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Abstract

We propose a strategy to couple a stochastic lattice-gas model of a cloud system
to a rather general class of convective parameterization schemes. The stochastic
model consists in a sub-grid lattice of N elements which can be in one out of S states,
each correspondent to a different cloud type. The time evolution of the elements
of the lattice is represented as a Markov process on the set of the S states with
transition rates dependent on large-scale (grid-box) fields and/or local interactions.

We derive a reduction method based on the mean-field approximation leading to
a system of S-1 stochastic differential equations for the evolution of the macrostate
(cloud fractions) of the lattice model in the limit of large N . The intensity of the
noise scales with N−1/2, consistently with the van Kampen system size expansion.
The accuracy of the method is tested in a minimal version of the model.

We design a strategy to couple the lattice model to a generic parameterization
scheme, so that in the limit of space and time scale separation the modified stochastic
parameterization converges to the deterministic version of the host scheme.

We perform numerical experiments coupling the minimal version of the stochastic
model to the Betts-Miller and Kuo schemes in the aqua-planet version of the Planet
Simulator. After characterizing the climate produced by the standard deterministic
model, we perform two set of experiments. In the first we consider constant birth
and death rates of the cumulus clouds, in the second birth and death rates dependent
on a critical value of the relative humidity of the atmospheric column.

In the first set of experiments we find that for both the Betts-Miller and Kuo
schemes the stochastic extension of the parameterization preserves the bulk statistics
of its deterministic limit. The impact instead is strong on the statistics of the
extremes of daily convective precipitation analyzed with the extreme value theory.

In the second set of experiments we find that the inclusion of the critical de-
pendence of the activation of convection on relative humidity has a different impact
with the two schemes. Even in cases in which the climatology is relatively preserved,
the representation of the structure of the tropical dynamics can be deteriorated by a
conflict between the natural relationship between convection and relative humidity
and the one induced by the stochastic model.

These results suggest that, although promising for tackling a number of problems
related to the representation of sophisticated features of atmospheric convection,
applications of this kind of models to a complex GCM require to be carefully designed
for the specific characteristics of the host deterministic scheme.
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Chapter 1

Introduction

1.1 Stochastic parameterization of convection

Due to their nonlinear nature, atmospheric processes at different space and time

scales interact with each other. In a numerical model of the atmosphere the evolution

equations are discretized and therefore filtered in space and time by the size of the

grid and time step respectively. Thus it is necessary to represent the effect of the

unresolved processes on the resolved scales. Under the assumption of existence

of a separation between the active unresolved and resolved scales, the unresolved

processes can be considered to be in statistical equilibrium once averaged over the

truncation scales, and their mean effect can be represented at the zeroth order as a

deterministic function of the resolved variables (parameterization).

For processes like organized convection, the scale separation assumption is not

realistic for applications to most of the scales of interest, leading standard deter-

ministic parameterizations to misrepresent some of the statistical properties of the

system. In order to cure this problem, a part from drastic changes in the approach to

the representation of the unresolved processes (superparameterization), first order

corrections can be represented with the inclusion of stochastic terms, whose statis-

tical properties will depend on the physics of the parameterized processes and their

interaction with the resolved dynamics (stochastic parameterization).

In general, the idea of introducing stochastic terms into a climate model in order

to represent variability due to fast, unresolved processes dates back to the seminal

work of Hasselmann (1976). It has been since then applied to a number of geo-

physical models. Chekroun et al. (2011) have recently provided an introduction

to the random dynamical systems theory addressed to the geophysical community,

showing how concepts of the classical dynamical systems theory can be extended in

order to provide deeper insights into the statistical properties of nonlinear stochastic-



2 1. Introduction

dynamical models. Most of the earlier studies were focused on simplified, low dimen-

sional descriptions of the climate system or of specific climatic processes. Because

of the increase in resolution of operational numerical models of weather and cli-

mate, the interest in introducing stochastic parameterizations in full GCMs in order

to represent subgrid variability due to unresolved processes (which could then feed

back trough the nonlinearities of the system, with potentially large impacts on the

mean state and on the higher order statistics of the system) has gained momen-

tum in recent years, with particular attention devoted to the parameterization of

atmospheric convection (Neelin et al., 2008; Palmer and Williams, 2010).

The representation of unresolved atmospheric convection in GCMs is still one

of the crucial problems of climate modelling (Frank, 1983; Arakawa, 2004; Ran-

dall et al., 2007). Many different parameterization schemes have been developed

in the last decades. Classically they are divided into three families: adjustment

schemes (Manabe et al., 1965; Betts and Miller, 1986), moisture budget schemes

(Kuo, 1965, 1974) and mass-flux schemes developed in different versions by many

authors (e.g. Arakawa and Schubert (1974); Bougeault (1985); Tiedtke (1989); Gre-

gory and Rowntree (1990); Kain and Fritsch (1990); Gregory (1997); Bechtold et al.

(2001); Kain (2004)), although with some theoretical issues in some of these imple-

mentations (Plant, 2010). Despite being built starting from different points of view

and physical considerations, all these schemes present similarities in their design

and impact on the dynamics (Arakawa, 2004), and to some extent can be derived

from a common approach (Fraedrich, 1973). The crucial common feature of all

these schemes is that they realize a negative feedback which efficiently dampens the

vertical destabilization of the atmosphere due to radiation, advection and surface

fluxes, in most cases by reducing a vertically integrated measure of the buoyancy at

an exponential rate (Yano et al., 2000).

This common property is introduced basically by design in the first and second

family (from this point of view the Kuo scheme can be interpreted as an adjust-

ment scheme (Arakawa, 2004)), while in the third family it is realized by one of the

many possible implementations of the Quasi-Equilibrium (QE) hypothesis originally

introduced by Arakawa and Schubert (1974). The general definition of QE is basi-

cally equivalent to the existence of a time scale separation between the large scale

dynamics and the convective activity, allowing the effects of convection to be param-

eterized as a response to the destabilization enslaved by the large scale dynamics.

It can therefore easily be extended to include the kind of justifications on which the

adjustment-like (including Kuo) schemes are based, and thus it can be considered

for sake of simplicity the conceptual basis of all the parameterization schemes avail-



1.1 Stochastic parameterization of convection 3

able. Part of the current debate on the parameterization of atmospheric convection

is focused on a reconsideration of the validity, interpretation and implementation of

the QE principle (Yano and Plant, 2012), both at a fundamental and operational

level. One branch of this debate has led to various attempts to design stochastic

parameterizations of atmospheric convection, in order to represent deviations from

the QE behavior (Neelin et al., 2008; Palmer and Williams, 2010).

At a fundamental level, Mapes (1997) introduced the concept of activation-

control as opposite to the classical idea of equilibrium-control (basically a rephrasing

of QE), indicating that the latter is an adequate representation of the nature of trop-

ical convection only on global climate scales. Yano et al. (2001, 2004) showed that

the intermittent, pulse-like nature of tropical convective activity leads to the pres-

ence of 1/f spectra for characteristic quantities over a broad range of scales, so that

the usual picture of QE as a smooth adjustment based on a time scale separation

is indeed questionable. A substantial body of observational works (Peters et al.,

2002; Peters and Neelin, 2006, 2009; Peters et al., 2009; Neelin et al., 2009; Peters

et al., 2010) showed that convection in the tropics presents many features typical of

systems undergoing a phase transition or in a state of criticality, leading the authors

to propose the concept of Self-Organized Criticality (SOC) to explain the transition

to precipitating convection (Neelin et al., 2008). Although the proposed framework

supports some aspects of the QE idea, in the sense that a system featuring SOC in-

deed adjusts itself to the neighborhood of a critical point thus dampening deviations

from it, the physical interpretation is radically different and if valid it would imply

that important statistical properties of convection are not captured by parameteri-

zations based on classical formulations of the QE principle. Despite the debate on

the validity of the QE hypothesis being ongoing for quite some time, no substan-

tial improvements have been made so far in proposing a new conceptual framework

robust enough to lead to the definition of a new generation of parameterization

schemes.

Less fundamental criticisms address the practical implementation of the QE prin-

ciple, noting that the concept holds strictly only in an ensemble average sense, in-

tegrating over an area hosting a large number of independent convective events and

over a time interval larger than the typical length of their life cycle. That is, even

supposing that a scale separation exists, the concept is practically useful only if the

truncation scales of the GCM are indeed much larger than the characteristic scales

of the parameterized process, although one could note that the way space scale

separation is involved in the QE principle is not as clear as time scale separation

(see Yano (1999) and Adams and Renno (2003)). The typical resolution of a state-
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of-the-art GCM for climatic applications is 100-200 km in space and 10-30 min in

time. At these scales only few active convective elements (clouds) are present in a

grid box, and their life cycle (initiation, growth and dissipation) is far from being

exhausted in such a short period of time. This has led some authors to suggest that

convective parameterizations should at least consider first order corrections to the

classical theory in order to take into account finite-size effects and aspects of the

temporal evolution of the ensemble of convective events. The first issue has been

basically ignored in the classical approaches to convective parameterization, while

in order to address the second issue some prognostic schemes have been proposed

in the literature (Randall and Pan, 1993; Randall et al., 1997; Pan and Randall,

1998). In addition it has to be noted that atmospheric convection shows features of

spatial (Peters et al., 2009) and temporal (Mapes et al., 2006) organization, both

of which are thought to be involved in determining properties of tropical variability

from daily to intraseasonal scales.

These issues were at the basis for the suggestion of introducing stochastic com-

ponents into pre-existing convective parameterization schemes. First attempts to

design a stochastic parameterization of atmospheric convection were basically sen-

sitivity studies (Neelin et al., 2008). Buizza et al. (1999) developed a perturbed

physics scheme to take into account model uncertainties in the context of ensemble

prediction. Lin and Neelin (2000, 2002) perturbed the heating term due to convec-

tive precipitation with an AR1 process in the Betts-Miller scheme and in a mass-flux

scheme (Lin and Neelin, 2003), showing sensitivity of the tropical activity to the au-

tocorrelation time of the noise. A different approach has been followed by (Berner

et al., 2005), who introduced a stochastic forcing to the streamfunction of a GCM

with a spatial pattern given by a cellular automaton mimicking in a simple way the

organization of mesoscale convective systems. Plant and Craig (2008) developed a

stochastic parameterization scheme coupling the deterministic Kain-Fritsch scheme

(Kain and Fritsch, 1990) to a probabilistic model for the distribution of the cloud

base mass-flux based on equilibrium statistics (Craig and Cohen, 2006) which had

shown good agreement with cloud resolving models (Cohen and Craig, 2006). For

a more comprehensive review on the topic see Neelin et al. (2008) and Palmer and

Williams (2010).

Among these attempts, some attention has been devoted recently to using sub-

grid stochastic lattice-gas models in order to describe the dynamics of a cloud pop-

ulation in a GCM grid box (Majda and Khouider (2002), Khouider et al. (2003),

Khouider et al. (2010), Frenkel et al. (2012)). A stochastic lattice-gas model consists

of a collection of N elements spatially organized following a certain geometry (for a
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example on a regular square lattice in which each site has four first neighbors), each

of which can be in one out of S states. The time evolution of each element on the

set of the S states is determined by probabilistic rules dependent on the state of the

element and of its neighbors (in order to represent local interactions) and/or on ex-

ternal fields. In applications to convective parameterization, the N sites correspond

to places in which convection may or not occur, while the S states correspond to

different convective regimes or cloud types (Majda and Khouider (2002), Khouider

et al. (2003), Khouider et al. (2010), Frenkel et al. (2012)).

Considering a lattice model nested in each grid box of a GCM, the stochastic

model would determine the fraction of each cloud type in the grid box, thus mod-

ulating the amount of convective activity. In turn, the GCM would provide the

large scale fields determining the transition rates of the lattice model (e.g. CIN,

CAPE, precipitable water), realizing in this way a full two-way coupling (Khouider

et al., 2010) between the small and large scale dynamics. The proposed models were

devised in order to represent finite size effects and properties of the initiation and

life cycle of tropical convection (Mapes et al., 2006), and were coupled to simpli-

fied models of the tropical dynamics. Recently Stechmann and Neelin (2011) have

proposed a conceptual stochastic model for the transition to strong convection, sug-

gesting that it could be used to inform the transition rules of similar models. On

a similar line, Plant (2012) has proposed a general framework for using subgrid

Individual-Level models (ILM) in the context of mass-flux parameterization making

use of the van Kampen system size expansion approach (van Kampen, 2007).

In general, these kind of models could in principle be useful in order to tackle

a number of unsolved problems concerning the representation of organized atmo-

spheric convection and its interaction with the large-scale tropical dynamics, like

the representation of preconditioning processes in the life cycle of convective sys-

tems, the representation of the criticality behavior of precipitation conditional on

the moisture field, the presence of long term memory in observed convection-related

quantities, the representation of the daily cycle of convection, the double ITCZ prob-

lem, and the representation of the intraseasonal variability and the Madden-Julian

oscillations.
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1.2 Research questions and goals

Despite some growing interest in this approach to stochastic parameterization of

atmospheric convection, no attempts have been made so far to couple such models

to a full GCM. The aims of this thesis are therefore:

1) to develop a systematic methodology to treat such models in the context of

convective parameterization in real, operational GCMs;

2) to provide first examples of their application in such context by performing

experiments with the Planet Simulator.

Regarding point 1, two issues have to be tackled. The first problem is due to

the fact that the number of lattice elements N is given by the ratio between the

size of the GCM grid box L and the size of the individual convective elements l.

For a medium resolution GCM for climatic application L is on the order of 102 Km,

while l is on the order 10−2− 100 Km, depending on which kind of cloud system the

lattice model is supposed to represent. Therefore, N = L/l is supposed to be quite

large, on the order of 102 − 104. The number of grid points in a medium resolution

GCM for climatic applications is on the order of 104 − 105. Therefore, computing

at each grid point the evolution of the macrostate (the S cloud fractions) of the

lattice model from the direct simulation of the evolution of its microstate (the N

individual elements of the lattice) would require casting order 106 − 109 random

numbers at each time step, which would be numerically untreatable. The second

problem stems from the fact that many parameterization schemes do not feature

explicitly the cloud or updraft fraction in their formulation, so that it is not always

possible to automatically introduce the cloud fraction provided by the stochastic

model into these schemes. Two ingredients are therefore needed:

1a) to develop a numerically treatable and possibly to some extent analytically

understandable formulation of the evolution of the macrostate of lattice model;

1b) to design a robust coupling strategy in order to include the stochastic model

into a pre-existing parameterization.

Previous works have already partially tackled these issues: here we propose an alter-

native that could be useful in order to extend this approach to the ”stochasticization”

of a convective parameterization to real GCMs in a more general fashion.

Regarding point 2, being this line of research in a very preliminary phase, the

numerical experiments we have performed with the Planet Simulator (the very first

attempts in the literature with a full GCM) are designed in order to present a



1.2 Research questions and goals 7

demonstration of the feasibility of this strategy, and to obtain informations about

the basic impact of the stochastic model in simplified settings, without any claim of

realism or any aim of improving at this stage the representation of specific features

of the tropical dynamics. We have tested the model in its simplest configuration:

a binary system (S=2) representing sites convectively inactive (clear sky) or active

(clouds) without local interactions. We couple this simple on/off description of con-

vection to the aqua-planet version of the Planet Simulator in two different ways. In

the first case, we consider a model with constant transition rates, that is considering

constant birth and death rates for the clouds in each grid box. In this way the

stochastic model introduces only the effects of considering a demographic descrip-

tion of the cloud system (litterally just the fact that we are ”counting” the clouds).

