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Abstract

Consider an integral Brakke flow (µt), t ∈ [0, T ] inside some ball in
Euclidean space. If µ0 has small height, its measure does not deviate
too much from that of a plane and if µT is non-empty, than Brakke’s
local regularity theorem yields that (µt) is actually smooth and graph-
ical inside a smaller ball for times t ∈ (C, T −C) for some constant C.
Here we extend this result to times t ∈ (C, T ). The main idea is to
prove that a Brakke flow that is initially locally graphical with small
gradient will remain graphical for some time.
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1 Introduction

Overview Consider g ∈ C∞((t1, t2)× Ω,Rk), Ω ⊂ Rn open. The family of
graphs Mt = graph(g(t, ·)) is called a smooth mean curvature flow, if

∂tg =
n∑

i,j=1

(
δij −

DigDjg

1 + |Dg|2

)
DiDjg(1)

at all points in (t1, t2)×Ω. This evolution equation can be generalised to n-
rectifiable Radon measures on Rn+k, see Definition 2.3. Such a weak solution
will be called a Brakke flow. Here we want to show that under certain local
assumptions a Brakke flow satisfies the smooth characterization from above.

The mean curvature flow was introduced in Brakke’s poineering work
[Bra78]. He described the evolution in the setting of geometric measure
theory. This early work already contains an existence result as well as a
regularity theory. However the arguments in [Bra78] often contain gaps or
little errors. A new rigorous proof of the regularity results was given by
Kasai and Tonegawa [KT14], [Ton15]. Also the author’s thesis [Lah14] of-
fers a completed version of Brakke’s regularity theory following the original
approach.

A major breakthrough in the studies of mean curvature flow was the
monotonicity formula found by Huisken [Hui90] for smooth flows, which later
was generalised to weak flows by Ilmanen [Ilm95] and localised by Ecker
[Eck04]. Using the monotonicity, White proved a local regularity theorem
[Whi05] stating that Gaussian density ratios close to one yields curvature
estimates. White’s theorem is formulated for smooth mean curvature flow
and can be applied in a lot of singular situations as well, but not for arbitrary
Brakke flows. Building up on White’s curvature estimates, Ilmanen, Neves
and Schulze showed in [INS14] which is locally initially graphical with small
gradient remains graphical for some time. For related gradient and curvature
estimates see [EH89], [EH91], [CM03], [Wan04], [CY07], [BH12].

Existence results for generalized solutions of mean curvature flow can be
found in [Bra78], [CGG91], [ES91], [Ilm94], [KT15]. For an introduction
to generalized solutions of mean curvature flow we recommend the work by
Ilmanen [Ilm94] which also points out the similarities between Brakke flow
and level set flow. We also want to mention the book by Ecker [Eck04] as a
good reference for smooth mean curvature flow and regularity up to the first
singular time.
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Results of the present article We consider Brakke flows of n-rectifiable
Radon measures in Rn+k see Definition 2.3 for the details. Note that all
Brakke flows considered here are assumed to be integral. All constants below
may depend on n and k.

Our main result is a new version of Brakke’ s local regularity theorem
[Bra78, 6.10, 6.11], see also Kasai and Tonegawa [KT14, 8.7]. The state-
ment says that a non-vanishing Brakke flow which initially locally lies in a
small slab and consists of less then two sheets, becomes graphical in a small
neighbourhood.

1.1 Theorem. There exists a constant α0 ∈ (0, 1) and for every λ ∈ (0, 1)
exists a γ0 ∈ (0, 1) such that the following holds: Let γ ∈ [0, γ0], ρ ∈ (0,∞),
t1 ∈ R, t2 ∈ (t1 + γα0ρ2, t1 + α0ρ

2], a = (â, ã) ∈ Rn × Rk and let (µt)t∈[t1,t2]

be a Brakke flow in B(a, 2ρ) with a ∈ sptµt2. Suppose

sptµt1 ∩B(a, 2ρ) ⊂ {(x̂, x̃) ∈ Rn × Rk : |x̃− ã| ≤ γρ},(2)

ρ−nµt1(B(a, ρ)) ≤ (2− λ)ωn.(3)

Set I := (t1 + γα0ρ2, t2).
Then there exists a g ∈ C∞

(
I ×Bn(â, γ0ρ),Rk

)
such that

µt C(a, γ0ρ, ρ) = H n graph(g(t, ·)) for all t ∈ I.

Moreover g satisfies (1) and sup |Dg(t, ·)| ≤ 2 4
√
ρ−2(t− t1) for all t ∈ I.

The main difference to the existing versions is that here we obtain regularity
up to the time t2 at which we assumed the non-vanishing, were in Brakke’s
theorem measure bounds from below have to be assumed further in the future.
Note that Brakke’s theorem includes bounds on higher derivatives of g, which
we don’t get.

We also obtain a local regularity theorem similar to the one of White
[Whi05], see also Ecker [Eck04, 5.6]. We show that a non-vanishing Brakke
flow which locally has Gaussian density ratios close to one will become graph-
ical in a small neighbourhood.

1.2 Theorem. For every β ∈ (0, 1) there exists an η ∈ (0, 1) such that the
following holds: Let ρ ∈ (0,∞), ρ0 ∈ [ρ,∞), t0 ∈ R, a ∈ Rn+k and let
(µt)t∈[t0−ρ2,t0] be a Brakke flow in B(a, (2 +

√
2n)ρ+ ρ0). Suppose a ∈ sptµt0

and for all (s, y) ∈ (t0 − ρ2, t0]×B(a, ρ)∫
Rn+k

Φ(s,y)ϕ(s,y),ρ0 dµt0−ρ2 ≤ 1 + η,(4)
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where Φ and ϕ are from Definition 2.7. Set I := (t0 − η2ρ2, t0).
Then there exist S ∈ O(n + k) and g ∈ C∞(I × Bn(0, ηρ),Rn+k), such

that for Mt = graph(g(t, ·)) we have

µt B(a, ηρ) = H n (S[Mt] + a ∩B(a, ηρ)) for all t ∈ I.
Moreover g satisfies (1) and sup |Dg| ≤ β.

One key ingredient to obtain these regularity results is the observation
that a non-vanishing Brakke flow, which is initially graphical with small
gradient, will stay graphical for some time. This is basically the non-smooth
version of a theorem by Ilmanen, Neves and Schulze [INS14, 1.5].

1.3 Theorem. There exists a constant l0 ∈ (0, 1) such that the following
holds: Let l ∈ [0, l0], ρ ∈ (0,∞), t1 ∈ R, t2 ∈ (t1, t1 + l0ρ

2], a ∈ Rn+k and let
(µt)t∈[t1,t2] be a Brakke flow in C(a, 2ρ, 2ρ). Assume a ∈ sptµt1 and

sptµt2 ∩C(a, ρ, ρ) 6= ∅.(5)

Suppose there exists an f ∈ C0,1
(
Bn(â, 2ρ),Rk

)
with lip(f) ≤ l and

µt1 C(a, 2ρ, 2ρ) = H n graph(f).(6)

Then there exists a g ∈ C∞
(
(t1, t2)×Bn(â, ρ),Rk

)
such that

µt C(a, ρ, ρ) = H n graph(g(t, ·)) for all t ∈ (t1, t2).

Moreover g satisfies (1) and sup |Dg(t, ·)| ≤ 4
√
l + ρ−2(t− t1) for all t ∈

(t1, t2).

1.4 Remark. In all the above results g satisfies (1), thus the results for
smooth graphical mean curvature flow can be applied to obtain bounds on
|D2g|. See for example estimates by Ecker and Huisken [EH91, 3.1] or Wang
[Wan04, 4.1]. Note that in the above results we cannot expect to obtain a
graphical representation at the final time see Example 2.5.

Having absolutely continuous first variation should imply that there are
no boundary points. The following theorem formalizes this idea in the case
of rectifiable Radon measures that are contained in a Lipschitz graph. This
generalizes Simon’s constancy theorem [Sim83, 8.4.1] to Lipschitz graphs,
but additionally requires unit density.

1.5 Theorem. Let D ⊂ Rn be open and connected with ∂D is (n − 1)-
rectifiable and set U := D×Rk. Consider a unit density n-rectifiable Radon
measure µ and a Lipschitz function f : D → Rk such that

∅ 6= sptµ ∩ U ⊂ graphf(7)

µ(A) = 0 implies ‖δµ‖(A) = 0 for all A ⊂ U(8)

Then µ U = H n graphf .
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Organisation and sketch of proof We start by recalling some definitions
and important results in the Preliminaries 2.

Then in section 3 we show Theorem 1.5. In the proof we employ the
Gauss-Green theorem by Federer [Fed69, 4.5.6] to see that the projection of
sptµ∩U onto Rn is stationary, subsequently the result follows from Allard’s
constancy theorem [All72, 4.6.(3)].

The main part of this work is section 4, where Theorem 1.3 is established.
Essentially we consider a Brakke flow in C(0, 2, 2) for times in [0, τ ] such that
sptµτ∩C(0, δ, 1) 6= ∅. First assume as initial condition that µ0 C(0, 2, 2) lies
in a slab of height h and satisfies certain density ratio assumptions. Based
on Brakke’s local regularity theorem [Bra78, 6.11] and the estimates from
the appendix we show that the flow is graphical inside C(0, h, 1) for times in
[h, τ − h], if h is small enough, δ ≤ h and τ ≤ 4

√
h. Under stronger density

assumptions we actually obtain graphical representability inside C(0, 1, 1)
for times in [h, τ − C

√
h], see Lemma 4.2.

Now exchange the initial condition to µ0 C(0, 2, 2) is graphical with
Lipschitz constant smaller than l. This allows to use Lemma 4.2 on arbitrary
small scales, which yields that the flow is graphical inside C(0, 1, 1) for times
in [0, τ − C

√
l], if l is small enough, δ ≤ l and τ ≤ 4

√
l. Iterating this result

leads to Lemma 4.4, which says that the flow is graphical inside B(0, Lδ) for
times in [0, τ − δ2], if we choose l small enough depending on L and suppose
τ ≤ l, δ ≤ l. Using Lemma 4.4 with varying center points and arbitrary
small δ we perceive that sptµt ∩C(0, 1, 1) is contained in a Lipschitz graph
and has unit density for almost all t ∈ [0, τ ]. In view of Theorem 1.5 this
lets us conclude Theorem 1.3.

Section 5 contains the proof of Theorem 1.1. First we see that The-
orem 1.3 and Lemma 4.2 directly imply a version of Theorem 1.1, which
assumes stronger density bounds at the beginning, see Lemma 5.1. Then
we use Brakke’s cylindrical growth Theorem [Bra78, 6.4] to simplify these
assumptions, which establishes Theorem 1.1 in the desired form.

In section 6 Theorem 1.2 is proven. In order to do so we first employ
Huiskin’s monotonicty formula [Hui90, 3.1] to show that non-moving planes
are the only Brakke flows in Rn+k that have Gaussian density ratios bounded
by one everywhere. Then under the assumptions of Theorem 1.2 a blow up
argument and Ilmanen’s compactness theorem yield that in a small neigh-
bourhood the conditions of Theorem 1.1 are satisfied, which yields the result.

Finally in the appendix A we show how a slab condition and bounds on
area ratios at the initial time are maintained in the future.
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Thanks I want to thank Ulrich Menne for his help and advice in particular
for the proof of Theorem 1.5.

2 Preliminaries

Notation For an excellent introduction to geometric measure theory we
recommend the lecture notes by Simon [Sim83]. Here we recall the most
important definitions.

• We set R+ := {x ∈ R, x ≥ 0}, N := {1, 2, 3, . . .} and (a)+ := max{a, 0}
for a ∈ R.

• We fix n,k ∈ N. Quantities that only depend on n and/or k are
considered constant. Such a constant may be denoted by C or c, in
particular the value of C and c may change in each line.

• We denote the canonical basis of Rn+k and Rn by (ei)1≤i≤n+k and
(êi)1≤i≤n respectively.

• For a ∈ Rn+k the projections â ∈ Rn and ã ∈ Rk are given by a = (â, ã).

Let n, k ∈ N.

• Let O(n) denote the space of rotations on Rn. Let G(n+ k, n) denote
the space of n-dimensional subspaces of Rn+k. For T ∈ G(n+ k, n) set
T⊥ := {x ∈ Rn+k : x · v = 0 ∀v ∈ T}. By T\ : Rn+k → T we denote
the projection onto T .

