.90 0.04 -6.99 18.57 157.01 35.65 53.97 2.87 

Western trap Jun – Oct 2011 20.98 3.56 6.88 0.08 -8.49 18.17 170.30 36.07 64.33 2.80 

Eastern trap Jun – Oct 2011 30.16 4.39 8.59 0.11 -8.45 16.49 323.34 37.52 83.25 4.62 

Vascular plant samples           

Prosopis juliflora leaves 45.09 4.58 11.49 nd -30.52 -1.64 176.74 17.55 52.61 0.62 

Tectona grandis leaves 38.99 1.04 43.74 nd -28.65 2.66 39.31 4.58 50.83 0.50 

Azadirachta indica leaves 44.94 3.13 16.74 nd -28.52 5.17 138.64 13.81 60.39 0.66 

Acacia nilotica leaves 43.89 1.24 41.45 nd -28.71 -2.75 49.09 5.09 54.52 0.37 

Heteropogon sp. 42.49 0.59 84.59 nd -12.13 10.03 24.29 2.60 37.79 3.67 

Table 3.1: Bulk biogeochemical parameters, AA and HA concentrations of different Lonar 
samples. IC values of surface sediment samples as well as TOC, TN, C/N, and δ13C values of all 
samples except for those of sediment traps were taken from Basavaiah et al. (2014). 
Abbreviations: THAA, total hydrolysable amino acids in mg/g dry sample; AA-C, percentage of 
organic carbon present as amino acids; AA-N, percentage of total nitrogen present as amino acids; 
THHA, total hydrolysable hexosamines in mg/g dry sample; nd, not detected; *, number of 
samples analyzed for amino acids. 
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3.4.2. δ13C 

 

The δ13C values of surface sediments were investigated by Basavaiah et al. (2014). δ13C of 

surface sediments range between -23.1‰ and -15.2‰ with lowest values off the Dhara river 

mouth and along the westernmost lakeshore and highest values in the deep central part of the 

lake. SPM filtered from shallow (0.5 m) as well as from deep (4 m) water has δ13C values of -

9.4‰ to -8.2‰. Sediment trap material shows δ13C values of -8.5‰ to -5.0‰. Terrestrial C3 

and C4 plants have mean δ13C values of -29.1‰ and -12.1‰, respectively. Depending on the 

percentage of C3 and C4 plant material in the soils, their δ13C values vary between -26.7‰ and 

-18.1‰. 

 

3.4.3. δ15N 

 

The δ15N values of the surface sediments show a clear correlation with water depth (Figure 

3.2 A). Samples from depths > 4 m have values of 7.8‰ to 13.6‰ (mean: 10.8‰). δ15N of 

samples from stations shallower than 4 m range between 10.5‰ and 18.2‰ (mean: 15.3‰; 

Figure 3.2 B). δ15N of SPM group in a narrow range of 10.1‰ – 10.8‰. Sediment trap 

material has δ15N values of 16.1‰ to 18.6‰ and does not show a systematic difference 

between the two stations or the two sampling intervals. The analysed vegetation samples have 

a wide range of δ15N values from -2.8‰ to 12.1‰ with a mean of 4.4‰, which is well in the 

range of terrestrial plants (Maksymowska et al. 2000). 5 of the 12 vegetation samples show 

relatively 15N-depleted values between -2.8‰ and 0.9‰, indicating N2-fixation. In fact, these 

vegetation samples were taken from genera of the family Fabaceae, which is known to form 

root nodules associated with symbiotic nitrogen-fixing bacteria (Soltis et al. 1995), including 

the species Acacia nilotica, Prosopis juliflora, and Tamarindus indica. The remaining 7 

vegetation samples have δ15N values of 2.7‰ to 12.1‰ (mean: 7.4‰). The sampled soils 



Anoxic Lonar Lake: δ15N and amino acids 
 

 
62 

show diverse δ15N values of -0.4‰ to 16.1‰ (mean: 6.2‰), mostly depending on the 

vegetation close to the sampling points. 

 

 

 

 

 

 

 

 

Figure 3.2: Spatial distribution of δ15N (‰) in Lonar surface 
sediment organic matter (A). Stable carbon vs. nitrogen 
isotopic ratios of the different Lonar samples (B). 
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3.4.4. Amino acids 

 

The amounts of total hydrolysable amino acids and hexosamines of the different samples 

are shown in Table 3.1. Amino acid contents in the surface sediments range between 1.1 and 

31.4 mg g-1 and are significantly correlated with organic carbon content. The amount of 

organic carbon and total nitrogen incorporated into amino acids (AA-C; AA-N) is 10.3% to 

33.5% (mean: 18.2%) and 36.8% to 73.4% (mean: 50.0%), respectively. Sediment trap 

samples and SPM are relatively enriched in total amino acid content and also show elevated 

AA-C and AA-N values compared to surface sediments. The analysed soils are the most 

depleted samples in terms of amino acid content and AA-C and AA-N percentages. The 

average distribution of the individual amino acids in surface sediments, sediment traps, SPM, 

terrestrial plants, and soils are given in Table 3.2. 
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Sample type Asp Thr Ser Glu Gly Ala Val Met Ile Leu Tyr Phe β-Ala γ-Aba His Trp Orn Lys Arg 

 (mol %) 

Surface sediments (n=26) 
12.99 

±0.73 

5.62 

±0.45 

6.06 

±0.58 

11.90 

±0.45 

12.60 

±1.12 

10.97 

±0.51 

6.72 

±1.09 

0.38 

±0.17 

4.30 

±0.92 

7.30 

±0.71 

2.49 

±0.34 

4.29 

±0.47 

0.54 

±0.19 

0.48 

±0.13 

2.57 

±0.69 

0.22 

±0.09 

0.58 

±0.17 

3.81 

±0.35 

4.24 

±0.54 

Soil samples (n=6) 
16.57 

±0.69 

5.71 

±0.19 

6.80 

±0.47 

12.17 

±0.77 

15.07 

±0.69 

10.51 

±0.26 

5.02 

±0.16 

0.43 

±0.25 

2.78 

±0.13 

5.33 

±0.36 

1.44 

±0.23 

2.80 

±0.13 

1.60 

±0.62 

0.71 

±0.18 

4.80 

±0.98 

0.48 

±0.27 

0.71 

±0.33 

3.73 

±0.23 

3.33 

±0.35 

Suspended particulate matter                    

Shallow water SPM (0.5 m; n=2) 
10.75 

±0.27 

5.59 

±0.02 

6.15 

±0.22 

18.01 

±0.16 

9.12 

±0.02 

11.18 

±0.19 

7.83 

±0.20 

0.53 

±0.06 

5.64 

±0.01 

8.80 

±0.16 

2.69 

±0.06 

3.76 

±0.03 

0.10 

±0.00 

0.06 

±0.00 

1.58 

±0.02 

0.10 

±0.00 

0.09 

±0.00 

2.81 

±0.10 

5.20 

±0.23 

Deep water SPM (4 m; n=2) 
10.77 

±0.45 

5.51 

±0.15 

6.17 

±0.26 

17.28 

±1.76 

9.05 

±0.22 

11.38 

±0.66 

7.79 

±0.38 

0.46 

±0.07 

5.65 

±0.31 

8.95 

±0.35 

2.87 

±0.10 

3.71 

±0.07 

0.07 

±0.01 

0.04 

±0.01 

1.48 

±0.01 

0.10 

±0.02 

0.09 

±0.07 

3.18 

±0.30 

5.43 

±0.55 

Sediment trap samples                    

Western trap Feb – May 2011 12.42 6.80 5.53 12.49 10.82 10.95 8.36 0.28 5.74 8.06 3.10 4.64 0.11 0.11 1.99 0.09 0.10 4.01 4.39 

Eastern trap Feb – May 2011 12.38 6.65 5.74 12.79 10.96 10.79 8.04 1.12 5.51 7.88 3.28 4.57 0.10 0.23 1.86 0.07 0.13 3.55 4.36 

Western trap Jun – Oct 2011 12.14 6.74 5.76 12.38 10.94 10.80 8.39 0.16 5.66 8.26 3.10 4.77 0.09 0.10 1.82 0.08 0.20 3.96 4.66 

Eastern trap Jun – Oct 2011 12.05 6.68 5.67 12.90 10.74 10.74 8.39 0.25 5.65 8.15 3.22 4.63 0.09 0.11 1.85 0.08 0.10 3.89 4.78 

Vascular plant samples                    

Prosopis juliflora leaves 17.66 5.23 6.17 10.93 9.43 8.33 6.44 0.18 4.46 8.74 3.27 4.94 0.15 0.65 2.31 0.25 0.00 5.97 4.90 

Tectona grandis leaves 10.63 5.78 6.94 11.80 10.62 9.30 7.50 1.04 5.70 9.97 3.49 5.02 0.38 0.44 2.21 0.17 0.00 4.73 4.28 

Azadirachta indica leaves 11.39 4.82 6.07 17.14 9.28 9.42 6.21 0.43 4.69 8.34 3.24 4.44 0.31 0.90 2.32 0.13 0.07 5.57 5.23 

Acacia nilotica leaves 10.38 5.41 7.31 11.29 10.32 9.49 7.36 0.44 5.29 9.35 3.57 5.19 0.30 0.57 2.50 0.15 0.00 6.61 4.48 

Heteropogon sp. 10.08 7.13 7.82 13.06 10.58 10.29 7.41 1.50 5.12 8.08 2.85 3.39 0.43 0.59 2.87 0.25 0.74 4.63 3.20 

 

Table 3.2: Amino acid composition of the different Lonar samples. 
Abbreviations: Asp, aspartic acid; Thr, threonine; Ser, serine; Glu, glutamic acid; Gly, glycine; Ala, alanine; Val, valine; Met, 
methionine; Ile, isoleucine; Leu, leucine; Tyr, tyrosine; Phe, phenylalanine; β-Ala, β-alanine; γ-Aba, γ-aminobutyric acid; His, 
histidine; Trp, tryptophan; Orn, ornithine; Lys, lysine; Arg, arginine. 
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3.5. Discussion 

 

3.5.1. TOC, TN, IC, C/N 

 

Despite eutrophic conditions, TOC and TN values in the modern Lonar Lake sediments are 

low compared to most reported values for eutrophic lakes (Dean and Gorham 1998). The low 

TOC and TN concentrations of the sediments are due to the high input of lithogenic material, 

which is eroded from the steep slopes of the crater and transported into the lake during 

monsoonal rainfall events. The IC sources are carbonate crystals formed during lake level 

decline in dry years and during maximum photosynthesis. Similar to TOC and TN 

concentrations, IC concentrations are related to lithogenic matter input and are therefore 

higher in the central and lower in the nearshore area. 

The C/N ratio is often used in lake studies to estimate the terrestrial and aquatic fraction of 

OM in the sediments (Meyers 1994). C/N ratios of aquatic OM vary between 4 and 10, 

whereas C/N ratios of terrestrial vascular plant material show values of 20 and greater 

(Meyers 1994). The surface sediments of Lonar Lake have C/N ratios of 7.8 to 17.6 with a 

mean value of 10.7, indicating a dominance of aquatic OM. C/N ratios may increase during 

early diagenesis as N-bearing components (proteins, peptides, and free amino acids), 

particularly in protein-rich OM derived from aquatic source, are preferentially decomposed 

(Meyers 1997). On the other hand, C/N ratios of OM of terrestrial origin may decrease during 

degradation as a consequence of preferential removal of C-rich lipids and sugars (Meyers 

1997). In organic-poor sediments, ammonium sorbed by clay minerals can be a significant N-

contributor, reducing C/N ratios (Müller 1977). Since these diagenetic effects usually are of 

minor magnitude, the C/N ratio still serves as a good indicator of the OM source. However, as 

δ
13C of aquatic and terrestrial OM in Lonar Lake and its catchment are fairly different and in 
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a narrower range than C/N, δ13C of organic carbon seems to be a better proxy to identify the 

source of surface sediment OM in Lonar Lake (Table 3.1). 

 

3.5.2. δ13C and δ15N 

 

Compared to the majority of lakes from the literature, both δ13C and δ15N are considerably 

enriched in Lonar surface sediments (Meyers and Teranes 2002). Figure 3.3 shows a 

comparison of the Lonar data to those from Himalayan lakes of similar altitude but of 

different trophic status. The δ13C of the oligotrophic lake Rewalsar and the mesotrophic lakes 

Renuka and Mansar are in the range of C3 plants with admixture of C4 plants (-28‰ to -

22‰), and δ15N values vary around 4‰, generally considered as the average of land plants 

(Maksymowska et al. 2000). Lonar SPM is highly enriched in 13C, with δ13C values of -9.4‰ 

to -8.2‰. These values are consistent with reported δ13C values of Lonar dissolved inorganic 

carbon (DIC), being in the high range of 11‰ to 14.8‰ (Anoop et al. 2013b), as plankton are 

usually depleted in 13C by 20‰ compared to their DIC source (O'Leary 1988). As discussed 

by Basavaiah et al. (2014), the high δ13C values of Lonar DIC are due to the high pH of the 

lake water. In this case, lake water is depleted in CO2(aq), and plankton utilise HCO3
- for 

photosynthesis, which is enriched in 13C by ca. 8.7‰ (at 25°C) compared to CO2(aq) (Zhang 

et al. 1995). With an aquatic δ13C endmember of -9‰ and a terrestrial endmember of -28‰, 

Basavaiah et al. (2014) calculated the percentages of terrestrial OM in Lonar surface 

sediments (32.5% – 74.0%; mean: 49.1%) by a δ13C two end-member mixing equation. 
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δ
13C in combination with C/N ratio and AA-C is used to identify the source of the 

sediment trap material. These parameters indicate that the contribution of resuspended surface 

sediment, soil OM, and terrestrial plants to the sediment trap samples is low (Table 3.1). 

Thus, the dominant source of sediment trap samples is SPM and microorganisms 

decomposing it, as discussed in chapter 3.5.4. Degradation processes may affect δ13C during 

early diagenesis as, for example, the hydrolysis of proteins is accompanied by an enrichment 

of 13C in the residual material (Silfer et al. 1992). This effect might be responsible for the 

slight increase in δ13C values between SPM and sediment trap material. The sediment trap 

material is enriched in 13C by 2.5‰ before the onset of the monsoon compared to the 

monsoon despite the higher productivity during the monsoon season. As the lower summer 

δ
13C values are accompanied by C/N ratios elevated by 1.7 (Table 3.1), we assume that the 

relative amount of terrestrial OM is slightly higher, related to ephemeral runoff causing 

enhanced erosion and transport of terrestrial OM into the lake. 

The elevated δ15N values in Lonar SPM and surface sediments can be attributed to the sub- 

to anoxic conditions in the hypolimnion in conjunction with the high pH (Heaton 1986). 

Nitrate in the hypolimnion becomes denitrified associated with a fractionation factor of ε = -

Figure 3.3: Comparison of the stable carbon vs. 
nitrogen isotopic ratios of Lonar Lake and 
Renuka, Mansar, and Rewalsar Lakes. 
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30‰ to -22‰ (Brandes et al. 1998), leaving the remaining nitrate pool enriched in 15N. 

