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1 Introduction

In recent years there has been considerable work on the use of holographic models to gain

insights into strong coupling physics in condensed matter systems (see [1–5] for reviews).

Gauge/gravity duality may be an important tool in understanding strongly interacting

non-relativistic scale invariant systems and gravity solutions exhibiting Schrödinger [6, 7]

and Lifshitz symmetry [8] have been constructed.

While simple models can capture interesting phenomenology, it is important to un-

derstand the nature of the corresponding dual non-relativistic theories better, from first

principles. In [9] (see also [10, 11]) it was shown that the field theories dual to Schrödinger

geometries can be understood as specific deformations of relativistic conformal field theories

by operators which are exactly marginal from the perspective of the Schrödinger group,

but are irrelevant from the perspective of the conformal symmetry group and moreover

break the relativistic symmetry.

Recently an analogous interpretation for Lifshitz spacetimes with dynamical exponent

z close to one was developed in [12]: a specific deformation of a d-dimensional CFT by a

dimension d vector operator generically leads to a theory with Lifshitz scaling invariance.

For both Schrödinger and Lifshitz dualities, this perspective not only elucidates the nature

of the non-relativistic theories realised holographically but also demonstrates that new

classes of theories with non-relativistic symmetries can be obtained as deformations of

relativistic conformal field theories. Since such deformations do not need to be realized
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holographically, these results are interesting for field theory in their own right and moreover

could lead to interesting new weakly interacting non-relativistic theories.

In this paper we consider the finite temperature behaviour of Lifshitz theories in this

class, i.e. theories with dynamical exponent z close to one which can be viewed as vector

deformations of CFTs, and we also show that top down models in string theory with

dynamical exponents close to one indeed lie in this universality class.

From the bulk perspective, the simplest realization of Lifshitz is the bottom up

Einstein-Proca model introduced in [13]. Black hole/brane solutions with Lifshitz asymp-

totics are needed to study the corresponding dual field theories at non-zero temperature.

However, only numerical black hole solutions are available for generic values of z [14–28].

Note that analytic asymptotically Lifshitz black hole solutions are readily available

in Einstein-Dilaton-Maxwell (EDM) theories, see the earliest examples in [13, 29], with

the interpretation of the running scalar being discussed in [30]. More recently there has

been considerable interest in solutions of EDM theories exhibiting hyperscaling violation,

see for example [30–42]. In this paper we will focus on pure Lifshitz solutions although it

would certainly be interesting to understand whether EDM solutions can admit analogous

dual interpretations in terms of deformations of relativistic theories and indeed whether

EDM solutions can be related to Lifshitz solutions through generalized dimensional

reduction [43–45]. Note that issues and open questions involving the IR behaviour of the

Lifshitz theory, see [46] and [47], do not play a role here.

In the first part of this paper we consider Einstein-Proca models and construct

black brane solutions with Lifshitz asymptotics for dynamical exponent z = 1 + ǫ2,

with ǫ being a small expansion parameter. Our solutions are constructed analytically,

working perturbatively in ǫ. Applying the holographic dictionary developed in [12] we

obtain the one-point function of the dual energy-momentum tensor and check the various

thermodynamic relations expected for Lifshitz invariant theories [48–50]. In particular we

show how the Ward identity due to Lifshitz invariance implies the existence of a conserved

mass and we show that the entropy scales with temperature as

S ∝ T
d−1

z . (1.1)

The thermodynamic quantities are obtained analytically and the analytic solutions could

be useful in extracting quasi-normal modes, studying correlation functions etc.

While it is a useful bottom up model, the Einstein-Proca model has a disadvantage:

string theory embeddings are known only for specific values of the dynamical exponent

z, see for example [51], none of which are close to one. There are two main classes of

string theory embeddings of Lifshitz solutions known. The first is that of z = 2 Lifshitz

which can be obtained from reducing z = 0 Schrödinger over a circle [10, 23, 52]. This

system can be embedded in supergravity [53–56] and the detailed holographic dictionary

was obtained in [26, 57], reducing the results obtained in [58]. However the reduction

circle becomes null at infinity which implies the dual theory should be related to the

Discretized Light Cone Quantization (DLCQ) of the deformed CFT corresponding to the

z = 0 Schrödinger solution, and thus this approach suffers from the well-known subtleties

associated with DLCQ. These z = 2 Lifshitz solutions are not in the same universality

class as the solutions discussed in this paper.
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The second class of top down embeddings of Lifshitz solutions consist of uplifts of solu-

tions to Romans gauged supergravity theories [59]. Lifshitz geometries LiD(z) in D = d+1

bulk dimensions with generic dynamical exponent z can be realized in this way. The struc-

ture of these solutions is as follows: products of LiD(z) with two-dimensional hyperboloids

solve the equations of Romans gauged supergravity theories in (D + 2) dimensions, for

specific choices of the masses and couplings in these theories.

Since there are Lifshitz solutions with z ∼ 1 in these top down models, it is interesting

to explore whether these can also be understood in terms of deformations of conformal

field theories. In section 5 we show that these solutions are indeed in the same universality

class as the Einstein-Proca model: i.e. to leading order in the parameter ǫ the dual field

theory is a deformation of a CFT by a vector operator. However, unlike the Einstein-Proca

model, other CFT operators (which preserve Lifshitz symmetry) are induced at higher

orders in ǫ. The bulk theories in this case therefore realize one of the field theory scenarios

discussed in section 5 of [12].

Unfortunately not just the Lifshitz solutions but also the z = 1 AdS solutions in

these models break supersymmetry and are unstable. We show this explicitly in section 5

by demonstrating that scalar modes around AdS violate the Breitenlohner-Freedman

(BF) bound. The operators dual to these (unstable) scalar modes arise in the operator

product expansions of the vector operators associated with the Lifshitz deformations and

correspondingly are necessarily part of the consistent truncation of the bulk theory to

D dimensions, see section 5.2. Therefore the z ∼ 1 Lifshitz solutions in these top down

models are unstable. It would be interesting to find analogous top down solutions which

are obtained from deformations of supersymmetric AdS critical points and which do not

suffer from BF instabilities.

For the four-dimensional Lifshitz geometries, which are realized as solutions of the six-

dimensional Romans theory, there is a second branch of solutions for which the dynamical

exponent z > 4.29. These solutions are not connected to the unstable critical point and

therefore cannot be understood in terms of marginal Lifshitz deformations. It would be

interesting to understand this branch of the solutions further.