Therefore the state of the GCM does not affect the evolution of the lattice model,

and the coupling is just one-way (lattice model → GCM). In the second case, we

make the birth rate of the clouds dependent on a measure of the column-integrated

moisture content of the grid point, mimicking the critical behavior of the onset of

precipitating convection found in several observational works. In this case the state

of the GCM does affect the evolution of the lattice model, and we have a full two-

way coupling (lattice model ↔ GCM). With these experiments we investigate the

following questions:

2a) how the climate of the GCM is affected by the introduction of the stochastic

model with the one-way coupling, in particular in terms of local statistics

(climatology and extremes) of convective precipitation;

2b) how the climate of the GCM is affected by the introduction of the stochastic

model with the two-way coupling, in particular in terms of tropical wave prop-

agation and local relationship between convective precipitation and moisture

field.

As said, we have focused here on the methodological aspects of the introduction of

such models in a convective parameterization; more complex or realistic applications

of this strategy remain subject of future works.
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1.3 Thesis outline

In the following we present the structure of the thesis. Part of the results pre-

sented in Chapter 3 and Chapter 5 have been used to produce an article currently

under review in the Quarterly Journal of the Meteorological Society (Ragone et al.,

2013). The results shown in Chapter 4 and Chapter 6 will serve as a basis for an

additional publication that is currently under preparation. Note that for consistency

with the format of an academic thesis the content of Ragone et al. (2013) has been

reworked and redistributed across different parts of the thesis.

• in Chapter 2 we present a brief overview on the problem of the parameteriza-

tion of unresolved atmospheric convection. Starting from the basic equations

of conservation, we describe the ideas behind the most important approaches

to convective parameterization, discussing their properties, limitations, and

common assumptions. We focus in particular on the families of parameteriza-

tion schemes to which belong the ones in use in the GCM that has been used

in this thesis;

• in Chapter 3 we describe the potential benefits of using stochastic lattice-gas

models to represent the dynamics of cloud systems, referring to the limited

existent literature on the subject. We propose a general method to derive an

approximated set of stochastic differential equations for the time evolution of

the macrostate of such models, making computationally possible the coupling

to a convective parameterization of a GCM. We study in detail the minimal

version of the model, and we test the numerical accuracy of the method in

different set-up. We then propose a general strategy to couple such models to

a generic parameterization scheme, so that in the limit of space and time scale

separation between the large (GCM) and small (lattice model) dynamics we

recover the original deterministic version of the host scheme;

• in Chapter 4 we analyze the climatology and the properties of the tropical

wave dynamics in the aqua-planet version of the Planet Simulator in its original

deterministic version. In particular we study how the behavior of the system

changes when the shallow convection is switched off, since in order to couple

the parameterization to the minimal version of the model we can allow only

two possible convective states (clear sky and deep convection). The analysis is

performed with both the BM and Kuo parameterizations, and the differences

and similarities between the climates resulting from using the two schemes are

discussed;
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• in Chapter 5 we perform experiments with the Planet Simulator coupling

the minimal version of the stochastic model with fixed transition rates to both

the BM and Kuo parameterization schemes in aqua-planet conditions. We

perform a limited but comprehensive exploration of the parameter space of

the stochastic model, and we show how with both schemes the introduction of

the stochastic model affects only the tails of the distribution of the convective

precipitation, while keeping unaltered the bulk statistics. This in a sense con-

firms the robustness of the coupling strategy we have designed. By performing

an analysis of the changes in the daily extremes of convective precipitation fol-

lowing the extreme value theory, we show how the impact on the extremes is

instead substantial. This raises some interesting considerations on the use of

the stochastic model and in general on the study of extremes of precipitation

with a GCM;

• in Chapter 6 we perform experiments introducing in a simple way a depen-

dence of the activation of convection on the humidity content of the atmo-

spheric column, consistently with recent results on the onset of deep precipi-

tating convection. Again we perform the experiments with both the BM and

Kuo schemes in aqua-planet conditions, showing how the impact in this case

differs substantially between the two schemes. We analyze the basic prop-

erties of the tropical wave dynamics, showing how the interaction with the

natural (not induced by the stochastic model) relationship between precipita-

tion and moisture field realized by the convective parameterization is crucial

in determining the response to the introduction of the stochastic model;

Eventually in Chapter 7 we present the summary of the thesis, we draw our

conclusions and we discuss possible future lines of research.
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Chapter 2

Parameterization of atmospheric

convection

2.1 Large-scale effects of atmospheric convection

In this Chapter we present a brief introduction to the general problem of the

parameterization of atmospheric convection. We start from the basic equations of

conservation of energy, momentum and water under Reynolds averaging, and we

identify the terms related to atmospheric convection that need to be parameterized.

We then present the ideas behind the approaches to convective parameterization

that are at the basis of the schemes currently implemented in PlaSim (Fraedrich

et al., 2005; Fraedrich, 2012), the GCM that we have used in order to perform the

numerical experiments in this thesis.

The exposition follows closely the derivation of Yanai et al. (1973). We start

with the basic equations of conservation for energy and water
∂s

∂t
+∇ · s~v +

∂sω

∂p
= QR + L(c− e)

∂q

∂t
+∇ · q~v +

∂qω

∂p
= e− c

(2.1)

where we have introduced the basic state variable of the system: the dry static

energy s = CpT + gz and the water vapor content q, while ~v is the the horizontal

velocity field and ω is the vertical velocity in pressure coordinate p. On the right

hand side we have introduced the forcing and energy conversion terms acting on the

system: the radiative forcing QR and the evaporation and condensation rates e and

c. Note that the equation for the moist static energy h = s+ Lq results to be

∂h

∂t
+∇ · h~v +

∂hω

∂p
= QR (2.2)
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We define the Reynolds average and deviations of a generic field X over an area

A such that X =
1

A

∫
A

XdAdt

X ′ = X −X
(2.3)

with the usual properties X = X and X ′ = 0. The conservation equations for the

averaged variables can be rearranged to define the apparent heating source Q1 and

apparent moisture sink Q2
Q1 =

∂s

∂t
+∇ · s~v +

∂s ω

∂p
= QR + L(c− e)− ∂s′ω′

∂p

Q2 = −L
(
∂q

∂t
+∇ · q~v +

∂q ω

∂p

)
= L(c− e) + L

∂q′ω′

∂p

(2.4)

We assume that small-scale eddies in the horizontal components of the velocity field

are not correlated with s′ and q′, while the presence of convection could cause strong

correlations in the vertical and therefore vertical eddy transport of s and q. Note

that for historical reasons Q1 is defined as a source of dry static energy and Q2 is

defined as a sink of moisture.

The vertical integrals of Q1 −QR and Q2 between the top and bottom pressure

pT and p0 result to be (with g the gravity acceleration)
1

g

∫ p0

pT

(Q1 −QR) dp =
L

g

∫ p0

pT

(c− e) dp− 1

g

(
s′ω′
)
p=p0

= LP + S

1

g

∫ p0

pT

Q2dp =
L

g

∫ p0

pT

(c− e) dp+
L

g

(
q′ω′
)
p=p0

= L (P − E)

(2.5)

where P is the precipitation, S is the surface flux of sensible heat and E is the

evaporation at the surface. These are integral relations linking Q1 and Q2 with

quantities measured at one boundary (the surface).

The primary goal of a convective parameterization is to compute Q1 and Q2

as functions of the large scale variables. In the following we describe the general

structure of a parameterization scheme and the most common approaches to the

problem. Note that with the same considerations it is possible to derive a term

Q3 for the momentum, but for sake of simplicity we limit ourselves to the more

fundamental Q1 and Q2.

Note that atmospheric convection is typically classified in three prominent modes

of convection: deep precipitating cumulus clouds reaching the tropopause, cumulus

congestus clouds penetrating the melting layer (located around 500 hPa in the Trop-

ics), and shallow convection that penetrates to the boundary-layer inversion layer.
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These three types of convection have different dynamical and microphysical prop-

erties, and require separate treatments in the design of a parameterization scheme.

In the following we will mainly refer to the parameterization of deep precipitating

cumulus convection, when not specified otherwise.

2.2 Parameterization of atmospheric convection

2.2.1 General structure of a parameterization scheme

The goal of a convective parameterization scheme is to compute the effect of

an ensemble of convective clouds in a model column as a function of the grid-scale

variables, quantified by the terms Q1 and Q2. A convective parameterization scheme

consists in general of three steps:

1. determine whether or not there is convective activity in the considered grid

column, and of which kind - this is often called triggering of convection;

2. determine the vertical structure of Q1 and Q2 - this is normally performed by

the plume or cloud model of the parameterization scheme;

3. determine the total amount of convective activity, that is the magnitude of

Q1 and Q2, which also implies determining the total amount of energy con-

version due to latent heat release - this is normally based on some hypotesis

on the relationship between convective and large scale activity which strongly

characterize the scheme, and it is called closure.

Note that, in addition to the general theory we have exposed in Section 2.1, in

practice a convective parameterization scheme meant to be implemented in a real

GCM needs to fulfill a number of additional requirements and to take care of a

number of technical issues that are not evident from the theory.

Beside determining the contribution of unresolved convection to the heating,

moistening and momentum exchange, determining the total amount of convective

precipitation and hence the contributions of unresolved convective activity to the

water and energy cycle (and defining a crucial part of the connection between the

two), and in general in producing a realistic climate, a convective parameterization is

also needed to remove instabilities, both physical and numerical, at a sufficient fast

rate so that the model does not explode. Moreover, a number of ad hoc procedures

have to be applied in order to avoid numerical and physical inconsistencies that

are caused by the rest of the model or by the parameterization itself, and that

would severely deteriorate the representation of convective activity. A convective
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parameterization scheme is typically a much more complex object than what can

be expected from the description of the theory it relies on, and it is the result of

the operational experience of the developers as much as of the theory. This is often

the case with modules included in complex numerical models of multi-scale systems,

developed across many years by a large number of people, as in the case of the

GCMs that are in use nowadays.

Several parameterization schemes have been proposed and implemented since

the beginning of the history of numerical weather prediction and climate simulation.

They are classically divided into three families:

1. adjustment schemes;

2. moisture budget schemes;

3. mass-flux schemes.

We give here a brief description of the general properties of the first two families of

schemes, to which belong the parameterization schemes available in PlaSim. Mass-

flux schemes are today the most common choice for state-of-the-art GCMs, but

even in their simplest ”bulk” formulation (opposed to the more general ”spectral”

formulation) they are quite complex, therefore for their description we redirect to

classical papers on the topic (Arakawa and Schubert, 1974; Bougeault, 1985; Tiedtke,

1989; Gregory and Rowntree, 1990; Kain and Fritsch, 1990; Gregory, 1997; Bechtold

et al., 2001; Kain, 2004).

2.2.2 Adjustment schemes

The convective adjustment schemes are based on the idea that convection acts

in order to adjust the state of the atmosphere towards a reference profile, that

is normally prescribed or computed in order to match with observations of the

mean state of the tropical atmosphere (that is where the effect of convection is

most important). This is of course the simplest way of representing the effect of

convection on the large scale dynamics, since the properties of the reference profile

are prescribed instead of being generated by a (simplified) model of the physical

process. This was indeed the first approach to convective parametrization proposed

with the moist convective adjustment scheme of Manabe et al. (1965). Nowadays the

prototype of adjustment scheme is the more sophisticated Betts-Miller penetrative

adjustment scheme (Betts and Miller, 1986), that is still in use in operational climate

and weather models.
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Generally speaking, adjustment schemes compute tendencies for temperature

and moisture as 
Q1 = Cp

Tc − T
τT

Q2 = −Lqc − q
τq

(2.6)

The relaxation time scales τT and τq are taken as constants (typically with the same

value, order of few hours), or feature a weak dependence on some large scale quantity,

such as horizontal wind speed at the surface or others. The reference profiles Tc and

qc are computed by algorithms which ensure the conservation of moist static energy,

which means requiring that

1

g

∫ p0

pT

(Q1 −Q2) dp = 0 (2.7)

since the result would be given by the contribution from the radiative processes and

the surface-atmosphere processes, that are calculated by other parameterizations.

Despite the conceptual simplicity of the adjustment idea, these algorithms can be

quite involved, so that typically Tc and qc cannot be written in a analytical form as

functions of T and q. Moreover, many empirical parameters are included in these

algorithms. In the adjustment schemes the complexity of the parameterized process

is therefore hidden in the algorithm computing the reference profiles, and resolved

with a substantial amount of ad hoc tuning.

The Betts-Miller scheme is available in PlaSim in a formulation that follows

closely the original Betts and Miller (1986), although it is not the default choice and

the model has received little testing with this scheme.

2.2.3 Moisture budget schemes

Moisture budget schemes are variants of the scheme originally proposed by Kuo

(1965, 1974). They are based on the idea that convection acts in order to precipitate

a certain fraction (1− β) of the moisture converging in a atmospheric column, stor-

ing the remaining β in the column. These schemes therefore postulate a very strong

link between large scale moisture convergence and small scale convective activity,

that is to some extent confirmed by correlations between moisture convergence and

precipitation in the Tropics found in several observational works. The total amount

of convective precipitation generated in a time interval dt is prescribed to be

Pr = (1− β)Fq dt (2.8)

where Fq is the vertically integrated moisture convergence, including both hori-

zontal transports of moisture by the large scale dynamics and surface evaporation.
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The state of the atmosphere is then relaxed towards the pseudo-adiabatic profile

satisfying the constraints given by the Kuo closure and by the moist static energy

conservation, which implies Q2 = βFq dt. Formally this results in the same equations

as for the adjustment schemes 
Q1 = Cp

Tc − T
τT

Q2 = −Lqc − q
τq

(2.9)

where Tc and qc are the pseudo-adiabatic profiles, and τT and τq instead of being

constants are computed as 
τT =

∫ +∞
0

Cp(Tc − T )dz

(1− β)Fqdt

τq =

∫ +∞
0

L(qc − q)dz
βFqdt

(2.10)

It is clear that formally the original version of the Kuo scheme is not different from

an adjustment scheme. In a sense it is a complementary version of the adjustment

idea: while in the adjustment schemes the relaxation time scales are fixed to the

same value, and the reference profiles are computed in order to satisfy the physi-

cal constraints, in the Kuo scheme the reference profiles are ”fixed” to the moist

adiabatic ones, and the relaxation time scales are computed in order to satisfy the

physical constraints, including the moisture convergence closure. In the Kuo scheme

τT and τq can take very different values, differing by orders of magnitude. In this

sense Arakawa (2004) critically refers to the Kuo scheme as an asynchronous ad-

justment scheme. Other criticisms to the Kuo scheme address the fact that the

scheme is built on the idea that convection consumes water instead of potential en-

ergy, leading to a possible positive feedback where more precipitation means more

moisture convergence due to surface evaporation, which leads to more precipitation

and so on. Despite these criticisms, the Kuo scheme performs quite well and it is

still in use in many GCMs. In many of the current implementations of the scheme

the reference profile is computed with a plume model based on the mass flux ap-

proach instead of being pseudo adiabatic, so that these schemes are hybrid mass

flux schemes featuring a Kuo-like moisture convergence closure.

The Kuo scheme is the default convective parameterization scheme of PlaSim.

For a detailed description of the implementation of the scheme the reader can refer

to the Reference Manual of the model freely available together with the code at

http://www.mi.uni-hamburg.de/plasim.



Chapter 3

Stochastic lattice-gas model of a

cloud system

3.1 Stochastic cloud population dynamics

Considering a grid box size of order 100 km and typical sizes of convective ele-

ments ranging from 100 m to 10 km (from individual cumulus clouds to mesoscale

systems, depending on the definition of the model) we expect N to be in the range

106-102. Since the full evolution of the stochastic model would require casting an

equivalent amount of random numbers at each time step for each grid box of the

GCM, it is clear that a direct simulation of the system as the sum of all the N

individual processes would be impractical even in the best case. The problem has

already been tackled in previous works by means of a coarse-graining technique re-

ducing the model to a system of S birth-death stochastic processes which are then

simulated with the Gillespie method (Khouider et al. (2010), Frenkel et al. (2012)).

