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Abstract

We develop a first order formalism for constructing gravitational duals of confor-

mal defects in a bottom up approach. Similarly as for the flat domain walls a single

function specifies the solution completely. Using this formalism we construct several

novel families of analytic solutions dual to conformal interfaces and boundaries. As

a sample application we study the boundary OPE and entanglement entropy for one

of the found defects.
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1 Introduction

The conformal defects play a prominent role in many critical condensed matter systems
and in the string theory giving rise to interesting physical effects [1]. The majority of
physical systems studied in a laboratory have defects such as boundaries or impurities. At
the same time the relevant physics often exhibits the strong coupling (e.g. Kondo effect,
graphene). To address such problems the holographic approach could be applied. In this
paper we focus on defects of codimension one - boundaries and interfaces.

The conformal group of d-dimensional Minkowski space is SO(2, d). A boundary CFT
(BCFT) is a CFT on a space with a planar boundary which preserves the SO(2, d − 1)
part of the conformal group. More generally, a planar interface can separate two different
CFT, in which case we call it an interface CFT (ICFT). We refer to all these possibilities
as defect CFTs (DCFT) and call SO(2, d− 1) the symmetry group of a conformal defect.
Notice that in order to define a DCFT we have to start with a bulk CFT and then couple
it to a defect. It turns our that the conformal symmetry on the defect still puts strong
constraints on the ambient physics [2–4].

To realise the group of a conformal defect holographically we have to consider asymp-
totically AdSd+1 space with the isometry group broken from SO(2, d) down to SO(2, d−1).
Noting that SO(2, d− 1) is the isometry group of AdSd one is lead to consider asymptoti-
cally locally AdSd+1 spacetimes which can be foliated with the AdSd slices.

Several approaches to construct holographic duals to DCFT have been pursued. Refer-
ences [5–9] used a probe AdSd brane embedded in AdSd+1. This brane divides the bulk into
two halfs. If one imposes an orbifold condition relating the independent fluctuations in the
two halves of the bulk, one ends up with a BCFT. One can also think of an AdSd brane as
a spatial cutoff. The CFT on the defect in this case is conjectured to be dual to the gravity
on AdSd brane. References [5, 6] were motivated by the prospects of localizing gravity on
the worldvolume of a brane. The key feature allowing this localisation is the presence of
the local bump of the warp factor around the position of the brane. Equivalently, the
scalar potential has a characteristic vulcano shape.

Similar set of ideas was used to construct a holographic dual of BCFT in [10, 11]. In
this approach the asymptotically locally AdS spacetime is cut off across some surface Q in
such a way that conformal infinity has a boundary. This additional boundary Q can be
realized as a brane in string theory embedding.

Regular solutions dual to ICFT describing intersecting branes and branes ending on
branes have been obtained from 10- and 11-dimensional supergravity in [12–16]. These in
turn in particular limits can give rise to duals of BCFTs [17–20]. However the resulting
spaces are generically singular. A non-singular example of this type was constructed in [21].

Finally, defect CFTs can be realized by utilising a curved domain wall ansatz for the
fields where an asymptotically locally AdSd+1 is sliced using AdSd slices. Famously, the
Janus solution [22–25] is of this type. The simplicity of this solution is based on the fact
that the dilatonic potential is just a constant.

Naturally, Janus-type ansatz can be used also to construct examples involving non-
trivial potential for the scalar field. In the reference [26] such solutions are constructed
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numerically (with unbounded potential). The BCFT solutions in [26] are singular and are
conjectured to be dual to massive IR fixed point.

Domain walls have been studied extensively in the context of AdS/CFT [23,25,27–29].
For Poincare-invariant domain walls a beautiful first order formalism based on the so-called
fake superpotential exists. Its power stems from the fact that the entire problem of finding
flat domain walls reduces to solving first order ordinary differential equations (as opposed
to second order partial Einstein equations). Also the stability of such domain walls is
guaranteed [28, 30].

In this paper we develop further the first order formalism of [29,31,32] for curved domain
walls 1 2. In this formalism a complex superpotential (or a triplet of real superpotentials
in [29]) is introduced and there is a constraint relating the two independent real functions
appearing in it. In this paper we point out that this constraint can be solved (at least
implicitly) in a closed form. As a result, the warp factor and the scalar field satisfy first
order ordinary differential equations and an AdS-sliced domain wall is specified completely
by a single function. In this respect the situation is now analogous to that for Poincaré-
invariant domain walls. This observation allows us to bring the formalism in a form which
can be readily applied for constructing simple examples of analytic solutions. It allows us
to find families of holographic duals to boundary and interface CFTs. Moreover, all these
solutions are stable [28, 31].

The paper is organized as follows. In the next section we introduce and simplify the
formalism for curved domain walls of [31, 32]. On the basis of it we construct families
of analytic gravitational backgrounds in the section 3. As a sample application of these
results we study the boundary OPE and entanglement entropy for one of the defects in the
section 4.

2 The formalism

In this section we present the general first order formalism for domain walls with AdS slices.
We begin by reviewing the construction of [29,31,32] where a complex "superpotential" (or
a triplet of real superpotentials) is introduced allowing for the first order equations for the
fields. Then we demonstrate how one of the real functions appearing in the "superpotential"
can be obtained from another one in the closed analytic form. This observation brings the
formalism for curved domain walls in the shape similar to that for flat domain walls, where
the solution is completely specified by the single superpotential. We comment on the
Hamilton-Jacobi theory in Appendix A.

1An alternative first-order formalism based on introduction of two real superpotentials is given in [33].
There the superpotentials are also related by a constraint.