The plan of this paper is as follows. In the next section we summarise the key results

from [12]. Assuming that the sources are position independent we extend the previous anal-

ysis to generic dimension. In section 3 we develop the perturbation theory in ǫ and obtain

the black brane solutions in generic dimensions. In section 4 we discuss the thermodynam-

ics of our solutions, given an argument for and verifying the Lifshitz scaling behaviour. In

section 5 we demonstrate that the Lifshitz solutions and the corresponding black holes [50]

of the top-down model [59] are in the same universality class as those considered in the

present paper, i.e. they can be viewed as describing the ground state and a thermal state,

respectively, of a relativistic CFT deformed by a vector of dimension d.

2 Summary of holographic dictionary

In this section we briefly review the holographic dictionary between bulk Lifshitz space-

times with dynamical exponent z = 1+ ǫ2 and the dual Lifshitz invariant field theory. We
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will follow the discussion in [12] to which we refer the reader for more details. For use in

subsequent sections, we give the renormalised action, the holographic one point functions

and their Ward identities.

Note that holographic renormalization for Lifshitz solutions was also studied pre-

viously in [60–65]. In particular, it was shown in [61], using the radial Hamiltonian

formalism [66, 67], that Lifshitz models can be holographically renormalized for any

z. Since these models are non-relativistic it is natural to work in the vielbein formal-

ism [60](see also [9]) and this is indeed what was done in [61]. In the current context we

use instead the metric formalism [68] as this is more natural when studying the theory

from the perspective of the AdS critical point.

The action under consideration is

Sbare =
1

16πGd+1

∫

dd+1x
√
−G

(

R+ d(d− 1)− 1

4
FµνF

µν − 1

2
M2AµA

µ

)

+
1

8πGd+1

∫

ddx
√−γK, (2.1)

with M2 = d − 1 + O(ǫ2), γ the induced boundary metric and K the trace of the second

fundamental form. The associated field equations are

DµF
µν =M2Aν , (2.2)

Rµν = −dGµν +
M2

2
AµAν +

1

2
GρσFµρFνσ +

1

4(1− d)
F σλFσλGµν . (2.3)

Taking the trace of the Einstein equations and plugging back into (2.1) the onshell action

becomes

Sonshell =
1

16πGd+1

∫

dd+1x
√
−G

(

− 2d− 1

2(d− 1)
FµνF

µν

)

(2.4)

+
1

8πGd+1

∫

ddx
√−γK.

It is useful to parametrize the metric and the vector field as

ds2 = dr2 + e2rgijdx
idxj ,

gij(x, r; ǫ) = g[0]ij(x, r) + ǫ2g[2]ij(x, r) + . . . (2.5)

Ai(x, r; ǫ) = ǫerA(0)i(x) + . . . .

For the metric, the notation g[a]ij captures the order in ǫ. When one considers the

asymptotic behaviour near the conformal boundary, each of these coefficients admits a

radial expansion as well and the order in radial expansion will be denoted (as usual) by

curved parentheses. For example,

g[0]ij(x, r) = g[0](0)ij(x) + e−2rg[0](2)ij(x) + · · · (2.6)

is the asymptotic radial expansion of the metric to leading order in ǫ. Below we summarize

the most general asymptotic solution given g[0](0)ij and A(0)i as Dirichlet data.

– 4 –
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2.1 Asymptotic expansions

Throughout this paper we will be interested in the case in which the background sources

g[0](0) and A(0) are constant. This allows us to drop non-radial derivatives in the subsequent

analysis and simplify many formulae from the [12]. In particular the radial component of

the vector field vanishes, Ar = 0.

The results provided below hold for any dimension d. The near boundary expansions

of the vector field and the metric up to order ǫ2 are as follows. For the vector the

asymptotic expansion takes the form

Ai = er(A(0)i + e−dr(rÃ(d)i(x) +A(d)i(x)) + . . .), (2.7)

where we will define A(0)i = ǫA(0)i and work perturbatively in ǫ. It is also useful to define

A(d)i = ǫA(d)i and let Ãi
(d) = ǫai(d). The logarithmic expansion coefficient is given by

a(d)i = g[0](d)ijA
j
(0), (2.8)

where g[0](a)ij is defined below. Here and later, whenever we present asymptotic solutions,

indices are raised to this order using the metric gij[0](0), which we set to be the Minkowski

metric: g[0](0)ij = ηij .

The coefficient A(d)i is left undetermined by the asymptotic analysis and is related to

the expectation value of the dual operator. Note that the expansion coefficients depend

locally on the zeroth order expectation value of the dual stress energy tensor 〈Tij〉[0]
(which is related to g[0](d)ij as in (2.16)). At first sight this might appear problematic since

this coefficient is in general non-locally related to g[0](0) which might lead to non-local

divergences but as we review below there are in fact no non-local divergences: the

counterterm action is local.

For the metric the asymptotic expansion is as follows [12, 68, 69]:

gij = ηij + ǫ2rh[2](0)ij + e−dr
(

ǫ2rh[2](d)ij + (g[0](d)ij + ǫ2g[2](d)ij)
)

, (2.9)

where the metric g[0](0)ij is chosen to be flat and

h[2](0)ij = −A(0)iA(0)j +
1

2(d− 1)
A(0)kA

k
(0)ηij . (2.10)

g[0](d)ij is traceless and divergenceless, while

h[2](d)ij =
d

4(d− 1)
A(0)kA

k
(0)g[0](d)ij +

1

d
Ak

(0)g[0](d)klA
l
(0)ηij (2.11)

− d− 1

d
(A(0)ig[0](d)jk +A(0)jg[0](d)ik)A

k
(0),

tr(g[2](d)) =
2

d
A(0)iA

i
(d) −

d2 − 2d+ 2

d2(d− 1)
Ai

(0)g[0](d)ijA
j
(0), (2.12)

and the divergence of g[2](d) vanishes. The part of g[2](d)ij which is undetermined by the

asymptotic analysis is related to the expectation value of Tij at order ǫ2.
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2.2 Counterterms and renormalized one-point functions

The counterterm action, restricted to the case where the boundary metric is flat and so is

A(0), becomes

Sct = Sct[0] + Sct[2] = − 1

32πGd+1

∫

ddx
√−γ

(

4(d− 1)− γijAiAj

)

. (2.13)

These counterterms suffice to render the action finite to order ǫ2, under the above

restrictions. For non-constant sources there are also other counterterms (see [12]) but

these do not play a role here.

The vector one-point function is

〈J i〉 = − 1
√−g[0](0)

δSren
δA(0)i

= − 1

16πGd+1
(dAi

(d) − gij[0](d)A(0)j). (2.14)

The part of the asymptotic expansion, Ai
(d), undetermined by asymptotics is directly related

to the one-point function of the dual operator.