With a different approach Plant (2012) has applied the van Kampen system size

expansion approach to a joint model of the number of clouds and the mass-flux of

the system, in the spirit of McKane and Newman (2004). In this paper we present

an alternative method able to reduce the number of degrees of freedom of a stochas-

tic lattice-gas model, leading to a treatable system of few stochastic differential

equations.

3.1.1 Reduced stochastic model

Let us describe a cloud system as a collection of N elements or sites that can be

in one out of S states, each identifying a different convective regime or cloud type.

For sake of simplicity we can consider them to be organized on a regular square



18 3. Stochastic lattice-gas model of a cloud system

lattice, even if this is not crucial for the results developed in the following. Let

us represent the state of the element n at time t with a S-dimensional vector σnt,

whose components are the occupation numbers of the S states, that is σnts = 1 if

the element n is in the state s at time t, σnts = 0 otherwise. The time evolution

of each element can be described as in Khouider et al. (2010) as a Markov process

characterized by transition rates Rnt
ss′ , defined so that for sufficiently small values of

the time increment dt

pntss′(dt) = Rnt
ss′dt (3.1)

where pntss′(dt) is the conditional probability of finding the element n in the state s

at time t+ dt, given that it was in the state s′ at time t. It is practical to introduce

the transition or intensity matrix Rnt for the element n by defining

Rnt
ss = −

S∑
s′ 6=s

Rnt
ss′ (3.2)

so that the probability of remaining in the same state is by definition (avoiding from

now on to show explicitly the dependence of the transition probabilities on dt)

pntss = 1−
S∑

s′ 6=s

pntss′ = 1−
S∑

s′ 6=s

Rnt
ss′dt = 1 +Rnt

ssdt (3.3)

The transition matrix has been defined consistently with the convention of right

hand matrix multiplication for the evolution of the Markov process, so that the

vector pnt, whose components are the absolute probabilities of finding the element

n in state s at time t, evolves according to the master equation

dpnt

dt
= Rntpnt (3.4)

As suggested in previous works (Majda and Khouider (2002), Khouider et al.

(2010), Stechmann and Neelin (2011), Plant (2012)), the coefficients of the transition

matrix will depend in general on some large scale fields, like CIN, CAPE, measures

of dryness of the atmospheric column and/or precipitable water. This would reflect

the influence of the large scale conditions on the probability to activate convection:

for example, we expect the probability of having deep precipitating convection to

increase with larger CAPE and viceversa. The dependence of the transition rates

on these fields will therefore be the same for each element of the lattice. In addition

we could imagine that the transition rates for each element will depend also on the

state of its neighborhood, due to the fact that the existence of a cloud in a certain

point of the lattice will activate processes influencing the probability of having other
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clouds in the area nearby, either in a cooperative or competitive sense. Clustering

effects are indeed observed in studies of cumulus clouds life cycle, as a consequence of

mesoscale processes leading to positive near-neighbor feedbacks (e.g. Mapes (1993);

Redelsperger et al. (2000); Tompkins (2001); Houze (2004); Moncrieff and Liu (2006)

and references therein). Let us write in general the transition rate matrix for the

element n as

Rnt
(
xt,σt

)
= F t

(
xt
)

+ Jnt
(
σn
′t ∈ Λn

)
(3.5)

where F t (xt) is the same for each element of the lattice and represents the effect of

the large scale conditions defined by the GCM state vector xt, while Jnt
(
σn
′t ∈ Λn

)
represents the effects of possible interactions between the element n and the elements

of its neighborhood Λn, whose range will depend on the nature of the processes

involved.

Let us define now the cloud area fraction vector as (Khouider et al., 2010; Stech-

mann and Neelin, 2011)

σt =
1

N

N∑
n=1

σnt (3.6)

We would like to have an evolution equation for the process σt that does not involve

the computation of all the individual processes σnt. This can be achieved by taking

a mean-field description of the system and subsequently applying the central limit

theorem to the process σt, assuming an expansion for large N (implying a certain

degree of space scale separation) like the one of the van Kampen approach (van

Kampen, 2007).

The mean-field approximation is a standard tool in statistical mechanics and

population dynamics, and it is based on the assumption that as long as we are

interested in the properties of a macroscopic quantity the contributions due to the

correlations between the individual processes can be neglected, provided that we

can replace each local interaction term with a mean-field term (constant over the

lattice) that takes into account the collective contribution of all the interactions.

In practical terms it consists in neglecting the correlations between the individual

processes

〈σnts σn
′t

s′ 〉 ≈ 〈σnts 〉〈σn
′t

s′ 〉, ∀s, s′, n 6= n′ (3.7)

and in substituting in the interaction terms the state of the individual processes σnt

with the average value over the lattice σt, defining in this way a new mean-field

interaction term J t (σt) which replaces each Jnt
(
σn
′t ∈ Λn

)
. In this way we obtain

a mean-field transition matrix

Rt
(
xt,σt

)
= F t

(
xt
)

+ J t
(
σt
)

(3.8)
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valid for each element of the lattice. The mean-field approximation yields, of course,

exact results (in the thermodynamic limit of infinite N) in the trivial case of a

system of non interacting elements (where it is not an approximation at all), while

in systems characterized by interactions leading to critical behaviours it gives poor

results close to the critical points, because of the divergence of the decorrelation

lengths that invalidates its first assumption. Its applicability will therefore depend

on the specific form of the interaction terms.

Applying this approximation it is possible to derive a stochastic differential equa-

tion for the time evolution of the cloud area fraction σt. Let us suppose that we

know the state of the system at time t. Given the Markovian nature of the model,

the statistical properties of the increment dσt from time t to time t + dt are then

uniquely determined. Since in mean-field approximation the individual processes

can be treated as if they were independent random variables, thanks to the central

limit theorem, the process dσt is normally distributed if N is sufficiently large

dσt − 〈dσt〉 =
1

N

N∑
n=1

dσnt − 〈dσt〉 → 1√
N
N (0,Ct) (3.9)

The process dσt is therefore completely described by its expectation value 〈dσt〉 and

its covariance matrix Ct, and it can be written at each t as

dσt = 〈dσt〉+ εNη
t (3.10)

where εN = N−1/2 and ηt is a Gaussian random vector with zero expectation value

and covariance matrix Ct. Making again use of the mean-field approximation one

can show that both 〈dσt〉 and Ct scale with dt and can be expressed as functions

of Rt and σt.

Knowing that the state of the system at time t is σt (and knowing the configu-

ration of the lattice, that is the value of each σnt), the expectation value of dσt is

componentwise given by (neglecting terms O(dt2))

〈dσst〉σt =
1

N

N∑
n=1

〈dσnts 〉σt =
1

N

N∑
n=1

S∑
i=1

(pntsi − δsi)σnti =
1

N

N∑
n=1

S∑
i=1

Rnt
siσ

nt
i dt

(3.11)

where 〈•〉σt represents the expectation value of a quantity conditional on the knowl-

edge of the state of the system at time t (where we mean knowing the exact configu-

ration of the entire lattice, although we use the symbol σt for simplicity of notation).

In mean-field approximation the transition rates are constant over the entire lattice

once we replace the local interaction terms Rnt
si with the mean-field term Rt

si, so that
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〈dσst〉σt =
S∑
i=1

Rt
siσ

t
idt (3.12)

or, in vectorial notation

〈dσt〉σt = Rtσtdt (3.13)

The components of the covariance matrix Ct are by definition given by

1

N
Ct
ss′ = 〈dσtsdσts′〉σt − 〈dσts〉σt〈dσts′〉σt =

1

N2

N∑
n=1

N∑
n′=1

[〈dσnts dσn
′t

s′ 〉σt − 〈dσnts 〉σt〈dσn
′t

s′ 〉σt ]

(3.14)

Thanks to the mean-field approximation, for n 6= n′

〈dσnts dσn
′t

s′ 〉σt ≈ 〈dσnts 〉σt〈dσn
′t

s′ 〉σt (3.15)

so that we remain only with the terms for which n = n′

Ct
ss′ =

1

N

N∑
n=1

[〈dσnts dσnts′ 〉σt − 〈dσnts 〉σt〈dσnts′ 〉σt ] (3.16)

Expliciting the increments and rearranging some terms the first term in the sum is

given by

〈dσnts dσnts′ 〉σt = 〈σnt+dts σnt+dts′ 〉σt − 〈σnts σnts′ 〉σt − 〈σnts dσnts′ 〉σt − 〈σnts′ dσnts 〉σt (3.17)

Using the fact that in general σnts σ
nt
s′ = δss′σ

nt
s , where δss′ is the usual Kronecker

delta, we have that the first two terms result

〈σnt+dts σnt+dts′ 〉σt − 〈σnts σnts′ 〉σt = δss′〈σnt+dts 〉σt − δss′〈σnts 〉σt = δss′〈dσnts 〉σt (3.18)

It is easy to see that the second two terms are given by

〈σnts dσnts′ 〉σt + 〈σnts′ dσnts 〉σt = pnts′sσ
nt
s + pntss′σ

nt
s′ (3.19)

Therefore, making use of equation 3.11 and equation 3.1

〈dσnts dσnts′ 〉σt = −Rnt
s′sσ

nt
s dt−Rnt

ss′σ
nt
s′ dt+ δss′

S∑
i=1

Rnt
siσ

nt
i dt (3.20)

Making use of equation 3.11 the second term of equation 3.15 can be neglected, since

〈dσnts 〉σt〈dσnts′ 〉σt =

(
S∑
i=1

Rnt
siσ

nt
i dt

)(
S∑
j=1

Rnt
sjσ

nt
j dt

)
= O

(
dt2
)

(3.21)
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and the terms in equation 3.20 are O (dt). Therefore we are left with

Ct
ss′ =

dt

N

N∑
n=1

(
−Rnt

s′sσ
nt
s −Rnt

ss′σ
nt
s′ + δss′

S∑
i=1

Rnt
siσ

nt
i

)
(3.22)

and making use of the mean-field approximation we can eventually write

Ct = Dtdt (3.23)

defining the matrix Dt as

Dt
ss′ = −Rt

s′sσ
t
s −Rt

ss′σ
t
s′ + δss′

S∑
i=1

Rt
siσ

t
i (3.24)

We see therefore that both 〈dσt〉σt and Ct scale with dt and can be written as

functions of Rt and σt

The process ηt can therefore be written as

ηt = GtdW t (3.25)

where dW t = W t+dt −W t is the increment of a standard multivariate Wiener

process W t, so that it is a multivariate Gaussian process with covariance matrix

Idt, andGt is a suitable matrix transforming the covariance matrix of the process in

Ct = Dtdt. From simple linear algebra considerations we find that it is sufficient to

define Gt = Et
√

Λt, where Et and Λt refer to the diagonal representation DtEt =

EtΛt. We can therefore write the process dσt as

dσt = Rtσtdt+ εNG
tdW t (3.26)

Equation 3.26 is the standard form of a stochastic differential equation for the time

evolution of the process σt. Formally dividing by dt we can write it in the alternative

form
dσt

dt
= Rtσt + εNG

tξt (3.27)

where ξt = dW t/dt is the usual Gaussian white noise with 〈ξt〉 = 0 and lagged

covariance matrix 〈ξtξt′〉 = δ(t − t′)I. Equation 3.27 consists of a system of S

scalar stochastic differential equations for the fraction of each cloud type, which are

reduced to S-1 independent equations because of the constraint
∑S

s=1 σ
t
s = 1.

The Fokker-Planck equation related to 3.27, whose solution is the probability

distribution function ρt of the process σt, is

∂ρt

∂t
= −

S∑
s=1

∂

∂σs

([
Rtσt

]
s
ρt
)

+
ε2N
2

S∑
s=1

S∑
s′=1

∂2

∂σs∂σs′

(
Dt

ss′ρ
t
)

(3.28)
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We have therefore derived an equation for the time evolution of the macrostate of

the lattice model for large N and interactions suitable to be described in mean-field

approximation. In a typical convective parameterization scheme only few cloud types

are considered, typically non-precipitating shallow convection and precipitating deep

convection. The computational burden of the numerical integration of equation 3.27

is therefore several order of magnitudes smaller than the direct simulation of the

lattice model, which makes possible the inclusion in the convective parameterization

of a real GCM.

Comparing with the methods already proposed in the literature, in terms of

computational cost our method is equivalent to the coarse-graining technique of

Khouider et al. (2003, 2010). A part from this, the formulations of the two meth-

ods are rather different. It has to be noted that the coarse-graining technique of

Khouider et al. (2003, 2010) does not require N to be large (while still being able

to represent local interactions, as in Khouider et al. (2003)). Our method instead

does require N to be large (as the one of Plant (2012)), and therefore a certain de-

gree of space-scale separation that is not necessary in Khouider et al. (2003, 2010).

Moreover, the method of Khouider et al. (2003, 2010) conserves the Hamiltonian

dynamics of the lattice model, which is very advantageous if the dependance of

the transition rates by large-scale fields and local interactions is formulated in that

framework (Khouider et al., 2003). However, while the method of Khouider et al.

(2003, 2010) results in a set of probabilistic rules for the evolution of the process not

represented in an analytical form, our method has the attractiveness of providing

a set of explicit SDEs for the cloud fractions. This is quite an attractive feature,

since it makes possible to derive some general properties of the process from the

form of equation 3.28, which may be useful in order to understand to some extent

the impact that it could have on the large scale dynamics, and in order to perform

experiments in a controlled and systematic way.

3.1.2 Minimal model: binary system of non-interacting el-

ements

Let us consider the minimal case of a two states system, so that σt = (σ1(t), σ2(t)),

with fixed transition rates, without any dependance on external fields and in ab-

sence of local interactions. We can interpret it as a model for an on/off description

of convection, with σ1(t) and σ2(t) representing respectively sites convectively in-

active (clear sky) and active (clouds). In the perspective of applications to a real

convective parameterization, the assumption of constant transition rates is clearly

unrealistic, as in general we expect the birth and death rates of deep convective
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clouds to depend on the state of the atmospheric column. This simplification is

anyway attractive in a first, explorative phase of the study of the impact of this

kind of models on a convective parameterization, since it introduces only the effects

coming from a demographic description of the cloud system, and, as it is shown in

the following, it leads to a fully analytically treatable form of the SDE, which will

be useful in order to perform experiments in a controlled way. More realistic cases

attempting to model the relationship between the state of the atmospheric column

and the onset of deep convection will be the target of future works.

Under these assumptions, the transition matrix will be in general (dropping from

now on the time dependence in the notation)

R =

(
−b d

b −d

)
(3.29)

where b and d are, respectively, the (constant) birth and death rate of the clouds

or convective plumes quantified by σ2 (conversely for σ1). In this specific case the

matrix D defined by 3.24 becomes

D = D

(
1 −1

−1 1

)
(3.30)

where D = σ1b+ σ2d. The diagonalization yields

E =
1√
2

(
1 1

1 −1

)

Λ = D

(
0 0

0 2

)

G =
√
D

(
0 1

0 −1

)
(3.31)

The evolution equation results then to be

d

dt

(
σ1

σ2

)
=

(
−b d

b −d

)(
σ1

σ2

)
+ εN

√
D

(
0 1

0 −1

)(
ξ1

ξ2

)
(3.32)

where ξ1 and ξ2 are independent Gaussian white noises. It is easy to see that

equation 3.32 satisfies the condition

d

dt
(σ1 + σ2) = 0 (3.33)
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so that setting σ1(0) + σ2(0) = 1 the constraint will be satisfied at any following t.