2An alternative solution generating technique for coupled ODEs based on single real superpotential was
discussed in [34].
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2.1 Review of the first order formalism for curved domain walls

with a complex superpotential

Let us briefly summarize the construction of [31, 32]. For simplicity we assume that the
domain wall is supported by a single scalar. The theory is defined by the Lagrangian
density

L =
√−g

(

R− 1

2
(∂σ)2 − V (σ)

)

(1)

with general potential V (σ). The formalism is applicable for both domain walls and cos-
mologies. It is convenient to introduce a sign η such that η = 1 for domain walls and
η = −1 for cosmologies. We are looking for the solutions of the form

ds2
d+1 = η dz2 + e2βϕds2

d (2)

where ds2
d denotes the metric of a spacetime (space) of constant curvature for η = 1

(η = −1). For later convenience we introduce d-dependent constants

α = dβ , β = 1/
√

2d(d− 1) . (3)

We use the ansatz preserving the symmetry group of the slices ds2
d, i.e. the scalar field σ

and the warp factor ϕ depend only on z. The field equations then reduce to equations for
the variables (ϕ, σ) that can be derived from the effective Lagrangian

L =
η

2
eαϕ

(

ϕ̇2 − σ̇2
)

− eαϕ

(

V (σ) − k

2β2
e−2βϕ

)

, (4)

where the overdot indicates differentiation with respect to z and k ∈ (−1, 0, 1) denotes the
radius of curvature of ds2

d. The Euler-Lagrange equations reduce to

ϕ̈ = −ασ̇2 − (kη/β) e−2βϕ , σ̈ = −αϕ̇σ̇ + ηV ′ , (5)

where the prime indicates differentiation with respect to σ. The solutions to these equations
have to satisfy an additional constraint (resulting from the Hamiltonian constraint in the
original theory (1))

ϕ̇2 − σ̇2 = −2η

[

V − k

2β2
e−2βϕ

]

. (6)

We are looking for the solutions with the scalar field σ interpolating between two critical
points of the potential V (σ) (these can coinside). First let us assume that such a solution
(σ(z), ϕ(z)) is already given. If σ(z) is a monotonic function we can view σ as a radial
coordinate by inverting the relations between σ and z. For ηk ≤ 0 we may define a complex
function

Z(σ) = ω(σ)eiθ(σ) (7)
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by the formulae

ω =
1

2α

√

ϕ̇2 − kη

β2
e−2βϕ , (8)

θ′ = ±
√

−kη
(

α

β

)

σ̇ e−βϕ

(

ϕ̇2 − kη

β2
e−2βϕ

)−1

. (9)

Note that for flat domain wall (i.e. with k = 0) these expressions simplify significantly, in
particular θ(σ) can be set to zero.

The function Z(σ) constructed in this way determines the scalar potential through

V = 2η
[

|Z ′|2 − α2|Z|2
]

. (10)

Moreover the solution used to construct Z(σ) satisfies,

σ̇ = ±2|Z ′| , ϕ̇ = ∓ 2α

|Z ′| Re
(

Z̄Z ′
)

,

−kη e−2βϕ =
(

2αβ Im
(

Z̄Z ′
)

/|Z ′|
)2
. (11)

Importantly, these equations imply the second-order ones. We can now reverse the logic:
for given Z(σ) a solution of first order equations (11) produces a domain wall!

The consistency between the second and third of eqs. (11) requires

Im
[

Z̄ ′ (Z ′′ + αβZ)
]

= 0 . (12)

Remarkably, this is an identity for (ω, θ) defined by (8)-(9). To summarise, any two
scalar functions ω(σ) and θ(σ) satisfying the constraint (12) define a domain wall solution
(provided that the potential V (σ) constructed out of them has at least one critical point).

Let us note that in the original version of this formalism [29] a triplet of superpotentials
W has been introduced. However as was shown in [31] the formulation with the triplet is
equivalent to that with a single complex superpotential.

2.2 Solving the constraint

The consistency condition (12) can be solved in the closed form, i.e. given ω(σ) there is
an analytic formula for θ(σ). (12) is equivalent to

ωω′θ′′ + (2ω′2 − ωω′′ − αβω2)θ′ = −ω2θ′3. (13)

Viewed as an equation for θ′ this constraint can be solved in a closed analytic form.
However, we first simplify it by introducing

s(σ) = ω2(σ) (14)
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and

q(σ) =
1

ω(σ)2
(1 +

ω′(σ)2

ω(σ)2θ′(σ)2
) = −kη 4α2β2e2βϕ. (15)

In terms of these functions equation (13) reads

1

4αβ
q′(σ)s′(σ) + q(σ)s(σ) = 1. (16)

This can be viewed as a first order linear ODE for s(σ) if q(σ) is given or for q(σ) if s(σ)
is given. It has the closed form solution

q(σ) = exp(−4αβ
∫ σ

σ⋆

s(σ′)

s′(σ′)
dσ′)×

×
(

q(σ⋆) + 4αβ
∫ σ

σ⋆

1

s′(σ′)
exp(4αβ

∫ σ′

σ⋆

s(σ′′)

s′(σ′′)
dσ′′)dσ′

)

, (17)

where σ⋆ is some initial value point. Completely analogous formula holds with s and q
interchanged.

It is amusing to note that s(σ) and q(σ) enter symmetrically in the constraint equation
(16). Nevertheless their role is very different, which is evident from the expression for the
scalar potential

V (σ) = 2η
(

s′(σ)2

4

q(σ)

q(σ)s(σ) − 1
− α2s(σ)

)

= −2ηα
(

β
q(σ)

q′(σ)
s′(σ) + αs(σ)

)

. (18)

(15) shows that q(σ) is essentially the warp factor. The scalar profile σ(z) is obtained from

σ̇2 = s′(σ)2 q(σ)

q(σ)s(σ) − 1
= −4αβ

q(σ)

q′(σ)
s′(σ). (19)

Note, that functions s(σ) and q(σ) must be always positive.
Another useful equation can be derived from (11)

q̇2 = 16α2β2q(σ(z))
(

q(σ(z))s(σ(z)) − 1
)

. (20)

It allows to obtain the warp factor as a function of the radial coordinate z. However we
can use σ to parametrize the radial direction.

(15), (17), (18) and (19) provide formal solution to the problem of finding AdS-sliced
domain walls. I.e. given s(σ) we can derive potential, geometry and the scalar profile of
the solution.

In principle one can (and would like to) view the potential V (σ) as an independent
function and derive an ODE for q(σ) (or s(σ)) for any given V (σ). We do not present this
equation here since it is highly non-linear unilluminating second order equation which is
useless in practise.
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On the practical side, the only technical difficulty in finding analytic domain-wall so-
lutions (with prescribed properties) is hidden in evaluation of the integrals in (17) (or
equivalently, solving first order ODE (16) analytically).