Elevated δ15N values are also related to high salinity and the associated high pH of Lonar 

Lake (Heaton 1986). At high pH values, the equilibrium of NH4
+ and NH3 shifts towards NH3 

(pKa of NH4
+ = 9.3), leading to 15N enrichment of NH4

+ relative to NH3 by 20‰ – 35‰ 

(Casciotti et al. 2011). The pH values of ~ 9.3 below 4 m water depth and ~ 10.5 at shallower 

depth result in ~ 50% to 90% NH3, respectively, which can escape the water column. 

Concentrations of nitrate and nitrite were very low in the epi- and hypolimnion in February 

2011, with values between < 0.15 to 0.94 µmol L-1 and 0.24 to 0.52 µmol L-1, respectively. 

This property may be related to uptake in surface waters and to anoxia below 4 m water 

depth. The high δ15N values of plankton (mean: 10.4‰) sampled in February 2011 when 

nitrate and nitrite were almost depleted in the epilimnion do not suggest that N2-fixation is a 

dominant nitrogen source in Lonar Lake. Whereas the intense plankton blooms during the 

monsoon are related to the in-wash of nutrients from the ephemeral runoff, the nutrient source 

during post-monsoon may be small streams and recycling of nutrients in the water column 

and the surface sediments. 

The spatial variability of δ15N of surface sediment is depth dependent (Figure 3.2 A) and is 

most likely linked to the stratification of the lake, with oxic surface water up to about 4 m 

depth and sub- to anoxic water in > 4 m depth (Basavaiah et al. 2014). Lehmann et al. (2002) 

found a δ15N decrease by 3‰ during anoxic incubation and an increase of δ15N by > 3‰ 

within the first months of oxic incubation before δ15N slowly dropped to the initial source 

values. Since the traps at Lonar Lake were not poisoned, microbial growth and related OM 

degradation could occur during the time of deployment (3 – 4 months). While installing the 

traps, oxic surface water filled the sampling bottles so that, at least to some extent, 

degradation under oxic conditions could play a role in OM respiration in the traps and explain 

the elevated δ15N values compared to SPM and surface sediments from anoxic sampling 

points. Macko and Estep (1984) analysed the effect of aerobic microbial degradation on 
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different nitrogen-containing substrates. Their findings show that deamination and 

transamination of different amino acids can result in both elevated and reduced δ15N values of 

the residual OM. Comparison with the results of the amino acid analysis of the Lonar Lake 

samples shows that the elevated δ15N values in shallow surface sediments and sediment trap 

material can be attributed to aerobic microbial degradation. Further indications of degradation 

processes derived from the analysis of amino acids are given in the following section. 

 

3.5.3. Amino acid concentrations 

 

Since most amino acids in fresh OM are more labile than other carbon compounds present 

in particulate matter (Lee 1988), they are preferentially lost during degradation. The mean 

amino acid content in sediment trap samples is 87.4 mg g-1 lower compared to that of SPM 

(Table 3.1), which is a reduction by 30%. TOC and TN content in the trap samples are 

reduced by 25% and 20% compared to SPM, respectively. C/N ratio, δ13C values, and AA-C 

are in the same range in sediment trap and SPM samples, corroborating the assumption that 

the sediment trap material is dominated by SPM derived OM with only very minor 

contribution of land-derived OM sources. Thus, the loss of amino acids must be due to the 

preferential removal of amino acids during early decomposition. In surface sediments only 

about 8% of the TOC, 6% of the TN, and 4% of the amino acid content found in SPM are 

present, which is partly due to degradation but also to enhanced contribution of amino acid-

poor terrestrial OM as indicated by enhanced C/N ratios, depleted δ13C values, and decreased 

AA-C (Table 3.1). In environments with varying amounts of terrestrial OM, such as the Lonar 

Lake, AA-C values are strongly influenced by the distribution of aquatic- and terrestrial-

derived OM in the sediments (Haake et al. 1992; Verma and Subramanian 2002), whereas 

AA-N is more sensitive to degradation (Henrichs et al. 1984; Cowie and Hedges 1992). 

Terrestrial OM, particularly woody fragments, has lower AA-C values than plankton due to 
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the lower percentage of proteins, peptides, and free amino acids in terrestrial plants and the 

higher percentage of nitrogen deficient organic compounds (Rashid 1985). 

 

3.5.4. Individual amino acid assemblages 

 

Sources of the OM of the sediments are terrestrial plant tissue of differing reactivity, 

moderately to intensely degraded soils, dead plankton degraded during sinking, bacterial OM, 

and resuspended lake sediment. The most important processes, modulating the amino acid 

assemblage of source material, are aerobic microbial degradation at the water-sediment 

interface in the shallow oxic part of Lonar Lake, anaerobic microbial degradation within the 

sediments and at the water sediment interface in the deeper sub- to anoxic part of the lake, and 

lysis of cells and cell compounds. Generally, the amino acid spectra indicate that Lonar 

sediments are less degraded than sediments in other shallow freshwater environments (Verma 

and Subramanian 2002; Unger et al. 2005; Das et al. 2010) and resemble those of suspended 

matter or plankton (Lee 1988; Cowie and Hedges 1992). This difference is most likely 

attributable to the high productivity in combination with high sedimentation rates due to slope 

erosion during the southwest monsoon, leading to fast burial of the OM in the sediment where 

anoxic conditions prevent enhanced degradation (Hulthe et al. 1998; Lehmann et al. 2002; 

Moodley et al. 2005). The lack of higher organisms that feed on the suspended and surface 

sediment OM may additionally diminish the state of degradation. 

The amino acid assemblages of Lonar SPM differ from those reported for marine SPM 

(Lee 1988). Lonar SPM is comparatively enriched in glutamic acid (Glu), alanine (Ala), 

valine (Val), leucine (Leu), and iso-leucine (Ile) and depleted in lysine (Lys), serine (Ser), 

aspartic acid (Asp), and glycine (Gly). These differences can be attributed to dominance of 

cyanobacteria in the plankton community of Lonar Lake. In diatom-dominated marine 

sediments, Asp/Gly ratios are 0.6 – 0.8 (Ittekkot et al. 1984a) whereas Lonar sediments have 
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Asp/Gly ratios of 0.86 to 1.16. The most abundant cyanobacterium in Lonar Lake is 

Arthrothrix fusilini, which is enriched in Ile, Ala, Val, and Leu and depleted in Gly, Glu, Lys, 

Asp, and Ser (Becker 2007) compared to marine plankton (Lee 1988). Glu is highly enriched 

in many microbes, especially in gram-positive bacteria (Tempest et al. 1970). In summary, the 

difference between amino acids spectra of Lonar SPM, trap material, and surface sediments 

compared to other lacustrine and marine samples results from the high amounts of bacterial 

biomass. 

The amino acid assemblages of the analysed vascular plant samples are quite different 

from those of the SPM samples as they show significantly lower values of Glu and markedly 

higher values of histidine (His), Lys, and the non-protein amino acids β-alanine (β-Ala) and γ-

aminobutyric acid (γ-Aba) (Table 3.2). The elevated Glu values in Lonar SPM are related to 

high microbial OM contribution in the lake. His is usually more abundant in plants than in 

phytoplankton and even more in fungi (Cowie and Hedges 1992). Lys, being an essential 

amino acid to most animals, is synthesised in higher plants from Asp by the enzyme aspartate 

kinase (Azevedo and Lea 2001). Elevated β-Ala and γ-Aba values in vascular plant tissue 

compared to plankton were reported by Cowie and Hedges (1992). In addition, γ-Aba is 

known to be produced by plants as a response to environmental stress linked to heat, salt, and 

flooded soil (Kinnersley and Turano 2000), which regularly occur in the Lonar crater. 

Characteristic changes in amino acid spectra, such as relative increases in Asp, Gly, and 

non-protein amino acids as well as decreases of the essential amino acids Val, Ile, Leu, and 

arginine (Arg), indicate that degradation is progressing from SPM to sediment trap samples to 

surface sediments and that soils are even more degraded than lake sediments (Figure 3.4). 

Higher plants are an additional amino acid source for the sediments with a wide range of 

amino acid spectra (Table 3.2). However, although terrestrial plants contribute about 50% of 

organic carbon to lake sediments (see chapter 3.5.2), their contribution to total amino acids is 

lower due to the low amino acid content of most higher plants (Rashid, 1985). 
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One of the prominent changes from SPM to trap material is the drop of Glu by 5 mol%. 

When attributing this difference to the preferential microbial removal of Glu from the aquatic 

OM, the elevated δ15N values in the sediment trap samples and in the oxic shallow-water 

sediments could be explained as follows. Macko and Estep (1984) showed that amino acid 

degradation by aerobic heterotrophic bacteria occurs via different pathways, depending on the 

substrate amino acids. Whereas bacteria that utilise Glu and Asp can incorporate these amino 

acids into the metabolic pathways without preceding deamination, Ala, Ser, and threonine 

(Thr) have to be deaminated and transformed to glutamate or aspartate. Both pathways are 

associated with a release of 13C-depleted CO2, which is reflected in the Lonar sediment trap 

samples as these show δ13C elevated by 1.7‰ relative to SPM (Table 3.1). The Glu- and Asp-

based aerobic metabolism is accompanied by the excretion of 15N depleted ammonia, whereas 

Figure 3.4: Mean contributions (mol %) of the individual amino acids to the total hydrolysable 
amino acid pool of the different Lonar samples. Error bars denote the standard deviation. Amino 
acid abbreviations as defined in Table 3.2. 
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during aerobic Ala, Ser, and Thr decomposition 15N-enriched ammonia is excreted (Macko 

and Estep 1984). Thus, microbial OM predominantly growing on Glu and Asp shows elevated 

δ
15N values compared to its substrate, which seems to be the case for the Lonar sediment trap 

and shallow-water surface sediments. Enhanced microbial contribution to the sediment trap 

material is also evident by diminished C/N ratios as bacterial OM is characterised by low C/N 

ratios of about 5 (Goldman et al. 1987) and by a 33% increase in hexosamines from SPM to 

trap material (Table 3.1), especially in galactosamine, which is mostly associated with 

bacterial cell walls (Kandler 1979; Haake et al. 1992). Thus, the ratio of glucosamines and 

galactosamines (Gluam/Galam) can be used to identify the sources of hexosamines to 

sediments and trap samples; bacterial OM is associated with Gluam/Galam ratios of 1 to 3, 

whereas higher ratios are present in chitinaceous OM, which is usually most abundant in 

zooplankton. Gluam/Galam ratios of Lonar sediment trap and surface sediment samples range 

between 1.4 and 2.0, indicating bacterial origin of the hexosamines (Haake et al. 1992). This 

corroborates the finding of Mahajan (2005), who reported only sparse zooplankton 

abundances in Lonar Lake. 

To integrate the degradation trends and attribute a degradation state to each sample, we 

carried out a principal component analysis (PCA) of the amino acid assemblage of the 

different Lonar samples. The Lonar degradation index (LI) follows the approach of the DI 

calculation by Dauwe et al. (1999) with the additional amino acids Lys, tryptophan (Trp), β-

Ala, γ-Aba, and ornithine (Orn). The LI of a sample is defined as: 

i

i i

ii fac.coef.
STDvar

AVGvarvar
LI ×







 −
=∑  

(3.3) 

Where vari is the mole percentage of amino acid i, AVGvari and STDvari are its mean and 

standard deviation in all samples, and fac.coef.i is the factor coefficient of the first axis of the 

PCA (values shown in Table 3.3). 
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Amino 

acids 

First axis factor 

coefficient 

 

AVG 

 

SD 

Asp 0.091 13.089 1.907 

Thr -0.016 5.686 0.550 

Ser 0.053 6.205 0.641 

Glu -0.049 12.690 1.840 

Gly 0.099 12.100 1.879 

Ala 0.002 10.781 0.715 

Val -0.096 6.856 1.203 

Met -0.011 0.438 0.276 

Ile -0.103 4.486 1.093 

Leu -0.105 7.465 1.201 

Tyr -0.088 2.491 0.596 

Phe -0.082 4.144 0.716 

β-Ala 0.104 0.573 0.511 

γ-Aba 0.077 0.456 0.229 

His 0.104 2.653 1.098 

Trp 0.073 0.225 0.157 

Orn 0.080 0.458 0.293 

Lys -0.001 3.867 0.733 

Arg -0.076 4.232 0.691 

 

The first axis explains 46% of the total variance, and most negative LI values are 

representative for the freshest (SPM) samples. Trap samples and terrestrial plant samples also 

have negative values. The most degraded samples, thus represented by the highest LI values, 

are soil samples from the lake’s vicinity. The surface sediments show values varying between 

-0.8 to 0.8 with one exceptional high value of 1.28 off the perennial streams in the east. Most 

elevated values, thus the most degraded sediments, occur in the northeast and east off the 

Dhara fan and the perennial streams (Figure 3.5), indicating the supply of degraded terrestrial 

OM (e.g., soils) to the eastern part of the lake. Lowest LI values are present in the centre of 

Table 3.3: Parameters of the principal component 
analysis (PCA) of the Lonar sample set. 
Abbreviations: Amino acid abbreviations as defined in 
Table 3.2. AVG, mean contribution of individual amino 
acids to the amino acid assemblage in mol percent; SD, 
standard deviation. 
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the lake, where input of terrestrial sediment is less and sub- to anoxic water reduces the 

effects of early degradation. 

 

 

The influence of aerobic and anaerobic degradation on the amino acid assemblage seems to 

play a significant role in Lonar Lake. Therefore, we decided to use the differences in the 

amino acid assemblage most probably related to the degree of oxygenation to calculate an 

indicator of degradation under oxic vs. anoxic conditions. Our calculation is based on the 

observations made by Cowie et al. (1995), who investigated the differences of anaerobic and 

aerobic degradation on the amino acid assemblage of identical turbiditic sediments. The 

Ox/Anox ratio uses the sum of amino acids (mol%) relatively enriched during aerobic 

degradation and those relatively depleted during anaerobic degradation (Asp, Glu, β-Ala, γ-

Aba, Lys) divided by the sum of amino acids relatively depleted during aerobic and relatively 

enriched during anaerobic degradation (Ser, Ile, Leu, methionine [Met], tyrosine [Tyr], 

phenylalanine [Phe]). The Ox/Anox ratio of the predominantly undegraded SPM, sediment 

trap, and higher plant samples are in the range of 0.87 to 1.30 (mean: 1.09). The soil samples, 

Figure 3.5: Spatial distribution of the Lonar 
degradation index (LI) in Lonar surface sediment 
organic matter. 
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degraded mostly under oxic conditions, have Ox/Anox values of 1.66 to 2.05. The values of 

surface sediment Ox/Anox ratios vary between 0.98 and 1.44 with highest values in the 

shallowest parts of the lake and especially off the Dhara fan, where input of aerobically 

degraded terrestrial OM is highest and the permanent supply of stream freshwater prevents the 

development of anoxic lake water (Figure 3.6). Samples from deeper water stations in the 

centre of the lake show lowest Ox/Anox ratios due to almost permanently anoxic conditions 

as observed by Basavaiah et al.  (2014). The Ox/Anox ratio of surface sediments correlates 

with the LI, thus suggesting that aerobic amino acid degradation is stronger and leads to an 

overall enhanced state of OM degradation compared to anaerobic degradation. 

