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Abstract

Consider an integral Brakke flow (µt), t ∈ [0, T ], inside some ball in
Euclidean space. If µ0 has small height, its measure does not deviate
too much from that of a plane and if µT is non-empty, then Brakke’s
local regularity theorem yields that (µt) is actually smooth and graphical
inside a smaller ball for times t ∈ (C, T − C) for some constant C. Here
we extend this result to times t ∈ (C, T ). The main idea is to prove that
a Brakke flow that is initially locally graphical with small gradient will
remain graphical for some time. Moreover we use the new local regularity
theorem to generalise White’s regularity theorem to Brakke flows.
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1 Introduction

Overview. Consider a smooth family of embeddings Ft : Mn → Rn+k for
t ∈ I, where Mn is an n-dimensional manifold and I is an open interval in R.
The family Mt = Ft[M

n] is called a smooth mean curvature flow if

(∂tFt(p̂))
⊥

= H(Mt, Ft(p̂))(1.1)

for all (t, p̂) ∈ I × Mn. Here (·)⊥ denoetes the projection onto the normal
space and H denotes the mean curvature vector. This evolution equation can
be generalised to n-rectifiable Radon measures on Rn+k (see Definition 2.3).
Such a weak solution will be called a Brakke flow. Here we want to show
that under certain local assumptions a Brakke flow locally satisfies the smooth
characterization above.

The Mean curvature flow was introduced by Brakke in his pioneering work
[Bra78], where he described the evolution in the setting of geometric measure
theory. This early work already contains an existence result as well as a regu-
larity theory. His local regularity theorem states that a Brakke flow that lies
in a narrow slab and consists of one sheet is locally smooth and graphical for
a certain time interval. Actually the arguments in [Bra78] often contain gaps
or small errors. A new rigorous proof of the regularity results was given by
Kasai and Tonegawa [KT14], [Ton15]. Also the author’s thesis [Lah14] offers a
complete version of Brakke’s regularity theory following the original approach.

A major breakthrough in the studies of mean curvature flow was the mono-
tonicity formula found by Huisken [Hui90] for smooth flows, which later was
generalised to Brakke flows by Ilmanen [Ilm95] and localised by Ecker [Eck04].
With the help of this monotonicity formula, White proved a local regularity
theorem [Whi05] stating that Gaussian density ratios close to one yield curva-
ture estimates. White’s theorem is formulated for smooth mean curvature flow
and can be applied to many singular situations as well, but not for arbitrary
Brakke flows. Building up on White’s curvature estimates, Ilmanen, Neves and
Schulze [INS14] showed that a smooth mean curvature flow which is locally ini-
tially graphical with small gradient remains graphical for some time. For related
gradient and curvature estimates see [EH89], [EH91], [CM03], [Wan04], [CY07],
[BH12], [Lah15].

Existence results for generalized solutions of mean curvature flow can be
found in [Bra78], [CGG91], [ES91], [ES94], [Ilm94], [KT15]. For an introduction
to weak mean curvature flow we recommend the work of Ilmanen [Ilm94] which
also points out the similarities between Brakke flow and level set flow. We also
want to mention the book of Ecker [Eck04] as a good reference for smooth mean
curvature flow and regularity up to the first singular time.

Results of the present article. We consider Brakke flows of n-rectifiable
Radon measures in Rn+k see Definition 2.3 for the details. All Brakke flows
considered here are assumed to be integral. The constants below may depend
on n and k.

Our main result is a new version of Brakke’s local regularity theorem [Bra78,
Thm. 6.10, Thm. 6.11], see also Kasai and Tonegawa [KT14, Thm. 8.7]. Our
statement says that a non-vanishing Brakke flow which initially locally lies in a
narrow slab and consists of less than two sheets, becomes graphical in a small
neighbourhood.
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1.1 Theorem. There exists an α0 ∈ (0, 1) and for every λ ∈ (0, 1) there exists
a γ0 ∈ (0, 1) such that the following holds:

Let γ ∈ [0, γ0], ρ ∈ (0,∞), t1 ∈ R, t2 ∈ (t1 + γα0ρ2, t1 + α0ρ
2], a = (â, ã) ∈

Rn×Rk and let (µt)t∈[t1,t2] be a Brakke flow in B(a, 2ρ) with a ∈ sptµt2 . Suppose
we have

sptµt1 ∩B(a, 2ρ) ⊂ {(x̂, x̃) ∈ Rn × Rk : |x̃− ã| ≤ γρ},(1.2)

ρ−nµt1(B(a, ρ)) ≤ (2− λ)ωn(1.3)

and set I := (t1 + γα0ρ2, t2).
Then there exists an u ∈ C∞

(
I ×Bn(â, γ0ρ),Rk

)
such that

µt C(a, γ0ρ, ρ) = H n graph(u(t, · )) for all t ∈ I.

Moreover sup |Du(t, · )| ≤ α−1
0 ρ−2(t − t1) for all t ∈ I and Ft(x̂) = (x̂, u(t, x̂))

satisfies (1.1).

The main difference to previous versions is that here we obtain regularity up to
the time t2 at which we assumed the non-vanishing, were in Brakke’s original
theorem measure bounds from below have to be assumed for later times.

We also obtain a local regularity theorem similar to the one of White [Whi05],
see also Ecker’s version [Eck04, Thm. 5.6]. We show that a non-vanishing Brakke
flow which locally has Gaussian density ratios close to one will become graphical
in a small neighbourhood.

1.2 Theorem. For every β ∈ (0, 1) there exists an η ∈ (0, 1) such that the
following holds:

Let ρ ∈ (0,∞), ρ0 ∈ [ρ,∞), t0 ∈ R, a ∈ Rn+k and let (µt)t∈[t0−ρ2,t0]

be a Brakke flow in B(a, 4
√

nρ0). Suppose a ∈ sptµt0 and for all (s, y) ∈
(t0 − ρ2, t0]×B(a, ρ) we have∫

Rn+k

Φ(s,y)ϕ(s,y),ρ0 dµt0−ρ2 ≤ 1 + η,(1.4)

where Φ and ϕ are from Definition 2.7. Set I := (t0 − η2ρ2, t0).
Then there exist S ∈ O(n + k) and u ∈ C∞(I ×Bn(0, ηρ),Rn+k) such that

for Mt = graph(u(t, · )) we have

µt B(a, ηρ) = H n (S[Mt] + a ∩B(a, ηρ)) for all t ∈ I.

Moreover sup |Du| ≤ β and Ft(x̂) = (x̂, u(t, x̂)) satisfies (1.1).

One key ingredient in order to obtain these regularity results is the obser-
vation that a non-vanishing Brakke flow which is initially graphical with small
gradient will stay graphical for some time. This is the non-smooth version of
the corresponding theorem by Ilmanen, Neves and Schulze [INS14, Thm. 1.5].

1.3 Theorem. There exists an l0 ∈ (0, 1) such that the following holds:
Let l ∈ [0, l0], ρ ∈ (0,∞), t1 ∈ R, t2 ∈ (t1, t1 + l0ρ

2], a = (â, ã) ∈ Rn × Rk

and let (µt)t∈[t1,t2] be a Brakke flow in C(a, 2ρ, 2ρ). Assume a ∈ sptµt1 and

sptµt2 ∩C(a, ρ, ρ) 6= ∅.(1.5)
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Suppose there exists an u0 ∈ C0,1
(
Bn(â, 2ρ),Rk

)
with lip(u0) ≤ l and

µt1 C(a, 2ρ, 2ρ) = H n graph(u0).(1.6)

Then there exists an u ∈ C∞
(
(t1, t2)×Bn(â, ρ),Rk

)
such that

µt C(a, ρ, ρ) = H n graph(u(t, · )) for all t ∈ (t1, t2).

Moreover sup |Du(t, · )| ≤ 4
√
l + ρ−2(t − t1) for all t ∈ (t1, t2) and Ft(x̂) =

(x̂, u(t, x̂)) satisfies (1.1).

1.4 Remark. In all the above results Ft(x̂) = (x̂, u(t, x̂)) satisfies (1.1) and
|Du| is small, thus the results for smooth graphical mean curvature flow can be
applied to obtain bounds on the curvature of graph(u(t, · )) and higher deriva-
tives of it, see Appendix A, in particular Proposition A.4 and Lemma A.6. This
also yields estimates on the higher derivatives of u.

Note that in the above results we cannot expect to obtain a graphical rep-
resentation at the final time, see Example 2.5.

To deal with the potentail vanishing of Brakke flows we also use some sort
of continuation result for varifolds. We show that a unit density varifold with
absolutely continuous first variation that is contained in a Lipshitz graph is
either empty or coincides with the graph. This generalizes Allard’s constancy
theorem [All72, Thm. 4.6.(3)] (see also Simon [Sim83, Thm. 8.4.1]) to Lipschitz
graphs, but additionally requires unit density.

1.5 Theorem. Let D ⊂ Rn be open and connected with (n − 1)-rectifiable
boundary ∂D = D̄ \ D and set U := D × Rk. Consider a unit density n-
rectifiable Radon measure µ and a Lipschitz function f : D → Rk such that

∅ 6= sptµ ∩ U ⊂ graphf(1.7)

µ(A) = 0 implies ‖δµ‖(A) = 0 for all A ⊂ U.(1.8)

Then µ U = H n graphf .

Note that Duggan [Dug86, Thm. 4.5] shows constant density for stationary
n-rectifiable Radon measures which already equal a Lipschitz graph.

Organisation and sketch of the proof We start by recalling some defini-
tions and important results in Section 2.

Then in Section 3 we show Theorem 1.5. In the proof we employ the Gauss–
Green theorem by Federer [Fed69, §4.5.6] to see that the projection of sptµ
onto Rn is stationary in D and subsequently the result follows from Allard’s
constancy theorem [All72, Thm. 4.6.(3)].

Section 4 establishes that a local height bound is maintained under Brakke
flow, see Proposition 4.1. Here we improve the height bound increases in time
from the known linear growth to arbitrary high exponents.

The main part of this work is Section 5, where Theorem 1.3 is established.
Essentially we consider a Brakke flow in C(0, 2, 2) for times in [0, τ ] such that
sptµτ ∩C(0, δ, 1) 6= ∅. First assume as initial condition that µ0 C(0, 2, 2) lies
in a slab of height h and satisfies certain density ratio assumptions. Based
on Brakke’s local regularity theorem [Bra78, Thm. 6.11] and the height bound
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from Section 4 we show that the flow is graphical inside C(0, h, 1) for times in
[Ch2, τ −Ch2] if h is small enough, δ ≤ h and τ ≤ 32

√
h. Under stronger density

assumptions we actually obtain graphical representability inside C(0, 1, 1) for
times in [Ch, τ − Ch], see Lemma 5.2.

Now Change the initial condition to µ0 C(0, 2, 2) being graphical with Lip-
schitz constant smaller than l. This allows applying Lemma 5.2 on arbitrary
small scales, which yields that the flow is graphical inside C(0, 1, 1) for times in
[0, τ − Cl] if l is small enough, δ ≤ l and τ ≤ 32

√
l. Iterating this result leads

to Lemma 5.4 which says that the flow is graphical inside B(0, Lδ) for times in
[0, τ − δ2] if we choose l small enough depending on L and suppose δ ≤ l, τ ≤ l.
Here the curvature estimates from Appendix A for smooth mean curvature flow
are crucial to control the gradient durng the iteration. Using Lemma 5.4 with
varying center points and arbitrary small δ we obtain that sptµt ∩C(0, 1, 1) is
contained in a Lipschitz graph and has unit density for almost all t ∈ [0, τ ]. In
view of Theorem 1.5 this lets us conclude Theorem 1.3.

Section 6 contains the proof of Theorem 1.1. First we see that Theorem 1.3
and Lemma 5.2 directly imply a version of Theorem 1.1, which assumes stronger
density bounds initially, see Lemma 6.1. Then we use Brakke’s cylindrical
growth theorem [Bra78, Lem. 6.4] to simplify these assumptions, which estab-
lishes Theorem 1.1 in the desired form.

In Section 7 Theorem 1.2 is proven. In order to do so we first employ
Huisken’s monotonicty formula [Hui90, Thm. 3.1] to show that non-moving
planes are the only Brakke flows in Rn+k that have Gaussian density ratios
bounded everywhere by 1. Then under the assumptions of Theorem 1.2 a blow
up argument and Ilmanen’s compactness theorem yield that in a small neigh-
bourhood the conditions of Theorem 1.1 are satisfied, which yields the conclu-
sion of Theorem 1.2.

In Appendix A we show some curvature estiamtes for smooth mean curvature
flow. Most of the presented results are already known despite small variations.
Finally Appendix B contains some remarks.

Acknowledgements. I want to thank Ulrich Menne for his help and advice,
in particular for the proof of Theorem 1.5. Also I want to thank Matthew
Langford and Yoshihiro Tonegawa for some helpfull discussions.

2 Preliminaries

Notation. For an excellent introduction to geometric measure theory we rec-
ommend the lecture notes by Simon [Sim83]. Here we recall the most important
definitions.

• We set R+ := {x ∈ R, x ≥ 0}, N := {1, 2, 3, . . .} and (a)+ := max{a, 0}
for a ∈ R.

• We fix n,k ∈ N. Quantities that only depend on n and/or k are considered
constant. Such a constant may be denoted by C or c, in particular the
value of C and c may change in each line.

• For a ∈ Rn+k the values â ∈ Rn and ã ∈ Rk are given by a = (â, ã).
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• We denote the canonical basis of Rn+k by (ei)1≤i≤n+k. In particular the
canonical basis of Rn is (êi)1≤i≤n.

Consider n, k ∈ N.

• Let O(n) denote the space of rotations on Rn. Let G(n + k, n) denote
the space of n-dimensional subspaces of Rn+k. For T ∈ G(n + k, n) set
T⊥ := {x ∈ Rn+k : x · v = 0 ∀v ∈ T}. By T\ : Rn+k → T we denote the
projection onto T .

• For R, r, h ∈ (0,∞) and a ∈ Rn we set

Bn(a,R) := {x ∈ Rn : |x− a| < R} , B(a,R) := Bn+k(a,R),

C(a, r, h) := Bn(â, r)×Bk(ã, h), C(a, r) := Bn(â, r)× Rk.

• Consider open sets I ⊂ R and V ⊂ Rn. For f ∈ C1(I × V ) we denote
by ∂tf the derivative of f in I, while Df denotes the derivative of f
in V . If (µt)t∈I is a family of Radon measures on V we often abbreviate∫
V
f(t, x) dµt(x) =

∫
V
f dµt.

• Let L n denote the n-dimensional Lebesque measure and H n denote the
n-dimensional Hausdorf measure. Set ωn := L n(Bn(0, 1)).

Consider an open set U ⊂ Rn+k be open and a Radon measure µ on U .

• Set sptµ := {x ∈ U : µ(Bn+k(x, r)) > 0, for all r ∈ (0,∞)}.

• Consider x ∈ U . We define the upper and lower density by

Θ∗n(µ, x) := lim sup
r↘0

µ(Bn+k(x, r))

ωnrn
, Θn

∗ (µ, x) := lim inf
r↘0

µ(Bn+k(x, r))

ωnrn

and if both coincide the value is denoted by Θn(µ, x) and called the density
of µ at x.

• Consider y ∈ U . If there exist θ(y) ∈ (0,∞) and T(µ, y) ∈ G(n + k, n)
such that

lim
λ↘0

λ−n
∫
U

φ(λ−1(x− y)) dµ(x) = θ(y)

∫
T(µ,y)

φ(x) dH n(x)

for all φ ∈ C0
c

(
Rn+k

)
, then T(µ, y) is called the (n-dimensional) approxi-

mate tangent space of µ at x with multiplicity θ(y).