This comes from the structure of the matrix G, specifically from the fact that the

first column contains only zeros and therefore ξ1 is not involved in the equations

for σ1 and σ2, and that the the second column is such that ξ2 contribute to the

equations for σ1 and σ2 with the same magnitude and opposite sign. Simplifying

then the notation to σ1 = 1− σ, σ2 = σ, ξ2 = ξ the system is fully described by the

evolution equation for the cloud area fraction σ, that is

dσ

dt
= (1− σ)b− σd+ εN

√
(1− σ)b+ σd ξ (3.34)

The system can therefore be modeled by a single stochastic differential equation

with a linear deterministic drift term and a multiplicative stochastic forcing whose

intensity depends on the size of the system. Note that the noise term is very similar

to the one in Tome and de Oliveira (2009), who obtained their result applying the

mean field approximation and the van Kampen expansion to a specific three-states

spatial model.

In order to understand the properties of the solution of the model it is more

convenient to express equation 3.34 in terms of the parameters (σ0, τ) , where

σ0 =
b

b+ d
(3.35)

τ =
1

b+ d
(3.36)

In this way we have

dσ

dt
=
σ0 − σ
τ

+ εN

√
σ0 + σ(1− 2σ0)

τ
ξ (3.37)

Defining the scaled drift and diffusion coefficients D′1 = τD1 = σ0 − σ and 2D′2 =

2τD2 = ε2N(σ0 + (1− 2σ0)σ) the Fokker-Planck equation associated to equation 3.37

can be written as

τ
∂ρ

∂t
=
∂ρD′1
∂σ

+
∂2ρD′2
∂σ2

(3.38)

Since the scaled coefficients D′1 and D′2 do not depend on τ , also the stationary

solution ρs of equation 3.38, which corresponds to the equilibrium probability dis-

tribution of the process σ, does not depend on τ , but only on σ0 and εN .

Following Risken (1989), if the variable σ has a lower bound (in our case 0) ρs

is given by

ρs ∝
1

D′2
exp

(∫ σ

0

D′1
D′2

dσ

)
(3.39)
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where the proportionality constant is set by the normalization condition. In our

case this results in

ρs ∝ (σ0 + (1− 2σ0)σ)
4

ε2
N

σ0(1−σ0)
(1−2σ0)

2 −1
exp

(
− 2

ε2N

σ

1− 2σ0

)
(3.40)

We see that ρs is strongly non Gaussian. In particular the upper tail is exponential,

so that large deviations from the equilibrium value σ0 induced by the demographic

noise are (relatively) likely to be observed.

On the other hand τ is the characteristic time scale of the process σ, since it

disappears from the equations if taken as units by a rescaling of time, and it uniquely

describes the memory of the process: the (not normalized) autocorrelation function

of the process σ is

r(t) = 〈σt0σt0+t〉 − 〈σt0〉〈σt0+t〉 (3.41)

where t0 can take any value. Taking the time derivative of 3.41 and using 3.34 we

have
dr

dt
= − r

τ
(3.42)

Therefore the autocorrelation function of a specific realization of the process is an

exponential decay on the time scale τ , basically because of the linearity of the

deterministic drift term in 3.34. The process σ is therefore memory-less and has a

white spectrum. Note that introducing interactions among the lattice elements the

transition rates become functions of σ and the deterministic drift term nonlinear,

thus leading to (possibly) more complicated memory properties, even in the absence

of time dependent external fields.

3.1.3 Numerical test

To evaluate the accuracy of the reduction method we take as a test case the binary

system with time independent transition rates described in the previous section. We

compare for different values of the parameters σ0, τ and N the stationary distribu-

tions and correlation functions resulting from the direct simulation of the full lattice

model (DS) and the iteration of the correspondent SDE with two approaches (M1

and M2, see below), as well as the expected theoretical results derived in the previ-

ous section. We perform 64 simulations with the following values of the parameters:

σ0 = (0.001, 0.01, 0.05, 0.1), τ = (3, 6, 12, 24) hours and N = (100, 225, 400, 1000).

These values are compatible with applications to the description of a cloud system

inside a GCM grid box in the tropics, where the typical value of the cloud fraction is

supposed to be small, typical time scales of the evolution of the convective events of

the order of few hours, and typical horizontal length scales of the individual cumulus
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Figure 3.1: (left) Stationary distributions without and with filtering for σ0 = 0.05,

τ = 6 hours and N = 225. (right) Stationary distributions (filtered) for different

values of the noise with σ0 = 0.05 and τ = 6 hours.

clouds of the order of few km. Considering a coarse T42 resolution, equivalent

to tropical grid boxes linear dimensions of about 300 km, the selected values of

N correspond to linear sizes of the convective elements in the range of 10-30 km.

These are large numbers for observed convection in the Tropics, but not totally

unreasonable. Both the direct simulations of the lattice model and the iterations

of the SDE are performed for a time period T = 3 years with time step ∆t = 15

minutes, starting from the initial condition σ = σ0, so that no transient behavior

has to be taken into account. The SDE is integrated using the equivalent of the first

order Eulerian integration scheme for SDEs.

For small values of σ0 and N it is likely that a fluctuation of the noise term could

lead to a negative value of σ during the iteration of the SDE. Those are cases in

which we are at the edge of the applicability of the reduction method. We can avoid

negative values of σ in two possible ways. In the first set of simulations (M1) we set

σ = 0 every time the iteration of the SDE would lead to a negative value. In the

second set of simulations (M2) we recast the random number every time a fluctuation

would lead to a negative value, until σ ≥ 0. The first method has the disadvantage

of artificially increasing the probability of σ = 0, while the second method has the

disadvantage of increasing the computational time required to iterate the SDE. The

same procedure is applied to avoid values larger than 1.

The left panel of figure 3.1 shows an important general difference between the

lattice model and the SDE reduction. In the first case σ belongs to a discrete domain
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Figure 3.2: (left) Stationary distributions (filtered) for N = 225 and different values

of σ0 and τ . (right) Autocorrelation function of the process for N = 225 and different

values of σ0 and τ .

(the integer multiples of 1/N), while in the second case it belongs to a continuos

domain. This is evident from the left panel of figure 3.1, that shows in blue the

stationary distributions obtained with the direct simulation of the lattice model DS

and with the M1 and M2 algorithms for a case with σ0 = 0.05, τ = 6 hours and

N = 225. This difference will be particularly strong in cases where the system hosts

few active elements, that is for small values of σ0 and N . Still, if the distributions

are filtered by a factor 1/N (red) we can see that the curve for the DS experiment

collapses on the curves for the M1 and M2 experiments (which are almost indistin-

guishable from each other), as well as on the theoretical one (black). The reduced

model is therefore able to represent the statistical properties of the lattice model,

apart from the digital nature of the signal in the full simulation. This deficiency

is in our opinion not of major concern in practical applications, reason being that

this digitalization of the cloud fraction is indeed an artifact of the representation

of the cloud system as a regular lattice model, in which all the convective elements

have exactly the same size (1/N in units of the grid-box area). Instead, in a real

cloud system each element will have a different size. This does not mean that the

continuos version of the signal obtained with the SDE is closer to reality, but that

at least the missing feature is not a real physical property of the system.

The right panel of figure 3.1 shows how the stationary distribution changes for

different values of N , keeping σ0 = 0.05 and τ = 3h, with the direct simulation of

the lattice model DS and the iteration of the SDE with methods M1 and M2 (solid,
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dashed and dash-dotted lines respectively), where all the distributions have been

filtered with a window of width 1/N . In black we have the expected behavior from

the solution of the corresponding Fokker-Planck equation. As expected, increasing

the size of the system the range of the fluctuations around σ0 is reduced, and vicev-

ersa. When the distribution is broad enough to interact with the lower boundary,

the agreement between the theory and the numerical results becomes worse, but is

still acceptable in the range of values considered here. For some reason in these

cases the iteration of the SDE (with both M1 and M2) follows the DS experiment

(which is the ”true” system we want to model) better than the theory, so that this

disagreement is of even less concern. We can therefore consider to be satisfied with

the numerical performances of our reduction method. We can also see that no ap-

preciable differences are present between methods M1 and M2, so that the faster

method M1 can be considered to be our best candidate for applications in a GCM.

Figure 3.2 shows the stationary distributions (left panel) and autocorrelation

functions (right panel) obtained from the DS experiment and the theory (the results

from M1 and M2 do not give additional informations and are not shown), varying

σ0 and τ and keeping N = 225. We can see that the full lattice mode shows

the properties highlighted in the previous section: the stationary distributions for

different values of τ collapse on each other and follow the expected form, as the

autocorrelation functions for different values of σ0. In this range of values changing

σ0 both shifts the center of the distribution and modifies its width, with larger

fluctuations for larger σ0.

These results show that our stochastic model is a good representation of the

original system (given the issues discussed above), and can therefore be used in or-

der to ”stochasticize” a convective parameterization with a minimal demographic

description of a cloud system. There are no theoretical reasons to expect a worse nu-

merical accuracy when considering cases with more than two possible states and/or

time dependent transition rates. On the contrary, the applicability and numerical

accuracy of the reduction method in presence of interactions will depend on the

degree of applicability of the mean-field approximation, and it will have to be con-

sidered case by case. In this case, of course, the mean-field approximation plays no

role, since there are no interactions at all in the original system. Still, this simple

model, which stems simply from the fact of ”counting” the clouds (hence the term

”demographic”) and considering fixed characteristic time scales for their birth and

death rates, presents a non trivial statistics, which could already have an interesting

impact when introduced in the convective parameterization of a GCM.
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3.2 Coupling strategy

Once the geometry of the system and the nature of the transitions are defined,

equation 3.27 determines the cloud fraction of each considered cloud type. The ques-

tion is now how the cloud fractions should enter into the description of unresolved

convection in a GCM. Since the aim of this paper is partly to define a strategy as

general as possible to introduce the kind of models described in the previous section

in a GCM, we would like to define a coupling strategy that is, as much as possible,

independent of the specific parameterization scheme used in the host GCM. We also

have to take into account the fact that many convective parameterization schemes

do not explicitly include the cloud or updraft fraction in their formulations, and

therefore it is not possible in general to directly substitute it with the cloud fraction

given by the stochastic model. In addition we like to define a controlled environment

for testing the introduction of the stochastic model, in the sense that we would like

the modified parameterization to conserve its skills in representing the bulk statistics

of the convective activity, while affecting mainly higher order properties.

3.2.1 Stochastic extension of host deterministic parameter-

ization

We consider the general case described in 3.1.1, in which the stochastic model can

have an arbitrary number of states and the transition rates can depend on the large

scale conditions and on local interactions. Let again x be the state vector of the

resolved variables of a GCM (we do not show explicitly the time dependence from

now on). We can represent its time evolution in general as ẋ = f(x, α̂), where α̂ is

a vector containing the parameters of the parameterizations of unresolved processes

present in the system.

The idea is that the stochastic model modifies the value of some relevant param-

eters so that in general 
dx

dt
= f(x,α(σ))

dσ

dt
= R(x,σ)σ + εNG(x,σ)ξ

(3.43)

If the size of the grid box is much larger than the size of the individual convective

elements (N →∞, space scale separation), εN → 0. If the length of the time step of

the GCM is much larger than the largest characteristic time scale of the transitions

(∆tmin(Rij) → ∞, time scale separation), dσ/dt → 0. For these conditions the

equation of the stochastic model reduces to Rσ = 0. In case R does not depend on
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σ then this is a linear system (where x takes the role of a fixed set of parameters).

Assuming that the matrix R is ergodic, so that det(R) = 0, the system has always

one and only one solution different from the trivial one. Recalling (3.4) we see

that this solution σ̂ is the invariant distribution of the Markov process defined by

the mean-field transition matrix. In the case of the two-state system described in

the previous section the solution is σ̂ = (1 − σ0, σ0). In case R depends on σ

the equation for σ̂ becomes non linear, thus possibly leading to more complicated

stationary solutions, as multiple fixed points or limit cycles.

Avoiding these problematic cases, assuming the existence of a single fixed point

and in the limit of space and time scale separation the system becomes
dx

dt
= f(x,α(σ̂))

R(x, σ̂)σ̂ = 0
(3.44)

Since the original deterministic version of the parameterization is supposed to be

designed exactly in the case of perfect space and time scale separation, we will

require that in this limit the modified stochastic parameterization converges to the

original version of the scheme. This can be obtained defining the functional form

of the dependence of the parameters by the state of the stochastic model so that

α(σ̂) = α̂. In this way deviations from the fixed point of the deterministic limit

of the stochastic model will correspond to first order corrections to the original,

deterministic, already implemented and tested version of the host scheme.

As said, this strategy works only when it is possible to identify a single stationary

solution for the deterministic limit of the stochastic model. When this is not the

case, a different coupling strategy would be needed. On the contrary the relation

α(σ̂) = α̂ is well defined also when R depends on time through the dependence on

x, as we will simply have different values of α̂ at different times.

Note that this coupling strategy essentially results into a more complex random-

parameters approach. In more simple-minded random-parameters approaches (Lin

and Neelin, 2000; Bright and Mullen, 2002; Bowler et al., 2008) a parameter is

represented as first order autoregression process, with prescribed mean value and

autocorrelation time (and often prescribed minimum and maximum thresholds in

order to avoid unphysical values). This is quite similar to the final result of the

approach described here, with the important differences that in our case 1) the range,

distribution and autocorrelation function of the resulting process are not prescribed

but determined by the nature of the transition rules, 2) in the multidimensional

case (more than one cloud type) several parameters are perturbed in a mutually

correlated way, where the correlations again depend on the nature of the transition
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rules, 3) there is potentially a coupling between the statistical properties of the

resulting process and the state of the GCM.

We take now as an example the coupling of the minimal version of the stochastic

model described in 3.1.2 to the BM and Kuo parameterization schemes.

3.2.2 Coupling to the BM scheme

We recall the basic design of the BM scheme; more details can be found in

Betts and Miller (1986). In the usual BM scheme the state of the atmosphere is

relaxed towards a reference profile on a prescribed convective relaxation time scale.

The tendencies due to convection for the temperature T and moisture q are given

respectively by the apparent heat source Q1 and apparent moisture sink Q2
Q1 = Cp

Tc − T
τ0

Q2 = −Lqc − q
τ0

(3.45)

where Cp is the heat capacity and L the latent heat. The reference profiles Tc and

qc are computed by an iterative algorithm (which uses the pseudoadiabatic profile

as a first guess) in order to guarantee the conservation of the vertically integrated

moist static energy, so that the vertical integral of Q1-Q2 equals zero. The vertical

integral of Q1 (or Q2) is proportional to the total amount of convective precipitation

produced by the convective scheme, since it is the intensity of conversion of latent

into sensible heat through condensational heating. When the vertical integral of Q1

turns out to be negative (which would then lead to negative precipitation) convection

is supposed to be of non precipitating shallow nature, and the reference profiles are

recomputed in order to realize a mixing of T and q from the cloud base to a reference

pressure level. The relaxation time scale τ0 is normally set to 1-2 hours for a deep

convection case and 3-4 hours for a shallow convection case (the actual values depend

on the resolution of the model).