 

 

 

 

 

 

 

 

Figure 3.6: Spatial distribution of the Ox/Anox ratio in 
Lonar surface sediment organic matter. 
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3.5.5. Depositional environments 

 

According to the spatial differences in Lonar Lake’s sedimentation and degradation 

processes, the lake can roughly be divided into three zones (Figure 3.7). These zones do not 

have distinct boundaries but merge seamlessly. The three zones are (1) the shallow (< 4 m 

water depth), nearshore parts of the lake; (2) the eastern part of the lake influenced by the 

inflow of the perennial streams entering the lake from the east and northeast; and (3) the deep 

(≥ 5 m water depth) part in the central and southwestern lake. The characteristics of the 

different zones are discussed below, and the corresponding values are shown in Table 3.4. 

 

 

 

 

 

 

 

Figure 3.7: Map showing the different depositional 
zones of Lonar Lake. 



Anoxic Lonar Lake: δ15N and amino acids 
 

 

 

 

Surface 

sediments 

TOC 

(%) 

TN 

(%) 

C/N 

(atomic) 

IC 

(%) 

δ13C 

(‰) 

δ15N 

(‰) 

Terr. TOC 

(%) 

THAA 

(mg/g) 

AA-C 

(%) 

AA-N 

(%) 

THHA 

(mg/g) 

Gluam/ 

Galam 

 

LI 

Ox/ 

Anox 

Whole lake 

(n=66; 26*) 

2.65 

±1.47 

0.30 

±0.19 

10.71 

±1.66 

1.23 

±0.42 

-18.32 

±1.81 

12.62 

±2.64 

49.06 

±9.50 

11.33 

±7.35 

18.23 

±5.02 

49.98 

±8.32 

0.82 

±0.63 

1.66 

±0.12 

0.03 

±0.49 

1.20 

±0.11 

Zone I 

(n=24; 10*) 

3.14 

±1.81 

0.40 

±0.24 

9.63 

±1.22 

1.23 

±0.50 

-17.48 

±1.94 

15.67 

±1.59 

44.64 

±10.22 

16.97 

±8.13 

21.30 

±4.88 

53.30 

±8.88 

1.34 

±0.62 

1.62 

±0.10 

0.15 

±0.36 

1.25 

±0.09 

Zone II 

(n=8; 5*) 

1.24 

±0.43 

0.12 

±0.05 

12.35 

±2.51 

0.90 

±0.19 

-20.40 

±1.58 

11.51 

±0.93 

59.99 

±8.31 

4.27 

±1.88 

14.66 

±3.14 

47.81 

±5.99 

0.28 

±0.12 

1.69 

±0.13 

0.39 

±0.54 

1.27 

±0.07 

Zone III 

(n=26; 8*) 

2.47 

±0.98 

0.26 

±0.11 

11.31 

±1.19 

1.25 

±0.32 

-17.97 

±0.95 

10.48 

±0.72 

47.24 

±4.99 

8.93 

±4.88 

16.96 

±4.99 

48.52 

±8.91 

0.60 

±0.48 

1.67 

±0.15 

-0.13 

±0.50 

1.12 

±0.09 

 

Table 3.4: Bulk biogeochemical parameters, amino acid and amino sugar concentrations, and degradation indices 
of the different depositional environments of Lonar Lake. TOC, TN, C/N, IC, δ13C, and Terr. TOC values were 
calculated from data reported by Basavaiah et al. (2014). 
Abbreviations: THAA, AA-C, AA-N, THHA as defined in Table 3.1; Terr. TOC, calculated percentage of organic 
carbon derived from terrestrial source; Gluam/Galam, ratio of the two hexosamines glucosamines and 
galactosamines; LI, Lonar degradation index; Ox/Anox, ratio of amino acids relatively enriched during aerobic 
degradation and amino acids relatively enriched during anaerobic degradation; *, number of samples analyzed for 
amino acids. 
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3.5.5.1. Zone I: shallow, nearshore lake 

 

The most striking features of this zone are the exceptionally high δ15N values, elevated 

δ
13C, TOC, TN, and amino acid content values, and relatively low C/N ratios, indicating the 

deposition of predominantly aquatic organic matter, mostly floating cyanobacterial mats 

drifting to the shores by wind and by inflow-driven surficial currents. These algal mats are 

heavily microbially reworked as indicated by slightly elevated LI values and especially by the 

highest contribution of hexosamines with lowest Gluam/Galam ratios. Due to the oxic water 

conditions in zone I, the Ox/Anox ratios are elevated. 

 

3.5.5.2. Zone II: the eastern part of the lake at the stream mouths 

 

The sediments of this zone are characterised by high C/N ratios and low δ13C values, 

indicating relatively high contributions of terrestrial OM from the streams. Additionally, 

dilution with lithogenic material input is obvious from the low TOC, TN, and IC values in the 

surface sediments. Although aerobic degradation is suggested to occur, the δ15N values of 

zone II sediments are much more depleted compared to the values from shallow zone I. This 

feature can be attributed to the higher contribution of relatively 15N-depleted terrestrial OM 

and the faster burial of the OM into the anoxic sediments according to stream-controlled 

elevated sedimentation rates. Recently, the streams have been diverted to the alluvial fan at 

the northeastern shore for irrigation purposes. However, their influence on the distribution of 

the OM can still be seen in zone II. Delineating the TOC and TN values, the amino acid 

content in zone II sediments is lowest. The input of more degraded soil and terrestrial plant 

remains results in highest LI values and lowest AA-C and AA-N percentages. The calculated 

Ox/Anox ratios are elevated due to the influence of oxic stream water and the incorporation of 

high amounts of terrestrial OM that was exposed to subaerial degradation. 
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3.5.5.3. Zone III: deep, sub- to anoxic part of the lake 

 

The deepest part of the lake is characterised by sub- to anoxic waters, which is reflected by 

high sulphur contents and low Mn/Fe ratios in the surface sediments (Basavaiah et al. 2014). 

TOC, TN, C/N, and δ13C values of zone III sediments are in the range of the whole-lake mean 

values and lie between those of zone I and zone II. δ15N values are lowest in this zone, which 

is consistent with the findings that 15N enrichment is restricted to degradation under oxic 

conditions, whereas under anoxic conditions no changes or even decreasing trends were 

observed (Freudenthal et al. 2001; Lehmann et al. 2002). The mean amino acid concentrations 

in the sediments in zone III are lower than the lake mean. This may be due to dilution with 

fine clays, which accumulate in the deep lake in addition to some coarse material bypassing 

the lake slopes (Basavaiah et al. 2014). Lowest LI values confirm that reduced degradation of 

organic matter in sediments is related to the anoxic conditions in zone III with its lowest 

Ox/Anox ratios. 
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3.6. Implications of our results 

 

High pH, brackish water, constantly elevated temperatures, eutrophic conditions, and water 

column stratification with oxic waters in ~ 0 – 4 m depth and sub- to anoxic waters in ~ 4 – 6 

m depth result in unusually high δ15N values and amino acid assemblages of Lonar Lake OM 

that differ from most marine and lacustrine environments. The high δ15N values are due to 

denitrification in the anoxic deep water resulting in strongly elevated δ15N of the residual 

NO3
-. Furthermore, at the high pH, the NH4

+-NH3 equilibrium shifts towards NH3, which is 

depleted in 15N and can escape from the lake water. As these two mechanisms are associated 

with high fractionation factors, they mainly control the 15N enrichment of the inorganic 

nitrogen pool of Lonar Lake, and thus the 15N enrichment of the phytoplankton. 

Differences in amino acid assemblage between SPM of Lonar Lake and other aquatic 

environments can be attributed to the unique ecosystem. The exceptional conditions have 

yielded an aquatic ecosystem sparse in species but rich in individuals of adapted organisms. 

Hence, the absence or underrepresentation of common species, such as diatoms and most 

zooplankton, and the dominance of adapted species, such as cyanobacteria, as well as the 

contribution of terrestrial OM have led to the development of a unique amino acid assemblage 

of the Lonar Lake OM. Comparison with amino acid assemblages of other aquatic 

environments is therefore problematic. This is also indicated by the poor correlation of the 

two commonly used degradation indices DI and RI. Thus, we calculated a specific Lonar 

degradation index (LI) on the basis of the DI calculation (Dauwe et al. 1999). 

The comparison of δ15N values of potential sources of OM to the lake sediments, i.e., 

terrestrial plants, soils, SPM, and sediment trap material, to δ15N values of the sediments from 

different regions of the lake showed that δ15N of OM changes during early degradation as a 

function of local redox conditions. During anaerobic degradation, apparently no change or 

only a slight increase occurs whereas aerobic degradation yields δ15N increases of 5‰ to 9‰. 
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A Previous study of Macko and Estep (1984) examined the effect of aerobic microbial 

degradation on δ15N of individual amino acids. According to their findings, we can relate the 

δ
15N increase during aerobic degradation mostly to the preferential microbial remineralisation 

of 15N depleted Glu. 

To understand the redox-related changes during early degradation, we calculated a ratio 

based on the study by Cowie et al. (1995), who identified amino acids that become relatively 

enriched during anaerobic decomposition and amino acids relatively enriched during 

anaerobic decomposition. This ratio (Ox/Anox) successfully distinguished samples from the 

oxic shallow water from samples from the anoxic deep water. For future consideration, the 

calculation of this ratio might be improved by the incorporation of additional data sets from 

other sites with varying redox conditions and the weighting of the individual amino acids on 

basis of a PCA calculation. 
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4. Linking Holocene drying trends from Lonar Lake in monsoonal central India 

to North Atlantic cooling events 

 

 

 

 

Abstract 

 

We present the results of biogeochemical and mineralogical analyses on a sediment core 

that covers the Holocene sedimentation history of the climatically sensitive, closed, saline, 

and alkaline Lonar Lake in the core monsoon zone in central India. We compare our results of 

C/N ratios, stable carbon and nitrogen isotopes, grain-size, as well as amino acid derived 

degradation proxies with climatically sensitive proxies of other records from South Asia and 

the North Atlantic region. The comparison reveals some more or less contemporaneous 

climate shifts. At Lonar Lake, a general long term climate transition from wet conditions 

during the early Holocene to drier conditions during the late Holocene, delineating the 

insolation curve, can be reconstructed. In addition to the previously identified periods of 

prolonged drought between 4.6 – 3.9 and 2.0 – 0.6 cal ka that have been attributed to 

temperature changes in the Indo Pacific Warm Pool, several additional phases of shorter term 

climate alteration superimposed upon the general climate trend can be identified. These 

correlate with cold phases in the North Atlantic region. The most pronounced climate 

deteriorations indicated by our data occurred during 6.2 – 5.2, 4.6 – 3.9, and 2.0 – 0.6 cal ka 

BP. The strong dry phase during 4.6 – 3.9 cal ka BP at Lonar Lake corroborates the 

hypothesis that severe climate deterioration contributed to the decline of the Indus Civilisation 

about 3.9 ka BP. 
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4.1. Introduction 

 

The increasing demand for reliable climate projections due to the challenges related to 

global warming calls for enhanced investigation of the relationship between climate change 

and its effect on the environment. To assess future interaction between climate and 

environment, it is necessary to understand their interactions in the present and past. But, while 

modern observations are increasing rapidly and cover almost the whole world in high spatial 

and temporal resolution, the identification and investigation of suitable sites for palaeoclimate 

reconstruction is more difficult and requires great effort. Hence, several regions still lack a 

sufficient cover of investigated areas to help the scientific community in reconstructing the 

past climate and its influence on the former environment. One of these regions is India, which 

highly depends on the annual rainfall delivered by the Indian summer monsoon (ISM). This 

meteorological phenomenon affects a human population of more than one billion and is 

highly sensitive to climate change. In order to assess and to interpret potential future 

modifications of the Indian monsoon system, the knowledge of Holocene monsoon variability, 

its extremes, and their underlying causal mechanisms is crucial. And while terrestrial 

palaeorecords are available from the northern Indian subcontinent and the Himalayan region 

(Gasse et al. 1991; Gasse et al. 1996; Enzel et al. 1999; Denniston et al. 2000; Thompson et al. 

2000; Bookhagen et al. 2005b; Prasad and Enzel 2006; Clift et al. 2008; Demske et al. 2009; 

Wünnemann et al. 2010; Alizai et al. 2012), the number and length of comparable records 

from central and south India are limited (Yadava and Ramesh 2005; Caner et al. 2007; Sinha 

et al. 2007; Berkelhammer et al. 2010). To address this issue, we have investigated the 

Holocene sedimentation history of Lonar Lake from central India with special focus on 

palaeoclimate reconstruction. 

Based on mineralogical, palynological, and biogeochemical investigations on the ca. 10 m 

long sediment core, the longest, well dated palaeo-climate archive from India’s core monsoon 
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zone, Prasad et al. (2014) reconstructed the broad, Holocene climatic development of the 

Lonar Lake region, identified two millennial scale dry phases, and discussed the stability of 

the ISM – El Niño Southern Oscillation (ENSO) links and the influence of shifts in the 

position of the Indo Pacific Warm Pool (IPWP) on the prolonged droughts in ISM realm. 

Here we present stable carbon and nitrogen isotope data from Prasad et al. (2014) as well as 

new data from amino acid, sediment composition, and grain-size analysis and interpret them 

with respect to centennial scale, Holocene climate variability and its tele-connections with the 

North Atlantic climate. 

Bond et al. (2001) hypothesised a connection between North Atlantic cooling events and 

cosmogenic nuclide production rates, the latter indicating small changes in solar output. 

Additionally, they found virtually synchronous “quasi-periodic” ~ 1500 year cyclicity in both 

their palaeorecord as well as in the nuclide production rates. Thus, they postulated a reaction 

of climate to small changes in solar output, which would not be limited to the North Atlantic 

region but which would affect the global climate system (Bond et al. 2001). Correlations 

between the high and mid latitude climate, as reconstructed from Greenland ice cores (Stuiver 

and Grootes 2000; Johnsen et al. 2001) and ice-rafted debris in North Atlantic deep sea 

records (Bond et al. 1997), and the low latitude tropical climate have been found in various 

climate reconstructions (Haug et al. 2001; Gupta et al. 2003; Hong et al. 2003; Dykoski et al. 

2005; Wang et al. 2005; Fleitmann et al. 2007; Koutavas and Sachs 2008) supporting the 

assumption that different climate systems react to the same cause, like solar output variation, 

(Bond et al. 2001; Soon et al. 2014) either independently or via tele-connections. However, 

since many palaeoclimate investigations concerning the correlations between tropical climate 

and North Atlantic climate were carried out in peripheral ISM regions (Hong et al. 2003; 

Fleitmann et al. 2007), these records could not indicate if the change in moisture availability 

was exclusively linked to an alteration in monsoonal summer rainfall rather than to altered 

winter westerly precipitation. Lonar Lake is one of very few natural lakes located in the core 
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monsoon zone in central India, and it is fed exclusively by precipitation of the Indian summer 

monsoon and stream inflow that is closely linked to monsoon rainfall (Anoop et al. 2013b). 

