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Abstract

Consider an integral Brakke flow (), t € [0,T] inside some ball in
Fuclidean space. If po has small height, its measure does not deviate
too much from that of a plane and if pur is non-empty, than Brakke’s
local regularity theorem yields that () is actually smooth and graph-
ical inside a smaller ball for times t € (C, T — C') for some constant C.
Here we extend this result to times ¢ € (C,T). The main idea is to
prove that a Brakke flow that is initially locally graphical with small
gradient will remain graphical for some time.
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1 Introduction

Overview Consider g € C®((t1,t2) x Q,R¥), Q C R® open. The family of
graphs M, = graph(g(t,-)) is called a smooth mean curvature flow, if
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at all points in (t1, ) x Q. This evolution equation can be generalised to n-
rectifiable Radon measures on R**%, see Definition [2.3] Such a weak solution
will be called a Brakke flow. Here we want to show that under certain local
assumptions a Brakke flow satisfies the smooth characterization from above.

The mean curvature flow was introduced in Brakke’s poineering work
[Bra7§]. He described the evolution in the setting of geometric measure
theory. This early work already contains an existence result as well as a
regularity theory. However the arguments in [Bra78| often contain gaps or
little errors. A new rigorous proof of the regularity results was given by
Kasai and Tonegawa |[KT14], [Tonl5]. Also the author’s thesis [Lahl4] of-
fers a completed version of Brakke’s regularity theory following the original
approach.

A major breakthrough in the studies of mean curvature flow was the
monotonicity formula found by Huisken [Hui90] for smooth flows, which later
was generalised to weak flows by Ilmanen [[Im95] and localised by Ecker
[Eck04]. Using the monotonicity, White proved a local regularity theorem
[Whi05] stating that Gaussian density ratios close to one yields curvature
estimates. White’s theorem is formulated for smooth mean curvature flow
and can be applied in a lot of singular situations as well, but not for arbitrary
Brakke flows. Building up on White’s curvature estimates, Ilmanen, Neves
and Schulze showed in [INS14] which is locally initially graphical with small
gradient remains graphical for some time. For related gradient and curvature
estimates see [EH89], [EHI1], [CMO03], [Wan04], [CY07], [BH12].

Existence results for generalized solutions of mean curvature flow can be
found in [Bra78|, |[CGG91], [ES91], [Im94], [KT15]. For an introduction
to generalized solutions of mean curvature flow we recommend the work by
Ilmanen [IIm94] which also points out the similarities between Brakke flow
and level set flow. We also want to mention the book by Ecker [Eck04] as a
good reference for smooth mean curvature flow and regularity up to the first
singular time.



Results of the present article We consider Brakke flows of n-rectifiable
Radon measures in R™¥ see Definition 2.3 for the details. Note that all
Brakke flows considered here are assumed to be integral. All constants below
may depend on n and k.

Our main result is a new version of Brakke’ s local regularity theorem
[Bra78, 6.10, 6.11], see also Kasai and Tonegawa [KT14, 8.7]. The state-
ment says that a non-vanishing Brakke flow which initially locally lies in a
small slab and consists of less then two sheets, becomes graphical in a small
neighbourhood.

1.1 Theorem. There ezists a constant oy € (0,1) and for every A € (0,1)
exists a o € (0,1) such that the following holds: Let v € [0,7)], p € (0,00),
t1 ER, ty € (t1 +7p% t1 + ap?], a = (a,a) € R® X R* and let (114)iefry 1)
be a Brakke flow in B(a,2p) with a € sptuy,. Suppose

(2) sptuy, NB(a,2p) C {(#,7) eR* xR*: |7 —a
(3) p i, (Bla, p)) < (2 — A)wn.

Set I := (t; +y*0p?, t5).
Then there exists a g € C*™ ([ X Bn(&ﬁop)7Rk) such that

pi L C(a,vop, p) = ™ Lgraph(g(t,-)) for allt € I.

Moreover g satisfies (1)) and sup |Dg(t,-)| < 2¢/p~2(t — t1) for allt € I.

The main difference to the existing versions is that here we obtain regularity
up to the time ¢, at which we assumed the non-vanishing, were in Brakke’s
theorem measure bounds from below have to be assumed further in the future.
Note that Brakke’s theorem includes bounds on higher derivatives of g, which
we don’t get.

We also obtain a local regularity theorem similar to the one of White
[Whi05], see also Ecker [Eck04, 5.6]. We show that a non-vanishing Brakke
flow which locally has Gaussian density ratios close to one will become graph-
ical in a small neighbourhood.

1.2 Theorem. For every 8 € (0,1) there exists an n € (0,1) such that the
following holds: Let p € (0,00), po € [p,), to € R, a € R*¥ and let

(1) tefto—p2,t0) be a Brakke flow in B(a, (2 ++v/2n)p+ pg). Suppose a € sptii,
and f07“ all (S7y) € (tO - p2>t0] X B(a>p)

(4> / ®(s7y)gp(svy)7p0 d‘ll’LtO*p2 S 1 + 77,
Rn+k



where ® and ¢ are from Definition . Set I := (tg — n?p?, to).
Then there exist S € O(n + k) and g € C*°(I x B*(0,np), R*¥), such
that for M; = graph(g(t,-)) we have

pB(a,np) = A" L (S[M¢] +anB(a,np)) foralltel.
Moreover g satisfies and sup |Dg| < S.

One key ingredient to obtain these regularity results is the observation
that a non-vanishing Brakke flow, which is initially graphical with small
gradient, will stay graphical for some time. This is basically the non-smooth
version of a theorem by Ilmanen, Neves and Schulze [INS14, 1.5].

1.3 Theorem. There exists a constant ly € (0,1) such that the following
holds: Let 1 € [0,1y], p € (0,00), t; € R, ty € (t1,t1 + lop?], a € R*X and let
(t4t)teftr 1] be a Brakke flow in C(a,2p,2p). Assume a € sptj, and

(5) sptu, N Cla, p, p) # 0.
Suppose there exists an f € CO! (B"(d, 2p),Rk) with lip(f) <1 and
(6) py, L C(a,2p,2p) = 7™ L graph(f).

Then there exists a g € C* ((t1,t2) x B(a, p),R*) such that
p: L C(a, p, p) = A Lgraph(g(t,-)) for allt € (t1,t2).

Moreover g satisfies and sup [Dg(t,-)] < /1+p2(t—1t) for all t €
(tl, tg) .

1.4 Remark. In all the above results g satisfies , thus the results for
smooth graphical mean curvature flow can be applied to obtain bounds on
|D?g|. See for example estimates by Ecker and Huisken [EH9T, 3.1] or Wang
[Wan04, 4.1]. Note that in the above results we cannot expect to obtain a
graphical representation at the final time see Example [2.5]

Having absolutely continuous first variation should imply that there are
no boundary points. The following theorem formalizes this idea in the case
of rectifiable Radon measures that are contained in a Lipschitz graph. This
generalizes Simon’s constancy theorem [Sim83, 8.4.1] to Lipschitz graphs,
but additionally requires unit density.

1.5 Theorem. Let D C R™ be open and connected with 0D is (n — 1)-
rectifiable and set U := D x R¥. Consider a unit density n-rectifiable Radon
measure | and a Lipschitz function f : D — RX such that
(7) () # sptpu N U C graphf
(8) w(A) = 0 implies ||0p||(A) = 0 for all A C U

Then pl_U = ™ L graphf.



Organisation and sketch of proof We start by recalling some definitions
and important results in the Preliminaries 2]

Then in section [3] we show Theorem [I.5] In the proof we employ the
Gauss-Green theorem by Federer [Fed69l 4.5.6] to see that the projection of
sptu MU onto R™ is stationary, subsequently the result follows from Allard’s
constancy theorem [AIl72, 4.6.(3)].

The main part of this work is section |4 where Theorem [1.3]is established.
Essentially we consider a Brakke flow in C(0, 2,2) for times in [0, 7] such that
sptuNC(0,0,1) # (). First assume as initial condition that poLC(0, 2, 2) lies
in a slab of height h and satisfies certain density ratio assumptions. Based
on Brakke’s local regularity theorem [Bra78, 6.11] and the estimates from
the appendix we show that the flow is graphical inside C(0, h, 1) for times in
[h,7 — h], if h is small enough, § < h and 7 < v/h. Under stronger density
assumptions we actually obtain graphical representability inside C(0,1,1)
for times in [h, 7 — Cv/h], see Lemma .

Now exchange the initial condition to ug L C(0,2,2) is graphical with
Lipschitz constant smaller than [. This allows to use Lemma [4.2{on arbitrary
small scales, which yields that the flow is graphical inside C(0, 1, 1) for times
in [0,7 — CV1], if [ is small enough, § < and 7 < V/I. Tterating this result
leads to Lemma [4.4] which says that the flow is graphical inside B(0, L) for
times in [0, 7 — §?], if we choose [ small enough depending on L and suppose
7 <1, 0 < 1. Using Lemma {4.4] with varying center points and arbitrary
small § we perceive that spty, N C(0,1,1) is contained in a Lipschitz graph
and has unit density for almost all ¢ € [0,7]. In view of Theorem this
lets us conclude Theorem [1.3|

Section [] contains the proof of Theorem [I.1 First we see that The-
orem and Lemma directly imply a version of Theorem which
assumes stronger density bounds at the beginning, see Lemma [5.1] Then
we use Brakke’s cylindrical growth Theorem [Bra7S, 6.4] to simplify these
assumptions, which establishes Theorem in the desired form.

In section [6] Theorem is proven. In order to do so we first employ
Huiskin’s monotonicty formula [Hui90, 3.1] to show that non-moving planes
are the only Brakke flows in R*** that have Gaussian density ratios bounded
by one everywhere. Then under the assumptions of Theorem a blow up
argument and Ilmanen’s compactness theorem yield that in a small neigh-
bourhood the conditions of Theorem are satisfied, which yields the result.