Now let us give the 1-point function of the stress-energy tensor:

〈Tij〉 = 〈Tij〉[0] + ǫ2〈Tij〉[2] + · · · (2.15)

with [68, 69]

〈Tij〉[0] = − 2
√−g[0](0)

δS[0]ren

δgij[0](0)
=

d

16πGd+1
g[0](d)ij (2.16)

and

〈Tij〉[2] =
1

16πGd+1

[

dg[2](d)ij−(A(0)iA(d)j+A(0)jA(d)i)−A(0)kA
k
(d)ηij (2.17)

+
d− 1

d
(A(0)ig[0](d)jk +A(0)jg[0](d)ik)A

k
(0)

+
d2−d+2

2d(d− 1)
Ak
(0)g[0](d)klA

l
(0)ηij −

d−2

4(d−1)
A(0)kA

k
(0)g[0](d)ij

]

.

Again, as expected, the expectation value of Tij is directly related to the undetermined

coefficient, g(d)ij .

2.3 Ward identities

The holographic energy momentum tensor satisfies

∇j 〈Tij〉 = Ai∇j

〈

J j
〉

−
〈

J j
〉

Fij . (2.18)

Computing the trace of the second order stress energy tensor gives the complete anomaly

through order ǫ2

〈T i
i 〉 −

1

2
Ai

(0)〈Tij〉A
j
(0) = A(0)i〈J i〉. (2.19)

The terms quadratic in A(0)i can be thought of as a beta function contribution to the trace

Ward identity [12].

– 6 –
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3 A Lifshitz black brane solution

In this section we construct a Lifshitz black brane solution analytically, working pertur-

batively in ǫ around the AdS neutral black brane. Working up to second order in ǫ, the

resulting black brane solution has Lifshitz asymptotics with dynamical exponent z = 1+ǫ2.

The leading order metric in (d+ 1) dimensions can be expressed as

ds2 =
dy2

c0
− c0dt

2 + y2dx · dx, (3.1)

with y → ∞ at the boundary and y = yh at the horizon. The metric function c0 is given by

c0 = y2(1− ydh/y
d). (3.2)

If a source for the vector field ǫA(0)t is switched on, then at order ǫ the bulk solution is

given by the black hole metric together with a vector field At(y) satisfying

1

d− 1
∂2yAt + y−1∂yAt −

1

c0
At = 0, (3.3)

subject to the condition that At → 0 on the horizon y = yh and At → ǫA(0)ty as y → ∞.

The solution that satisfies these boundary conditions is

At = ǫA(0)ta(y); (3.4)

a(y) =
π

sin π
d

d− 1

d2
y

(

1− ydh
yd

)

2F1

(

1

d
,
d− 1

d
; 2; 1− ydh

yd

)

,

where the normalization has been fixed for future convenience. As y → ∞ this solution

behaves as

a(y) = y

[

1− d− 1

d

ydh
yd

log
y

yh
− ydh
yd

(

1 +
d− 1

d2
− (d− 1)

d2
k(d)

)

+ . . .

]

, (3.5)

where we have introduced

k(d) = 2γ + ψ

(

d+ 1

d

)

+ ψ

(

2d− 1

d

)

(3.6)

to shorten formulae; γ is the Euler-Mascheroni constant, and ψ denotes the digamma

function.

The coordinate y can be changed to a domain-wall type radial coordinate as

r =

∫

dy√
c0
. (3.7)

Near the boundary y = ∞ this can be integrated to give the following asymptotic expansion

r = log y − 1

2d

ydh
yd

+ . . . . (3.8)

– 7 –
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In the new coordinates the metric (3.1) is

ds2 = dr2 − e2r
(

1 +
1− d

d
ydhe

−dr + . . .

)

dt2 + e2r
(

1 +
1

d
ydhe

−dr + . . .

)

dx · dx. (3.9)

Thus at zeroth order in ǫ we recover the well-known result

〈Ttt〉[0] =
d− 1

16πGd+1
ydh, (3.10)

〈Tij〉[0] =
δij

16πGd+1
ydh. (3.11)

and the stress-energy tensor is manifestly traceless. Also in the new variable

a(r)=er
[

1− d−1

d
ydhre

−dr− d−1

d2

(

2d2+d−2

2(d− 1)
−k(d)−d log yh

)

ydhe
−dr

]

. (3.12)

The expansion (3.12) agrees with the earlier result from solving the field equations

asymptotically; a nontrivial check is provided by the ratio of a(d)i and A(0)i coefficients in

the asymptotic expansion. They are related to each other by (2.8). It is easy to see that

this relation is in agreement with (3.12). Moreover, we can extract the one-point functions
〈

J t
〉

using (2.14)

〈

J t
〉

= ydh
ǫA(0)t

16πGd+1

(

− 2d− 1

2
+
d− 1

d
k(d) + (d− 1) log yh

)

. (3.13)

Next let us consider the backreaction of the vector field onto the metric at order ǫ2. It

is convenient to parameterize the metric as follows

ds2 =
dy2

c(y)
− dt2c(y)b(y)2 + y2dx · dx, (3.14)

letting

c(y) = c0 + ǫ2A2
(0)t∆c(y); b(y) = 1 + ǫ2A2

(0)∆b(y). (3.15)

With this parametrization the Einstein equations give the change in the Ricci tensor as

ǫ−2A−2
(0)t∆Ryy =

d

c20
∆c(y) +

(2− d)

2(d− 1)

(∂ya(y))
2

c0
; (3.16)

ǫ−2A−2
(0)t∆Rtt = d(∆c(y)+2c0∆b(y))+

1

2
M2a(y)2+

(d−2)

2(d−1)
c0(∂ya(y))

2; (3.17)

ǫ−2A−2
(0)t∆Rij = δij

1

2(d− 1)
y2(∂ya(y))

2. (3.18)

The perturbation in the Ricci tensor computed from the metric gives

ǫ−2A−2
(0)t∆Ryy = −3

2
∂y ln(c0)∂y∆b(y)− ∂2y∆b(y) (3.19)

−
∂2y∆c(y)

2c0
− (d− 1)∂y∆c(y)

2yc0
+
d∆c(y)

c20
;

– 8 –
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ǫ−2A−2
(0)t∆Rtt = d(∆c(y) + 2c0∆b(y))+

d−1

2

c0
y
∂y∆c(y)+

1

2
c0∂

2
y∆c(y) (3.20)

+ yc0

(

(d+ 2)−
(

d− 4

2

)

ydh
yd

)

∂y∆b(y) + c20∂
2
y∆b(y);

ǫ−2A−2
(0)t∆Rij = δij

(

− y∂y∆c(y)−yc0∂y∆b(y)− (d−2)∆c(y)
)