Let us make the following comment. From the discussion above it is clear that the
full solution is determined by a single function (just as for flat domain walls). We chose
this free function to be s(σ). But other choices are possible and can even be beneficial for
constructing some analytic solutions. For example, we can parametrize solutions by the
function q(s). In this case s(σ) as a function of scalar field can be obtained by inverting
the relation

σ = ± 1√
4αβ

∫

√

√

√

√

dq/ds

1 − sq(s)
ds (21)

and the scalar profile follows from

z = ±
∫

√

√

√

√−4αβ
dq/ds(σ)

q(s(σ))
dσ. (22)

As an example, we note that Janus solution [22,24,25] corresponds to a simple functional
relation between s and q:

c q(s)−d = s− 1

4α2β2L2
, (23)

where L is the asymptotic radius of curvature and c is an arbitrary constant.
Similarly, any other functional dependence between s, q, and σ can be used to construct

a solution generating algorithm.

3 Examples

3.1 Generalities

From now on we will specialise to AdSd-sliced domain walls in asymptotically AdSd+1, i.e.
we set η = 1, k = −1.

In the famous Janus solution [22–25] the potential of the scalar field σ is flat producing
a moduli space of vacua parametrized by the values of the dilaton. Here we are interested in
the cases when potential has distinct isolated critical points. Corresponding to every critical
point (maximum or minimum) of the potential there is an AdS vacuum with constant scalar
σ and radius of AdS determined by the value of the potential.

We are interested in finding solutions which interpolate between two asymptotically
AdS region(s) corresponding to the two sides of a defect. If the solution interpolates
between two different vacua of the potential we interpret such solution as a bulk dual of
interface CFT (ICFT). If the bulk solution is Z2 symmetric (i.e. we approach the same
critical point on both sides of the interface) then upon identification of the two sides of
AdS one obtains a holographic dual of boundary CFT (BCFT). More generally, if the bulk
has only one asymptotic AdS region one can interpret it as a BCFT.
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Close to the boundary of AdS (corresponding to the critical point of the scalar potential)
the warp factor q(σ) has to diverge. Let us make some general statements regarding the
critical point. Near the critical point (we can shift it to be at σ = 0) we can expand s(σ)

s(σ) = s0 +
s2

2
σ2 + O(σ3), (24)

the potential

V (σ) = − 1

2β2L2
+
m2

2
σ2 + O(σ3), (25)

where L is the radius of asymptotically AdS region and the warp factor as

q(σ) =
q−n

σn
+
q−n+1

σn−1
+ O(σ−n+2). (26)

The constraint equation (16) relates

n = 4αβ
s0

s2
. (27)

There are also further relations implied by (16), but they depend on the particular value
of n and are not important for what we are going to show next. Comparing now (25) with
the Taylor expansion of (18) we find

s0 =
1

4α2β2L2
, s2 =

2(d− 1)

nL2
. (28)

The mass of the scalar field is determined by n through

m2L2 = −2(dn− 2)

n2
(29)

and the conformal dimension of the dual operator is determined in a remarkably simple
way by n as

∆ =
1

2

(

d± (d− 4

n
)
)

. (30)

In particular for n = 1 in d = 2 the mass vanishes and we deal with dilatonic deformation
(similarly as in the Janus solution [22–25]). The Breitenlohner-Freedman bound m2L2 ≥
−d2/4 does not put any restrictions on n.

Recall that for the mass in the range

− d2

4
< m2L2 < −d2

4
+ 1 (31)

there are two possible quantizations in the dual CFT which are related to each other
by a Legendre transform [35]. Alternatively, one of them corresponds to Dirichlet while
another to Neumann boundary condition for the scalar field on the conformal boundary
of AdS. It is useful to reformulate condition (31) in terms of parameter n. For d = 2
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the alternative quantisation is possible whenever n > 1, n = 1 corresponds to marginal
(diatonic) deformation, while 0 < n < 1 leads to the non-vanishing VEV of an irrelevant
operator of dimension ∆ = 2/n. For d > 2 the alternative quantisation is possible if

4

d+ 2
< n <

4

d− 2
. (32)

If 4
d−2

< n then we are dealing with explicit deformation by a relevant operator of dimension
∆ = d− 2/n. For n in the interval

2

d
< n <

4

d+ 2
(33)

a relevant operator of dimension ∆ = 2/n gets a VEV, and for 0 < n < 2/d an irrelevant
operator of dimension ∆ = 2/n gets a VEV.

In the examples below the metric can be written explicitly using the scalar σ to
parametrize the radial coordinate. However, in order to understand the geometry of the
solutions it is convenient to adopt the coordinate z of (2). Equation (20) can be analyzed
asymptotically as z → ±∞, where q is expected to diverge exponentially in z. Indeed, the
leading asymptotics can be written up to an overall coefficient as

q(z) ∼ cosh2
(

z

L±

)

, as z → ±∞, (34)

where the curvature radii L− and L+ can be different for z → −∞ and z → ∞ indicat-
ing that CFTs on two sides of the interface correspond to different critical points of the
potential. Asymptotically as z → ±∞ the spacetime metric is

ds2 ∼ dz2 + γ2L2
±

[

cosh2
(

z

L±

)

+ . . .
]du2 − dt2 + dr2

‖ + r2
‖dΩ2

d−3

u2
, as z → ±∞ (35)

with some arbitrary coefficient γ and dΩ2
d−3 denoting the volume element of the (d − 3)-

dimensional unit sphere. This metric is asymptotically locally AdS. It can be brought to
the Fefferman-Graham form using the formulae from appendix B. For γ = 1 neglecting
subleading terms in the warp factor we make a change of coordinates

ρ =
u

cosh
(

z
L±

) , r⊥ = u tanh
(

z

L±

)

, (36)

resulting in AdS written in Fefferman-Graham (FG) coordinates

ds2 = L2
±

dρ2 − dt2 + dr2
⊥ + dr2

‖ + r2
‖dΩ2

d−3

ρ2
. (37)

Importantly, the two asymptotic regions z → ±∞ both map to conformal boundary in
Fefferman-Graham coordinates, i.e. they both correspond to a theory defined in the UV.
The same is true when γ 6= 1 (see Appendix B).
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Now it is natural to ask: how would an RG flow of DCFT look like in a holographic
setup? To answer this question notice that in Fefferman-Graham coordinates the energy
scale varies (at least asymptotically) along coordinate ρ. We approach UV when ρ → 0
while IR corresponds to the limit ρ → ∞. Borrowing intuition from flat domain walls we
expect the holographic RG flow to interpolate between the near boundary (ρ → 0) region
of UV theory and the deep interior (ρ → ∞) of the IR theory. In particular, the warp
factor (in domain-wall type coordinates) should go to zero in the IR.

