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Abstract

We consider holography for Lifshitz spacetimes with dynamical

exponent z = 1+ǫ2, where ǫ is small. We show that the holographically

dual field theory is a specific deformation of the relativistic CFT,

corresponding to the z = 1 theory. Treating ǫ as a small expansion

parameter we set up the holographic dictionary for Einstein-Proca

models up to order ǫ2 in three and four bulk dimensions. We explain

how renormalization turns the relativistic conformal invariance into

non-relativistic Lifshitz invariance with dynamical exponent z = 1+ǫ2.

We compute the two-point function of the conserved spin two current

for the dual two-dimensional field theory and verify that it is Lifshitz

invariant. Using only QFT arguments, we show that a particular class

of deformations of CFTs generically leads to Lifshitz scaling invariance

and we construct examples of such deformations.
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1 Introduction and summary of results

There has been considerable interest in recent years in using gauge/gravity
duality as a tool for modelling strongly coupled physics, in particular with a
view to possible applications to condensed matter physics (see [1, 2, 3, 4, 5]
for reviews). Several interesting condensed matter systems exhibit strongly
interacting non-relativistic scale invariant fixed points and one may hope to
use gauge/gravity duality to study them. With such applications in mind,
gravity solutions with Schrödinger [6, 7] and Lifshitz [8, 9] isometries were
constructed and studied.

A key idea in holographic approaches is that the gravity models may
allow us to uncover new universality classes, not easily accessible with per-
turbation theory, which may be of relevance to condensed matter physics.
One should note however that there is very little a priori evidence that the
holographic models actually describe physics appropriate for the condensed
matter systems under question. The predominant approach has been to pro-
ceed phenomenologically and probe the relevance of these models by com-
puting observables holographically and comparing to experimental results.
The goal in this paper is rather to understand better the dual theory from
first principles.

When the gravity solution contains a parameter which can be adjusted
such that the solution becomes a deformation of AdS one may use the stan-
dard AdS/CFT correspondence in order to understand the nature of the dual
field theory. This approach was exploited in [10] (see also [7, 11, 12, 13, 14])
where it was shown that the theory dual to Schrödinger geometries is a
deformation of a relativistic CFT by specific operators which, although ir-
relevant from the perspective of the original relativistic CFT, are exactly
marginal from the perspective of the non-relativistic Schrödinger symmetry.
Apart from elucidating the holographic duality for the Schrödinger geome-
tries, the analysis in [10] also indicated that a new general class of theories
with Schrödinger symmetry can be obtained from deformations of relativis-
tic conformal theories, see [15] for a recent application of these ideas. These
deformations do not have to be realized holographically and indeed these
results are interesting for field theory in its own right. In this paper we will
present an analogous set of results for Lifshitz geometries.

There are three different ways to adjust the dynamical exponent such
that the theory becomes a deformation of AdS. Firstly, one can consider the
case in which z approaches infinity, when the geometry about which one is
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deforming becomes AdS2 × Rd−1. This limit is however not very useful for
our purposes because the holographic dictionary for the limiting spacetime
is not fully understood (due to the non-compact Rd−1 directions and the
well-known subtleties associated with AdS2 holography). The second case
is that of z = 2 Lifshitz which can be obtained by a reduction from z = 0
Schrödinger in one dimension higher [16, 11, 17]. These higher dimensional
solutions are asymptotically AdS and therefore holography for z = 2 Lifshitz
can be derived by dimensional reduction, following [18, 19]. This procedure
for obtaining the holographic dictionary was followed in [20, 21], reducing
the results obtained in [22]. This system has the additional advantage that
it can be embedded in supergravity [23, 24, 25, 26]. However, the reduction
circle becomes null at infinity which implies the dual theory should be related
to the Discretized Light Cone Quantization (DLCQ) of the deformed CFT
corresponding to the z = 0 Schrödinger solution, and thus this approach
suffers from the well-known subtleties associated with DLCQ.

The third way to view Lifshitz geometries as being close to AdS is when
the dynamical exponent z is near to one. This case is free of any subtleties
and will be the topic of this paper. When the dynamical exponent takes such
a value, one can extend the standard AdS/CFT correspondence in order to
understand the dual theory. Focusing on the pure Lifshitz solution1 of the
system of a massive vector coupled to gravity [9], we find that we can achieve
z ∼ 1+ǫ2, with ǫ small, by tuning the mass of the vector field. Expanding in ǫ
first, the solution indeed becomes asymptotically AdS and its interpretation
can then be extracted from its asymptotics. We find that the solution is
dual to a QFT which is a deformation of a CFT by the time component of
a vector primary operator J i of dimension d (recall that conserved vectors
have dimension ∆ = (d− 1)),

SLif = SCFT + ǫ
∫

ddxJ t. (1)

This is our first key observation. In the deformed theory the vector operator
acquires an anomalous dimension at order ǫ2 when d > 2 and at order ǫ4

when d = 2.
Note that the most commonly quoted examples of Lifshitz invariant the-

1In this paper we will focus on exactly Lifshitz solutions but one could also explore
Lifshitz solutions with running scalar couplings (hyperscaling violation), which can for
example be realized using Einstein-Maxwell dilaton models.
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ories are not of this form. For example, the scalar theory with action

S =
∫

dtd3x(φ̇2 + φ(−∂2)zφ) (2)

which is often used in the literature as an illustrative example (especially
when z = 2) does not become of the form (1) when z ∼ 1 + ǫ2. This suggests
that this field theory model is unlikely to share key features of the holographic
model.

A number of theoretical models with dynamical exponents close to one
have appeared in the condensed matter literature. A sample of such mod-
els include quantum spin systems with quenched disorder [27], models for
quantum Hall systems [28, 29], graphene [30, 31], spin liquids in the pres-
ence of non-magnetic disorder [32] and quantum transitions to and from the
superconducting state in high Tc superconductors [33, 34, 35].

It turns out that none of these models are governed by an action of the
form (1) (although some can be viewed as a deformation of a (free) CFT,
albeit a different type of deformation). One may then wonder whether the
Lifshitz invariant theories of the form (1) arise only in holographic theories
at strong coupling or not. In fact we show that the opposite is true: any de-
formation of the type (20) leads to a Lifshitz invariant theory with dynamical
exponent z ∼ 1 + ǫ2, to leading order in ǫ. This is our second main result.

Let us briefly explain this result: at the classical level the deformation
in (1) breaks Lorentz invariance but the theory is still invariant under rela-
tivistic scale transformations. Since ǫ is small one may study the theory via
conformal perturbation theory. The leading order correction arises at order
ǫ2 and can be computed using the OPE of the vector primary operator. This
OPE contains the following universal terms

Ji(x)Jj(0) ∼ Iij
x2d

+ · · · + Aij
klTkl
xd

+ · · · , (3)

where Iij = δij − 2xixj/x2, Aij
kl is some universal tensorial structure and

Tij is the CFT stress energy tensor. This follows from the fact that Ji is a
primary operator of dimension d (see section 5 for the detailed argument).
The leading order term gives rise to power law divergences while the term
with Tij leads to a logarithmic divergence. These divergences are exactly the
same as the ones we find in holographically renormalizing the gravitational
theory. Removing the divergences requires in particular renormalization of
the source of Tij , i.e. the boundary metric. It turns out that the renormalized
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metric to this order is actually equal to the bulk metric at order ǫ2 with the
cut-off replaced by the radial coordinate! The renormalization leads to a beta
function for the boundary metric and this modifies the trace Ward identity
which now becomes,

z〈T t
t 〉ǫ2 + 〈T a

a 〉ǫ2 = 0 (4)

where i = {t, a}, a = 1, . . . , d and 〈 〉ǫ2 denote the computation up to order
ǫ2. This is precisely the condition required for Lifshitz invariance!

This construction provides a new, general class of Lifshitz invariant mod-
els. The emergence of Lifshitz invariance is derived using conformal pertur-
bation theory and relies on a universal part of the OPE of a primary operator
of dimension d. The argument is thus valid for any CFT, weakly or strongly
coupled. The dimension of Ji in the deformed theory however in general
depends on the specific details of the CFT. In the holographic models the di-
mension of Ji is not corrected at leading order, which implies that the 3-point
function of Ji should be zero. Moreover, if the OPE contains other singular
terms beyond the ones exhibited in (3), these induce relevant deformations
of the critical point and the r.h.s. of (4) contains corresponding terms.

The holographic model is based on a strongly coupled CFT, but weakly
coupled models may also have interesting applications. It would be interest-
ing to investigate whether such models could be of relevance for modelling
real world systems (irrespectively of their holographic realization). As noted
above systems with z close to one have already been studied with a view to
applications that range from quantum Hall system to graphene to high Tc
superconductivity, etc. We also note that at long distances Horǎva-Lifshitz
gravity [36] has a dynamical exponent that approaches z = 1. We further
add that experimental evidence for critical behavior with dynamical expo-
nent close to one has been reported in [37, 38, 39] for the transition from
the insulator to superconductor in the underdoped region of certain high Tc
superconductors and in [40] for the superconductor to metal transition in the
overdoped region.

From the bulk side, top down embeddings of Lifshitz solutions with z ≥ 1
were found in [41] and were further explored in [42] and [43]. We will discuss
in the conclusions the implications of our results for such top down solutions
with z close to one.

This paper is organized as follows. In the next section we present the
gravitational solution with Lifshitz scaling and show that when z ∼ 1+ǫ2 this
model is dual to a deformation of a CFT by a vector operator of dimension
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d. In section 3 we develop the holographic dictionary for our theory. In
section 4 the 2-point function of stress-energy tensor in 2d Lifshitz invariant
theory is computed and in section 5 we present the QFT analysis for general
dimension. We conclude in section 6.