. (3.21)

It is convenient to consider the following combination of equations:

c0∆Ryy +
1

c0
∆Rtt + gij∆Rij , (3.22)

which leads to a decoupled equation

∂y(y
d−2∆c) = −1

2

yd−1

c0

(

a2 +
c0(∂ya)

2

(d− 1)

)

. (3.23)

Using the differential equation satisfied by a(y) in the form

∂y(y
d−1∂ya) =

(d− 1)yd−1

c0
a (3.24)

the righthandside of the above equation can be simplified to give

∂y(y
d−2∆c) = − 1

2(d− 1)
∂y

(

a∂yay
d−1

)

. (3.25)

This equation can be integrated to

∆c(y) = − (d− 1)π2

4d5 sin2(πd )

c0
yd

2F1

(

1

d
,
d− 1

d
; 2; 1− ydh

yd

)

× (3.26)

×
[

2d(yd + (d− 1)ydh) 2F1

(

1

d
,
d− 1

d
; 2; 1− ydh

yd

)

+ (d− 1)ydh

(

1− ydh
yd

)

2F1

(

2d− 1

d
,
d+ 1

d
; 3; 1− ydh

yd

)]

+ chy
d−2
h

y2

yd
,

where ch is integration constant chosen such that ∆c(yh) = ch.

The asymptotic expansion for ∆c(y) is

∆c(y) = y2
[

1

2(1− d)
− (d− 2)

2d

ydh
yd

log

(

y

yh

)

(3.27)

+
ydh
yd

(

d− 2

2d2
k(d)− d3 − 2d2 − 2d+ 2

2d2(d− 1)
+
ch
y2h

)

. . .

]

.

Therefore,

c(y) = y2
(

1−
ǫ2A2

(0)t

2(d− 1)
−

(d− 2)ǫ2A2
(0)t

2d

ydh
yd

log

(

y

yh

)

− ydh
yd

(3.28)

+ ǫ2A2
(0)t

ydh
yd

(

d− 2

2d2
k(d)− d3 − 2d2 − 2d+ 2

2d2(d− 1)
+
ch
y2h

)

. . .

)

.
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In the backreacted geometry the domain-wall type radial coordinate differs from that in the

original asymptotically AdS black brane spacetime. The radial coordinate is now given by

r =

∫

dy
1

√

c0 + ǫ2A2
(0)t∆c

(3.29)

=

(

1 +
ǫ2A2

(0)t

4(d− 1)

)

log(y)− ǫ2A2
(0)t

d− 2

4d2
ydh
yd

log

(

y

yh

)

− 1

2d

ydh
yd

+
ǫ2A2

(0)t

4d3

(

(d− 2)k(d)− 2d3 + d2 − 10d+ 8

2(d− 1)
+ 2d2

ch
y2h

)

ydh
yd

+ . . . .

The integration constant is fixed by the requirement that there is no contribution to the

source at order ǫ2, i.e. g[2](0)xx = 0. Inverting this relation we get

y = er
[

1 +
1

2d
ydhe

−dr + . . .+ ǫ2A2
(0)t

(

− r

4(d− 1)
+

(3d− 4)

8d2
ydhre

−dr (3.30)

+

(

d2 + d− 4− (d− 2)k(d)

4d3
− ch

2dy2h
− d− 2

4d2
log yh

)

ydhe
−dr + . . .

)]

and hence

gxx=e
2r

[

1+
1

d
ydhe

−dr +. . .+ ǫ2A2
(0)t

(

− r

2(d−1)
+
(3d−2)(d−2)

4d2(d− 1)
ydhre

−dr (3.31)

+

(

d2 + d− 4− (d− 2)k(d)

2d3
− ch
dy2h

− d− 2

2d2
log yh

)

ydhe
−dr + . . .

)]

.

Now we can check that

h[2](0)xx =
1

2(d− 1)
A(0)tA(0)tg

tt
[0](0)g[0](0)xx, (3.32)

and

h[2](d)xx = ydh
(3d−2)(d−2)

4d2(d− 1)
A(0)tA(0)t, (3.33)

in agreement with (2.10) and (2.11) respectively.

Next, we solve for ∆b(y):

c0∂y∆b(y) = −∂y∆c(y)−
d− 2

y
∆c(y)− 1

2(d− 1)
y(∂ya(y))

2, (3.34)

or

∂y∆b(y) =
ya2(y)

2c20
. (3.35)

Integrating this equation close to the boundary we find

∆b(y) =

[

1

2
log y +

d− 1

d2
ydh
yd

log

(

y

yh

)

+ b̃+
d− 1

d3
(2− k(d))

ydh
yd

+ . . .

]

, (3.36)
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where b̃ is an integration constant. This gives the time component of the metric in domain-

wall coordinates

gtt = −c0 − ǫ2A2
(0)t(∆c+ 2c0∆b) (3.37)

= −e2r + d− 1

d
ydhe

(2−d)r + ǫ2A2
(0)te

2r

[(

− 1 +
1

2(d− 1)

)

r

+
(d− 2)(7d− 6)

4d2
ydhre

−dr +

(

− (d− 1)(d− 6)

2d2
log yh

− (d− 1)(d− 6)k(d)

2d3
+

(d− 1)(d− 4)(d+ 3)

2d3
− d− 1

d

ch
y2h

)

ydhe
−dr

]

+ . . . .

Again the source should not be modified and therefore b̃ = 1/(4(d− 1)). We see that

h[2](0)tt = (−1 +
1

2(d− 1)
)A(0)tA(0)t, (3.38)

h[2](d)tt = ydh
(d− 2)(7d− 6)

4d2
A(0)tA(0)t, (3.39)

both in agreement with (2.10) and (2.11) correspondingly.

Using (2.17) we compute

〈Ttt〉[2]=ydh
A(0)tA(0)t

16πGd+1

(

2d− 1

4
− d− 1

2

(

log yh+
k(d)

d
+
2ch
y2h

))

, (3.40)

〈Tij〉[2]=ydh
A(0)tA(0)t

16πGd+1

(

− 1

4(d− 1)
+

log yh
2

+
k(d)

2d
− ch
y2h

)

δij . (3.41)

It is straightforward to check that the Ward identities (2.19) are satisfied.