• For R, r, h ∈ (0,∞) and a, b ∈ Rn we set

Bn(b, R) := {x ∈ Rn : |x− b| < R} , B(b, r) := Bn+k(b, r),

C(a, r, h) := Bn(â, r)×Bk(ã, h), C(a, r) := Bn(â, r)× Rk.

• Consider open sets I ⊂ R and V ⊂ Rn and f ∈ C1(I × V ) then ∂tf
denotes the derivative of f in I, while Df denotes the derivative of f
in V . If (µt)t∈I is a family of Radon measures on V we often abbreviate∫
V
f(t, x) dµt(x) =

∫
V
f dµt.

• Let L n denote the n-dimensional Lebesque measure and H n denote
the n-dimensional Hausdorf measure. Set ωn := L n(Bn(0, 1)).

Let U ⊂ Rn+k open and µ be a Radon measure on U

• Set sptµ := {x ∈ U : µ(Bn+k(x, r)) > 0, for all r ∈ (0,∞)}.
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• Consider x ∈ U . We define the upper and lower density by

Θ∗n(µ, x) := lim sup
r↘0

µ(Bn+k(x, r))

ωnrn
, Θn

∗ (µ, x) := lim inf
r↘0

µ(Bn+k(x, r))

ωnrn

and if both coincide the value is denoted by Θn(µ, x) and called the
density of µ at x.

• Consider y ∈ U . If there exist θ(y) ∈ N and T(µ, y)µ ∈ G(n + k, n)
such that

lim
λ↘0

λ−n
∫
U

φ(λ−1(x− y)) dµ(x) = θ(y)

∫
T(µ,y)

φ(x) dH n(x)

for all φ ∈ C0
c

(
Rn+k

)
, then T(µ, y) is called the (n-dimensional) ap-

proximate tangent space of µ at x with multiplicity θ(y).

• We say µ is n-rectifiable, if the approximate tangent space exists at
µ-a.e. x ∈ U . Note that in this case θ(x) = Θn(µ, x) for µ-a.e. x ∈ U .
We say µ is integer n-rectifiable, if µ is n-rectifiable and Θn(µ, x) ∈ N
for µ-a.e. x ∈ U . We say µ has unit density, if µ is n-rectifiable and
Θn(µ, x) = 1 for µ-a.e. x ∈ U .

Let µ be an n-rectifiable Radon measure on U

• Consider φ ∈ C1(U,Rn+k). For x ∈ U such that T(µ, x) exists set
divµφ(x) :=

∑n
i=1Dbi(φ(x) ·bi), where (bi)1≤i≤n is an orthonormal basis

of T(µ, x).

• Denote the first variation of µ in U by δµ(φ) :=
∫
U

divµφ dµ for φ ∈
C1
c (U,Rn+k). Set ‖δµ‖(A) := sup{∂µ(φ), φ ∈ C1

c (A,Rn+k), |φ| ≤ 1} for
A ⊂ U open.

• If there exists Hµ : sptµ → Rn+k such that Hµ is locally µ-integrable
and δµ(φ) =

∫
U

Hµ ·φ dµ for all φ ∈ C1
c (U,Rn+k), then Hµ is called the

generalised mean curvature vector of µ in U .

Brakke flow An introduction to the Brakke flow can be found in [Bra78],
[Ilm94], [KT14], [Lah14].

2.1 Definition. For a Radon measure µ on Rn+k and a φ ∈ C1
c (Rn+k) we

define the Brakke variation B(µ, φ) as follows: If µ {φ > 0} is n-rectifiable,
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has generalised mean curvature vector Hµ in {φ > 0} and
∫
{φ>0} |Hµ|2dµ <

∞ then set

B(µ, φ) :=

∫
Rn+k

(
(T(µ, x)⊥)\Dφ(x) ·Hµ(x)− φ(x)|Hµ(x)|2

)
dµ(x).

Else we set B(µ, φ) := −∞. Note that in case µ is integer n-rectifiable, by
a deep theorem of Brakke [Bra78, 5.8], we have Hµ(x) ⊥ T(µ, x) for µ-a.e.
x ∈ Rn+k. Hence in this case the projection can be left out.

2.2 Remark ([Bra78, 3.4],[Ilm94, 6.6]). If φ ∈ C2
c (Rn+k) and B(µ, φ) > −∞

we can estimate

B(µ, φ) ≤ sup |D2φ| µ({φ > 0})− 1

2

∫
Rn+k

|Hµ|2φ dµ.

2.3 Definition. Let U ⊂ Rn+k be open, t1 ∈ R, t2 ∈ (t1,∞) and (µt)t∈[t1,t2]

be a family of radon measures on Rn+k. We call (µt)t∈[t1,t2] a Brakke flow in U
if µt U is integer n-rectifiable for a.e. t ∈ (t1, t2) and for all t1 ≤ s1 < s2 ≤ t2
we have

µs2(φ(s2, ·))− µs1(φ(s1, ·)) ≤
∫ s2

s1

(B(µt, φ(t, ·)) + µt(∂tφ(t, ·))) dt(9)

for all φ ∈ C1((s1, s2)× U) ∩ C0([s1, s2]× U) with ∪t∈[s1,s2]sptφ(t, ·) ⊂⊂ U .

2.4 Remark. Suppose (µt)t∈[t1,t2] is a Brakke flow in U :

• For a.e. t ∈ (t1, t2) we have: µt U is integer n-rectifiable, has gener-
alised mean curvature vector Hµt in U and

∫
K
|Hµt|2 dµt < ∞ for all

K ⊂⊂ U .

• For (s0, y0) ∈ R×Rn+k and r ∈ (0,∞) set νt(A) := r−nµr2t+s0(rA+y0),
then (νt)t∈[r−2(t1−s0),r−2(t2−s0)] is a Brakke flow in r−1(U − y0).

The Brakke flow allows the sudden loss of mass. In particular we have

2.5 Example. For 0 < t0 ≤ T and 0 < ε < ρ < ∞ consider the Brakke
flow (µt)t∈[0,T ] given by µt = H n (Rn × {0}k) for t ∈ [0, t0), µt0 = H n

(Bn(0, ε) × {0}k) and µt := ∅ for t ∈ (t0, T ]. Note that µt is graphical with
Lipschitz constant zero for t ∈ [0, t0) and 0 ∈ sptµt0 but µt0 B(0, ρ) is not
graphical.
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Important results Here we recall some important results that are crucial
for the proofs in this article.

2.6 Lemma (Measure bound [Bra78, 3.7],[Eck04, 4.9]). Let R ∈ (0,∞),
t1 ∈ R, t2 ∈ (t1,∞), z0 ∈ Rn+k and let (µt)t∈[t1,t2] be a Brakke flow in
B(z0, 2R).

Then for all t ∈ [t1, t1 + (2n)−1R2] ∩ [t1, t2]

µt (B(z0, R)) ≤ 8µt1 (B(z0, 2R)) .

2.7 Definition. Let x0 ∈ Rn+k, t0 ∈ R, ρ ∈ (0,∞) be fixed. For x ∈ Rn+k

and t ∈ (−∞, t0) set

Φ(t0,x0)(t, x) := (4π(t0 − t))−
n
2 exp

(
|x− x0|2

4(t− t0)

)
.

ϕ(t0,x0),ρ(t, x) :=
{

1− ρ−2
(
|x− x0|2 + 2n(t− t0)

)}3

+
.

2.8 Theorem (Monotonicity formula [Hui90, 3.1],[Ilm95, 7][Eck04, 4.8]).
Consider U ⊂ Rn+k open, ρ,D ∈ (0,∞), (t0, x0) ∈ R × U , s1 ∈ (−∞, t0)
and s2 ∈ (s1, t0) and let (µt)t∈[s1,s2] be a Brakke flow in U . Assume one of
the following holds

1. sptϕ(t0,x0),ρ(s1, ·) ⊂⊂ U .

2. U = Rn+k and supt∈[s1,s2] supR∈(0,∞) µt(B(x0, R)) ≤ DRn.

Then∫
U

Φϕ(s2, x) dµs2(x)−
∫
U

Φϕ(s1, x) dµs1(x)

≤
∫ s2

s1

∫
Rn+k

(
Φϕ(t, x)

∣∣∣∣Hµt(x) +
(T(µt, x)⊥)\(x− x0)

2(t0 − t)

∣∣∣∣2
)

dµt(x) dt,

where Φ = Φ(t0,x0), ϕ = ϕ(t0,x0),ρ if assumption 1 holds and ϕ ≡ 1 if assump-
tion 2 holds. Here the term under the time integral is interpreted as −∞ at
times where one of the technical conditions fails, as in Definition 2.1.

2.9 Lemma (Clearing out [Bra78, 6.3]). There exist constants C ∈ (1,∞)
and α1 := (n+6)−1 such that the following holds: Let η ∈ [0,∞), R ∈ (0,∞),
t1 ∈ R, t2 ∈ (t1 + Cη2α1R2, t1 + (4n)−1R2), x0 ∈ Rn+k. Let U ⊂ Rn+k be
open with U ⊃⊃ B(x0, R) and let (µt)t∈[t1,t2] be a Brakke flow in B(x0, R).
Suppose

R−n
∫
U

({1−R−2|x− x0|2}+)3 dµt1 ≤ η.

9



Set R(t) :=
√
R2 − 4n(t− t0).

Then for all t ∈ [t1 + Cη2α1R2, t2]

µt(B(x0, R(t))) = 0.

2.10 Theorem (Local regularity [Bra78, 6.11],[KT14, 8.7],[Lah14, 9.2]). For
every λ ∈ (0, 1] there exist Λ ∈ (1,∞) and h0 ∈ (0, 1) such that the following
holds: Let K0 ∈ [1,∞), h ∈ (0, K−1

0 h0], R ∈ (0,∞), t1 ∈ R, t2 ∈ (t1 +
2ΛR2,∞) x0 ∈ Rn+k, and let (µt)t∈[t1,t2] be a Brakke flow in B(x0, 4R).
Suppose

sptµt ∩B(x0, 4R) ⊂ C(x0, 4R, hR)(10)

R−nµt (B(x0, 4R)) ≤ K2
0(11)

for all t ∈ [t1, t2] and

R−nµt1 (B(x0, (1 + λ)R)) ≤ (2− λ)ωn(12)

R−nµt2 (B(x0, R)) ≥ λωn.(13)

Set I := (t1 + ΛR2, t2 − ΛR2).
Then there exists a g ∈ C∞(I ×Bn(x̂0, h0R),Rk) such that

µt C(x0, h0R,R) = H n graph(g(t, ·))

for all t ∈ I. Moreover g satisfies (1) and sup |Dg|+R sup |D2g| ≤ ΛK0h.

To deduce this result from [Bra78, 6.11], [KT14, 8.7] or [Lah14, 9.2] you also
need to use [Bra78, 6.6], [KT14, 5.7] or [Lah14, 7.6] to see that the density
ratio bounds (12) and (13) actually hold at all times. Note that Brakke
as well as Kasai and Tonegawa state this theorem for unit density Brakke
flows, though their proofs only use integer density. For (1), smoothness and
curvature estimate of g see [Ton15, 3.6].

2.11 Theorem (Compactness [Ilm94, 7.1]). Let t1 ∈ R and t2 ∈ (t1,∞).
For i ∈ N consider an open set Ui ⊂ Rn+k and a Brakke flow (µit)t∈[t1,t2] in
Ui. Assume Ui ⊂ Ui+1 for all i ∈ N and set U :=

⋃∞
i=1 Ui. Suppose for every

K ⊂⊂ U there exists an CK such that

sup
i∈N

sup
t∈[t1,t2]

µit(K ∩ Ui) ≤ CK .

Then there exists a subsequence σ : N→ N and a Brakke flow (µt)t∈[t1,t2]

in U such that

µt(φ) = lim
j→∞
j≥j0

µjt(φ) for all φ ∈ C0
c (Uσ(j0))

for all t ∈ [t1, t2] and all j0 ∈ N.
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Actually in [Ilm94] Ilmanen assumes Ui ≡ M , for a complete manifold M .
To derive the above result from [Ilm94, 7.1] use a diagonal subsequence ar-
gument, see Remark A.5 for some more details.

2.12 Lemma (Tilt-bound [Bra78, 5.5]). There exists a constant C ∈ (0,∞)
such that the following holds: Let U ⊂ Rn+k open and let µ be a integer
n-rectifiable Radon measure on U with L2-integrable mean curvature vector
Hµ. Consider g ∈ C1

c (U,R), f, h ∈ C0
c (U,R) with g2 ≤ fh.