2 Lifshitz solutions

Solutions with Lifshitz isometries were first presented in [8]. Here we will use
the formulation in [9] in terms of gravity coupled to a massive vector. The
action is given by2

S =
1

16πGd+1

∫

dd+1x
√

−G
[

R + d(d− 1) − 1

4
F 2 − 1

2
M2A2

]

, (5)

where relative to [9] we have rescaled the fields and the coordinates as,

Ghere
µν = l2Gthere

µν , Ahere
µ = lAthere

µ , xµhere = lxµthere (6)

where

l2 =
z2 + z(d − 2) + (d− 1)2

d(d− 1)
. (7)

(We have also absorbed an overall factor of l2d in Newton’s constant.)
The action (5) admits an AdS solution with unit AdS radius. When the

mass is equal to

M2 =
zd(d− 1)2

z2 + z(d − 2) + (d− 1)2
(8)

the field equations also admit a solution with Lifshitz scaling symmetry given
by

ds2 = dr2 − e2zr/ldt2 + e2r/ldxadxa; (9)

A = Aezr/ldt, A2 =
2(z − 1)

z
,

where a = 1, · · · , (d− 1). The Lifshitz symmetry is realized by the following
transformation,

t → ezλt, xa → eλxa, r → r − λl. (10)

2Curvature conventions: Rµνρ
σ = ∂νΓσ

µρ + Γλ
µρΓσ

νλ − (µ ↔ ν), Rµν = Rµσν
σ.
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By the standard AdS/CFT dictionary the massive vector (at the AdS
critical point) is dual to a vector primary operator Ji of dimension

∆ =
1

2
(d+

√

(d− 2)2 + 4M2) (11)

=
d

2
+

√

√

√

√(
d

2
− 1)2 +

zd(d− 1)2

z2 + z(d − 2) + (d− 1)2

In other words, the action (5) governs the dynamics of a CFT whose spectrum
contains a vector primary of dimension ∆. The same theory contains a
Lifshitz critical point if (8), viewed as an equation for z, has real solutions
with z > 1. In order (8) to have real solutions the mass has to satisfy,

0 ≤ M2 ≤ d(d− 1)2

3d− 4
, (d ≥ 2). (12)

The lower bound comes from unitarity: M2 ≥ 0 is equivalent to the unitarity
bound for vector operators, ∆ ≥ (d− 1) (the massless case corresponds to a
conserved current with ∆ = d − 1). When the bound holds, there are two
possible solutions,

z± = 1 − d

2
+
d(d− 1)2

2M2
± 1

2M2

√

d(M2 + (d− 1)2)(d(d− 1)2 − (3d− 4)M2)

(13)
When M2 ∼ 0, z either goes to infinity or to zero, while when M2 ∼ d(d −
1)2/(3d− 4), it approaches (d− 1).

It remains to impose the condition z > 1. One can easily show that
the z+ ≥ 1, while z− starts from 0 at M2 = 0 and monotonically grows to
z− = (d − 1) as M2 → d(d − 1)2/(3d− 4). It follows that it is greater than
one only in the range

(d− 1)2(8 − 3d+ 4
√

3d2 − 6d+ 4)

13d− 16
< M2 ≤ d(d− 1)2

3d− 4
, (14)

where z− = 1 at the lower limit and z− = (d − 1) at the upper limit. We
summarize the bounds in Table 1 for up to d = 4.

It follows from this analysis that a necessary condition for obtaining a
top-down model admitting a Lifshitz realization of the type discussed here
is that the spectrum of the compactification contains massive vectors with
mass in the range (12). If in addition the mass is within (14) then there
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z+ > 1 z− > 1
d = 2 0 < M2 ≤ 1 M2 = 1
d = 3 0 < M2 ≤ 12/5 ≈ 2.4 4/23(−1 + 4

√
13) ≈ 2.33 < M2 ≤ 12/5 = 2.4

d = 4 0 < M2 ≤ 9/2 −1 + 2
√

7 ≈ 4.29 < M2 ≤ 9/2

Table 1: Allowed range of masses for Lifshitz solutions with dynamical ex-
ponent z+ and z− bigger then one.

are two possible Lifshitz critical points. These conditions are not sufficient
however because they only guarantee that the quadratic action equals (5).
In general there would be interaction terms between the massive vector and
other modes. If these interactions are quadratic or higher order in the new
field, then one can consistently truncate them. However, if the interactions
are linear in the new fields then the massive vector would source them and
they cannot be ignored. Indeed, in all known consistent truncations that
involve massive vectors one needs to keep additional scalar fields, see for
example the first such truncation [44]. This is related to the fact that the
OPE of the vector operator with itself may contain operators other than the
stress energy tensor and we will revisit this issue in section 5.

Looking at the spectrum of sphere compactifications one finds that there
are indeed massive vectors in the required range. The spectrum of AdS3 ×
S3 × K3 [45] contains a massive vector with M2 = 1 which leads to z = 1.
The spectrum of AdS4 × S7 [46] contains two massive vectors in the allowed
range. The first has mass M2 = 3/4 and the associated dynamical exponent
is z = (45 + 3

√
209)/6 ≈ 14.72 while the second has mass M2 = 2 and can

be associated either with z = 1 and z = 4. The spectrum of AdS5 × S5

[47] contains one vector in allowed range, M2 = 3, which is associated with
z = 1 and z = 9 dynamical exponents. The cases with z = 1 do not directly
lead to a non-trivial Lifshitz geometry but the dual operator may be used to
deform the theory to a Lifshitz point as we describe in section 5. It would be
interesting to find whether any such case can be associated with a consistent
truncation.

We will instead here focus on the case where the dynamical exponent is
close to one, z ∼ 1 + ǫ2, with ǫ ≪ 1. This can be achieved if the mass is

M2 ∼ (d− 1) + (d− 2)ǫ2 +
1 + d− d2

d(d− 1)
ǫ4 + · · · (15)
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which implies that the dual operator has dimension

∆ = d+
d− 2

d
ǫ2 +

(−2d3 + 6d2 − 7d+ 4)

d3(d− 1)
ǫ4 + · · · . (16)

When M2 = d− 1 the leading order solution is AdS. Recall that the asymp-
totic expansion of the bulk vector field is given by

Ai = e(∆−d+1)rA(0)i + · · · + e−(∆−1)rA(d)i + · · · , (17)

where A(0)i is the source of the dual operator and A(d)i is related to its
expectation value.

We would like now to interpret holographically the Lifshitz solution (9)
with z ∼ 1 + ǫ2 as a perturbation of AdS with ǫ ≪ 1. The metric is AdSd+1

up to order ǫ2 while the massive vector becomes

A(0)t =
√

2ǫ(1 +O(ǫ2)). (18)

Thus to order ǫ the Lifshitz solution has the holographic interpretation as a
deformation of the CFT by a vector operator Jt of dimension d

SCFT → SCFT +
√

2
∫

ddxǫJ t. (19)

In the following sections we will set up the holographic dictionary for this
case and analyze the dual QFT.

3 Holographic dictionary

In this section we will set up the holographic dictionary between the bulk
gravity and the dual field theory, working perturbatively in the parameter ǫ.
Our aim is to derive the holographic one point functions (in the presence of
sources) and the Ward identities they satisfy.

Holographic renormalization for Lifshitz solutions was studied in [48, 49,
50, 51, 52, 53]. In particular, it was established in [49], using the radial
Hamiltonian formalism [54, 55], that these models can be holographically
renormalized for any z. Since the models are non-relativistic it is natural
to use the vielbein formalism [48, 10] and this is indeed what was used in
[49]. Here however we will proceed by using the methodology in [56] and the
metric formulation. The reason for using the metric formulation is that we
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are studying the theory from the perspective of the AdS critical point and the
formulation in [56] gives the asymptotic form of the metric in a more direct
manner than the radial Hamiltonian formalism (which in turn is more efficient
in producing the counterterms etc.). In contrast to previous approaches we
have in mind deforming (by an irrelevant operator) AdS space into Lifshitz
and do not assume particular fall-off behaviour for the bulk fields, but derive
bulk solution for arbitrary Dirichlet data (see below).

We begin with the action (5) together with the Gibbons-Hawking bound-
ary term

Sbare =
1

16πGd+1

∫

dd+1x
√

−G
(

R + d(d− 1) − 1

4
FµνF

µν − 1

2
M2AµA

µ
)

+
1

8πGd+1

∫

ddx
√−γK, (20)

with M2 given in (8). The associated field equations are

DµF
µν = M2Aν , (21)

Rµν = −dGµν +
M2

2
AµAν +

1

2
GρσFµρFνσ +

1

4(1 − d)
F σλFσλGµν .

Taking the trace of the Einstein equations and plugging back into (20) the
onshell action is

Sonshell =
1

16πGd+1

∫

dd+1x
√

−G(−2d− 1

2(d− 1)
FµνF

µν) (22)

+
1

8πGd+1

∫

ddx
√−γK.

This action diverges due to the infinite volume of spacetime and we need to
add covariant counterterms in order to render it finite. The counterterms
at order ǫ0 are well known. Here we would like to compute the required
counterterms through order ǫ2. To obtain those we need to compute the
most general infinities that appear to this order and for this we need to know
the asymptotic solutions of the field equations.

We parameterize the metric and vector field as

ds2 = dr2 + e2rgijdx
idxj , (23)

gij(x, r; ǫ) = g[0]ij(x, r) + ǫ2g[2]ij(x, r) + . . .