4 Thermodynamics

In this section we will discuss the thermodynamics of the black brane solution, working in

Euclidean signature for convenience. To define the mass we need to take into account the

fact that the stress-energy tensor is not conserved by itself, but satisfies a non-trivial Ward

identity (2.18). Consider the current

Qj = (〈Tij〉 − Ai 〈Jj〉)ξi, (4.1)

where ξi is such that ∇0ξ0 = z, ∇aξb = δab, ∇aξ0 = ∇0ξa = 0. Using the Ward identity

we get

∇jQj = −
〈

J j
〉

(ξi∇iAj +Ai∇jξ
i) + 〈Tij〉∇jξi (4.2)

= −z
〈

J t
〉

At + z
〈

T t
t

〉

+
〈

T i
i

〉

,

which is precisely the Ward trace identity. Therefore the current Qi is conserved and

following [70] we can define the conserved mass as

M =

∫

t=const

√
g(〈Ttt〉 − At 〈Jt〉). (4.3)
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Note that expressions for the one-point functions (2.14) and (2.17) remain the same upon

analytic continuation to Euclidean signature as explained in [71].

The horizon location at order ǫ2 is shifted to

y0 = yh

(

1− 1

dy2h
ǫ2A2

(0)tch

)

. (4.4)

The Hawking temperature obtained from the requirement of no conical singularity in Eu-

clidean signature is shifted to

T =
dyh
4π

(

1 + ǫ2A2
(0)t

[

(d− 3)

d

ch
y2h

+
1

d

∂y∆c(yh)

yh
+ bh

])

(4.5)

with bh = ∆b(y = yh) and the entropy defined as the area of the horizon becomes

S =
V yd−1

h

4Gd+1

(

1− ǫ2A2
(0)t

(d− 1)

d

ch
y2h

)

, (4.6)

with V being the regulated volume of the horizon. The constant ch is directly related to

the position of the horizon, which is the only independent parameter characterizing the

thermodynamic properties of the black brane. The derivative of ∆c at the horizon is

∂y∆c(yh) = −(d− 1)π2yh

2d2 sin2(πd )
+ (2− d)

ch
yh
. (4.7)

We compute bh using equation (3.35) in integrated form

∆b(y)
∣

∣

∣

y0

yh
=

∫ y0

yh

ya2(y)

2c20
dy, (4.8)

where y0 is a near-boundary cut-off. Using the expansion (3.36) we find

bh =
1

4(d− 1)
+ lim

y→∞

(

1

2
log y −

∫ y

yh

y′a2(y′)

2c20(y
′)
dy′

)

(4.9)

=
1

4(d− 1)
+

1

2
log yh + lim

y→∞

∫ y

yh

(

1

2y′
− y′a2(y′)

2c20(y
′)

)

dy′.

The limit on the right hand side of the last line is finite and independent of yh. We evaluate

it numerically and get in d = 2

bh =
1

2
log yh + 0.42370309 . . . ∼ π2

16
− log 2 +

1

2
+

1

2
log yh (4.10)

and in d = 3

bh =
1

2
log yh + 0.22974839 . . . . ∼ −1

2
log 3 +

4π2

81
+

7

24
+

1

2
log yh. (4.11)

More generally, the first law of thermodynamics allow us to fix that for any d

bh =
(d− 1)π2

2d3 sin2(π/d)
+
k(d)

2d
+

log yh
2

− 2d2 − 3d+ 2

4d(d− 1)
, (4.12)

which agrees with the above expressions in d = 2 and d = 3.
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Up to order ǫ2 we get the following results for the thermodynamic quantities:

M =
(d−1)V yd0
16πGd+1

[

1 + ǫ2A2
(0)t

(

− 2d− 1

4(d− 1)
+
k(d)

2d
+

1

2
log y0

)]

, (4.13)

S =
V yd−1

0

4Gd+1
, (4.14)

T =
dy0
4π

[

1 + ǫ2A2
(0)t

(

bh −
(d− 1)π2

2d3 sin2(π/d)

)]

. (4.15)

As a non-trivial check one can verify that the relation

M =
d− 1

d+ z − 1
TS (4.16)

is satisfied. Such a relation must hold in any Lifshitz invariant theory on general grounds:

in equlibrium we have Tµν = diag(e,−p, . . . ,−p), where p is pressure and e = dM
dV is energy

density. The fundamental thermodynamic relation implies that

e+ p = Ts, (4.17)

where s = dS
dV is the entropy density. Invariance under Lifshitz scaling yields

ze = (d− 1)p. (4.18)

These together imply (4.16).

Let us make another important observation. Recall that this black brane is asymp-

totically Lifshitz with z = 1 + ǫ2A2
(0)t/2. From (4.15) we can read off the scaling relation

between temperature and entropy (recall that y0 is the independent parameter) [48–50]

T ∼ S
z

d−1 . (4.19)

This relation together with (4.13) implies the first law of thermodynamics

dM = TdS. (4.20)

4.1 On-shell action

In this section we evaluate the Euclidean on-shell action. (Note that under the Wick

rotation t → −iτ all the terms in the action change their sign. ) The on-shell action for

the Lifshitz black brane can be expressed as a sum of terms:

Son-shell = Sbulk + SGH + Sct. (4.21)

We begin by computing Sbulk:

Sbulk = − 1

16πGd+1

∫

ddx

∫ yc

y0

dy
√
G

(

− 2d− 1

2(d− 1)
FµνF

µν

)

(4.22)

where yc is a radial cutoff and y0 is the position of the horizon. Noting that
√
G = yd−1b(y)

we compute

Sbulk=− 1

16πGd+1

∫

ddx

∫ yc

y0

dyyd−1

(

−2d+ ǫ2A2
(0)t

(

(∂ya)
2

(d− 1)
−2d∆b(y)

))

(4.23)
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= − 1

16πGd+1

∫

ddx

[

− 2yd(1 + ǫ2A2
(0)t∆b(y))

∣

∣

∣

∣

yc

y0

+ ǫ2A2
(0)t

yd−1a∂ya

d− 1

∣

∣

∣

∣

yc

y0

+ ǫ2A2
(0)ty

d
0

(

1

2(d− 1)
+ log yc

)

− 2ǫ2A2
(0)ty

d
0bh

]

.

Here we have integrated by parts, used the field equation (3.35) for ∆b(y) along with the

defining equation (3.3) for a(y).

Now we move on to evaluate the Gibbons-Hawking term and the counterterms. Work-

ing in the y coordinate, the induced metric at the regulated surface satisfies

√
γ =

(

ydc −
ydh
2

)(

1 + ǫ2A2
(0)t∆b(yc) +

1 + (yh/yc)
d

2y2c
ǫ2A2

(0)t∆c(yc)

)

. (4.24)

The Gibbons-Hawking term can be combined with the leading order counterterm to give

K−(d−1) = 1+ǫ2A2
(0)t

(

tr(h[2](0))

2
− y−d

c

2
tr(h[2](d)−dg[2](d)−g[0](d)h[2](0))

)

. (4.25)

Thus we obtain

− 1

8πGd+1

∫

d2x
√
γ(K − d+ 1) (4.26)

= − 1

8πGd+1

∫

ddxydc

[

1− yd0
2ydc

+ ǫ2A2
(0)t

(

∆b(yc) +
d− 3

4(d− 1)

− d−1

2d

(

y0
yc

)d

log yc+

(

y0
yc

)d(5d−6

4d

(

k(d)

d
+ log y0

)

− 7d3−4d2−16d+12

8d2(d− 1)

))]

.