• We say µ is n-rectifiable, if the approximate tangent space exists at µ-a.e.
x ∈ U . Note that in this case θ(x) = Θn(µ, x) for µ-a.e. x ∈ U . We say
µ is integer n-rectifiable, if µ is n-rectifiable and Θn(µ, x) ∈ N for µ-a.e.
x ∈ U . We say µ has unit density, if µ is n-rectifiable and Θn(µ, x) = 1
for µ-a.e. x ∈ U .

Let µ be an n-rectifiable Radon measure on U

• Consider φ ∈ C1(U,Rn+k). For x ∈ U such that T(µ, x) exists set
divµφ(x) :=

∑n
i=1(Dbiφ(x)) · bi, where (bi)1≤i≤n is an orthonormal ba-

sis of T(µ, x).
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• Denote the first variation of µ in U by δµ(φ) :=
∫
U

divµφ dµ for φ ∈
C1

c (U,Rn+k). Set ‖δµ‖(A) := sup{∂µ(φ), φ ∈ C1
c (A,Rn+k), |φ| ≤ 1} for

A ⊂ U open.

• If there exists Hµ : sptµ → Rn+k such that Hµ is locally µ-integrable
and δµ(φ) =

∫
U

Hµ · φ dµ for all φ ∈ C1
c (U,Rn+k), then Hµ is called the

generalised mean curvature vector of µ in U .

Brakke flow. An introduction to the Brakke flow can be found in [Bra78],
[Ilm94], [KT14] or [Lah14].

2.1 Definition. For a Radon measure µ on Rn+k and a φ ∈ C1
c (Rn+k) we

define the Brakke variation B(µ, φ) as follows: If µ {φ > 0} is n-rectifiable,
has generalised mean curvature vector Hµ in {φ > 0} and

∫
{φ>0} |Hµ|2 dµ <∞

then set

B(µ, φ) :=

∫
Rn+k

(
(T(µ, x)⊥)\Dφ(x) ·Hµ(x)− φ(x)|Hµ(x)|2

)
dµ(x).

Else we set B(µ, φ) := −∞. Note that in case µ is integer n-rectifiable, by a
deep theorem of Brakke [Bra78, Thm. 5.8], we have Hµ(x) ⊥ T(µ, x) for µ-a.e.
x ∈ Rn+k. Hence in this case the projection can be left out.

2.2 Remark ([Bra78, Prop. 3.4],[Ilm94, Lem. 6.6]). If φ ∈ C2
c (Rn+k) and

B(µ, φ) > −∞ we can estimate

B(µ, φ) ≤ sup |D2φ| µ({φ > 0})− 1

2

∫
Rn+k

|Hµ|2φdµ.

2.3 Definition. Let U ⊂ Rn+k be open, t1 ∈ R, t2 ∈ (t1,∞) and (µt)t∈[t1,t2]

be a family of radon measures on Rn+k. We call (µt)t∈[t1,t2] a Brakke flow in U
if µt U is integer n-rectifiable for a.e. t ∈ (t1, t2) and for all t1 ≤ s1 < s2 ≤ t2
we have

µs2(φ(s2, · ))− µs1(φ(s1, · )) ≤
∫ s2

s1

(B(µt, φ(t, · )) + µt(∂tφ(t, · ))) dt(2.1)

for all φ ∈ C1((s1, s2)× U) ∩ C0([s1, s2]× U) with ∪t∈[s1,s2]sptφ(t, · ) ⊂⊂ U .

2.4 Remark. Suppose (µt)t∈[t1,t2] is a Brakke flow in U then we have:

• For a.e. t ∈ (t1, t2) we have: µt U is integer n-rectifiable, has generalised
mean curvature vector Hµt

in U and
∫
K
|Hµt

|2 dµt <∞ for all K ⊂⊂ U .

• For (s0, y0) ∈ R×Rn+k and r ∈ (0,∞) set νt(A) := r−nµr2t+s0(rA+ y0),
then (νt)t∈[r−2(t1−s0),r−2(t2−s0)] is a Brakke flow in r−1(U − y0).

The Brakke flow allows the sudden loss of mass. In particular we have

2.5 Example. For 0 < t0 ≤ T and 0 < ε < ρ < ∞ consider the Brakke flow
(µt)t∈[0,T ] given by µt = H n (Rn×{0}k) for t ∈ [0, t0), µt0 = H n (Bn(0, ε)×
{0}k) and µt := ∅ for t ∈ (t0, T ]. Note that µt is graphical with Lipschitz
constant 0 for t ∈ [0, t0) and 0 ∈ sptµt0 but µt0 B(0, ρ) is not graphical.
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Important results Here we recall some important results that are crucial for
the proofs in this article.

2.6 Lemma (Measure bound [Bra78, Thm. 3.7],[Eck04, Prop. 4.9]). Let R ∈
(0,∞), t1 ∈ R, t2 ∈ (t1, t1 + (2n)−1R2], z0 ∈ Rn+k and let (µt)t∈[t1,t2] be a
Brakke flow in B(z0, 2R).

Then for all t ∈ [t1, t2] we have

µt (B(z0, R)) ≤ 8µt1 (B(z0, 2R)) .

2.7 Definition. Let (t0, x0) ∈ R× Rn+k and ρ ∈ (0,∞) be fixed. Set

Φ(t0,x0)(t, x) := (4π(t0 − t))−
n
2 exp

(
|x− x0|2

4(t− t0)

)
.

ϕ(t0,x0),ρ(t, x) :=
(
1− ρ−2

(
|x− x0|2 + 2n(t− t0)

))3
+

for (t, x) ∈ R× Rn+k, where Φ(t0,x0)(t, x) is only defined for t ≤ t0.

2.8 Theorem (Monotonicity formula [Hui90, Thm. 3.1],[Ilm95, Thm. 7][Eck04,
Thm. 4.13]). Consider an open set U ⊂ Rn+k, ρ,D ∈ (0,∞), (t0, x0) ∈ R× U ,
s1 ∈ (−∞, t0) and s2 ∈ (s1, t0) and let (µt)t∈[s1,s2] be a Brakke flow in U .

Assume one (or both) of the following holds

1. sptϕ(t0,x0),ρ(s1, · ) ⊂⊂ U .

2. U = Rn+k and supt∈[s1,s2] supR∈(0,∞) µt(B(x0, R)) ≤ DRn.

Then∫
U

Φ(s2, x) dµs2(x)−
∫
U

Φ(s1, x) dµs1(x)

≤
∫ s2

s1

∫
Rn+k

(
Φ(t, x)

∣∣∣∣Hµt
(x) +

(T(µt, x)⊥)\(x− x0)

2(t0 − t)

∣∣∣∣2
)

dµt(x) dt

for Φ = Φ(t0,x0)ϕ(t0,x0),ρ if assumption 1 holds and Φ = Φ(t0,x0) if assumption
2 holds. Here the term under the time integral is interpreted as −∞ at times
where one of the technical conditions fails, as in Definition 2.1.

2.9 Lemma (Clearing out [Bra78, Lem. 6.3]). There exist C ∈ (1,∞) and
α1 := (n + 6)−1 such that the following holds:

Let η ∈ [0,∞), R ∈ (0,∞), t1 ∈ R, t2 ∈ (t1 + Cη2α1R2, t1 + (4n)−1R2),
x0 ∈ Rn+k. Let U ⊂ Rn+k be open with U ⊃⊃ B(x0, R) and let (µt)t∈[t1,t2] be
a Brakke flow in B(x0, R). Suppose we have

R−n
∫
U

(1−R−2|x− x0|2)3
+ dµt1 ≤ η.

Set R(t) :=
√
R2 − 4n(t− t0).

Then for all t ∈ [t1 + Cη2α1R2, t2] we have µt(B(x0, R(t))) = 0.
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2.10 Theorem (Local regularity [Bra78, Thm. 6.11], [KT14, Thm. 8.7], [Lah14,
Thm. 8.4]). For every λ ∈ (0, 1] there exist Λ ∈ (1,∞) and h0 ∈ (0, 1) such that
the following holds:

Let h ∈ (0, h0], R ∈ (0,∞), t1 ∈ R, t2 ∈ (t1 + 2ΛR2,∞), x0 ∈ Rn+k, and let
(µt)t∈[t1,t2] be a Brakke flow in B(x0, 4R). Suppose we have

sptµt ∩B(x0, 4R) ⊂ C(x0, 4R, hR)(2.2)

R−nµt (B(x0, 4R)) ≤ λ−1(2.3)

for all t ∈ [t1, t2] and

R−nµt1 (B(x0, R) ≤ (2− λ)ωn(2.4)

R−nµt2 (B(x0, R/2)) ≥ λωn.(2.5)

Set I := (t1 + ΛR2, t2 − ΛR2).
Then there exists an u ∈ C∞(I ×Bn(x̂0, h0R),Rk) such that

µt C(x0, h0R,R) = H n graph(u(t, · )) for all t ∈ I.

Moreover sup |Du| ≤ Λh and Ft(x̂) = (x̂, u(t, x̂)) satisfies (1.1).

To deduce this result from [Bra78, Thm. 6.11], [KT14, Thm. 8.7] you also
need to use [Bra78, Lem. 6.6], [KT14, Thm. 5.7] to see that the density ratio
bounds (2.4) and (2.5) actually hold at all times in slightly weaker form. Note
that Brakke as well as Kasai and Tonegawa state this theorem for unit density
Brakke flows, though their proofs only use integer density. For the smoothness
of u we refer to [Ton15, Thm. 3.6].

2.11 Theorem (Compactness [Ilm94, Thm. 7.1]). Let t1 ∈ R and t2 ∈ (t1,∞).
For all i ∈ N consider an open set Ui ⊂ Rn+k and a Brakke flow (µit)t∈[t1,t2]

in Ui. Assume Ui ⊂ Ui+1 for all i ∈ N and set U :=
⋃∞
i=1 Ui. Suppose for every

K ⊂⊂ U there exists an CK ∈ (1,∞) such that

sup
i∈N

sup
t∈[t1,t2]

µit(K ∩ Ui) ≤ CK .

Then there exists a subsequence σ : N → N and a Brakke flow (µt)t∈[t1,t2]

in U such that

µt(φ) = lim
j→∞

µ
σ(j)
t (φ) for all φ ∈ C0

c (Uj0)

for all t ∈ [t1, t2] and all j0 ∈ N.

Actually in [Ilm94] Ilmanen assumes Ui ≡ M , for a complete manifold M .
To derive the above result from [Ilm94, Thm. 7.1] use a diagonal subsequence
argument, see Remark B.3 for some more details.

2.12 Lemma (Tilt-bound [Bra78, Lem. 5.5]). There exists a C ∈ (0,∞) such
that the following holds:

Let U ⊂ Rn+k be open and let µ be an integer n-rectifiable Radon measure on
U with locally L2-integrable mean curvature vector Hµ. Consider g ∈ C1

c (U,R),
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f, h ∈ C0
c (U,R) with g2 ≤ fh and set

α2
f :=

∫
U

|Hµ(x)|2f(x)2 dµ(x),

β2
g :=

∫
U

∥∥(Rn × {0}k)\ −T(µ, x)\
∥∥2
g(x)2 dµ(x),

γ2
h :=

∫
U

|x̃|2h(x)2 dµ(x),

ξ2
g :=

∫
U

|x̃|2|∇µg(x)|2 dµ(x).

Then we have β2
g ≤ C

(
αfγh + ξ2

g

)
.

2.13 Theorem (Cylindrical growth [Bra78, Thm. 6.4]). Let U ⊂ Rn+k be open,
R1 ∈ (0,∞), R2 ∈ (R1,∞), α, β ∈ [0,∞). Let µ be an integer n-rectifiable
Radon measure on U with L2-integrable mean curvature vector Hµ and sptµ ∩
C(x0, R2) ⊂⊂ U . Consider ψ ∈ C3

c ([−1, 1],R+). Suppose for all r ∈ [R1, R2]
we can estimate

r−n
∫
U

|Hµ(x)|2ψ(r−1|x̂|) dµ(x) ≤ α2,(2.6)

r−n
∫
U

∥∥(Rn × {0}k)\ −T(µ, x)\
∥∥2
ψ(r−1|x̂|) dµ(x) ≤ β2.(2.7)

Then we have∣∣∣∣R−n2

∫
U

ψ(R−1
2 |x̂|) dµ(x)−R−n1

∫
U

ψ(R−1
1 |x̂|) dµ(x)

∣∣∣∣
≤ n log(R2/R1)β2 + (R2 −R1)αβ + β2.

3 Graphs without holes

In this section we prove Theorem 1.5. Consider a unit density Radon measure
µ such that the first variation δµ is absolutely continuous with respect to µ. In
some sense this should imply that µ has no ‘boundary points’. Here we show
that, if such a µ is contained in the graph of some Lipschitz function f , then µ
actually coincides with the measure generated by the graph of f . For f ∈ C2 and
stationary µ this is a direct consequence of Allard’s constancy theorem [All72,
Thm. 4.6.(3)] (see also Simon’s notes [Sim83, Thm. 8.4.1]). Here we use the
generalized Gauss-Green theorem by Federer [Fed69, §4.5.6] to show that the
projection of µ onto Rn × {0}k is stationary, which reduces our problem to the
C2-setting, thus implying the result.

3.1 Definition. Let µ be an n-rectifiable Radon measure on Rn+k. We denote
the associated general varifold by V(µ), i.e. V(µ) is the Radon measure on
Rn+k ×G(n+ k, n) given by

V(µ)(A) := µ({x ∈ Rn+k : (x,T(µ, x)) ∈ A}) for A ⊂ Rn+k.

For y ∈ Rn+k and λ ∈ (0,∞) we define the λ-blow-up around y by

µy,λ(A) := λ−nµ(λA+ y) for A ⊂ Rn+k.

10



Proof of Theorem 1.5. This proof is based on ideas by Ulrich Menne. Define
F : D → U by F (x̂) := (x̂, f(x̂)). Set

U1 := {x ∈ U : Θn−1(‖δµ‖, x) = 0},
Q1 := {x ∈ U : Θn

∗ (µ, x) ≥ 1}, Q2 := Q1 ∩ U1,

R1 := {x ∈ U : Θn(µ, x) = 0}, R2 := R1 ∩ U1.

We claim

H n−1(U \ (Q2 ∪R2)) = 0.(3.1)

As we have absolutely continuous first variation we can use a result by Menne
[Men09, Rem. 2.11] to see H n−1(U \ (Q1 ∪ R1)) = 0. Hence, to establish the
claim it remains to show

H n−1(U \ U1) = 0.(3.2)

We proceed as Federer and Ziemer [FZ72, §8]. For i ∈ N set

Bi = {x ∈ U ∩B(0, i) : Θ∗n−1(‖δµ‖, x) > i−1}.

Then by Federer [Fed69, §2.10.19(3)] we have i‖∂µ‖(Bi) ≥ H n−1(Bi) for all
i ∈ N. This and (1.8) yield the following chain of implications: Bi bounded,
‖∂µ‖(Bi) < ∞, H n−1(Bi) < ∞, H n(Bi) = 0, µ(Bi) = 0, ‖∂µ‖(Bi) = 0,
H n−1(Bi) = 0. This shows (3.2) which completes the proof of (3.1).

Now set

p := (Rn × {0}k)\, A0 := p[sptµ] ∩D,
Q0 := {x̂ ∈ Rn : Θn(L n (Rn \A0), x̂) = 0},
R0 := {x̂ ∈ Rn : Θn(L n A0, x̂) = 0}.

We want to use

p[Q2] ⊂ Q0 and p[R2 ∩ graphf ] ⊂ R0.(3.3)

We will prove this statement later. Suppose (3.3) holds, then

H n−1(D \ (Q0 ∪R0)) ≤H n−1(F [D \ (Q0 ∪R0)])

≤H n−1(F [D \ (p[Q2] ∪ p[R2 ∩ graphf ])]) = H n−1(graphf \ (Q2 ∪R2)).