Additionally, available precipitation data from the region close to Lonar Lake indicate a good 

correlation with the all Indian rainfall record of the last century (1901 – 2002). Correlation 

between the all Indian rainfall record (ftp://www.tropmet.res.in/pub/data/rain/iitm-

regionrf.txt) and the annual precipitation data of the meteorological stations in Buldana, Jalna, 

Hingoli, and Washim (http://www.indiawaterportal.org/met_data/) varies between 0.62 and 

0.69 (p < 0.001), making Lonar Lake a key site to investigate the connection between Indian 

monsoon strength and its connection to North Atlantic climate change. 

 

4.2. Study site 

 

Lonar Lake is a closed basin lake situated at the floor of a meteorite impact crater that 

formed during the Pleistocene (~ 570 ± 47 ka) on the Deccan Plateau basalts (Jourdan et al. 

2011). The lake is located at Buldhana District in Maharashtra, central India at 19.98° N and 

76.51° E (Figure 4.1). The meteorite crater has a diameter of ca. 1880 m, and the almost 

circular lake covers an area of about 1 km². The modern crater floor is located at ca. 470 m 

above sea level, which is around 140 m below the rim crest elevation. The inner rim wall is 

fairly steep with slopes of 15 – 18° in the east and up to ~ 30° in the west and southwest 

(Basavaiah et al. 2014). 
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Lonar Lake is located in the ‘core monsoon zone’ of the Indian summer monsoon (Gadgil 

2003). The southwest monsoon from June to end of September is characterised by strong 

winds and brings in average rainfall of ~ 700 mm. Precipitation during December to April 

occurs only in rare cases. The temperature can exceed 40°C before the onset of the monsoon 

and declines during the monsoon phase to an average of approximately 27°C. The post 

monsoon from October to February is characterised by relatively low temperatures at an 

average of 23°C (http://indiawaterportal.org/met_data/). The lake is fed by surface runoff 

during the monsoon season and three perennial streams that are closely linked to monsoon 

Figure 4.1: Regional overview and location of Lonar 
Lake (A). Study area showing the coring site (B). 
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rainfall as indicated by tritium dating (Anoop et al. 2013b). Two of them, the Dhara stream 

and the Sitanahani stream are entering the crater from the northeast. They have formed the 

Dhara Canyon, an erosive incision, and have built up an alluvial fan into the lake. Today this 

fan is used for agricultural plantation. The Ramgaya stream, the third stream feeding the lake, 

springs from the inner crater wall and enters the lake from the eastern shore. Nowadays the 

three streams are diverted towards the Dhara fan to irrigate the agricultural fields. Water 

discharge is only conducted by evapotranspiration; no outflowing stream is present and no 

loss due to seepage occurs as the lake level is below the local groundwater level (Nandy and 

Deo 1961). 

The modern lake is ca. 6 m deep, brackish, alkaline, and eutrophic with permanent bottom 

water anoxia (Basavaiah et al. 2014). The eutrophication promotes phytoplankton blooms 

especially during and subsequent to the monsoon when nutrients are washed into the lake. The 

algal assemblage is primarily made up of cyanophyceae (Badve et al. 1993). Thermophilic, 

halophilic, and alkalophilic bacteria in numbers of 102 to 104 viable cells/ml (Joshi et al. 2008) 

and methanogenic archaea (Surakasi et al. 2007) were reported from Lonar Lake. The lake 

lacks most zooplankton species and higher organisms. The zooplankton community within the 

lake consists of ciliates, culicid larvae, and rotifers (Mahajan 2005). Only few exemplars of 

the ostracod Cypris subglobosa and the gastropod Lymnea acuminate have been observed in 

the lake (Badve et al. 1993). 

The vegetation of the inner crater walls changes from the upper part near the rim crest to 

the bottom part close to the lake shore. The upper part of the inner crater walls is covered by 

drought tolerant grass and thorn shrub species, further down grows teak (Tectona grandis) 

dominated dry deciduous forest, and the bottom part of the inner crater walls is overgrown by 

semi evergreen forests. The alluvial fan, which has formed due to riverine erosion in the 

northeast of the lake, is used for crop plantation and cattle grazing. The fan is characterised by 

vegetation cover of grasses, sedges, and crop plants like banana (Musa x paradisiaca), millet 
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(Setaria italica), corn (Zea mays), custard-apple (Annona reticulata), and papaya (Carica 

papaya) (Menzel et al. 2013). 

 

4.3. Methods and material 

 

4.3.1. Sampling 

 

Two parallel ca. 10 m long cores were retrieved in May-June 2008 at 5.4 m water depth 

using a UWITEC sediment piston corer. The cores were opened in the laboratory; a composite 

core was constructed and sub-sampled in 0.5 cm resolution using L-channel sampling 

procedure. All samples despite those for grain-size analyses were freeze-dried and ground 

manually in an agate mortar. 

 

4.3.2. Analytical methods 

 

The total carbon (TC), total nitrogen (TN), and total organic carbon (TOC) contents and 

the δ15N and δ13Corg isotopic composition were determined using an elemental analyzer 

(NC2500 Carlo Erba) coupled with a ConFlowIII interface on a DELTAplusXL mass 

spectrometer (ThermoFischer Scientific). The isotopic composition is given in the delta (δ) 

notation indicating the difference, in per mil (‰), between the isotopic ratios of the sample 

relative to an international standard: 

δ (‰) = [(Rsample / Rstandard) – 1] x 1000 
(4.1) 

The ratio and standard for carbon is 13C/12C and VPDB (Vienna Pee Dee Belemnite) and for 

nitrogen 15N/14N and air N2. 
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For TC, TN and δ15N determination, around 20 mg of sample material were loaded in tin 

capsules and burned in the elemental analyzer. The TC and TN content were calibrated 

against acetanilide whereas for the nitrogen isotopic composition two ammonium sulphate 

standards (e.g. IAEA N-1 and N-2) were used. The results were proofed with an internal soil 

reference sample (Boden3). Replicate measurements resulted in a standard deviation better 

than 0.1 % for N and 0.2 ‰ for δ15N. 

The TOC contents and δ13Corg values were determined on insitu decalcified samples. 

Around 3 mg of sample material were weighted into Ag-capsules, dropped with 20 % HCl, 

heated for 3 h at 75 °C, and finally wrapped into the Ag-capsules and measured as described 

above. The calibration was performed using elemental (Urea) and certified isotopic standards 

(USGS24, IAEA CH-7) and proofed with an internal soil reference sample (Boden3). The 

reproducibility for replicate analyses is 0.1 % for TOC and 0.2 ‰ for δ13Corg. 

Inorganic carbon (IC) was defined as the difference between TC and TOC. IC was 

converted to carbonate by multiplying with 8.33, since calcium carbonate was the only 

carbonate phase detected in the sediments despite three distinct zones of the core where 

gaylussite crystals were found (1.58 – 4.22 m, 6.42 – 7.60 m, 9.10 – 9.25 m). These crystals 

were handpicked under microscope prior to analyses. The percentage of lithogenic material in 

the sediments was calculated using the formula: 

Lith (%) = 100 % – (total organic matter [%] + carbonate [%]) 
(4.2) 

Analyses of AA and HA were carried out on a Biochrom 30 Amino Acid Analyser 

according to the method described by Lahajnar et al. (2007). Briefly, after hydrolysis of the 

samples with 6 mol L-1 HCl for 22h at 110°C under a pure argon atmosphere, HCl was 

removed from an aliquot by repeated evaporation using a vacuum rotating evaporator (Büchi 

011) and subsequent dissolution of the residue in distilled water. After evaporating the aliquot 

three times, the residue was taken up in an acidic buffer (pH: 2.2) and injected into the 



Chapter 4 
 

 
91 

analyser. The individual monomers were separated with a cation exchange resin and detected 

fluorometrically according to the procedure described by Roth and Hampaĭ (1973). Duplicate 

analysis of a standard solution according to this method results in a relative error of 0.1 to 

1.3 % for the concentration of individual AA monomers. Duplicate measurement of a 

sediment sample revealed a relative error of < 1 % for AA and HA concentrations, < 10 % for 

molar contribution of low concentrated (< 1 mol%) AA monomers, and < 2.5 % for higher 

concentrated (> 1 mol%) AA monomers. 

Grain-size distribution of the core samples was determined using a Malvern Mastersizer 

2000 analyser. The pre-treatment of sediments included the wet-oxidizing of the organic 

matter and the chemical dissolution of carbonates at room temperature. Ca. 0.3 g freeze-dried 

sample aliquots were treated with 10 ml H2O2 (30%) which was added in two steps. The 

excess oxidising agent was removed by repeated washing with Millipore water (18.2 MΩcm), 

centrifugation (6000 rpm, 5min) and suction of the supernatant. The carbonates of the solid 

residues were dissolved by addition of 3.5 ml 1 M HCl over night. The solid residues were 

repeatedly washed (see above) and suspended in 20 ml Millipore water. The de-acidified 

samples were kept in an ultrasonic vibrator for 15 min. to disaggregate all grains. The 

instrument measured the grain-size of the suspended particles from 0.02 to 2000 µm for 100 

grain-size classes. The content of coarse particles (> 200 µm) in the small aliquots exposed to 

measurement cannot be representative for the entire sample. Therefore, we re-calculated the 

volume-percentage for the grain-size fraction 0.02 to 200 µm. 
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4.3.3. Statistical method 

 

To assess the interrelation of climatic changes in central India and the North Atlantic 

region as well as the concurrence of climate changes in central India and the solar output we 

have calculated the major frequencies in our climate proxy data as well as the correlation 

between the BCI and the 14C production rate. Before the spectral analysis, the long term 

climate trend was removed from the whole time series by applying a Gaussian kernel based 

filter with a kernel bandwidth of 500 years. The spectral analysis is then performed as the 

Fourier transform of the auto-correlation function. Since the sampling of the time series is 

irregular, the auto-correlation estimation is also based on a Gaussian kernel (bandwidth of 0.5 

years), allowing us to directly apply this method without preceding interpolation (Rehfeld et 

al. 2011; software NESToolbox for MATLAB used). 

 

4.3.4. Chronology 

 

The age model for the core is based on 19 AMS 14C dated samples of wood, leaves, 

gaylussite crystals, and bulk organic matter (Table 4.1; Prasad et al. 2014). The oldest dated 

sample of the core shows an age of 11016 ± 161 cal a BP, suggesting that the core covers the 

complete Holocene sedimentation history of the Lonar Lake. The radiocarbon dating was 

carried out at Poznan radiocarbon laboratory, Poland. Since the catchment geology comprises 

carbonate free basaltic rocks of the Deccan Traps, no correction for hard water effect was 

conducted. However, the elevated salinity and pH in combination with stratification of the 

water body led to an ageing of the bulk organic matter samples (Prasad et al. 2014). 

Calibration of the 14C dates was carried out using the program OxCal, interpolating with the 

INTCAL04 and NH3 calibration curves (Bronk Ramsey 2008). 
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Lab No. Material 
Composite Depth 

(cm) 

14C date (2σ) 

(14C yr BP) 

Calendar age range (2σ) 

(cal yr BP) 

Poz 44133 Bulk 0 116.79 ± 0.84 -55 – -59 

Poz 44142 Wood 143.51 ± 0.0086 

Poz 44143 Bulk 
20 

107.88 ± 0.76 
-16 – -28 

Poz 27189 Wood 564 ± 60 

Poz 41602 Bulk 
163.5 

760 ± 360 
669 – 505 

Poz 41605 Gaylussite crystal 266 1105 ± 60 1076 – 944 

Poz 27190 Wood 1105 ± 60 

Poz 41603 Bulk 
266.5 

1075 ± 60 
1079 – 947 

Poz 41604 Wood 267.5 1100 ± 60 1086 – 950 

Poz 41607 Wood 383.5 1840 ± 70 1924 – 1624 

Poz 27236 Wood 482 2315 ± 70 2696 – 2192 

Poz 44141 Bulk 511.5 2680 ± 70 2944 – 2580 

Poz 44226 Bulk 612 3470 ± 70 3867 – 3531 

Poz 27237 Wood 778 4185 ± 70 4911 – 4583 

Poz 27191 Wood 820 4600 ± 120 5479 – 4867 

Poz 41611 Wood 870 7420 ± 80 8396 – 8096 

Poz 27193 Wood 870.5 7460 ± 180 8412 – 8104 

Poz 27194 Wood 872 7410 ± 200 8476 – 8100 

Poz 27373 Wood 882.5 8880 ± 120 10197 – 9529 

Poz 27253 Wood 899 8990 ± 160 10707 – 9867 

Poz 27238 Leaf 902 9740 ± 100 11274 – 10670 

Poz 27192 Wood 904 9570 ± 200 11338 – 10694 

 

 

4.3.5. Mineralogical and biogeochemical proxies 

 

Our reconstruction of the climatic history of the Lonar Lake region and its comparison to 

the North Atlantic region is mainly based on lithogenic contribution to the sediments, grain-

size, atomic organic carbon to total nitrogen ratio (C/N), δ13Corg, δ
15N, and amino acid derived 

indices. The C/N, δ13Corg, and δ15N data were reported and interpreted with respect to climate 

variability and climatic tele-connections of the Lonar Lake region with the Pacific by Prasad 

et al. (2014). Additionally, the occurrence of evaporitic gaylussite crystals in the sediments, as 

Table 4.1: Radiocarbon ages from the Lonar Lake core; first published by Prasad et al. (2014). 
Calibration of the 14C dates was carried out using the program OxCal, interpolating with the 
INTCAL04 and NH3 calibration curves (Bronk Ramsey 2008). 
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reported by Anoop et al. (2013b), was used for the climate reconstruction. The mechanisms 

driving the changes in the parameters are shortly summarised in the following sections. 

 

4.3.5.1. Lithogenic contribution 

 

The lithogenic contribution to lake sediments mostly depends on the erosion that takes 

place in the catchment area, transport energy, and shore line proximity (Koinig et al. 2003; 

Magny et al. 2012). The intensity of erosion at a lake, which is not affected by temperatures 

below the freezing point, is mostly driven by the amount of rainfall, the occurrence of heavy 

rainfall events, and the density of vegetation that prevents erosion (Kauppila and Salonen 

1997; Anoop et al. 2013a). Human interferences like deforestation, agricultural land use, and 

construction activity must be considered as potential causes of enhanced erosion especially in 

the younger past (Wilmshurst 1997). Counterintuitive, phases of enhanced precipitation 

potentially triggering stronger erosion do not necessarily coincide with elevated lithogenic 

percentages in the lake sediments. This is due to the spreading of vegetation during 

climatically wet phases, but can also be controlled by changes in lake level. During wet 

phases, the lake level increases, which also increases the distance between a sampling site and 

the lake shore. Thus, high proportions of the eroded material from the catchment are 

deposited relatively close to the shore in shallow water and do not reach the deeper sampling 

site. These mechanisms seem to dominate at Lonar Lake, since time slices of the Lonar core 

that show strong evidence of dry climate coincide with high lithogenic contribution to the 

sediments. 

Thus, the lithogenic contribution seems to be a good proxy for the climate reconstruction at 

Lonar Lake with high values indicating low lake level during drier climate and low values 

indicating high lake level during wetter climate. 
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4.3.5.2. Grain-size 

 

The grain-size of lake sediments depends much on the source of the sediment load. But if 

the source of the sediments does not change, the grain-size can give information about 

changes in the hydrodynamics of inflowing streams, the amount of precipitation, the 

occurrence of heavy rainfall events, seasonality, shore line or sediment source (e.g., river 

mouth) proximity, changes in the internal hydrodynamics (e.g., currents), and external factors 

affecting the catchment erosion (McLaren and Bowles 1985; Sun et al. 2002; Peng et al. 