Now we compute the on-shell action term by term by plugging in asymptotic expansions

for a, ∆c and ∆b:

Sbulk = − 1

8πGd+1

∫

ddx

[

− ydc + yd0 − ǫ2A2
(0)ty

d
c

(

∆b(yc) +
1

2(1− d)
(4.27)

+
1−d
d

(

y0
yc

)d

log yc+(d−2)

(

y0
yc

)d(k(d)

2d2
− (2d2 + d− 2)

4d2(d− 1)
+

log y0
2d

))]

. (4.28)

The remaining contributing counterterm is

− 1

32πGd+1

∫

ddx
√
γAiA

i=
1

32πGd+1

∫

ddxǫ2A2
(0)t

[

ydc−
2(d−1)

d
yd0 log yc (4.29)

− 2yd0

(

3d2 + 4d− 4

4d2
− d− 1

d

(

k(d)

d
+ log y0

))]

.

Putting all these terms together gives the free energy

Son-shell = βF = −β V yd0
16πGd+1

[

1 + ǫ2A2
(0)t

(

k(d)

2d
+

log y0
2

− 1

4(d− 1)

)]

, (4.30)

where β = 1/T . It is a simple check that F =M − TS.
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5 Relation to top down solutions

In [50, 59, 72] Lifshitz solutions of Romans gauged supergravity theories were constructed

and then uplifted to ten dimensional supergravities.1 General dynamical exponents with

z ≥ 1 were obtained. Here we will consider the limit of these solutions as z → 1 and

interpret them from the perspective of the dual conformal field theory of the AdS z = 1

solution. Recently uplifts of the six-dimensional Romans theory to type IIB were found [73]

and thus these solutions may also be viewed as solutions of type IIB.

Here we will discuss mostly the Lifshitz solutions in four bulk dimensions (henceforth

denoted Li4) which are obtained as solutions of the Romans gauged supergravity in six

dimensions since the four-dimensional case is phenomenologically more interesting and

moreover corresponding finite temperature solutions were constructed in [50]. An analogous

discussion holds for the Lifshitz solutions in three bulk dimensions found in [59] and we

will summarise the properties of these solutions at the end of this section.

We begin by reviewing the equations of motion for the six-dimensional Romans the-

ory [74]. The bosonic field content of 6D Romans’ supergravity consists of the metric, gAB,

a dilaton, φ, an anti-symmetric two-form field, BAB, and a set of gauge vectors, (A
(i)
A ,AA)

for the gauge group SU(2)×U(1). The bosonic part of the action for this theory is

S =

∫

d6x
√−g6

[

1

4
R6−

1

2
(∂φ)2 − e−

√
2φ

4

(

H2 + F (i)2
)

−e
2
√
2φ

12
G2 (5.1)

−1

8
εABCDEF BAB

(

FCDFEF +mBCDFEF +
m2

3
BCDBEF + F

(i)
CDF

(i)
EF

)

+
1

8

(

g2e
√
2φ + 4gme−

√
2φ −m2e−3

√
2φ
)

]

,

where g is the gauge coupling, m is the mass of the two-form field BAB, FAB is a U(1)

gauge field strength, F
(i)
AB is a nonabelian SU(2) gauge field strength, GABC is the field

strength of the two-form and HAB = FAB+mBAB. Spacetime indices A,B, . . . run from 0

to 5, and ε is the Levi-Civita tensor density. Varying the action gives the Einstein equation

RAB = 2∂Aφ∂Bφ− 1

2
gABV (φ)+e2

√
2φ

(

G CD
A GBCD − 1

6
gABG

2

)

+ e−
√
2φ

(

2H C
A HBC + 2F iC

A F i
BC − 1

4
gAB

(

H2 + (F i)2
)

)

,

(5.2)

and the following matter equations of motion

�φ = −1

2

∂V

∂φ
+
1

3

√

1

2
e2

√
2φG2 − 1

2

√

1

2
e−

√
2φ

(

H2 + (F (i))2
)

(5.3)

∇B

(

e−
√
2φHBA

)

=
1

6
ǫABCDEFHBCGDEF

1Note however that the uplifts from six dimensions to massive IIA given in [59] have typos in the Bianchi

identities.
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∇B

(

e−
√
2φF (i)BA

)

=
1

6
ǫABCDEFF

(i)
BCGDEF

∇C

(

e2
√
2φGCAB

)

=me−
√
2φHAB+

1

4
ǫABCDEF

(

HCDHEF+F
(i)
CDF

(i)
EF

)

,

where we have defined the scalar potential function as

V (φ) =
1

4

(

g2e
√
2φ + 4mge−

√
2φ −m2e−3

√
2φ
)

. (5.4)

The equations of motion admit a solution which is Li4 ×H2, with H2 a hyperboloid

ds2 = L2

(

−y2zdt2 + y2dx · dx+
dy2

y2

)

+ a2ds2(H2), (5.5)

where L is the curvature radius of Li4 and a is the curvature radius of the hyperboloid, with

ds2(H2) denoting the unit radius metric. Relative to [50] the signature has been changed

to mostly plus, to fit the conventions of this paper, and the radial coordinate is denoted y

in accordance with the earlier sections. In the Lifshitz solutions, the scalar field is constant,

φ = φ0, and the field configurations are

F
(3)
ty = qBL3e

√
2φ0yz−1; F

(3)
H2

= qηH2
, (5.6)

Bx1x2
=
B

2
L3y2.

Here ηH2
is the volume form of the hyperboloid. The Lifshitz solutions exist only if the

parameters are related by algebraic equations which are expressed in terms of the following

quantities

B̂ = LBe
√
2φ0 Q = Le−φ0/

√
2q/a2

ĝ = Lgeφ0/
√
2 â = a/L m̂ = Lme−3φ0/

√
2 .

(5.7)

and hence one gets

B̂2 = z − 1 ĝ2 = 2z(4 + z)
m̂2

2
=

6 + z ∓ 2
√

2(z + 4)

z

Q2 =
(2 + z)(z − 3)± 2

√

2(z + 4)

2z

1

â2
= 6 + 3z ∓ 2

√

2(z + 4) .