Hence by (3.1) we have

H n−1(D \ (Q0 ∪R0)) = 0.(3.4)

We say v̂ ∈ ∂Bn(0, 1) is an external normal of A0 at ŷ ∈ Rn, if

Θn(L n {x̂ ∈ Rn : (x̂− ŷ) · v̂ > 0} ∩A0, ŷ) = 0

and Θn(L n {x̂ ∈ Rn : (x̂− ŷ) · v̂ < 0} \A0, ŷ) = 0,

Let B0 be the set consisting of all ŷ ∈ Rn for which there exists an external
normal of A0 at ŷ. Then we have

B0 ∩ (Q0 ∪R0) = ∅.(3.5)
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To see this consider ŷ ∈ Q0 and v̂ ∈ ∂Bn(0, 1). We can estimate

L n({x̂ ∈ Rn : (x̂− ŷ) · v̂ > 0} ∩A0 ∩Bn(ŷ, r))

≥ L n({x̂ ∈ Rn : (x̂− ŷ) · v̂ > 0} ∩Bn(ŷ, r))−L n((Rn \A0) ∩Bn(ŷ, r))

≥ (2−1ωn − ε)rn

for r small enough depending on ε. This yields B0 ∩Q0 = ∅. Similarly we can
show B0 ∩R0 = ∅, which proves (3.5).

Let K ⊂ Rn be compact. Using (3.4), R0 ⊃ (Rn \ D̄) and the rectifiability
of ∂D = D̄ \D we obtain

H n−1(K \ (Q0 ∪R0)) ≤H n−1((K \D) \R0) ≤H n−1(∂D ∩K) <∞.

In view of Federer [Fed69, §4.5.11] and [Fed69, §2.10.6] we can now use the
general Gauss-Green theorem (see Federer [Fed69, §4.5.6]). Combined with
(3.4) and (3.5) this establishes∫

A0

divRnφ dL n ≤H n−1(D ∩B0) ≤H n−1(D \ (Q0 ∪R0)) = 0

for all φ ∈ C1
c (D,Bn(0, 1)). Thus A0 is stationary in D. Then the constancy

theorem (see Allard [All72, Thm. 4.6.(3)] or Simon [Sim83, Thm. 8.4.1]) yields
A0 = D which establishes the result. Hence it remains to prove (3.3).

We want to show p[R2 ∩ graphf ] ⊂ R0. Consider y ∈ R2 ∩ graphf . By (1.7)
and as µ is integer n-rectifible we can estimate for r ∈ (0,∞)

r−nL n(A0 ∩Bn(ŷ, r)) = r−n
∫

graphf∩(A0×Rk)∩C(y,r)

|JF ◦ p|−1 dH n

≤ r−nµ(B(y, (1 + lip(f))r))

and as y ∈ R2 this goes to 0 for r ↘ 0. Thus ŷ ∈ R0.
It remains to show p[Q2] ⊂ Q0. Suppose this is false, then there exists a

y0 ∈ Q2, an ε ∈ (0, 1) and a sequence (rm)m∈N with rm ↘ 0 such that

r−nm L n(Bn(ŷ0, rm) \A0) > 2ε(3.6)

for all m ∈ N. Consider the sequence (µm)m∈N given by µm = µy0,rm . By (1.7),
unit density and as y0 ∈ U1 we have

lim sup
m→∞

µm(B(0, R)) = lim sup
m→∞

r−nm µ(B(y0, Rrm)) ≤ (1 + C lipf)nRn,

lim sup
m→∞

‖δµm‖(B(0, R)) = lim
m→∞

r−n−1
m ‖δµ‖(B(y0, Rrm)) = 0

for every R ∈ (0,∞). By varifold compactness (see Allard [All72, Thm. 6.4] or
Simon [Sim83, Thm. 8.5.5]) there exists a stationary integer n-rectifiable Radon
measure ν with 0 ∈ sptν and such that for a subsequence we have

V(µm) ⇀ V(ν) as radon measures on Rn+k ×G(n + k,n)(3.7)

Define fm ∈ C0,1(Bn(0, 3),Rk) by fm(x̂) := r−1
m (f(rmx̂+ ŷ0)− f(ŷ0)). By

the Arzela-Ascoli theorem there exists a g ∈ C0,1(Bn(0, 3),Rk) such that for a
subsequence ‖fm − g‖C0 → 0. We claim

sptν ∩C(0, 3) ⊂ graph(g)(3.8)

sptν ∩C(0, 1) = graph(g) ∩C(0, 1).(3.9)
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Suppose there exists a z ∈ sptν ∩C(0, 3) \ graph(g). Then we find ρ ∈ (0, 1)
with B(z, 4ρ) ∩ graph(g) = ∅ and ν(B(z, ρ)) > 0. Thus for some large enough
m ∈ N we have B(z, 3ρ) ∩ graph(fm) = ∅ and µm(B(z, 2ρ)) > 0. But by
definition of fm and µm combined with (1.7) we also have sptµm ⊂ graph(fm),
which yields a contradiction. Thus (3.8) holds.

Now suppose there exists a z ∈ graph(g) ∩C(0, 1) \ sptν. Define

ρ0 := inf {ρ ∈ (0,∞) : C(z, ρ) ∩ sptν 6= ∅} > 0

Note that ρ0 < 1 as 0 ∈ sptν. Then there exists a z0 ∈ ∂C(z, ρ0) ∩ sptν such
that C(z, ρ0) ∩ sptν = ∅. Consider the sequence (νl)l∈N given by νl = νz0,rl .
As above there exists a stationary integer n-rectifiable Radon measure η with
0 ∈ sptη and such that for a subsequence we have

V(νl) ⇀ V(η) as radon measures on Rn+k ×G(n + k,n).(3.10)

Similar as above we also see

sptη ∩C(0, 3) ⊂ graph(h) for some h ∈ C0,1(Bn(0, 3),Rk)(3.11)

As ν is stationary and integer n-rectifiable we know Θn(ν, z0) ∈ [1,∞) (see
[All72, Cor. 4.3.3]). This yields that η satisfies (see [All72, Cor. 8.5.4])

η0,λ = η for all λ > 0,

in particular x ∈ T(η, x) for η-a. e. x ∈ Rn+k. By choice of z0 and (3.10)
we also have sptη ⊂ {x ∈ Rn+k : x̂ · (ẑ − ẑ0) ≤ 0}, thus Lemma 3.2 yields
sptη ⊂ {x ∈ Rn+k : x̂·(ẑ−ẑ0) = 0}. In view of (3.11) this implies H n(sptη) = 0,
hence sptη = ∅, which contradicts 0 ∈ sptη. This proves (3.9).

We continue to lead (3.6) to a contradiction. Using (1.7) and the unit density
of µ we can estimate

L n(A0 ∩Bn(ŷ0, rm)) =

∫
graph(f)∩(A0×Rk∩C(y0,rm))

|JF ◦ p|−1 dH n

≥
∫
C(y0,rm)

|ΛnT(µ, x)\|−1 dµ(x) = rnm

∫
C(y0,1)

|ΛnS\|−1 dV(µm)(x, S).

Recall ε from (3.6). In view of (3.7) and (3.9) we obtain

r−nm L n(A0 ∩Bn(ŷ0, rm)) + ε ≥
∫
C(0,1)

|ΛnS\|−1 dV(ν)(x, S)

≥
∫

graph(g)∩C(0,1)

|JG ◦ p|−1 dH n = ωn

for m large enough, where G(ẑ) := (ẑ, g(ẑ)). Thus we see

r−nm L n(Bn(ŷ0, rm) \A0) = ωn − r−nm L n(A0 ∩Bn(ŷ0, rm)) ≤ ε,

which contradicts (3.6). This completes the proof of (3.3), which establishes the
result.

3.2 Lemma. Consider a stationary n-rectifiable Radon measure η in Rn+k with
x ∈ T(η, x) for η-a.e. x ∈ Rn+k. Suppose sptη ⊂ {x ∈ Rn+k : x · w ≤ 0} for
some w ∈ Rn+k. Then sptη ⊂ {x ∈ Rn+k : x · w = 0}.
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Proof. Let 0 < R1 < R2 < ∞ and consider ψ ∈ C∞(R, [0, 1]) non-increasing
with ψ(s) = 1 on (−∞, R1/2], ψ(s) = 0 on [2R2,∞) and ψ′(s) ≤ (R1 − R2)/2
on [R1, R2]. Define ζ ∈ C∞c (Rn+k, [0, 1]) by ζ(x) = ψ(|x|). As η is stationary
and x ∈ T(η, x) for η-a.e. x ∈ Rn+k we can calculate

0 =

∫
Rn+k

divη(ζw) dη =

∫
Rn+k

T(η, x)\(Dζ) · w dη =

∫
Rn+k

ψ′(|x|)x · w
|x|

dη

By ψ′ ≤ 0 and our assumptions on sptη the integrant is always positive, more-
over ψ′(s) < 0 on [R1, R2], thus x · w = 0 for η-a.e. x ∈ B(0, R2) \ B(0, R1).
This establishes the result.

4 Improved height bound

For a Brakke flow initial local height bounds in a certain direction yield weaker
height bounds at later times in a decreased region. Such results can be obtained
from sphere comparisson, see Brakke [Bra78, Thm. 3.7] or Colding and Minicozzi
[CM03, Lem. 3]. Here we prove stronger height bounds for short times using
directly the Brakke flow equation.

4.1 Proposition. For every p ∈ N there exists a Cp ∈ (1,∞) such that the
following holds:

Let ρ ∈ (0,∞), t1 ∈ R, t2 ∈ (t1,∞), a ∈ Rn+k, v ∈ Rn+k and let (µt)t∈[t1,t2]

be a Brakke flow in B(a, 2ρ). Suppose

sptµt1 ∩B(a, 2ρ) ⊂ {x ∈ Rn+k : (x− a) · v ≤ 0}.

Then for all t ∈ [t1, t2] we have

sptµt ∩B(a, ρ) ⊂ {x ∈ Rn+k : (x− a) · v ≤ Cp|v|(t− t1)pρ1−2p}.

Proof. We will actually prove the result for all p ∈ N ∪ {0}. For p = 0 the
statement directly follows from B(a, ρ) ⊂ {(x − a) · v ≤ ρ|v|} with C0 = 1.
Suppose the statement is true for some p ∈ N ∪ {0}. We want to show the
statement holds for p+ 1. We may assume ρ = 2, t1 = 0, a = 0 and v = en+k.
Set N := n + k − 1, t0 := min{2−7n−1, t2}. In case t0 < t2 for t ∈ (t0, t2] the
conclusion directly follows from B(0, 2) ⊂ {x ·en+k ≤ 2} for Cp+1 large enough.
Hence we are only interested in t ∈ [0, t0]. We claim

sptµt ∩B(0, 2) ⊂
(
BN (x̄0, 0)× (−2, 1/4]

)
(4.1)

for all t ∈ [0, t0]. In order to see this consider z0 = (x̄, h) ∈ B(0, 2) with h > 1/4.
By assumption we have sptµ0 ∩B(z0, 1/4) = ∅. Then Lemma 2.6 with R = 1/8
implies z0 /∈ sptµt for all t ∈ [0, t0].

Fix an arbitrary x̄0 ∈ BN (0, 2). By the induction assumption we see

sptµt ∩B((x̄0, 0), 1) ⊂
(
BN (x̄0, 0)× (−1, Cpt

p)
)

(4.2)

for all t ∈ [0, t0]. Consider the function η ∈ C0,1(R×RN ×R,R+)∪C∞({η > 0})
given by

η(t, x̄, h) :=
(
h− 8Cp|x̄− x̄0|2tp − Cp+1t

p+1
)

+
.
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Treat η as a function on R × Rn+k. Using divµt
((RN × {0})\) ≤ n and choos-

ing Cp+1 large enough we can estimate

(∂t − divµtD)η3(t, x) ≤ 3η2(t, x)(16Cpnt
p − (p+ 1)Cp+1t

p) ≤ 0(4.3)

for all (t, x) ∈ ([0, t2]× sptµt)∩{η > 0} at which the approximate tangent space
exists.

Let χ ∈ C∞(Rn+k, [0, 1]) be a cut-off function such that

B((x̄0, 0), 1/2) ⊂ {χ = 1} ⊂ sptχ ⊂ B((x̄0, 0), 1).

In view of (4.1), (4.2) and by definition of η we see

sptµt ∩ sptη(t, · ) ∩ sptDχ = ∅(4.4)

for all t ∈ [0, t0]. Consider the test function φ ∈ C2(R × Rn+k,R+) given by
φ := η3χ. Using (4.3), (4.4) and the Brakke flow equation (2.1) we obtain

µs(φ(s, · ))− µ0(φ(0, · )) ≤
∫ s

0

∫
Rn+k

χ(∂t − divµtD)η3 dµt dt ≤ 0

for all s ∈ (0, t0]. By assumption we have µ0(φ(0, ·)) = 0, hence φ(t, x) = 0
for all t ∈ (0, t0] and all x ∈ sptµt. By definition of η and χ this yields that
h ≤ Cp+1t

p for all t ∈ (0, t0] and all (x̄, h) ∈ sptµt ∩ ({x̄0} × [0, 1/2)). As
x̄0 ∈ BN (0, 2) was arbitrary we just proved

sptµt ∩
(
BN (0, 2)× (−2, 1/2)

)
⊂
(
BN (0, 2)× (−2, Cp+1t

p+1)
)

for all t ∈ [0, t0]. In view of (4.1) this completes the statement for p+ 1 and the
result follows by induction.

4.2 Corollary. For every p ∈ N there exists a cp ∈ (0, 1) such that the following
holds:

Let R1, r0 ∈ (0,∞), h1 ∈ (0, r0/8], R2 ∈ [r0,∞), x0 ∈ Rn+k, t1 ∈ R,
t2 ∈ (t1, t1 +cpr

2
0) and let (µt)t∈[t1,t2] be a Brakke flow in C(x0, R1 +r0, R2 +r0).

Suppose

sptµt1 ∩C(x0, R1 + r0, R2 + r0) ⊂ C(x0, R1 + r0, h1).

Then for all t ∈ [t1, t2] and h(t) := h1 + (t− t1)pr1−2p
0 we have

sptµt ∩C(x0, R1, R2) ⊂ C(x0, R1, h(t)).

Proof. We may assume t1 = 0 and x0 = 0. Let p ∈ N be given and Cp+1 be the
value according to Proposition 4.1. First we want to show

sptµt ∩C(0, R1, r0/4) ⊂ C(x0, R1, h(t))(4.5)

for all t ∈ (0, t2]. To see this consider arbitrary t ∈ (0, t2] and x ∈ sptµt ∩
C(0, R1, r0/4). We want to show |x̃| ≤ h(t). Suppose x̃ 6= 0. Set ṽ := |x̃|−1x̃,
v := (0, ṽ) ∈ Rn+k, and a := (x̂, h1ṽ). Note that |x− a| = ||x̃| − h1| ≤ r0/4.

For arbitrary y ∈ Rn+k we have (y − a) · v ≤ |ỹ| − h1, hence by our initial
height bound we see

sptµ0 ∩B(a, r0/2) ⊂ {y ∈ Rn+k : (y − a) · v ≤ 0}.
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Using Proposition 4.1 with ρ = r0/4 yields

|x̃| − h1 = (x− a) · v ≤ (r0/4)
−2p−1

Cp+1t
p+1 ≤ tpr1−2p

0 ,

as t ≤ t2 ≤ cpr
2
0 and for cp small enough. As t and x were arbitrary, this

establishes (4.5).
Now consider z0 ∈ C(0, R1, R2) with z̃0 ≥ r0/4. By our initial height bound

and h1 ≤ r0/8 we have sptµ0∩B(z0, r0/8) = ∅. Thus Lemma 2.6 with R = r0/16
implies z0 /∈ sptµt for all t ∈ [0, t2], where we used t2 ≤ cpr2

0 ≤ (2n)−1(r0/16)2.
In view of (4.5), this completes the proof.