Ai(x, r; ǫ) = ǫerA(0)i(x) + . . . .
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For the metric, the notation g[a]ij captures the order in ǫ. Each of these
coefficients has a radial expansion as well and the order in radial expansion
will be denoted (as usual) by curved parentheses. For example,

g[0]ij(x, r) = g[0](0)ij(x) + e−2rg[0](2)ij(x) + · · · (24)

is the radial expansion of the metric at leading order in ǫ. We would like to
obtain the most general asymptotic solution given g[0](0)ij(x) and A(0)i(x) as
arbitrary Dirichlet data.

Using this form for the metric the Einstein equations can be expressed as

Ric[g]ij − e2r
{

1

2
g′′ +

d

2
g′ − 1

2
g′g−1g′ +

1

2
tr(g−1g′)g +

1

4
tr(g−1g′)g′

}

ij
(25)

=
M2

2
AiAj +

1

2
FirFjr +

e−2r

2
gklFikFjl

+
1

4(1 − d)
gkl(2FkrFlr + e−2rgmnFkmFln)gij,

1

2
Djg′

ij − 1

2
Ditr(g

−1g′) =
M2

2
AiAr +

e−2r

2
gjkFijFrk, (26)

− 1

2
tr(g−1g′′) − tr(g−1g′) +

1

4
tr(g−1g′g−1g′)

=
M2

2
ArAr +

(d− 2)

2(d− 1)
e−2rgijFriFrj +

e−4r

4(1 − d)
F ijFij (27)

where a prime denotes a derivative with respect to r; indices are raised
and traces are taken with the metric gij and Di is the covariant derivative
constructed from the metric gij.

The vector field equations are

∂i(
√−ggijFjr) = M2e2r√−gAr, (28)

∂k(
√−gF ki) + e(4−d)r∂r(e

(d−2)r√−ggimFrm) = M2e2r√−gAi. (29)

Taking the divergence of the last equation we obtain

e−2r∂i(
√−ggijAj) + e−dr∂r(e

dr√−gAr) (30)

= e−2r∂i(
√−ggijAj) + d

√−gAr + ∂r(
√−gAr) = 0.

These equations can now be solved order by order in ǫ: note that the
metric expansion involves even powers of ǫ whilst the vector field is expanded
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in odd powers. The details of the analysis differ for different dimensions due
to singularities in the numerical coefficients of the expansion. These imply
the appearance of logarithms in special dimensions. We will thus study the
two main cases of interest, d = 2 and d = 3, separately. It is clear that
the analysis can be straightforwardly extended to any d; the computations
however become increasingly more tedious as we increase the dimension (as
in the standard asymptotically locally AdS cases).

3.1 Analysis for d=2

3.1.1 Zeroth order in ǫ

The analysis at order ǫ0 (pure gravity) was done in [57] leading to the metric

g[0]ij = g[0](0)ij(x) + e−2rg[0](2)ij + e−4rg[0](4)ij . (31)

Note that in this case the Fefferman-Graham expansion terminates at order
e−4r, although this will not play any role in this paper. The coefficient g[0](2)

is related to the holographic energy momentum tensor

〈Tij〉[0] = − 2
√
g[0](0)

δSren

δgij[0](0)

, (32)

where the subscript indicates that we work at order ǫ0, as follows [57, 56]

g[0](2)ij =
1

2

(

−g[0](0)ijR + (16πG3)〈Tij〉[0]

)

(33)

=
1

2

(

−g[0](0)ijR +
24π

c
〈Tij〉[0]

)

where the holographic energy momemtum tensor satisfies [58, 59]

∇j〈Tij〉[0] = 0, 〈T ii 〉[0] =
c

24π
R (34)

and c = 3/2G is the Brown-Henneaux central charge [60] (recall that we set
the AdS radius equal to one).

We also record the holographic counterterms:

Sct[0] = − 1

8πG3

∫

d2x
√−γ(1 +

1

2
R[γ]r0), (35)

where r0 is the radial cutoff.
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3.1.2 First order in ǫ

At this order the massive vector is non-trivial and the near-boundary expan-
sions has the form

Ai = er(A(0)i(x) + e−2r(A(2)i(x) + rÃ(2)i(x)) . . .), (36)

Ar = e−r(A(0)r(x) + e−2r(A(2)r(x) + ra(2)r(x)) . . .),

where we will take A(0)i(x) = ǫA(0)i(x) and work perturbatively in ǫ. Note
that A(0)r does not represent an independent source; using the divergence
equation (30) one obtains

A(0)r(x) = − ǫ

d− 1
∇iA

i
(0)(x), (37)

where we gave this expression for general d for later use and ∇ denotes the
covariant derivative constructed from the g[0](0)ij (note that ∇i differs from
Di in (26)!).

It will be useful to define A(2)i = ǫA(2)i and Ãi
(2) = ǫai(2). Then the vector

field expansion coefficients are

ai(2) =
[

1

2
∇kF

ki
(0) − 1

2
∇i(∇jA

j
(0)) +

(

12π

c
〈T ij〉[0] − R

4
gij[0](0)

)

A(0)j

]

(38)

=
[

1

2
�Ai(0) − ∇i(∇jA

j
(0)) +

12π

c
〈T ij〉[0]A(0)j − R

2
gij[0](0)A(0)j

]

,

a(2)r = ǫ∇ia
i
(2), (39)

A(2)r = ǫ
[

− R

4
(∇iA

i
(0)) + ∇iA

i
(2) − 1

2
∇i∇i∇jA

j
(0), (40)

+
(

24π

c
〈T ij〉[0] − R

2
gij(0)

)

∇iA(0)j

]

.

Here and later, when we present asymptotic solutions, indices are raised using
the metric gij[0](0).

The coefficient A(2)i is left undetermined by the asymptotic analysis. As
we will see later it is related to the expectation value of the dual operator,
as in the standard case [56]. Note further that the coefficients at order ǫ
depend locally on the sources g[0](0), A(0)i, as expected,. In addition, the
coefficients depend also locally on the zeroth order expectation value of the
dual stress energy tensor 〈T ij〉[0], which at first sight appears problematic
since this coefficient is in general non-locally related to g[0](0) and this could
lead to non-local divergences. We will see later how this issue is resolved and
the conceptual interpretation of it.
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3.1.3 Second order in ǫ

Let us consider the backreaction at order ǫ2. The asymptotic expansion takes
the form

g[2] = rh[2](0) + re−2rh[2](2) + e−2rg[2](2) + O(e−4r). (41)

One could also include a term at order r0 in g[2]ij, namely g[2](0)ij , but such
a term would correspond to a modification of the stress energy tensor source
and here we analyze the response of the theory with the sources kept fixed –
hence this term is set to zero.

We provide details of the computation in Appendix B. Here we collect
results. h[2](0)ij and h[2](2)ij are determined by the sources (for later use this
expression for h[2](0)ij is given for general d):

h[2](0)ij = −A(0)iA(0)j +
1

2(d− 1)
A(0)kA

k
(0)g[0](0)ij , (42)

h[2](2)ij =
6π

c
(A(0)kA

k
(0)〈Tij〉[0] − Ak(0)〈Tkl〉[0]A

l
(0)g[0](0)ij) + A(0)ka

k
(2)g[0](0)ij

−∇k(A(0)iF(0)jk + A(0)jF(0)ik) − R

8
A(0)kA

k
(0)g[0](0)ij +

R

4
A(0)iA(0)j (43)

−1

2
(A(0)ia(2)j + A(0)ja(2)i) +

1

4
∇k

(

Ak(0)(∇lA
l
(0)) − 3A(0)lF

kl
(0)

)

g[0](0)ij .

Moreover, divergence of g[2](2) is also fixed by (246) and:

tr(g[2](2)) = A(0)iA
i
(2) − 1

4
A(0)i�A

i
(0) − 6π

c
Ai(0)〈Tij〉[0]A

j
(0) +

R

4
A(0)iA

i
(0). (44)

The part of g[2](2)ij undetermined by the asymptotic analysis is linked to the
expectaction value of Tij at order ǫ2, as we will soon find.

3.1.4 On-shell action and counterterms

Having computed the most general asymptotic solution through order ǫ2 we
now move on to computing the order ǫ2 terms in the regulated on-shell action
to which the zeroth order counterterms Sct[0] have been added. Computing
the divergent terms at order ǫ2 we obtain

− ǫ2

16πG3

∫

d2x
√

−g[0](0)

[

e2r0

2
A(0)iA

i
(0) (45)

+r0

(

12π

c
Ai(0)〈Tij〉[0]A

j
(0) − R

4
A(0)iA

i
(0)

)]

.
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At first sight this looks problematic since the divergences appear to be non-
local, due to the term involving 〈Tij〉[0]. However, this is only a “pseudo
non-local” divergence, similar to those discussed in [61, 62]. The non-locality
disappears when we express everything in terms of induced fields at the
regulated surface r = r0.

To find the counterterm action we invert equation (36):

ǫA(0)i = e−rAi + · · · . (46)

Thus the counterterm needed to cancel the leading order divergence in (45)
at order ǫ2 is

S̃ct[2](2) =
1

32πG3

∫

d2x
√−γγijAiAj . (47)

Noting that

√−γγijAiAj = ǫ2
√

−g[0](0)(g
ij
[0](0)A(0)iA(0)je

2r + 2rA(0)ia
i
(2)) + . . . (48)

we see that this counterterm cancels the apparently non-local piece in (45)
involving 〈Tij〉[0].