For consistency with the formulation of the two-states stochastic model a sim-

plified version of the BM scheme is considered in which shallow convection is not

allowed. The BM scheme, even if not explicitly designed on a QE assumption, re-

alizes in practice an exponential decay of a measure A =
∫∞
0
Cp(Tc − T )dz of the

vertically integrated buoyancy as defined by Tc (the equivalent of the cloud work

function of Arakawa and Schubert (1974)), that is

dA

dt
= −A

τ0
(3.46)
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The crucial parameter of the scheme is therefore the relaxation time scale τ0, which

controls the intensity of the negative feedback realized by unresolved convection on

the growth of the instability measured by A. A sensible way of introducing the

stochastic model into this parameterization is to define a new relaxation time-scale

τS =
σ0
σ
τ0 (3.47)

Note that this definition is equivalent to the one in Lin and Neelin (2000) and

Khouider et al. (2010). This satisfies the condition of convergence to the original

parameterization in the deterministic limit of the stochastic model, and represents

the effect of convection being stronger when there are more active convective el-

ements than in the limit case, and viceversa. Note that in practical applications

τS has to be larger than the time-step in order to avoid numerical instability (and

physical inconsistency). In order to avoid this problem, which does not occur in the

deterministic scheme, we simply truncate the range of possible values of τS with the

time step of the GCM as a lower bound.

3.2.3 Coupling to the Kuo scheme

As we have discussed in the previous chapter, the Kuo scheme is essentially

an adjustment scheme towards the pseudo adiabatic profile on time scales defined

locally in time by the amount of moisture convergence occurring in the atmospheric

column. The coupling to the minimal version of the model can therefore be easily

designed as for the BM scheme, with some additional considerations. In this case

the exponential decay of the equivalent of the cloud work function is done as

dA

dt
= − A

τ0T
(3.48)

where we recall the definition of the relaxation time-scales for temperature and

moisture τ0T and τ0q 
τ0T =

∫ +∞
0

Cp(Tc − T )dz

(1− β0)Fqdt

τ0q =

∫ +∞
0

L(qc − q)dz
β0Fqdt

(3.49)

It is easy to see that, in order to have an effective time scale for A

τT =
σ0
σ
τ0T (3.50)
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maintaing at the same time the constraints of energy and water conservation, it is

sufficient to define 
τT =

1− β0
1− β

τ0T =

∫ +∞
0

Cp(Tc − T )dz

(1− β)Fqdt

τq =
β0
β
τ0q =

∫ +∞
0

L(qc − q)dz
βFqdt

(3.51)

defining the effective Kuo parameter

β = 1− σ

σ0
(1− β0) (3.52)

Formally therefore we maintain the same structure of the equations for both Q1

and Q2, only we substitute the term β0 how it would be calculated at each time-

step by the deterministic parameterization with its modified version β. Note that,

while β0 ∈ [0, 1], now β ∈ (−∞, 1]. Remembering that β is the fraction of moisture

convergence that is stored in the atmospheric column while the rest is turned into

precipitation, this means that, while the modified version still (correctly) does not

create moisture out of nowhere (as it would be for β > 1), now it is possible to

precipitate more than what is converging into the column (when β < 0), actually

extracting moisture from the environment.

3.3 Summary and plan of the experiments

In this chapter we have described our proposal for a stochastic parameterization

of a cloud system in a GCM. Summarizing, we have:

• proposed the usage of a sub-grid stochastic-lattice gas model for the description

of a cloud system in a GCM grid-box;

• derived a general method to reduce the full stochastic lattice-gas model to a

system of few SDEs;

• tested numerically the reduction method in few cases suitable for applications

in real GCMs;

• proposed a general strategy to couple the stochastic model to a parameteriza-

tion scheme, so that the coupled stochastic scheme converges to the original

deterministic version of the host scheme in the asymptotic limit of space and

time scale separation between the large and small scale dynamics;
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• described in detail how to perform the coupling to the Betts-Miller and the

Kuo schemes.

In the next chapters we will describe the results of the experiments performed

coupling the minimal version of the stochastic model to PlaSim with both the BM

and Kuo parameterizations:

• in chapter 4 we characterize the climate produced by PlaSim with the standard

deterministic versions of the schemes, that will be our reference state;

• in chapter 5 we perform experiments coupling PlaSim to the minimal version

of the stochastic model with fixed transition rates, realizing therefore only a

one-way coupling;

• in chapter 6 we perform experiments coupling PlaSim to the minimal version

of the stochastic model with transition rates dependent on the value of the

relative humidity of the atmospheric column, realizing in this way a full two-

way coupling;

Finally in chapter 7 we summarize the content of the thesis and we draw our con-

clusions.
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Chapter 4

Experiments with deterministic

parametrizations

4.1 Experimental settings

In this chapter we analyze the behavior of the system in the deterministic case,

in order to have a reference to which compare the results of the experiments with the

stochastic model. We test different configurations of the convective parameteriza-

tion, comparing the standard ones with modified versions more suited to be coupled

in a simple way to the stochastic model. This preliminary analysis is needed in or-

der to understand how the system is affected by these modifications of the schemes,

before the introduction of the stochastic model. The analysis is focused on the trop-

ical region, where convection is the dominant driver of the atmospheric dynamics,

using a standard setup for testing convective parameterization schemes in AGCMs

(Neale and Hoskins, 2001a). In the following we describe the experimental settings

we have chosen, the characteristics of the AGCM used for the experiments, and the

modification introduced in the parameterization schemes. Then we show the results

of the simulations, highlighting the changes due to these modifications. Finally we

present the conclusions and we discuss the issues related to the experiments with

the stochastic model, that are analyzed in chapters 5 and 6.

The numerical model applied in this study is the Planet Simulator (Fraedrich

et al., 2005; Fraedrich, 2012), an intermediate complexity GCM developed at the

University of Hamburg and freely available at http://www.mi.uni-hamburg.de/plasim.

The dynamical core is based on the Portable University Model of the Atmosphere

PUMA (Fraedrich et al., 1998), which has already been used in testing stochas-

tic parameterization techniques (Seiffert et al., 2006). The primitive equations are

solved by the spectral transform method (Eliasen et al., 1970; Orszag, 1970).
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Figure 4.1: Profile of imposed SST used in the experiments.

Parameterizations include long and shortwave radiation (Sasamori, 1968; Lacis and

Hansen, 1974) with interactive clouds (Stephens, 1978; Stephens et al., 1984; Slingo

and Slingo, 1991). A horizontal diffusion according to (Laursen and Eliasen, 1989)

is applied. Formulations for boundary layer fluxes of latent and sensible heat and

for vertical diffusion follow (Louis, 1979; Louis et al., 1981; Roeckner et al., 1992).

Stratiform precipitation is generated in supersaturated states. In the standard setup

the Kuo scheme (Kuo, 1965, 1974) is used for deep moist convection while shallow

cumulus convection is parameterized by means of vertical diffusion. Alternatively

the Betts-Miller (Betts and Miller, 1986) and the Manabe (Manabe et al., 1965)

schemes are available, even if the model has never been properly tested with neither

of the two.

As experimental settings we have taken the standard setup proposed by Neale

and Hoskins (2001a). The model is run in aqua-planet conditions with T42 hori-

zontal resolution and 10 σ-levels in the vertical, with a timestep of 15 minutes. The

SST of the model is fixed following the control distribution in Neale and Hoskins

(2001a):

Ts(λ, φ) =

27
(
1− sin2(3φ

2
)
)

: |φ| ≤ π
3

0 : |φ| > π
3

(4.1)

where λ and φ represent longitude and latitude respectively. The model is run under

perpetual equinoctial conditions and without daily cycle, so that no time dependent

forcings act on the dynamics. An important property of the Planet Simulator is that

the simulated circulation remains zonally symmetric if the model is initialized in a

zonally symmetric state and is driven by zonally symmetric boundary conditions.
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Experiment Scheme Shallow convection Version

BM-Sh-Det BM yes deterministic

BM-Det BM no deterministic

KUO-Sh-Det Kuo yes deterministic

KUO-Det Kuo no deterministic

Table 4.1: List of experiments for the deterministic test.

This setup has already been explored with a previous version of PlaSim by Dahms

et al. (2011), using the standard Kuo parameterization. In each experiment the

model is run for 26 years of integration and the analysis is limited to the last 25

years in order to account for the spin-up.

We have performed four experiments, running the model with the BM parame-

terization with (BM-Sh-Det) and without (BM-Det) shallow convection, and with

the Kuo parameterization with (KUO-Sh-Det) and without (KUO-Det) shallow con-

vection. In the case of Kuo, that is the default parameterization scheme in use in

PlaSim, the standard setup of the parameterizations includes shallow convection,

while in the case of BM the standard setup does not. As said, the BM scheme has

never been properly tested in PlaSim. In any case, since for sake of simplicity we

have decided to consider a two-state stochastic model to be coupled to the convec-

tive parameterization, switching off the shallow convection, we need to know how

the climate looks like in absence of shallow convection also in the deterministic case,

with particular focus on the tropical variability. Shallow convection is an important

process in determining the properties of tropical dynamics, but our aim here is to

check how the coupling with the stochastic model impacts the basic statistics of

the tropical activity for the simplest possible conditions, and we are not concerned

about realism or specific aspects of tropical dynamics, which remain subjects of later

works.

Some of the quantities presented in this and in the next chapters are taken from

the standard daily output of PlaSim. When a higher temporal resolution was needed,

a shorter run of 3 months have been performed, saving the time-step output. Other

quantities characteristic of convection but not considered in the standard output

have been computed with an in-line diagnostics that has been developed during the

PhD. All the quantities are computed at each time-step and accumulated during the

run in order to produce an output with the same temporal resolution as the output

of PlaSim set by the user.



40 4. Experiments with deterministic parametrizations

0 15N 30N 45N 60N 75N 90N
0

4

8

12

16

20

24

latitude

p
re

c
ip

it
a
ti
o
n
 (

m
m

 d
a
y−

1
)

 

 

BM−Sh−Det total

BM−Sh−Det large scale

BM−Sh−Det convective
BM−Det total

BM−Det large scale

BM−Det convective

0 15N 30N 45N 60N 75N 90N
0

4

8

12

16

20

24

latitude
p
re

c
ip

it
a
ti
o
n
 (

m
m

 d
a
y−

1
)

 

 

KUO−Sh−Det total

KUO−Sh−Det large scale

KUO−Sh−Det convective
KUO−Det total

KUO−Det large scale

KUO−Det convective

0 15N 30N 45N 60N 75N 90N
0

1

2

3

4

5

6

7

8

latitude

e
v
a
p
o
ra

ti
o
n
 (

m
m

 d
a
y−

1
)

 

 

BM−Sh−Det

BM−Det

0 15N 30N 45N 60N 75N 90N
0

1

2

3

4

5

6

7

8

latitude

e
v
a
p
o
ra

ti
o
n
 (

m
m

 d
a
y−

1
)

 

 

KUO−Sh−Det

KUO−Det

Figure 4.2: Zonal mean of precipitation (top) and evaporation (bottom) for the BM

(left) and Kuo (right) scheme. Full and dotted lines correspond to the case with

and without shallow convection respectively.

4.2 Results

Figures 4.2, 4.3 and 4.4 show for our set of experiments the climatological zonal

mean of the most common quantities characterizing convective activity. Precipita-

tion, evaporation and zonal component of horizontal wind at 850 hPa are taken from

the standard output of PlaSim. Precipitable water (actual and at saturation), rela-

tive humidity and CAPE are computed with the in-line diagnostics. With saturation

precipitable water we mean the precipitable water that the atmospheric
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Figure 4.3: Zonal mean of precipitable water (top) and relative humidity (bottom)

for the BM (left) and Kuo (right) scheme. Full and dotted lines correspond to the

case with and without shallow convection respectively.

column would have if the air were at each point in conditions of saturation. The

relative humidity of the atmospheric column is computed dividing the actual pre-

cipitable water by the saturation precipitation water. CAPE is computed following

the standard definition from the difference between the actual temperature profile

and the pseudo-adiabatic profile computed starting from the surface.

It is interesting to note that the two schemes produce a rather similar climatology

for all the considered quantities but for precipitation. As we can see from figure 4.2,

precipitation in the deep Tropics between 5◦S and 5◦N is much higher in the case

of the BM scheme than in the case of the Kuo scheme. The BM scheme present a

clear single maximum at the equator, while the Kuo scheme has an almost flat
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Figure 4.4: Zonal mean of 850 hPa zonal wind (top) and CAPE (bottom) for the

BM (left) and Kuo (right) scheme. Full and dotted lines correspond to the case with

and without shallow convection respectively.

profile in the deep Tropics, with actually a local maximum off the equator, at about

5◦N. This hints at a possible double ITCZ structure not properly captured because

of the relatively coarse resolution of the model. Both single and double ITCZ struc-

tures have already been found with PlaSim varying the SST profile, using the Kuo

scheme with shallow convection and in the same aqua-planet equinoctial conditions,

although with an older version of the model (Dahms et al., 2011). As a result, the

climatological mean of precipitation found by Dahms et al. (2011) is rather different

from what we obtain in 4.2 for the same setup, so that the results are not consistently

comparable.

We see that in the case of Kuo switching shallow convection off has a very little
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Figure 4.5: Bidimensional pdf of precipitating events in the region 10◦S-10◦N, as

function of convective precipitation and relative humidity. In black we show the av-

erage value of precipitation conditional on the value of relative humidity. Computed

from 3 months of 15 minutes data for the deterministic BM (top) and Kuo (bottom)

schemes with (left) and without (right) shallow convection.

impact on the climatology. The climate becomes slightly drier, precipitation in the

tropical region is slightly reduced and convective instability (measured by CAPE)

slightly increased, but overall the changes are rather minor. In the case of BM

the impact of removing shallow convection is larger. Precipitation in the Tropics is

reduced substantially. In the subtropics the atmosphere becomes much drier and

convective precipitation is reduced to zero, while large scale precipitation increases

substantially everywhere but at the equator.

Figure 4.5 shows the bidimensional pdf of precipitating events in the region 10◦S-

10◦N as function of relative humidity and intensity of precipitation. The pdf has

been computed using 3 months of time-step (15 minutes) data. We can see that

the two schemes realize completely different relationships between relative humidity

and precipitation. In the case of the BM scheme precipitation is always zero when
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Figure 4.6: Hovmöller diagram of convective precipitation averaged in the band

10◦S-10◦N. Computed from 3 months of 15 minutes data for the BM (top) and Kuo

(bottom) schemes with (left) and without (right) shallow convection.

the relative humidity is lower than 0.8, and then increases linearly for values higher

than 0.8. The behavior is the same with and without shallow convection. The BM

scheme is characterized therefore by a very strong connection between precipitation

and the moisture field. In the case of the Kuo scheme such strong relationship is

absent. Precipitation is still increasing with relative humidity, as one can see from

the average value of precipitation conditional on the value of relative humidity (black

line in figure 4.5), but the distribution in this case is rather broad, allowing a much

wider range of values for the relative humidity.

Figure 4.6 shows the Hovmöller diagram of the time-step convective precipitation

averaged in the region 10◦S-10◦N. Again it is clear that removing the shallow convec-

tion has basically no impact in the case of Kuo, while in the case of Betts-Miller the

changes are more pronounced, with the disappearing of many small-scale structures.

Also the speed of the precipitating systems is different, although not dramatically,

with faster westward propagating systems in absence of shallow convection.
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Figure 4.7: Antisymmetric (left) and symmetric (right) components of the WK

spectrum of precipitation for the BM scheme with (top) and without (bottom)

shallow convection. Computed from 25 years of daily data averaged in the band

10◦S-10◦N.

Figures 4.7, 4.8, 4.9 and 4.10 show the Wheeler-Kiladis (Wheeler and Kiladis,

1999) spectra for disturbances antisymmetric and symmetric with respect to the

equator, for convective precipitation and the zonal component of the horizontal

velocity at 850 hPa for both schemes, with and without shallow convection. The

black lines correspond to the dispersion curves of the Kelvin waves for typical values

of the phase velocity. The signature of the Kelvin waves is clear in the spectra of

the symmetric part for both the variables and for all the experiments, but the signal

is very weak in the case of the BM scheme with shallow convection. An evident

difference between the two schemes is that in the case of Kuo we have very strong

signature of westward propagating antysimmetric disturbances with wavenumber

larger than 5 and period between 3 and 5 days (particularly clear in the spectra of

the 850 hPa zonal wind), that is totally absent in the case of the BM scheme.