Then we have

β2
g ≤ C

(
αfγh + ξ2

g

)
,

where

α2
f :=

∫
U

|H(µ, x)|2f(x)2 dµ(x),

β2
g :=

∫
U

∥∥(Rn × {0}k)\ −T(µ, x)\
∥∥2
g(x)2 dµ(x),

γ2
h :=

∫
U

|x̃|2h(x)2 dµ(x),

ξ2
g :=

∫
U

|x̃|2|∇µg(x)|2 dµ(x).

2.13 Theorem (Cylindrical growth [Bra78, 6.4]). Let U ⊂ Rn+k open,
R1 ∈ (0,∞), R2 ∈ (R1,∞), α, β ∈ [0,∞). Let µ be an integer n-rectifiable

Radon measure on U with L2-integrable mean curvature vector ~Hµ and sptµ∩
C(x0, R2) ⊂⊂ U . Consider ψ ∈ C3

c ([−1, 1],R+). Suppose for all r ∈ [R1, R2]

r−n
∫
U

|Hµs1
(x)|2ψ(r−1|x̂|) dµ(x) ≤ α2,(14)

r−n
∫
U

∥∥(Rn × {0}k)\ −T(µ, x)\
∥∥2
ψ(r−1|x̂|) dµ(x) ≤ β2.(15)

Then we have∣∣∣∣R−n2

∫
U

ψ(R−1
2 |x̂|) dµ(x)−R−n1

∫
U

ψ(R−1
1 |x̂|) dµ(x)

∣∣∣∣
≤ (n log(R2/R1) + α(R2 −R1) + β)β.

3 Graphs without holes

In this section we prove Theorem 1.5. Consider a unit density Radon measure
µ such that the first variation δµ is absolutely continuous with respect to µ.
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In some sense this should imply that µ has no ‘boundary points’. Here we
show that, if such a µ is contained in the graph of some Lipschitz function
f , then µ actually coincides with the measure generated by the graph of
f . For f ∈ C2 and stationary µ this is a direct consequence of the Allrd’s
constancy theorem [All72, 4.6.(3)] (see also Simon’s notes [Sim83, 8.4.1]).
Here we use the Gauss-Green theorem by Federer [Fed69, 4.5.6] to show that
the projection of µ onto Rn × {0}k is stationary, which reduces our problem
to the C2-setting.

3.1 Definition. Let µ be an n-rectifiable Radon measure on Rn+k. We
denote the associated general varifold by V(µ), i.e. V(µ) is the a Radon
measure on Rn+k ×G(n+ k, n) given by

V(µ)(A) := µ({x ∈ Rn+k : (x,T(µ, x)) ∈ A}).

For y ∈ Rn+k and λ ∈ (0,∞) we define the λ-blow-up around y by

µy,λ(A) := λ−nµ(λA+ y).

for A ⊂ Rn+k.

Proof of Theorem 1.5. This proof is based on ideas by Ulrich Menne. Set

U1 := {x ∈ U : Θn−1(‖δµ‖, x) = 0},
Q1 := {x ∈ U : Θn

∗ (µ, x) ≥ 1}, Q2 := Q1 ∩ U1,

R1 := {x ∈ U : Θn(µ, x) = 0}, R2 := R1 ∩ U1.

We claim

H n−1(U \ (Q2 ∪R2)) = 0.(16)

Note that by (7) we have

Θ∗n(µ, x) ≤ lip(f) <∞ for all x ∈ U.(17)

Using a result by Menne [Men09, 2.11] we see H n−1(U \ (Q1 ∪ R1)) = 0.
Hence, to establish the claim it remains to show

H n−1(U \ U1) = 0.(18)

We proceed as Federer and Ziemer [FZ72, 8]. For i ∈ N set

Bi = {x ∈ U ∩B(0, i) : Θ∗n−1(‖δµ‖, x) > i−1}.

12



Then by [Fed69, 2.10.19(3)] we have i‖∂µ‖ ≥ H n−1(Bi) for all i ∈ N. This
leads to the following chain of implications: Bi bounded, ‖∂µ‖(Bi) < ∞,
H n−1(Bi) < ∞, H n(Bi) = 0, ‖∂µ‖(Bi) = 0, H n−1(Bi) = 0. This shows
(18) which completes the proof of (16).

Now set

A0 := (Rn × {0}k)\(sptµ ∩ U),

Q0 := {x̂ ∈ Rn : Θn(L n (Rn \ A0), x̂) = 0},
R0 := {x̂ ∈ Rn : Θn(L n A0, x̂) = 0}.

We want to use

(Rn × {0}k)\Q2 ⊂ Q0 and (Rn × {0}k)\R2 ⊂ R0.(19)

We will prove this statement later. Suppose (19) holds, then (16) yields

H n−1(D \ (Q0 ∪R0)) = 0.(20)

We say v̂ ∈ ∂Bn(0, 1) is an external normal of A0 at ŷ ∈ Rn, if

Θn(L n {x̂ ∈ Rn : (x̂− ŷ) · v̂ > 0} ∩ A0, ŷ) = 0

and Θn(L n {x̂ ∈ Rn : (x̂− ŷ) · v̂ < 0} \ A0, ŷ) = 0,

Let B0 be the set consisting of all ŷ ∈ Rn for which there exists an external
normal of A0 at ŷ. Then we have

B0 ⊂ Rn \ (Q0 ∪R0).(21)

To see this consider ŷ ∈ Q0 and v̂ ∈ ∂Bn(0, 1). We can estimate

L n({x̂ ∈ Rn : (x̂− ŷ) · v̂ > 0} ∩ A0 ∩Bn(ŷ, r))

≥ L n({x̂ ∈ Rn : (x̂− ŷ) · v̂ > 0} ∩Bn(ŷ, r))−L n((Rn \ A0) ∩Bn(ŷ, r))

≥ (2−1ωn − ε)rn

for r small enough depending on ε. This yields Q0 ⊂ Rn \ B0. Similarly we
can show R0 ⊂ Rn \B0, which proves (21).

Let K ⊂ Rn be compact. Using (20) we obtain

H n−1(K \ (Q0 ∪R0)) ≤H n−1((K \D) \R0) ≤H n−1(∂D ∩K) <∞.

In view of [Fed69, 4.5.11] and [Fed69, 2.10.6] we can now use the general
Gauss-Green theorem [Fed69, 4.5.6]. Combined with (20) and (21) this es-
tablishes∫

A0

divRnφ dL n ≤H n−1(D ∩B0) ≤H n−1(D \ (R0 ∪Q0)) = 0

13



for all φ ∈ C1
c (D,Rn). Thus A0 is stationary in D. Then the constancy

theorem (see [Sim83, 8.4.1]) yields A0 = D which establishes the result.
Hence it remains to prove (19).

We want to show (Rn × {0}k)\R2 ⊂ R0. Consider y ∈ R2. By (7) and as
µ is integral we can estimate for r ∈ (0,∞)

r−nL n(A0 ∩Bn(ŷ, r)) = r−n
∫

graph(f)∩(A0×Rk)∩C(y,r)

|Jf |−1 dH n

≤ r−nµ(B(y, (1 + lip(f))r))

and as y ∈ R2 this goes to 0 for r ↘ 0. Thus ŷ ∈ R0.
It remains to show (Rn×{0}k)\Q2 ⊂ Q0. Suppose this is false, then there

exists a y0 = (ŷ0, ỹ0) ∈ Q2, an ε ∈ (0, 1) and a sequence (rm)m∈N with rm ↘ 0
such that

r−nm L n(Bn(ŷ0, rm) \ A0) > 2ε(22)

for all m ∈ N. Consider the sequence (µm)m∈N given by µm = µy0,rm . By (7),
unit density and as y0 ∈ U1 we have

lim sup
m→∞

µm(B(0, R)) = lim sup
m→∞

r−nm µ(B(y0, Rrm)) ≤ (1 + C lipf)Rn,

lim sup
m→∞

‖δµm‖(B(0, R)) = lim
m→∞

r−n−1
m ‖δµ‖(B(y0, Rrm)) = 0

for every R ∈ (0,∞). By varifold compactness (see [Sim83, 8.5.5] or [All72,
6.4]) there exists a stationary integer n-rectifiable Radon measure ν such
that for a subsequence we have

V(µm) ⇀ V(ν) as radon measures on Rn+k ×G(n + k,n)(23)

Moreover as y0 ∈ Q1 we have y0 ∈ sptµ, then 0 ∈ sptν. Define fm ∈
C 0,1(Bn(0, 1),Rk) by fm(x̂) := r−1

m f(rm(x̂− ŷ0)). By the Arzela-Ascoli theo-
rem exists a g ∈ C 0,1(Bn(0, 1),Rk) such that for a subsequence ‖fm−g‖C0 →
0. We claim

sptν ∩C(0, 1) = graph(g).(24)

Suppose there exists a z ∈ (sptν ∩ C(0, 1)) \ graph(g). Then we find
ρ ∈ (0, 1) with B(z, 4ρ) ∩ graph(g) = ∅ and ν(B(z, ρ)) > 0. Thus for some
large enough m ∈ N we have B(z, 3ρ)∩graph(fm) = ∅ and µm(B(z, 2ρ)) > 0.
But by definition of fm and µm combined with (7) we also have sptµm ⊂
graph(fm), which yields a contradiction. Thus ⊂ holds in (24)

14



Now suppose there exists an z ∈ graph(g) \ (sptν ∩C(0, 1)). As sptν is
closed, we can find ρ ∈ (0,∞) and z0 ∈ Rn+k such that

z0 ∈ ∂C(z, ρ) ∩ sptν and C(z, ρ) ∩ sptν = ∅.(25)

Consider the sequence (νl)l∈N given by νl = νz0,rl . As above, by [Sim83,
8.5.5] there exists a stationary integer n-rectifiable Radon measure ν0 with
0 ∈ sptν0 and such that for a subsequence we have

V(νl) ⇀ V(ν0) as radon measures on Rn+k ×G(n + k,n)(26)

Similar as above we also see

sptν0 ∩C(0, 1) ⊂ graph(h)(27)

for some h ∈ C 0,1(Bn(0, 1),Rk). Combining (25) and (26) we see sptν0 ⊂
{x ∈ Rn+k : x̂ · (ẑ − ẑ0) ≤ 0}. As ν0 is stationary this implies sptν0 ⊂ {x ∈
Rn+k : x̂ · (ẑ − ẑ0) = 0}. But in view of (27) this yields H n(sptν0) = 0,
hence sptν0 = ∅, which contradicts 0 ∈ sptν0. This proves (24).

We continue to lead (22) to a contradiction. Using (7) and the unit
density of µ we can estimate

Lm :=L n(A0 ∩Bn(ŷ0, rm)) =

∫
graph(f)∩(A0×Rk∩C(y0,rm))

|Jf |−1 dH n

≥
∫
C(y0,rm)

|ΛnT(µ, x)\|−1 dµ(x) = rnm

∫
C(y0,1)

|ΛnS\|−1 dV(µm)(x, S).

Recall ε from (22). In view of (23) and (24) we obtain

r−nm Lm + ε ≥
∫
C(0,1)

|ΛnS\|−1 dV(ν)(x, S) ≥
∫

graph(g)∩C(0,1)

|Jg|−1 dH n = ωn

for m large enough. Thus we see

r−nm L n(Bn(ŷ0, rm) \ A0) = ωn − r−nm L n(A0 ∩Bn(ŷ0, rm)) ≤ ε,

which contradicts (22).
This completes the proof of (19), which establishes the result.

4 Maintain graphical representability

In this section we prove Theorem 1.3. The main idea of the proof is to iterate
Brakkes local regularity theorem (see Theorem 2.10) by choosing a time at
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which graphical representation is obtained as the new starting time. To do
so we first show a version of Theorem 2.10 which only has assumptions at
the initial and final time, see Proposition 4.1.

By Corollary A.2 initial height bounds yield weaker height bounds later
on. Also by Huisken’s monotonicity formula, Theorem 2.8 initial bounds
on area ratio imply bounds on area ratio in the future (see Lemma A.3).
Moreover by the clearing out lemma, Lemma 2.9 non-vanishing at some time
yields a lower bound on measure a bit earlier. Thus with Brakke’s local
regularity theorem, Theorem 2.10 we obtain the Proposition below, which is
an improved version of a result found in the author’s thesis [Lah14, 11.7].