After canceling the leading order divergence we are left with a logarithmic
divergence (which originates from the leading order counterterm):

ǫ2

16πG3

∫

d2x
√

−g[0](0)r0

(

1

2
(∇iA

i
(0))

2 − 1

4
F(0)ijF

ij
(0)

)

, (49)

which in turn can be cancelled by the logarithmic counterterm

S̃ct[2](0) = − 1

16πG3

∫

d2x
√−γr0

(

1

2
(∇iA

i)2 − 1

4
FijF

ij
)

. (50)

Thus, in summary, the total counterterm action in two dimensions becomes

Sct = Sct[0] + Sct[2] = − 1

8πG3

∫

d2x
√

−γ(1 +
1

2
Rr0) (51)

+
1

32πG3

∫

d2x
√−γγijAiAj

− 1

16πG3

∫

d2x
√−γr0

(1

2
(∇iA

i)2 − 1

4
FijF

ij
)

.

These counterterms suffice to render the action finite to order ǫ2.
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3.1.5 Computation of renormalized one-point functions

To compute the renormalized one point functions we need to vary the total
action. Note that the variation of δgij includes variation of the vector source
δA(0)j :

δgij = δgij[0](0) (52)

+ ǫ2r



2gjk[0](0)A
i
(0)δA(0)k − δA(0)kA

k
(0)g

ij
[0](0) − 1

2
A(0)kA

k
(0)δg

ij
[0](0)

− 1

2
A(0)kA(0)lg

ij
[0](0)δg

kl
[0](0) + Ai(0)A(0)kδg

kj
[0](0) + Aj(0)A(0)kδg

ki
[0](0)





The variation of the renormalized action with respect to the vector source is
finite by construction and is given by

ǫ2

16πG3

∫

d2x
√

−g[0](0)g
ij
[0](0)(2A(2)i − a(2)i − ∇i∇jA

j
(0))δA(0)j . (53)

The corresponding vector 1-point function is defined as

〈J i〉 = − 1√−g[0](0)

δSren

δA(0)i

= − 1√−g[0](0)

δSren

ǫδA(0)i

(54)

and is given by 〈J i〉 = ǫ〈J i〉 with

〈J i〉 = − 1

16πG3
(2Ai(2) − ai(2) − ∇i∇jA

j
(0)). (55)

As expected the part of the asymptotic expansion, Ai(2), undetermined by
asymptotics is directly related with the 1-point function of the dual operator.

Now let us compute 1-point function of the stress-energy tensor:

〈Tij〉 = 〈Tij〉[0] + ǫ2〈Tij〉[2] + · · · (56)

The stress-energy tensor 1-point function to order ǫ2 is obtained using the
finite part of the action variation at order ǫ2:

1

16πG3

∫

d2x
√

−g[0](0) (57)

δgij[0](0)

[

1

2
h[2](2)ij − g[2](2)ij −

(

1

2
tr(h[2](2) − g[0](2)h[2](0)) − tr(g[2](2))

)

g[0](0)ij

+ A(0)iA(2)j − 1

2
A(0)kA

k
(2)g[0](0)ij +

1

4
Ak(0)g[0](2)klA

l
(0)g[0](0)ij − 1

4
A(0)kA

k
(0)g[0](2)ij

]

.
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After using (43) we obtain the correction to the stress energy tensor at
order ǫ2:

〈Tij〉[2] = − 2√−g[0](0)

δS[2]ren

δgij[0](0)

(58)

=
1

8πG3

[

g[2](2)ij − A(0)iA(2)j − 1

2
A(0)kA

k
(2)g[0](0)ij − 1

2
(∇kA

k
(0))

2g[0](0)ij

− R

8
A(0)iA(0)j +

R

16
A(0)kA

k
(0)g[0](0)ij +

1

2
A(0)ka

k
(2)g[0](0)ij

+
1

4
(A(0)ia(2)j + A(0)ja(2)i) +

1

8
∇k

(

A(0)lF
kl
(0) + 5Ak(0)∇lA

l
(0)

)

g[0](0)ij

− 1

4

(

F(0)i
kF(0)jk + A(0)i∇kF(0)kj + A(0)j∇kF(0)ki

)]

.

Again, as expected, the expectation value of Tij is directly related with the
undetermined coefficient, g[2](2)ij .

These 1-point functions were obtained using minimal subtraction. We
will shortly see that they can be somewhat simplified in a different scheme,
where certain finite boundary terms are added to the action. We will first
analyze the Ward identities, however.

3.1.6 Ward identities

The divergence of the order ǫ2 contribution to stress-energy tensor can be
obtained using equation (246):

∇j〈Tij〉[2] =
1

16πG3

[

2Aj(2)F(0)ij − 2A(0)i(∇jA
j
(2)) +

12π

c
〈Tjk〉[0]∇k(A(0)iA

j
(0))

− 12π

c
Ak(0)〈Tkl〉[0]∇iA

l
(0) − 1

4
A(0)i∇j(RA

j
(0)) +

1

2
A(0)i∇k∇k∇jA

j
(0)

− 1

2
F(0)ij∇k∇kA

j
(0)

]

= A(0)i∇j〈J j〉 − 〈J j〉F(0)ij . (59)

The complete energy momentum tensor then satisfies

∇j〈Tij〉 = A(0)i∇j〈J j〉 − 〈J j〉F(0)ij . (60)

where we recall that A(0)i = ǫA(0)i, 〈J j〉 = ǫ〈J j〉 and F(0)ij is the field
strength of A(0)i. This is precisely the correct diffeomorphism Ward identity.
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The terms in the rhs represent the contribution due to the coupling of vector
operator (see for example [63]). There is no explicit ǫ dependence in this
equation and this suggests it may hold beyond the small ǫ limit.

Let us now turn to the trace identity. Computing 〈T ii 〉[2] leads to

〈T ii 〉[2] = − 1

8πG3

[

A(0)iA
i
(2) − 12π

c
Ai(0)〈Tij〉[0]A

j
(0) +

1

4
F(0)ijF

ij
(0) (61)

+
R

4
Ai(0)A(0)i − 1

4
∇k

(

A(0)iF
ki
(0) + Ak(0)(∇iA

i
(0))

)]

= A(0)i〈J i〉 + A,

where we used (55) and

A =
1

16πG3

(

12π

c
Ai(0)〈Tij〉[0]A

j
(0) − 1

4
F(0)ijF

ij
(0) +

1

2
(∇iA

i
(0))

2 − R

4
Ai(0)A(0)i

)

(62)
This is expected form of an anomalous trace Ward identity. The first term in
the rhs of (61) is due to the fact that we deformed the theory by a dimension
2 vector operator. The second term A is the correction to the trace anomaly
and it must be a Weyl invariant.

In fact this term is related to the Weyl invariant action given in [64] which
in our conventions and in arbitrary dimension d > 2 can be written as

L = −1

4
FijF

ij − d− 4

2d
(∇iA

i)2 +
d− 4

2
SijA

iAj − d− 4

8(d− 1)
RAiA

i, (63)

where

Sij =
1

d− 2

(

Rij − R

2(d− 1)
gij

)

(64)

is the Schouten tensor. This action is only valid for d > 2 because of the
singularity in (64) as d → 2. We note however that when d ≥ 3, Sij = −g[0](2)

(see (A.1) of [56], reproduced here for d = 3 in (75)) and moreover if in d = 2
we replace Sij by −g[0](2)ij (given by (33)) we get A!

One can check the Weyl-invariance of A by direct computation. The Weyl
transformation of 〈Tij〉[0] is well known: δ〈Tij〉[0] = c

12π
(∇i∇jσ − g(0)ij�σ).

This is a standard result in CFT and it has also been derived holographically
in [56]. With this information at hand one can check that under a Weyl
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transformation such that δg[0](0)ij = 2σg[0](0)ij and δA(0)i = σA(0)i

δ
(

12π

c
Ai(0)〈Tij〉[0]A

j
(0) − 1

4
F(0)ijF

ij
(0) +

1

2
(∇iA

i
(0))

2 − R

4
Ai(0)A(0)i

)

(65)

= −2σ
(

12π

c
Ai(0)〈Tij〉[0]A

j
(0) − 1

4
F(0)ijF

ij
(0) +

1

2
(∇iA

i
(0))

2 − R

4
Ai(0)A(0)i

)

up to a total derivative term. Thus the anomaly term in 〈T ii 〉[2] is indeed
Weyl invariant.

The complete anomaly through order ǫ2 is given by

〈T i
i 〉 − 1

2
Ai

(0)〈Tij〉Aj
(0) (66)

= A(0)i〈J i〉 − c

24π

(

−R +
1

4
F(0)ijF ij

(0) − 1

2
(∇iAi

(0))
2 +

R

4
Ai

(0)A(0)i

)

where this formula holds through order ǫ2. As in the case of the diffeomorp-
shim Ward identity, the ǫ dependence is implicit and this formula may hold
away from the small ǫ limit.

As we will discuss in more detail in section 5, the term quadratic in Ai
(0)

on the lhs can be thought of as a beta function contribution to the trace Ward
identity, where the beta function is that of the source of Tij , namely of the
metric g(0)ij . Indeed the asymptotic expansion of the bulk metric contains a
leading order logarithic term at order ǫ2, the h[2](0) term in (41), which can
be thought of as renormalizing the leading order metric.

3.1.7 Scheme dependence

One can simplify the one-point function of the vector operator by adding
finite counterterms. The details of the computation are given in appendix
F; here we only summarize the results. Requiring that 〈J i〉 contains only
non-local terms can be achieved by adding

Sct, finite = −1

8

∫ √
γ
(

FijF
ij + 2(∇iA

i)2 +RA2
)

. (67)

Then

〈J i〉 = − 2ǫ

16πG3
Ai(2) +

1

2
〈T ij〉[0]A(0)j . (68)
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The first term in this formula is in agreement with the result of [11] (upon
continuation z → 1). The second term is related to the OPE coefficient of
two J i’s to T kl.