2005). The sorting of the sediments can be used to reconstruct the transport distance and the 

rate of deposition. 

The grain-size data are particularly useful for the broad, Holocene climate reconstruction at 

Lonar Lake since they depend on changes in monsoon strength. However, for the 

reconstruction of smaller scale climate variability, the resolution of grain-size data might not 

be high enough, especially in the lower part of the core, where sedimentation rates are low. 

 

4.3.5.3. C/N 

 

The C/N ratio is often used to determine the source of organic matter (OM) in lake and 

coastal sediments (Meyers 1997). Since aquatic OM is relatively enriched in nitrogen rich 

proteins, and vascular plant OM is relatively enriched in nitrogen depleted lignin and 

cellulose, the ratio of carbon to nitrogen is much lower in aquatic OM than in OM of 

terrestrial origin. C/N ratios of 4-10 indicate origin of aquatic OM source, whereas C/N ratios 

of >20 typically indicate dominant contribution of terrestrial plants (Meyers and Ishiwatari 

1993). However, the use of C/N ratios as OM source indicator can be biased since C/N ratios 

can be altered during degradation. This can shift the C/N ratio to higher values if the degraded 

OM is enriched in labile nitrogen rich compounds like proteins, peptides, and free amino 
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acids, which are most abundant in planktonic OM. On the other hand, OM of terrestrial origin 

tends to become relatively depleted in carbon during degradation, since nitrogen deficient 

components like carbohydrates and lipids are preferentially decomposed (Meyers and Lallier-

Vergès 1999). Nevertheless, these alterations are usually of minor magnitude, hence, the 

source information of the C/N ratio are mainly preserved. 

At the modern Lonar Lake, soils show a tendency towards low C/N ratios (Menzel et al. 

2013). This is related to the aforementioned preferential degradation of nitrogen depleted 

components in combination with the immobilization of re-mineralised nitrogen, which can be 

absorbed by clay minerals in the form of NH4
+ (Sollins et al. 1984; Mengel 1996). This effect 

has strongest influence on sediments that show low TOC contents. 

The C/N ratio does not provide much direct information for the climate reconstruction. It is 

particularly useful for determining the OM source, which is not much climate depending. 

During wet conditions, more terrestrial OM might be washed into the lake due to denser 

vegetation and stronger rainfall, but this could also cause more nutrient in-wash into the lake 

promoting the production of aquatic OM. Thus, the C/N ratio can not be used as a climate 

proxy but identifies changes in OM source and supports the interpretation of other 

palaeoclimate proxies that are affected by changes in OM source. 

 

4.3.5.4. δ
13

Corg 

 

δ
13Corg in lake sediments is influenced by the abundances of land plant OM and aquatic 

OM in the sediments. The δ13C of terrestrial OM is mainly driven by the percentage of plants 

using the C3 pathway and plants using the C4 pathway of CO2 assimilation. C3 plants show 

δ
13C values of -23 to -35 ‰, whereas C4 plants have δ13C values of -10 to -16 ‰ (O'Leary 

1988). C3 plants are more abundant during wet conditions whereas C4 plants usually spread 

during phases of dry climate (Tieszen et al. 1979). 
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δ
13C of the aquatic OM depend on the δ13C of dissolved inorganic carbon (DIC) and on the 

concentration of CO2(aq.) in the photic zone. Lower pCO2(aq.) lead to reduced fractionation 

during CO2 uptake by phytoplankton, and thus to 13C enrichment in aquatic OM (Lehmann et 

al. 2004). The factors controlling the isotopic composition of DIC in Lonar Lake are (1) the 

aquatic productivity driven by nutrient supply to the lake, (2) redox conditions of surface 

sediments and lake water, determining the mechanisms and inorganic products of OM 

decomposition, (3) the pH of lake water, shifting the equilibrium of the three types of DIC 

(CO2(aq.), HCO3
-, and CO3

2-), (4) the development and stability of lake stratification, 

affecting the exchange of DIC between the photic and aphotic zones, and (5) CO2 degassing 

caused by lake level decline during climatically dry phases. Generally, factors enriching the 

DIC in 13C are linked to eutrophication, dryer climate, and lake stratification. In highly 

productive lakes, 13C deficient OM is transported into the sediments, leaving the DIC in the 

photic zone enriched in 13C (Hodell and Schelske 1998). This effect can be expedited by 

strong lake stratification, hampering the convection of lake water, and thus the transport of 

13C depleted CO2, which is produced during OM degradation mostly in the aphotic zone, into 

the photic zone. Additionally, eutrophic conditions and lake stratification support the 

development of anoxia in deep waters. This causes the production of highly 13C depleted 

methane during OM degradation, which can escape the lake system in gaseous state if it is not 

re-oxidized. Methanogenesis in anoxic sediments is accompanied by the release of 13C 

enriched CO2 at the expense of 13C depleted methane. Thus, if methane is degassed from the 

lake water and not re-oxidised, anoxia leads to enriched δ13C values of lake water DIC (Gu et 

al. 2004). In response to dryer climate, evaporation intensifies and the lake level lowers; this 

increases the salinity, and thus the alkalinity and pH of lake water. Under highly alkaline 

conditions, the equilibrium of the three types of DIC shifts towards HCO3
- and CO3

2-, which 

are enriched in 13C compared to CO2(aq.) (Zhang et al. 1995). Under these CO2(aq.) depleted 

conditions, the growth of phytoplankton capable of using HCO3
- as carbon source is promoted 
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producing 13C enriched aquatic OM (Stuiver 1975). Additionally, exceeding evaporation can 

cause supersaturation of carbonate in the lake water, and consequently CO2 degassing, which 

is accompanied by an increase in δ13C of DIC (Lei et al. 2012). 

Since δ13C increases under dry conditions in both aquatic and terrestrial OM, it is a good 

climate proxy in our record. The only limitation is the influence of lake water anoxia, which 

more likely occurs in a deeper lake during wet conditions or as a consequence of 

eutrophication. The anoxia can cause a change in δ13C of aquatic OM due to methane 

degassing or methane oxidation, factors that disappear in a shallow oxic lake. 

 

4.3.5.5. δ
15

N 

 

The introduction and cycling of nitrogen in lakes involves several dissolved inorganic 

nitrogen (DIN) species and transformation processes, associated with more or less strong 

isotopic fractionation. Thus, δ15N of OM in lakes can exhibit highly diverse values, linked to 

several processes. Usually, plankton discriminates against 15N during DIN uptake, with the 

exception of plankton that is capable of fixing molecular nitrogen (Talbot and Lærdal 2000). 

Hence, phases of intense phytoplankton blooms are associated with increased δ15N values of 

DIN in the photic zone. Comparable to carbon uptake, low concentrations of DIN lead to 

reduced isotopic fractionation of plankton, amplifying the increase of δ15N during phases of 

high aquatic productivity (Peterson and Fry 1987). However, the most important processes in 

determining the δ15N values of DIN, and thus in δ15N of aquatic OM are the conversion 

processes of the different DIN species. The most prominent processes are nitrification, 

denitrification, and ammonia volatilization, which are associated with strong fractionation 

factors. Nitrification occurs under oxic conditions and results in 15N depleted nitrate and 15N 

enriched ammonium, whereas denitrification, occurring under anoxic conditions, leads to 15N 

enrichment of nitrate at the expense of 15N depleted molecular nitrogen. The strongest 



Chapter 4 
 

 
99 

fractionating process most probably affecting the DIN pool of Lonar Lake is ammonia 

volatilization. This process becomes important in aquatic environments showing high pH 

values (>9). Under these conditions, the equilibrium between ammonium and ammonia shifts 

towards ammonia, which is significantly depleted in 15N compared to ammonium (20-35 ‰) 

and can escape the water column in gaseous state (Casciotti et al. 2011). Thus, ammonia 

volatilization leads to increasing δ15N values of the remaining DIN in lake water. 

Even though terrestrial OM does not contribute as much to the δ15N variability in lake 

sediments as to δ13Corg due to the fact that terrestrial OM has much lower nitrogen contents 

than aquatic OM, changes in δ15N during phases of low aquatic productivity and high 

terrestrial OM contribution to the sediments can indicate shifts in the vascular plant and soil 

nitrogen isotopic composition. In general, δ15N of soil and terrestrial plant OM increase with 

increasing temperature and decreasing precipitation (Amundson et al. 2003). 

The use of δ15N as a proxy for climate reconstruction at Lonar Lake is limited since δ15N 

values of aquatic OM depend on the redox conditions of lake water with high values 

occurring under anoxic conditions but also increasing due to high pH. And whereas anoxic 

water is more likely accompanying high lake levels during wet conditions, the pH increases 

during dry conditions when ions become concentrated in the shrinking water body. 

Additionally, terrestrial OM shows a wide range of δ15N values due to different nitrogen 

uptake mechanisms, making it difficult to interpret in terms of climate variability. 
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4.3.5.6. Amino acids 

 

The monomeric distribution of the amino acids is commonly used to determine the state of 

OM degradation in sediments. For the assessment of the OM degradation state, we have 

calculated the Lonar degradation index (LI), which was first calculated for modern Lonar 

Lake sediments on the basis of the molar percentages of 19 amino acids (Menzel et al. 2013). 

The LI compares the amino acid assemblage of the core samples with the data set of Menzel 

et al. (2013), which includes fresh OM like plankton and vascular plants, moderately 

degraded sediment trap and surface sediment samples, and highly degraded soil samples from 

Lonar Lake and its catchment. The calculation of the LI follows the approach of the 

degradation index (DI) calculation developed by Dauwe and Middelburg (1998) and Dauwe 

et al. (1999): 

i

i i

ii fac.coef.
STDvar

AVGvarvar
LI ×







 −
=∑  

(4.3) 

Where vari is the original mole percentage of each amino acid in the sample, AVGvari and 

STDvari are the arithmetic average and the standard deviation and fac.coef.i the factor 

coefficient of the first axis of a principle component analysis (PCA) of the individual amino 

acids in the data set of Menzel et al. (2013). Negative values indicate less degraded and 

positive values more degraded state of the OM compared to the average of the reference data 

set. 

The second amino acids derived proxy we used is a ratio of individual amino acids that are 

relatively enriched during aerobic degradation and amino acids that are relatively enriched 

during anaerobic degradation, named Ox/Anox: 

Phe Tyr  Leu   Ile Met  Ser 

Lys  Aba-  Ala- Glu   Asp
Ox/Anox 

+++++

++++
=

γβ
 

(4.4) 
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This ratio has been applied to the modern Lonar Lake sediments (Menzel et al. 2013) to 

evaluate the redox conditions during OM degradation and is based on a study of Cowie et al. 

(1995). 

The amino acid derived indices seem to be good proxies for climate reconstruction as they 

can be used to identify phases of aerobic degradation within the sediments. Especially during 

wet phases that induce a deep anoxic lake, elevated values of theses indices identify relatively 

short term, dry anomalies. Highest values are most probably related to subaerial degradation, 

and thus to phases of lake desiccation. In rare cases, the indices could be biased by input of 

eroded soils, which would cause elevated values. In addition, eutrophication causes low LI 

and Ox/Anox values due to strong aquatic production and the consequent development of lake 

water anoxia. 

 

4.4. Results and discussion 

 

The results of our investigation of the biogeochemical and lithological properties of the 

Holocene sediments from Lonar Lake are shown in Figure 4.2. The percentages of the 

different grain-size classes indicate sediments dominated by clayey silt with few exceptions 

showing sandy silt (Figure 4.3). The sandy silt samples are from 863 – 900 cm depth (10.5 – 

7.8 cal ka BP). Based on the changes in biogeochemical properties, lithology, and 

sedimentation rate, Prasad et al. (2014) have identified the large scale climate development 

over the whole Holocene as well as two phases of prolonged drought. Here we present several 

shorter phases of climate changes superimposed on the large scale trend. The identified 

phases of drier and wetter climate can be correlated with other Asian palaeomonsoon records 

and palaeoclimate records from the North Atlantic region. A detailed description is given 

below (chapter 4.4.2) after a summary of the large scale climate development with additional 

remarks regarding the grain-size and amino acid data. 
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Figure 4.2: Summary of the analytical results. Schematic lithology of the Lonar Lake core and down-core variation in 
lithogenic contribution (A), C/N ratio (B), amino acid derived indices Ox/Anox (C) and LI (D), stable nitrogen (E) and 
carbon (F) isotopic ratios of bulk organic matter, and median grain-size (G). C/N, δ13C, and δ15N were reported by Prasad 
et al. (2014); gaylussite crystal occurrence was reported by Anoop et al. (2013b). Error bars indicate the standard 
deviation range (2σ) of calibrated radiocarbon dates. 
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4.4.1. Large scale Holocene climate transition 

 

The general long term palaeoclimate trend at the climatically sensitive Lonar Lake 

reconstructed by Prasad et al. (2014) starts with a drying period that probably coincides with 

the Younger Dryas at ~ 11.4 cal ka BP, which marks a dry period prior to the beginning of the 

Holocene in many geological records of India and adjacent regions (Overpeck et al. 1996; 

Bar-Matthews et al. 1997; Wei and Gasse 1999; Gasse 2000; Wang et al. 2001; Morrill et al. 

2003; Sharma et al. 2004; Dykoski et al. 2005; Demske et al. 2009). Median grain-size of this 

section is low indicating low energy transport, which is probably due to dry conditions with 

reduced sediment input by run-off and precipitation fed streams and enhanced aeolian 

Figure 4.3: Ternary diagram showing the percentages of the different 
grain-size classes (clay, silt, sand) of the analysed sediment samples of 
the Lonar Lake core. 
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deposition. High LI values indicate strongly degraded OM in these sediments, and the high 

Ox/Anox ratios point to subaerial decomposition of the OM. Thus, the bottommost sediment 

section most likely represents a palaeosol. 

The beginning of the Holocene is marked by a transition from dry to wet climate with an 

abrupt increase in monsoon strength after ~11.4 cal ka BP (Prasad et al. 2014). The phase of 

monsoon onset and strengthening is reflected in the sediments by high lithogenic input, which 

was eroded from the sparsely vegetated crater walls and transported to the dried out lake bed. 

The values of the biogeochemical parameters and the grain-sizes are comparable to those of 

the underlying soil, and thus indicate high contribution of eroded soil material to the 

sediments. On top of this section, few gaylussite crystals can be found, denoting a drier phase 

at ~ 11.1 cal ka BP. 

Subsequently, the early Holocene between 11.1 and 6.2 cal ka BP is characterised by wet 

conditions (Figure 4.4). The sediments of this section show low lithogenic contribution, and 

consequently low sedimentation rates. Thus, the section represents a deep lake with less 

eroded material reaching the sampling site. A deep lake developed quickly after 11.1 cal ka 

BP as is obvious from seasonally laminated sediments (Prasad et al. 2014). The median grain-

size values indicate a shift to medium silt, and thus to slightly coarser material. This might be 

due to higher energy transport during strong rainfall events. The aquatic productivity was low 

during this phase, as shown by the high C/N ratios (mean: 30.1), which denote dominant 

contribution of terrestrial OM. Since 9.9 cal ka BP the δ13Corg values stabilised on a relatively 

low level (mean: -20.9‰) indicating a C3 dominated vegetation in the catchment of the lake. 