Comparing the FG coordinates (ρ, x⊥) to the hyperbolic slicing coordinates (u, z) we
see that the only way to approach the deep IR region in hyperbolic slicing coordinates is
to fix z and send u → ∞. When we fix z we restrict to a particular AdS slice. Recall
that all AdS slices intersect the conformal boundary along the defect. Assuming that the
dynamics on the AdS slice is dual to the dynamics on the defect theory (i.e. the theory
describing the subset of degrees of freedom localised on the defect) we conclude that the
evolution along the FG radial coordinate ρ is naturally interpreted as an RG flow of the
defect theory and not as that of the ambient CFT.

We can also solve for the asymptotic behaviour of the scalar σ:

σ(z) ∼ σ0

sinh2( z
nL

)
∼ σ0

(

ρ

r⊥

)2/n

, as ρ → 0. (38)

Note that n can be different on the two sides of the defect (i.e. for r⊥ > 0 and r⊥ < 0).
As we have discussed above the value of n determines if we are dealing with an explicit

deformation or a VEV for a dual operator. Naively one would expect an RG flow if we
deform the theory. To be more precise we add to the action of the CFT on each side of
the interface the term with a position-dependent coupling

∫

ddx
σ0

rd−∆
⊥

O∆ (39)

which breaks the full conformal symmetry to the defect conformal group. The position-
dependence of this coupling is very special. It makes this deformation marginal by power
counting for any ∆ (see [36] for a discussion of such couplings)! This is why an RG flow is
not necessarily generated by this deformation.

When the critical point of the potential is a local minimum the dual operator is irrel-
evant, i.e. ∆ > d. Then (38) says that the symmetry is broken by a position dependent
VEV of the dual operator.

In the analysis above we ignored subleading terms in (35). In general there are cor-
rections to coordinate transformation (36) which will change the position of the defect
x⊥ = 0. However, these corrections will not change our interpretation of the solution since
the leading terms in near boundary expansions of the fields are correctly captured by (36)
alone (or its generalisation for γ 6= 1).

To summarize: at the maximum of the scalar potential the type of deformation (explicit
breaking or VEV) is determined by the value of n (see discussion above) while at the
minimum of the scalar potential the ambient CFT is deformed by a VEV for an irrelevant
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Figure 1: Holographic dual for the interface CFT defined by equation (40). Left: the warp
factor and the scalar potential as functions of the scalar σ; Right: numerical solution for
the warp factor and the scalar profile as functions of the radial coordinate z. Note that
this interface is not Z2 symmetric.

operator. The interface separates two critical points of the potential deformed by position-
dependent sources/VEVs.

Now we present some of the simplest defects which can be obtained using our formalism.

3.2 Interfaces

We begin by providing examples where q(σ) has two poles. Consider

q(σ) =
eσ

cosσ
(40)

in d = 2 dimensions. Equation (16) has general solution

s(σ) =
e−σ (c1 + σ + sin(σ) cos(σ))

sin(σ) + cos(σ)
. (41)

Requiring s(σ) to be non-singular between −π/2 and π/2 fixes c1 = (2 + π)/4. The
potential is

V (σ) =
e−σ(−4σ− 2(4σ+ π+ 4) sin(2σ) + (4σ + π − 2) cos(2σ) + cos(4σ) − π − 7)

4(sin(σ) + cos(σ))3
. (42)

The potential, warp factor and the scalar profile are plotted in the Figure 1. Between
−π/2 and π/2 this potential is monotonic and has the maximum at π/2 and the minimum
at −π/2. Interestingly, the mass of the deformation at both boundaries is zero (which
corresponds to n = 1 - see the discussion above). Note that both maximum and minimum
of the potential define an AdS vacuum. The radii of curvature on the two sides differ
and thus the central charge in the dual theory jumps across the defect (see [37] for an
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earlier discussion of such solution in supergravity). These two vacua could be in principle
connected by an RG flow (which from the gravity perspective is just a Poincaré-invariant
domain wall). Thus this solution is very close to a holographic realization of the con-
struction in [38], where such an interface is called RG domain wall. The only difference
is that in our construction the theories on the two sides of the interface are deformed by
position-dependent scale-invariant couplings (see previous subsection) (see also [39] for a
recent example of RG domain walls in supergravity).

A family of interface solutions can be obtained for any d from

q(σ) =
a

sinn(bσ)
. (43)

This gives

s(σ) =
1

a
2F1

[

−n

2
,
2αβ

b2n
;
2αβ

b2n
+ 1; cos2(bσ)

]

(44)

and the scalar potential is

V (σ) =−
2α2

(

(b2n2−4β2 tan2(bσ))2F1

[

−n
2
, 2αβ

b2n
; 2αβ+b2n

b2n
; cos2(bσ)

]

+ 4β2 sinn+2(bσ)
cos2(bσ)

)

ab2n2
. (45)

For even n (or simple relations among b and β) the hypergeometric functions reduce to
polynomials (elementary functions) in cos2 σ. The simplest example is given by n = 2
giving

s(σ) =
1

a

(

1 − αβ

b2 + αβ
cos2(bσ)

)

, (46)

V (σ) =
−4b2d+ cos(2bσ) − 1

2a (2b2(d− 1) + 1)
. (47)

The domain wall interpolates between σ = 0 and σ = π/b. In this example one can obtain
scalar’s profile and the warp factor analytically

σ(z) =
2

b
arctan

[

exp(z/L)
]

, q(z) = a cosh2(z/L), (48)

where we have introduced

L =

√

a(d− 1)(1 + 2b2(d− 1))
√

2b
. (49)

Note that this warp factor does not define the pure AdS space, but only asymptotically
locally AdS (see Appendix B).

This flow interpolates between two maxima of the potential V (σ) as shown on the
Figure 2.
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Figure 2: Holographic dual for the interface CFT defined by equation (43) with n = 2,
d = 3, a = b = 1. Left: the warp factor and the scalar potential as functions of the scalar
σ; Right: the warp factor and scalar profile as functions of the radial coordinate z.