In general again the Kuo scheme shows basically no sensitivity to the removal of
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Figure 4.8: Antisymmetric (left) and symmetric (right) components of the WK

spectrum of precipitation for the Kuo scheme with (top) and without (bottom)

shallow convection. Computed from 25 years of daily data averaged in the band

10◦S-10◦N.

shallow convection, while the BM scheme seems to be more sensitive, although

in terms of representation of tropical wave dynamics it seems to perform better

without shallow convection. As we have said, PlaSim has received little testing with

the BM scheme, so that some inconsistencies in the performances of the scheme

are expected. Overall the model gives a reasonable representation of the tropical

convective activity with both schemes in absence of shallow convection, so that we

can safely perform our experiments in this setup.
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Figure 4.9: Antisymmetric (left) and symmetric (right) components of the WK spec-

trum of 850 hPas zonal wind for the BM scheme with (top) and without (bottom)

shallow convection. Computed from 25 years of daily data averaged in the band

10◦S-10◦N.

4.3 Discussion and conclusions

In this chapter we have analyzed the climate produced by PlaSim with the orig-

inal deterministic versions of both the BM and Kuo parameterization schemes. In

particular we have checked wether the removal of the shallow convection scheme re-

sulted in a reasonable climate or not, since for our experiments with the stochastic

model we need to use this setup. The answer is positive, since the removal of shallow

convection does not alter much the most important properties of the representation

of convective activity in neither the two schemes. We have shown the differences in

the properties of the BM and Kuo schemes in terms of statistics of the most impor-

tant quantities related to the representation of convection. We have shown how the

two schemes differ substantially in the link they realize between precipitation
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Figure 4.10: Antisymmetric (left) and symmetric (right) components of the WK

spectrum of 850 hPas zonal wind for the Kuo scheme with (top) and without (bot-

tom) shallow convection. Computed from 25 years of daily data averaged in the

band 10◦S-10◦N.

and relative humidity, that will be a key element of the analysis shown in chapter

6. Finally, we have shown how the representation of the tropical wave dynamics

is qualitatively consistent with what is normally observed or obtained with GCM

simulations. Characterized the deterministic reference state, we are now ready to

perform the experiments coupling with the stochastic model.



Chapter 5

Experiments with fixed transition

rates

5.1 Experimental settings

In this chapter we perform a first set of experiments coupling the minimal version

of the stochastic model described in chapter 3 to the aqua-planet version of the

Planet Simulator. As discussed in the previous chapters, we have switched off the

shallow convection in the model in order to perform the coupling with the two-state

model. As a first attempt, we consider the very simple case of fixed transition rates.

This in practice configures only a one-way coupling, since the state of the GCM

does not feed back the stochastic model through a change in the transition rates.

An example of a case of transition rates dependent on the state of the GCM, and

therefore of full two-way coupling, is subject of Chapter 6. In the present case the

stochastic model adds to the host parameterization only the effect coming from a

demographic description of the cloud system.

The stochastic model has three parameters: σ0 and τσ related to the transition

rates, and N which depends on the geometry of the system. The parametric explo-

ration can be simplified considering that the cloud fraction in a GCM box typically

is supposed to be small, of the order of few percents. The proposed coupling consists

in multiplying the amount of convective precipitation by the factor γ = σ/σ0. If

σ0 << 1 the evolution equation for γ can be approximated as

dγ

dt
≈ 1− γ

τ
+ ε′N

√
1 + γ

τ
ξ (5.1)

where ε′N = σ
−1/2
0 εN . This means that in the regime σ0 << 1 (that is the physically

interesting one for us) changing σ0 is almost the same as modulating the noise
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amplitude. Therefore in testing the sensitivity of the model we fix σ0 to a small

value σ̂0 = 0.05 in all the experiments. The fixed relaxation time scale takes the

values τ̂ = (3, 6, 12, 24) hours, and the number of convective elements the values

N = (100, 225, 400, 1000). The analysis of the impact of the introduction of the

stochastic parameterization is focused here only on the statistical properties of the

convective precipitation, that is the quantity directly modified by the stochastic

term. We will consider changes in the climatology of convective precipitation, that

is mean and standard deviation as function of latitude, as well as changes in the

daily extremes. Before showing the results we recall the basics of extreme values

statistics and we describe how we performed the statistical analysis.

A particularly interesting aspect of stochastic parameterizations is the impact

that they could have on the statistics of the extremes (Stechmann and Neelin, 2011)

of a GCM. Deterministic parameterizations currently in use in state-of-the-art GCMs

are more or less able to reproduce the climatology of the system, that is its bulk

statistics, although with different levels of geographical detail and performances,

depending on the complexity of the scheme and of the GCM itself. To which extent

they are able to represent higher order statistics, and extremes in particular, is less

clear. This is an extremely important topic, considering that one of the main con-

cerns regarding the climate change problem is how the statistics of intense, extreme

events will change in a changing climate. A summary on the topic of extreme events

analysis in a geophysical context can be found in (Ghil et al., 2011; Sura, 2011).

The most common approach to extreme value analysis is the so called block-

maxima approach. It consists in dividing a time serie of an observable into bins

and picking the maximum value in each of them. An asymptotic theorem due

to Gnedenko (1943) states that under certain conditions the sample of maxima

converges to the so called Generalized Extreme Value distribution (GEV). The GEV

distribution is a three parameter distribution whose cumulative distribution function

reads

F (x;µ, σ, ξ) = exp

{
−
[
1 + ξ

(
x− µ
σ

)]−1/ξ}
(5.2)

The location and scale parameters µ and σ can be reduced to 0 and 1 respectively by

a rescaling of the data. The shape parameter ξ is more fundamental and determines

the domain of the probability distribution function. Depending on the value of ξ the

family of distributions is divided into three sub-families. When ξ=0 the distribution

is of the Gumbel or type I kind, when ξ >0 the distribution is of the Frechét or type

II kind, when ξ <0 the distribution is of the Weibull or type III kind. Although less

important from a mathematical point of view, the location and scale parameters are

extremely important in practical applications, since they represent the typical value



5.1 Experimental settings 51

Experiment Scheme Version σ̂0 τ̂ N

BM-Det BM deterministic - - -

BM-Fix-T3-N100 BM stoch., fixed 0.05 3 100

BM-Fix-T6-N100 BM stoch., fixed 0.05 6 100

BM-Fix-T12-N100 BM stoch., fixed 0.05 12 100

BM-Fix-T24-N100 BM stoch., fixed 0.05 24 100

BM-Fix-T3-N225 BM stoch., fixed 0.05 3 225

BM-Fix-T6-N225 BM stoch., fixed 0.05 6 225

BM-Fix-T12-N225 BM stoch., fixed 0.05 12 225

BM-Fix-T24-N225 BM stoch., fixed 0.05 24 225

BM-Fix-T3-N400 BM stoch., fixed 0.05 3 400

BM-Fix-T6-N400 BM stoch., fixed 0.05 6 400

BM-Fix-T12-N400 BM stoch., fixed 0.05 12 400

BM-Fix-T24-N400 BM stoch., fixed 0.05 24 400

BM-Fix-T3-N1000 BM stoch., fixed 0.05 3 1000

BM-Fix-T6-N1000 BM stoch., fixed 0.05 6 1000

BM-Fix-T12-N1000 BM stoch., fixed 0.05 12 1000

BM-Fix-T24-N1000 BM stoch., fixed 0.05 24 1000

KUO-Det Kuo deterministic - - -

KUO-Fix-T3-N100 Kuo stoch., fixed 0.05 3 100

KUO-Fix-T6-N100 Kuo stoch., fixed 0.05 6 100

KUO-Fix-T12-N100 Kuo stoch., fixed 0.05 12 100

KUO-Fix-T24-N100 Kuo stoch., fixed 0.05 24 100

KUO-Fix-T3-N225 Kuo stoch., fixed 0.05 3 225

KUO-Fix-T6-N225 Kuo stoch., fixed 0.05 6 225

KUO-Fix-T12-N225 Kuo stoch., fixed 0.05 12 225

KUO-Fix-T24-N225 Kuo stoch., fixed 0.05 24 225

KUO-Fix-T3-N400 Kuo stoch., fixed 0.05 3 400

KUO-Fix-T6-N400 Kuo stoch., fixed 0.05 6 400

KUO-Fix-T12-N400 Kuo stoch., fixed 0.05 12 400

KUO-Fix-T24-N400 Kuo stoch., fixed 0.05 24 400

KUO-Fix-T3-N1000 Kuo stoch., fixed 0.05 3 1000

KUO-Fix-T6-N1000 Kuo stoch., fixed 0.05 6 1000

KUO-Fix-T12-N1000 Kuo stoch., fixed 0.05 12 1000

KUO-Fix-T24-N1000 Kuo stoch., fixed 0.05 24 1000

Table 5.1: List of experiments with fixed transition rates.
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and the typical range of variability of the extreme events (in a loose sense they are

a sort of ”mean” and ”standard deviation” of the distribution of extreme events).

The estimation of the GEV parameters from a sample of data is not trivial. The

problem of the convergence of the empirical distribution of extremes obtained with

the block-maxima approach to the theoretical GEV distribution has been widely

explored (see Coles et al. (1999); Faranda et al. (2011) and references therein). The

main problem is that a reliable estimation of the parameters of the ”real” distribu-

tion requires a very large amount of data, and in any case the convergence properties

change substantially from system to system. In order to increase the size of our sam-

ple we have taken advantage of the zonal and hemispheric symmetry of the Planet

Simulator in Aquaplanet setup. In this conditions each grid point on the same lat-

itudinal circle (in both hemispheres) is statistically equivalent. We can therefore

consider the time series of daily convective precipitation in each of them as indepen-

dent realizations of the same process, and put them together in oder to increase the

size of the sample. Of course we can do this only if the time series are not correlated.

Computing the spatial correlation function of daily convective precipitation in the

zonal direction shows that picking every fourth grid point is sufficient to have nearly

uncorrelated time series. This is of course only a linear correlation analysis, which

does not contain all the information on the mutual dependence of the time series,

but it should be sufficient for our analysis. In this way our sample of data consists

of 576000 daily values. Defining a block length of 720 days, we have 800 maxima to

build our statistics, which should be enough in order to perform a robust analysis.
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Figure 5.1: Zonal mean (left) and standard deviation (right) of daily convective

precipitation, computed over 25 years of simulation after 5 years of spin-up time,

for the BM (top) and Kuo (bottom) schemes. The curves refer to the deterministic

(black) and stochastic (colors) cases for different values of τ and N .

5.2 Results

Figure 5.1 shows the zonal mean and standard deviation of daily convective

precipitation over 25 years after 5 years of spin-up, for the standard deterministic

run and for the experiments with the stochastic model, for both the BM and Kuo

parameterization schemes. Because of the hemispheric and zonal symmetry of the

dynamics, only the zonal quantities in the northern hemisphere are shown. When

adding a stochastic term to a nonlinear system, one can in general expect a change
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Figure 5.2: Pdf of convective precipitation at 1.5◦N (left), 5.0◦N (center) and 35◦N

(right) for the BM (top) and Kuo (bottom) schemes. The curves refer to the de-

terministic (black) and stochastic (colors) cases for N = 100 and different values of

τ .

in the mean state of the system. In our case the introduction of the stochastic model

does not affect the climatology of daily convective precipitation, that is the quantity

directly modified by the stochastic model (and therefore the one in which one expects

to see the largest impact). We can see that the mean value of convective precipitation

remains exactly the same for all the experiments, at each latitude. Surprisingly, the

standard deviation is also exactly the same in the case of the BM parameterization,

while for the Kuo parameterization there is a slight increase concentrated in the

deep Tropics below 10◦N . Therefore, the climatology of the original deterministic

model is preserved by the inclusion of the stochastic model.

The impact of the stochastic parameterization is instead concentrated only on

the higher moments of precipitation. Figure 5.2 shows the probability distribution

function of the daily convective precipitation for three characteristic latitudes: the

closest grid point to the equator (ca. 1.4◦), where convective precipitation is at its

maximum, . The curves refer to the deterministic run and the stochastic runs for
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Figure 5.3: GEV pdf of convective precipitation at 1.5◦N (left), 5.0◦N (center) and

35◦N (right) for the BM (top) and Kuo (bottom) schemes. The curves refer to the

deterministic (black) and stochastic (colors) cases for N = 100 and different values

of τ .

N=100 (the case with larger noise amplitude). We can see that the distributions

differ substantially only in the upper tails, with larger values for larger autocorre-

lation times of the stochastic forcing. Qualitatively the same result (not shown) is

obtained fixing the autocorrelation time and tuning the amplitude of the noise (of

course with larger values for larger noise amplitudes).

Figure 5.3 shows the GEV distributions for the same experiments. The empirical

distributions have been fitted with the maximum likelihood method, with good

results. We can see that for larger autocorrelation times the distribution of extreme

values of convective precipitation become broader and shifted towards higher values.

We can also see that the range of the GEV distributions coincides with the range

over which the pdfs of Figure 5.2 differ substantially: it seems therefore that for

some reason only the extreme values (in the proper statistical sense) are affected by

the introduction of the stochastic model.
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Figure 5.4: Location parameter of GEV pdf of convective precipitation at 1.5◦N

(left), 5.0◦N (center) and 35◦N (right) for the BM (top) and Kuo (bottom) schemes

plotted as a function of τ . Each branch correspond to a different value of N .

In order to make the analysis more quantitative, Figures 5.4 and 5.5 show the

estimates of the location and scale parameters respectively as a function of the auto-

correlation time, for different values of the noise amplitude. We can see that larger

autocorrelation times lead to larger values of the location and scale parameters, with

more pronounced sensitivity with larger values of the noise. For both parameters

the increase is roughly logarithmic. The shape parameter shows no sensitivity at

all by changes in the parameters (not shown), so that the nature of the GEV is not

affected. Figures 5.4 and 5.5 represent a possible parameterization of extremes of

daily convective precipitation through the parameters of our stochastic model.
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Figure 5.5: Scale parameter of GEV pdf of convective precipitation at 1.5◦N (left),

5.0◦N (center) and 35◦N (right) for the BM (top) and Kuo (bottom) schemes plotted

as a function of τ . Each branch correspond to a different value of N .

5.3 Discussion and conclusions

The analysis has focused on convective precipitation, that is the quantity directly

modified by the stochastic term. In these settings the stochastic extension of the

parameterization conserves the climatology of its deterministic limit, thus confirming

that the coupling has been defined in a robust way. The analysis of the distribution

of the daily convective precipitation in the tropical areas shows that the inclusion of

the stochastic term impacts only the upper tail of the distribution, without affecting

the bulk statistics.

We have performed a detailed analysis of the changes in the extremes statistics

using EVT. The location and scale parameters of the GEV distribution of tropical

daily convective precipitation result to be highly sensitive to both the noise intensity

and the autocorrelation time of the stochastic forcing. They increase seemingly

logarithmically with larger noise intensity and larger autocorrelation time. This

means larger and more spread typical values for the daily extremes of convective

precipitation. In the limit of vanishing noise intensity and autocorrelation time the
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parameters converge to the values of the deterministic case. The shape parameter

seems to be insensitive to changes in any parameter.