The predominantly low LI and Ox/Anox values of the section and the increasing δ15N values 

between 9.1 and 6.2 cal ka BP point to extended anoxia in the water column and the 

sediments. 

The time slice between 6.2 and 3.9 cal ka BP is regarded as being a transitional phase 

between wet climate during the early Holocene and dry climate during the late Holocene. This 
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time slice shows two drying phases accompanied by strong water body reduction between 6.2 

and 5.2 cal ka BP and between 4.6 and 3.9 cal ka BP, respectively. The former drying phase is 

most obvious from high δ13Corg and δ15N values, whereas the latter shows elevated lithogenic 

contribution and gaylussite crystal precipitation (Figure 4.4), which indicates strongest lake 

level decline. 

 

 

 

Figure 4.4: Long term Holocene climate trend at Lonar Lake as interpreted from our data. 
Comparison of median grain-size (A), lithogenic contribution (B), δ13C values (C) (Prasad et al. 
2014), and summer (JJA) insolation at 20° N (D) (Berger and Loutre 1991). Error bars indicate the 
standard deviation range (2σ) of calibrated radiocarbon dates. 
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Following the climate transition between 6.2 and 3.9 cal ka BP, evidence of relatively dry 

climate persists until today. Elevated δ13Corg values, lithogenic contribution, Ox/Anox ratios, 

and finer median grain-sizes indicate drier conditions compared to the early Holocene. The 

lithogenic contribution and the Ox/Anox ratios denote a shallow lake, and the δ13Corg values 

imply a dominance of C4 catchment vegetation. The grain-size data indicate weaker monsoon 

rains causing lower transport energy. Additionally, the alluvial fan in the northeast of the lake 

might have been exposed due to the lower lake level, possibly reducing the velocity of the 

streams that enter the lake from the northeast and east. Probably, this effect has also reduced 

the distance between the sampling site and the source of fine sediment (alluvial fan/stream 

mouth) causing a shift to finer grain-sizes and increasing the sedimentation rate. A phase of 

exceedingly dry conditions is indicated by the reoccurrence of evaporitic gaylussite crystals 

between 2.0 and 0.6 cal ka BP (Anoop et al. 2013b; Prasad et al. 2014). The climate 

information of the younger part of the core might be mirrored to some extent due to 

anthropogenic interferences, as for example eutrophication and deforestation. A persistent 

decrease in C/N ratio since 1.3 cal ka BP indicates permanently elevated nutrient supply to the 

lake, which cannot be observed in the older parts of the core. Thus, a natural source of these 

additional nutrients seems unlikely. Since ca. 0.8 cal ka BP strong anthropogenic interference 

is evident from several near shore temples that have been built during the Yadavan rule 

approximately in the 12th century (Malu et al. 2005). 

In general, the impact of long term Holocene climate change on palaeolimnology becomes 

notably obvious from the δ13Corg, lithogenic contribution, and grain-size values in our record 

and quite well delineates the insolation curve since the end of the Younger Dryas (Figure 4.4), 

which additionally seems to drive the position of the summer Inter-Tropical Convergence 

Zone (ITCZ), and thus the strength and northwards extent of the summer monsoon rainfall 

(Fleitmann et al. 2007). One point that might be questioned is the characteristic of the climate 

deterioration at 6.2 cal ka BP, which is reflected in the Lonar Lake record by a sharp increase 
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in δ13Corg, and thus points to an abrupt change, which was also reported from other records 

(Morrill et al. 2003). Nevertheless, we believe that this abrupt change is related to short term 

climate variability and that the sudden increase in δ13Corg at 6.2 cal ka BP most likely 

represents the transgression of a threshold in annual precipitation that led to the decline in 

terrestrial C3 plant vegetation and the increase in C4 plant contribution. Also, the changes in 

lake level as displayed by the lithogenic content in the sediments show a relatively smooth 

transition from a deep to a shallow lake. Additionally, the relatively short term of the interval 

of drying between 6.2 and 3.9 cal ka BP is obvious from the subsequent change to wetter 

conditions indicated by subaquatic sedimentation and the disappearance of the gaylussite 

minerals. Thus, the transition from generally wet to drier climate after the Holocene climate 

optimum seems to occur gradually, and abrupt changes in the biogeochemical parameters are 

due to relatively short-term climate anomalies as postulated by Fleitmann et al. (2007) and 

reported from several regions (Hodell et al. 1999; Gupta et al. 2003; Hong et al. 2003; Gupta 

et al. 2005; Demske et al. 2009; Wünnemann et al. 2010). 

 

4.4.2. Centennial scale Holocene climate variability 

 

Beside the large scale millennial climate trend, several smaller centennial scale climate 

variations can be reconstructed from the Lonar Lake bioclastic record. While the role of 

ENSO and shifts in the position of the Indo Pacific Warm Pool (IPWP) in causing the 

prolonged droughts during 4.6 – 3.9 and 2.0 –0.6 cal ka have been discussed by Prasad et al. 

(2014), the short term climate variability identified in our new dataset cannot be explained by 

the same mechanism necessitating the search for alternative causal mechanisms. Several 

studies have identified links between Asian monsoon and North Atlantic palaeoclimate with 

cold events in the North Atlantic region, as identified by ice-rafted debris in deep sea cores 

(Bond et al. 1997; Bond et al. 2001), being linked to decreases in monsoon strength over Asia 
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(Gupta et al. 2003; Hong et al. 2003; Dykoski et al. 2005; Wang et al. 2005; Fleitmann et al. 

2007). Nearly all Bond events are isochronally reflected by indications of short term changes 

in monsoon strength in the proxies from Lonar Lake sediment core (Figure 4.5). 
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Since the centennial scale climate variations at Lonar Lake are reflected in different proxies 

and not all proxies show every phase of climate change, we calculated a Bioclastic Climate 

Index (BCI) that combines the Holocene course of the independent and climatically sensitive 

δ
13Corg, lithogenic contribution, and combined amino acid proxy values. Since the variations 

in δ15N and C/N values within the Lonar Lake record seem not to be predominantly driven by 

climate change or at least are considerably biased by other processes (see chapters 4.3.5.3 and 

4.3.5.5), we did not include them into the BCI calculation. The BCI shows the deviation from 

the mean values given in percent of the maximum variation of the respective proxy in the data 

set according to the formula: 

3

(%)]Ox/Anox   (%) LI[ x 0.5  (%)lith   (%) C
 (%) BCI

org
13 ∆+∆+∆+∆

=  

(4.5) 

High values indicate drier and low values indicate wetter conditions. We used half of the sum 

of the LI and Ox/Anox values to not overstate the variability in amino acid data as both values 

are calculated from the same data set, and thus are not fully independent. Further, linearly 

interpolated values for the amino acid derived proxies were used as these proxies were 

measured in a lower resolution than δ13Corg and lithogenic contribution. Since the BCI also 

shows the long term palaeoclimate trend, a detrended curve was calculated to emphasize the 

centennial scale palaeoclimate variations (Figure 4.6). In addition to the BCI, the occurrence 

of evaporitic gaylussite crystals (Anoop et al. 2013b) was used to interpret the climatic 

changes at Lonar Lake since the gaylussite crystals exclusively indicate changes in Lonar 

Lake hydrology related to reduced available effective moisture. 

Figure 4.5: Comparison of our data of lithogenic contribution (A), C/N ratio (B), Ox/Anox ratio 
(C), LI (D), δ15N (E), and δ13C (F) to the percentage of haematite stained grains (G) in core MC52, 
a climate record from the North Atlantic region (Bond et al. 2001). C/N, δ13C, and δ15N were 
reported by Prasad et al. (2014); gaylussite crystal occurrence was reported by Anoop et al. 
(2013b). Numbers 0 – 8 designate cold events in the North Atlantic region (Bond events). Small 
arrows denote increases in climate sensitive proxies that are interpreted to indicate phases of 
climate deterioration at Lonar Lake (grey shaded intervals). Error bars indicate the standard 
deviation range (2σ) of calibrated radiocarbon dates. 
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Figure 4.6: Comparison between the Bioclastic Climate Index (BCI) (A), the detrended BCI (B), 
the climate record from the North Atlantic Region (C), and the detrended and smoothed 14C 
production rate (D) (Bond et al. 2001). Detrending of the BCI was performed by applying a 
Gaussian kernel based filter with a kernel bandwidth of 500 years to the values of the time slice 
<11.14 cal ka BP. The values of the time slice ≥ 11.14 cal ka BP were adjusted by subtracting the 
lowest value of this time slice from the data since a rapid shift in BCI values at 11.14 cal ka BP 
occurs. Red and blue colour fills indicate relatively dry and wet phases, respectively. Lines 
between the BCI and the haematite stained grains plots denote some approximately 
contemporaneous climate shifts in both records that are interpreted to be linked. Error bars 
indicate the standard deviation range (2σ) of calibrated radiocarbon dates. 
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Largely, the changes in the de-trended BCI are coincident with the intervals of increased 

ice rafted debris in the north Atlantic (Bond et al. 2001). The oldest of the Holocene cooling 

events in the North Atlantic region, the Bond event 8, can be correlated with the occurrence of 

gaylussite crystals in the Lonar Lake core on top of the section that represents the phase of 

climate transition and monsoon onset after the soil formation (Figure 4.5). The Bond event 7 

is concurrently correlated to a double-peaked increase in δ13Corg and to an increase in 

lithogenic contribution. The δ13Corg increases are interpreted as changes in terrestrial 

vegetation to more C4 plant abundance, indicating drier conditions. The subsequent decrease 

in δ13Corg denotes the transition to C3 plant domination, and thus wetter conditions during the 

early Holocene. A concurrent climate variation to Bond event 6 is indicated by elevated LI 

and Ox/Anox values as well as high δ15N values (Figure 4.5). The amino acid based indices 

reveal an increase in oxygen supply to the sediments at 9.15 cal ka BP, and the pollen record 

points to a dry phase, during which the whole sediment section of this subunit became 

exposed to oxic or even subaerial conditions, since only few pollen that are resistant to 

aerobic decomposition are preserved in the sediments older than 9.2 cal ka BP (Riedel and 

Stebich in preparation). Enhanced oxygen supply could also be responsible for the elevated 

δ
15N values, since an increase in δ15N during aerobic degradation was reported from in vitro 

(Lehmann et al. 2002) as well as from in vivo (Freudenthal et al. 2001) investigations. A 

drying trend in the Asian tropical region during this so called 9.2 ka event was reported before 

and also related to a cooling trend in the North Atlantic region (Dykoski et al. 2005; 

Fleitmann et al. 2008). Elevated LI, Ox/Anox, and lithogenic contribution values in the Lonar 

Lake core comparable to the values at 9.2 cal ka BP can be found during 8.2 – 7.7 cal ka BP 

(Figure 4.5). This phase correlates within dating uncertainties with a cool phase in the North 

Atlantic situated at the early stage of Bond event 5. The relatively short cool phase during the 

early stage of Bond event 5 is also known as the 8.2 ka event. Similarly to the 9.2 ka event, a 

cooling trend in the North Atlantic region was accompanied by a drying trend in monsoon 
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influenced Asia (Alley et al. 1997; Wang et al. 2005). It is widely accepted that the cooling 

during the 8.2 ka event was caused by a pulse of freshwater that burst out of the Lakes 

Agassiz and Ojibway through the Hudson Straight, which weakened the thermohaline 

Atlantic meridional overturning circulation, thus leading to the climate anomaly (Barber et al. 

1999; Teller et al. 2002; Kendall et al. 2008). The peak at the later stage of Bond event 5 is 

correlated with elevated δ13Corg values and an increase in lithogenic contribution (Figure 4.5). 

Elevated LI, Ox/Anox, and lithogenic contribution at 6.45 cal ka BP correlates within dating 

uncertainties with a cool phase at the beginning of Bond event 4. The following 

intensification of the North Atlantic cold spell (Bond event 4) and the Bond event 3 are 

reflected by the most obvious centennial scale climate changes shown by our data. These two 

phases constitute the climate transition from generally wet to generally drier conditions during 

the mid Holocene (see chapter 4.4.1) at 6.2 – 5.2 cal ka BP and 4.6 – 3.9 cal ka BP, 

respectively, which is consistent with the reports of southward migration of the ITCZ, 

monsoon weakening, and related drying trends from various locations of the Asian monsoon 

realm (Enzel et al. 1999; Morrill et al. 2003; Parker et al. 2004; Prasad and Enzel 2006; 

Staubwasser and Weiss 2006; Fleitmann et al. 2007; Demske et al. 2009; V. Prasad et al. 

2014). The older phase, concordant with Bond event 4, is characterised by a strong increase in 

δ
13Corg with two sudden shifts, the first by ~ 8 ‰ at about 6.2 cal ka BP and the second by ~ 

4 ‰ at about 5.7 cal ka BP. The second shift in δ13Corg is accompanied by an increase in δ15N 

of ~2 ‰. The increase in δ13Corg is most likely linked to two major factors. A shift in 

terrestrial vegetation from C3 dominance to more C4 contribution seems to explain the 

increase in δ13Corg at 6.2 cal ka BP since S. Sarkar (in preparation) found an increase in δ13C 

of long chain n-alkanes. The second increase in δ13Corg at 5.8 cal ka BP results in δ13Corg 

values that even exceed the values of C4 land plants, and thus the second shift cannot be 

explained by a further change in the terrestrial fraction of the OM alone. Hence, the elevated 

δ
13Corg values seem to be related to a change in the aquatic system. A reasonable explanation 
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is an increase in pH, as a result of increased salt concentration in the water during lake level 

decline in response to relatively dry conditions, and a related shift in the dominant 

photosynthetic inorganic carbon source from CO2 to HCO3
- (Prasad et al. 2014). The 

assumption that elevated pH is responsible for the δ13Corg increase is corroborated by the 

concurrent increase in δ15N. In anoxic waters, which most probably were present during the 

related time as indicated by the low Ox/Anox ratios, high pH causes ammonia volatilization 

that leads to a δ15N increase of aquatic OM (Casciotti et al. 2011). After 5.2 cal ka BP, the 

δ
13Corg and δ15N values gradually decrease, which could indicate a slightly wetter period from 

5.2 – 4.6 cal ka BP but which could also be due to the disappearance of the anoxic water layer 

as a response to further lake level decline. Subsequently, the dry phase between 4.6 and 3.9 

cal ka BP, which has been correlated with an expansion of the IPWP (Prasad et al. 2014) but 

also partly correlates with Bond event 3, does not show as elevated δ13Corg and δ15N values as 

the previous dry episode. This seems to be related to the disappearance of the anoxic water 

layer, and hence the lack of ammonia volatilization, producing 15N enriched ammonium, and 

the lack of methanogenesis, producing 13C enriched CO2. The strongest indications for dry 

climate during this period are the occurrence of evaporitic gaylussite crystals throughout this 

zone (Anoop et al. 2013b) and the elevated lithogenic content in the sediments indicating low 

lake level. However, the decreased δ13Corg values are responsible for the lower BCI values 

during this time slice even though the occurrence of gaylussite crystals indicates drier 

conditions compared to the time slice 6.2 – 5.2 cal ka BP (Figure 4.6). Subsequently, the only 

Bond event that does not show a marked complement in the Lonar Lake record is Bond event 

2 between ca. 3.5 and 2.7 cal ka BP. This might be due to the fact that generally drier 

conditions had been established after the very dry period correlated with Bond events 4 and 3. 