Finally in the appendix [A] we show how a slab condition and bounds on
area ratios at the initial time are maintained in the future.



Thanks I want to thank Ulrich Menne for his help and advice in particular
for the proof of Theorem [1.5]

2 Preliminaries

Notation For an excellent introduction to geometric measure theory we
recommend the lecture notes by Simon [Sim83]. Here we recall the most
important definitions.

e Weset Rt :={zx e R,z >0}, N:={1,2,3,...} and (a), := max{a,0}
for a € R.

e We fix n,k € N. Quantities that only depend on n and/or k are
considered constant. Such a constant may be denoted by C' or ¢, in
particular the value of C' and ¢ may change in each line.

e We denote the canonical basis of R*™* and R™ by (e;)i<i<nik and
(éi)lgign respectively.

e For a € R*k the projections @ € R™ and @ € R¥ are given by a = (a, a).
Let n,k € N.

e Let O(n) denote the space of rotations on R™. Let G(n + k,n) denote
the space of n-dimensional subspaces of R***. For T' € G(n+ k,n) set
T+H:={z eR"™: z.-v=0% € T}. By T, : R"™ — T we denote
the projection onto T'.

e For R,r,h € (0,00) and a,b € R™ we set
B"(b,R) :={x € R": |z —b| < R}, B(b,r):=B"™(b,7),
C(a,r, h) := B*(a,r) x B%a,h), C(a,r):=B",r) x R~

e Consider open sets I C R and V C R" and f € CY(I x V) then d,f
denotes the derivative of f in I, while D f denotes the derivative of f
in V. If (p4)ser is a family of Radon measures on V' we often abbreviate

Jo ftx) dpe(z) = [, f dp.

o Let Z" denote the n-dimensional Lebesque measure and " denote
the n-dimensional Hausdorf measure. Set w,, := Z"(B"(0, 1)).

Let U C R"** open and i be a Radon measure on U

e Set spty:={zx € U: u(B"™*(z,r)) >0, for all r € (0,00)}.

6



e Consider x € U. We define the upper and lower density by

Bn—i-k
. 0 (u,x) = limint “BT @)

O™ (u, z) := limsup 1 o

r\0 WpT™

and if both coincide the value is denoted by ©™(u,z) and called the
density of u at x.

e Consider y € U. If there exist 6(y) € N and T(u,y)pu € G(n + k,n)
such that

lim A" / 6Nz — ) dulx) = 0(y) / o(x) dA™(x)

ANO T(w,y)

for all ¢ € C° (R"M), then T(u,y) is called the (n-dimensional) ap-
proximate tangent space of p at z with multiplicity 6(y).

e We say u is n-rectifiable, if the approximate tangent space exists at
p-a.e. x € U. Note that in this case 6(z) = " (u, x) for p-a.e. x € U.
We say pu is integer n-rectifiable, if p is n-rectifiable and ©"(u,z) € N
for p-a.e. x € U. We say p has unit density, if p is n-rectifiable and
O™ (u,x) =1 for p-a.e. x € U.

Let p be an n-rectifiable Radon measure on U

e Consider ¢ € CHU,R"™). For z € U such that T(u,z) exists set
div,é(x) == > Dy, (¢(x)-b;), where (b;)1<i<n is an orthonormal basis
of T(p,x).

e Denote the first variation of y in U by du(¢) = [, div,¢ du for ¢ €
CLU,R™™*). Set ||6u||(A) := sup{Ou(¢), ¢ € CL(A,R"F) |¢| < 1} for
A C U open.

o If there exists H, : sptu — R"™ such that H, is locally p-integrable
and du(¢p) = [, H, - ¢ dp for all ¢ € C2(U,R™™*), then H,, is called the

generalised mean curvature vector of p in U.

Brakke flow An introduction to the Brakke flow can be found in [Bra7§],
Mm94], [KT14], [Lahid].

2.1 Definition. For a Radon measure y on R*"¥ and a ¢ € CHR*X) we
define the Brakke variation Z(u, ¢) as follows: If ul{¢ > 0} is n-rectifiable,



has generalised mean curvature vector H, in {¢ > 0} and |, (650} H,[*dp <
oo then set

Hed) = [ (T Do) Hyfo) = o) H, @) dp(o)

Else we set Z(u,¢) ;== —oo. Note that in case p is integer n-rectifiable, by
a deep theorem of Brakke [Bra78, 5.8], we have H,(z) L T(u,z) for p-a.e.
x € R*X Hence in this case the projection can be left out.

2.2 Remark ([Bra78, 3.4],[lm94, 6.6]). If ¢ € C?(R™™*) and ZB(u, ¢) > —cc
we can estimate

1
B1.0) < sup Dol (o> 0 — 5 [ [ Pod
Rn
2.3 Definition. Let U C R™™ be open, t; € R, t5 € (t1,00) and (1u)seft, 1]
be a family of radon measures on R**%. We call (#4t)tety 1) & Brakke flow in U
if ;LU is integer n-rectifiable for a.e. t € (t1,5) and for all t; < s1 < 59 < 'ty
we have

9)  1a(652.) — (0051 ) £ [ (Bl (0.) + @162, )

for all ¢ € C*((s1,52) x U) NC°([s1, 82 x U) with Useps, sypté(t,-) CC U.
2.4 Remark. Suppose (ji)ict, 1] is a Brakke flow in U:

e For a.e. t € (t1,t2) we have: u, U is integer n-rectifiable, has gener-
alised mean curvature vector H,, in U and [, [H,,|* du < oo for all
KccU.

e For (s,50) € RxR**and r € (0,00) set 14(A) := r g0 s, (rA+10),
then (V) efr—2(t, —so)r—2(t2—s0)] 1 & Brakke flow in 7~ 1(U — ypo).

The Brakke flow allows the sudden loss of mass. In particular we have

2.5 Example. For 0 < t; < T and 0 < € < p < oo consider the Brakke
flow (pu4)teor) given by py = ™ L (R™ x {0}¥) for t € [0,t0), puy = KL
(B™(0,¢€) x {0}*) and p; := 0 for t € (ty,T]. Note that s is graphical with
Lipschitz constant zero for ¢t € [0,%y) and 0 € sptu, but p, L B(0, p) is not
graphical.



Important results Here we recall some important results that are crucial
for the proofs in this article.

2.6 Lemma (Measure bound [Bra78| 3.7],[Eck04, 4.9]). Let R € (0,00),
t1 € R, ty € (t1,00), 2o € R*™¥ and let (ht)tcftr 1] be a Brakke flow in
B(z0,2R).

Then for all t € [ty,t; + (2n) " R?| N [t1, to]

p (B(20, R)) < 8puy, (B(20,2R))

2.7 Definition. Let zy € R** t; € R, p € (0,00) be fixed. For x € Rtk
and t € (—o0,ty) set

D) (£,7) 1= (et — 1)) exp (%) |

Ptozo),p(ts ) = {1 — p% (|Jz — zo|* + 2n(t — o)) }i :

2.8 Theorem (Monotonicity formula [Hui90, 3.1],[IIm95, 7][Eck04], 4.8]).
Consider U C R open, p, D € (0,00), (to,70) € R x U, 51 € (—00,t)
and sy € (s1,t9) and let (ut)te[swﬂ be a Brakke flow in U. Assume one of
the following holds

1' Sptgp(to,xo),p<817 ) CcC U
2. U =Rk gnd SUPselsy,55] SUP Re(0,00) 1:(B(xo, R)) < DR™.
Then

[ @2, (@) = [ @oton.a) dpa @)

</ (‘I)@(t,x) o ) b=

2(ty — t)
where ® = @y 40y, © = Pltoz0)p U assumption 1 holds and ¢ =1 if assump-
tion 2 holds. Here the term under the time integral is interpreted as —oo at
times where one of the technical conditions fails, as in Definition [2.1]

H, (z)+

2) dpu () dt,

2.9 Lemma (Clearing out [Bra78, 6.3]). There exist constants C' € (1,00)
and ay = (n+6)"" such that the following holds: Letn € [0,00), R € (0,00),
t1 €ER, ty € (t + Cp* R%t; + (4n)"1R?), 2o € R™K. Let U C R*K pe
open with U DD B(xo, R) and let (ju)icf, 1) be a Brakke flow in B(xo, R).
Suppose

R [ (0= B2 - aolPh) dpy <o
U



Set R(t) :== \/R? —4n(t — o).
Then for all t € [t; + Cn*1 R?, t,]

p:(B(xo, R(t))) = 0.

2.10 Theorem (Local regularity [Bra78| 6.11],[KT14} 8.7],[Lah14l 9.2]). For
every A € (0, 1] there exist A € (1,00) and hy € (0,1) such that the following
holds: Let Ky € [1,00), h € (0,K;'hg), R € (0,00), t; € R, ty € (t; +
2AR? 00) xg € R™™, and let (f11)iep 1) be a Brakke flow in B(xzg,4R).
Suppose

(10) sptu: N B(xg,4R) C C(xo, 4R, hR)
(11) Ry (B(z0,4R)) < Kj

for all t € [t1,t5] and

(12) Ry (B(o, (1 +A)R)) < (2 = Mwn
(13) Ry, (B(zg, R)) > Awn.

Set I := (t; + AR? ty — AR?).
Then there exists a g € C*°(I x B®(Zg, hoR), R¥) such that

py L C(xo, hoR, R) = 2™ L graph(g(t, -))
for allt € I. Moreover g satisfies and sup |Dg| + Rsup |D?*g| < AKyh.

To deduce this result from [Bra78, 6.11], [KT14l 8.7] or [Lah14, 9.2] you also
need to use [Bra78, 6.6], [KT14l, 5.7] or [Lahl4, 7.6] to see that the density
ratio bounds and actually hold at all times. Note that Brakke
as well as Kasai and Tonegawa state this theorem for unit density Brakke
flows, though their proofs only use integer density. For , smoothness and
curvature estimate of ¢ see [Tonl5l 3.6].