These findings suggest that:

• the coupling indeed behaves as expected in terms of robustness. The bulk

statistics of convection is not affected by the introduction of the stochastic

term, and only high order moments are modified. The changes introduced

in the extreme statistics tend to zero increasing the number of convective

elements and decreasing the characteristic time scale of the process, that is

approaching space and time scale separation respectively;

• while the increase of the typical value and range of the extremes of daily

convective precipitation with increasing amplitude of the fluctuations of the

stochastic process is somehow expected, why these should increase with larger

autocorrelation times of the noise is less clear. Lin and Neelin (2000, 2002,

2003) already showed sensitivity of tropical variability to the autocorrelation

time of a stochastic forcing;

• these results constitute also an instructive example of the fact that a parame-

terization calibrated on the climatology of a process is not necessarily a good

parameterization for studying the extreme values statistics of that process. We

have given a practical example of a parameterization that for a large range

of values of some of its parameters reproduces exactly the same climatology

of a characteristic quantity, while showing large differences in the statistics of

extremes in that range of values. In our case the parameterization is stochas-

tic and has been derived in order to represent specific features of atmospheric

convection, but the principle holds in general.



Chapter 6

Experiments with non-fixed

transition rates

6.1 Experimental settings

In this chapter we perform experiments introducing a dependence of the transi-

tion rates on the state of the large scale model, in order to realize an effective two

way coupling. As said, previous works have used quantities like CAPE, CIN and

measures of the dryness of the atmospheric column as coupling quantities (Majda

and Khouider (2002), Khouider et al. (2003), Khouider et al. (2010), Frenkel et al.

(2012)). Inspired by a number of works on the onset of precipitating convection in

the Tropics (Peters et al., 2002; Peters and Neelin, 2006, 2009; Peters et al., 2009;

Neelin et al., 2009; Peters et al., 2010), recently Stechmann and Neelin (2011) have

proposed in a similar context to make the transitions between inactive and active

convective states dependent on a critical value of the precipitable water.

The idea of making the activation of convection dependent on a critical value of

a measure of the moisture content of the atmospheric column, even if in its most

recent version it is based on results pointing at a novel interpretation of the prop-

erties of convection and of the interactions with its environment based on the SOC

framework, is not new from the practical point of view: in many implementations

of the Kuo-like moisture convergence closure it is common to introduce a critical

value of the relative humidity of the atmospheric column below which convection is

shut down. For example, Frierson et al. (2011) have shown that tuning this critical

value (corresponding to constrain in different ways the release of latent heat due to

convection) has a substantial impact on the intraseasonal variability of the model.

However, using precipitable water as such measure would be impractical for ap-

plications to global simulations, since it has been clearly shown that the critical
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value of the precipitable water depends on the location (Peters et al., 2002; Pe-

ters and Neelin, 2006, 2009; Peters et al., 2009; Neelin et al., 2009; Peters et al.,

2010), and therefore it would be impossible to prescribe a fixed value on the whole

planet. In simple words: to prescribe globally a value reasonable for tropical re-

gions, say 60 Kg/m2, would imply never allowing convective precipitation to occur

at midlatitudes. Also, the investigation of this property of the onset of precipitating

convection is relatively recent, and from first attempts it is not clear how to identify

an approximate dependence of the critical value of precipitable water to other fields,

like surface temperature, that could be used in order to represent the regional vari-

ability of the parameter (Peters et al., 2002; Peters and Neelin, 2006, 2009; Peters

et al., 2009; Neelin et al., 2009; Peters et al., 2010).

On the contrary, to introduce dependence on a critical value (constant over the

globe) of the relative humidity is a common practice with some parameterization

schemes, and its impact on the tropical dynamics has been already investigated in the

past. Therefore, even if it has been shown that the critical value of precipitable water

is not a constant fraction of the saturation precipitable water of the atmospheric

column (Peters et al., 2002; Peters and Neelin, 2006, 2009; Peters et al., 2009; Neelin

et al., 2009; Peters et al., 2010), it is probably a better choice for a first investigation

to make the transition rates dependent on relative humidity, until the nature of the

critical value of the precipitable water is clarified and its value parameterized at

least qualitatively as a function of other fields.

In their model Stechmann and Neelin (2011) defined the birth and death rates

of cumulus clouds as sigmoid functions respectively increasing and decreasing for

high values of the the control parameter. The functions included several parameters

whose values were taken without particular justifications, since the aim was to give

a qualitative demonstration of the properties of the model. In order to keep the

analysis as simple and systematic as possible, we define the transition rates in a

slightly different way. We remember that the effective parameters of the two-states

stochastic model, the equilibrium cloud fraction σ0 and the relaxation time scale τ ,

depend on the birth and death rates as
σ0 =

b

b+ d

τ =
1

b+ d

(6.1)

The simplest way of introducing the dependence of b and d on a control parameter is

to require that only σ0 is affected, while τ remains constant. Therefore, we prescribe

the following expression for the equilibrium cloud fraction σ0 and relaxation time
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scale τ as function of the relative humidity of the atmospheric column rh{
σ0 = σ̂0Γ(rh)

τ = τ̂
(6.2)

where σ̂0 and τ̂ are constants and Γ(rh) is an activation function with values between

0 and 1. We define therefore the birth and death rates inverting 6.1 and imposing

6.2, obtaining 
b =

σ0
τ

=
σ̂0Γ(rh)

τ̂

d =
1− σ0
τ

=
1− σ̂0Γ(rh)

τ̂

(6.3)

Note that, since in general we suppose σ̂0 to be rather small (order of few percents,

like in chapter 5), d will show little variations with different values of the control

parameter. Therefore, this approach is basically equivalent to considering only the

activation of convection to be dependent on relative humidity, while the termination

of convection is supposed to act on the (almost) fixed timescale τ̂ .

We consider for our experiments three different activation functions, correspond-

ing to the three classes of experiments H08, H09 and LIN085. In the experi-

ments labelled with H08 and H09 the activation function is an Heaviside function

Γ(rh) = H(rh − rhc) centered respectively about the critical values of relative hu-

midity rhc = 0.8 and rhc = 0.9. Therefore in this experiments for rh < rhc there

will be no growth of new clouds, but only decaying of the existent clouds with rate

d = 1/τ̂ , while for rh ≥ rhc new clouds will grow at rate σ̂0/τ̂ and existing clouds

will decay with rate d = (1− σ̂0)/τ̂ ≈ 1/τ̂ . In the experiments labelled with Lin

we consider an activation function that is zero for rh < 0.8, increases linearly in the

interval 0.8 ≤ rh < 0.9, and is equal to one for rh ≥ 0.9. This is interpreted as

having a critical value rhc=0.85 and a relaxed window of activation of width 0.1.

For each of this experiments we consider different values of the parameters of the

stochastic model. Similarly to what is done in Chapter 5 we keep always σ̂0 = 0.05.

For each class H08, H09 and Lin we perform 4 experiments , with τ̂ = (6, 24) hours

and N = (100, 1000), in order to understand the different impact of memory and

noise. Again we perform the experiments for both the BM and Kuo schemes, for a

total of 24 experiments. See table 6.1 for the full list of experiments.

In these experiments the value of the relative humidity of the atmospheric column

will determine the equilibrium cloud fraction towards which the stochastic cloud

fraction will be (locally in time) relaxed, while the time scale of the relaxation will

remain constant. A different definition would have mixed the effect on σ0 and τ ,

complicating the interpretation of the impact of the stochastic model.
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Experiment Scheme Version rhc σ̂0 τ̂ N

BM-Det BM deterministic - - - -

BM-H08-T6-N100 BM stoch., step 0.8 0.05 6 100

BM-H08-T24-N100 BM stoch., step 0.8 0.05 24 100

BM-H08-T6-N1000 BM stoch., step 0.8 0.05 6 1000

BM-H08-T24-N1000 BM stoch., step 0.8 0.05 24 1000

BM-H09-T6-N100 BM stoch., step 0.9 0.05 6 100

BM-H09-T24-N100 BM stoch., step 0.9 0.05 24 100

BM-H09-T6-N1000 BM stoch., step 0.9 0.05 6 1000

BM-H09-T24-N1000 BM stoch., step 0.9 0.05 24 1000

BM-Lin-T6-N100 BM stoch., linear 0.85 0.05 6 100

BM-Lin-T24-N100 BM stoch., linear 0.85 0.05 24 100

BM-Lin-T6-N1000 BM stoch., linear 0.85 0.05 6 1000

BM-Lin-T24-N1000 BM stoch., linear 0.85 0.05 24 1000

KUO-Det Kuo deterministic - - - -

KUO-H08-T6-N100 Kuo stoch., step 0.8 0.05 6 100

KUO-H08-T24-N100 Kuo stoch., step 0.8 0.05 24 100

KUO-H08-T6-N1000 Kuo stoch., step 0.8 0.05 6 1000

KUO-H08-T24-N1000 Kuo stoch., step 0.8 0.05 24 1000

KUO-H09-T6-N100 Kuo stoch., step 0.9 0.05 6 100

KUO-H09-T24-N100 Kuo stoch., step 0.9 0.05 24 100

KUO-H09-T6-N1000 Kuo stoch., step 0.9 0.05 6 1000

KUO-H09-T24-N1000 Kuo stoch., step 0.9 0.05 24 1000

KUO-Lin-T6-N100 Kuo stoch., linear 0.85 0.05 6 100

KUO-Lin-T24-N100 Kuo stoch., linear 0.85 0.05 24 100

KUO-Lin-T6-N1000 Kuo stoch., linear 0.85 0.05 6 1000

KUO-Lin-T24-N1000 Kuo stoch., linear 0.85 0.05 24 1000

Table 6.1: List of experiments with non-fixed transition rates.
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Figure 6.1: Zonal mean (top) and standard deviation (bottom) over 25 years of

precipitation for all the experiments with the BM (left) and Kuo (right) scheme.

6.2 Results

Figures 6.1, 6.2, 6.3, 6.4 show the zonal mean and standard deviation of char-

acteristic quantities of the system over 25 years of integration for all the considered

experiments. We focus on the quantities most significative for the present setup:

convective precipitation, zonal wind at 850 hPa, relative humidity, and the cloud

fraction generated by the stochastic model. In this case, as expected, the intro-

duction of the stochastic model has an impact on the mean state of the system,

although in very different ways for the two schemes.

For the BM scheme, we can see that experiments H08 and Lin impacts only

slightly the value of the mean precipitation in the deep Tropics (basically only the

first grid point at 1.4 ◦N). On the contrary, experiments H09 show also a strong
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Figure 6.2: Zonal mean (top) and standard deviation (bottom) over 25 years of 850

hPa zonal wind for all the experiments with the BM (left) and Kuo (right) scheme.

The legend has been omitted for better readability, refer to figure 6.1

decrease of convective precipitation at the midlatitudes, a slight poleward shift of the

profile of the 850 hPa zonal wind, and a moistening of the subtropical regions. The

cloud fraction generated by the stochastic model features very small values with

respect to the limit value σ̂0=0.05, with distinct maxima in the tropical regions

and at the midlatitudes. The cloud fraction is everywhere smaller for the more

constrained experiments. For the long term mean the sensitivity to the parameters

of the stochastic model, the relaxation time scale and the intensity of the noise,

is not significant. Only the standard deviation of convective precipitation in the

deep Tropics shows a distinct sensitivity to the noise intensity, with (reasonably) a

larger increase for the experiments with higher intensity of the noise, while again

the relaxation time scale seems to play no role.

For the Kuo scheme the results are rather different. The impact on the zonal
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Figure 6.3: Zonal mean (top) and standard deviation (bottom) over 25 years of

relative humidity for all the experiments with the BM (left) and Kuo (right) scheme.

The legend has been omitted for better readability, refer to figure 6.1.

mean of precipitation is extremely pronounced for all the experiments, with almost

a doubling of precipitation near the equator and a strong decrease outside the deep

Tropics, with average precipitation vanishing in the subtropical regions. In general

the latitudinal structure of the long term mean of all the quantities becomes quali-

tatively like the one obtained in the BM experiments. Again the sensitivity to the

parameters of the stochastic model is limited to the standard deviation of convective

precipitation, where a large difference exists in the response obtained in particular

with the Lin experiments, showing a very large increase of variability. Finally, it

is worth to note that for the Kuo scheme the average cloud fraction in the case of

the Lin experiment behaves differently with respect to the other experiments in the

Tropics and at the midlatitudes, with systematically smaller value in the Tropics

and relatively higher values at the midlatitudes.
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Figure 6.4: Zonal mean (top) and standard deviation (bottom) over 25 years of the

cloud fraction for all the experiments with the BM (left) and Kuo (right) scheme.

The legend has been omitted for better readability, refer to figure 6.1

Overall, two basic conclusions can be drawn from these experiments. Firstly,

introducing a lower threshold of relative humidity below which convection is not

allowed to occur pushes the Kuo parameterization to produce a climate that qual-

itatively is more similar to the one obtained with the BM parameterization, that

already includes naturally this property, as we have seen in chapter 4. In the deter-

ministic BM scheme the natural critical value is 0.8, therefore the H08 experiments

show basically no differences on the first two moments of precipitation (consistently

with what obtained in chapter 5), the Lin experiments small changes in the vari-

ability, and the H09 experiments minor (but significant) changes in both mean

and standard deviation in the more sensitive regions (Tropics and midlatitudes).

Secondly, the parameters of the stochastic model have a very little impact in deter-

mining the properties of the first two moments of the statistics of the system, with

only the noise intensity showing some influence on the variability of precipitation.
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Figure 6.5: Bidimensional pdf of precipitating events in the region 10◦S-10◦N, as

function of convective precipitation and relative humidity. In black we show the av-

erage value of precipitation conditional on the value of relative humidity. Computed

from 1 year of 15 minutes data for the BM scheme in the H08 (first column), H09

(second column) and Lin (third column) experiments for τ̂=6 hours, N=1000 (first

row) and N=100 (second row).

In order to understand to some extent the reason of this behavior, we show in

figures 6.5 and 6.6 the bidimensional pdf of precipitating events in the region 10◦S-

10◦N, as function of convective precipitation and relative humidity, for the BM and

Kuo schemes respectively. The relaxation time scale also in this case has almost no

role in shaping the distributions, therefore we limit ourselves to show for each class

of experiments only the case τ̂=6 hours, for the two possible values of the noise.

From figure 6.5 we clearly see that for a small value of the noise the distribution

remains exactly as in the deterministic case for both the H08 and Lin experiments.

This is expected from what we have discussed before, since the BM parameteriza-

tion already includes a natural threshold value of relative humidity of 0.8, so that

the stochastic model does not change anything in determining the occurrence and

amount of convective precipitation (since the noise is small, and the relaxation time

scale seems not to have any role in this). For experiment H09 the distribution is ba-

sically the same as for the natural case but cut at the imposed threshold of 0.9. For

the higher value of the noise the pdf broadens considerably, but the average value

of precipitation conditional on the value of the relative humidity keeps basically the

same linear relationship as in the original deterministic case. Therefore, a part from
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Figure 6.6: Bidimensional pdf of precipitating events in the region 10◦S-10◦N, as

function of convective precipitation and relative humidity. In black we show the av-

erage value of precipitation conditional on the value of relative humidity. Computed

from 3 months of 15 minutes data for the Kuo scheme in the H08 (first column),

H09 (second column) and Lin (third column) experiments for τ̂=6 hours, N=1000

(first row) and N=100 (second row).

a limited increase of the variability, the introduction of the stochastic model has

basically no impact on the bulk statistics of the system.