4.1 Proposition. For every κ ∈ (0, 1) and q1, q2 ∈ N with q2 > κq1 exist
Σ1 ∈ (1,∞) and σ1 ∈ (0, 2−2) such that the following holds: Let σ ∈ (0, σ1],
ρ ∈ (0,∞), s1 ∈ R, s2 ∈ (s1+2σ2q1ρ2, s1+4σρ2], z0 ∈ Rn+k and let (µt)t∈[s1,s2]

be a Brakke flow in C(z0, 2ρ, 2ρ). Suppose

sptµs2 ∩C(z0, σ1σ
q1ρ, ρ) 6= ∅,(28)

sptµs1 ∩C(z0, 2ρ, 2ρ) ⊂ C(z0, 2ρ, σ
q1+q2ρ),(29)

r−nµs1(B(z0, r)) ≤ (2− κ)ωn for all r ∈ (σ1σ
q1ρ,Σ1

√
σρ).(30)

Set I := (s1 + σ2q1ρ2, s2 − σ2q1ρ2).
Then there exists a g ∈ C∞

(
I ×Bn(ẑ0, σ1σ

q1ρ),Rk
)

such that

µt C(z0, σ1σ
q1ρ, ρ) = H n graph(g(t, ·)) for all t ∈ I.

Moreover g satisfies (1) and sup |Dg|+ σ2q1ρ sup |D2g| ≤ Σ1σ
q2−κq1.

Proof. We may assume s1 = 0, z0 = 0 and ρ = 1. By Corollary A.2 with
p = q1 + q2 and assumption (29) we have

sptµt ∩C(0, 1, 1) ⊂ C(0, 1, 2σq1+q2)(31)

for all t ∈ [0, s2], where we estimated s2 ≤ σ1 ≤ cp.
Choose λ1 ∈ (0, 2−3) depending on κ such that (2− κ)(1 + λ1)n ≤ 2− λ1

and C2λ
2

n+6

1 ≤ (16n)−1 where C2 is the constant from Lemma 2.9. Let
Λ ∈ (1,∞) be from Brakke’s local regularity theorem, Theorem 2.10, chosen
with respect to λ = λ1. Consider the radius

ρ1 := 4−1Λ−
1
2σq1 ∈ (0, σq1).

Set t2 := s2 − (8n)−1ρ2
1. We want to show

µt2(B(0, ρ1)) ≥ λ1ρ
n
1 .(32)
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Suppose this would be false, then we can use Lemma 2.9 with η = λ1 to
obtain µs2(B(0, 2−1ρ1)) = 0. In view of (31) this contradicts (28), where we
chose σ1 small enough. Thus (32) has to be true.

Consider ε = κ and choose the corresponding δ according to Lemma A.3.
We may assume δ2 ≤ (8n)−1. We want to use Lemma A.3 with R = δ−1

√
σ

and r = 4ρ1. Note that r ≤ σq1 ≤ δR and s2 ≤ σ ≤ (8n)−1R2. For σ1 small
and Σ1 large enough we have R ≤ 1 and assumption (30) implies (90) with
K = 2ωn. Lemma A.3 then yields

(4ρ1)−nµt(B(0, 4ρ1)) ≤ 2ωnρ
−κ
1 ≤ C1

√
Λσ−κq1(33)

for all t ∈ [0, s2] and some constant C1 ∈ (1,∞).
For σ1 small enough we have σ1σ

q1 < ρ1 <
√
σ. Then by assumption (30)

and choice of λ1 we can estimate

ρ−n1 µ0(B(0, (1 + λ1)ρ1)) ≤ (2− κ)(1 + λ1)nωn ≤ (2− λ1)ωn(34)

Now choose h0 according to Brakke’s local regularity theorem, Theorem
2.10 with respect to λ = λ1 as above. Set h := 8Λ

1
2σq2 . Note that 2σq1+q2 ≤

hρ1 and for σ1 small enough we have (C1

√
Λσ−κq1)−

1
2h ≤ CΛσq2−κq1/2 ≤ h0.

Thus (31), (32), (33) and (34) let us apply Theorem 2.10 with ρ = ρ1 which
establishes the result.

Looking at Proposition 4.1 we see that at time t2−σ4ρ2
0 we satisfy a non-

vanishing condition in an increased cylinder. This allows to iterate above
Proposition to obtain graphical representability inside a larger cylinder.

4.2 Lemma. For every κ ∈ (0, 1) exist Λ2 ∈ (1,∞) and λ2 ∈ (0, (4Λ2)−1)
such that the following holds: Let λ ∈ (0, λ2], %0 ∈ (0,∞), s3 ∈ R, s4 ∈
(s3 + 2Λ2λ

2%2
0, s3 + λ%2

0], y0 ∈ Rn+k and let (µt)t∈[s3,s4] be a Brakke flow in
C(y0, 4%0, 2%0). Suppose

sptµs4 ∩C(y0, λ2λ
2%0, %0) 6= ∅,(35)

sptµs3 ∩C(y0, 4%0, 2%0) ⊂ C(y0, 4%0, λ
4%0),(36)

r−nµs3(B(y, r)) ≤ (2− κ)ωn(37)

for all y ∈ Bn(ŷ0, 3%0) × {ỹ0} and r ∈ (λ2λ
2%0,Λ2

√
λ%0). Set I := (s3 +

λ4%2
0, s4 − Λ2λ

2%2
0).

Then there exists a g ∈ C∞
(
I ×Bn(ŷ0, 2%0),Rk

)
such that

µt C(y0, 2%0, %0) = H n graph(g(t, ·)) for all t ∈ I.

Moreover g satisfies (1) and sup |Dg| ≤ Λ2λ
3
2 .
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Proof. We may assume s3 = 0, y0 = 0, %0 = 2 and κ ≤ 1/4. Set q1 =
q2 := 2. Let σ1 be from Proposition 4.1 with respect to κ. For m ∈ N set
Rm := mσ1λ

2, Tm := s4 − 8mλ4 and Jm := (2λ4, Tm). Note that Tm ≥
s4 − Cσ−1

1 Rmλ
2, in particular for Rm ≤ 5 and Λ2 large enough we have

Tm ≥ (Λ2 − Cσ−1
1 )λ2 > 4λ4.

Consider the following statement:
stat(m) :⇔ There exists a gm ∈ C∞

(
Jm ×Bn(0, Rm),Rk

)
with

µt C(0, Rm, 1) = H n graph(gm(t, ·)) for all t ∈ Jm,
gm satisfies (1) and sup |Dgm| ≤ Λ2σ

3
2 .

By Proposition 4.1 with s2 = s4, ρ = 1, σ = 4
√

2λ we see that stat(1)
is true. Now suppose stat(m0) holds for some m0 ∈ N with Rm0 ≤ 5.
Using Proposition 4.1 with s2 = Tm0 − 2λ4, ρ = 1, σ = 4

√
2λ and arbitrary

z0 ∈ Bn(0, Rm0 + σ1λ
2) × {0}k yields that also stat(m0 + 1) is true. Thus

stat(m1) holds for some m1 ∈ N with 4 ≤ Rm1 ≤ 5, which establishes the
result.

Now consider a Brakke flow which is initially graphical with small Lips-
chitz constant. Then the conditions of Lemma 4.2 are satisfied for arbitrarily
small scaling. Thus we can extend the interval of graphical representation
up to the initial time.

4.3 Lemma. There exist constants C ∈ (1,∞) and σ2 ∈ (0, 1) such that the
following holds: Let σ ∈ (0, σ2], ρ0 ∈ (0,∞), t1 ∈ R, t2 ∈ (t1 + Cσ2ρ2

0, t1 +
σρ2

0], z0 ∈ Rn+k and let (µt)t∈[t1,t2] be a Brakke flow in C(z0, 4ρ0, 2%0). As-
sume z0 ∈ sptµt1 and

sptµt2 ∩C(z0, σ2σ
2ρ0, ρ0) 6= ∅.(38)

Suppose there exists an f ∈ C0,1
(
Bn(ẑ0, 4ρ0),Rk

)
with lip(f) ≤ σ4 and

µt1 C(z0, 4ρ0, 2ρ0) = H n graph(f).(39)

Set I := (t1, t2 − Cσ2ρ2
0).

Then there exists a g ∈ C∞
(
I ×Bn(ẑ0, 2ρ0),Rk

)
such that

µt C(z0, 2ρ0, ρ0) = H n graph(g(t, ·)) for all t ∈ I.

Moreover g satisfies (1) and sup |Dg| ≤ σ.

Proof. We may assume t1 = 0, z0 = 0 and ρ0 = 1.
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Let C2 ∈ (1,∞) be a constant which we will choose later. For s ∈ (0, 16σ4]
we consider the following statement:
stat(s) :⇔ There exists an us ∈ C∞

(
(s, t2 − C2σ

2)×Bn(0, 1),Rk
)

such that

µt C(0, 2, 1) = H n graph(us(t, ·))(40)

us satisfies (1) and sup |Dus| ≤ σ(41)

Suppose stat(s0) holds for some s0 ∈ (0, 16σ2]. We want to show that in
this case also stat( s0

2
) holds. Let ŷ ∈ Bn(0, 2) be arbitrary, set y := (ŷ, f(ŷ))

and %2
0 := σ−1s0 ≤ σ2 ≤ 1/4. Using assumption (39) and lip(f) ≤ σ4 yields

sptµ0 ∩C(y, 4%0, 3/2) ⊂ C(y, 4%0, 4σ
4%0).(42)

Then by Corollary A.2 with R1 = r0 = 2%0 and R2 = 5/4 we obtain

sptµt ∩C((ŷ, 0), 2%0, 1) ⊂ C(y, 2%0, %0)(43)

for all t ∈ [0, 2s0]. Here we estimated 4σ4%0 + 2%−1
0 s0 ≤ Cσ1%0 ≤ %0 and

|f(ŷ)|+ 1 ≤ 5/4.
Set J2 := (s0/2, (2 − 1/2)s0). We want to use Lemma 4.2 with κ = 1

2
,

λ = 2σ, s4 = 2s0 and y0 = y. Choosing σ2 small enough we obtain the
following: Λ2λ

2%2
0 ≤ s0/2; Statement (42) implies (36); Using assumption

(39) and lip(f) ≤ σ4
2, we see that (37) holds. Moreover by (43) and as s0 <

2s0 < t2 − C2σ
2 we can use assumption (40) to show (35). Then by Lemma

4.2 we obtain an us,ŷ ∈ C∞
(
J2 ×Bn(ŷ, %0),Rk

)
with sup |Dus,ŷ| ≤ Cσ

3
2 ≤ σ

and

µt C((ŷ, 0), %0, 1) = µt C(y, %0, %0) = H n graph(us,ŷ(t, ·))

for all t ∈ J2. Here we used (43) to obtain the first equality. As ŷ ∈ Bn(0, 1)
was arbitrary this shows stat( s0

2
) is true.

Similarly we can use Lemma 4.2 with y0 = 0, s4 = t2, %0 = 1 and λ =
√

2σ
to obtain that stat(4σ4) is true for C2 large enough. Hence we can start an
iteration which yields that stat(0) holds. This establishes the result.

Consider the situation of Lemma 4.3. If z0 ∈ sptµt2 and σ small enough
we have that (µt)t∈[t2−Cσ2,t2] satisfies the conditions of Lemma 4.3 on the
smaller scale ρ0/2 with σ replaced by 4

√
σ. Thus we can use t2 − Cσ2 as

the new starting time. This yields an iteration and by curvature bounds for
graphical mean curvature flow (for example by Wang [Wan04, 4.1]), we can
assure that the gradient does not blow up. This leads to the following:
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4.4 Lemma. There exists a constant β2 ∈ (0, 1) such that the following holds:
Let β ∈ (0, β2], ε ∈ (0, β2), %0 ∈ (0,∞), s1 ∈ R, s2 ∈ (s1 + ε2%2

0, s1 + β4%2
0],

y0 ∈ Rn+k and let (µt)t∈[s1,s2] be a Brakke flow in C(y0, 2%0, 2%0). Assume
y0 ∈ sptµs1 and

sptµs2 ∩C(y0, β
2ε%0, %0) 6= ∅.(44)

Suppose there exists an f ∈ C0,1
(
Bn(ŷ0, 2%0),Rk

)
with lip(f) ≤ β4 and

µs1 C(y0, 2%0, 2%0) = H n graph(f).(45)

Let s ∈ (s1, s2 − ε2%2
0) and %(s) := β−1/8

√
s2 − s.

Then there exists a gs ∈ C∞
(
(s1, s)×Bn(ŷ0, %(s)),Rk

)
such that

µt C(y0, %(s), %0) = H n graph(gs(t, ·)) for all t ∈ (s1, s).

Moreover gs satisfies (1) and sup |Dgs| ≤ β.