2.11 Theorem (Compactness [[Im94, 7.1]). Let t; € R and ty € (t1,00).
For i € N consider an open set U; C R*™ and a Brakke flow (11})ieps, 1, 10
U;. Assume U; C Uy for alli € N and set U := Uf; U;. Suppose for every
K cc U there exists an Cg such that

sup sup pi(KNU;) < Ck.
1eN tE[t1,t2}

Then there exists a subsequence o : N — N and a Brakke flow (fit)ieft, to]
in U such that

11:(¢) = lim 12 (¢)  for all ¢ € C2(Uy(jo))

Jj—oo

Jj=Jo

for allt € [ty,ts] and all jo € N.

10



Actually in [[Im94] Ilmanen assumes U; = M, for a complete manifold M.
To derive the above result from [[Im94, 7.1] use a diagonal subsequence ar-
gument, see Remark for some more details.

2.12 Lemma (Tilt-bound [Bra78| 5.5]). There ezists a constant C € (0, c0)
such that the following holds: Let U C R™% open and let p be a integer
n-rectifiable Radon measure on U with L*-integrable mean curvature vector

H,. Consider g € C (U,R), f,h € C?(U,R) with g*> < fh.
Then we have

By < C(apm+£5),

where

f = [ )P ) duto),

n 2
o= [ IR x {01 = Tl gta) anta),
o= [ el duta),
U

&= [ BRIV duta).
2.13 Theorem (Cylindrical growth [Bra78, 6.4]). Let U C R™™* open,
Ry € (0,00), Ry € (Ry,0), a, 8 € [0,00). Let pu be an integer n-rectifiable
Radon measure on U with L*-integrable mean curvature vector H,, and sptun
C(xo, Ry) CC U. Consider ¢ € C3([—1,1],R"). Suppose for all v € [Ry, Ry
(14) o [ @Po o) duo) < o

-n n 2 14

15) o7 [ R (03 = T o al) duto) <

Then we have

Ry / $(Ry[#)) du(z) — By / G(RTY]) duz)
S (Il log(Rg/Rl) + OC(RQ — Rl) -+ ﬁ)ﬂ

3 Graphs without holes

In this section we prove Theorem[I.5] Consider a unit density Radon measure
i such that the first variation du is absolutely continuous with respect to pu.

11



In some sense this should imply that 1 has no ‘boundary points’. Here we
show that, if such a p is contained in the graph of some Lipschitz function
f, then p actually coincides with the measure generated by the graph of
f. For f € C? and stationary u this is a direct consequence of the Allrd’s
constancy theorem [All72, 4.6.(3)] (see also Simon’s notes [Sim83, 8.4.1]).
Here we use the Gauss-Green theorem by Federer [Fed69) 4.5.6] to show that
the projection of 1 onto R® x {0}* is stationary, which reduces our problem
to the C2-setting.

3.1 Definition. Let u be an n-rectifiable Radon measure on R"**. We
denote the associated general varifold by V(u), i.e. V(u) is the a Radon
measure on R"* x G(n + k,n) given by

V()(A) = ul{x € R - (2, T, 2)) € A}).
For y € R"™ and X € (0, 00) we define the A-blow-up around y by
fy A (A) = A" u(AA +y).
for A C R,
Proof of Theorem[1.5. This proof is based on ideas by Ulrich Menne. Set

Uy :={zeU: 0" (||oul,z) = 0},
Qui={reU: 0}(ux)>1}, Qr:=0Q:NU,
R, = {l’ ceU: @n(u7l’) = 0}, Ry := R NU;.

We claim

(16) AN UN (Q2U R)) = 0.
Note that by we have

(17) O™ (u,z) <lip(f) < oo for all x € U.

Using a result by Menne [Men09, 2.11] we see s YU \ (Q: U Ry)) = 0.
Hence, to establish the claim it remains to show

(18) AN U\ U,) = 0.
We proceed as Federer and Ziemer [FZ72, 8|. For i € N set

B; = {x ¢ UNB(0,i) : @™ (||op|,z) > i '}.

12



Then by [Fed69, 2.10.19(3)] we have i||0u| > s#™1(B;) for all i € N. This
leads to the following chain of implications: B; bounded, ||0ul||(B;) < oo,
S (B;) < oo, #(B;) =0, ||0p]|(B;) = 0, ™ 1(B;) = 0. This shows
(18) which completes the proof of (16).

Now set

Ap = (R™ x {0}9),(sptu N U),
Qo :={z €R": O"(L"L(R"\ Ay), %) =0},
Ry:={z eR": O"(ZL"L Ay, z) =0}.

We want to use

(19) (R™ x {0}¥),Q5 C Qo and (R™ x {0}¥), R, C Ro.
We will prove this statement later. Suppose holds, then yields
(20) AN D\ (QoU Ro)) = 0.

We say v € 0B"(0, 1) is an external normal of Ay at g € R, if
oML L{zeR": (2 —g)-0>0}NAyy) =0
and O (L L{z e R": (z — ) -0 <0} \ Ap,9) =0,

Let By be the set consisting of all § € R® for which there exists an external
normal of Ay at . Then we have

(21) By CR™\ (Qo U Ry).

To see this consider § € Qo and © € IB*(0,1). We can estimate
L*{zeR: (z—9)-v>0NANBy,r))
> Z2%{2 eRY: (& —9)-0>01NBYg,r)) = L7((R™\ Ag) N B"(3,r))
> 27wy — )™

for r small enough depending on €. This yields Qo C R™\ By. Similarly we

can show Ry C R™\ By, which proves .
Let K C R™ be compact. Using we obtain

AP HEK N\ (QoU Ry)) < #™ Y (K\D)\ Ry <#ODNK) < 0.

In view of [Fed69, 4.5.11] and [Fed69, 2.10.6] we can now use the general
Gauss-Green theorem [Fed69, 4.5.6]. Combined with and this es-
tablishes

/ divend d.Z™ < A1 (D A By) < A 1(D\ (Ro UQy)) = 0
Ao

13



for all ¢ € C}(D,R®). Thus Ay is stationary in D. Then the constancy
theorem (see [Sim83), 8.4.1]) yields Ay = D which establishes the result.
Hence it remains to prove ([19)).

We want to show (R™ x {0}¥),Ry C Ry. Consider y € Ry. By and as
p is integral we can estimate for r € (0, 00)

PR 2R (Ay N B(j TFIE doem

/raph )N(Ag XR¥)NC(y,r)

r " u(B(y, (1 +lip(f))r))

and as y € Ry this goes to 0 for r 0. Thus y € Ry.

It remains to show (R™ x {0}¥);Q2 C Qo. Suppose this is false, then there
exists a yo = (Yo, Yo) € @2, an € € (0, 1) and a sequence (7, )men With 7, 0
such that

(22) T 2" (B (o, 7m) \ Ag) > 2¢

for all m € N. Consider the sequence (fy)men given by i = fiye .- By (7).
unit density and as yy € U; we have

limsup i, (B(0, R)) = limsupr,*u(B(yo, Rrim)) < (1+ Clipf)R

m—0o0 m—r0o0

lim sup || 04t | (B(0, R)) = lim 7, * Hou]|(B(yo, Rrim)) = 0

m—0o0 m oo
for every R € (0,00). By varifold compactness (see [Sim83, 8.5.5] or [AlI72]
6.4]) there exists a stationary integer n-rectifiable Radon measure v such
that for a subsequence we have

(23) V(i) — V(v) as radon measures on R*™ x G(n + k, n)

Moreover as yg € ()1 we have yy € sptu, then 0 € sptv. Define f,, €
¢%1(B™(0,1),R¥) by f.(2) :=r ' f(rm(2 —9o)). By the Arzela-Ascoli theo-
rem exists a g € €%1(B"(0, 1), R¥) such that for a subsequence || fo, —g||co —
0. We claim

(24) sptr N C(0, 1) = graph(g).

Suppose there exists a z € (sptv N C(0,1)) \ graph(g). Then we find
p € (0,1) with B(z,4p) N graph(g) = @ and v(B(z, p )) > 0. Thus for some
large enough m € N we have B(z, 3p) Ngraph(f,,) = 0 and u,,(B(z,2p)) > 0.
But by definition of f,, and u,, combined with @ we also have sptu, C
graph( f,,), which yields a contradiction. Thus C holds in

14



Now suppose there exists an z € graph(g) \ (sptr N C(0,1)). As sptv is
closed, we can find p € (0,00) and 2, € R*¥ such that

(25) 29 € 0C(z, p) Nsptr and C(z, p) Nsptr = 0.

Consider the sequence ()en given by v, = v, ,,. As above, by [Sim83]
8.5.5] there exists a stationary integer n-rectifiable Radon measure vy with
0 € sptry and such that for a subsequence we have

(26) V(v) — V() as radon measures on R*™* x G(n + k, n)
Similar as above we also see
(27) sptry N C(0, 1) C graph(h)

n(0,1),R¥). Combining (25) and (26]) we see sptyy C
{r e Rk 3. (2 - %) <0} As s statlonary this anhes sptvy C {z €
Rtk g (z — %)) = 0}. But in view of (27) this yields %”“(sptuo) =0,
hence sptyy = @), which contradicts 0 € sptyy. This proves

We continue to lead to a contradiction. Using and the unit
density of u we can estimate

for some h € % (B

L :=2"(Ag N B™ (4o, ) :/ |JfI7t Ao

graph(f)N(AoxR¥NC(yo,rm))

> [ TGl due) =3 [ JAaS V(). S).
C(yo,mm) C(yo,1)
Recall € from . In view of and we obtain

T L + € 2/ |AnSy| ™" AV (v)(z, S) > / |Jg| ™t A = w
C(0,1) graph(g)NC(0,1)
for m large enough. Thus we see
r 2L (B (Go, rm) \ Ag) = wn — 1,2 L (Ao N B (G0, Tm)) < €,
which contradicts .
This completes the proof of , which establishes the result. O]
4 Maintain graphical representability

In this section we prove Theorem The main idea of the proof is to iterate
Brakkes local regularity theorem (see Theorem [2.10) by choosing a time at
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which graphical representation is obtained as the new starting time. To do
so we first show a version of Theorem [2.10| which only has assumptions at
the initial and final time, see Proposition

By Corollary initial height bounds yield weaker height bounds later
on. Also by Huisken’s monotonicity formula, Theorem initial bounds
on area ratio imply bounds on area ratio in the future (see Lemma |A.3).
Moreover by the clearing out lemma, Lemma [2.9[ non-vanishing at some time
yields a lower bound on measure a bit earlier. Thus with Brakke’s local
regularity theorem, Theorem [2.10] we obtain the Proposition below, which is
an improved version of a result found in the author’s thesis [Lahl4, 11.7].