(5.8)

From here onwards we will set the curvature radius L to be one and the integration constant

φ0 to be zero, in which case the hatted quantities are the same as those without hats. Note

however that Q = q/a2. Flux quantization may impose restrictions on the allowed values of

z, forcing z to take discrete values but in what follows we will not discuss these restrictions.

5.1 Lifshitz with z ∼ 1

There are two branches of Lifshitz solutions, but only the upper sign solutions are connected

to the AdS solution with z = 1 and it is this branch that we will focus on here. When

z = 1, B = 0 and

m =
√
10− 2; Q2 =

√
10− 3; (5.9)

g2 = 10;
1

a2
= 9− 2

√
10.
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At this critical point

V (0) = 9−
√
10. (5.10)

Now letting

B2 ≡ ǫ2 = z − 1, (5.11)

with ǫ small, we note that at order ǫ the solution is the leading order AdS4 ×H2 together

with an F
(3)
ty flux of order ǫ and a Bx1x2

flux also of order ǫ. At order ǫ2 both parts of the

six dimensional metric are changed (note that the radius of the hyperboloid is corrected)

and the flux along the hyperboloid is also corrected at this order.

To interpret this limit, it is useful to look at the spectrum around the AdS4 × H2

background. We will not need the complete spectrum in what follows; it suffices to look at

the following decoupled modes. Switch on perturbations around the background

A(3)
µ = aµ(x

ρ); Bµν = bµν(x
ρ), (5.12)

where xµ denote the AdS4 coordinates. Such perturbations do not depend on the H2

coordinates and are therefore singlet modes from the perspective of the Kaluza-Klein

reduction over this (compact) space. Linearising the equations of motion around the

background these modes decouple from all other linear perturbations but are coupled to

each other via the equations

∇̄µf
µν =

1

3
Qǫνρστgρστ ; (5.13)

∇̄ρg
ρµν = m2bµν +Qǫµνστfστ .

Here ∇̄ denotes the AdS4 covariant derivative, ǫµνρσ is the covariant epsilon on AdS4 and

(fµν , gµνρ) are the curvatures of the vector and tensor field perturbations, respectively.

These equations should be supplemented by the divergence constraint on the tensor field,

∇̄µb
µν = 0. This system of equations has the degrees of freedom of a massive vector field:

define

cµ =
1

3!
ǫµνρσg

νρσ. (5.14)

Closure of the three form g implies that cµ is divergenceless. Denoting the curvature of c

as fµνc the coupled equations of motion reduce to

∇̄µf
µν
c = 2cν ; (5.15)

with this massive vector field strength being related to the gauge field strength and the

tensor field as

fµνc = 2Qfµν − 1

2
m2ǫµνρσbρσ. (5.16)

Comparing with (2.2), we note that such an equation describes a massive vector field with

M2 = 2 = d − 1 and thus this mode is precisely the vector mode considered in earlier

sections. Working to order ǫ, the Lifshitz solution is therefore indeed a deformation of

the dual conformal field by the time component of a massive vector operator of dimension

three: expanding (5.6) to first order in ǫ one can extract

ct = −ǫy. (5.17)

(Note that with our conventions ǫty12 = −y2.)
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5.2 Backreaction of massive vector field

Working perturbatively around z = 1, the backreaction of the massive vector preserves

Lifshitz invariance with z = 1 + ǫ2 when evaluated on the AdS background. If one adds a

massive vector perturbation to an asymptotically AdS background, such as a black brane,

the resulting solution will only be asymptotically Lifshitz. Moreover, the backreaction of

the massive vector will be non-trivial not just on the four-dimensional metric, but also on

the two scalar fields, which will now run.

To analyse the backreaction of the massive vector field at order ǫ2 it is useful to first

reduce the six-dimensional equations to a set of four-dimensional equations using the fol-

lowing ansatz for the fields [72]. The six-dimensional Einstein frame metric is expressed as

ds2 = e
1

2
χgµνdx

µdxν + e−
1

2
χa2ds2(H2), (5.18)

where the factors are chosen such that gµν is an Einstein frame metric in four dimensions.

For the other six-dimensional fields,

φ = φ(x); BAB = bµν(x) + b(x)η(H2)ab; (5.19)

F
(3)
AB = fµν(x) + γη(H2)ab.

Here b(x) is a scalar field but γ is a constant and F = 0. The reduced action is then [72]:

S = a2
∫

d4x
√−g

[

1

4
R− e−

√
2φ−χ/2

4
(fµνf

µν +m2bµνb
µν) (5.20)

− e2
√
2φ−χ

12
gµνρg

µνρ− 1

16
(∇χ)2− 1

2
(∇φ)2− e2

√
2φ+χ

2a4
(∇b)2− eχ

2a2
+
eχ/2

2
V (φ)

− 1

2a4
e−

√
2φ+3χ/2(m2b2 + γ2)− ǫµνρσ

8a2
(2m2bbµνbρσ+2bfµνfρσ + 4γbµνfρσ)

]

.

The interactions in the action above imply that the backreaction of the massive vector will

be non-trivial not just on the four-dimensional metric, but also on the two scalar fields,

which will run. At order ǫ2 Lifshitz invariance is preserved but at this order other opera-

tors, as well as the stress energy tensor, are affected. As discussed in [12], the extra fields in

the consistent truncation, beyond the metric and massive vector, relate to additional terms

occurring in the OPE between the vector operator and the stress energy tensor. One could

analyse a more general system of this type using the techniques of [12] and this paper.

However, for the specific system under consideration, analysing the expansion in ǫ in

detail is less interesting for the following reason. Linearizing the equations of motion for

the scalars φ and χ around the AdS solution one obtains

�φ = −1

4
(g2 + 4mg − 9m2)φ+Q2φ− 3Q2

2
√
2
χ (5.21)

= (16− 6
√
10)φ− 3(

√
10− 3)

2
√
2

χ;

�χ =

(

4

a2
− V (0) + 9Q2

)

χ− (2V ′(0) + 6
√
2Q2)φ (5.22)

= 2
√
10χ− 4

√
2(
√
10− 3)φ.
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Diagonalizing this system we find that the masses of the two independent scalar modes are

m2
1 = −2.99 . . . ; m2

2 = 6.34 . . . (5.23)

and thus the eigenmodes do not satisfy the Breitenlohner-Freedman bound m2 ≥ −9/4;

this was also observed in [50, 72]. Therefore these scalars correspond to instabilities of the

system: the original AdS critical point is not supersymmetric and it is not stable.