The addition of these finite counterterms modifies also the one-point func-
tion of the stress-energy tensor, which becomes

〈Tij〉[2] =
1

2
Ak(0)〈Tkl〉[0]A

l
(0)g[0](0)ij − 1

8πG3

[

− g[2](2)ij + A(0)iA(2)j (69)

+
1

2
A(0)kA

k
(2)g[0](0)ij − 1

4
(A(0)ia(2)j + A(0)ja(2)i) +

R

16
A(0)kA

k
(0)g[0](0)ij

− 5

8
Ak(0)∇k∇lA

l
(0)g[0](0)ij − 1

4
(∇kA

k
(0))

2g[0](0)ij +
1

2
A(0)j∇i∇kA

k
(0)

+
1

4

(

A(0)i∇kF(0)kj + A(0)j∇kF(0)ki

)

− 3

8
A(0)l∇kF

kl
(0)

]

.

The addition of finite counterterms does not affect the Ward identities.

3.1.8 Recovering the Lifshitz invariance

Let us now fix the source terms to be those corresponding to the Lifshitz
solution in (9) with z = 1 + ǫ2:

A(0)t =
√

2ǫ, g[0](0)ij = ηij. (70)

The trace Ward identity (66) becomes

z〈T t
t 〉 + 〈T x

x 〉 = ǫ
√

2〈J t〉, (71)

where the contribution of the term quadratic in A(0)i in the lhs of (66) led
to the change the coefficient of 〈T t

t 〉 from 1 to z = 1 + ǫ2 . When 〈J t〉 = 0
then (71) is precisely the condition for Lifshitz invariance ! (We will review
this in section 5). When 〈J t〉 6= 0 the Lifshitz invariance is spontaneously
broken.

Let us now evaluate the holographic formulas for the solution in (9) with
z = 1 + ǫ2. Expanding first in ǫ we find that g[0](2) = 0 which implies
〈Tij〉[0] = 0. Furthermore, expanding the vector field we find A(2)i = 0 and
using (68) we conclude

〈J i〉 = 0, (72)

so indeed we recover the Lifshitz symmetry from the QFT Ward identity
(71).
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Expanding the metric in ǫ also gives h[2](0)tt = −ǫ2 = h[2](0)xx, h[2](2) =
0 = g[2](2). Thus h[2](0) is traceless in agreement with our general results (see
equation (42)). Using (69) we finally obtain

〈Tij〉 = 0, (73)

which is indeed what we would expect, since this geometry should be dual to
the (scale invariant) vacuum of the Lifshitz theory. In [65] we will discuss the
black hole solution in the deformed theory, which corresponds to a thermal
state in the Lifshitz theory.

3.2 Analysis for d=3

3.2.1 Zeroth order in ǫ

The analysis at order ǫ0 was carried out in [56] and we summarize the results
here. The asymptotic expansion of the metric is given by

g[0]ij = g[0](0)ij + e−2rg[0](2)ij + e−3rg[0](3)ij + · · · (74)

Here g[0](2)ij is determined in terms of g[0](0)ij

g[0](2)ij = −Rij +
R

4
g[0](0)ij , (75)

while g[0](3)ij is traceless and divergenceless and is related to the holographic
stress energy tensor by

〈Tij〉[0] =
3

16πG4
g[0](3)ij . (76)

The gravitational counterterms are given by

Sct[0] = − 1

16πG4

∫

d3x
√−γ

(

4 +R[γ]
)

. (77)

3.2.2 First order in ǫ

Only the vector has a contribution linear in ǫ:

Ai = er(A(0)i(x) + e−2rA(2)i(x) + +re−3rÃ(3)i + e−3rA(3)i(x) + . . .), (78)

Ar = e−r(A(0)r(x) + e−2rA(2)r(x) + re−3ra(3)r + e−3rA(3)r(x) + . . .). (79)
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and (as in the d = 2 case) we will assume the source is linear in ǫ,A(0)i(x) =
ǫA(0)i(x). It is also useful to define Ai

(2) = ǫAi(2) and Ã(3)i = ǫa(3)i.
Solving asymptotically the field equations we find for the spatial compo-

nents of the vector,

Ai(2) =
1

2(d− 2)

(

∇kF
ki
(0) − (d− 3)∇iA(0)r − (tr(g[0](2))A

i
(0) − 2gij[0](2)A(0)j)

)

d=3
=

1

2

(

∇kF
ki
(0) +

3R

4
Ai(0) − 2RicijA(0)j

)

(80)

a(3)i = g[0](3)ijA
j
(0),

while the radial components are given by

A(0)r = − ǫ

2
∇iA

i
(0); A(2)r = − ǫ

4

(

� +
R

4

)

∇iA
i
(0) + ∇iA

i
(2), (81)

a(3)r = ǫ∇ia
i
(3), A(3)r = ǫ∇iA

i
(3). (82)

3.2.3 Second order in ǫ

Next let us consider the backreaction on the metric to order ǫ2. The asymp-
totic expansion of the ǫ2 term in the metric is

g[2]ij = rh[2](0)ij + re−2rh[2](2)ij + e−2rg[2](2)ij + re−3rh[2](3)ij + e−3rg[2](3)ij + . . .
(83)

where we set to zero the possible contribution to the source at order ǫ2. Using
the expansions of the field equations given in appendix C, one can express
these coefficients as follows. The leading term h[2](0)ij is given by (42). The
terms at order r in (247) give us the expression for h[2](2)ij :

h[2](2)ij =
1

4

[

(∇kA(0)l)(∇kAl(0)) − (∇kA
k
(0))

2 + 2A(0)k�A
k
(0) − 2Ak(0)∇k∇lA

l
(0)

+
1

2
F(0)klF

kl
(0)

]

g[0](0)ij − 3

8
∇i∇j(A(0)kA

k
(0)) − R

4
A(0)iA(0)j (84)

+
1

2
∇k
(

∇i(A(0)jA(0)k) + ∇j(A(0)iA(0)k) − ∇k(A(0)iA(0)j)
)

.
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From the terms at order one in (247):

g[2](2)ij = −R

8
A(0)iA(0)j + A(0)iRjkA

k
(0) − 1

4
A(0)kA

k
(0)Ricij +

3

16
∇i∇j(A(0)kA

k
(0))

− 1

4
∇k
(

∇i(A(0)jA(0)k) + ∇j(A(0)iA(0)k) − ∇k(A(0)iA(0)j)
)

+
1

2
F(0)i

kF(0)jk

+
1

4

(

A(0)i∇j∇kA
k
(0) + A(0)j∇i∇kA

k
(0) + A(0)i∇kF(0)kj + A(0)j∇kF(0)ki

)

+
[

3

16
(∇kA

k
(0))

2 − 1

4
F(0)klF

kl
(0) − 3

8
A(0)k�A

k
(0) − 1

4
Ak(0)∇l∇kA

l
(0) (85)

− 1

8
(∇kA(0)l)(∇kAl(0)) +

1

2
Ak(0)∇k∇lA

l
(0) +

3

16
RA(0)kA

k
(0)

]

g[0](0)ij .

Using e−r terms in (247) we find

h[2](3)ij =
3

8
A(0)kA

k
(0)g[0](3)ij − 2

3
Ak(0)

(

g[0](3)ikA(0)j + g[0](3)jkA(0)i

)

(86)

+
1

3
Ak(0)g[0](3)klA

l
(0)g[0](0)ij .

The term g[2](3)ij is left undetermined by the asymptotic analysis, up to trace
and divergence constraints. Its trace is

tr(g[2](3)) =
2

3
A(0)iA

i
(3) − 5

18
Ai(0)g[0](3)ijA

j
(0), (87)

whilst its divergence satisfies

∇jh[2](3)ij − 3∇jg[2](3)ij − gjk[0](3)∇kh[2](0)ij − 1

2
hjk[2](0)∇ig[0](3)jk (88)

− ∇itr(h[2](3) − 3g[2](3) − g[0](3)h[2](0))

= 2(A(3)iA(0)r + A(3)rA(0)i) − gjk[0](3)F(0)ijA(0)k

+ Aj(0)(∇iA(3)j − ∇jA(3)i) − 2Aj(3)F(0)ij + aj(3)F(0)ij .

3.2.4 Counterterms

Evaluating the on-shell action we find that the leading order divergence is
given by

Sdiv =
ǫ2

16πG4

∫

d3x
√

−g[0](0)e
3r
(

− 1

2
A(0)iA

i
(0)

)

+ · · · (89)
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There is in addition a logarithmic divergence containing the non-local com-
bination Ai(0)g[0](3)ijA

j
(0):

Sdiv = − ǫ2

16πG4

∫

d3x
√

−g[0](0)r
(

2Ai(0)g[0](3)ijA
j
(0)

)

. (90)

Both these divergences are removed by the local counterterm

Sct[2] =
1

32πG4

∫

d3x
√−γAiAi. (91)

Thus, we find again that all the counterterms are local.