4.1 Proposition. For every k € (0,1) and ¢1,q2 € N with ¢ > rkq exist
¥ € (1,00) and oy € (0,272) such that the following holds: Let o € (0, 0],
p € (0,00), 51 €R, 59 € (514+20%1p?, s1+40p?], 29 € R and let (1u1)1efs: 5]
be a Brakke flow in C(zo,2p,2p). Suppose

(28) sptits, N C(z20,010%p, p) # 0,
(29) sptts, N C(z0,2p,2p) C C(20,2p, 0% %),

(30) r s, (B(20,7)) < (2 — K)wn  for all r € (10" p, X1/ op).

Set I := (s1 + 0?1 p?, 59 — a1 p?).
Then there exists a g € C*™ ([ x B™ (2o, alaqlp),Rk) such that

pe L C(z0, 010% p, p) = F™ L graph(g(t,-)) for allt € I.
Moreover g satisfies and sup | Dg| + o®@ psup | D?g| < L0270,

Proof. We may assume s; = 0, 2o = 0 and p = 1. By Corollary with
P = q1 + g2 and assumption (29 we have

(31) sptu: N C(O7 1, 1) C C(()’ 1, 20q1+q2)

for all ¢ € [0, so], where we estimated s < 07 < ¢,,.
Choose A; € (0,273) depending on & such that (2 — k)(1+ M) < 2— )\

and CoAf™® < (16n)~! where Cy is the constant from Lemma Let
A € (1,00) be from Brakke’s local regularity theorem, Theorem [2.10, chosen
with respect to A = A\;. Consider the radius

p1i=4"TA"20% € (0,0%).
Set ty := s9 — (8n)~1p?. We want to show

(32) 116, (B(0, p1)) > Aipy.
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Suppose this would be false, then we can use Lemma [2.9 with n = A\; to
obtain j,,(B(0,27!p;)) = 0. In view of this contradicts (28), where we
chose o small enough. Thus has to be true.

Consider € = k and choose the corresponding 6 according to Lemma
We may assume 62 < (8n)~'. We want to use Lemma with R =6~'\/o
and r = 4p;. Note that r < 0% < R and s, < ¢ < (8n)"'R2. For oy small
and >, large enough we have R < 1 and assumption implies with
K = 2w,. Lemma then yields

(33) (4p1) " e(B(0,4p1)) < 2wnpy® < CrVAG™"0

for all t € [0, so] and some constant C; € (1, 00).
For o1 small enough we have 0,0 < p; < y/o. Then by assumption
and choice of A\; we can estimate

(34)  pr"ro(B(O, (1 4+ A1)pr)) < (2= )1+ Ar)%wn < (2 = A Jwn

Now choose h( according to Brakke’s local regularity theorem, Theorem
with respect to A = A; as above. Set h := 8A20%. Note that 207+ <
hpy and for oy small enough we have (Cl\/Ka_"‘h)‘%h < CAo®—ra/2 < p.
Thus , , and let us apply Theorem with p = p; which

establishes the result. O

Looking at Proposition we see that at time ¢, — o p? we satisfy a non-
vanishing condition in an increased cylinder. This allows to iterate above
Proposition to obtain graphical representability inside a larger cylinder.

4.2 Lemma. For every k € (0,1) exist Ay € (1,00) and Ay € (0, (4A2)71)
such that the following holds: Let A € (0,)Xs], 00 € (0,00), s3 € R, s4 €
(53 + 2A9N202, 53 + Ao2], yo € R™* and let (f4t)te[ss,54) be a Brakke flow in
C(yo,400,200). Suppose

(35) SptM54 N C(y07 AQ)‘2QO: QO) 7£ ®7
(36) sptits, N C(yo, 400, 200) C C(yo, 400, X 00),
(37) I g, (By, ) < (2 — K)wn

for all y € B™(o,300) X {0} and r € (MaX200, Asv/Aop). Set I = (s5 +
A2 sy — A2 0R).
Then there exists a g € C™ (I x B™ (9o, 2@0),Rk) such that

1= Clyo, 200, 00) = ™ L graph(g(t,)) for allt € I.
Moreover g satisfies and sup |Dg| < Ao,
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Proof. We may assume s3 = 0, yo = 0, 9o = 2 and k < 1/4. Set ¢ =
qs := 2. Let oq1 be from Proposition 4.1| with respect to k. For m € N set
R, = moi X2, T, := s4 — 8mA* and J,, := (2\%,T},). Note that T,, >
sy — Coy 'R, A2, in particular for R,, < 5 and A, large enough we have
Ty > (Ay — Coy N2 > 4N

Consider the following statement:
stat(m) & There exists a g, € C* (J,,, x B*(0, R,,,), R*) with

pe L C(0, Ry, 1) = 2" L graph(g,,(t,-)) for allt € Jp,,

gm satisfies and sup |Dg,,| < Aza%.
By Proposition with s, = s4, p = 1, 0 = V2\ we see that stat(1)
is true. Now suppose stat(mg) holds for some my € N with R, < 5.
Using Proposition with sg = Tppy — 2\, p=1,0 = v/2) and arbitrary
20 € B0, Ry, + 012?) x {0}¥ yields that also stat(mg + 1) is true. Thus

stat(my) holds for some m; € N with 4 < R,,, < 5, which establishes the
result. O

Now consider a Brakke flow which is initially graphical with small Lips-
chitz constant. Then the conditions of Lemma [4.2] are satisfied for arbitrarily
small scaling. Thus we can extend the interval of graphical representation
up to the initial time.

4.3 Lemma. There exist constants C € (1,00) and o9 € (0, 1) such that the
following holds: Let o € (0,09, po € (0,00), t1 € R, ty € (t; + Co?p, t1 +
opgl, 20 € R™* and let (pi)ieft, 1s) be a Brakke flow in C(z,4po,200). As-
sume zy € sptuy, and

(38) sptyi, N C (20, 020%po, po) # 0.

Suppose there exists an f € C* (B™(Z, 4po), R*) with lip(f) < o* and

(39) fit; - C(20,4p0, 2p0) = H™ L graph([).

Set I := (t1,ty — Co?p}).
Then there exists a g € C* (I x B®(29,2p0), R¥) such that

e L 20, 200, o) = A Lgraph(g(t,)) for allt € I
Moreover g satisfies and sup |Dg| < o.

Proof. We may assume t; =0, zo = 0 and py = 1.
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Let Cy € (1, 00) be a constant which we will choose later. For s € (0, 160"]
we consider the following statement:
stat(s) 1< There exists an u, € C* ((s, 12 — C20?) x B(0,1), R¥) such that

(40) p: L C(0,2,1) = 2" L graph(us(t, -))
(41) u, satisfies (1)) and sup |Du,| < o

Suppose stat(sg) holds for some sq € (0,160?%]. We want to show that in
this case also stat(%) holds. Let g € B*(0,2) be arbitrary, set y := (9, f(7))
and g2 := 0715y < 0y < 1/4. Using assumption (39)) and lip(f) < o* yields

(42) SptMO N C(y; 4@07 3/2) C C(?/» 4@07 404QO)~

Then by Corollary with Ry = rg = 2g9 and Ry = 5/4 we obtain

(43) Spt/ut N C((,j/\a 0)7 2@07 1) C C(ya QQOa QO)

for all ¢ € [0,2s0]. Here we estimated 4040y + 205's¢ < Co100 < 0o and

()| +1<5/4.

Set Jy := (s0/2,(2 — 1/2)sp). We want to use Lemma with k = 1,
A = 20, s4 = 259 and yp = y. Choosing oy small enough we obtain the
following: AA?02 < s0/2; Statement implies (36); Using assumption
(39) and lip(f) < o3, we see that holds. Moreover by and as sy <
259 < ty — Cy0? we can use assumption to show . Then by Lemma
We obtain an usy; € C* (JQ x B™(y, go),Rk) with sup |Dusz| < Cos <o

and

pe = C((9,0), 00, 1) = p: L C(y, 00, 00) = ™ L graph(us4(t,-))

for all t € J,. Here we used to obtain the first equality. As y € B*(0,1)
was arbitrary this shows stat(%) is true.

Similarly we can use Lemmawith Yo =0,84 =19, 00=1and A = V20
to obtain that stat(40?) is true for Cy large enough. Hence we can start an
iteration which yields that stat(0) holds. This establishes the result. O]

Consider the situation of Lemma (4.3 If zy € sptys, and o small enough
we have that (,ut)te[m_cc,zh] satisfies the conditions of Lemma on the
smaller scale pg/2 with o replaced by /. Thus we can use ty — Co? as
the new starting time. This yields an iteration and by curvature bounds for
graphical mean curvature flow (for example by Wang [Wan04l 4.1]), we can
assure that the gradient does not blow up. This leads to the following:
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4.4 Lemma. There ezists a constant o € (0, 1) such that the following holds:
Let B € (O,Bg], € € (O,ﬂz), Qo € (0, OO), s1 €R, sy € (81 + EQQg,Sl + 6493],
yo € Rk and let (#4t)telsr,50) be a Brakke flow in C(yo,200,200). Assume
Yo € sptus, and

(44) spt/ts, N C(yo, f2e00, 00) # 0.
Suppose there exists an f € C** (B™(go, 200), R*) with lip(f) < 8* and
(45) f1s; L C(yo, 200, 200) = 7™ L graph([).