Proof. We may assume s1 = 0, y0 = 0 and %0 = 1. First note that by (45),
lip(f) ≤ β4

2 , s2 ≤ β4
2 and Corollary A.2 with R1 = r0 = R and R2 = 1

sptµt ∩C(0, R, 1) ⊂ C(0, R, 2β4
2R +R−1s2) ⊂ C(0, 1, 1/4)(46)

for all t ∈ [0, s2], R ∈ (0, 1].
For s ∈ (0, s2), we consider the following statement:

stat(s) :⇔ There exists a vs ∈ C∞
(
(0, s)×Bn(0, %(s)),Rk

)
such that

µt C(0, %(s), 1) = H n graph(vs(t, ·))(47)

vs satisfies (1) and sup |Dvs| ≤ β.(48)

First observe that stat(s) is true for all s ∈ (0, (1 − 2−7)s2]. To see this
use Lemma 4.3 with t1 = 0, t2 = s2, σ = β and ρ0 = β−1/8√s2. Note that

s2 − Cσ2ρ2
0 ≥ (1 − Cβ2)s2 ≥ (1 − 2−7)s2, σ2σ

2ρ0 ≥ σ2β
−1/8
2 β2ε ≥ β2ε and

2β4
2ρ0 + ρ−1

0 s2 ≤ ρ0 for β2 small enough. In particular use (46) with R = ρ0

to see that sptµt ∩C(0, ρ0, ρ0) = sptµt ∩C(0, ρ0, 1).
Now assume stat(s0) holds for some s0 ∈ [(1− 2−7)s2, s2 − ε2). We want

to show that under this assumption stat(s) holds for all s ∈ [s0, s0 + ε5).
Set τ := s2− s0 ∈ (ε2, β4), t1 := s0− 63τ and a0 := (0, vs0(t1, 0)) ∈ Rn+k.

Then %(t1) = 8%(s0). Hence by (47) and (48)

sptµt1 ∩C(0, 8%(s0), 1) ⊂ C(a0, 8%(s0), 8β%(s0)).

Thus by Corollary A.2 and (46)

sptµt ∩C(0, 4%(s0), 1) ⊂ C(a0, 4%(s0), %(s0))(49)
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for all t ∈ [t1, s2]. Here we estimated 8β%(s0) + %(s0)−1(s2 − t1) ≤ %(s0), for
β2 small enough.

Set J := (t1, s2 − 2−1τ). Now use Lemma 4.3 with σ = 4
√
β, ρ0 = 2%(s0),

t2 = s2 and z0 = a0. Note that s2 − Cσ2ρ2
0 ≥ s2 − C 8

√
β2τ ≥ s2 − 2−1τ

and σ2σ
2ρ0 ≥ σ2

√
βτ ≥ β2βε for β2 small enough. Then we obtain an

u ∈ C∞
(
J ×Bn(0, 4%(s0)),Rk

)
with sup |Du| ≤ 4

√
β and

µt C(0, 4%(s0), 1) = H n graph(u(t, ·)) for all t ∈ J.(50)

Here we also used (49). Moreover u satisfies (1). It remains to show the
gradient bound for u.

For t ∈ J consider Mt := graph(u(t, ·)), which moves by smooth mean
curvature flow. By Theorem [Lah15, 2.2.1] with ρ = %(s0), l = l0 and starting
time t1 we obtain a curvature bound

|A(Mt, x)|2 ≤ C|D2u(t, x̂)| ≤ C(t− t1)−1 ≤ C2
1τ
−1(51)

for all x ∈ Mt ∩ C(a0, 2%(s0), 2%(s0)) for all t ∈ J ∩ [s0 − τ, s2] and some
constant C1 ∈ (1,∞). Here chose β2 small enough such that β2 ≤ l0 and
s2 − t1 ≤ 64 4

√
β2%(s0)2 ≤ l0%(s0)2, where l0 is from [Lah15, 2.2.1]. Moreover

in view of (49) we see that (51) actually holds for all x ∈Mt∩C(0, 2%(s0), 1).
Note that the curvature bounds in [Lah15, 2.2.1] are based on White’s reg-
ularity theorem [Whi05]. Similarly we could use Wang’s curvature estimate
[Wan04, 4.1] to deduce (51).

Let ŷ ∈ Bn(0, %(s0)) be arbitrary, y := (ŷ, u(s0−β5τ, ŷ)) ∈ Rn+k. In view
of (47) and (48) we have

sptµs0−β5τ ∩C((ŷ, 0), 2β2
√
τ , 1) ⊂ C(y, 2β2

√
τ , 2β3

√
τ).

Then using Corollary A.2 with R1 = r0 = β2
√
τ , R2 = 1/2 and (46) we

obtain

sptµt ∩C((ŷ, 0), β2
√
τ , 1) ⊂ C(y, β2

√
τ , 4β3

√
τ)(52)

for all t ∈ [s0−β5τ, s0+β5τ ]. Note that s0+β5τ ∈ J for β5
2 ≤ 1/2. Combining

(50), (51) and (52) we can use Lemma [Lah15, A.4] with r = β2
√
τ , ξ2 = 4β,

K2 = C1β
2 to obtain

|Du(t, ŷ)|2 ≤ Cβ3 ≤ β2

for all t ∈ [s0, s0 + β5τ ], where we chose β2 small enough. By assumption
τ = s2 − s0 ≥ ε2 and β2 ≥ ε. As ŷ ∈ Bn(0, %(s0)) was arbitrary this shows
that stat(s) holds for all s ∈ [s0, s0 + ε5), this establishes the result.
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Assume the setting of Theorem 1.3. Using Lemma 4.4 we can show that
sptµt ∩C(0, ρ, ρ) is contained in a Lipschitz graph and has unit density for
all t ∈ (t1, t2). Then by Theorem 1.5 we find a sequence τm ↗ t2 such that
sptµτm C(0, ρ, ρ) is graphical. With Lemma 4.4 for arbitrary small ε we can
conclude Theorem 1.3.

Proof of Theorem 1.3. We may assume a = 0, t1 = 0 and ρ = 3. Using (6)
and Corollary A.2 we obtain

sptµt ∩C(0, 4, 4) ⊂ C(0, 4, h(t))(53)

for all t ∈ [0, t2] and h(t) = l + t ≤ 2l0.
Set U := Bn(0, 4)×Rk. By definition of a Brakke flow we find a sequence

(τm)m∈N with τm ↗ t2, τm ∈ (0, t2] such that for all m ∈ N we have µm :=
µτm C(0, 4, 4) is integer n-rectifiable and the generalised mean curvature
vector Hµm exists. In particular ‖∂µm‖ is absolutely continuous with respect
to µm inside U . Fix an arbitrary m ∈ N. We want to show

sptµm ∩ U ⊂ graphfm(54)

for some Lipschitz function fm : Bn(0, 4)→ Rk

Let x, y ∈ sptµm ∩ U with x 6= y. Set y0 := (ŷ, f(ŷ)). We want to show
|x̃− ỹ| ≤ L|x̂− ŷ| for some constant L ∈ (1,∞) which will depend on l0. By
(53) we have |x̃− ỹ| ≤ 2l0. Hence we may assume |x̂− ŷ| ≤ l0.

First consider the case τm ≤ 4|x̂− ŷ|2 ≤ 4l20 and let z ∈ sptµm ∩U . Then
µm(B(z, 2

√
nτm)) 6= ∅, so by Lemma 2.6 we have µ0(B(z, 4

√
nτm)) 6= ∅.

Thus by (6) and lip(f) ≤ l0 we have |z̃ − ỹ0| ≤ l0|ẑ − ŷ| + 8
√

nτm. For
z = x, y this yields the wanted estimate.

Now consider the case 0 < 4|x̂ − ŷ|2 < τm. Set ε := |x̂ − ŷ|. By (53)
we have y ∈ sptµm ∩ C(y0, β

2ε, 1) for all β ∈ (0,∞). Set sm := τm − 2ε2.
Using Lemma 4.4 with s1 = 0, s2 = τm, %0 = 1, β = 4

√
l0 we obtain a

gm ∈ C∞(Bn(ŷ, 8nε)) with sup |Dgm| ≤ 4
√
l0 and

sptµsm ∩C(y0, 8nε, 1) = H n graphgm.(55)

Let z ∈ sptµm∩U with |ẑ− ŷ| ≤ ε. Then µm(B(z, 2
√

nε)) 6= ∅, so by Lemma
2.6 we have µsm(B(z, 4

√
nε)) 6= ∅. In view of (53) we have |z̃ − ỹ0| ≤ 2l0 <

1 − 4
√

n, hence we can use (55) to estimate |z̃ − gm(ŷ)| ≤ l0(1 + 4n)ε. For
z = x, y this proves (54).

Next we want to show that µm has unit density. Let y ∈ sptµm ∩ U and
r ∈ (0,

√
τm) be given. Set ε := 32

√
l0r, sr := τm−16 16

√
l0r

2 and y0 := (ŷ, f(ŷ)).
Note that by (53) we have y ∈ sptµm ∩C(y0, β

2ε, 1). Using Lemma 4.4 with
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s1 = 0, s2 = τm, %0 = 1, β = 4
√
l0 we obtain a gr ∈ C∞(Bn(ŷ, 4r)) with

sup |Dgr| ≤ 4
√
l0 and

sptµsr ∩C(y0, 4r, 1) = H n graphgm,(56)

Consider a radial cut-off function ζr ∈ C∞
(
Rn+k, [0, 1]

)
with sup |D2ζr| ≤

Cr−2 and

ζr(x) =

{
1 for 0 ≤ |x− y| ≤ r

0 for (1 + 2−n−2)r ≤ |x− y| .

By the Brakke flow equation (9), Remark 2.2 and Lemma 2.6 we can estimate

µm (B(y, r))− µsr
(
B(y, (1 + 2−n−2)r)

)
≤ µm(ζr)− µsr(ζr) ≤ C

∫ τm

sr

(
sup |D2ζr| µt({φ > 0})

)
dt

≤ C 16
√
l0 sup{µt(B(y, 2r)), t ∈ [sr, τm]} ≤ C 16

√
l0µsr (B(y, 4r)) .

In view of (53) we have |ỹ − ỹ0| ≤ 2l0 < 1 − 8r, hence we can use (56) and
the above estimate to obtain

µm (B(y, r)) ≤ (1 + C 4
√
l0)
(
C 16
√
l0(4r)n + ((1 + 2−n−2)r)n

)
≤ 3

2
rn,

where we chose l0 small enough. As we already know µm is integer rectifiable,
this shows that µm even has unit density in U . Also, by (5) and Lemma 2.6
we have sptµm∩U 6= ∅. Then Theorem 1.5 yields that in (54) actually holds
equality. Hence

µτm C(0, 4, 4) = H n graphfm

for all m ∈ N, for some Lipschitz function fm : Bn(0, 4)→ Rk. In view of this
and (53) we can use Lemma 4.4 with s2 = τm, %0 = 1, y0 ∈ Bn(0, 4) × {0}k
and arbitrarily small ε to obtain graphical representability inside C(0, 4, 4)
for times in (0, τm). As τm ↗ t2 we can extend the time interval to (0, t2).
Finally for the Lipschitz bound use Lemma 4.4 with s2 = t and β = 4

√
l + t

for arbitrary t ∈ (0, t2). This completes the result.

5 Brakke-type regularity theorem

Here we proof Theorem 1.1. Under slightly stronger assumptions on the
starting density ratios the result directly follows from Lemma 4.2 and The-
orem 1.3, see below:
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5.1 Lemma. There exists a constant c ∈ (0, 1) and for every κ ∈ (0, 1) exists
an h2 ∈ (0, c4) such that the following holds: Let h ∈ (0, h2], % ∈ (0,∞),
s1 ∈ R, s2 ∈ (s1 + 4

√
h%2, s1 + c%2], x0 ∈ Rn+k and let (µt)t∈[s1,s2] be a Brakke

flow in C(x0, 9%, 9%). Suppose x0 ∈ sptµs2

sptµs1 ∩C(x0, 9%, 9%) ⊂ C(x0, 9%, h%),(57)

r−nµs1(B(y, r)) ≤ (2− κ)ωn(58)

for all y ∈ Bn(x̂0, 7%)× {x̃0} and all r ∈ (h%, %). Set I := (s1 + 4
√
h%2, s2).

Then there exists a g ∈ C∞
(
I ×Bn(x̂0, %),Rk

)
such that

µt C(x0, %, %) = H n graph(g(t, ·)) for all t ∈ I.

Moreover g satisfies (1) and sup |Dg(t, ·)| ≤ 2 4
√
%−2(t− s1) for all t ∈ I.