3.2.5 Renormalized one-point functions

Although there are additional local counterterms required to remove sublead-
ing divergences at order ǫ2, only this leading counterterm (91) can contribute
finite pieces to the 1-point functions. Therefore we do not need to construct
explicitly all the counterterms: it is enough to know that these are local.
Defining the one point function of the vector operator as

〈J i〉 = − 1√−g[0](0)

δSren

δA(0)i
= − 1√−g[0](0)

δSren

ǫδA(0)i
, (92)

and using

(16πG4)δASon-shell = −
∫

d3x
√

−γγijFriδAj +
∫

d3x
√
γγijAiδAj (93)

we compute

〈

J i
〉

= − 3ǫ

16πG4
Ai(3) +

1

3
〈T ij〉[0]A(0)j , (94)

where we used (76).
From

16πG4δγSon-shell =
∫

d3x
√−γ(Kij −Kγij + 2γij)δγ

ij (95)

+
1

2

∫

d3x
√−γ(AiAj − 1

2
AkA

kγij)δγ
ij
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one can compute the stress energy tensor

〈Tij〉 = − 2√−g[0](0)

δSon-shell

δgij[0](0)

. (96)

Then
〈Tij〉 = 〈Tij〉[0] + ǫ2〈Tij〉[2] + · · · (97)

where the leading order term is given in (76) whilst

〈Tij〉[2] = − 1

16πG4

[

h[2](3)ij − 3g[2](3)ij − 1

4
A(0)kA

k
(0)g[0](3)ij (98)

−Ak(0)g[0](3)klA
l
(0)g[0](0)ij + A(0)kA

k
(3)g[0](0)ij + A(0)iA(3)j + A(0)jA(3)i

]

.

3.2.6 Ward identities

Using (89) we can check that the expected diffeomorphism Ward identity is
satisfied:

∇j 〈Tij〉[2] = A(0)i∇j

〈

J j
〉

−
〈

J j
〉

F(0)ij . (99)

where we used 〈J i〉 = ǫ 〈J i〉.
For the trace of stress-energy tensor we obtain

〈

T ii
〉

[2]
= − 1

16πG4

(3A(0)iA
i
(3) − 5

2
Ai(0)g[0](3)ijA

j
(0)) (100)

= A(0)i

〈

J i
〉

+
1

2
Ai(0)〈Tij〉[0]A

j
(0).

Thus through order ǫ2 the complete trace Ward identity is

〈T i
i 〉 − 1

2
Ai

(0)〈Tij〉Aj
(0) = A(0)i〈J i〉. (101)

This is precisely the same as the d = 2 case in (66), except that in d = 2 we
have additional terms related to the conformal anomaly. The terms quadratic
in A(0)i can be thought of as a beta function contribution to the trace Ward
identity.
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3.2.7 Recovering Lifshitz invariance

The discussion parallels that given for d = 2 in section 3.1.8. The quadratic
terms in Aj

(0) are responsible for producing the Lifshitz Ward identity

z〈T t
t 〉 + 〈T x

x 〉 = ǫ
√

2〈J t〉, (102)

once we set the sources to the values relevant for pure Lifshitz (70).
Furthermore, the 1-point functions evaluated on the pure Lifshitz solution

(9) with z = 1 + ǫ2 yield

〈J i〉 = 0, 〈Tij〉 = 0. (103)

Thus the geometry can be interpreted as the vacuum state in the Lifshitz
theory, as anticipated.

4 Lifshitz invariant correlation functions in

two dimensions

To derive higher-point correlation functions in general spacetime dimension
one needs to solve the bulk field equations around the background. However
in d = 2 the situation simplifies: as we review below, in a relativistic two-
dimensional CFT conformal symmetry is powerful enough to fix the 2-point
function of stress-energy tensor with itself. (In fact, all higher point functions
of stress-energy tensor are fixed by the symmetry). We show here that a
similar argument applies to the Lifshitz invariant theory.

4.1 Correlation functions in the relativistic CFT

Let us start with the relativistic theory. Consider metric fluctuations gµν =
ηµν+hµν . The diffeomorphism and trace Ward identities in standard complex
coordinates are given by

∂̄ 〈Tww〉 + ∂ 〈Tww̄〉 = 0, (104)

〈Tww̄〉 =
1

4
· c

24π
R[h]

=
1

4
· c

24π
(∂2hww + ∂̄2hw̄w̄ − ∂̄∂hww̄ − ∂̄∂hww̄), (105)
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where in the last equality we have linearised the Ricci scalar which suffices
for 2-point functions.

The main idea of the argument is then the following. By taking further
functional derivatives of the diffeomorphism Ward identity we obtain a sys-
tem of differential equations for different 2-point correlation functions. For
example, differentiating (104) with respect to hww yields

∂̄ 〈Tww(w)Tww(0)〉 = −∂ 〈Tww̄(w)Tww(0)〉 . (106)

Then we use the trace Ward identity to compute one of the terms (involving
the trace) and integrating these differential equations we obtain the 2-point
functions.

Indeed, taking the functional derivative of (105) with respect to hww we
find

〈Tww̄(w)Tww(0)〉 =
1

4
· c

24π
4∂2δ2(w, w̄) =

c

24π
∂2 1

2π
∂̄∂ log |w|2, (107)

and using (106) we obtain

∂̄ 〈Tww(w)Tww(0)〉 = −∂ 〈Tww̄(w)Tww(0)〉 = − c

24π

1

2π
∂̄∂4 log |w|2. (108)

Integrating this equation (which amounts to cancelling the factor of ∂̄ in the
left and right hand side) we find the well-known result:

〈Tww(w)Tww(0)〉 =
1

(2π)2

c/2

w4
. (109)

(The factor 1/(2π)2 follows from our “bulk” convention for the energy mo-
mentum tensor, i.e. Tµν = 2√

g
δS
δgµν , see the discussion around (162).) A similar

computations yields the 2-point function 〈Tw̄w̄(w̄)Tw̄w̄(0)〉 = 1/(2π)2(c/2)/w̄4

in the anti-holomorphic sector. Finally, functionally differentiating (105)
w.r.t. hw̄w we find the 2-point function 〈Tww̄(w, w̄))Tww̄(0)〉 = − c

24π
∂∂̄δ2(w, w̄),

which is a contact term as expected.

4.2 Lifshitz theory

Now we move on to the Lifshitz case. Our goal is to obtain the 2-point
function by exploiting the underlying symmetry. Let us decompose A =
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AB + a, where AB is the constant background value of order ǫ necessary to
support the Lifshitz geometry and a is a fluctuation around this background.
Similarly, we write gµν = ηµν + hµν .

The diffeomorphism Ward identity can be rewritten in complex coordi-
nates (w, w̄) as

∂̄ 〈Tww〉 + ∂ 〈Tww̄〉 = AB(0)w(∂ 〈Jw̄〉 + ∂̄ 〈Jw〉) + . . . , (110)

where we omitted terms which do not contribute to the two-point functions
in the scale invariant vacuum (i.e. the vacuum with a = 0).

It is convenient to define a conserved spin two current by

Jµν = Tµν −ABµ Jν . (111)

In the scale-invariant vacuum we have

∂̄ 〈Jww〉 + ∂ 〈Jww̄〉 = 0, (112)

∂̄ 〈Jw̄w〉 + ∂ 〈Jw̄w̄〉 = 0,

i.e. this operator is conserved.
The trace Ward identity reads

〈Tww̄〉 =
1

2
(AB[0]w 〈Jw̄〉 + AB[0]w̄ 〈Jw〉) (113)

+
1

4

c

24π
R[h] +

1

2
〈Tww〉 (AB[0]w̄)2 +

1

2
〈Tw̄w̄〉 (AB[0]w)2.

Similarly to the relativistic case we can use (113) to compute one of the
2-point functions. Differentiating this identity with respect to aw we get

〈Tww̄Jw̄〉 =
1

2
AB[0]w 〈Jw̄Jw̄〉 + O(ǫ2), (114)

where we have dropped terms which vanish in the scale-invariant vacuum;
note also that 〈JwJw̄〉 is of order ǫ or higher.

Similarly, differentiating (113) with respect to hww̄ and using (114) we
get up to quadratic order in AB[0]w

〈Tww̄Tww̄〉 =
1

4

(

(AB[0]w)2 〈Jw̄Jw̄〉 + (AB[0]w̄)2 〈JwJw〉
)

+ 〈Tww̄Tww̄〉CFT (115)

+
1

2

(

(AB[0]w̄)2 〈Tww̄Tww〉 + (AB[0]w)2 〈Tww̄Tw̄w̄〉
)

.
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Note that we kept several contact terms, like 〈Tww̄Tww̄〉CFT (see the previous
subsection). Using (114) and (115) we finally compute

〈Jww̄(w)Jww̄(0)〉 = 〈Tww̄(w)Tww̄(0)〉 , (116)

〈Jww̄(w)Jw̄w(0)〉 = 〈Tww̄(w)Tw̄w(0)〉 − 1

2

(

(AB[0]w)2 〈Jw̄Jw̄〉 + (AB[0]w̄)2 〈JwJw〉
)

.

Let us now return to the diffeomorphism Ward identity (112). This provides
us with a set of differential equations for correlation functions. Consider
differentiating it with respect to the source to which Jµν couples. One gets

∂̄ 〈Jww(w)Jww(0)〉 = −∂ 〈Jww̄(w)Jww(0)〉 , (117)

∂̄ 〈Jww(w)Jww̄(0)〉 = −∂ 〈Jww̄(w)Jww̄(0)〉 . (118)

One can obtain similar relations by complex conjugating (117) and (118),
which amounts to making the replacements ∂ ↔ ∂̄ and w ↔ w̄.