5 Maintain graphical representability

In this section we prove Theorem 1.3. The main idea of the proof is to iterate
Brakkes local regularity theorem (see Theorem 2.10) by choosing a time at which
graphical representation is obtained as the new starting time. To do so we first
show a version of Theorem 2.10 which only has assumptions at the initial and
final time, see Proposition 5.1.

By Corollary 4.2 initial height bounds yield weaker height bounds later on.
Also by Huisken’s monotonicity formula (see Theorem 2.8) initial bounds on area
ratio imply bounds on area ratio in the future (see Lemma B.1). Moreover by the
clearing out lemma (see Lemma 2.9) non-vanishing at some time yields a lower
bound on measure a bit earlier. Thus with Brakke’s local regularity theorem (see
Theorem 2.10) we obtain the Proposition below, which is an improved version
of a result found in the author’s thesis [Lah14, Thm. 11.7].

5.1 Proposition. For all κ, α ∈ (0, 1) there exists a σ1 ∈ (0, 1) such that the
following holds:

Let β ∈ (0, 1], ι ∈ (0, σ1β], % ∈ (0,∞), s1 ∈ R, s2 ∈ (s1 + 2ι2%2, s1 +
4(σ1βι)

α%2], z0 ∈ Rn+k and let (µt)t∈[s1,s2] be a Brakke flow in C(z0, 2%, 2%).
Suppose

sptµs2 ∩C(z0, σ1ι%, %) 6= ∅,(5.1)

sptµs1 ∩C(z0, 2%, 2%) ⊂ C(z0, 2%, σ1βι%),(5.2)

r−nµs1(B(z0, r)) ≤ (2− κ)ωn for all r ∈ (σ1ι%, 8n
√
s2 − s1].(5.3)

Set I := (s1 + ι2%2, s2 − ι2%2).
Then there exists an u ∈ C∞

(
I ×Bn(ẑ0, σ1ι%),Rk

)
such that

µt C(z0, σ1ι%, %) = H n graph(u(t, · )) for all t ∈ I.

Moreover sup |Du| ≤ β and Ft(x̂) = (x̂, u(t, x̂)) satisfies (1.1).

Proof. We may assume s1 = 0, z0 = 0 and % = 1. By Corollary 4.2 with p = 2/α
and assumption (5.2) we have

sptµt ∩C(0, 1, 1) ⊂ C(0, 1, 2σ1βι)(5.4)

for all t ∈ [0, s2], where we used s
2/α
2 ≤ 42/α(σ1βι)

2 ≤ σ1βι for σ1 small enough.
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Choose λ1 ∈ (0, κ] such that λ1 ≤ (2C1)−1 and C2(2nλ1ωn)
2

n+6 ≤ (16n)−1,
where C1 and C2 are the constants from Lemma B.1. and Lemma 2.9 respec-
tively. Let Λ ∈ (1,∞) be from Theorem 2.10 chosen with respect to λ = λ1.
Consider the radius

ρ1 := 4−1Λ−
1
2 ι ∈ (2σ1ι,

√
s2),

where we chose σ1 small enough. Set t2 := s2 − (8n)−1(ρ1/2)2. We want to
show

ρ−n1 µt2(B(0, ρ1/2)) ≥ λ1ωn.(5.5)

Suppose this would be false, then we can use Lemma 2.9 with η = 2nωnλ1 and
R = ρ1/2 to obtain µs2(B(0, ρ1/4)) = 0. In view of (5.4) this contradicts (5.1).
Thus (5.5) has to be true.

By assumption (5.3), Lemma B.1 and λ1 ≤ min{κ, (2C1ωn)−1} we obtain

ρ−n1 µt(B(0, 4ρ1)) ≤ 2C1ωn ≤ λ−1
1 ,(5.6)

ρ−n1 µ0(B(0, ρ1)) ≤ (2− κ)ωn ≤ (2− λ1)ωn.(5.7)

Now choose h0 according to Theorem 2.10 with respect to λ = λ1 as above.
Set h := min{h0,Λ

−1β}. Note that 2σ1βι ≤ hρ1 for σ1 small enough. Thus
(5.4), (5.5), (5.6) and (5.7) let us apply Theorem 2.10 with ρ = ρ1 which estab-
lishes the result.

Looking at Proposition 5.1 we see that at time t2 − 2ι%2 we satisfy a non-
vanishing condition in an increased cylinder. This allows to iterate above Propo-
sition to obtain graphical representability inside a larger cylinder.

5.2 Lemma. For all κ ∈ (0, 1) there exists a σ2 ∈ (0, 1) such that the following
holds:

Let β ∈ (0, 1], λ ∈ (0, σ2β], s4 ∈ (2λ%2
0, 2

32
√
λ%2

0], y0 ∈ Rn+k and let
(µt)t∈[0,s4] be a Brakke flow in C(y0, 5%0, 2%0). Suppose we have

sptµs4 ∩C(y0, σ2λ%0, %0) 6= ∅,(5.8)

sptµ0 ∩C(y0, 5%0, 2%0) ⊂ C(y0, 5%0, σ2βλ%0),(5.9)

r−nµ0(B(y, r)) ≤ (2− κ)ωn(5.10)

for all y ∈ Bn(ŷ0, 3%0) × {ỹ0} and all r ∈ (σ2λ%0, 8n
√
s4]. Set I := (λ%2

0, s4 −
λ%2

0).
Then there exists a v ∈ C∞

(
I ×Bn(ŷ0, 2%0),Rk

)
such that

µt C(y0, 2%0, %0) = H n graph(v(t, · )) for all t ∈ I.

Moreover sup |Dv| ≤ β and Ft(x̂) = (x̂, v(t, x̂)) satisfies (1.1).

Proof. We may assume y0 = 0, %0 = 1 and set α := 1/64. Let σ1 be from
Proposition 5.1 with respect to κ. For m ∈ N set

Rm := mσ1
√
σ2λ, Tm := s4 − 2mσ2λ

2, Jm := (λ2, Tm).

Note that Tm = s4 − 2σ−1
1

√
σ2Rmλ, in particular for Rm ≤ 3 and σ2 small

enough we have Tm > s4 − λ > 4σ2λ
2.
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Consider the following statement:
stat(m) :⇔ There exists a vm ∈ C∞

(
Jm ×Bn(0, Rm),Rk

)
such that

µt C(0, Rm, 1) = H n graph(vm(t, · )) for all t ∈ Jm,
sup |Dvm| ≤ Λ2λ and Ft(x̂) = (x̂, vm(t, x̂)) satisfies (1.1).

By Proposition 5.1 with s2 = s4, % = 1, ι =
√
σ2λ we see that stat(1) is

true. Now suppose stat(m0) holds for some m0 ∈ N with Rm0
≤ 3. Using

Proposition 5.1 with s2 = Tm0
− σ2λ

2, % = 1, ι =
√
σ2λ and arbitrary z0 ∈

Bn(0, Rm0 +σ1
√
σ2λ)×{0}k yields that also stat(m0+1) is true. Thus stat(m1)

holds for some m1 ∈ N with 2 ≤ Rm1 ≤ 3, which establishes the result.

Now consider a Brakke flow which is initially graphical with small Lipschitz
constant. Then the conditions of Lemma 5.2 are satisfied for arbitrarily small
scaling. Thus we can extend the interval of graphical representation up to the
initial time.

5.3 Lemma. There exists an σ3 ∈ (0, 1) such that the following holds:
Let β ∈ (0, 1], ι ∈ (0, σ3β], ρ0 ∈ (0,∞), t1 ∈ R, t2 ∈ (t1 + ιρ2

0, t1 + 32
√
ιρ2

0],
z0 ∈ Rn+k and let (µt)t∈[t1,t2] be a Brakke flow in C(z0, 5ρ0, 2ρ0). Assume
z0 ∈ sptµt1 and

sptµt2 ∩C(z0, σ3ιρ0, ρ0) 6= ∅.(5.11)

Suppose there exists an u0 ∈ C0,1
(
Bn(ẑ0, 5ρ0),Rk

)
with lip(u0) ≤ σ3βι and

µt1 C(z0, 5ρ0, 2ρ0) = H n graph(u0).(5.12)

Set I := (t1, t2 − ιρ2
0).

Then there exists an u ∈ C∞
(
I ×Bn(ẑ0, 2ρ0),Rk

)
such that

µt C(z0, 2ρ0, ρ0) = H n graph(u(t, · )) for all t ∈ I.

Moreover sup |Du| ≤ β and Ft(x̂) = (x̂, u(t, x̂)) satisfies (1.1).

Proof. We may assume t1 = 0, z0 = 0 and ρ0 = 1.
For s ∈ (0, ι/4] we consider the following statement:

stat(s) :⇔ There exists an vs ∈ C∞
(
(s, t2 − ι/4)×Bn(0, 1),Rk

)
such that

µt C(0, 2, 1) = H n graph(vs(t, · )) for all t ∈ (s, t2 − ι/4),(5.13)

sup |Dvs| ≤ β and Ft(x̂) = (x̂, vs(t, x̂)) satisfies (1.1)(5.14)

Suppose stat(s0) holds for some s0 ∈ (0, ι/4]. We want to show that in this
case also stat( s02 ) holds. Let ŷ ∈ Bn(0, 2) be arbitrary, set y := (ŷ, u0(ŷ)) and

%0 :=
√
ι−1s0 ≤ 1/2. Using assumption (5.12) and lip(u0) ≤ σ3βι yields

sptµ0 ∩C(y, 5%0, 3/2) ⊂ C(y, 5%0, 5σ3βι%0).(5.15)

Then by Corollary 4.2 with R1 = r0 = 2%0 and R2 = 5/4 we obtain

sptµt ∩C((ŷ, 0), 2%0, 1) ⊂ C(y, 2%0, %0)(5.16)

for all t ∈ [0, 2s0]. Here we estimated 5σ3βι%0 + %−1
0 s0 ≤ Cι%0 ≤ %0 and

|u0(ŷ)| ≤ 1/4.
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Set J2 := (s0/2, 3s0/2). We want to use Lemma 5.2 with κ = 1
2 , λ = ι/2,

s4 = 2s0 and y0 = y. Choosing σ3 small enough we obtain the following:
ι%2

0/2 ≤ s0/2; Statement (5.15) implies (5.9); Using assumption (5.12) and
lip(u0) ≤ σ3βι, we see that (5.10) holds. Moreover by (5.16) and as s0 < 2s0 <
t2 − ι/4 we can use assumption (5.13) to show (5.8). Then by Lemma 5.2 we
obtain an vs,ŷ ∈ C∞

(
J2 ×Bn(ŷ, 2%0),Rk

)
with

µt C((ŷ, 0), 2%0, 1) = µt C(y, 2%0, %0) = H n graph(vs,ŷ(t, · ))

for all t ∈ J2. Here we used (5.16) to obtain the first equality. Also F (t, x̂) =
(x̂, vs,ŷ(t, x̂)) satisfies (1.1) and sup |Dvs,ŷ| ≤ β. As ŷ ∈ Bn(0, 2) was arbitrary
this shows stat( s02 ) is true.

Similarly we can use Lemma 5.2 with y0 = 0, s4 = t2, %0 = 1 and λ = ι/4
to obtain that stat(ι/4) is true for σ3 small enough. Hence we can start an
iteration which yields that stat(0) holds. This establishes the result.

Consider the situation of Lemma 5.3. If ẑ0×Rk intersects µt2 and ι is small
enough we have that (µt)t∈[t2−ιρ20,t2] satisfies the conditions of Lemma 5.3 on the
smaller scale ρ0/2 with σ3βι replaced by β. Thus we can use t2 − ι as the new
starting time. This yields an iteration and by curvature bounds for graphical
mean curvature flow, we can assure that the gradient does not blow up. This
leads to the following:

5.4 Lemma. There exists a σ4 ∈ (0, 1) such that the following holds:
Let η ∈ (0, σ4], %0 ∈ (0,∞), s1 ∈ R, s2 ∈ (s1, s1 + η%2

0], y0 ∈ Rn+k and let
(µt)t∈[s1,s2] be a Brakke flow in C(y0, 2%0, 2%0). Assume y0 ∈ sptµs1 and

sptµs2 ∩
(
{ŷ0}n ×Bk(ỹ0, %0)

)
6= ∅.(5.17)

Suppose there exists a v0 ∈ C0,1
(
Bn(ŷ0, 2%0),Rk

)
with lip(v0) ≤ η4 and

µs1 C(y0, 2%0, 2%0) = H n graph(v0).(5.18)

Let s ∈ (s1, s2) and %(s) := η−1/16
√
s2 − s.

Then there exists a vs ∈ C∞
(
(s1, s)×Bn(ŷ0, %(s)),Rk

)
such that

µt C(y0, %(s), %0) = H n graph(vs(t, ·)) for all t ∈ (s1, s).

Moreover sup |Dvs| ≤ η and Ft(x̂) = (x̂, vs(t, x̂)) satisfies (1.1).

Proof. We may assume s1 = 0, y0 = 0 and %0 = 1. For a smooth n-dimensional
submanifold M and µ = H n M set

‖tilt(µ)‖U := sup
x∈M∩U

‖(Rn × {0}k)\ −T(M,x)‖

‖A(µ)‖U := sup
x∈M∩U

|A(M,x)|

for U ⊂ Rn+k open. Here A is the second fundamental form of M .
For m ∈ N set

η0 := 16
√
η, δ0 := η−1

0

√
s2, δm := η2m+16

0 δ0,

τ+
0 := s2 − 4η44

0 s2, τ+
m := s2 − ηm+15

0 δ2
m,

τ0 := s2 − 8η44
0 s2, τm := s2 − 2ηm+15

0 δ2
m.
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Note that for all m ∈ N ∪ {0}

0 < τm+1 − τ+
m < τ+

m+1 − τm ≤ s2 − τm ≤ Cηm+10
0 δ2

m+1.(5.19)

For m ∈ N ∪ {0} we consider the following statement:
stat(m) :⇔ There exists a vm ∈ C∞

(
(0, τ+

m)×Bn(0, 2δm),Rk
)

such that

µt Um = H n graph(vm(t, · )) for all t ∈ (0, s)(5.20)

Ft(x̂) = (x̂, vm(t, x̂)) satisfies (1.1),(5.21)

sup
t∈(0,τ+

m)

‖tilt(µt)‖Um
≤

m∑
i=0

2−i−4η,(5.22)

δ2
m+1 sup

t∈[τ0/2,τm]

‖A(µt)‖2Um
≤ η2m+33

0 ,(5.23)

where Um := C(0, 2δm, 1).
First we observe the following: Consider t ∈ [0, s2) then there exists an

i ∈ N ∪ {0} such that τi ≥ t and

η−1
0

√
s2 − t ≤ δi.(5.24)

If t ∈ [0, τ0] this directly follows from the definition of δ0. For t ∈ (τ0, s2) choose
i ∈ N such that (with (5.19))

s2 − τi ≤ s2 − t ≤ s2 − τi−1 ≤ ηi+8
0 δ2

i .