Proof. We may assume x0 = 0, s1 = 0 and % = 1. Let Λ2 and λ2 be from
Lemma 4.2 with respect to κ and set s4 := 8Λ2

√
h < 4

√
h < s2 for h2 small

enough. We see that s2 − s4 ≤ (8n)−1, so Lemma 2.6 and 0 ∈ sptµs2 yield
µs4(B(0, 1)) > 0. Thus there exists an z0 ∈ sptµs4 ∩B(0, 1).

Set J := (4h, s4 − 4Λ2

√
h). By Lemma 4.2 with %0 = 2, y0 = (ẑ0, 0) and

λ = 4
√
h there exists a Lipschitz function g1 ∈ C∞(J × Bn(ẑ0, 4),Rk) such

that

µt C((ẑ0, 0), 4, 2) = H n graph(g(t, ·)) for all t ∈ J.

Moreover sup |Dg1| ≤ Λ2h
3/8 ≤ 4

√
h. Here we chose h2 ≤ min{λ4

2,Λ
−8
2 }. Set

a := (0, g1(0)) and t1 = 8h. By Corollary A.2, assumption (57) and |ẑ0| ≤ 1
we have |a| < 1 and sptµt1 ∩C((ẑ0, 0), 4, 2) ⊃ sptµt1 ∩C(a, 2, 2) for h2 small
enough. Then Theorem 1.3 with l = 4

√
h and ρ = 1 yields the result. Here

we chose h2 small depending on Λ2 such that 8h ∈ J and 4
√
h ≤ l0.

Now under the assumptions of Theorem 1.1 we can find a time s1 shortly
after t1 such that µs1 C(a, ρ, ρ) has bounded mean-curvature-excess and
still has small height. By Lemma 2.12 then also the tilt-excess has to be
small. Thus Brakke’s cylindrical growth theorem, Theorem 2.13 can be used
to show that the density assumptions of Lemma 5.1 hold, which then yields
the conclusion of Theorem 1.1.

proof of Theorem 1.1. We may assume a = 0, t1 = 0 and ρ = 1. First
consider the case γ > 0. Set U := B(0, 1) and C(x, r) := C(x, r) ∩ U for
r ∈ (0,∞), x ∈ U . In view of assumption (2) and as C(0,

√
2,
√

2) ⊂ B(0, 2)
we can use Corollary A.2 with r0 =

√
2− 1 and p = 4 to obtain

sptµt ∩C(0, 1, 1) ⊂ C(0, 1, 2γ)(59)
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for all t ∈ [0, 4
√
γ] for γ0 small enough. Fix a σ ∈ (0, 2−5) such that (1 −

8σ)−n ≤ 1 + λ/8 and (1 + 4σ)n ≤ 1 + λ/32. In particular we can choose γ0

small depending on σ. By Lemma 2.6 and assumption (3) we can estimate

µt (B(0, 1− σ)) ≤ Cσ−n−kµ0 (B(0, 1)) ≤ Cσ−n−k(60)

for all t ∈ [0, (8n)−1σ2] ∩ [0, t2].
Fix a cut-off function ψ ∈ C∞ (R, [0, 1]) with |ψ′′| ≤ Cσ−2 and

ψ(t) =

{
1 for 0 ≤ |t| ≤ 1− 2σ

0 for 1− σ ≤ |t|.

Consider ζ ∈ C∞c (B(0, 1), [0, 1]) given by ζ(x) = ψ(|x|). Consider s ∈
(0, 4
√
γ]. Using the Brakke flow equation (9), and Remark 2.2 we can es-

timate

D := µs (ζ) +
1

2

∫ s

0

∫
Rn+k

|Hµt |2ζ dµt dt

≤ µ0 (ζ) + sup |D2ζ|
∫ s

0

µt ({ζ > 0}) dt.

Hence by (3) and (60) we have

D ≤ (2− λ)ωn + Csσ−n−k−2 ≤ (2− λ/2)ωn

where we used s ≤ 4
√
γ0 and we chose γ0 small enough. By (59) we have

{ζ = 1} ⊃ B(0, 1− 2σ) ⊃ sptµs ∩ C(0, 1− 4σ), for γ0 ≤ σ. Thus

µs (C(0, 1− 4σ)) +
1

2

∫ s

0

∫
C(0,1−4σ)

|Hµt|2 dµt dt ≤ (2− λ/2)ωn(61)

for all s ∈ (0, 4
√
γ]. In particular we find an s1 ∈ (0, 4

√
γ] such that µs1 U is

integer n-rectifiable, has L2-integrable mean curvature vector and∫
C(0,1−4σ)

|Hµs1
|2 dµs1 ≤ 2(2− λ/2)ωnγ

−1/4 ≤ Cγ−1/4.(62)

Consider y ∈ B(0, σ). By (61) and choice of σ we can estimate

µs1(C(y, 1− 8σ)) ≤ (2− λ/2)ωn ≤ (2− λ/4)ωn(1− 8σ)n,(63)

by definition of λ and for γ0 ≤ σ.
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Let f ∈ C∞c (C(0, 1− 4σ), [0, 1]) be such that f(x) = ψ((1− 4σ)−1|x̂|) for
x ∈ sptµs1 ∩ U . In view of (59),(61) and (62) we can use Lemma 2.12 with
f = g = h to obtain∫

C(0,1−6σ)

∥∥(Rn × {0}k)\ −T(µs1 , x)\
∥∥2

dµs1(x) ≤ Cγ7/8(64)

where we used sup |Df |2 ≤ Cσ−2 ≤ Cγ−1
0 ≤ Cγ−1.

Consider y ∈ B(0, σ) and r0 ∈ (γ4α0σ/9, σ). Let R2 = 1 − 8σ and
R1 = (1 + 4σ)r0. By (62) and (64) the assumptions of Theorem 2.13 are
satisfied for α2 = Cγ−1/4(γ4α0σ)−2n and β2 = Cγ7/8(γ4α0σ)−2n. Hence we
can estimate∣∣∣∣R−n2

∫
U

ψ(R−1
2 |x̂− ŷ|) dµ(x)−R−n1

∫
U

ψ(R−1
1 |x̂− ŷ|) dµ(x)

∣∣∣∣
≤ Cγ−1/8(γ4α0σ)−2nγ7/16 ≤ Cσ−2nγ

3/16
0 ≤ λωn/4

where we chose α0 ≤ (64n)−1 and γ0 small enough. By definition of ψ and
(63) this yields

((1 + 4σ)r0)−nµ0 (B(y, r0)) ≤ (2− λ/8)ωn ≤ (2− λ/16)ωn(1 + 4σ)−n.

Now we can use Lemma 5.1 with % = σ/9 and h = γ2α0 to obtain the result.
For the case γ = 0 use the above result with arbitrary small γ.

5.2 Corollary. Consider the situation of Theorem 1.1 without assumption
(3). Let δ ∈ (0, 1) be such that γ ≤ δγ0 and

(δρ)−nµt1(B(y, δρ)) ≤ (2− λ)ωn.(65)

for all y ∈ C(a, (2 − δ)ρ, δρ). Moreover change the conditions on t2 to t2 ∈
(t1 + γα0δ2ρ2, t1 + α0δ

2ρ2) and set J := (t1 + γα0δ2ρ2, t2).
Then there exists a g ∈ C∞

(
J ×Bn(â, (2− δ)ρ),Rk

)
such that

µt C(a, (2− δ)ρ, ρ) = H n graph(g(t, ·)) for all t ∈ I.

Moreover g satisfies (1) and sup |Dg(t, ·)| ≤ 2 4
√

(δρ)−2(t− t1) for all t ∈ J .

Proof. We may assume t1 = 0, a = 0 and ρ = 1. By Corollary A.2 with
r0 = δ we see that

µt C(0, 2− δ, 1) = µt C(0, 2− δ, δ/2)(66)

for all t ∈ [0, t2]. Here we chose α0 and γ0 small enough. By Brakke’s
continuity result [Bra78, 3.10] we have for almost every s ∈ (0, t2) that
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µs(φ) = limt↗s µt(φ) for all φ ∈ C0
c (C(0, 2, 2)). Consider such an s and

Js = (hα0δ2, s). Then for every ŷ ∈ Bn(0, 2 − δ) for which there exists an
z ∈ sptµs ∩

(
{ŷ} ×Bk(0, δ/2)

)
we can use Theorem 1.1 replacing ρ by δ, t2

by s and a by z. This yields a function gŷ ∈ C∞
(
Js ×Bn(ŷ, γ0δ),Rk

)
such

that

µt C((ŷ, 0), γ0δ, 1) = µt C(z, γ0δ, δ) = H n graph(gŷ(t, ·))(67)

for all t ∈ Js. Moreover gŷ satisfies (1) and sup |Dgŷ(t, ·)| ≤ 2
4
√
δ−2t for

all t ∈ Js. Here we used (66) for the first equality. Now by choice of s,
connectedness of Bn(0, 2 − δ) and (66), we see that either (67) holds for all
ŷ ∈ Bn(0, 2− δ) or sptµs∩C(0, 2− δ, δ/2) = ∅. As we can choose s arbitrary
close to t2 and as 0 ∈ sptµt2 only the first option remains, which proves the
result.

6 White-type regularity theorem

Here we want to prove Theorem 1.2. First we observe that a Brakke flow for
which all Gaussian density ratios are one, has to be a plane. This mainly
follows from Huisken’s monotonicity formula, Theorem 2.8.

6.1 Lemma. Let M ∈ (1,∞), t1 ∈ R, t2 ∈ (t1,∞) and (µt)t∈[t1,t2] be a
Brakke flow in Rn+k. Suppose µt2 6= ∅ and for all (s, y) ∈ (t1, t2]× Rn+k

sup
R∈(0,∞)

R−nµs(B(y,R)) ≤M,(68)

sup
t∈[t1,s)

∫
Rn+k

Φ(s,y) dµt ≤ 1.(69)

Then there exists a T ∈ G(n + k,n) and an a ∈ Rn+k such that µt =
H n (T + a) for all t ∈ (t1, t2).

Proof. We may assume t1 = −1 and t2 = 0. For t ∈ (−1, 0) let D(t) be
the set of all y ∈ sptµt such that Θn(µt, y) ≥ 1 and T(µt, y) exists. Fix
s ∈ (−1, 0) and y ∈ D(s). For ε ∈ (0, 1) there exist a cut-off function
ζ ∈ C0

c

(
Rn+k, [0, 1]

)
and an h0 ∈ (0, s+ 1) such that∫
Rn×{0}k

Φ(0,0)(−1, x)ζ(x) dH n(x) ≥ 1− ε,(70) ∫
Rn+k

Φ(s,y) dµs−h0 ≤ lim
h↘0

∫
Rn+k

Φ(s,y) dµs−h + ε.(71)

27



By (70) and definition of the approximate tangent space we can estimate

(1− ε)Θn(µs, y) ≤ Θn(µs, y)

∫
T(µs,x)

Φ(0,0)(−1, x)ζ(x) dH n(x)

≤ lim
λ↘0

λ−n
∫
Rn+k

Φ(0,0)(−1, λ−1(x− y)) dµs(x)

= lim
λ↘0

∫
Rn+k

Φ(s+λ2,y)(s, x) dµs(x).

Then with Huisken’s monotonicity formula, Theorem 2.8, continuity of the
integral and (71) we obtain

(1− ε)Θn(µs, y) ≤ lim
λ↘0

∫
Rn+k

Φ(s+λ2,y) dµs−h0 ≤ lim
h↘0

∫
Rn+k

Φ(s,y) dµs−h + ε.

Thus by (69) and as ε was arbitrary we have

1 ≤ Θn(µs, y) ≤ lim
h↘0

∫
Rn+k

Φ(s,y) dµs−h ≤ 1(72)

for all y ∈ D(s) for all s ∈ (−1, 0). Hence µt has unit density for a.e.
t ∈ (−1, 0).