This information suffices to derive all two-point correlation functions
of Jµν . Inserting the background value for vector field3: A(0)t =

√
2ǫ or

A(0)w = −A(0)w̄ = ǫ/
√

2 and using〈Jw(w)Jw(0)〉 = −(CJ/2)/(w3w̄) and
〈Jw̄(w)Jw̄(0)〉 = −(CJ/2)/(ww̄3) we directly compute

〈Jww̄(w)Jww̄(0)〉 = −ǫ2CJ
16

(

1

w3w̄
+

1

ww̄3

)

+ 〈Tww̄(w)Tww̄(0)〉CFT (119)

+
ǫ2

4

(

〈Tww̄(w)Tww(0)〉 + 〈Tww̄(w)Tw̄w̄(0)〉
)

,

〈Jww̄(w)Jw̄w(0)〉 = 〈Jww̄(w)Jww̄(0)〉 + ǫ2
CJ
8

( 1

w3w̄
+

1

ww̄3

)

(120)

Note that we keep local terms because they are needed for the derivation of
subsequent formulae. Using (118) we can integrate (119) once to obtain

〈Jww(w)Jww̄(0)〉 = −ǫ2CJ
16

(

− 1

2w2w̄2
+ 3

log |w|2
w4

)

+
ǫ2

4

1

(2π)2

c/2

w4
(121)

− ∂

∂̄
〈Tww̄(w)Tww̄(0)〉CFT +

ǫ2

4
〈Tww(w)Tw̄w̄(0)〉 + ǫ2F (w),

where we have explicitly introduced a local term needed for Lorentz invari-
ance (at order ǫ0) and absorbed other local terms in holomorphic function

3Our Euclidean conventions are w = x + itE , w̄ = x − itE following those of [66].
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F (w). Integrating (117) we obtain

〈Jww(w)Jww(0)〉 = −ǫ2CJ
16

( 1

w3w̄
+ 12

w̄ log |w|2 − 5
4
w̄

w5

)

(122)

+ ǫ2
c/2

(2π)2

w̄

w5
+

1

(2π)2

c/2

w4
+ ǫ2(−w̄∂F (w) +G(w)),

where G(w) is also local. A completely analogous reasoning applies to the
antiholomorphic components.

Likewise, starting from (120) one can compute 〈Jww(w)Jw̄w(0)〉 and other
correlators. Omitting all details we just quote the results:

〈Jww̄(w)Jw̄w̄(0)〉 = 〈Jww(w)Jw̄w(0)〉∗ , (123)

〈Jww(w)Jw̄w̄(0)〉 = 〈Jww̄(w)Jw̄w(0)〉 , (124)

〈Jww(w)Jw̄w(0)〉 = − 〈Jww(w)Jww̄(0)〉 +
ǫ2

2

c/2

(2π)2

1

w4
, (125)

up to local terms which in particular involve the Tµν correlator in the CFT
with the same index structure. Here ∗ denotes complex conjugation and all
other correlators can be obtained by complex conjugation.

4.3 Lifshitz invariance of two-point functions

To obtain the scaling properties of the conserved stress-energy tensor Jµν
under the Lifshitz rescaling

x → λx, t → λzt (126)

it is more convenient to rewrite the correlators in Cartesian coordinates, using
the results in the previous subsection. For example, we obtain

〈Jtt(t, x)Jtt(0)〉 = (1 − ǫ2)2
c/2

(2π)2

(t4 − 6t2x2 + x4)

(t2 + x2)4
− 1

6
ǫ2

c/2

(2π)2

t2 − x2

(t2 + x2)3

+ 2ǫ2
c/2

(2π)2

(t2 − x2)(t4 − 14t2x2 + x4)

(t2 + x2)5
(log(t2 + x2) − 9

4
) + . . . , (127)

where we have omitted scheme dependent (local) terms. To simplify the re-
sult we have also explicitly used c = 6π2CJ = 3/(2G3), where CJ is obtained
from (252).
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On general grounds one expects that 2-point correlation functions in a
Lifshitz invariant theory take the form

〈O∆L1
O∆L2

〉 = x−∆L1−∆L2f(χ), (128)

where the function f depends on the ratio χ = t/xz but is otherwise in
general undetermined by the scale invariance. Our results take exactly this
form, for example

〈Jtt(t, x)Jtt(0)〉 =
c

(2π)2
x−2(1+z)

[

(1 − ǫ2)
χ4 − 6χ2 + 1

(χ2 + 1)4
(129)

− 1

12
ǫ2

χ2 − 1

(χ2 + 1)3
+ ǫ2

(χ2 − 1)(χ4 − 14χ2 + 1)

(χ2 + 1)5
(log(1 + χ2) − 9

4
) + . . .

]

,

with the function f(χ) being completely determined in this instance by the
Ward identities.

Under the Lifshitz rescaling (126)

〈Jtt(t, x)Jtt(0)〉 → 〈Jtt(λzt, λx)Jtt(0)〉 =
1

λ2λ2z
〈Jtt(t, x)Jtt(0)〉 (130)

up to order ǫ4.
The correlator 〈Jxx(t, x)Jxx(0)〉 agrees with 〈Jtt(t, x)Jtt(0)〉 up to terms

without logarithms at order ǫ2 and therefore it scales as

〈Jxx(t, x)Jxx(0)〉 → 〈Jxx(λzt, λx)Jxx(0)〉 =
1

λ2λ2z
〈Jxx(t, x)Jxx(0)〉 . (131)

Similarly, we can compute

〈Jtx(t, x)Jtt(0)〉 = 8ǫ2
c/2

(2π)2

tx(t4 − 5t2x2 + 2x4)

(t2 + x2)5
log(t2 + x2) (132)

+ 8(1 − ǫ2

2
)
c/2

(2π)2

tx(t2 − x2)

(t2 + x2)4
− 9ǫ2

c/2

(2π)2

tx(t2 − 3x2)(3t2 − x2)

(t2 + x2)5

+
1

3
ǫ2

c/2

(2π)2

tx

(t2 + x2)3
+ . . . .

= 4
c

(2π)2
x−(1+z)−2z

[

χ(χ2 − 1)

(χ2 + 1)4

+
ǫ2

6

χ(−23χ4 + 68χ2 − 17)

(χ2 + 1)5
+ ǫ2

χ(χ4 − 5χ2 + 2)

(χ2 + 1)5
log(1 + χ2) + . . .

]

.
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Under the rescaling (126) this transforms as

〈Jtx(t, x)Jtt(0)〉 → 〈Jtx(λzt, λx)Jtt(0)〉 =
1

λλ3z
〈Jtx(t, x)Jtt(0)〉 . (133)

Recall that Jµν is not symmetric and therefore Jtx and Jxt are not equivalent.
For example,

〈Jxt(t, x)Jtt(0)〉 = 4
c

(2π)2
x−2−(1+z)

[

χ(χ2 − 1)

(χ2 + 1)4
(134)

+
ǫ2

6

χ(−23χ4 + 68χ2 − 17)

(χ2 + 1)5
+ ǫ2

χ(2χ4 − 5χ2 + 1)

(χ2 + 1)5
log(1 + χ2) + . . .

]

,

and this scales under (126) as

〈Jxt(t, x)Jtt(0)〉 → 〈Jxt(λzt, λx)Jtt(0)〉 =
1

λ3λz
〈Jxt(t, x)Jtt(0)〉 . (135)

From these results we can now read off the Lifshitz scaling dimensions for
the different components of J . From (130) and (131) we see that the scaling
dimension of Jtt equals that of Jxx

∆L(Jtt) = ∆L(Jxx) = 1 + z, (136)

where the subscript L is used to signify that this is the Lifshitz scaling di-
mension. Furthermore (133) and (135) imply that

∆L(Jtx) = 2z, ∆L(Jxt) = 2. (137)

These scaling dimensions agree with those derived on general grounds in
[49] and thus our correlators indeed display the expected scaling properties.
Note that one interprets Jtt and Jxt as the energy and momentum densities,
respectively, while Jtx and Jxx are the energy fluxes and momentum fluxes,
respectively. Note that in a non-relativistic theory momentum density and
energy flux are independent quantities.

One can derive the remaining correlators using the diffeomorphism Ward
identity

∂t 〈Jtt(t, x)〉 + ∂x 〈Jtx(t, x)〉 = 0, (138)

∂t 〈Jxt(t, x)〉 + ∂x 〈Jxx(t, x)〉 = 0, (139)
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just as in the last subsection. For example, using the explicit expressions
given above it is straightforward to check that

∂x 〈Jtx(t, x)Jtt(0)〉 = −∂t 〈Jtt(t, x)Jtt(0)〉 . (140)

To display the full structure contained in the correlators it is useful to intro-
duce the notation

〈Jµν(t, x)Jρσ(0)〉 = x−∆L(Jµν)−∆L(Jρσ)fµν,ρσ(χ). (141)

Note that fµν,ρσ(χ) is not a tensor but rather a bookkeeping device. One can
then translate the diffeomorphism Ward identities into simple differential
relations between the different components of fµν,ρσ. For example

f ′
tt,tt(χ) = (1 + 3z)ftx,tt(χ) + zχf ′

tx,tt(χ), (142)

where a prime denotes a derivative with respect to χ. It is easy to verify
this relation holds using (129) and (132). If the Ward identities do not get
modified at higher orders in ǫ than this and analogous relations for other com-
ponents would hold to all orders in ǫ! Explicit expressions for all remaining
correlation functions may be found in Appendix E.