Also note that by (5.18), lip(v0) ≤ η4, η16
0 = η ≤ σ4, s2 ≤ η and Corollary 4.2

with R2 = 1, R1 = r0 = η−6
0 δ0 = η−7

0

√
s2 ≤ η0 and p = 8 we have

sptµt ∩C(0, η−6
0 δ0, 1) ⊂ C(0, η−6

0 δ0, η
3δ0)(5.25)

for all t ∈ [0, s2] where we chose σ4 small enough.
Next notice that stat(0) is true. To see this use Lemma 5.3 with t1 = 0,

t2 = s2, β = η16
0 /16, ι = η46

0 and ρ0 = 2δ0. Use η16
0 = η ≤ σ4 and choose σ4

small enough to obtain η64
0 ≤ σ3βι, s2− ιρ2

0 ≥ τ+
0 and 32

√
ιρ2

0 ≥ s2. In particular
use (5.25) to see that sptµt ∩C(0, 4δ0, 2δ0) = sptµt ∩C(0, 4δ0, 1). This shows
(5.20)-(5.22) for m = 0 on the larger radius 4δ0. By Lemma A.6 with t1 = 0,
t2 = τ+

0 and ρ = 2δ0 we have

sup
t∈[τ0/2,τ0]

‖A(µt)‖C(0,2δm,1) ≤ Cτ
−1/2
0 = Cs

−1/2
2 = C/(η0δ0) = Cη17

0 /δ1,

which completes stat(0).
Now consider m ∈ N ∪ {0} such that stat(m) holds, we want to show that

then also stat(m + 1) holds. By (5.17) and (5.25) there exists a point aω in
sptµs2∩({0}n×Bk(0, 1/4)). Using (5.19) and Lemma 2.6 with z0 = aω and R =
4n
√
s2 − τm we see B(aω, Cη

5
0δm+1)∩sptµτm 6= ∅. Now choose am ∈ sptµτm as a

nearest point to aω. In particular am ∈ B(aω, Cη
5
0δm+1) ⊂ C(0, Cη5

0δm+1, 1/2)
and aω − am ∈ T(µτm , am)⊥. We claim

sptµt ∩C(0, δm, 1) ⊂ C(am, 2δm, δm+1)(5.26)

20



for all t ∈ [τm, s2]. For m = 0 this directly follows from (5.25), |â0| ≤ δ0 and
η3δ0 = η30

0 δ1. For m ∈ N note that by (5.20) and (5.22) we can use Corollary
4.2 with t1 = τm, t2 = s2, R1 = r0 = δm, R2 = 1/4 and p = 2 to see

sptµt ∩C(am, 2δm, 1/4) ⊂ C(am, 2δm, Cηδm).

for all t ∈ [τm, s2]. Then (5.26) follows from (5.25), |âm| ≤ δm and Cηδm =
Cη14

0 δm+1 ≤ δm+1 for σ4 small enough.
Fix an S ∈ SO(n + k) with S(Rn × {0}k) = T(µτm , am) and set

νt := (S−1)](µt − am) for t ∈ [0, s2],

in particular (νt)t∈[0,s2] is a Brakke flow in C(0, 1, 1). Using (5.20) and (5.22)

for σ4 small enough there exists an f ∈ C∞
(
(0, τ+

m)×Bn(0, δm),Rk
)

with
sup |Df | ≤ η and

νt C(0, δm, δm) = H n graph(f(t, · )) for all t ∈ (0, τ+
m).(5.27)

By choice of aω and am we also have

S−1(aω − am) ∈
(
{0}n ×Bk(0, Cη5

0δm+1)
)
∩ sptνs2 .(5.28)

By defintion of ν its evident that f(τm, 0) = 0 and Df(τm, 0) = 0. In view of
(5.22) and (5.23) we can estimate

sup
Bn(0,29δm+1)

|Df(τm, · )| ≤ Cηm+33/2
0 .(5.29)

Here we used Corollary [Lah15, Cor. A2], δm+1 ≤ η2
0δm, η16

0 = η ≤ σ4 and chose
σ4 small enough. In view of 0 ∈ sptν, (5.19), (5.27), (5.29) we can use Corollary
4.2 to see

sptνt ∩C(0, 29δm+1, 2
9δm+1) ⊂ C(0, 29δm+1, Cη

m+33/2
0 δm+1)(5.30)

for all t ∈ [τm, s2].
We want to use Lemma 5.3 with t1 = τm, t2 = s2, ρ0 = 26δm+1, β = l1,

ι = 4−6ηm+16
0 and z0 = 0, where l1 is the from Lemma A.6. By η16

0 = η ≤ σ4

and for σ4 small enough we see: (5.28) implies (5.11), (5.27) implies (5.12) and
(5.29) yields the desired Lipschitz bound. Moreover with (5.19) we can estimate

ηm+16
0 δ2

m+1 ≤ s2 − τ+
m+1 ≤ s2 − τm ≤ 32

√
ηm+16

0 δ2
m+1.

Then we obtain a g ∈ C∞
(
(τm, τ

+
m+1)×Bn(0, 27δm+1),Rk

)
with

νt C(0, 27δm+1, 2
7δm+1) = H n graph(g(t, · ))(5.31)

for all t ∈ (τm, τ
+
m+1) and sup |Dg| ≤ l1. By (5.27), (5.31) and (5.19) we can use

Lemma A.6 with t1 = τ+
m+1 − δ2

m+1 ≥ τ0 − δ1 > 0, t2 = τ+
m+1 and ρ = 26δm+1

to obtain

sup
t∈[τm,τ

+
m+1)

‖A(νt)‖2C(0,26δm+1,27δm+1) ≤ Cδ
−2
m+1.(5.32)
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Here we used (5.19) to estimate

τm − (τ+
m+1 − δ2

m+1) ≥ −Cηm+10
0 δ2

m+1 + δ2
m+1 ≥ δ2

m+1/2.

By definition of ν we have ‖A(νt)‖2B(0,26δm+1) ≤ ‖A(µt)‖2C(0,δm,1) for all t ∈
(0, τm]. Then in view of (5.19), (5.23), (5.27), (5.31) and (5.32) we can use
Lemma A.5 with t1 = τm, t2 = τ+

m+1, % = 25δm+1, L = C and p = 4 to estimate

δ2
m+1‖A(νt)‖2B(0,25δm+1) ≤ C

(
η2m+33

0 + η
4(m+10)
0

)
≤ Cη2m+33

0(5.33)

for all t ∈ [τm, τ
+
m+1).

In view of (5.30), (5.31) and (5.33) we can use Lemma [Lah15, Lem. A4] to
obtain the gradient bound

sup
[τm,τ

+
m+1)×Bn(0,25δm+1)

|Dg| ≤ Cηm+33/2
0 .(5.34)

By definition of ν, (5.22), (5.31) and (5.34) there exists a smooth function
h ∈ C∞

(
(τm, τ

+
m+1)×Bn(0, 8δm+1),Rk

)
with

µt C(am, 8δm+1, δm+1) = H n graph(h(t, · ))

‖tilt(µt)‖C(am,8δm+1,δm+1) ≤
m∑
i=0

2−i−4η + Cη
m+33/2
0 ≤

m+1∑
i=0

2−i−4η,

for all t ∈ (τm, τ
+
m+1), where we used η16

0 = η ≤ σ4 and chose σ4 small enough.
By (5.26) and |am| ≤ δm+1 this proves (5.20)-(5.22) for m+ 1. Also

‖A(µt)‖2C(0,4δm+1,1) ≤ ‖A(µt)‖2B(am,25δm+1) = ‖A(νt)‖2B(0,25δm+1)

for all t ∈ [τm, τm+1]. Hence (5.33) and δm+1 = η−2
0 δm+2 imply (5.23) for

m + 1. This proves stat(m + 1) and in view of (5.24) an induction establishes
the result.

Consider the setting of Theorem 1.3. We will use Lemma 5.4 to show that for
all t ∈ (t1, t2) we have that sptµt∩C(a, ρ, ρ) is contained in a Lipschitz graph and
has density < 2 almost everywehere. Then by Theorem 1.5 and the properties
of a Brakke flow we find a sequence τm ↗ t2 such that sptµτm C(a, ρ, ρ) is
graphical. This allows us to apply Lemma 5.4 with arbitrary centre point in
Bn(â, ρ)× {0}k and final time τm to conclude sptµt C(a, ρ, ρ) is graphical for
all t ∈ [t1, τm). By the convergence of (τm) this establishes Theorem 1.3.

Proof of Theorem 1.3. We may assume a = 0, t1 = 0 and ρ = 2. Using (1.6)
and Corollary 4.2 we obtain

sptµt ∩C(0, 3, 3) ⊂ C(0, 3, 7l0)(5.35)

for all t ∈ [0, t2].
Set U := Bn(0, 2) × Rk. By definition of a Brakke flow we find a sequence

(τm)m∈N with τm ↗ t2, τm ∈ (0, t2] such that for all m ∈ N we have µm :=
µτm C(0, 2, 2) is integer n-rectifiable and the generalised mean curvature vector
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Hµm
inside U exists. In particular ‖∂µm‖ is absolutely continuous with respect

to µm. Fix an arbitrary m ∈ N. We want to show

sptµm ∩ U ⊂ graph(fm)(5.36)

for some Lipschitz function fm : Bn(0, 4)→ Rk.
Let x, y ∈ sptµm ∩ U with x 6= y. Set y0 := (ŷ, u0(ŷ)). We want to show

|x̃ − ỹ| ≤ L|x̂ − ŷ| for some constant L ∈ (1,∞) which will depend on l0. By
(5.35) we have |x̃− ỹ| ≤ 7l0. Hence we may assume |x̂− ŷ| ≤ l0.

First consider the case τm ≤ 4|x̂ − ŷ|2 ≤ 4l20 and let z ∈ sptµm ∩ U . Then
µm(B(z, 2

√
nτm)) > 0, so by Lemma 2.6 we have µ0(B(z, 4

√
nτm)) > 0. Thus

by (1.6) and lip(u0) ≤ l0 we have |z̃ − ỹ0| ≤ l0|ẑ − ŷ0| + 8
√

nτm. For z = x, y
this yields the wanted estimate.

Now consider the case 0 < 4|x̂ − ŷ|2 < τm. Set ε := |x̂ − ŷ|. By (5.35) we
have y ∈ sptµm ∩ ({ŷ0} × Bk(0, 1)). Set sm := τm − 2ε2. Using Lemma 5.4
with s1 = 0, s2 = τm, %0 = 1, η = 4

√
l0 we obtain a vm ∈ C∞(Bn(ŷ, 8nε)) with

sup |Dvm| ≤ 4
√
l0 ≤ 1 and

sptµsm ∩C(y0, 8nε, 1) = H n graph(vm).(5.37)

Consider z ∈ sptµm ∩ U with |ẑ − ŷ| ≤ ε. Then µm(B(z, 2
√

nε)) > 0, so by
Lemma 2.6 we have µsm(B(z, 4

√
nε)) > 0. In view of (5.35) we can use (5.37)

to estimate |z̃ − vm(ŷ)| ≤ (1 + 8n)ε. For z = x, y this proves (5.36).
Next we want to show that µm has unit density. Let y ∈ sptµm ∩ U and

r ∈ (0,
√
τm) be given. Set sr := τm − 16 32

√
l0r

2 and y0 := (ŷ, u0(ŷ)). Note that
by (5.35) we have y ∈ sptµm∩ ({ŷ0}×Bk(0, 1)). Using Lemma 5.4 with s1 = 0,
s2 = τm, %0 = 1, η = 4

√
l0 we obtain a vr ∈ C∞(Bn(ŷ, 4r)) with sup |Dvr| ≤ 4

√
l0

and

sptµsr ∩C(y0, 4r, 1) = H n graph(vr),(5.38)

Consider a radial cut-off function ζr ∈ C∞c
(
Rn+k, [0, 1]

)
with sup |D2ζr| ≤ Cr−2

and

ζr(x) =

{
1 for 0 ≤ |x− y| ≤ r
0 for (1 + 2−n−2)r ≤ |x− y| .

Using equation (2.1), Remark 2.2 and Lemma 2.6 we estimate

µm (B(y, r))− µsr
(
B(y, (1 + 2−n−2)r)

)
≤ µm(ζr)− µsr (ζr) ≤ C

∫ τm

sr

(
sup |D2ζr|µt({ζ > 0})

)
dt

≤ C 32
√
l0 sup{µt(B(y, 2r)), t ∈ [sr, τm]} ≤ C 32

√
l0µsr (B(y, 4r)) .

In view of (5.35) we have |ỹ − ỹ0| ≤ 1/4 < 1− 4r, hence we can use (5.38) and
the above estimate to obtain

µm (B(y, r)) ≤ (1 + C 4
√
l0)
(
C 32
√
l0(4r)n + ((1 + 2−n−2)r)n

)
≤ 3

2
rn,

where we chose l0 small enough. As we already know µm is integer rectifiable,
this shows that µm even has unit density in U . Also, by (1.5) and Lemma 2.6
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we have sptµm ∩ U 6= ∅. Then Theorem 1.5 yields that in (5.36) actually holds
equality. Hence

µτm C(0, 2, 2) = H n graphfm

for all m ∈ N, for some Lipschitz function fm : Bn(0, 2) → Rk. In view of this
and (5.35) we can use Lemma 5.4 with s2 = τm, %0 = 1 and arbitrary y0 ∈
Bn(0, 2) × {0}k to obtain graphical representability inside C(0, 2, 2) for times
in (0, τm). As τm ↗ t2 this actually holds on (0, t2). Finally for the Lipschitz
bound consider (t, ŷ) ∈ (0, t2) × Bn(0, 2). Lemma 5.4 with y0 := (ŷ, u0(ŷ)),
ρ0 = 1, s2 = t + ε and η = 4

√
l + t + ε yields |Du(t, ŷ)| ≤ 4

√
l + t + ε for all

ε ∈ (0, t2 − t). Letting ε↘ 0 completes the result.

6 Brakke-type local regularity

Here we proof Theorem 1.1. First note that under slightly stronger assumptions
on the starting density ratios the result directly follows from Lemma 5.2 and
Theorem 1.3, see below:

6.1 Lemma. There exists a constant σ5 ∈ (0, 1) and for every κ ∈ (0, 1) exists
an h2 ∈ (0, σ2

5) such that the following holds:
Let h ∈ (0, h2], % ∈ (0,∞), s1 ∈ R, s2 ∈ (s1 +

√
h%2, s1 + σ5%

2], x0 ∈ Rn+k

and let (µt)t∈[s1,s2] be a Brakke flow in C(x0, 2
5%, 25%). Suppose x0 ∈ sptµs2 ,

sptµs1 ∩C(x0, 2
5%, 25%) ⊂ C(x0, 2

5%, h%),(6.1)

r−nµs1(B(y, r)) ≤ (2− κ)ωn(6.2)

for all y ∈ Bn(x̂0, 2
4%)× {x̃0} and all r ∈ (h%, %). Set I := (s1 +

√
h%2, s2).

Then there exists a v ∈ C∞
(
I ×Bn(x̂0, %),Rk

)
such that

µt C(x0, %, %) = H n graph(v(t, · )) for all t ∈ I.

Moreover sup |Dv(t, · )| ≤ 16
√
h+%−2(t−s1) for all t ∈ I and Ft(x̂) = (x̂, v(t, x̂))

satisfies (1.1).

Proof. We may assume x0 = 0, s1 = 0 and % = 1. First note that by assumption
(6.1), s2 ≤ σ5, h ≤ h2 < σ5 and Corollary 4.2 with R1 = R2 = r0 = 16 we have

sptµt ∩C(0, 16, 16) ⊂ C(0, 16, 2σ5),(6.3)

for all t ∈ [0, s2].
Let σ2 be from Lemma 5.2 with respect to κ and set s4 :=

√
h < s2, J :=

(
√
h/4, s4 −

√
h/4). Lemma 2.6 and 0 ∈ sptµs2 yield the existence of a z0 ∈

sptµs4 ∩ B(0, 1). By Lemma 5.2 with %0 = 4, y0 = (ẑ0, 0), β = 24σ−1
2

√
h and

λ = 2−6
√
h there exists a v1 ∈ C∞(J ×Bn(ẑ0, 8),Rk) such that

µt C((ẑ0, 0), 8, 4) = H n graph(v1(t, · )) for all t ∈ J.