Turning now to the Lifshitz solution, we note that these unstable scalars run in the

finite temperature solution. Although these unstable modes prevent us from giving clear

dual interpretation of this particular system, we have shown that it belongs to the same

universality class of models discussed in [12]. It would be interesting to find z ∼ 1 Lifshitz

solutions in string theory which are obtained from deformations of supersymmetric CFTs

and which do not suffer from such instabilities. Note that the second branch of Lifshitz

solutions found in [59] have dynamical exponents z > 1 and are not connected to the

unstable z = 1 critical point; these have been argued to be the stable branch [50, 72].

5.3 Three-dimensional Lifshitz geometries

In this section we briefly summarize the interpretation of the Li3×H2 solutions of Romans

N = 4 gauged supergravity in five dimensions found in [59].

The bosonic field content of the Romans theory [75] consists of the metric, gAB, a

dilaton, φ, two antisymmetric tensors Bα
AB, and a set of gauge vectors, (A

(i)
A ,AA) for the

gauge group SU(2)×U(1). The bosonic part of the action for this theory is

S =

∫

d5x
√−g5

[

1

4
R5−

1

2
(∂φ)2 − ξ2

4

(

Bα2 + F (i)2
)

−ξ
−4

4
F2 (5.24)

−1

4
εABCDE

(

1

g1
ǫαβB

α
AB∇CB

β
DE − F

(i)
ABF

(i)
CDAE

)

+
1

8
g2

(

g2ξ
−2 + 2

√
2g1ξ

)

]

,

where we have defined ξ = e
√
2φ/

√
3. Here g1 and g2 are the gauge couplings for U(1) and

SU(2) respectively. FAB is a U(1) gauge field strength and F
(i)
AB is a nonabelian SU(2)

gauge field strength. Spacetime indices A,B, . . . run from 0 to 4, and ε is the Levi-Civita

tensor density. Just as in the six-dimensional case there exist Lifshitz solutions

ds2 = L2

(

− y2zdt2 + y2dx2 +
dy2

y2

)

+ a2ds2(H2), (5.25)

where L is the curvature radius of Li3 and a is the curvature radius of the hyperboloid,

with ds2(H2) denoting the unit radius metric. In the Lifshitz solutions, the scalar field is

constant and can be set to zero; for notational simplicity we will also set the curvature

radius L to one in the metric above. There are two distinct classes of Lifshitz solutions.

The first has the following fluxes

Fty = −α1y
z−1; F

(3)
H2

= a2γηH2
, F (3)

yx = β2. (5.26)
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Here ηH2
is the volume form of the hyperboloid. This Lifshitz solution requires2

α2
1 =

1

2
z(z − 1); β22 =

1

2
(z − 1); γ2 =

z

4
; (5.27)

g22 = −2z2 + 3z + 2; g1g2 =
1√
2
(2z2 + z + 1); a2 =

2

3z
.

In the second class of Lifshitz solutions the fluxes are

F
(3)
ty = −α2y

z−1; F
(3)
H2

= a2γηH2
, Fyx = β1. (5.28)

Here ηH2
is the volume form of the hyperboloid. This Lifshitz solution requires

α2
2 =

1

2
z(z − 1); β21 =

1

2
(z − 1); γ2 =

z

4
; (5.29)

g22 = 2z2 + 3z − 2; g1g2 =
√
2(1 + z); a2 =

2

3z
.

Both solutions reduce in the z = 1 limit to the same AdS critical point. Reality of the

gauge couplings requires that 1 ≤ z ≤ 2.

Linearizing around the AdS solution the following fluctuations form a decoupled

system:

δFµν = fµν(x
ρ); δF (3)

µν = f (3)µν (x
ρ), (5.30)

where xµ denote AdS coordinates, with the linearised equations of motion being

∇̄νf
νµ = −ǫµρσf (3)ρσ ; ∇̄νf

(3)νµ = −ǫµρσfρσ, (5.31)

with ∇̄µ the AdS3 covariant derivative and ǫµνρ the three-dimensional covariant

Levi-Civita. As previously, we can define

cµ =
1

2
ǫµνρf

νρ (5.32)

such that cµ is divergenceless and is a massive vector

∇̄µf
µν
(c) = cν , (5.33)

where f(c)µν ≡ −2f
(3)
µν is the curvature of cµ. This is precisely the mass given above (2.2).

Looking now at the Lifshitz solutions, we see that when z = 1 + ǫ2 the two classes of

solutions reduce to the following perturbations about the AdS3 background, respectively:

ct =
1√
2
ǫy; cx =

1√
2
ǫy. (5.34)

Therefore, the first class corresponds to a deformation by the time component of the

massive vector while the second class corresponds to a deformation by the spatial

component of the massive vector. Note that only in three dimensions a deformation by

the special component of the massive vector is consistent with Lifshitz symmetry — in

higher dimensions such deformation breaks the rotational symmetry.

2Note that there are typos in equations (3.32) and (3.39) of [59]: ĝ21 should read ĝ1ĝ2.
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As in the six-dimensional models, the backreaction at order ǫ2 generically induces

other fields in addition the metric and massive vector system, since the consistent

truncation to three dimensions involves additional scalar fields. However, working out this

backreaction in detail is not necessary because one can already show that the system has

BF instabilities. Perturbing around AdS, the dilaton together with the following breathing

mode of the metric

ds2 = e2χ(x
µ)

(

−y2dt2 + y2dx2 +
dy2

y2

)

+ e−χ(xµ)ds2(H2) (5.35)

form a decoupled system. The diagonalized masses of these scalar modes are

m2
± =

3

2
±

√
33

2
, (5.36)

with the mode such that m2
− < −1 violating the BF bound. Therefore just as in the

six-dimensional models the AdS critical point is unstable.

6 Conclusions

In this paper we have constructed analytically asymptotically Lifshitz black branes with

dynamical exponent z = 1 + ǫ2. Using the holographic dictionary developed in [12] and

extended here to arbitrary dimension we obtained the thermodynamic properties of these

neutral black branes analytically. In particular, we argued for and verified the scaling

relation between temperature and entropy: T ∼ S
z

d−1 . In the non-relativistic theory care

must be taken to identify the correct conserved quantity needed to define the mass M .

We showed that the z ∼ 1 solutions in the top-down models of [50, 59] belong to the

same universality class as those analysed in [12] and in the present paper, i.e. they can

be viewed as deformations of relativistic fixed points by a dimension d vector operator Jt.

Unfortunately, these models suffer from Breitenlohner-Freedman type instabilities, which

makes the study of these systems challenging. It would be interesting to look for other

string theory embeddings of z ∼ 1 Lifshitz geometries which do not have such instabilities.
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