Fix an arbitrary t0 ∈ (−1, 0) such that µt0 has unit density. Assumption
µ0 6= ∅ and Lemma 2.6 imply sptµt0 6= ∅, so we can find n+1 points y0, . . . , yn
in D(t0) such that vi := yi − y0, i = 1, . . . ,n are linearly independent. Set
T := span(vi)1≤i≤n. By estimates (69), (72) and Theorem 2.8 we obtain∫

Rn+k

Φ(t0,yi) dµt = 1

for all t ∈ [−1, t0) for all i ∈ {0, . . . ,n}.
Then Theorem 2.8 yields the existence of a J ⊂ (−1, t0) such that

L 1((−1, t0) \ J) = 0 and for all t ∈ J we have µt has unit density, the
generalised mean curvature vector Hµt exists with

∫
|Hµt|2µt <∞ and

Hµt(x) + (2(t0 − t))−1(T(µt, x)⊥)\(x− yi) = 0(73)

for µt-a.e. x ∈ Rn+k and all i = 0, 1, . . . ,n.
Let t ∈ J and let Et be the set of points x ∈ sptµt such that Θn(µt, x) ≥ 1,

T(µt, x) exists and (73) holds for all i ∈ {0, . . . ,n}. We see µt(Rn+k\Et) = 0.
Consider x ∈ Et then by (73) we have

(T(µt, x)⊥)\(y0 − yi) = (T(µt, x)⊥)\(x− yi)− (T(µt, x)⊥)\(x− y0) = 0
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for all i ∈ {1, . . . ,n}. So vi ∈ T(µt, x) for all i ∈ {1, . . . ,n}, hence T(µt, x) =
T . As this holds for all x ∈ Et for all t ∈ J , we have Hµt ≡ 0 for a.e.
t ∈ (−1, t0). This follows from Brakke’s general regularity theorem [Bra78,
6.12] (see also [KT14, 3.2]). One could also deduce this from Menne’s char-
acterization of the mean curvature vector in [Men15, 15.6].

Now for a.e. t ∈ (−1, t0) equality (73) with i = 0 yields Et ⊂ T + y0.
Thus sptµt ⊂ T + y0. Then by Theorem 1.5 we have µt = H n (T + y0).
As this holds for a.e. t in (−1, t0) and by the continuity properties of the
Brakke flow due to Brakke [Bra78, 3.10] we obtain µt = H n (T + y0) for
all t ∈ (−1, t0). As we can choose t0 arbitrary close to 0 this establishes the
result.

Now suppose the Gaussian density ratios are locally bounded by 1 + δ.
In view of the previous Lemma an indirect blow-up argument combined with
Ilmanen’s compactness theorem, Theorem 2.11, yields a small neighbourhood
in which we have small height and density ratios close to one, see Lemma
6.2. In view of Theorem 1.1 this implies Theorem 1.2.

6.2 Lemma. For all ε, σ ∈ (0, 1/2) there exists a δ ∈ (0, 1) such that the
following holds: Let %1 ∈ (0,∞), %2 ∈ [%1,∞), t0 ∈ R, x0 ∈ Rn+k and let
(µt)t∈[t0−%21,t0] be a Brakke flow in B(x0, (2+

√
2n)%1+%2). Suppose x0 ∈ sptµt0

and for all (s, y) ∈ (t0 − %2
1, t0]×B(x0, %1)

sup
t∈[t0−%21,s)

∫
Rn+k

Φ(s,y)ϕ(s,y),%2dµt ≤ 1 + δ.(74)

Then there exists a T ∈ G(n + k,n) such that both

sup
{
|(T⊥)\(x− x0)|, x ∈ sptµt0−σδ2%21 ∩B(x0, 2δ%1)

}
≤ εδ%1,

µt0−σδ2%21(B(x0, δ%1)) ≤ ωn(1 + ε)(δ%1)n.

Proof. We may assume %1 = δ−1, t0 = 0 and x0 = 0. Suppose the statement
would be false. Then there exist ε, σ ∈ (0, 1/2) and for every j ∈ N we find
a Brakke flow (νjt )t∈[−j2,0] in Bj := B(0, (2 +

√
2n)j + %j) and an %j ∈ [j,∞)

such that 0 ∈ sptνj0,

sup
t∈[−j2,s)

∫
Rn+k

Φ(s,y)ϕ(s,y),%j dνjt ≤ 1 +
1

j
(75)

for all (s, y) ∈ (−j2, 0]×B(0, j) and one of the following holds

inf
T∈G(n+k,n)

sup
{
|(T⊥)\(x)|, x ∈ sptν−σ ∩B(0, 2)

}
> ε(76)

νj−σ(B(0, 1)) > ωn(1 + ε).(77)
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We may assume the %j are monotonically increasing.
To obtain a converging subsequence of the (νjt ) we need uniform bounds

on the measure of compact sets. We claim that for every R ∈ (0,∞) we can
find a D(R) such that

sup
j∈N

sup
t∈[−1,0]

νjt (B(0, R) ∩B(0, j/2)) ≤ D(R).(78)

First we show

sup
t∈[−1,0]

sup
y∈B(0,j)

sup
R∈(0,j/4]

νjt (B(y,R)) ≤ C1R
n(79)

for some constant C1 ∈ (1,∞) and all j ∈ N, j ≥ 2. Set c2 := (2n)−1. To
see (79) note that for x ∈ B(y, 2R), R ≤ j/4 we have Ψ(t,y)(t − c2R

2, x) ≥
(4πc2R

2)−
n
2 exp(−1/c2) and ϕ(t,y),%j(t− c2R

2, x) ≥ (1− 1/4)3. Thus Lemma
2.6 and assumption (75) yield

νjt (B(y,R)) ≤ Cνjt−c2R2(B(y, 2R))

≤ CRn

∫
Rn+k

Φ(t,y)ϕ(t,y),%j dνjt−c2R2 ≤ CRn.

To prove (78) note that by Lemma 2.6 we can estimate

νjt (B(0, j/2)) ≤ νjt (B(0, 2
√

nj)) ≤ νj−1(B(0, 4
√

nj)) =: Dj(R)

for all t ∈ [−1, 0]. Combined with (79) this proves (78).
Now we can use the compactness theorem by Ilmanen, Theorem 2.11 with

Uj = B(0, j/2), to see that a subsequence of the (νjt ) converges to a Brakke
flow (νt)t∈[−1,0] in Rn+k. Note that we may assume that the whole sequence
converges. In particular

νt(φ) = lim
j→∞
j≥j0

νjt (φ) for all φ ∈ C0
c (B(0, j0/2))(80)

for all t ∈ [−1, 0] and all j0 ∈ N. Combining this with (79) yields

sup
t∈[−1,0]

sup
y∈Rn+k

sup
R∈(0,∞)

νt(B(y,R)) ≤ 2C1R
n.(81)

Next we want to show ∫
Rn+k

Φ(s,y) dνt ≤ 1(82)
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for all (s, y) ∈ (−1, 0] × Rn+k and all t ∈ [−1, s). To see this fix s, y, and t
like that. First we see that by (81) we have∫

Rn+k

Φ(s,y) dνt <∞.(83)

In order to prove (83) consider fl : Rn+k → R+ given by fl(x) := Φ(s,y)(t, x)
for |x− y| < l and fl ≡ 0 outside B(y, l). Obviously we have fl+1 ≥ fl. Now
we can use (81) to estimate νt(B(y, 2l)) ≤ 2C1(2l)n for all l ∈ N. Then for
l ≥ l0 we can estimate∫

Rn+k

fl+1 dνt −
∫
Rn+k

fl dνt ≤
∫
B(y,l+1)\B(y,l)

Φ(s,y) dνt

≤ C(s− t)−n/2 exp(−l2/(4(s− t)))νt(B(y, 2l)) ≤ l−3−nνt(B(y, 2l)) ≤ l−2,

where we chose l0 large enough depending on s−t. Thus liml→∞
∫
fldνt <∞

and the monotone convergence theorem implies (83).
We continue to prove (82). Let γ ∈ (0, 1/2) be arbitrary. Note that y, s, t

are still fixed. Using (83) and (80) we find j1, j2, j3 ∈ N, j3 > j2 > j1 such
that ∫

Rn+k\B(y,%j1 )

Φ(s,y) dνt ≤ γ,∫
B(y,%j1 )

Φ(s,y) dνt −
∫
B(y,%j2 )

Φ(s,y) dνjt ≤ γ,

1 ≤ inf
x∈B(y,%j2 )

ϕ(s,y),%j(t, x) + γ%−nj2

for all j ≥ j3. Combining these estimates with (79) we obtain∫
Rn+k

Φ(s,y) dνt ≤
∫
Rn+k

Φ(s,y)ϕ(s,y),%j dνjt + (2 + C(s− t)−n/2)γ

for all j ≥ j3. By (75) and as s, t, y, γ were arbitrary this establishes (82).
In view of (81) and (82) we can use Lemma 6.1 to obtain T ∈ G(n+k,n)

such that

νt = H n T(84)

for all t ∈ (−1, 0). Note that by (80) and as 0 ∈ sptνj0 for all j ∈ N we
have that a in Lemma 6.1 has to be zero. Now we want to lead this to a
contradiction.

First suppose that for infinitely many j inequality (76) holds, i.e. there
exists a zj ∈ sptνj−σ ∩ B(0, 1) such that (T⊥)\(zj) > ε. Consider C2 and

31



α1 from the clearing out lemma, Lemma 2.9. Choose τ, η1 ∈ (0, 1/2) such
that 4nτ < (ε/4)2 and C2η

2α1
1 (ε/4)2 ≤ τ . Then Lemma 2.9 with R = ε/4

yields that νj−σ−τ (B(zj, ε/4)) > η1 for infinitely many j. A subsequence of
the zj converges to some z0 ∈ B(0, 2) with (T⊥)\(z0) ≥ ε. Consider a cut-off
function ζ1 ∈ C∞c (B(z0, ε/2), [0, 1]) with {ζ1 = 1} ⊃ B(z0, ε/3). Then

νj−σ−τ (ζ1) ≥ νj−σ−τ (B(zj, ε/4)) > η1 > 0 = ν−σ−τ (ζ1)

for infinitely many j, where we used (84) for the last equality. In view of
(80) this yields a contradiction.

Now suppose that for infinitely many j inequality (77) holds. Consider
ζ2 ∈ C∞c (B(0, n

√
1 + ε/2)), [0, 1]) with {ζ2 = 1} ⊃ B(z0, 1). In view of (84)

we can estimate

ν−σ(ζ2) ≤ ωn(1 + ε/2) < ωn(1 + ε) ≤ νj−σ(B(0, 1)) ≤ νj−σ(ζ2)

for infinitely many j. Again, this contradicts (80), which establishes the
result.

Proof of Theorem 1.2. We may assume t0 = 0, a = 0 and ρ = 1. Let α0 and
γ0 be from Theorem 1.1 with respect to λ = 1/2. Choose ε ∈ (0, γ0] such
that 2 4

√
2εα0 ≤ β and set σ := 2εα0 . Let δ be chosen with respect to ε and σ

according to Lemma 6.2 and choose η ≤ δ, t1 := −2εα0δ2. Then Lemma 6.2
yields the existence of a T ∈ G(n + k,n) such that

sup
{
|(T⊥)\(x)|, x ∈ sptµt1 ∩B(0, 2δ)

}
≤ εδ.

µt1(B(0, δ)) ≤ ωn(1 + ε)δn.

Then Theorem 1.1 with % = δ and γ = ε yields the desired graphical repre-
sentation for η small enough.

A Appendix

For a Brakke flow initial local height bounds in a certain direction yield
weaker height bounds later on in a decreased region. The result below follows
directly from the Brakke flow equation, which here seems to resemble the
maximum principle in some sense.

A.1 Proposition. Fore every p ∈ N there exists a Cp ∈ (1,∞) such that the
following holds: Let R0 ∈ (0,∞), t1 ∈ R, t2 ∈ (t1,∞), y0 ∈ Rn+k, v ∈ Rn+k

and let (µt)t∈[t1,t2] be a Brakke flow in B(y0, 2R0). Suppose

sptµt1 ∩B(y0, 2R0) ⊂ {x ∈ Rn+k : (x− y0) · v ≤ 0}.
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Then for all t ∈ [t1, t2] we have

sptµt ∩B(y0, R0) ⊂ {x ∈ Rn+k : (x− y0) · v ≤ Cp(t− t1)pR1−2p
0 }.

Proof. We may assume R0 = 4, t1 = 0, y0 = 0 and v = en+k. Set N :=
n+k−1. We will prove this proposition by induction. Suppose the statement
is true for some p ∈ N. We want to show the statement holds for p+ 1. We
can assume t2 ≤ 16(Cp+1)−1/(p+1), because the statement trivially holds for
all later t. For l ∈ R set

H−(l) := {(x̄, h) ∈ RN × R : h ≤ l}.