Let s € (s1,55 — €202) and o(s) := B7V/8\/55 — s.
Then there exists a gs € C™ ((s1, s) x B™(o, 0(s)),R¥) such that

pe L Clyo, 0(s), 00) = A" L graph(gs(t,-)) for allt € (sy, ).
Moreover g, satisfies and sup |Dygs| < 5.

Proof. We may assume s; = 0, yo = 0 and gy = 1. First note that by ,
lip(f) < B3, s2 < 5 and Corollary with Ry =ro=Rand Ry =1
(46)  sptpu; NC(0,R, 1) C C(0, R,28;R + R 'sy) € C(0,1,1/4)

for all ¢ € [0, s9], R € (0, 1].
For s € (0, s9), we consider the following statement:
stat(s) :< There exists a v, € C* ((0,s) x B™(0, o(s)), R*) such that

(47) L C(0, 0(s),1) = ™ L graph(v,(t, -))
(48) v, satisfies (1)) and sup |Dvg| < B.

First observe that stat(s) is true for all s € (0, (1 —277)ss]. To see this
use Lemma with ¢, = 0, ty = 89, 0 = 8 and py = 718 /55. Note that
52— Co?pd > (1= C)sy > (1— 27)sy, 33000 > 0ffy /*B2% > e and
283 p0 + pots2 < po for By small enough. In particular use with R = pg
to see that sptu, N C(0, po, po) = sptue N C(0, po, 1).

Now assume stat(sg) holds for some sy € [(1 —277)sy, 5o — €2). We want
to show that under this assumption stat(s) holds for all s € [sg, so + €°).

Set 7 1= sy — 50 € (€2, 8%), t1 1= 59 — 637 and ag := (0, v,,(t1,0)) € ROHEK,
Then o(t1) = 80(so). Hence by and

spti, N C(0,80(s0), 1) C C(ao, 8o(s0), 8B0(s0))-
Thus by Corollary and
(49) spte N C(0,40(s0),1) € Clag, 40(50), 0(s0))
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for all ¢ € [t1, so]. Here we estimated 830(sg) + 0(s0) ' (s2 — t1) < 0(so), for
[o small enough.

Set J := (1,82 — 27'7). Now use Lemma with o = /B, po = 20(s0),
ty = sy and zy = ag. Note that sy — Co?ps > sy — C/Bam > 89 — 2717
and 0y02py > 09v/BT > [2fe for By small enough. Then we obtain an
u € C>= (J x B(0,40(so)), R¥) with sup [Du| < /B and

(50) e L C(0,40(s0),1) = " L graph(u(t,-)) for allt € J.

Here we also used (49). Moreover u satisfies (). It remains to show the
gradient bound for u.

For t € J consider M, := graph(u(t,-)), which moves by smooth mean
curvature flow. By Theorem [Lah15l 2.2.1] with p = o(so), | = lp and starting
time ¢; we obtain a curvature bound

(51) |A(M,,z)]> < C|D*u(t,2)| < Ct —t,) ' < C¥r7!

for all x € M; N C(ao,20(s0),20(s0)) for all t € JN[sg — T, 2] and some
constant C7 € (1,00). Here chose (5 small enough such that Sy < Iy and
sy — t1 < 64+v/B20(50) < lpo(s0)?, where [y is from [Lahlhl 2.2.1]. Moreover
in view of we see that actually holds for all z € M;NC(0,20(sp), 1).
Note that the curvature bounds in [Lahl5l 2.2.1] are based on White’s reg-

ularity theorem [Whi05]. Similarly we could use Wang’s curvature estimate

[Wan04, 4.1] to deduce (51)).
Let 7 € B®(0, o(s0)) be arbitrary, y := (9, u(so— 8°7,9)) € R*¥. In view

of and we have
sptis,—gs- N C((9,0),26°V/7,1) C Cly, 28°VT,26°V/7).

Then using Corollary with Ry = ry = %\/7, Ry = 1/2 and we

obtain

(52) sptue N C((9,0), 8°V/7,1) C Cly, BV, 46°V/7)

for all t € [so— [>T, so+3°7]. Note that so+3°7 € J for 85 < 1/2. Combining

(50D, and we can use Lemma [LahT5l A.4] with r = 8%\/7, £2 = 4,
K? = (3% to obtain

| Du(t, )] < Cp* < §°
for all ¢t € [sg, so + $°7], where we chose (5 small enough. By assumption

T =8y — 8 > € and 2 > e. As g € B*(0, 0(s0)) was arbitrary this shows
that stat(s) holds for all s € [sg, 5o + €°), this establishes the result. O
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Assume the setting of Theorem [1.3] Using Lemma [£.4] we can show that
sptue N C(0, p, p) is contained in a Lipschitz graph and has unit density for
all t € (t1,t2). Then by Theorem we find a sequence 7, /"ty such that
sptu,, L C(0, p, p) is graphical. With Lemma 4.4 for arbitrary small € we can
conclude Theorem [L.3l

Proof of Theorem[I.3. We may assume a = 0, t; = 0 and p = 3. Using (0)
and Corollary we obtain

(53) sptu; N C(0,4,4) C C(0,4, h(t))

for all t € [0,t] and A(t) =1+t < 2l,.

Set U := B®(0, 4) x R¥. By definition of a Brakke flow we find a sequence
(Tm)men With 7., ta, 7, € (0, 5] such that for all m € N we have p, :=
tr,, L C(0,4,4) is integer n-rectifiable and the generalised mean curvature
vector H,,, exists. In particular ||Opu,,]| is absolutely continuous with respect
to i, inside U. Fix an arbitrary m € N. We want to show

(54) sptu, NU C graphf,,

for some Lipschitz function f,, : B®(0,4) — R

Let x,y € sptu, N U with  # y. Set yo := (9, f(y)). We want to show
|z — g| < L|& — g| for some constant L € (1, 00) which will depend on [,. By
(53]) we have |z — g| < 2ly. Hence we may assume |z — g| < lo.

First consider the case 7, < 4|2 — ¢|? < 412 and let 2 € spty,, NU. Then
pm(B(z,2y/n7,)) # 0, so by Lemma we have po(B(z,4,/m7,)) # 0.
Thus by (6) and lip(f) < lp we have [z — go| < lo|2 — g| + 8/n7,. For
z = x,y this yields the wanted estimate.

Now consider the case 0 < 4|# — §|> < 7,. Set € := |2 — g|. By
we have y € sptu,, N C(yo, 3%, 1) for all 8 € (0,00). Set s, := T, — 262
Using Lemma with 51 = 0, 89 = T, 00 = 1, B = /Iy we obtain a
gm € C>(B™(7), 8n¢)) with sup |Dg,,| < v/1y and

(55) sptis,, N C(yo, 8ne, 1) = S L graphg,,.

Let 2 € sptu,, NU with |2 —g| < e. Then p,,(B(z,2/ne)) # 0, so by Lemma

2.6] we have i, (B(z,4y/ne)) # 0. In view of we have |Z — 7| < 2lp <
1 — 44/n, hence we can use (53] to estimate |2 — g (9)| < lo(1 + 4n)e. For

z = x,y this proves .
Next we want to show that p,, has unit density. Let y € sptu,, N U and

r € (0,1/Tm) be given. Set € :== ¥/lor, s, := 7,,—16 Vlor? and yo := (9, f(7))).
Note that by we have y € sptu,, N C(yo, %€, 1). Using Lemma 4.4 with
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s1 =0, 80 =T, 00 = 1, B = Vlp we obtain a g, € C®(B"(§,4r)) with
sup | Dg,| < v/l and

(56) sptiLs, N C(yo, 4r, 1) = A" L graphg,,,

Consider a radial cut-off function ¢, € € (R***,[0,1]) with sup |D?¢.| <
Cr=% and

1 for 0<|z—y|<r
<r(-r) - —n—2
0 for (142 r<|r—uyl.

By the Brakke flow equation @, Remark and Lemma we can estimate
pm (B(y, 1)) = ps, (B(y, (1+27"7%)r))
< hn(6) = (6) 2 € [ (sup D26 ({0 > 0))

< C ¥/losup{pu(B(y. 2r)).t € [5,. 7]} < C Vlojrs, (B(y.4r)).

In view of we have |§ — go| < 2lp < 1 — 8r, hence we can use and
the above estimate to obtain

o (Bly. 1) < (14 CV/lo) (0 Vo(4r)™ + (1 + 2—n—2)7~)n) < grn,

where we chose [y small enough. As we already know pu,, is integer rectifiable,
this shows that ., even has unit density in U. Also, by and Lemma
we have spty,, NU # (). Then Theorem yields that in (54)) actually holds
equality. Hence

pr,, L C(0,4,4) = 5™ L graphf,,

for all m € N, for some Lipschitz function f,, : B®(0,4) — R¥. In view of this
and we can use Lemmawith Sy = Tm, 00 = 1, yo € B(0,4) x {0}
and arbitrarily small € to obtain graphical representability inside C(0,4,4)
for times in (0,7,,). As 7,, / to we can extend the time interval to (0,t5).
Finally for the Lipschitz bound use Lemma with sy =t and 8 = VI +1t
for arbitrary ¢ € (0, t3). This completes the result. ]

5 Brakke-type regularity theorem

Here we proof Theorem [I.I} Under slightly stronger assumptions on the
starting density ratios the result directly follows from Lemma and The-
orem see below:
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5.1 Lemma. There exists a constant ¢ € (0,1) and for every x € (0,1) exists
an hy € (0,¢*) such that the following holds: Let h € (0,hsy], 0 € (0,00),
s1 ER, 83 € (51 4+ Vho? 51+ co?], zo € R*¥ and let (u)ie(s, s) be a Brakke
flow in C(z9,90,90). Suppose xy € Sptjis,

(57) spties, N C(xo,90,90) C C(x0,90, ho),
(58) s, (B(y, 7)) < (2 — K)wn

for all y € B*(i&,70) x {0} and all v € (ho, 0). Set I := (51 + Vho?, s3).
Then there exists a g € C* (I x B®(Zo, 0), R¥) such that
pe L C(zo, 0, 0) = ™ L graph(g(t,-)) for allt € I.