From figure 6.6 instead we see that in the case of Kuo the distribution assumes a

rather different shape from the deterministic case. The stochastic model forces the

parameterization to realize a linear relationship between precipitation and relative

humidity, starting from the critical value. This enters into conflict with the kind

of relationship naturally generated by the Kuo scheme, distorting the distribution

into a compromise between the two behaviors. This modification, although in prin-

ciple acceptable and at the basis of the strong impact that the introduction of the

stochastic model has on the mean state in particular of convective precipitation, can

lead to inconsistent behaviors that are difficult to justify. In the H08 experiment

for the lowest value of the noise the distribution becomes bimodal, with many weak

precipitating events clustered just after the critical value of the relative humidity,

and a second maximum of the distribution for very high values of relative humidity

and precipitation. The most worrying behavior occurs for the Lin experiment. In

this case, in particular for the highest value of the noise, we have very high values

of precipitation just after the critical value. As a consequence, the average value of
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Figure 6.7: Antisymmetric (left) and symmetric (right) parts of the WK spectra of

precipitation (top) and 850 hPa zonal wind (bottom) averaged in the region 10◦S-

10◦N for the BM-H09-T6-N100 experiment. The spectra are computed as described

in chapter 4.

precipitation conditional on the relative humidity is no more monotone, but has a

sudden peak at the critical value, then decreases, and then increases again. This

quite unnatural behavior is caused by the fact that in the Lin experiments for

values of the relative humidity just above the critical value the equilibrium cloud

fraction σ0 assumes very small values. Therefore, even a small positive fluctuation

of σ causes the ratio σ/σ0, and therefore precipitation, to reach extremely high

values. This form of numerical instability is of course extremely problematic, and

will be present in principle every time we will define a stochastic model for which

the equilibrium cloud fraction can assume very small values. The problem does not

occur in the H08 and H09 experiments, since the equilibrium cloud fraction in these

cases jumps discontinuously from 0 to σ̂0 at the critical value. This problem can be

serious for applications meant to improve the representation of deep precipitating

convection in more realistic cases.
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Figure 6.8: Antisymmetric (left) and symmetric (right) parts of the WK spectra

of precipitation (top) and 850 hPa zonal wind (bottom) averaged in the region

10◦S-10◦N for the KUO-H09-T6-N100 experiment. The spectra are computed as

described in chapter 4.

In order to see the impact that this has on the tropical wave dynamics we show

in figures 6.7 and 6.8 the WK spectra of precipitation and 850 hPa zonal wind

for the BM-H09-T6-N100 and KUO-H09-T6-N100 experiments respectively. All the

other experiments behave basically in the same way. We can see that, again, the

introduction of the stochastic model forces the Kuo scheme to behave similarly to

the BM scheme. In particular the strong signal in the antisymmetric part of the

spectrum for the u850 hPa zonal wind observed in chapter 4 is completely cancelled

by the introduction of the stochastic model. It seems therefore that the relationship

between precipitation and relative humidity, and in particular the presence of a

threshold value of relative humidity constraining the activation of convection, is

crucial in shaping the behavior of the tropical dynamics of the system.
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6.3 Discussion and conclusions

In this chapter we have performed experiments coupling PlaSim to the minimal

version of the stochastic model defining transition rates dependent on the value of

the relative humidity of the atmospheric column, in three different ways. We have

shown that in this case the mean state is affected by the introduction of the climate

model, although differently in the two schemes. The difference in the response to

the introduction of the stochastic model is caused by the different original relation-

ship between precipitation and relative humidity realized by the two schemes in the

deterministic version. In the case of the BM scheme, that realizes by itself a strong

connection between precipitation and relative humidity (in particular already fea-

turing a critical value of relative humidity below which precipitating convection does

not occur), the introduction of the stochastic model has a small impact. In the case

of the Kuo scheme on the contrary the impact is substantial, with the Kuo scheme

being forced to replicate the behavior of the BM scheme. This effect, besides being

promising in the fact that indeed it is possible to introduce specific properties of the

activation of convection coupling the stochastic model to a parameterization scheme

with different properties, can cause inconsistencies in case the properties in this

way introduced enter into conflict with the original properties of the host scheme.

Therefore, the design of the properties of the stochastic model should be done in an

extremely careful way considering the nature of the host parameterization scheme

in use.
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Chapter 7

Conclusions

7.1 Summary and discussion

In this thesis we have developed a rather general framework to include sub-grid

stochastic lattice-gas models for the population dynamics of an ensemble of convec-

tive elements (clouds) into a generic host deterministic parameterization scheme.

The proposed formalism is on the line of models previously presented in the liter-

ature (Majda and Khouider, 2002; Khouider et al., 2010; Stechmann and Neelin,

2011; Frenkel et al., 2012), and partially on the line of (Plant, 2012), and could be

used in order to bridge those approaches to the world of operational GCMs. Along-

side the theoretical derivation, we have performed numerical experiments coupling

a minimal version of the stochastic model to the Planet Simulator with two differ-

ent parameterization schemes, while previous studies were limited to the coupling

to extremely idealized models of tropical (Majda and Khouider, 2002; Khouider

et al., 2010; Frenkel et al., 2012) or local (Stechmann and Neelin, 2011; Plant, 2012)

convective activity.

In the first part of the thesis, after giving in Chapter 2 a brief overview on

the problem of the parameterization of unresolved atmospheric convection, we have

presented and developed in Chapter 3 our proposal. In order to make applications

to real GCMs numerically treatable, we have derived a reduced model for the time

evolution of the macrostate (cloud fraction) of the lattice model in mean-field ap-

proximation. This reduction method is not present in the literature in this form to

our best knowledge, although similar results have been obtained for specific models

(Tome and de Oliveira, 2009) in the context of the formalism of the van Kampen

system size expansion (van Kampen, 2007). The van Kampen system size expan-

sion has already been proposed in the context of stochastic parameterization of

convection with mass-flux schemes (Plant, 2012), but the approach presented here
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is formulated in a way that makes the application to systems featuring weak spatial

interactions more intuitive, can be applied to a broader class of parameterization

schemes, and results in a stochastic model with partially different properties.

We have studied in some detail the properties of the minimal version of the

stochastic model, a binary system with fixed transition rates. In this formulation

the stochastic model reduces to a single SDE for the cumulus cloud fraction that is

analytically treatable. The SDE corresponds to an exponential decay to an equilib-

rium value forced by a multiplicative noise term. The model has three parameters:

the intensity of the noise, which scales with the inverse of the square root of the

size of the system, and two parameters which depend on the transition (birth and

death) rates, that are the equilibrium cloud fraction and the relaxation time scale.

The analysis of the Fokker-Planck equation associated with the SDE shows that the

stationary distribution of the model depends only on the intensity of the noise and

on the equilibrium cloud fraction, and is independent of the relaxation time scale.

On the contrary the autocorrelation function of the process depends uniquely on

the relaxation time scale, and consists of an exponential decay on the same time

scale. The process, therefore, has no memory and a white spectrum. This analysis

shows that it is possible to tune the transition rates in order to tune independent

properties of the system, allowing for a systematic exploration of the behavior of the

model when applications with a GCM are considered. The complexity of the model

can be easily increased by adding 1) multiple convective states, 2) dependence of the

transition rates on some large-scale variable, 3) local interactions between convective

elements suited to be represented in mean-field approximation.

We have analyzed the numerical accuracy of the reduction method for the min-

imal version of the stochastic model comparing direct simulations of the lattice

model with iterations of the reduced SDE for different values of the parameters.

The parameter space of the model has been explored in a range of values compat-

ible with applications to the representation of a cloud system in a GCM grid box.

We have shown that the reduction method reproduces the properties of the system

remarkably well, also when tested close to the limits of its applicability. Regarding

more complex applications, there is no reason to expect a worse numerical accuracy

in systems featuring multiple states and/or transition rates dependent on external

fields. In case of systems featuring local interactions and, therefore, state dependent

transition rates, the validity and accuracy of the reduction method depends on the

nature and strength of the interactions, and has to be tested case by case. Overall

the reduction method seems to be promising for the kind of applications we have in

mind.
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We have defined a coupling strategy in order to include the stochastic model

into a pre-existing, host deterministic parameterization scheme. The state of the

stochastic model modifies a relevant parameter of the parameterization in such a

way that when perfect space and time scale separation is achieved (infinite number

of convective elements and fast transition rates with respect to the rate of change

of the external fields) we retrieve the usual value used in the deterministic version

of the parameterization. In this way we define a robust coupling which introduces

first order corrections due to the finite size and the time evolution of the ensem-

ble of convective events, around the zeroth order description given by the original

deterministic version of the parameterization. Simplified representations of the con-

ditional dependence of the activation and decay of convective events on large scale

conditions and mutual interactions can be added through the definition of the tran-

sition rates. Eventually, we have given practical examples of how this coupling

strategy is implemented when coupling the minimal version of the stochastic model

analyzed above to both the BM and Kuo schemes.

We have then performed numerical experiments with an aqua-planet version of

the Planet Simulator, an intermediate complexity AGCM with a full set of physical

parameterizations. From the methodological point of view the inclusion and test-

ing of the stochastic model with the Planet Simulator is not different from what

would be needed to include and test the stochastic model in a highly complex, state

of the art GCM, with the advantage of having a higher level of portability and

better computational performances. The experiments have been performed with a

fixed zonally symmetric distribution of the SST without seasonal and daily cycle, in

order to study the impact of the introduction of the stochastic model on a zonally

symmetric dynamics in the absence of time dependent forcings, following a standard

set up for the testing of convective parameterization schemes and for fundamental

studies of tropical meteorology. First of all in Chapter 4 we have characterized

the climate resulting from the standard deterministic parameterization in order to

have a reference state to compare the results obtained with the stochastic model

with. Then we have performed experiments with the stochastic model set up in its

minimal version, a binary system without local interactions, coupled to the BM and

Kuo convective schemes as described above.

In Chapter 5 we have performed experiments considering fixed transition rates

for the stochastic model. As we have observed, this formulation of the model in-

troduces into the GCM only the effects coming from considering a demographic

description of the cloud system and realizes only a one-way coupling between the

small (lattice model) and large scale (GCM) dynamics. We have performed an ex-
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tensive exploration of the parameter space of the stochastic model, in ranges of

values compatible with the observed properties of tropical convection. We have

studied the sensitivity to changes of the size of the lattice model (which determines

the intensity of the noise and the shape of the stationary distribution, without af-

fecting the memory of the stochastic process) and to the intrinsic time scale of the

model (which controls the memory of the process without affecting the stationary

distribution).

The analysis has focused on convective precipitation, that is the quantity directly

modified by the stochastic term. In these settings the stochastic extension of the

parameterization conserves the climatology of its deterministic limit, thus confirming

that the coupling has been defined in a robust way. The analysis of the distributions

of the daily convective precipitation in the tropical areas and at the midlatitudes

shows that the inclusion of the stochastic term impacts only the upper tails of the

distributions, without affecting the bulk statistics. We have performed a detailed

analysis of the changes in the statistics of extremes using EVT. The location and

scale parameters of the GEV distribution of both tropical and midlatitude daily

convective precipitation result to be highly sensitive to both the noise intensity

and the autocorrelation time of the stochastic forcing. They increase seemingly

logarithmically with larger noise intensity and larger autocorrelation time. This

means increased and more variable typical values for the daily extremes of convective

precipitation. In the limit of vanishing noise intensity and autocorrelation time the

values of the location and scale parameters converge to the values of the deterministic

case, again confirming the robustness of the coupling. The shape parameter is

insensitive to changes in any parameter of the stochastic model. While the increase

of the typical value and range of the extremes of daily convective precipitation

with increasing amplitude of the fluctuations of the stochastic process is somehow

expected, why these should increase with larger autocorrelation times of the noise is

less clear. Sensitivity of tropical variability to the autocorrelation time of a stochastic

forcing was already showed by Lin and Neelin (2000, 2002, 2003), although in a very

different kind of analysis.

These results constitute also an instructive example of the fact that a parame-

terization calibrated on the climatology of a process is not necessarily a good pa-

rameterization for studying the extremes statistics of that process. We have given a

practical example of a parameterization that for a large range of values of some of

its parameters reproduces the same climatology of a characteristic quantity, while

showing large differences in the extremes for that range of values. In our case the

parameterization is stochastic and has been derived in order to represent specific
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features of atmospheric convection, but the principle holds in general.

In Chapter 6 we have performed experiments considering transition rates de-

pendent on a large-scale parameter. Consistently with observations of the onset of

precipitating convection, we have considered the birth rate of cumulus cloud to be

dependent on the value of the relative humidity of the atmospheric column, while

keeping the death rate fixed. We have considered three cases: 1) birth rate equal to

zero for relative humidity lower than 0.8, and equal to a constant above, 2) birth rate

equal to zero for relative humidity lower than 0.9, and equal to a constant above,

3) birth rate equal to zero for relative humidity lower than 0.8, linearly increasing

between 0.8 and 0.9, and equal to a constant above. The value of the constant is

the same for the three cases and is chosen so that the equilibrium cloud fraction is

the same as in the experiments performed in the previous chapters.

The results of the simulations show that in this case the mean state is affected

by the introduction of the climate model, although by different extents in the two

schemes. The origin of the difference in the response to the introduction of the

stochastic model relies in the original relationship between precipitation (as inte-

grated measure of the convective activity) and relative humidity realized by each

scheme in the deterministic version. In the case of the BM scheme, that already

includes a strong link between precipitation and relative humidity, and already fea-

tures a critical value of relative humidity below which precipitating convection does

not occur, the introduction of the stochastic model has a very limited impact, since it

adds basically nothing new to the parameterization. In the case of the Kuo scheme

on the contrary the impact is substantial. The interesting effect is that the Kuo

scheme is basically pushed towards the behavior of the BM scheme. Therefore, this

result hints that the relationship between convective precipitation and relative hu-

midity (or the moisture field more in general) is a dominant factor in determining

the properties of the tropical mean state and of the tropical dynamics.

7.2 Future perspectives

Starting from this work, several future lines of research can be proposed. First

of all, different quantities could be used in order to determine the transition rates.

Previous works have introduced CIN, CAPE and measures of the dryness of the

atmosphere (Majda and Khouider (2002), Khouider et al. (2003), Khouider et al.

(2010), Frenkel et al. (2012)). The length of the list of the possibilities is almost

arbitrary, but the experiments should be designed in an extremely careful way, since

as we have seen in the last chapter a convective parameterization realizes its own
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dependency of precipitation on a certain field, and conflicts between this natural

relationship and the one induced via the definition of the transition rates of the

stochastic model could create inconsistencies which could make questionable the

effective usefulness of this method.

Another possibility could be to introduce multiple convective regimes, and the

correspondent life cycle of convective events. This will be needed in particular in

applications to more realistic convective parameterizations. Operational convective

parameterizations typically have at least two kinds of convective states (shallow and

deep convection), sometimes a few more. In employing multiple convective regimes

it could be particularly interesting to define the dependence of the transition rates

on the large scale fields in order to capture preconditioning processes, on the line

of Khouider et al. (2010) and Frenkel et al. (2012), who already obtained promising

results in applications with simplified models of tropical dynamics.

Finally, it could be interesting to introduce simple interaction rules for the lattice

elements. As said, clustering of convective events are indeed observed in studies of

tropical dynamics. The nature of the interactions between clouds is nevertheless still

unclear. At this stage, tentative rules for local interactions should be introduced in a

very crude form, without pretending to give a realistic, quantitative representation

of the phenomenon. We also point out that adopting a mean-field description of

the system implies that critical processes at a grid box scale (if they exist at all)

cannot be represented. Moreover, the introduction of interactions will lead to a

non linear mean-field transition matrix, which could make problematic the coupling

strategy we have adopted in this paper. It is anyway encouraging the fact that most

of the processes by which the presence of a cloud influences the properties of other

clouds are not direct cloud-cloud interactions, but rather cloud-environment-cloud

interactions: the presence of a cloud modifies the environment in a certain region,

thus influencing the probability of having new clouds in that region. This is, in a

sense, the spirit of the mean field approximation, which seems then not only the

simplest way to take into account the effects interactions between members of a

cloud population, but also to some extent a physically motivated one.
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