3.3 Boundary CFT from the folding trick

A well-known method of constructing boundary CFT is the so-called folding (doubling)
trick. With the machinery developed above it is easy to construct a holographic counterpart
of this construction (see [40] for an early discussion of this construction in the context of
AdS/CFT correspondence).

We want to put the same theory on the both sides of the interface. To this end it is
enough if the scalar potential has only one critical point. The scalar field σ approaches
the same critical value as z → ±∞. Moreover we are looking for solutions which have Z2

invariance with respect to z → −z. It is also enough for q(σ) to have only one pole.
We describe a family of solutions related to that discussed in the previous subsection.

It is defined by

q(σ) =
a

sinhn(bσ)
. (50)

This gives

s(σ) = c1 cosh
4αβ

b2n (bσ) +
i−n

a
2F1

[

−n

2
,−2αβ

b2n
; 1 − 2αβ

b2n
; cosh2(bσ)

]

, (51)

where c1 is an arbitrary integration constant. Note that the hypergeometric function has
a branch cut in the complex plane running from 1 to ∞ and generically the right hand
side of the last formula should be viewed as an analytic continuation (however, for simple
choices of n or b it reduces to elementary functions). It is easy to check then that the
function s(σ) defined by (51) is in fact real. The scalar potential is

V (σ) = −8α2β2 tanh2(bσ) sinhn(bσ)

ab2n2
(52)

−
2α2

(

b2n2 − 4β2 tanh2(bσ)
)

(

i−n
2F1

[

−n
2
,−2αβ

b2n
; 1 − 2αβ

b2n
; cosh2(bσ)

]

+ ac1 cosh
4αβ

b2n (bσ)
)

ab2n2
.

13



0.0 0.5 1.0 1.5 2.0
0.

500.

1000.

1500.

-6.

-5.3

-4.7

-4.

Σ

qHΣL VHΣL

-10 -5 0 5 10
0.

100 000.

200 000.

0.

0.92

1.8

z

qHzL ΣHzL

Figure 3: Holographic dual for the interface CFT defined by equation (50) with n = 4,
d = 3, a = 1, b = 1/2. Left: the warp factor and the scalar potential as functions of the
scalar σ; Right: the warp factor and scalar profile as functions of the radial coordinate z.

As a simple example, consider the case n = 4 and set c1 = 0. Clearly, as σ goes to zero
(from the right) we approach the boundary of AdS. The potential simplifies to

V (σ) =
(k−1) cosh(4bσ) + (b2(32 − 48d) + 4) cosh(2bσ) + 4b2 (d (11 − 8k) − 7) − 3

8a (k − 1) (2k − 1)
, (53)

where we have introduced
k = 4b2(d− 1). (54)

We also impose k > 1. The kinetic energy is

σ̇2 =
1

a(d− 1)

(

2 sinh2(bσ)

k − 1
+

sinh2(2bσ)

2 (1 − 2k)

)

(55)

The scalar is stationary at

σ = 0 and at σ =
1

2b
cosh−1

(

3k − 1

k − 1

)

. (56)

and its profile as well as warp factor can be obtained analytically:

σ(z) =
1

b
cosh−1

(

√

√

√

√

(2k − 1)

1 + k tanh2
(

z
L

)

)

, q(z) = a

(

2k − 1

k
cosh2

(

z

L

)

− 1

)2

, (57)

where the characteristic scale of this solution is (it is twice the asymptotic radius of cur-
vature)

L =

√

a(k − 1)(2k − 1)

2
√

2b2
. (58)

The potential, geometry and scalar profile of such a solution are plotted in the Figure 3.
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Another similar family of solutions can be obtained by considering the warp factor

q(σ) =
a

σn
. (59)

Then

s(σ) = e
σ2

(d−1)n





σn+2 E− n
2

(

σ2

(d−1)n

)

a(d− 1)n
+ c1



 , (60)

where Ek(x) denotes the exponential integral function defined as

Ek(x) =

∞
∫

1

e−xt

tk
dt. (61)

The potential and kinetic energy can be again computed analytically analogously as in the
cases discussed above. When n is even the solution can be expressed using elementary
functions.

4 Applications

In this section we perform sample computations on some of the simplest backgrounds we
have found in the previous section. We discuss the gravity dual of the boundary OPE
and illustrate computation of entanglement entropy for the specific entangling surface. It
allows us to extract nontrivial information about the spectrum and central charge of some
defect CFTs.

4.1 Boundary OPE and fluctuations

In a defect CFT it is useful to draw a distinction between "ambient" fields φd(y, r⊥)
propagating throughout the space and "defect" fields φd−1(y) confined to the defect (y
parametrizes all coordinates along the defect). The latter include also restrictions of the
former to the defect.

Reference [4] analysed the constraints put on the correlation functions of gauge invariant
operators by the reduced defect conformal group. In particular, a non-zero one-point
function for the ambient operator Od of scaling dimension ∆ is allowed and takes the form

〈Od(y, r⊥)〉 =
AOd

r∆
⊥

(62)

for some constant AOd
. The form of the two-point function of an ambient operator of

dimension ∆ and a defect operator Od−1 of dimension ∆′ is also fixed uniquely up to an
overall coefficient

〈Od(y, r⊥)Od−1(y′)〉 =
BOdOd−1

r∆−∆′

⊥ (r2
⊥ + (y − y′)2)∆′

. (63)
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Coordinates of any two points can be combined into an invariant with respect to the defect
conformal group

ξ =
(y − y′)2 + (r⊥ − r′

⊥)2

4r⊥r′
⊥

(64)

and therefore the two-point function of two ambient (scalar) operators in general depends
on an undetermined function f of this invariant

〈O1
d(y, r⊥)O2

d(y′, r′
⊥)〉 =

f(ξ)

r∆1
⊥ r′∆2

⊥

. (65)

Near the defect an ambient operator Od can be expanded as a power series in defect
operators On

d−1

Od(y, r⊥) =
∑

n

BOd

On

r∆d−∆n

⊥

On
d−1(y). (66)