Thus, the wetter period during ca. 3.9 – 3.5 cal ka BP did not provide enough excess in 

precipitation over evaporation to establish a high lake level with strong anoxic hypolimnion 

and vegetation dominated by C3 plants. Hence, if the period between 3.5 and 2.7 cal ka BP 
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was drier at Lonar Lake compared to the period 3.9 – 3.5 cal ka BP, no significant changes in 

our proxies could be expected as long as the lake does not desiccate. Nevertheless, two minor 

positive shifts in δ13Corg and contemporaneous increases in the amino acid derived indices 

result in two BCI peaks that possibly indicate drier conditions at Lonar Lake corresponding to 

the double-peaked North Atlantic cooling event during Bond event 2 (Figure 4.6). The 

following period of strong evidence of climate deterioration at Lonar Lake is again marked by 

evaporitic gaylussite crystals and was dated at an age of 2.0 – 0.6 cal a BP (Anoop et al. 

2013b; Prasad et al. 2014). Thus, it can be correlated with Bond event 1 but exceeds the time 

span of the Bond event by about 500 years, which is in accordance with the report of decadal 

scale famines in India during the 14th and 15th century (Sinha et al. 2007). However, this 

strong drying event is also coincident with an increase in ENSO like conditions (Moy et al. 

2002; Rein et al. 2005) in the Pacific (Prasad et al. 2014) suggesting complex links to the 

North Atlantic and to the Pacific forcings. The dry climate of this period, as indicated by the 

gaylussite precipitation, is not well reflected in the BCI. This is due to the eutrophication, 

which causes the development of lake water anoxia and a related descent of the amino acid 

derived proxy values. The BCI indicates an abrupt transition to wet climate at 1.3 cal ka BP 

(Figure 4.6), which is due to the biased amino acid indices. Thus, the BCI values during the 

phase of strongest anoxia between 1.3 and 0.3 cal ka BP, as indicated by the Ox/Anox ratio, 

are shifted to lower values, hence indicating wetter climate than actually prevailed. Finally, 

Bond event 0 is concurrently correlated to increased δ13Corg and lithogenic contribution values 

between 440 and 240 cal a BP (Figure 4.5). Again, anthropogenic interference cannot be ruled 

out here in the younger part of the core. But, since the two-step increase in δ13Corg at 440 and 

260 – 245 cal a BP and the subsequent decrease in δ13Corg correlate with two minima in solar 

activity, the Spörer Minimum and the Maunder Minimum, and a subsequent increase in solar 

activity, it seems likely that these changes are driven by monsoon strength weakening during 
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the ‘Little Ice Age’ (Bond event 0) and the subsequent climate amelioration (Anderson et al. 

2002; Agnihotri et al. 2008). 

 

Multiple proxies (Prasad et al. 2014; this study) indicate that there are both tropical and 

high latitude influences on the ISM that can be finally linked to solar variability. The fact that 

all phases of climate cooling in the North Atlantic region identified by Bond et al. (2001) are 

largely contemporaneously (within dating uncertainties) accompanied by climate 

deteriorations at Lonar Lake, as inferred from changes in BCI and evaporative gaylussite 

crystal precipitation, indicates that the North Atlantic and the Indian monsoon climate systems 

were linked during the Holocene. Evidence for contemporaneous climate variability in the 

Asian tropics and the North Atlantic region during the Holocene have also been reported from 

annually laminated, precisely dated stalagmites (Liu et al. 2013). A reasonable explanation for 

such a concurrent linkage is an atmospheric tele-connection, which has the potential to 

connect the two systems without substantial delay. Coupled ocean-atmosphere climate 

simulations could show that cooling of the northern hemisphere results in reduced summer 

monsoon rainfall over India (Broccoli et al. 2006; Pausata et al. 2011). This is due to the 

development of an asymmetric Hadley cell accompanied by a southwards shift of the ITCZ, 

which causes an enhanced net energy (heat) transport from the tropics to the cooled northern 

hemisphere (Broccoli et al. 2006). Such a southwards shift of the ITCZ would lead to weaker-

than-normal Asian summer monsoon, and thus might be the mechanism responsible for the 

Asian-North Atlantic climate connection indicated by our data. Another mechanism that 

might have contributed to the connection could be the effect of northern hemisphere cooling 

on Eurasian snow cover if the cold phases recorded in the North Atlantic region have caused 

enhanced snow accumulation over Eurasia. Modern observations and model calculations 

show that extent and duration of Eurasian snow cover affect the Asian monsoon system 

(Barnett et al. 1989; Bamzai and Shukla 1999). Prolonged Eurasian snow cover during spring 
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cools the overlying air since energy is used to melt the snow and to evaporate the melt water 

instead of warming the land surface, thus having a downwind effect on South Asian 

landmasses and weakening the thermal gradients between land and ocean, which causes a 

weaker-than-normal summer monsoon (Barnett et al. 1989). 

The reason for the North Atlantic cooling events might be reduction in insolation triggered 

by reduced solar output. This was postulated by Bond et al. (2001) who found that the North 

Atlantic cooling events correlate with smoothed and detrended 14C and 10Be production rates 

(14C shown in Figure 4.6), which are inversely correlated with solar output (Beer 2000). They 

also found a ca. 1500 year periodicity of the palaeoclimate variation in their record, which is 

in agreement with palaeoclimate variations reconstructed from other records (see Mayewski et 

al. 2004) and the link between periodicities in climate archives and solar activity (Soon et al. 

2014). To compare these findings with our data, we have calculated the major frequencies in 

our climate proxy data as well as the correlation between the BCI and the 14C production rate. 

Before the spectral analysis, the long term climate trend was removed from the whole time 

series by applying a Gaussian kernel based filter with a kernel bandwidth of 500 years. The 

correlation between the detrended 14C production rate (Bond et al. 2001) and the detrended 

BCI is relatively high (0.63), thus supporting the hypothesis that climate variability in India is 

influenced by changes in solar irradiance (Gupta et al. 2005). The power spectral analysis 

revealed a 1519 year periodicity besides 274 year, multiples of 274 year, and 435 year 

periodicities in our data set (Figure 4.7). Thus, a periodicity in climate variability similar to 

the “1500-year cycle” observed by Bond et al. (2001) is present in our record and 

corroborates the connection of the North Atlantic and the Indian monsoon palaeoclimates. We 

conclude that while IPWP forcings are important in causing millennial scale periods of 

prolonged dryness during the mid and late Holocene in central India (Prasad et al. 2014), the 

subtle short term changes identified by the BCI indicate the presence of North Atlantic 

forcings as well. 
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4.4.3. Implication for the archaeological history 

 

Our palaeoclimate reconstruction from Lonar Lake gives some clues according to the 

ongoing discussion about the role of mid-Holocene climate change on the de-urbanisation and 

abandonment of most Mature Harappan cities in the Indus valley region and the dislocation of 

settlements during the Late Harappan phase after 3.9 cal ka BP especially to the western 

Ganga Plains (Possehl 1997). Singh (1971) postulated that the development and expansion of 

the Harappan Civilisation was strongly related to favourable climate conditions and to severe 

climate deterioration during its decline. However, Possehl (1997) and Enzel et al. (1999) 

proposed that the influence of climate to the fate of the Harappan Civilisation was minimal or 

absent. But, since the capture of rivers that contributed to the water supply of the Harappan 

cities caused by tectonic activity during the time of Harappan decline could not be confirmed 

Figure 4.7: Powerspectrum indicating the most prominent cyclicities within the Bioclastic 
Climate Index data set. 
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(Clift et al. 2012) and since almost all of these rivers were monsoon fed (Tripathi et al. 2004; 

Giosan et al. 2012), vulnerability of the urban Harappan sites to weakened monsoon seems 

likely. And while Staubwasser and Weiss (2006) argue for a direct link between the decline of 

the Harappan Civilisation and the relatively short dry episode at about 4.2 cal ka BP, others 

hypothesise that the gradual climatic decline between ~ 5 and 4 cal ka BP caused an adaption 

of the cultivation methods to reduced summer monsoon rainfall (Gupta et al. 2006; Madella 

and Fuller 2006; MacDonald 2011) and related diminution in seasonal flooding (Giosan et al. 

2012). 

Our data support the view that the rise of the Harappan Civilisation did not occur during a 

phase of wettest climate (Enzel et al. 1999) but that the development of the huge cultural 

centres was more likely linked to the climate deterioration during the transition from the 

wetter early Holocene towards the drier late Holocene. A similar development was 

reconstructed for the rise and fall of the Mayan cities in Central America where the spread of 

urban centres coincided with a phase of declining humidity between 1.3 and 1.15 ka BP and 

the abandonment started subsequently at ~ 1.15 ka BP probably due to persistent dry 

conditions (Kennett et al. 2012). The development of highly populated centres in the Indus 

Valley was possibly due to the reduction of annual rainfall and the concentration of cultivable 

acreage along the rivers that provided enough water for agriculture in the form of seasonal 

flooding to supply the resident population. The fact that diminished available effective 

moisture at Lonar Lake between 4.6 and 3.9 cal ka BP correlates well with other records from 

the Asian monsoon realm (Hong et al. 2003; Gupta et al. 2005; Demske et al. 2009; 

Wünnemann et al. 2010) displays the supra-regional character of this drying trend and 

corroborates the assumption that the climatically sensitive sites especially in the relatively dry 

regions of the western Harappan territories were forced to adapt to severe shortages in water 

supply as for example to rivers that became ephemeral. A consequent change in agricultural 

strategy towards cultivation of crops that called for a more extensive land use and could not 
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support the highly populated centres seems to be a reasonable explanation for the gradual 

decline of the Harappan Civilisation. 

 

4.5. Conclusions 

 

The analyses of the C/N, δ13Corg, δ
15N, lithogenic contribution, grain-size, and amino acid 

degradation indices LI and Ox/Anox ratio values in combination with the evaporitic 

gaylussite crystals from the sediment core samples of the climatically sensitive Lonar Lake 

revealed several environmental and hydrological changes during the Holocene that can be 

related to climate shifts. 

The long term Holocene climate development at Lonar Lake shows three phases. The first 

phase is characterised by dry conditions at about 11.4 cal ka BP followed by a transition to 

wetter conditions during the time of monsoon onset and strengthening (~ 11.4 – 11.1 cal ka 

BP). The second phase comprises the early Holocene and shows wet conditions with high lake 

level and C3 dominated catchment vegetation. A subsequent transition to drier conditions 

occurs between ca. 6.2 and 3.9 cal ka BP. The late Holocene represents the third phase, which 

is characterised by relatively dry conditions as indicated by lower lake level and terrestrial 

vegetation with high C4 plant contribution. Comparison of these findings with other climate 

records from South Asia and the North Atlantic region displays a strong similarity, with 

strong monsoon phases in Asia correlating with warm periods in the North Atlantic region 

and weak monsoon correlating with colder climate in the North Atlantic region (Johnsen et al. 

2001). These climatic conditions seem to be closely related to the northern hemisphere 

insolation, which additionally seems to drive the position of the ITCZ, and thus the 

northwards extent of the summer monsoon rainfall (Fleitmann et al. 2007). 

The long term climate trend is superimposed by several shorter term climate fluctuations. 

Some of these fluctuations have also been observed in other high resolution climate records 
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from Asia, and they can be correlated with the North Atlantic Bond events (Bond et al. 1997; 

Bond et al. 2001). The correlation is the same as observed for the long term trend with cold 

periods in the North Atlantic correlating with dry periods over South Asia and vice versa. All 

the 9 Bond events during the Holocene are isochronally (within dating uncertainties) reflected 

in the Lonar Lake record. This points to a connection between the two climate systems or to 

an identical trigger of climate variability. The fact that the Bioclastic Climate Index (BCI) 

quite well delineates the solar output proxy 14C production rate (Bond et al. 2001) 

corroborates the assumption that variations in solar activity triggered centennial scale 

variability of the Indian monsoon climate during the Holocene. However, the amplitude of the 

BCI not solely depends on the centennial climate variability but is also influenced by the long 

term Holocene climate variability, other tele-connections (e.g., Pacific climate; Prasad et al. 

2014), local climate phenomena, changes in environmental conditions, and anthropogenic 

interferences. Thus, the amplitude of the BCI curve does not always reliably display the 

absolute strength of climate variability. 

With respect to the archaeological record from India and Pakistan, our results support the 

hypothesis that the rise of the Harappan Civilisation was linked to the climate deterioration 

during the transition from wetter climate of the early Holocene to drier climate of the late 

Holocene. We believe that the decline of the urban centres especially in the western Harappan 

territories might best be explained by a gradual reduction of summer monsoon between ~ 4.6 

and 3.9 cal ka BP and a consequent adoption of new agricultural practices and crops that 

demanded a social adjustment. 
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5. Conclusions and outlook 

 

5.1. Conclusions 

 

During the studies presented in this thesis, the general applicability of amino acid-based 

degradation and organic matter source proxies in lacustrine environments could be confirmed. 

However, several proxies that are commonly used to classify marine sediments, namely the 

degradation index (DI), ratios of proteinogenic amino acids and their non-proteinogenic 

degradation products (Asp/β-Ala, Glu/γ-Aba, Arg/Orn), the Asp/Gly ratio, and the 

Gluam/Galam ratio, show some weaknesses regarding their validity in lacustrine 

investigations. Nevertheless, other degradation indices, such as AA-N, the RI, The LDI, the 

molar percentage of β-Ala, and %Gly/(Gly+Ser+Thr), as well as source indices, as for 

example AA/Galam and Gly+Ser+Thr, were successfully applied to lake sediments of four 

Indian lakes located in different climatic regimes. 

Moreover, an investigation of the present day environmental conditions of the central 

Indian Lonar Lake was conducted, with the aim to identify the modern biogeochemical 

cycles, hydrological conditions, and potential distinctive features. Knowledge of the present 

day conditions of Lonar Lake was required to enable the palaeo-climate reconstruction on the 

basis of Lonar Lake sediments, which was performed in a further step. Some properties of the 

modern Lonar Lake, such as its endorheic nature, high pH, brackish water, severe 

eutrophication, and anoxic bottom water, make it a unique ecosystem and account for specific 

biogeochemical characteristics of its biota and sediments. For instance, the plankton 

community of the modern Lonar Lake is highly dominated by alkaliphile and halophile 

cyanobacteria that determine the amino acid assemblage of SPM and sediments, which differs 

from amino acid assemblages of marine and most other lake samples. Additionally, high pH 

and anoxic bottom water have caused a severe increase in δ15N of DIN driven by 
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denitrification and ammonia volatilisation. This increase in δ15N of DIN is responsible for 

elevated δ15N values of phytoplankton in Lonar Lake. Additionally, aerobic degradation as 

well as the inflow of 15N enriched nitrogenous nutrients from the surrounding alluvial plains 

resulted in strong 15N enrichment (by 5‰ to 9‰) of OM from shallow, oxic, nearshore 

sediments compared to OM of deeper, anoxic sediments. This increase could partly be 

attributed to the selective microbial degradation of individual amino acids, particularly Glu, 

during aerobic decomposition. Based on the different amino acid assemblages of sediments 

degraded under aerobic conditions compared to sediments degraded under anaerobic 

conditions reported by Cowie et al. (1995) and confirmed by our investigation of Lonar Lake 

sediments, we calculated an Ox/Anox ratio, which might be used to reconstruct the dominant 

redox conditions during OM degradation in sediments. 