Moreover sup |Dv1| ≤ 24σ−1
2

√
h. Here we chose h2 ≤ σ−2

2 . Then (6.3), |ẑ0| ≤ 1
and Theorem 1.3 with t1 =

√
h/2, a = (0, v1(t1, 0)), l = 24σ−1

2

√
h and ρ = 2

yield the result. Here we chose h2 small depending on σ2 and l0.
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Now under the assumptions of Theorem 1.1 we can find a time s1 shortly
after t1 such that µs1 C(a, ρ, ρ) has bounded mean-curvature-excess and still
has small height. By Lemma 2.12 then also the tilt-excess has to be small.
Thus Brakke’s cylindrical growth theorem (see Theorem 2.13) can be used to
show that the density assumptions of Lemma 6.1 hold, which then yields the
conclusion of Theorem 1.1.

proof of Theorem 1.1. We may assume a = 0, t1 = 0 and ρ = 1. First consider
the case γ > 0. Set U := B(0, 1) and C(x, r) := C(x, r) ∩ U for r ∈ (0,∞),
x ∈ U . In view of assumption (1.2) and as C(0,

√
2,
√

2) ⊂ B(0, 2) we can use
Corollary 4.2 with r0 =

√
2− 1 and p = 4 to obtain

sptµt ∩C(0, 1, 1) ⊂ C(0, 1, 2γ)(6.4)

for all t ∈ [0, 4
√
γ] for γ0 small enough. Fix a σ ∈ (0, 2−5) such that (1−8σ)−n ≤

1 +λ/8 and (1 + 4σ)n ≤ 1 +λ/32. In particular in the following γ0 may depend
on σ. By Lemma 2.6 and assumption (1.3) we can estimate

µt (B(0, 1− σ)) ≤ Cσ−n−kµ0 (B(0, 1)) ≤ Cσ−n−k(6.5)

for all t ∈ [0, 4
√
γ].

Fix a cut-off function ψ ∈ C∞ (R, [0, 1]) with |ψ′′| ≤ Cσ−2 and

ψ(t) =

{
1 for 0 ≤ |t| ≤ 1− 2σ

0 for 1− σ ≤ |t|.

Consider ζ ∈ C∞c (B(0, 1), [0, 1]) given by ζ(x) = ψ(|x|). For s ∈ (0, 4
√
γ] equa-

tion (2.1) and Remark 2.2 yield

D := µs (ζ) +
1

2

∫ s

0

∫
Rn+k

|Hµt
|2ζ dµt dt

≤ µ0 (ζ) + sup |D2ζ|
∫ s

0

µt ({ζ > 0}) dt.

Hence by (1.3) and (6.5) we have

D ≤ (2− λ)ωn + Csσ−n−k−2 ≤ (2− λ/2)ωn,

where we used s ≤ 4
√
γ0 and we chose γ0 small enough. By (6.4) we have

{ζ = 1} ⊃ B(0, 1− 2σ) ⊃ sptµs ∩ C(0, 1− 4σ), for γ0 ≤ σ. Thus

µs (C(0, 1− 4σ)) +
1

2

∫ s

0

∫
C(0,1−4σ)

|Hµt |2 dµt dt ≤ D ≤ (2− λ/2)ωn(6.6)

for all s ∈ (0, 4
√
γ]. In particular we find an s1 ∈ (0, 4

√
γ] such that µs1 U is

integer n-rectifiable, has L2-integrable mean curvature vector and∫
C(0,1−4σ)

|Hµs1
|2 dµs1 ≤ 2(2− λ/2)ωnγ

−1/4 ≤ Cγ−1/4.(6.7)

Consider y ∈ B(0, σ). By (6.6) and choice of σ we can estimate

µs1(C(y, 1− 8σ)) ≤ (2− λ/2)ωn ≤ (2− λ/4)ωn(1− 8σ)n.(6.8)
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Let f ∈ C∞c (C(0, 1− 4σ), [0, 1]) be such that f(x) = ψ((1 − 4σ)−1|x̂|) for
x ∈ sptµs1 ∩ U . In view of (6.4),(6.6) and (6.7) we can use Lemma 2.12 with
f = g = h to obtain∫

C(0,1−6σ)

∥∥(Rn × {0}k)\ −T(µs1 , x)\
∥∥2

dµs1(x) ≤ Cγ7/8.(6.9)

Here we estimated sup |Df |2 ≤ Cσ−2 ≤ Cγ−1
0 ≤ Cγ−1.

Consider y ∈ B(0, σ) and r0 ∈ (2−5γ16α0σ, σ). Let R2 = 1 − 8σ and R1 =
(1 + 4σ)r0. By (6.7) and (6.9) the assumptions of Theorem 2.13 are satisfied for
α2 = Cγ−1/4(γ16α0σ)−n and β2 = Cγ7/8(γ16α0σ)−n. Hence we can estimate∣∣∣∣R−n2

∫
U

ψ(R−1
2 |x̂− ŷ|) dµs1(x)−R−n1

∫
U

ψ(R−1
1 |x̂− ŷ|) dµs1(x)

∣∣∣∣
≤ Cγ−1/8(γ16α0σ)−nγ7/16 ≤ Cσ−nγ3/16

0 ≤ λωn/8,

where we chose α0 and γ0 small enough. By estimate (6.8), definition of ψ and
σ this yields

((1 + 4σ)r0)−nµs1 (B(y, r0)) ≤ (2− λ/8)ωn ≤ (2− λ/16)ωn(1 + 4σ)−n.

Now we can use Lemma 6.1 with s2 = t2, κ = λ/16, % = 2−5σ and h = γ16α0

to obtain the result. For the case γ = 0 use the above result with arbitrary
small γ.

7 White-type local regularity

Here we want to prove Theorem 1.2. First we observe that a Brakke flow for
which all Gaussian density ratios are one, has to be a plane. This mainly follows
from Huisken’s monotonicity formula (see Theorem 2.8).

7.1 Lemma. Let M ∈ (1,∞), t1 ∈ R, t2 ∈ (t1,∞) and (µt)t∈[t1,t2] be a Brakke

flow in Rn+k. Suppose sptµt2 6= ∅ and for all (s, y) ∈ (t1, t2]× Rn+k

sup
R∈(0,∞)

R−nµs(B(y,R)) ≤M,(7.1)

sup
t∈[t1,s)

∫
Rn+k

Φ(s,y) dµt ≤ 1.(7.2)

Then there exists a T ∈ G(n + k,n) and an a ∈ Rn+k such that µt =
H n (T + a) for all t ∈ (t1, t2).

Proof. We may assume t1 = −1 and t2 = 0. For t ∈ (−1, 0) let D(t) be the set
of all y ∈ sptµt such that Θn(µt, y) ≥ 1 and T(µt, y) exists. Fix s ∈ (−1, 0)
and y ∈ D(s). For ε ∈ (0, 1) there exist a radial symmetric cut-off function
ζ ∈ C0

c

(
Rn+k, [0, 1]

)
such that∫

Rn×{0}k
Φ(0,0)(−1, x)ζ(x) dH n(x) ≥ 1− ε,(7.3)
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By (7.3) and definition of the approximate tangent space we can estimate

(1− ε)Θn(µs, y) ≤ Θn(µs, y)

∫
T(µs,y)

Φ(0,0)(−1, x)ζ(x) dH n(x)

≤ lim
λ↘0

λ−n
∫
Rn+k

Φ(0,0)(−1, λ−1(x− y)) dµs(x)

= lim
λ↘0

∫
Rn+k

Φ(s+λ2,y)(s, x) dµs(x).

Then with Huisken’s monotonicity formula (see Theorem 2.8), and by continuity
of the integral we obtain for h0 ∈ (0, s+ 1) small enough

(1− ε)Θn(µs, y) ≤ lim
λ↘0

∫
Rn+k

Φ(s+λ2,y) dµs−h0
≤ lim
h↘0

∫
Rn+k

Φ(s,y) dµs−h + ε,

Thus by (7.2) and as ε was arbitrary we have

1 ≤ Θn(µs, y) ≤ lim
h↘0

∫
Rn+k

Φ(s,y) dµs−h ≤ 1(7.4)

for all y ∈ D(s) for all s ∈ (−1, 0). Hence µt has unit density for a.e. t ∈ (−1, 0).
Fix an arbitrary t0 ∈ (−1, 0) such that µt0 has unit density. Assumption

sptµ0 6= ∅ and Lemma 2.6 imply sptµt0 6= ∅, so we can find n + 1 points
y0, . . . , yn in D(t0) such that vi := yi−y0, i = 1, . . . ,n are linearly independent.
Set T := span(vi)1≤i≤n. By estimates (7.2), (7.4) and Theorem 2.8 we obtain∫

Rn+k

Φ(t0,yi) dµt = 1

for all t ∈ [−1, t0) for all i ∈ {0, . . . ,n}.
Then Theorem 2.8 yields the existence of a J ⊂ (−1, t0) such that for all

t ∈ J we have µt has unit density, the generalised mean curvature vector Hµt

exists with
∫
|Hµt

|2µt <∞ and

Hµt
(x) + (2(t0 − t))−1(T(µt, x)⊥)\(x− yi) = 0(7.5)

for µt-a.e. x ∈ Rn+k and all i = 0, 1, . . . ,n. Moreover L 1((−1, t0) \ J) = 0.
Let t ∈ J and let Et be the set of points x ∈ sptµt such that Θn(µt, x) ≥ 1,

T(µt, x) exists and (7.5) holds for all i ∈ {0, . . . ,n}. We see µt(Rn+k \Et) = 0.
Consider x ∈ Et then by (7.5) we have

(T(µt, x)⊥)\(y0 − yi) = (T(µt, x)⊥)\(x− yi)− (T(µt, x)⊥)\(x− y0) = 0

for all i ∈ {1, . . . ,n}. So vi = yi − y0 ∈ T(µt, x) for all i ∈ {1, . . . ,n}, hence
T(µt, x) = span(vi)1≤i≤n = T . As this holds for all x ∈ Et for all t ∈ J , we
have Hµt

≡ 0 for a.e. t ∈ (−1, t0). This follows from Brakke’s general regularity
theorem [Bra78, Thm. 6.12] (see also [KT14, Thm. 3.2]). Or deduce this from
Menne’s characterization of the mean curvature vector [Men15, Thm. 15.6].

Now for a.e. t ∈ (−1, t0) we have t ∈ J and Hµt ≡ 0, so equality (7.5)
with i = 0 yields Et ⊂ T + y0. Thus sptµt ⊂ T + y0. Then by Theorem 1.5
we have µt = H n (T + y0). As this holds for a.e. t in (−1, t0) and by the
continuity properties of the Brakke flow due to Brakke [Bra78, Thm. 3.10] we
obtain µt = H n (T + y0) for all t ∈ (−1, t0). Finally choose t0 arbitrary close
to 0 to establish the result.
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Now suppose the Gaussian density ratios are locally bounded by 1 + δ. In
view of the previous Lemma 7.1 an indirect blow-up argument combined with
Ilmanen’s compactness theorem (see Theorem 2.11), yields a small neighbour-
hood in which we have small height and density ratios close to one, see below.
In view of Theorem 1.1 this implies Theorem 1.2.

7.2 Lemma. For all ε, σ ∈ (0, 1) there exists a δ ∈ (0, 1) such that the following
holds:

Let ρ, ρ0 ∈ (0,∞) and let (µt)t∈[−ρ2,0] be a Brakke flow in B(0, 4
√

nρ0).
Suppose ρ ≤ ρ0, 0 ∈ sptµ0 and for all (s, y) ∈ (−ρ2, 0]×B(0, ρ) we have∫

Rn+k

Φ(s,y)ϕ(s,y),ρ0 dµ−ρ2 ≤ 1 + δ.(7.6)

Then there exists a T ∈ G(n + k,n) such that we have

sup
{
|(T⊥)\(x)|, x ∈ sptµ−σδ2ρ2 ∩B(0, 2δρ)

}
≤ εδρ

and µ−σδ2ρ2(B(0, δρ)) ≤ ωn(1 + ε)(δρ)n.

Proof. We may assume ρ = δ−1. Suppose the statement would be false. Then
there exist ε, σ ∈ (0, 1) and for every j ∈ N we find an ρj ∈ [j,∞) and a Brakke

flow (νjt )t∈[−j2,0] in Bj := B(0, 4
√

n)ρj) such that 0 ∈ sptνj0 ,

sup
t∈[−j2,s)

∫
Rn+k

Φ(s,y)ϕ(s,y),ρj dνjt =

∫
Rn+k

Φ(s,y)ϕ(s,y),ρj dνj−j2 ≤ 1 +
1

j
(7.7)

for all (s, y) ∈ (−j2, 0]×B(0, j) and one of the following holds

inf
T∈G(n+k,n)

sup
{
|(T⊥)\(x)|, x ∈ sptνj−σ ∩B(0, 2)

}
> ε,(7.8)

νj−σ(B(0, 1)) > ωn(1 + ε).(7.9)

Note that the equality in (7.7) follows from Huisken’s monotonicity formula (see
Theorem 2.8).

To obtain a converging subsequence of the (νjt ) we need uniform bounds on
the measure of compact sets. We claim that for every R ∈ (0,∞) we can find a
D(R) ∈ (0,∞) such that

sup
j≥2

sup
t∈[−2,0]

νjt (B(0, R) ∩B(0, j/2)) ≤ D(R).(7.10)

Before we prove this, we first show

sup
j≥2

sup
t∈[−2,0]

sup
y∈B(0,j)

sup
R∈(0,j/4]

νjt (B(y,R)) ≤ CRn(7.11)

To see (7.11) consider R ≤ j/4, x ∈ B(y, 2R), t ∈ [−2, 0] and c2 := (2n)−1.
Then we can estimate Φ(t,y)(t − c2R2, x) ≥ (4πc2R

2)−
n
2 exp(−1/c2) as well as

ϕ(t,y),ρj (t− c2R2, x) ≥ (1− 1/4)3. Thus Lemma 2.6 and assumption (7.7) yield

νjt (B(y,R)) ≤ Cνjt−c2R2(B(y, 2R))

≤ CRn

∫
Rn+k

Φ(t,y)ϕ(t,y),ρj dνjt−c2R2 ≤ CRn.
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To prove (7.10) let R ∈ (0,∞). For j ≤ 4R we can use Lemma 2.6 to estimate

νjt (B(0, j/2)) ≤ νjt (B(0, 4
√

nj)) ≤ νj−2(B(0, 8
√

nj)) =: Dj(R)

for all t ∈ [−2, 0]. Combined with (7.11) this proves (7.10).
Now we can use the compactness theorem by Ilmanen, (see Theorem 2.11)

with Uj = B(0, j/2), to see that a subsequence of the (νjt ) converges to a Brakke
flow (νt)t∈[−2,0] in Rn+k. Note that without loss of generality we will assume
that the whole sequence converges. In particular

νt(φ) = lim
j→∞

νjt (φ) for all φ ∈ C0
c (B(0, j0/2))(7.12)

for all t ∈ [−2, 0] and all j0 ∈ N. Combining this with (7.11) yields

sup
t∈[−2,0]

sup
y∈Rn+k

sup
R∈(0,∞)

νt(B(y,R)) ≤ CRn.(7.13)

Next we want to show ∫
Rn+k

Φ(s,y) dνt ≤ 1(7.14)

for all (s, y) ∈ (−2, 0]× Rn+k and all t ∈ [−2, s). To see this fix s, y, and t like
that. First we see that by (7.13) we have∫

Rn+k

Φ(s,y) dνt <∞.(7.15)

In order to prove (7.15) consider fl : Rn+k → R+ given by fl(x) := Φ(s,y)(t, x)
for |x − y| < l and fl ≡ 0 outside B(y, l). Obviously we have fl+1 ≥ fl. Use
(7.13) to estimate νt(B(y, 2l)) ≤ 2C1(2l)n for all l ∈ N. Then for l ≥ l0 we
observe∫

Rn+k

fl+1 dνt −
∫
Rn+k

fl dνt ≤
∫
B(y,l+1)\B(y,l)

Φ(s,y) dνt

≤ C(s− t)−n/2 exp(−l2/(4(s− t)))νt(B(y, 2l)) ≤ l−3−nνt(B(y, 2l)) ≤ l−2,

where we chose l0 large enough depending on s− t. Thus liml→∞
∫
fldνt < ∞

and the monotone convergence theorem implies (7.15).
We continue to prove (7.14). Let γ ∈ (0, 1) be arbitrary. Note that y, s, t

are still fixed. Using (7.15) and (7.12) we find j1, j2, j3 ∈ N, j3 > j2 > j1 such
that ρj2 ≥ ρj1 + 1, ∫

Rn+k\B(y,ρj1 )

Φ(s,y) dνt ≤ γ,∫
B(y,ρj1 )

Φ(s,y) dνt −
∫
B(y,ρj2 )

Φ(s,y) dνjt ≤ γ,

1 ≤ inf
x∈B(y,ρj2 )

ϕ(s,y),ρj (t, x) + γρ−nj2

for all j ≥ j3. Combining these estimates with (7.11) we obtain∫
Rn+k

Φ(s,y) dνt ≤
∫
Rn+k

Φ(s,y)ϕ(s,y),ρj dνjt + (2 + C(s− t)−n/2)γ
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for all j ≥ j3. By (7.7) and as s, t, y, γ were arbitrary this establishes (7.14).
In view of (7.13) and (7.14) we can use Lemma 7.1 to obtain a subspace

T ∈ G(n + k,n) such that

νt = H n T(7.16)

for all t ∈ (−2, 0). Note that by (7.12) and as 0 ∈ sptνj0 for all j ∈ N we see
a = 0 is a porpper choice in Lemma 7.1. This should now contradict that (7.8)
or (7.9) hold for infinitely many j.