This expansion is called boundary OPE (BOPE).
As argued in the beautiful paper [9] the BOPE has simple counterpart in the dual

gravitational description. Consider generic field φd+1(z, u, y) of mass Md+1 in AdSd+1 (y
parametrizes coordinates along the defect while z and u together combine into r⊥). It
transforms in some representation of SO(2, d) and is dual to some gauge-invariant ambient
operator Od in the boundary field theory. We can decompose φd+1(z, u, y) into a tower of
fields φd,n(u, y) living on AdSd subspace and transforming in some representations of the
defect subgroup SO(2, d− 1):

φd+1(z, u, y) =
∑

n

ψn(z)φd,n(u, y). (67)

Equation (67) is conjectured to be the gravitational analog of the BOPE (66). The con-
formal dimension of φd,n(u, y) is determined by the AdSd-mass m2

n:

�dφd,n(u, y) = m2
nφd,n(u, y). (68)

After equation (68) has been solved, the fluctuation equation for φd+1(z, u, y) reduces to
an equation for ψn(z). Imposing regularity of ψn(z) at the boundary of AdSd+1 (i.e. as
z → ±∞) we obtain an eigenvalue problem, which determines the masses mn of the fields
appearing in the expansion (66). In the language of the dual field theory this analysis
determines the dimensions of the operators appearing in the BOPE (66).

Below we perform this program in a simple example. As a result we obtain partial
information about the spectrum of the defect operators.

First we consider the fluctuations of the minimally coupled probe scalar field on the
generic backgrounds constructed above. Recall that the fluctuations of the transverse
traceless part of the metric satisfy the field equation of the massless scalar (see [37] for
a recent discussion). We will be able to restrict to this particular case later by setting
AdSd+1-mass to zero.
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For the scalar field f(σ, u, t, ~x) of mass Md+1 the field equation is

−2αβ

q′2

[

2qq′s′f ′′ +
(

(d+ 1)s′q′2 − (qq′′s′ − qq′s′′)
)

f ′
]

(69)

+
4α2β2

q

[

u2∂2
uf + (2 − d)u∂uf − u2k2f

]

= M2
d+1f,

where k is the Fourier momentum along the (t, ~x) directions. The second line involves the
Laplacian in transverse AdSd space. We can separate the variables by decomposing the
general fluctuation in the sum over those respecting the defect conformal group

f(σ, u) =
∑

n

ψn(σ)Un(u, t, ~x). (70)

Functions Un satisfy the field equation of the probe scalar on AdSd space:

u2∂2
uU + (2 − d)u∂uU − u2k2U = m2

nU, (71)

with the regular solution given in terms of modified Bessel function

Un(u) = u
d−1

2 Kνn
(ku), (72)

where νn =
√

(d− 1)2 + 4m2
n/2. The field equation for the wave function ψn(σ) is

− 2αβ

q′2

[

2qq′s′ψ′′
n +

(

(d+ 1)s′q′2 − (qq′′s′ − qq′s′′)
)

ψ′
n

]

= (M2
d+1 − 4α2β2

q
m2

n)ψn. (73)

Generically this equation does not have an analytic solution. We can look for specific
choices of s(σ) for which this equation can be solved.

As a simple example consider

q =
a

sin2(bσ)
(74)

discussed in the section 3.2. To analyse the equation (73) we introduce new variable
x = cos(bσ) and look for the solution of the form ψn = (1 − x2)d/4gn(x). The equation for
gn(x) becomes that for the associated Legendre function

(1 − x2)g′′
n(x) − 2xg′

n(x) +
[

λn(λn + 1) − µ2

1 − x2

]

gn(x) = 0, (75)

with the prime denoting the derivative with respect to x. We have also introduced param-
eters λn and µ defined by

(λn +
1

2
)2 =

(d− 1)2

4
+ (1 +

αβ

b2
)m2

n, (76)

µ2 =
d2

4
+ (1 +

αβ

b2
)

a

4α2β2
M2

d+1. (77)
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We are looking for a solution for ψn which approaches zero at the boundary, i.e. as
x → ±1. Using the trigonometric expansions for the Legendre functions [41] we see that
this condition leads to the relation

λn = −µ+ n, n ∈ Z. (78)

If µ is half-integer we have to impose in addition λn > −3/2. The dimensions of the
operators appearing in the BOPE decomposition are

∆n =
d+

√

d2 + b2

b2+αβ
(2λn + d)(2λn + 2 − d)

2
. (79)

Putting Md+1 = 0 (leading to µ being integer or half-integer) we obtain part of the spectrum
of the operators appearing in the BOPE of the stress-energy tensor with the defect. As
a simple check of our result we see that in the limit when b → ∞ (which corresponds to
pure AdS without defect) we get the mass spectrum

m2
n =

(2n+ d)(2n+ 2 − d)

4
(80)

reproducing the known result (see reference [5] for pure AdS5 case).

4.2 Entanglement entropy in CFTs with defects

Entanglement Entropy (EE) in QFT is a powerful measure of entanglement between sub-
systems. It can count number of degrees of freedom, characterise phases of matter, serve
as an order parameter in phase transitions, etc. However, EE is difficult to compute, even
in free field theories. In the context of holography a well-defined prescription was proposed
in [42, 43]. Rigorous proof of this conjecture exists in d = 2 [44, 45] (for more general
evidence see [46]). In the special case when the entangling surface (i.e. surface separating
a subsystem from its complement) is a sphere (or a conformal transformation of it) an
independent derivation of EE was given by Casini, Huerta and Myers (CHM) in [47]. The
CHM idea was generalised for defect CFTs to compute the EE across the spherical entan-
gling surface centred on the defect in [48]. In this sections we compute the EE of such a
region in one of our examples.