Fix an arbitrary ā0 ∈ BN(0, 4) and let h0 ∈ [0, 4]. By the induction assump-
tion we see

sptµt ∩B((ā0, h0), 2) ⊂ H−(h0 + Cpt
p) ⊂ H−(h0 + 1/2)(85)

for all t ∈ [0, t2]. Here we estimated Cpt
p
2 ≤ (16)pCp(Cp+1)−p/(p+1) ≤ 1/2, for

Cp+1 large enough. In particular as h0 ∈ [0, 4] was arbitrary this shows

sptµt ∩ ({ā} × [0, 4]) ⊂ H−(1/2)(86)

for all t ∈ [0, t2].
Consider the function η ∈ C0,1(R×RN ×R,R+) ∪ C∞({η > 0}) given by

η(t, x̄, h) := {h− Cp|x̄− ā0|2tp − Cp+1t
p+1}+.

Treat η as a function on R × Rn+k. Using divµt((RN × {0})\) ≤ n and
choosing Cp+1 large enough we can estimate

(∂t − divµtD)η3(t, x) ≤ 6η2(t, x)(2Cpnt
p − (p+ 1)Cp+1t

p) ≤ 0(87)

for all t ∈ [0, t2] and all x ∈ sptµt for which the approximate tangent space
exists. Let χ ∈ C∞(Rn+k, [0, 1]) be a cut-off function such that

B((ā0, 0), 1) ⊂ {χ = 1} ⊂ sptχ ⊂ B((ā0, 0), 2).

In view of (85) with h0 = 0 and by definition of η we see

sptµt ∩ sptη(t, ·) ∩ sptDχ = ∅(88)

for all t ∈ [t1, t2]. Consider the test function φ ∈ C2(R× Rn+k,R+) given by
φ := η3χ. Using (87), (88) and the Brakke flow equation (9) we obtain

µs(φ(s, ·))− µ0(φ(0, ·)) ≤
∫ s

0

∫
Rn+k

χ(∂t − divµtD)η3 dµt dt ≤ 0

33



for all s ∈ (0, t2]. By assumption we have µ0(φ(0, ·)) = 0, hence φ(t, x) = 0
for all t ∈ (0, t2] and all x ∈ sptµt. By definition of η and χ this yields that
h ≤ Cp+1t

p for all t ∈ (0, t2] and all (x̄, h) ∈ sptµt ∩ ({ā0} × [0, 1)). In view
of (86) and as ā0 ∈ BN(0, 4) was arbitrary, this establishes the statement for
p+ 1.

It remains to prove the statement for p = 1. Let Υ ∈ C0,1(R × RN ×
R,R+) ∪ C∞({Υ > 0}) be given by

Υ(t, x̄, h) := {(25− |(x̄, h)|2){h}+ − C1t}+.

Treat Υ as a function on R × Rn+k. Note that {Υ(t, ·) > 0} ⊂ B(0, 5).
Choosing C1 large enough we can estimate

(∂t − divµtD)Υ3(t, x) ≤ 3Υ2(t, x)(∂t − divµtD)Υ(t, x) ≤ 0

for all t ∈ [0, t2] and all x ∈ sptµt for which the approximate tangent space
exists. Thus by the Brakke flow equation (9) and our initial height assump-
tion we obtain

µt(Υ
3(t, ·)) ≤ µ0(Υ3(0, ·)) ≤ 0

for all t ∈ (0, t2]. For (x̄, h) ∈ B(0, 4) we can estimate (25 − |(x̄, h)|2) ≥ 1.
Hence the definition of Υ establishes the result.

A.2 Corollary. For every p ∈ N exists a cp ∈ (0, 1) such that the following
holds: Let R1, r0 ∈ (0,∞), h1 ∈ (0, r0/4], R2 ∈ [r0,∞), t1 ∈ R, t2 ∈ (t1, t1 +
cpr

2
0), x0 ∈ Rn+k and let (µt)t∈[t1,t2] be a Brakke flow in C(x0, R1+r0, R2+r0).

Suppose

sptµt1 ∩C(x0, R1 + r0, R2 + r0) ⊂ C(x0, R1 + r0, h1).

Then for all t ∈ [t1, t2] and h(t) := h1 + (t− t1)pr1−2p
0 we have

sptµt ∩C(x0, R1, R2) ⊂ C(x0, R1, h(t)).

Proof. We may assume t1 = 0 and x0 = 0. Let p ∈ N be given and Cp+1 be
the value according to Proposition A.1. First we want to show

sptµt ∩C(0, R1, r0/2) ⊂ C(x0, R1, h(t))(89)

for all t ∈ (0, t2]. To see this consider arbitrary t ∈ (0, t2] and x = (x̂, x̃) ∈
sptµt ∩ C(0, R1, r0/2). We want to show |x̃| ≤ h(t). Suppose x̃ 6= 0. Set
ṽ := |x̃|−1x̃, v := (0, ṽ) ∈ Rn+k, and y0 := (x̂, h1ṽ). Note that |x−y0| ≤ r0/2.

34



For arbitrary y = (ŷ, ỹ) ∈ Rn+k we have (y − y0) · v ≤ |ỹ| − h1, hence by
our initial height bound we see

sptµt1 ∩B(y0, r0) ⊂ {y ∈ Rn+k : (y − y0) · v ≤ 0}.

Using Proposition A.1 with p+ 1 and R0 = r0/2 yields

|x̃| − h1 = (x− y0) · v ≤ (r0/2)−2p−1Cp+1t
p+1 ≤ Cp+1cpt

pr−2p+1
0 ≤ tpr−2p+1

0

for cp small enough. As t and x were arbitrary, this establishes (89).
Now consider z = (ẑ, z̃) ∈ C(0, R1, R2) with z̃ ≥ r0/2. By our initial

height bound and h1 ≤ r0/4 we have sptµ0 ∩ B(z, r0/4) = ∅. Thus Lemma
2.6 with R = r0/8 implies z /∈ sptµt for all t ∈ [0, t2], where we used t2 ≤
cpr

2
0 ≤ (2n)−1(r0/8)2. This establishes the result.

Based on Huisken’s monotonicity formula [Hui90, 3.1] one can obtain
bounds on area ratio at later times from initial area ratio bounds.

A.3 Lemma. For every ε ∈ (0, 1] exists a δ ∈ (0, 1) such that the fol-
lowing holds: Let K ∈ [0,∞), R ∈ (0,∞), r ∈ (0, δR], s1 ∈ R, s2 ∈
(s1, s1+(8n)−1R2], y0 ∈ Rn+k and let (µt)t∈[s1,s2] be a Brakke flow in B(y0, R).
Suppose

%−nµs1(B(y0, %)) ≤ K for all % ∈ [r, R](90)

Then for all t ∈ [s1, s2] we have

r−nµt(B(y0, r)) ≤ K(R/r)ε.

Proof. We may assume R = 4, y0 = 0, s1 = 0. Let ε ∈ (0, 1) be given.
Fix an arbitrary t ∈ [0, s2] and set s0 := t + r2. Consider Φ = Φ(s0,0) and
ϕ = ϕ(s0,0),3 from Definition 2.7. By s0 ≤ s2 + δ ≤ 3n−1 we obtain

sptϕ(0, ·) ⊂⊂ B(0, 4), sup
Rn+k

ϕ(0, ·) ≤ C, inf
B(0,1)

ϕ(t, ·) ≥ 2−3.

Thus by Huiskin’s monotonicity formula, Theorem 2.8∫
B(0,1)

Φ dµt ≤ 8

∫
Rn+k

Φϕ dµt ≤ 8

∫
Rn+k

Φϕ dµ0 ≤ C

∫
B(0,4)

Φ dµ0.

We have s0−t = r2, hence infB(0,r) Φ(t, ·) ≥ cr−n. So by the above inequality

r−nµt(B(0, r)) ≤ C

∫
B(0,4)

Φ(0, x) dµ0(x)(91)
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Set α := ε/(2n). Note that by definition of Φ and s0 = t + r2 ≥ r2 we have
Φ(0, x) ≤ Cr−n for all x ∈ Rn+k. Then by assumption (90) we can estimate∫

B(0,r1−α)

Φ(0, x) dµ0(x) ≤ Cr−nµ0(B(0, r1−α)) ≤ CKr−nα ≤ K

2rε
,(92)

where we used α = ε/(2n), r ≤ δ and chose δ small enough. By the properties
of the exponential function we have r−n/2 exp(−r−2α/4) ≤ c, were we again
used r ≤ δ and chose δ small enough depending on α and c. Hence for
x ∈ Rn+k \ B(0, r1−α) we have Φ(0, x) ≤ 4−n−1. Then by assumption (90)
we can estimate∫

B(0,4)\B(0,r1−α)

Φ(0, x) dµ0(x) ≤ 4−n−1µ0(B(0, 4)) ≤ K/4

Inserting this and (92) into (91) establishes the result.

A.4 Lemma. There exists a constant C ∈ (1,∞) such that the following
holds: Let %,M, κ ∈ (0,∞), Λ ∈ [1,∞), δ ∈ (0, 1/2], s0 ∈ R, y0 ∈ Rn+k and
let µ be a Radon measure on Rn+k. Suppose δ ≤ min{Λ−1, C−1},

µ (B(y0, CΛ%)) ≤M%n,(93) ∫
Rn+k

Φ(s0,y0)ϕ(s0,y0),Λ%(s0 − %2, x) dµ(x) ≤ 1 + κ.(94)

Then for all (s, y) ∈ (s0 − δ2%2, s0]×B(y0, δ%) we have∫
Rn+k

Φ(s,y)ϕ(s,y),Λ%(s0 − %2, x) dµ(x) ≤ 1 + κ+ CMΛδ.

Proof. We may assume s0 = 0, y0 = 0 and % = 1. Fix (s, y) ∈ (−δ2, 0] ×
B(0, δ). Note that spt(ϕ(s,y),Λ(−1, ·)) ⊂ B(0, (2n + 1)Λ). Let x ∈ B(0, (2n +
1)Λ). Direct calculations yield

1 ≤ (s+ 1)−n/2 ≤ 1 + C
√
−s ≤ 1 + Cδ

exp

(∣∣∣∣ |x|24
− |x− y|

2

4(s+ 1)

∣∣∣∣) ≤ exp
(
C(Λ|y|+ Λ2|s|)

)
≤ 1 + CΛδ,

where we used δ ≤ min{Λ−1, C−1}. Thus we have

|Φ(0,0)(−1, x)− Φ(s,y)(−1, x)| ≤ CΛδ

|ϕ(0,0),Λ(−1, x)− ϕ(s,y),Λ(−1, x)| ≤ Cδ

Combined with (93) and (94) this yields the result.
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A.5 Remark. Here we want to derive Theorem 2.11 from Ilmanen’s work
[Ilm94]. In case Ui ≡ U the result directly follows from the proof of [Ilm94,
7.1]. Now consider the general case. We can find a subsequence λ1 : N→ N
and a Brakke flow (ν1

t )t∈[t1,t2] in U1 such that limj→∞ µ
λ1(j)
t (φ) = ν1

t (φ) for all
φ ∈ C0

c (U1), for all t ∈ [t1, t2]. Inductively for all l ∈ N, l ≥ 2 we can find a
subsequence λl : N→ λl+1[N] and a Brakke flow (νlt)t∈[t1,t2] in Ul such that

lim
j→∞

µ
λl(j)
t (φ) = νlt(φ) for all φ ∈ C0

c (Ul)

for all t ∈ [t1, t2]. In particular we have νl2t Ul0 = νl1t Ul0 for all l0 ≤ l1 ≤ l2
and all t ∈ [t1, t2]. Then µt(A) := liml→∞ ν

l
t(A ∩ Ul) ∈ [0,∞] is well defined

and gives the desired Brakke flow on U . With σ(j) = λj(j) this establishes
the result.

References

[All72] W. K. Allard, On the first variation of a varifold, Annals of Math.
95, 417-491 (1972)

[Bra78] K. A. Brakke, The motion of a surface by its mean curvature, Math.
Notes Princeton, NJ, Princeton University Press (1978)

[BH12] S. Brendle and G. Huisken, Mean curvature flow with surgery of mean
convex surfaces in R3, arXiv:1309.1461 (2012)

[CY07] B.-L. Chen and L. Yin, Uniqueness and pseudo locality theorems of
the mean curvature flow, Comm. Anal. Geom. 15, no.3, 435-490 (2007)

[CGG91] Y. G. Chen,Y. Giga and S. Goto, Uniqueness and existence of
viscosity solutions of generalised mean curvature flow, J. Differ. Geom.
33, 749-786 (1991)

[CM03] T. H. Colding, W. P. Minicozzi, Sharp Estimates for Mean Curvature
Flow of Graphs, J. Reine Angew. Math. 574, 187195. (2004)

[Eck04] K. Ecker, Regularity theory for mean curvature flow, Birkhäuser Ver-
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