First suppose that for infinitely many j inequality (7.8) holds, i.e. there
exists a zj ∈ sptνj−σ ∩ B(0, 1) such that (T⊥)\(zj) > ε. Consider C1 and α1

from the clearing out lemma (see Lemma 2.9). Choose τ, η1 ∈ (0, 1) such that
4nτ < (ε/4)2 and C1η

2α1
1 (ε/4)2 ≤ τ . Then Lemma 2.9 with R = ε/4 yields

that νj−σ−τ (B(zj , ε/4)) > η1 for infinitely many j. A subsequence of the zj
converges to some z0 ∈ B(0, 2) with (T⊥)\(z0) ≥ ε. Consider a cut-off function
ζ1 ∈ C∞c (B(z0, ε/2), [0, 1]) with {ζ1 = 1} ⊃ B(z0, ε/3). Then

νj−σ−τ (ζ1) ≥ νj−σ−τ (B(zj , ε/4)) > η1 > 0 = ν−σ−τ (ζ1)

for infinitely many j, where we used (7.16) for the last equality. In view of
(7.12) this yields a contradiction.

Now suppose that for infinitely many j inequality (7.9) holds. Consider
ζ2 ∈ C∞c (B(0, n

√
1 + ε/2)), [0, 1]) with {ζ2 = 1} ⊃ B(0, 1). In view of (7.16) we

can estimate

ν−σ(ζ2) ≤ ωn(1 + ε/2) < ωn(1 + ε) ≤ νj−σ(B(0, 1)) ≤ νj−σ(ζ2)

for infinitely many j. Again, this contradicts (7.12), which establishes the result.

Proof of Theorem 1.2. We may assume t0 = 0, a = 0 and ρ = 1. Let α0 and
γ0 be from Theorem 1.1 with respect to λ = 1/2. Choose ε ∈ (0, γ0] such that
2εα0 ≤ α0β and set σ := 2εα0 . Let δ be chosen with respect to ε and σ according
to Lemma 7.2 and choose η ≤ δ, t1 := −2εα0δ2. Then Lemma 7.2 with yields
the existence of a T ∈ G(n + k,n) such that

sup
{
|(T⊥)\(x)|, x ∈ sptµt1 ∩B(0, 2δ)

}
≤ εδ.

µt1(B(0, δ)) ≤ ωn(1 + ε)δn.

Then Theorem 1.1 with ρ = δ and γ = ε yields the desired graphical represen-
tation for η = εα0δ.

A Curvature estimates

A.1 Setting. Consider open and connected sets W ⊂ Rn, J ⊂ R. Consider
Ψ ∈ C∞(J ×W,Rn+k) such that Ψt := Ψ(t, · ) are empbeddings and set Mt :=
Ψt[W ] for all t ∈ J . Fix t ∈ J and ŷ ∈W . We set

bi(t, ŷ) := DiΨ(t, ŷ), gij(t, ŷ) := bi(t, ŷ) · bj(t, ŷ),

T(Mt,Ψ(t, ŷ)) := span(bi(t, ŷ))1≤i≤n

Aij(t, ŷ) :=
(
T(Mt,Ψ(t, ŷ))⊥

)
\
DiDjΨ(t, ŷ) ∈ Rn+k
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for i, j ∈ {1, . . . ,n}. In the following we sum over repeated indices. Let
(gij(t, ŷ)) be the inverse to (gij(t, ŷ)). and let (dbi(t, ŷ))1≤i≤n be the dual basis
to (bi(t, ŷ))1≤i≤n. We set

A(Mt,Ψt(ŷ)) := A(t, ŷ) := Aij(t, ŷ) dbi(t, ŷ)⊗ dbj(t, ŷ)

H(Mt,Ψt(ŷ)) := gij(t, ŷ)Aij(t, ŷ).

Consider T = Ti1···ipdbi1 ⊗ · · · ⊗ dbip and S = Sj1···jpdbj1 ⊗ · · · ⊗ dbjp with
Ti1···ip , Sj1···jp ∈ Rn+k. We set

〈T, S〉 := gi1j1 · · · gipjpTi1···ip · Sj1···jp , |T |2 := 〈T, T 〉.

Moreover we assume Ψ moves by smooth mean curvature flow in normal
direction, i.e.

∂tΨ(t, ŷ) = H(Mt,Ψt(ŷ))(A.1)

for all (t, ŷ) ∈ J ×W .

A.2 Lemma. Consider open and connected sets W0 ⊂⊂ W ⊂⊂ Ω ⊂ Rn,
I ⊂ R. Let F ∈ C∞(I ×Ω,Rn+k) be such that Ft := F (t, · ) are embeddings and
set Mt := Ft[Ω] for all t ∈ I. Suppose F satisfies (1.1) and fix s0 ∈ I.

Then there exists an open J ⊂ I with s0 ∈ J and a φ ∈ C∞(J ×W,Rn) such
that φt := φ(t, · ) is injective and W0 ⊂ φt[W ] for all t ∈ J . Fuhthermore φ
satisfies φs0(ŷ) = ŷ for all ŷ ∈W and

DF (t, φ(t, ŷ))∂tφ(t, ŷ) = −(T(Mt, F (t, φ(t, ŷ))))\∂tF (t, φ(t, ŷ))(A.2)

for all (t, ŷ) ∈ J ×W . In particular Ψ(t, ŷ) := F (t, φ(t, ŷ)) satisfies (A.1) and
we are in Setting A.1.

Proof. Actually (A.2) equals

∂tφ(t, ŷ) = G(t, φ(t, ŷ))(A.3)

for some G ∈ C∞(I × Ω,Rn) depending on F . The function G can be obtained
in the following way: Let pi := DiF , Bij := pi · pj and (Bij) be the inverse of
(Bij). Set qi := Bijpj . Now we obtain (A.3) from

Q := (q1 · · · qn) , DF = (p1 · · · pn) , QT v = (v · pi)êi, G := −QT∂tF,

for all v ∈ Rn+k. Then the Picard-Lindelöff-theorem yields the result.

Next we need a bound on the evolution of the absolute value of the curvature
tensor and its covariant derivatives. In the case of one co-dimension this was
done by Huisken [Hui84, Thm. 3.4] (see also [Ham82, Sect. 13]). Here we state
the generalization by Andrews and Baker.

A.3 Proposition ([AB10, Prop. 9]). For every m ∈ N ∪ {0} there exists an
Cm ∈ [1,∞) such that in Setting A.1 the following holds:

∂t |∇mA|2 ≤ ∆ |A|2 − 2
∣∣∇m+1A

∣∣2 + Cm
∑

a+b+c=m

|∇mA||∇aA||∇bA||∇cA|

everywhere in J ×W . Here ∇ and ∆ are the connection and Laplace-Beltrami
operator associated to (Mt, (gij)).
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Now we can prove a higher regularity theorem similar to Ecker’s [Eck04,
Prop. 3.22] (see also [EH91]).

A.4 Proposition. For all m ∈ N and K ∈ [1,∞) there exists a Cm,K ∈ (1,∞)
such that the following holds:

Consider an open and connected set Ω ⊂ Rn. Let ρ ∈ (0,∞), t0 ∈ R, a ∈
Rn+k and let F ∈ C2((t0−4ρ2, t0)×Ω,Rn+k) be such that for all t ∈ (t0−4ρ2, t2)
we have Ft := F (t, · ) are embeddings, Mt := Ft[Ω] and ∂Mt ∩ B(a, 2ρ) = ∅.
Suppose F satisfies (1.1) and

κ2 := ρ2 sup
t∈(t0−4ρ2,t0)

sup
x∈Mt∩B(a,2ρ)

|A(Mt, x)|2 ≤ K

Then we have

ρ2m+2 sup
t∈[t0−ρ2,t0)

sup
x∈Mt∩B(a,ρ)

|∇mA(Mt, x)|2 ≤ Cm,Kκ2

Proof. Obviously the statement holds for m = 0. Now suppose the statement
holds for all l = 0, . . . ,m for some m ∈ N ∪ {0} and show this implies it also
holds for m+ 1. We may assume t0 = 0, a = 0 and ρ = 3. Fix t2 ∈ (−9, 0) and
let Λ ∈ [1,∞) be chosen below,. Consider the family of functions αt : Mt → R+,
t ∈ (−12, 0) given by

αt(x) := |∇m+1A(Mt, x)|2(Λκ2 + |∇mA(Mt, x)|2).

Also consider the cut-off functions ηt ∈ C2
c (B(0, 5),R+), t ∈ (−12, 0) given by

ηt(x) :=
(
(t+ 10)+(16− |x|2)+

)3
.

For t ∈ (−12, 0) set

m(t) := sup
Mt

αtηt, m0 := sup
t∈[−10,t2]

m(t), s0 := inf{t ∈ [t1, t2], m(t) = m0}.

There exists an x0 ∈ Ms0 such that αs0(x0)ηs0(x0) = m0 and ŷ0 ∈ Ω with
Fs0(ŷ0) = x0. Consider s3 = min{s0 + 1/2, s0/2} in particular s0 ∈ (s3 − 1, s3).
By induction assumption we can use the Proposition for m with a, t0, ρ replaced
by x0, s3, 1 to obtain

max
l=1,...,m

|∇lA(Ms0 , x0)|2 ≤ Γmκ
2(A.4)

for some Γm ∈ (K,∞) depending only on m and K. In the following quantities
that only depend on m, K and Γm will be denoted by Cm.

In view of Lemma A.2 there exists an ε ∈ (0,−s0), J = (s0−ε, s0+ε), an open
W ⊂ Ω and a φ ∈ C∞ (J ×W,Ω), such that φt = φ(t, · ) is a diffeomorphism
onto its image and F−1[Mt ∩B(x0, ε)] ⊂ φt[W ] for all t ∈ J . Moreover choose
φ such that Ψt(ŷ) := Ft(φt(ŷ)) satisfies (A.1). In particular ŷ0 ∈W and we are
in Setting A.1. Consider α̂ ∈ C∞ (J ×W,R) given by

α̂(t, x̂) := α̂t(x̂) := αt(Ψt(x̂)) = |∇m+1A(t, x̂)|2(Λκ2 + |∇mA(t, x̂)|2)
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in the Ψ coordinates. Using Proposition A.3 and inequality (A.4) we can esti-
mate at (s0, ŷ0)

(∂t −∆)α̂ =(Λκ2 + |∇mA|2)(∂t −∆)|∇m+1A|2 + |∇m+1A|2(∂t −∆)|∇mA|2

− 2∇|∇m+1A|2 · ∇|∇mA|2

≤Λκ2
(
−2|∇m+2A|2 + Cm|∇m+1A|(|∇m+1A|κ2 + κ3)

)
− 2|∇m+1A|4 + Cm|∇m+1A|2κ4 − 2∇|∇m+1A|2 · ∇|∇mA|2.

By Young’s and Kato’s inequality we can estimate

CmΛ|∇m+1A|κ5 ≤ CmΛ|∇m+1A|2κ4 + κ6,

CmΛ|∇m+1A|2κ4 ≤ |∇m+1A|4/2 + CmΛ2κ8,

2
∣∣∇|∇m+1A|2 · ∇|∇mA|2

∣∣ ≤ 8|∇mA||∇m+1A|2|∇m+2A|
≤ Λκ2|∇m+2A|2 + 2Λ−1|∇m+1A|4.

Fixing Λ = 4 this leads to

(∂t −∆)α̂ ≤ −|∇m+1A|4 + Cmκ
4 ≤ −L−1κ−4α̂2 + Lκ4

at (s0, ŷ0) for some L ∈ [1,∞) depending only on m, K and Γm. Consider
η̂(t, x̂) := ηt(Ψ(t, x̂)) then at (s0, ŷ0) we can estimate

(∂t −∆)(α̂η̂) ≤ η̂(Lκ4 − L−1κ−4α̂2) + Cα̂− 2∇α̂ · ∇η̂
≤ η̂(Lκ4 − L−1κ−4α̂2) + Cα̂− 2η̂−1∇η̂ · ∇(α̂η̂).

By choice of s0 and ŷ0 we have ∆(α̂η̂) ≤ 0, ∇(α̂η̂) = 0 and ∂t(α̂η̂) ≥ 0. Hence

(Lκ4)−1α̂2η̂ ≤ Lκ4η̂ + Cα̂

at (s0, ŷ0). Multiplying with η̂ and using Young’s inequality we obtain

(Lκ4)−1(α̂η̂)2 ≤ Lκ4η̂2 + Cα̂η̂. ≤ Cmκ4 + (2Lκ4)−1(α̂η̂)2

at (s0, ŷ0). Thus m0 = α̂(s0, ŷ0)η̂(s0, ŷ0) ≤ Cmκ4 and we arrive at

|∇m+1A(Mt, x)|2(Λκ2 + |∇mA(Mt, x)|2)ηt(x) ≤ Cmκ4

for all t ∈ [−10, t2] and all x ∈Mt. For t ∈ [−9, t2] and x ∈Mt∩B(0, 3) we have
ηt(x) ≥ 1, so we can conclude the desired estimate on [−9, t2]. As t2 ∈ [−9, 0)
was arbitrary this establishes the statement for m+ 1.

The above curvature estimates will be used in the form of the next Lemma.
It basiciely says that if you have a smooth mean curvature flow that satifies
a strong curvature bound up to some time t1 and the curvature on [t1, t2] is
a-priori bounded by some constant, then the increase in curvature is controlled
by (t2− t1)p. Thus for short times you can actually almost maintain the strong
curvature bound.