Let us start with some general observations. In our notation the backreacted geometries
take the form

ds2 = dz2 + (d− 1)2 q(z)

u2
(du2 − dt2 + dr2

‖ + r2
‖dΩ2

d−3). (81)

We are looking for the minimal surface ending on the boundary on the circle of radius
R centred at the defect. We parametrize it by the so far unknown function u(z, r‖). The
minimal area functional is (assuming d ≥ 3)

Amin = Vol(Sd−3)
∫

dr‖dz r
d−3
‖

(

(d− 1)2q(z)

u2

)
d−2

2

√

1+(∂r‖
u)2+

(d− 1)2q(z)

u2
(∂zu)2. (82)
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Crucially, as argued in detail in [48], the area is minimised (globally) when ∂zu = 0. This
simplifies the computation significantly. The minimal surface is given by the equation

u(r‖)
2 + r2

‖ = R2 (83)

and its area factorizes into two integrals

Amin = (d− 1)d−2Vol(Sd−3)
[

rǫ
∫

0

dr‖

R rd−3
‖

(R2 − r2
‖)

d−1
2

][

zǫ(r‖)
∫

−zǫ(r‖)

dzq(z)
d−2

2

]

, (84)

i.e. for any fixed value of r‖ between zero and rǫ =
√
R2 − ǫ2 we integrate over z up to the

cutoff zǫ(r‖) which depends on both ǫ and r‖.
Usually entanglement entropy is computed with a regulator ǫ in Poincaré coordinates.

It is possible to implement it directly in AdS slicing using the expression for the Poincaré
radial coordinate ρ [48] (see also Appendix B)

ρ = u exp
(

−
∫ z

dz′

√

1

L2
− 1

(d− 1)2q(z)

)

(85)

leading to the relation between the cutoffs ǫ and zǫ

ǫ =
√

R2 − r2
‖ exp

(

−
∫ zǫ

dz′

√

1

L2
− 1

(d− 1)2q(z)

)

. (86)

After the integral over z in (84) is performed one integrates over r‖ from 0 to rǫ =
√
R2 − ǫ2.

We perform this computation for the interface discussed in the previous section defined
by the equations (48) and (49). To evaluate the z-integral in (84) we notice that

∫

coshd−2(z)dz =























1
2d−2

(

d−2
(d−2)/2

)

z + 1
2d−2

d
2

−2
∑

k=0

(

d−2
k

)

sinh((d−2−2k)z)
d
2

−1−k
if d is even

d−3
2
∑

k=0

( d−3
2
k

)

sinh2k+1(z)
k+1

if d is odd

For definiteness we choose d = 3, then

Amin = 4RL
√
a

rǫ
∫

0

sinh(zǫ(r‖)/L)

R2 − r2
‖

dr‖. (87)

Next step is to find the relation between ǫ and zǫ. Evaluating the integral in (86) we find

ǫ =
√

R2 − r2
‖

(

tǫ − 1

tǫ + 1

)1/2(A tǫ + 1

A tǫ − 1

)A/2

, (88)

where

A2 =
L2

a(d− 1)2
(89)
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and we have introduced

tǫ =
sinh(zǫ/L)

√

cosh2(zǫ/L) −A2
. (90)

For generic value ofA one cannot solve analytically the algebraic equation (88) for sinh(zǫ/L)
(except for the case A = 2). Luckily, we know the inverse relation between r‖ and tǫ and
can express the integrand in (87) in terms of tǫ:

Amin = 4RL
√
a(A2 − 1)3/2

∞
∫

t0

tǫ
(t2ǫ − 1)3/2

1

A2t2ǫ − 1

1
√

R2 − ǫ2 tǫ+1
tǫ−1

(Atǫ−1
Atǫ+1

)A
dtǫ, (91)

where t0 is defined through the equation

t0 − 1

t0 + 1

(

At0 + 1

At0 − 1

)A

=
ǫ2

R2
, (92)

which again cannot be solved analytically for generic A. It is enough however to know the
Taylor series for t0(ǫ):

t0 ∼ 1 +
2

R2

(

A− 1

A+ 1

)A

ǫ2 + O(ǫ4). (93)

The integral in (91) cannot be performed analytically, but we can analyse its behaviour
as ǫ → 0. Naively we expect to find 1/ǫ divergence characteristic for three-dimensional
CFT and potential logarithmic divergence coming from the two-dimensional defect.

It is convenient to change the integration variable once again and define

t = tǫ − t0, (94)

then the integration domain for t is from zero to infinity. Next, let us rewrite the integral
in (91) as a sum of two integrals: one from zero to some intermediate value δ and the
second one from δ to infinity (we will assume that δ is of order O(1) and that ǫ2 ≪ δ).
Now note that the integrand is approaching zero as t → ∞ fast enough and therefore the
second integral is never divergent irrespectively of the value of ǫ, even for ǫ = 0. Therefore
we can concentrate on the region close to the lower limit of the integral.

Notice also that the expression under the square root in the integrand vanishes at t = 0
(as t/ǫ2) and is of order O(1) when t ∼ O(ǫ2). Thus we can identify two different regions
between zero and δ where the integrand behaves differently. For t < ǫ2 it goes like 1/

√
t

and for ǫ2 < t < δ it is approximately 1/t3/2. In both regimes the power is fractional and
therefore there can be no logarithmic divergence. To be more precise, in the first regime
we get

ǫ2
∫

0

1

ǫ2
1√
t

∼ 1

ǫ
, (95)

and in the second regime

δ
∫

ǫ2

1

(t+ t0 − 1)3/2
∼ 1√

t+ t0 − 1

∣

∣

∣

∣

ǫ2
∼ 1

ǫ
. (96)
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The coefficient of 1/ǫ divergence (as well as finite part of the EE) can be extracted numer-
ically.

Thus we do not find a logarithmic divergence. Usually the logarithmic divergence in
the EE in even dimensions is multiplied by some linear combination of the central charges.
For instance in a two-dimensional CFT there is a single central charge c which can be
defined as a coefficient of the Ricci scalar R in the trace anomaly. When we are dealing
with a two-dimensional defect embedded into some three-dimensional CFT the situation
is more complicated. Apart from Ricci scalar one could construct other scalars which
might appear in the trace anomaly, e.g. by considering different contractions of extrinsic
curvatures or normal components of the metric [48]. The number of possible central charges
characterising two-dimensional defects is not known. In general some linear combination
of them will multiply the logarithmic divergence in the EE. Our computation shows that
for this specific interface some combination of central charges vanishes.

5 Conclusions

To summarise, we have developed a simple first-order formalism for constructing AdSd-
sliced domain walls in asymptotically AdSd+1 spacetimes. Such domain walls provide
holographic duals of the conformal codimension one defects - boundaries and interfaces.
We have shown that the entire solution is specified with the help of a single function, from
which the spacetime geometry, scalar potential and scalar profile are easily derived. In this
respect the situation is analogous to the well-known fake superpotential formalism for flat
Poincaré-invariant domain walls.