In a final step, the results of the amino acid and modern hydrology and biogeochemistry 

investigations of Lonar Lake were used to support the Holocene palaeo-climate reconstruction 

conducted on the basis of biogeochemical and mineralogical analyses of a 10 m long sediment 

core from the central part of Lonar Lake. The most climate sensitive proxies, namely δ13C, 

lithogenic contribution, and the amino acid based proxies LI and Ox/Anox, were combined in 

a Bioclastic Climate Index (BCI). Further climate information was gathered from grain size 

data, δ15N values, and the occurrence of evaporitic gaylussite minerals. A long term climate 

transition delineating the change in northern hemisphere insolation was identified, with a 

sharp increase of the monsoon strength at the beginning of the Holocene and the 

establishment of wet climate conditions during the early Holocene. A more or less gradual 

decline of wet conditions occurred between ca. 6.2 cal ka BP to 3.9 cal ka BP, and relatively 

dry conditions prevailed during the late Holocene. Superimposed on the long term climate 

development, several centennial scale climate variations could be identified from the BCI and 

correlated with climate variability from higher latitudes, as identified on the basis of the 

contribution of ice rafted debris to North Atlantic sediment cores (Bond et al. 2001). Good 
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correlation between indication of dry climate anomalies in central India and cool climate 

indication in the North Atlantic region, suggest a systematic link or synchronous reaction of 

the different climate systems to similar forcings. The good correlation between the BCI and 

the 14C production rate, a proxy of solar activity, indicates that changes in solar output are 

important driving mechanisms of centennial scale climate variability both in South Asia as 

well as in the North Atlantic region. These palaeo-climate reconstructions from central India 

support the hypotheses of connections between the urbanisation of the ancient Harappan 

Civilization and the beginning of climate deterioration during the mid Holocene as well as 

between the abandonment of the Harappan Cities and the intensification of dry climate 

conditions after ca. 4.6 cal ka BP (Gupta et al. 2006). 

 

5.2. Outlook 

 

The studies presented in this thesis emphasis the high potential of multiproxy palaeo-

climate investigations. Comparable studies from other sites of different climate regimes could 

be used to distinguish between local and regional climate signals. Additionally, such 

comprehensive studies might have the potential to identify spatial differences in 

environmental and climatic response to small scale variations in the monsoon system, which 

have been identified for the modern Indian monsoon system. Also information on the 

interplay of different climate forcings and connections, such as the solar output, the mid 

latitude westerlies, ENSO, or Indian Ocean Dipole, might be identifiable if spatial differences 

in regional climate could be reconstructed. 

The results of the amino acid analyses indicate that commonly used degradation and OM 

source indices need to be verified for their applicability to terrestrial systems. However, if the 

amino acid analyses are thoroughly checked and interpreted, they might not only identify the 

state of OM degradation but potentially reveal additional information about degradation 
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mechanisms and pathways, environmental conditions, and OM sources. One attempt to gather 

additional knowledge from amino acid analyses during these studies was the calculation of a 

ratio between amino acid monomers that become relatively enriched during aerobic 

degradation and monomers that become relatively enriched during anaerobic degradation 

(Ox/Anox). And, even though this ratio was successfully applied to different environments, it 

might still need some adjustment. This could be achieved by the incorporation of factor scores 

to the individual monomers that are used for the calculation of the Ox/Anox ratio on the basis 

of a PCA factor that separates environmental samples that are degraded under aerobic 

conditions from samples that are degraded under anaerobic conditions. Therefore, amino acid 

analyses of samples from different environments with known redox conditions must be 

performed and a data set big enough to exhibit statistical significance must be compiled and 

the PCA factor that separates the samples according to the redox conditions during their 

degradation must be identified and the factor loadings of the individual monomers extracted. 
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Figure captions 

 

Figure 1.1: Approximate location of the ITCZ and dominant wind directions during boreal 

summer (A) and boreal winter (B) (Fleitmann et al. 2007). 

 

Figure 1.2: Overview of δ13C values of major carbon sources to lakes and resulting δ13C 

values of DIC (modified after Martens (submitted) and Leng et al. (2006)). 

 

Figure 1.3: Schematic nitrogen cycle (modified after Hensen et al. (2000)). 

 

Figure 1.4: Overview of δ15N values of major nitrogen sources to lakes (modified after 

Martens (submitted) and Leng et al. (2006); values after Maksymowska et al. 

(2000) and Talbot (2001)). 

 

Figure 1.5: Overview of analysed amino acids (modified after Martens (submitted)). 

 

Figure 2.1: Map showing the locations of the four investigated lakes. 

 

Figure 2.2: Monomeric AA and HA assemblages of the sediment core samples of the four 

lakes. 

 

Figure 2.3: Cross-plot of AA-N and AA-C-values of sediment core, vascular plant, plankton, 

suspended particulate matter, and macrophyte samples. Macrophyte, 6 plankton, 

and 11 vascular plant paired values reported by or calculated from Cowie and 

Hedges (1992). 
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Figure 2.4: Cross-plot of DI and RI values of the sediment core samples of the four lakes. 

 

Figure 2.5: Cross-plot of first and second PCA axis factors of the PCA of the monomeric 

AA contribution of the combined data set. 

 

Figure 3.1: Location map showing the position of Lonar Lake on the Deccan Traps in 

Central India (A). Map of Lonar Lake showing the bathymetry (m) and surface 

sediment sampling points (B). 

 

Figure 3.2: Spatial distribution of δ15N (‰) in Lonar surface sediment organic matter (A). 

Stable carbon vs. nitrogen isotopic ratios of the different Lonar samples (B). 

 

Figure 3.3: Comparison of the stable carbon vs. nitrogen isotopic ratios of Lonar Lake and 

Renuka, Mansar, and Rewalsar Lakes. 

 

Figure 3.4: Mean contributions (mol %) of the individual amino acids to the total 

hydrolysable amino acid pool of the different Lonar samples. Error bars denote 

the standard deviation. Amino acid abbreviations as defined in Table 3.2. 

 

Figure 3.5: Spatial distribution of the Lonar degradation index (LI) in Lonar surface 

sediment organic matter. 

 

Figure 3.6: Spatial distribution of the Ox/Anox ratio in Lonar surface sediment organic 

matter. 

 

Figure 3.7: Map showing the different depositional zones of Lonar Lake. 
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Figure 4.1: Regional overview and location of Lonar Lake (A). Study area showing the 

coring site (B). 

 

Figure 4.2: Summary of the analytical results. Schematic lithology of the Lonar Lake core 

and down-core variation in lithogenic contribution (A), C/N ratio (B), amino 

acid derived indices Ox/Anox (C) and LI (D), stable nitrogen (E) and carbon (F) 

isotopic ratios of bulk organic matter, and median grain-size (G). C/N, δ13C, and 

δ
15N were reported by Prasad et al. (2014); gaylussite crystal occurrence was 

reported by Anoop et al. (2013b). Error bars indicate the standard deviation 

range (2σ) of calibrated radiocarbon dates. 

 

Figure 4.3: Ternary diagram showing the percentages of the different grain-size classes (clay, 

silt, sand) of the analysed sediment samples of the Lonar Lake core. 

 

Figure 4.4: Long term Holocene climate trend at Lonar Lake as interpreted from our data. 

Comparison of median grain-size (A), lithogenic contribution (B), δ13C values 

(C) (Prasad et al. 2014), and summer (JJA) insolation at 20° N (D) (Berger and 

Loutre 1991). Error bars indicate the standard deviation range (2σ) of calibrated 

radiocarbon dates. 

 

Figure 4.5: Comparison of our data of lithogenic contribution (A), C/N ratio (B), Ox/Anox 

ratio (C), LI (D), δ15N (E), and δ13C (F) to the percentage of haematite stained 

grains (G) in core MC52, a climate record from the North Atlantic region (Bond 

et al. 2001). C/N, δ13C, and δ15N were reported by Prasad et al. (2014); 

gaylussite crystal occurrence was reported by Anoop et al. (2013b). Numbers 0 – 



 
130 

8 designate cold events in the North Atlantic region (Bond events). Small arrows 

denote increases in climate sensitive proxies that are interpreted to indicate 

phases of climate deterioration at Lonar Lake (grey shaded intervals). Error bars 

indicate the standard deviation range (2σ) of calibrated radiocarbon dates. 

 

Figure 4.6: Comparison between the Bioclastic Climate Index (BCI) (A), the detrended BCI 

(B), the climate record from the North Atlantic Region (C), and the detrended 

and smoothed 14C production rate (D) (Bond et al. 2001). Detrending of the BCI 

was performed by applying a Gaussian kernel based filter with a kernel 

bandwidth of 500 years to the values of the time slice <11.14 cal ka BP. The 

values of the time slice ≥ 11.14 cal ka BP were adjusted by subtracting the 

lowest value of this time slice from the data since a rapid shift in BCI values at 

11.14 cal ka BP occurs. Red and blue colour fills indicate relatively dry and wet 

phases, respectively. Lines between the BCI and the haematite stained grains 

plots denote some approximately contemporaneous climate shifts in both records 

that are interpreted to be linked. Error bars indicate the standard deviation range 

(2σ) of calibrated radiocarbon dates. 

 

Figure 4.7: Powerspectrum indicating the most prominent cyclicities within the Bioclastic 

Climate Index data set. 
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Table captions 

 

Table 1.1: Fractionation factors (α) of different nitrogen transformation processes. 

 

Table 2.1: Locations as well as hydrological and meteorological properties of the four lakes, 

Tso Moriri, Mansar Lake, Lonar Lake, and Pookode Lake. 

 

Table 2.2: Average TOC, C/N, AA, AA-C, and AA-N values of specific groups of samples 

of the four lakes. 

 

Table 2.3: AA monomer DI coefficients (Dauwe et al. 1999) and first PCA axis loadings of 

individual PCAs of the four lake sediment cores. 

 

Table 2.4: Average molar percentages (Avg.), standard deviations (SD), and factor 

coefficients (fac. coeff.) of each AA monomer used for LDI calculation. 

 

Table 2.5: Correlation between different AA- and HA-based OM source and degradation 

indices as well as C/N ratio of the combined data set. 

 

Table 3.1: Bulk biogeochemical parameters, AA and HA concentrations of different Lonar 

samples. IC values of surface sediment samples as well as TOC, TN, C/N, and 

δ
13C values of all samples except for those of sediment traps were taken from 

Basavaiah et al. (2014). 

 Abbreviations: THAA, total hydrolysable amino acids in mg/g dry sample; AA-

C, percentage of organic carbon present as amino acids; AA-N, percentage of 

total nitrogen present as amino acids; THHA, total hydrolysable hexosamines in 
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mg/g dry sample; nd, not detected; *, number of samples analyzed for amino 

acids. 

 

 

Table 3.2: Amino acid composition of the different Lonar samples. 

 Abbreviations: Asp, aspartic acid; Thr, threonine; Ser, serine; Glu, glutamic acid; 

Gly, glycine; Ala, alanine; Val, valine; Met, methionine; Ile, isoleucine; Leu, 

leucine; Tyr, tyrosine; Phe, phenylalanine; β-Ala, β-alanine; γ-Aba, γ-

aminobutyric acid; His, histidine; Trp, tryptophan; Orn, ornithine; Lys, lysine; 

Arg, arginine. 

 

Table 3.3: Parameters of the principal component analysis (PCA) of the Lonar sample set. 

 Abbreviations: Amino acid abbreviations as defined in Table 3.2. AVG, mean 

contribution of individual amino acids to the amino acid assemblage in mol 

percent; SD, standard deviation. 

 

Table 3.4: Bulk biogeochemical parameters, amino acid and amino sugar concentrations, 

and degradation indices of the different depositional environments of Lonar Lake. 

TOC, TN, C/N, IC, δ13C, and Terr. TOC values were calculated from data 

reported by Basavaiah et al. (2014). 

 Abbreviations: THAA, AA-C, AA-N, THHA as defined in Table 3.1; Terr. TOC, 

calculated percentage of organic carbon derived from terrestrial source; 

Gluam/Galam, ratio of the two hexosamines glucosamines and galactosamines; 

LI, Lonar degradation index; Ox/Anox, ratio of amino acids relatively enriched 

during aerobic degradation and amino acids relatively enriched during anaerobic 

degradation; *, number of samples analyzed for amino acids. 
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Table 4.1: Radiocarbon ages from the Lonar Lake core; first published by Prasad et al. 

(2014). Calibration of the 14C dates was carried out using the program OxCal, 

interpolating with the INTCAL04 and NH3 calibration curves (Bronk Ramsey 

2008). 
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List of abbreviations 

 

α = Fractionation factor  

AA  = Amino acid 

AA-C  = Amino acid associated carbon 

AA-N  = Amino acid associated nitrogen 

Ala  = Alanine 

AMS = Accelerator Mass Spectrometry 

Arg = Arginine 

Asp = Aspartic acid 

β-Ala  = β-alanine 

BCI  = Bioclastic Climate Index 

C/N  = Ratio between total organic carbon and total nitrogen 

cal a BP  = Calendar years before 1950 

Cya = Cysteic acid 

DFG  = Deutsche Forschungsgemeinschaft (German Research Foundation) 

DI  = Degradation index 

DIC  = Dissolved inorganic carbon 

DIN  = Dissolved inorganic nitrogen 

DOC  = Dissolved organic carbon 

ENSO  = El Niño Southern Oscillation 

γ-Aba  = γ-aminobutyric acid 

Galam  = Galactosamine 

Glu  = Glutamic acid 

Gluam  = Glucosamine 

Gly  = Glycine 
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HA  = Hexosamine 

HIMPAC  = Himalaya: Modern and Past Climates 

His  = Histidine 

IC  = Inorganic carbon 

Ile  = Iso-leucine 

IPWP  = Indo Pacific Warm Pool 

ISM  = Indian summer monsoon 

ITCZ  = Intertropical Convergence Zone 

ka  = Thousand years 

LDI  = Lake degradation index 

Leu  = Leucine 

LI  = Lonar degradation index 

Lys  = Lysine 

Ma  = Million years 

Met  = Methionine 

Mso = Methionine sulfoximine 

OM  = Organic matter 

Orn  = Ornithine 

PCA  = Principal component analysis 

Phe  = Phenylalanine 

POC  = Particulate organic carbon 

R  = Isotope ratio 

RI  = Reactivity index 

Ser  = Serine 

SPM  = Suspended particulate matter 

Tau = Taurine 
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TC  = Total carbon 

THAA = Total hydrolysable amino acids 

THHA = Total hydrolysable hexosamines 

Thr  = Threonine 

TN  = Total nitrogen 

TOC  = Total organic carbon 

Trp = Tryptophan 

Tyr = Tyrosine 

Val  = Valine 

VPDB  = Vienna Pee Dee Belemnite 
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