A.5 Lemma. For p ∈ N and L ∈ [1,∞) there exists a Cp,L ∈ (1,∞) such that
the following holds:
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Consider an open and connected set Ω. Let % ∈ (0,∞), z0 ∈ Rn+k, t2 ∈ R,
t1 ∈ [t2 − %2/(4pL), t2) and let F ∈ C2((t2 − %2, t2) × Ω,Rn+k) be such that
for all t ∈ (t2 − %2, t2) we have Ft := F (t, · ) are embeddings, Mt := Ft[Ω] and
∂Mt ∩B(z0, 2%) = ∅. Suppose F satisfies (1.1). For s ∈ [t1, t2], r ∈ (0, 2%] set

κ(s, r)2 :=%2 sup
t∈(t2−%2,s)

sup
x∈Mt∩B(z0,r)

|A(Mt, x)|2

and assume κ(t2, 2%) ≤ L.
Then we have

κ(t2, %)2 ≤ Cp,L
(
κ(t1, 2%)2 + %−2p(t2 − t1)p

)
.

Proof. We may assume z0 = 0, t1 = 0 and % = 1. Consider q = 0, 1 . . . , p and
set %q := 2− q/p. We will actually show

κ(t2, %q)
2 ≤ Γq(2κ(0, 2)2 + tq2).(A.5)

for some Γq ∈ [1,∞) depending only on L, p and q. For q = 0 this holds with
Γ0 = L. Now suppose (A.5) holds for some q ∈ {0, 1 . . . , p − 1}. For t ∈ [0, t2]
set %q(t) := %q − 1/(2p)− tL. We want to show

κ(t, %q(t))
2 ≤ Γq+1((t+ 1)κ(0, 2)2 + t tq2).(A.6)

for some Γq+1 ∈ [1,∞) depending only on L, p, q and Γq. Let I0 be the interval
containing all s ∈ [0, t2] such that (A.6) holds. Note that by t2 ≤ 1/(4pL) we
have %q(t2) ≥ %q+1, thus if t2 ∈ I0 we can conclude the result by induction.
Obviously 0 ∈ I0. Also, for an increasing sequence (sm) in I0 with sm ↗ s0 the
smoothness of (Mt) yields that s0 ∈ I0. To establish I0 = [0, t2] (and thus the
result) it remains to show that for each s0 ∈ I0 there exists an ε ∈ (0, t2 − s0)
such that (s0, s0 + ε) ⊂ I0. Hence, consider s0 ∈ I0.

In view of Lemma A.2 there exists an ε ∈ (0, t2− s0), J = (s0− ε, s0 + ε), an
open W ⊂ Ω and φ ∈ C∞ (J ×W,Ω), such that φt = φ(t, · ) is a diffeomorphism
onto its image and F−1[Mt ∩B(0, 2)] ⊂ φt[W ] for all t ∈ J . Moreover choose φ
such that Ψt(ŷ) := Ft(φt(ŷ)) satisfies (A.1), in particular we are in Setting A.1.

Consider an s2 ∈ (s0, s0 + ε) and x0 ∈Ms2 ∩B(0, ρq(s2)), hence there exists
an ŷ0 ∈W such that x0 = Ψs2(ŷ0). By (A.1) and κ(t2, 2) ≤ L we have

|Ψs(ŷ0)| ≤ |x0|+
∫ s

s0

|DtΨt(ŷ0)|dt < ρq(s2) + (s2 − s0)L ≤ ρq(0)

for all s ∈ [s0, s2]. By Proposition A.3 we have∣∣∣∣ d

ds
|A(Ms,Ψs(ŷ0))|2

∣∣∣∣ ≤ C1

2∑
i=0

sup
t∈[0,s2]

sup
x∈Mt∩B(0,ρq(0))

|∇iA(Mt, x)|2(A.7)

for s ∈ (s0, s2) and some constant C1 ∈ [1,∞). We assume (A.5) holds for q, so
by ρq(0) ≤ ρq − 1/(2p) and Proposition A.4 with ρ = 1/(4p), K = Γq(2L

2 + 1)
and arbitrary (t0, a) ∈ [0, s2]×B(0, ρq(0)) we have

2∑
i=0

sup
t∈[0,s2]

sup
x∈Mt∩B(0,ρq(0))

|∇iA(Mt, x)|2 ≤ Λq(κ(0, 2)2 + tq2).(A.8)

34



for some Λq ∈ [1,∞) depending only on L, p, q and Γq.
As s0 ∈ I0 and |Ψs0(ŷ0)| < ρq(0) ≤ ρq(s0) inequality (A.6) combined with

(A.7) and (A.8) yield

|A(Ms2 , x0)|2 ≤ |A(Ms0 ,Ψs0(ŷ0))|2 + (s2 − s0) sup
t∈[s0,s]

∣∣∣∣ d

dt
|A(Mt,Ψt(ŷ0))|2

∣∣∣∣
≤ Γq+1((s0 + 1)κ(0, 2)2 + s0 t

q
2) + C1Λq(s2 − s0)(κ(0, 2)2 + tq2)

≤ Γq+1((s2 + 1)κ(0, 2)2 + s2 t
q
2),

where we chose Γq+1 = C1Λq. As s2 ∈ (s0, s0 + ε) and x0 ∈Ms2 ∩B(0, ρq(s2))
were arbitrary we proved (s0, s0 + ε) ⊂ I0.

For a solution of mean curvature flow, that is graphical with small gradient
we obtain an a-priori curvature bound. This follows directly from the work of
Wang [Wan04] and Ecker and Huisken [EH91].

A.6 Lemma. There exist C ∈ (1,∞) and l1 ∈ (0, 1) with the following property:
Let ρ ∈ (0,∞), t1 ∈ R, t2 ∈ (t1, t1 + l1ρ

2), w ∈ C∞((t1, t2)×Bn(0, 2ρ),Rk).
Suppose Ft(x̂) := (t, w(t, x̂)) satisfies (1.1) and sup |Dw| ≤ l1.

Then we have

sup
x̂∈Bn(0,ρ)

|A(Mt, (x̂, w(t, x̂))|2 ≤ C(t− t1)−1

for all t ∈ (t1, t2), where Mt = graph(w(t, · )).

Proof. Consider [s1, s2] ⊂ (t1, t2). We may assume s1 = 0 and ρ = 1. For
t ∈ [0, s2] set Mt = graph(w(t, · )) and M := {(t, x) ∈ [0, s2]×Rn+k : x ∈Mt}.
On M define

∗Ω(t, x) :=
(
det(IdRn + (Dw(t, x̂)TDw(t, x̂)

)−1 ∈ (0, 1],

where IdRn is the identity on Rn. The gradient bound on w yields

inf
M
∗Ω ≥ (1 + Cl1)

−1 ≥ 19/20,(A.9)

where we chose l1 small enough. For (t, x) ∈M consider

f(t, x) := ∗Ω(t, x)− 9/10, v(t, x) := 1/f(t, x),

κ :=
1

2
inf

t∈[0,s2]
inf

x∈Mt∩C(0,
√

2)
(v(t, x))−2, ϕ(t, x) := (v(t, x))2/(1− κ(v(t, x))2),

g(t, x) := |A(Mt, x)|2ϕ(t, x) and η(x) := (2− |x̂|2)2.

For t ∈ [0, s2] set gt := g(t, · ) and

m(t) := sup
Mt

tgtη, m0 := sup
t∈[0,s2]

m(t), s0 := inf{t ∈ [0, s2], m(t) = m0}.

Consider x0 ∈Ms0 ∩C(0,
√

2) such that m0 = s0g(s0, x0)η(x0).
In view of Lemma A.2 there exists an ε > 0, J = (s0 − ε, s0 + ε) ⊂ (t1, t2),

W := Bn(0, 7/4) and φ ∈ C∞ (J ×W,Ω), such that φt = φ(t, · ) is a diffeomor-
phism onto its image and Bn(0,

√
2) ⊂ φt[W ] for all t ∈ J . Moreover choose φ
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such that Ψt(ŷ) := Ft(φt(ŷ)) satisfies (A.1), in particular we are in Setting A.1.
Let ŷ0 ∈W be such that Ψs0(ŷ0) = x0.

By (A.9) and [Wan04, Lem. 3.1] we can estimate

(∂t −∆) f̂ = (∂t −∆) ∗ Ω ≥ |A|2/2 ≥ 5f̂ |A|2(A.10)

everywhere in J ×W , where f̂(t, x̂) := f(Ψt(x̂)). Then by the proof of [Wan04,
Cor. 4.1] we obtain

(∂t −∆) |A| ≤ 5|A|3(A.11)

everywhere in J ×W . Estimates (A.10), (A.11) and the proof of [Wan04, Lem.
4.1] with h = A, c1 = c2 = 5 and φ replaced by ϕ yield

(∂t −∆) ĝ ≤ −10κĝ2 − 2κ(1− κv̂2)−2|∇v̂|2ĝ − 2ϕ̂v̂−3∇v̂ · ∇ĝ

everywhere in J × W , where ĝ(t, x̂) := g(t,Ψt(x̂)), v̂(t, x̂) := v(t,Ψt(x̂)) and
ϕ̂(t, x̂) := ϕ(t,Ψt(x̂)). Then following the proof of [EH91, Thm. 3.1] with
r(t, x) = |x|2 − |w(t, x̂)| we see

(∂t −∆) ιĝη̂ ≤− 10κĝ2η̂ι− 2
(
ϕ̂v̂−3∇v̂ + η̂−1∇η̂

)
· ∇(ιĝη̂)

+ C
(
(1 + (κv̂2)−1)

)
ιĝ + ĝη̂

everywhere in J ×W , where η̂(t, x̂) := η(Ψt(x̂)) and ι(t, x̂) := t. In particular
at (s0, x0) we have

10κg2ηs0 ≤ C
(
(1 + (κv2)−1)

)
s0g + gη.

Recall the definition of κ and that by (A.9) we have κ ≥ c. Also note that η ≤ 2
and s0 ≤ s2 ≤ l1 ≤ 1. Thus we obtain

s2 sup
Ms2
∩C(0,

√
2)

gs2η ≤ s0g(s0, x0)η(x0) ≤ C.

As infC(0,1) η ≥ 1 and infM ϕ > 1 we arrive at

sup
x̂∈Bn(0,1)

|A(Ms2 , (x̂, w(s2, x̂))|2 ≤ C(s2 − s1)−1

for arbitrary [s1, s2] ⊂ (t1, t2). Now for any t ∈ (t1, t2) choose s2 = t and
s1 = (t+ t1)/2 to conclude the result.

B Further remarks

Based on Huisken’s monotonicity formula [Hui90] one can obtain bounds on
area ratio at later times from initial area ratio bounds.

B.1 Lemma. There exists a C ∈ (1,∞) such that the following holds:
Let r ∈ (0,∞), s1 ∈ R, s2 ∈ (s1,∞), y0 ∈ Rn+k and for t ∈ [s1, s2] set

%(t) :=
√

8n max{r,
√
t− s1}. Let (µt)t∈[s1,s2] be a Brakke flow in B(y0, %(s2)).

Then for all t ∈ [s1, s2] we have

r−nµt(B(y0, r)) ≤ C(%(t))−nµs1(B(y0, %(t))).
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Proof. We may assume y0 = 0, s1 = 0. Fix t ∈ [0, s2]. First consider the case
t ≤ r2. Then by Lemma 2.6 with R =

√
2nr we have

µt(B(y0, r)) ≤ µt(B(y0,
√

2nr)) ≤ 8µ0(B(y0, 2
√

2nr))

and as %(t) =
√

8nr this yields the desired estimate.
Now suppose r2 < t, in particular %(t) =

√
8nt. Set s0 := t + r2. Consider

Φ = Φ(s0,0) and ϕ = ϕ(s0,0),
√

4nt from Definition 2.7. By s0 < 2t we obtain

sptϕ(0, · ) ⊂⊂ B(0, %(t)), sup
Rn+k

ϕ(0, · ) ≤ C, inf
B(0,r)

ϕ(t, · ) ≥ 1.

Thus by Huiskin’s monotonicity formula (see Theorem 2.8)∫
B(0,r)

Φ dµt ≤
∫
Rn+k

Φϕ dµt ≤
∫
Rn+k

Φϕ dµ0 ≤ C
∫
B(0,%(t))

Φ dµ0.

We have s0 − t = r2, hence infB(0,r) Φ(t, · ) ≥ cr−n. So by the above inequality

r−nµt(B(0, r)) ≤ C
∫
B(0,%(t))

Φ(0, x) dµ0(x).(B.1)

By definition of Φ and s0 = t + r2 ≥ t = (8n)−1%(t)2 we have Φ(0, x) ≤
C(%(t))−n for all x ∈ Rn+k. Thus (B.1) establishes the result.

Next we show that under the assumption of certain measure bounds if (1.4)
is satisfied at one point a slightly weaker estimate is satisifed in a small neigh-
bourhood.

B.2 Lemma. There exists a C ∈ (1,∞) such that the following holds:
Let %,M, κ ∈ (0,∞), Λ ∈ [1,∞), δ ∈ (0, 1/(CΛ)], s0 ∈ R, y0 ∈ Rn+k and let

µ be a Radon measure on Rn+k. Suppose we have

µ (B(y0, CΛ%)) ≤M%n,(B.2) ∫
Rn+k

Φ(s0,y0)ϕ(s0,y0),Λ%(s0 − %2, x) dµ(x) ≤ 1 + κ.(B.3)

Then for all (s, y) ∈ (s0 − δ2%2, s0]×B(y0, δ%) we have∫
Rn+k

Φ(s,y)ϕ(s,y),Λ%(s0 − %2, x) dµ(x) ≤ 1 + κ+ CMΛδ.

Proof. We may assume s0 = 0, y0 = 0 and % = 1. Fix (s, y) ∈ (−δ2, 0]×B(0, δ).
Note that spt(ϕ(s,y),Λ(−1, ·)) ⊂ B(0, (2n+1)Λ). Let x ∈ B(0, (2n+1)Λ). Direct
calculations yield

1 ≤ (s+ 1)−n/2 ≤ (s+ 1)−n ≤ 1− Cs ≤ 1 + Cδ

exp

(∣∣∣∣ |x|24
− |x− y|

2

4(s+ 1)

∣∣∣∣) ≤ exp
(
C(Λ|y|+ Λ2|s|)

)
≤ 1 + CΛδ,

where we used δ ≤ (CΛ)−1. Thus we have

|Φ(0,0)(−1, x)− Φ(s,y)(−1, x)| ≤ CΛδ

|ϕ(0,0),Λ(−1, x)− ϕ(s,y),Λ(−1, x)| ≤ Cδ

Combined with (B.2) and (B.3) this yields the result.
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B.3 Remark. Here we want to derive Theorem 2.11 from Ilmanen’s work
[Ilm94]. In case Ui ≡ U the result directly follows from the proof of [Ilm94, Thm.
7.1]. Now consider the general case. We can find a subsequence λ1 : N → N
and a Brakke flow (ν1

t )t∈[t1,t2] in U1 such that limj→∞ µ
λ1(j)
t (φ) = ν1

t (φ) for all
φ ∈ C0

c (U1), for all t ∈ [t1, t2]. Inductively for all l ∈ N, l ≥ 2 we can find a
subsequence λl : N → λl−1[N] and a Brakke flow (νlt)t∈[t1,t2] in Ul such that
λl(1) ≥ l and

lim
j→∞

µ
λl(j)
t (φ) = νlt(φ) for all φ ∈ C0

c (Ul)

for all t ∈ [t1, t2]. In particular we have νl2t Ul0 = νl1t Ul0 for all l0 ≤ l1 ≤
l2 and all t ∈ [t1, t2]. Then µt(φ) := liml→∞ νlt(φ|Ul

) is well defined for all
φ ∈ C0

c (U) and gives the desired Brakke flow on U . With σ(j) = λj(j) this
establishes the result.
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