We have applied this formalism to construct families of analytic gravitational duals of
the conformal defects. Among them there are subfamilies given in terms of elementary
functions. For one of the simplest solutions we have computed the discrete spectrum of
dimensions appearing in the OPE between the energy-momentum tensor and the defect.
For the same defect we have studied the entanglement entropy across the spherical region
centred on the defect. For a two-dimensional defect we have found that the coefficient in
front of the logarithmic divergence in the entanglement entropy vanishes. This means that
one of the linear combinations of the central charges vanishes in the dual defect theory.

Interfaces constructed using the AdS-slicing have the property that some of the sources
or VEVs have specific position-dependence of the form (39), which in part may be respon-
sible for the breaking of bulk conformal symmetry to the defect conformal group. It is
important to find a generalization of the original ansatz such that position-independent
couplings could be incorporated. In such a setup it will be natural to look for a holographic
version of the g-theorem [49].

We have also found a simple interface separating two CFTs which could be connected
via an RG flow. Such an interface is reminiscent of the construction in [38] 3. The main
difference in our solution is that the UV and IR CFTs on the two sides of the interface
are deformed by position-dependent (but classically scale invariant) couplings or VEVs. It

3We are aware that Davide Gaiotto has unpublished related work [50].
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would be interesting to find a holographic RG flow interpolating between a CFT in the
UV and such a defect in the IR.

Using domain wall / cosmology correspondence [31, 51] our formalism can also be ap-
plied for constructing cosmologies with spherical spatial slices and time-dependent cosmo-
logical constant.
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A Relation to the Hamilton-Jacobi Theory

The Hamilton-Jacobi theory for (curved) domain walls was developed in the reference [32]
(see also [52, 53]). Here we repeat their analysis in our language.

Starting from effective Lagrangian (4) we define canonical momenta

πϕ =
∂L

∂ϕ̇
= ηeαϕϕ̇, πσ =

∂L

∂σ̇
= −ηeαϕσ̇. (97)

The Hamilton’s characteristic function S is a functional of the fields σ and ϕ. We will
find it without actually solving the Hamilton-Jacobi equations. To this end observe that

Ṡ = πϕϕ̇+ πσσ̇. (98)

Using explicit expressions

ϕ̇ = ∓2α
√

s− 1/q, σ̇ = ±|s′|
√

1

s− 1/q
(99)

we compute

ηṠ = eαϕ(ϕ̇2 − σ̇2) (100)

= ϕ̇(∓2αeαϕ
√

s− 1/q) − σ̇2eαϕ

=
d

dz
(∓2eαϕ

√

s− 1/q) ± eαϕ

√

s− 1/q

(

ṡ+
q̇

q2

)

− σ̇2eαϕ

=
d

dz
(∓2eαϕ

√

s− 1/q) ∓ 4αβ
eαϕ

q
.

Integrating with respect to z we finally find

S = ∓2ηeαϕ
√

s− 1/q ∓ 4ηαβ
∫ z(σ) eαϕ

q
dz. (101)
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It is straightforward to check that the relations

∂S
∂ϕ

= πϕ,
∂S
∂σ

= πσ (102)

hold.
As was noted in [32] the last term in (101) is absent for flat domain walls. Importantly,

this last term is a non-local function of the scalar field σ (ϕ dependence can be removed by
a gauge choice). In the context of holography S plays the role of the generating functional
and thus may need to be renormalized. While the first term can be removed by a local
counterterm, the second term can not. Therefore the 1-point function of the operator dual
to σ is generically non-zero.

B From AdS slicing to Fefferman-Graham

A locally asymptotically AdSd+1 metric in AdSd slicing

ds2 = dz2 + (d− 1)2 q(z)

u2

(

du2 − dt2 + dr2
‖ + r2

‖dΩ2
d−3

)

(103)

can be always brought in the Fefferman-Graham form (at least near the boundary and
away from the location of the defect)

ds2 =
L2

ρ2

[

dρ2 + v(ρ/r⊥)dr2
⊥ + w(ρ/r⊥)

(

− dt2 + dr2
‖ + r2

‖dΩ2
d−3

)]

(104)

by the following change of coordinates [48, 54]

ρ = u exp
(

∓
∫ z

√

1

L2
− 1

(d− 1)2q(z′)
dz′
)

, (105)

r⊥ = u exp
(

± 1

(d− 1)

∫ z 1
√

q(z′)
(

(d−1)2

L2 q(z′) − 1
)

dz′
)

, (106)

where the sign in the first formula should be chosen in such a way that ρ approaches zero
as z → ±∞ (the sign in the second formula is then the opposite one). Moreover the
integration constant is fixed by the requirement that the functions

v(z) =
ρ2

r2
⊥

(

(d− 1)2

L2
q(z) − 1

)

, (107)

w(z) =
(d− 1)2

L2

ρ2

u2
q(z), (108)

approach one as ρ → 0.
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As a concrete example consider a geometry defined by

ds2 = dz2 + γ2L2 cosh2(z/L)

u2

(

du2 − dt2 + dr2
‖ + r2

‖dΩ2
d−3

)

. (109)

We have encountered a geometry of this type in the subsection 3.2. When the constant γ
is not equal to one this space is not pure AdS. To see it compute the Ricci curvature:

R = −d(d+ 1)

L2
+
d(d− 1)(γ2 − 1)

γ2L2

1

cosh2(z/L)
. (110)

As z → ∞ the Ricci scalar approaches −d(d − 1)/L2 which is the Ricci curvature of the
pure AdSd+1 with the radius L. Therefore this geometry defines asymptotically locally
AdS space. Assuming that γ2 < 1 the Fefferman-Graham form is achieved through

r⊥ = u
(

1 − γ

1 + γ

)
1

2γ
(

t+ γ

t− γ

)
1

2γ

, ρ =
2√

1 − γ2
r⊥

(

t− 1

t+ 1

)
1
2

, (111)

where

t =
sinh(z/L)

√

cosh2(z/L) − 1/γ2
. (112)

Note that this change of coordinates is not defined on the entire spacetime, but only when
cosh(z/L) > 1/γ. It indicates the breaking of Fefferman-Graham expansion at a particular
value of z.
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