Moreover g satisfies and sup |Dg(t, )| < 2¢/072(t — s1) for allt € I.

Proof. We may assume xy = 0, s; = 0 and p = 1. Let Ay and Ay be from
Lemma with respect to x and set sy := 8AxvVh < Vh < sy for hy small
enough. We see that sy — s4 < (8n)7!, so Lemma and 0 € sptyus, yield
s, (B(0,1)) > 0. Thus there exists an zy € sptus, N B(0, 1).

Set .J := (4h, s, — 4Ayv/h). By Lemmawith 00 =2, yo = (20,0) and
A = Vh there exists a Lipschitz function g; € C®(J x B™(%,4),R¥) such
that

u L C((20,0),4,2) = 7™ L graph(g(t,-)) forallt e J.

Moreover sup |Dg;| < Ayh®® < V/h. Here we chose hy < min{)\é,AQ_S}. Set
a:= (0,91(0)) and ¢; = 8h. By Corollary | assumption (b7) and |2 < 1
we have |a| < 1 and sptu, ((20,0 4 2)D spt,ut1 NC(a,2 2) for hy small
enough. Then Theorem |1 Wlth | = vh and p = 1 yields the result. Here
we chose hy small dependlng on A, such that 84 € J and vh < . O

Now under the assumptions of Theorem we can find a time s; shortly
after t; such that us, L C(a,p, p) has bounded mean-curvature-excess and
still has small height. By Lemma then also the tilt-excess has to be
small. Thus Brakke’s cylindrical growth theorem, Theorem [2.13|can be used
to show that the density assumptions of Lemma hold, which then yields
the conclusion of Theorem [I.1]

proof of Theorem[I.]. We may assume a = 0, t; = 0 and p = 1. First
consider the case v > 0. Set U := B(0,1) and C(x,r) := C(x,r) N U for
r € (0,00), x € U. In view of assumption (2) and as C(0,/2,v/2) C B(0,2)
we can use Corollary with 7o = v/2 — 1 and p = 4 to obtain

(59) spti; N1 C(0,1,1) C C(0,1,27)
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for all ¢ € [0, ¢/4] for 7o small enough. Fix a o € (0,27°) such that (1 —
80)™ <1+ A/8and (1+40)" <14 A/32. In particular we can choose 7,
small depending on ¢. By Lemma and assumption (3)) we can estimate

(60) i (B(0,1 - 0)) < O™ ¥ (B(0, 1)) < Co*

for all t € [0, (8n)~'o?] N[0, t2].
Fix a cut-off function ¢ € C* (R, [0, 1]) with [¢"| < Co~? and

1 for 0<|t|<1—-20
N — <t <
V) {0 for 1—o <|t|.

Consider ¢ € C>*(B(0,1),[0,1]) given by ((z) = #(|z]). Consider s €

(0, ¢/7]. Using the Brakke flow equation @, and Remark we can es-
timate

1 S
D := pg — I‘It2 du, d
O+ [ [ AR ar
< (©)+sup DR [ (¢ > 0 .

Hence by and we have
D<(2—ANwn+Cso™ 2 <(2-2/2)wy

where we used s < ¢y and we chose 7y small enough. By we have
{¢=1} D B(0,1—20) D sptus NC(0,1 —40), for 79 < 0. Thus

1 S
(61) s (C'(0,1 —40))+—/ / |HM|2 dpg dt < (2 — A/2)wy
2 )0 Je,-10)

for all s € (0, ¢/7]. In particular we find an s, € (0, ¢/7] such that p, LU is
integer n-rectifiable, has £?-integrable mean curvature vector and

G
C(0,1—40)

Consider y € B(0,0). By and choice of o we can estimate

2 dps, < 2(2 = M 2)way V< Oy,

(63) sy (C(yu 1 - 80)) < (2 - )\/2)(,4},1 < (2 - /\/4)("}11(1 - 80)n7

by definition of A and for 7y < 0.
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Let f € C(C(0,1 — 40),[0,1]) be such that f(x) = ((1 —40)7YZ|) for

z € sptus, NU. In view of (59),(61) and we can use Lemma with
f =g = h to obtain

(64 /0(01 60) (R x {0}y = Tpsr, 2)s|” dpas, (x) < O/

where we used sup |[Df|? < Co2 < Crypy' < Oy7h
Consider y € B(0,0) and 79 € (v**0/9,0). Let Ry = 1 — 80 and
Ry = (1 +40)ry. By and the assumptions of Theorem are
satisfied for a? = Cy~1/4(y1%05)=2% and B2 = C7/3(y*05)~27. Hence we
can estimate
[ oo =il duto) - w7 [ ot - ) aute)
< Oy~ 1/8(74010 )" 2n,y7/16 < Cg~2n 3/16 < Awy /4

where we chose ag < (64n)~! and -, small enough. By definition of ¢ and
this yields

(14 40)ro) "o (B(y,10)) < (2= A/8)wn < (2 — A/16)wyn(1l +40)™

Now we can use Lemma [5.1| with o = 0/9 and h = v?* to obtain the result.
For the case v = 0 use the above result with arbitrary small ~. O]

5.2 Corollary. Consider the situation of Theorem without assumption
[@B). Let 6 € (0,1) be such that v < dvy and

(65) (6p) 1, (B(y, 6p)) < (2 — Nwn.

for ally € C(a, (2 — 6)p,dp). Moreover change the conditions on ty to ty €
(t1 +72082p2 t1 + pd?p?) and set J := (t; + Y62 p?, t3).
Then there exists a g € C* (J x B®(a, (2 — §)p), R¥) such that

u: L C(a, (2 —9)p,p) = A" Lgraph(g(t,-)) forallt € I.

Moreover g satisfies (1)) and sup |Dg(t,-)| < 2/ (0p)~2(t — t1) for allt € J.

Proof. We may assume t; = 0, a = 0 and p = 1. By Corollary with
ro = 0 we see that

for all t € [0,t5]. Here we chose oy and 7y small enough. By Brakke’s
continuity result [Bra78, 3.10] we have for almost every s € (0,ty) that
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ps(@) = limy ~ pe(@) for all ¢ € C2(C(0,2,2)). Consider such an s and
Js = (h*4?,5). Then for every § € B®(0,2 — §) for which there exists an
z € sptps N ({9} x BX(0,6/2)) we can use Theorem 1.1 replacing p by 4, ¢,
by s and a by z. This yields a function g; € C* (Js X B“(g},%d),Rk) such
that

(67) e C((9,0),70,1) = p L C(2,700,0) = ™ L graph(g,(t,-))

for all t € J;. Moreover g; satisfies and sup [Dgy(t,-)| < 2v/6-2t for
all t € J,. Here we used for the first equality. Now by choice of s,
connectedness of B*(0,2 — 4) and ([66]), we see that either holds for all
g € B™(0,2—9) or sptus NC(0,2—0,/2) = . As we can choose s arbitrary
close to to and as 0 € sptuy, only the first option remains, which proves the
result. ]

6 White-type regularity theorem

Here we want to prove Theorem First we observe that a Brakke flow for
which all Gaussian density ratios are one, has to be a plane. This mainly
follows from Huisken’s monotonicity formula, Theorem [2.8]

6.1 Lemma. Let M € (1,00), t1 € R, 3 € (t1,00) and (fi¢)ic 1) be @
Brakke flow in R*%. Suppose g, # 0 and for all (s,y) € (t1,ts] x Rk

(68) sup R™us(B(y, R)) < M,
Re(0,00)
(69) sup / sy dppy < 1.
telty,s) J Rtk

Then there exists a T € G(n +k,n) and an a € R™* such that p; =
(T + a) for allt € (t1,1s).

Proof. We may assume t; = —1 and ¢, = 0. For ¢t € (—1,0) let D(t) be
the set of all y € sptu; such that ©™(u,y) > 1 and T(u,y) exists. Fix
s € (—1,0) and y € D(s). For e € (0,1) there exist a cut-off function
¢ € C2(R™,[0,1]) and an ho € (0, s + 1) such that

(70) [ tenl-Lop@) @) =1
Rnx {0}k
(71) / (I)(Sﬂ) d,us_ho < lim (I)(&y) dps_p + €.
Rn+k h\o Rn+k
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By and definition of the approximate tangent space we can estimate

(1 - O™ (10 y) < O (1) / Do) (—1,2)¢(x) A (2)

T(ps,)

< lim A" Bo,0) (=1, A (@ — y)) dps
<tmA [ oL A @ = 9) di(a)

- /1\1{‘% - D (5122, (5, ) dps().

Then with Huisken’s monotonicity formula, Theorem [2.8] continuity of the
integral and we obtain

1— n <l o e < i o _ .
( 6)9 ('U& y) - )xl{_% Rn+k (s+2%) d,us ho = hl{f(l) Ro+k (5:9) d,us 4 e

Thus by and as € was arbitrary we have

(72) 1< G)n(/isa y) < }lllm (I)(s,y) dus—h <1
\0 Rn+k

for all y € D(s) for all s € (—1,0). Hence u; has unit density for a.e.
te(—1,0).

Fix an arbitrary to € (—1,0) such that p, has unit density. Assumption
pto # 0 and Lemma[2.6)imply spts, # 0, so we can find n+1 points yo, . . . , yn
in D(ty) such that v; :== y; — o, @ = 1,...,n are linearly independent. Set

T := span(v;)1<i<n. By estimates , and Theorem we obtain

/ (I)(to,yi) dlut =1
Rn+k

for all t € [—1,t) for all i € {0,...,n}.

Then Theorem yields the existence of a J C (—1,%p) such that
L1((-1,t) \ J) = 0 and for all ¢ € J we have p; has unit density, the
generalised mean curvature vector H,, exists with [ |H,,|?u; < co and

(73) H,,(2) + (2(to — 1))~ (T(r, ) s — ) = 0

for y-a.e. x € R*** and all i =0,1,...,n.

Let t € J and let F; be the set of points = € spty, such that O™, z) >
T (pu, ) exists and holds for all i € {0,...,n}. We see p;(R*™ \ ;) =
Consider x € E; then by we have

(T(p1e, ) )s(yo — i) = (Tpae, ) ) = ) — (Tlpae, ) )z — o) = 0

L,
0.
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foralli € {1,...,n}. Sov; € T(u,x) foralli € {1,...,n}, hence T(u, x) =
T. As this holds for all z € E; for all ¢ € J, we have H,, = 0 for a.e.
t € (—1,tp). This follows from Brakke’s general regularity theorem [BraT78|
6.12] (see also [KT14] 3.2]). One could also deduce this from Menne’s char-
acterization of the mean curvature vector in [Menl5, 15.6].

Now for a.e. t € (—1,ty) equality with ¢ = 0 yields E; C T + .
Thus sptu; C T + yo. Then by Theorem we have py = AL (T + yo).
As this holds for a.e. ¢ in (—1,%;) and by the continuity properties of the
Brakke flow due to Brakke [Bra78, 3.10] we obtain p; = 5™ L (T + yo) for
all t € (—1,%p). As we can choose ty arbitrary close to 0 this establishes the
result. O

Now suppose the Gaussian density ratios are locally bounded by 1 + 6.
In view of the previous Lemma an indirect blow-up argument combined with
[lmanen’s compactness theorem, Theorem [2.11} yields a small neighbourhood
in which we have small height and density ratios close to one, see Lemma
In view of Theorem this implies Theorem [1.2]

6.2 Lemma. For all €,0 € (0,1/2) there exists a § € (0,1) such that the
following holds: Let g1 € (0,00), 0o € [01,00), to € R, zg € R™™* and let
(Ht)1efto—o2 1) be a Brakke flow in B(xo, (24+1/2n)0,+05). Suppose z¢ € sptyi,
and for all (s,y) € (to — 0%, to] x B(zo, 01)

(74) sup / (I)(s,y)ﬂp(s,y),ggd,ut <1+56.
tefto—o2,s) J Rtk

Then there ezists a T € G(n + k,n) such that both

sup {l(TL)h(x - Zlf())|,l’ € Sptuto—ayg% N B(ZL'(), 25Q1)} S €5Q17
fito—a5202(B(20,001)) < wa (1 +€)(01)".
Proof. We may assume 0, = 71, t; = 0 and x¢ = 0. Suppose the statement
would be false. Then there exist €,0 € (0,1/2) and for every j € N we find
a Brakke flow (//)ici_j2,0 in B; := B(0, (2 + v2n)j + 0,) and an g; € [}, 00)
such that 0 € sptif,

; 1
(75) sup / (D(s,y)SO(s,y),gj dl/g <1+ -
te[—j2,s) J Rtk J
for all (s,y) € (=52, 0] x B(0, j) and one of the following holds
76 inf T+ .z € sptr_, NB(0,2)} >
(76) TeGl(gmn)sup{\( )s(2)], x € sptv (0,2)} > e
(77) v (B(0,1) > wn(l +€).
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We may assume the g; are monotonically increasing.
To obtain a converging subsequence of the (/) we need uniform bounds
on the measure of compact sets. We claim that for every R € (0,00) we can

find a D(R) such that

(78) sup sup i (B(0,R)NB(0,5/2)) < D(R).

JEN te[-1,0]

First we show

(79) sup sup sup 1 (B(y,R)) < C1R"
te[—1,0] yeB(0,5) Re(0,5/4]

for some constant C; € (1,00) and all j € N,j > 2. Set ¢y := (2n)~!. To
see note that for x € B(y,2R), R < j/4 we have W(,,)(t — coR? x) >
(4mca R?) ™2 exp(—1/c2) and @y) 0, (t — c2R*, ) > (1 — 1/4)%. Thus Lemma
and assumption yield

vl (B(y, R)) < O]

t—coR2

< CRH/ Pt,1)P(t.y),05 dyg—(:gpﬁ < CR™
Rn+k

(B(y,2R))

To prove note that by Lemma we can estimate
v (B(0,7/2)) < v{(B(0,2vnj)) < v/, (B(0,4v/nj)) =: D;(R)

for all ¢ € [-1,0]. Combined with this proves (78).

Now we can use the compactness theorem by Ilmanen, Theorem with
U; = B(0,7/2), to see that a subsequence of the (1) converges to a Brakke
flow (14)se[-1,0) in R*™ . Note that we may assume that the whole sequence
converges. In particular

(80) vi(9) = lim v} (9) for all ¢ € C/(B(0, jo/2))

Jj>Jjo
for all t € [-1,0] and all jo € N. Combining this with yields

(81) sup sup sup w(B(y,R)) <2C,R"

t€[—1,0] yeRtk Re(0,00)

Next we want to show

(82) / (I)(S’y) dl/t S 1
Rn+k
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for all (s,y) € (—1,0] x R®¥* and all t € [~1,s). To see this fix s,y, and ¢
like that. First we see that by we have

(83) / (I)(S’y) dy; < o0.
Rk

In order to prove (83)) consider f; : R®™* — RT given by fi(z) := @5, (¢, x)
for |x —y| <l and f; = 0 outside B(y, ). Obviously we have f;;1 > f;. Now
we can use to estimate v4(B(y, 20)) < 2C,(20)" for all [ € N. Then for
[ > ly we can estimate

fl+1 th - fl th < / (I)(s,y) dyt
f— Rn-+k B(y,1+1)\B(y,))

< C(s — 1) ™2 exp(— 12/ (4(s — 1)) m(B(y, 21)) < I, (B(y, 20)) < 72,

where we chose [y large enough depending on s—¢. Thus lim;_, f fidv, <
and the monotone convergence theorem implies .
We continue to prove . Let v € (0,1/2) be arbitrary. Note that y, s, t

are still fixed. Using and we find j1, j2,73 € N, j3 > jo > j; such
that

/ (b(svy) d]/t S 77
Rn+\B(y,05, )

/ CI)(S,y) dy, — / (I)(s,y) dV{ < 7,
B(y,05,) B(y,0j,)

1< inf sanon (L, o
- :rEB}(er/»sz) SO( ,y)@J( x) + 7@]2

for all 7 > j3. Combining these estimates with we obtain

/ D5y dyy < / D (5.)P(s.)0; dvl + (24 C(s — t) ™)y
Rn+k Rn+k

for all j > j3. By and as s,t,y,~y were arbitrary this establishes (82)).
In view of and we can use Lemma [6.1]to obtain 7' € G(n+k,n)
such that

(84) vo= AT

for all t € (—1,0). Note that by and as 0 € spty for all j € N we
have that a in Lemma [6.1] has to be zero. Now we want to lead this to a
contradiction.

First suppose that for infinitely many j inequality holds, i.e. there
exists a z; € sptv/, N B(0,1) such that (T+)y(z;) > e. Consider Cy and
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o from the clearing out lemma, Lemma 2.9l Choose 7,1 € (0,1/2) such
that 4n7 < (¢/4)* and Con;**(¢/4)> < 7. Then Lemma [2.9) with R = €/4
yields that v/ ,_ (B(z;,€e/4)) > m for infinitely many j. A subsequence of

the z; converges to some 2z € B(0,2) with (77);(z0) > e. Consider a cut-off
function (; € C°(B(z0,€¢/2),0,1]) with {¢; = 1} D B(z0,¢/3). Then

VZU—T<C1> > VZO—T(B<Zj7€/4)) >m > 0= V—U—T<C1)

for infinitely many j, where we used for the last equality. In view of
this yields a contradiction.
Now suppose that for infinitely many j inequality holds. Consider

G € C(B(0, /1 +¢/2)),[0,1]) with {¢; = 1} D B(z,1). In view of

we can estimate
Voog(C) < wn(l14€/2) <wn(l+e€) </ (B(0,1)) </ (&)

for infinitely many j. Again, this contradicts , which establishes the
result. O

Proof of Theorem[1.4 We may assume to =0, a = 0 and p = 1. Let ag and
70 be from Theorem with respect to A = 1/2. Choose € € (0, ] such
that 2v/2e* < 3 and set o := 2¢2°. Let § be chosen with respect to € and o
according to Lemma and choose n < 4§, t; := —2¢2°§%. Then Lemma
yields the existence of a T' € G(n + k, n) such that

sup {|(T)y(2)], z € sptus, N B(0,20)} < €6.
e, (B(0,6)) < wn(l+€)d™.

Then Theorem with 0 = § and v = € yields the desired graphical repre-
sentation for n small enough. O

A Appendix

For a Brakke flow initial local height bounds in a certain direction yield
weaker height bounds later on in a decreased region. The result below follows
directly from the Brakke flow equation, which here seems to resemble the
maximum principle in some sense.

A.1 Proposition. Fore every p € N there exists a C,, € (1,00) such that the
following holds: Let Ry € (0,00), t; € R, ty € (t1,00), yo € Rk ¢ € RoHk
and let (i¢)scft, 1) be a Brakke flow in B(yo,2Ry). Suppose

sptue, N B(yo, 2Re) C {x € R*™ . (2 —5) - v < 0}.
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Then for all t € [t1,t5] we have
spt N B(yo, Ro) C {w € R (z —yo) - v < Gyt — t1)P Ry 7}

Proof. We may assume Ry = 4, t; =0, yg = 0 and v = ey k. Set N =
n+k—1. We will prove this proposition by induction. Suppose the statement
is true for some p € N. We want to show the statement holds for p + 1. We
can assume ty < 16(C,y1) " P+ because the statement trivially holds for
all later ¢t. For [ € R set

H=(I) .= {(z,h) e RN xR: h <}

Fix an arbitrary a, € BY(0,4) and let hg € [0,4]. By the induction assump-
tion we see

(85)  sptu N B((@o, ho),2) € H(ho+ Cyt?) € H™(ho +1/2)

for all ¢ € [0,t,]. Here we estimated C,th < (16)PC,(Cpyq) P/ @) < 1/2, for
Cp41 large enough. In particular as hy € [0,4] was arbitrary this shows

(36) sptyae (1 ({a} x [0,4]) € H(1/2)

for all ¢ € [0, t5].
Consider the function n € C*H(R x RN x R,R*) UC>({n > 0}) given by

n(t, 7, h) == {h — Cp|T — ao|*t’ — C, 1 t"},.

Treat n as a function on R x R*™k. Using div,, (RY x {0});) < n and
choosing ()41 large enough we can estimate

(87) (0 — div,, D)n’(t,x) < 60*(t,z)(2C,nt? — (p+ 1)Cpyit?) <0

for all t € [0,t5] and all = € spty, for which the approximate tangent space
exists. Let y € C>°(R""% [0,1]) be a cut-off function such that

B((ao,O), 1) - {X = 1} Csptx C B((ao,O), 2)
In view of with hg = 0 and by definition of n we see
(88) sptu Nsptn(t, ) NsptDy = ()

for all t € [t;,t5]. Consider the test function ¢ € C*(R x R**k R*) given by
¢ :=n3x. Using , and the Brakke flow equation @ we obtain

1a((5,) — o((0,)) < / S / X(0, div, D)y dp dt < 0
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for all s € (0,t;]. By assumption we have po(¢(0,-)) = 0, hence ¢(t,z) = 0
for all t € (0,t5] and all = € sptu,. By definition of  and x this yields that
h < Cpyat? for all t € (0,t2] and all (z,h) € sptu: N ({ag} x [0,1)). In view
of and as @y € BY(0,4) was arbitrary, this establishes the statement for
p+ 1.

It remains to prove the statement for p = 1. Let T € C®'(R x RV x
R,RTYUC>®({T > 0}) be given by

Y(t,2,h) = {(25 = (@, h)[){h}s — Cit}s.

Treat T as a function on R x R®*"*. Note that {Y(¢,-) > 0} C B(0,5).
Choosing (' large enough we can estimate

(0 — div,,, D)Y?(t, x) < 3Y2(t,2)(0; — div,, D)Y(t,x) <0

for all ¢ € [0,t5] and all = € spty, for which the approximate tangent space
exists. Thus by the Brakke flow equation @D and our initial height assump-
tion we obtain

(T3 (t,) < po(T3(0,)) < 0

for all t € (0,ty]. For (z,h) € B(0,4) we can estimate (25 — |(Z,h)[*) > 1.
Hence the definition of T establishes the result. O]

A.2 Corollary. For every p € N ezists a ¢, € (0,1) such that the following
holds: Let Ry,ro € (0,00), hy € (0,70/4], Ry € [ro,0), t1 € R, ts € (t1,t1 +
¢prd), o € R and let (pu) ety 1, be a Brakke flow in C(zg, Ri+7o, Ra+10).
Suppose

sptu, N C(xg, Ry + ro, Ry +19) C C(zo, Ry + 10, h1).
Then for all t € [t1,ty] and h(t) := hy + (t — t1)Pry P we have
sptuy N C(xg, Ry, Ry) C C(xg, Ry, h(t)).

Proof. We may assume t; = 0 and 29 = 0. Let p € N be given and Cp;; be
the value according to Proposition [A.1l First we want to show

(89) sptuy N C(0, Ry, 19/2) C C(xo, Ry, h(t))
for all t € (0,s]. To see this consider arbitrary t € (0,%;] and z = (Z,7) €

sptue N C(0, Ry, ro/2). We want to show |Z| < h(t). Suppose & # 0. Set
0= |Z|712, v = (0,9) € R*X and yy := (£, 0). Note that |z —yo| < 70/2.
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For arbitrary y = (7, 7) € R*"* we have (y — yo) - v < |§| — h1, hence by
our initial height bound we see

sptyu, NB(yo,m0) C {y € R™ 1 (y — yo) - v < 0}
Using Proposition with p+ 1 and Ry = 1¢/2 yields
|Z| —hi = (x —yo) v < (7’0/2)_210_1 C'p+1tp+1 < Cp+lcptpr0_2p+1 < tpro_2p+1

for ¢, small enough. As ¢t and x were arbitrary, this establishes .

Now consider z = (2,2) € C(0, Ry, Ry) with Z > ry/2. By our initial
height bound and h; < ro/4 we have sptuy N B(z,79/4) = (). Thus Lemma
with R = r¢/8 implies z ¢ spty, for all ¢t € [0, %3], where we used ty <
cp,ré < (2n)~*(ry/8)%. This establishes the result. O

Based on Huisken’s monotonicity formula [Hui90, 3.1] one can obtain
bounds on area ratio at later times from initial area ratio bounds.

A.3 Lemma. For every e € (0,1] ezists a 6 € (0,1) such that the fol-
lowing holds: Let K € [0,00), R € (0,00), r € (0,0R], s1 € R, 55 €
(s1,s1+(8n) ' R?], yo € R™¥ and let (11t)iefs,,s0) be a Brakke flow in B(yo, R).
Suppose

(90) 0 "us, B(yo, 0)) < K forall g € [r,R]
Then for all t € [s1, s2] we have
r " m(Blyo, 7)) < K(R/r)".

Proof. We may assume R = 4, yp = 0, s; = 0. Let ¢ € (0,1) be given.
Fix an arbitrary ¢t € [0, so] and set sq := t + r?. Consider ® = D (4.0 and
© = P(s0,0),3 from Definition By sp < so+ 6 < 3n~! we obtain

sptp(0,-) cC B(0,4), sup ¢(0,:) <C, inf @(t,-) >27°
Rn+k B(O,l)

Thus by Huiskin’s monotonicity formula, Theorem

/ @dutsss/ @wdutss/ <I>soduo§C/ B dyio.
B(0,1) Rn+k Rn+k B(0,4)

We have sy —¢ = r?, hence infg(o) ®(t,-) > cr ™. So by the above inequality

(91) r (B0, 7)) < C/B(O Y ®(0, ) duo(x)
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Set a := ¢/(2n). Note that by definition of ® and sy = t + r*> > r? we have
®(0,7) < Cr~™ for all z € R*¥. Then by assumption we can estimate

K
(92) / B(0,) dpo(x) < Cruo(B(0,r ) < CKpr™ < 2=
B(0,r1-) 2r€

where we used @ = €/(2n), r < § and chose ¢ small enough. By the properties
of the exponential function we have r~®/2 exp(—r2%/4) < ¢, were we again
used r < 0 and chose § small enough depending on o and c¢. Hence for
r € RK\ B(0,717%) we have ®(0,7) < 421, Then by assumption
we can estimate

/ 8(0,) dpo() < 4" Lpo(B(0,4)) < K/4
B(0,4)\B(0,r1—)

Inserting this and into establishes the result. O]

A.4 Lemma. There exists a constant C' € (1,00) such that the following
holds: Let o, M,k € (0,00), A € [1,00), § € (0,1/2], s € R, yo € R** and
let i1 be a Radon measure on R*TX. Suppose 6 < min{A~1, C~1},

(93) 1 (B(yo, CAo)) < Mo,

(94) /RH-HC D (50.,50) P(50,0),00(S0 — 0%, x) du(r) <1+ k.
Then for all (s,y) € (so — 6202, so] x B(yo,d0) we have
/]Rn+k D5 Prsyne(s0 — 0%, x) du(z) < 1+ K+ CMAJ.
Proof. We may assume so = 0, yg = 0 and o = 1. Fix (s,y) € (=062 0] x

B(0,6). Note that spt(¢(sy)a(—1,-)) € B(0, (2n+1)A). Let x € B(0, (2n +
1)A). Direct calculations yield

exp (

where we used § < min{A~!, C~'}. Thus we have

1<(s+1)™2<14+0Cy=5<1+0C9
z[* |z —y[?
4 4(s+1)

) <exp (C(Aly| + A?[s])) <1+ CAS,

10,0 (—1, @) = (s ) (—1,2)] < CAS
l0,0,a(—1,2) = @ ya(—1,2) < C§

Combined with and this yields the result. ]
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A.5 Remark. Here we want to derive Theorem 2.11] from Ilmanen’s work
[Im94]. In case U; = U the result directly follows from the proof of [[Im94!
7.1]. Now consider the general case. We can find a subsequence A\; : N — N
and a Brakke flow (1} )¢, +,) in Uy such that lim;_, ,ui‘l(j)(gb) = v} (¢) for all
¢ € CO(Uy), for all t € [ty,t3]. Inductively for all [ € N, [ > 2 we can find a
subsequence A; : N — X1 [N] and a Brakke flow (uf)te[thtz] in U; such that

lim 1" (¢) = v}(¢) for all ¢ € CO(U))

j—oo
for all t € [t1,t5]. In particular we have l/é2 LU, = l/él LU, forallly <l <l
and all t € [t1,t5]. Then u(A) := limy_,o V(AN U;) € [0, 00] is well defined
and gives the desired Brakke flow on U. With o(j) = A;(j) this establishes
the result.
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