5 Dual QFT

In previous sections we found that the QFT dual to the Lifshitz geometries
with z = 1+ǫ2 is a specific deformation of a CFT. One might wonder whether
such Lifshitz critical points can only arise in strongly interacting QFTs with
a holographic dual or whether there is a general such construction of Lifshitz
invariant theories, irrespectively of whether the theory is strongly or weakly
coupled, has a holographic dual or not. We show in this section that this
construction indeed holds in general. We consider a CFT deformed by a
weight d vector J i,

S = SCFT +
√

2ǫ
∫

ddxJ t. (143)

(The factor of
√

2 is included only for the purpose of comparison with the
earlier holographic discussion.)
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5.1 The classical theory

Let us first discuss the classical theory. After the deformation, the theory still
has a conserved energy-momentum tensor Tij , since the theory is invariant
under translations. However, this tensor is not symmetric any longer because
the deformed theory is not Lorentz invariant [48, 10]. One can work out Tij
either as the Noether current corresponding to translations or by coupling
the theory to a vielbein ek̂i and varying with respect to it (hatted indices
correspond to flat tangent directions). In our case the coupling to vielbein is
given by

S[e] = SCFT[e] + ǫ
√

2
∫

ddxeei
t̂J i, (144)

and the stress energy tensor is defined by

Tik̂ = −1

e

δS[e]

δei
k̂

. (145)

This is a conserved tensor, ∇iTik̂ = 0. In our case, it is given by

Tij ≡ Tik̂ejk̂ = TCFTij +
√

2ǫ

(

gijJ
t̂ + ei

t̂Jj − ejk̂

(

δJk

δei
k̂

)

et̂k

)

. (146)

From the energy-momentum tensor at hand we can construct the conserved
current corresponding to Lifshitz rescaling. Consider the following current

li = Tijξj (147)

where ξi is the Lifshitz transformation,

δxi = ξi, ξ0 = zx0, ξa = xa, (a = 1, . . . , d− 1). (148)

Taking the divergence of this current we find

∂ili = (∂iTij)ξj + Tij∂iξj, (149)

where we now consider the theory in a flat background. The first term van-
ishes due to translational invariance. In the relativistic case, Tij is symmetric,
and at this point one symmetrizes, ∇iξj → 1/2(∂iξj+∂jξi). Then the second
term vanishes if ξi is a Killing vector (Poincaré transformations) or it can
be made to be proportional to the trace of stress energy tensor, T i

i , if ξi is
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a conformal Killing vector. In the latter case conformal invariance is thus
linked to the tracelessness of Tij .

In our case, Tij is not symmetric. However,

∂0ξ
0 = z, ∂aξ

b = δba ∂aξ
0 = ∂0ξ

a = 0. (150)

It follows that the conservation of li is equivalent to

0 = ∇ili = zT t
t + T a

a . (151)

We conclude that a non-relativistic theory with a (non-symmetric) stress
energy tensor Tij is Lifshitz invariant if Tij satisfies the trace condition (151).

Taking the trace of (146) we find

T i
i =

√
2ǫ
(

(d+ 1)J t̂ + (δDJ
i)ei

t̂
)

= 0, (152)

where in the first equality we used the fact that the stress energy tensor
of original CFT is traceless and in the second, δDJ i = −(d + 1)J i, which
expresses the fact that J i is a weight d vector. Thus, at the classical level we
have a non-relativistic z = 1 Lifshitz theory.

5.2 Conformal perturbation theory

We now turn to the quantum theory. We will eventually specialize to the
case of a deformation with only the time component participating but we
start by considering a more general deformation:

S = SCFT + ǫ
∫

ddxA(0)iJ
i. (153)

Since the deformation is small we can study the theory using conformal
perturbation theory. Let us consider the partition function Z[ǫ] and expand
in ǫ,

Z[ǫ] = ZCFT − ǫ
∫

ddxA(0)i〈J i(x)〉CFT (154)

+
1

2
ǫ2
∫

|x−y|>Λ
ddxddyA(0)i(x)A(0)j(y)〈J i(x)J j(y)〉CFT

where 〈 〉CFT denotes the computation in the conformal vacuum of the unde-
formed theory and 1/Λ is a UV cut-off. Since CFT 1-point functions vanish,
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the leading non-trivial effect is at order ǫ2. To compute this we will use the
OPE of the vector operators.

The general form of the OPE is

Ji(x)Jj(0) ∼
∑

Ck
ij

Ok

x2d−∆k
, (155)

where ∆k is the dimension of the operator Ok. Inserting this in (154) one
finds divergences whenever

∆k ≤ d. (156)

To remove them we will need to renormalize the sources of Ok. If we do not
have couplings to these operators we have to add them at this point. The
OPE contains the following universal terms

Ji(x)Jj(0) ∼ CJ
Iij
x2d

+ · · · + Aij
klTkl
xd

+ . . . , (157)

where
Iij = δij − 2

xixj
x2

. (158)

and the overall normalization is correlated with the normalization of Ji. The
OPE coefficient Aij

kl is completely fixed by conformal invariance in d = 2
while there is a 2-parameter family of coefficients when d > 2. We will
discuss the two cases in turn. The terms not exhibited are theory specific
rather than universal.

5.2.1 From a relativistic to a Lifshitz critical point

Before we move on to discuss in detail the two cases let us explain how the
relativistic critical point becomes a Lifshitz invariant critical point. After the
relativistic CFT is deformed there are beta functions and one finds that the
dilation Ward identity becomes

〈T i
i 〉 = −

∑

i

βiO
i. (159)

Zeroes of the beta functions will lead to a new relativistic CFT in the IR, since
then 〈T i

i 〉 = 0. As we reviewed above, Lifshitz invariance is characterized by

z〈T t
t 〉 + 〈T a

a 〉 = 0. (160)
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Thus in order to obtain a Lifshitz invariant fixed point starting from a rela-
tivistic one, one of the operators appearing on the rhs of (159) must be the
stress energy tensor and it should have a non-zero beta function such that

〈T i
i 〉 +

1

2
βijg 〈Tij〉 = z〈T t

t 〉 + 〈T a
a 〉, (161)

for some z. In other words, this beta function, instead of generating a flow,
changes the condition of scale invariance from the relativistic one to a Lifshitz
invariant one. If there are beta functions beyond the one for metric in (159)
then one needs these to be zero to remain at a fixed point. We will show in
the next subsections that the deformation we consider is indeed of this type.

5.2.2 The d=2 OPE

In this section we work in two dimensions, in Euclidean signature, introducing
complex coordinates z = x1 + ix2, z̄ = x1 − ix2

4. The vector operator J ≡ Jz
has dimension (hJ , h̄J), while J̄ ≡ Jz̄ has dimension (hJ̄ , h̄J̄). The stress
energy tensor is defined as usual by Tµν = 2√

g
δS
δgµν and (following [67]) we also

define

T (z) = −2πTzz (162)

with a similar formula for the anti-holomorphic part. T has the standard
normalization for a 2d CFT while the normalization of the holographic stress
energy tensor is that of T .

Recall that

T (z)J(w) ∼ hJJ(w)

(z − w)2
+

∂J(w)

(z − w)
+ . . . , (163)

T (z)T (w) ∼ c

2(z − w)4
+ . . . (164)

with obvious generalizations for antiholomorphic components of the vector
and stress-energy tensor. The central charge of the CFT is c.

4We use the conventions in [67]. In partricular, ∂ = 1

2
(∂x1

− i∂x2
), ∂̄ = 1

2
(∂x1

+
i∂x2

), vz = 1

2
(vx1 − ivx2), vz̄ = 1

2
(vx1 + ivx2), gzz̄ = 1

2
, d2z = 2dx1dx2, δ2(z) =

1

2
δ(x1)δ(x2) Note also the useful identity: ∂∂̄ log |z|2 = 2πδ2(z).
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On general grounds the OPE J(z)J(w) takes the following form:

J(z)J(w) ∼ − CJ/2

(z − w)3(z̄ − w̄)
+ k

T

(z − w)(z̄ − w̄)
+ . . . (165)

J̄(z)J̄(w) ∼ − CJ/2

(z − w)(z̄ − w̄)3
+ k

T̄

(z − w)(z̄ − w̄)
+ . . . (166)

J(z)J̄(w) ∼ −c1CJ
δ2(z − w, z̄ − w̄)

(z − w)(z̄ − w̄)
+ . . . (167)

We now consider how to determine the constant k. We consider the 3-point
function 〈T (z)J(z1)J(z2)〉 in the limit when (first) z2 goes to 0 and (then) z1

approaches z2. This correlation function can be determined in two different
ways. First we can exploit the J(z1)J(z2) OPE directly in the correlator
(neglecting a possible trace anomaly, which does not play a role)

〈T (z)J(z1)J(z2)〉 =

〈

T (z)k
T (z2)

z1z̄1

〉

= k
c

2

1

z1z̄1

1

z4
, (168)

where we set z2 = 0. Note that in general the J(z1)J(z2) OPE contains also
descendants of T . But such terms have less singular behaviour when z1 goes
to 0 and it suffices to keep the most singular term only.

Another way to compute this limit of the correlator is to consider an
inversion with respect to z2 (or a point very close to it)

x′i =
xi

x2
. (169)

This way we may send z2 to infinity and then apply the short-distance ex-
pansion (163) to calculate T (z′)J(z′

1). The inversion (169) corresponds to a
local dilatation and a local rotation, such that

〈T (z)J(z1)J(z2)〉 =
1

(zz̄)2

1

(z1z̄1)2

1

(z2z̄2)2

z̄2

z2

z̄1

z1

z̄2

z2

〈

T̄ (z′)J̄(z′
1)J̄(z′

2)
〉

. (170)

The correlation function of the right-hand side then becomes

〈

T̄ (z′)J̄(z′
1)J̄(z′

2)
〉

=

〈

(
h̄J̄ J̄(z′

1)

(z̄′ − z̄′
1)2

+
∂̄J̄(z′

1)

(z̄′ − z̄′
1)

)J̄(z′
2)

〉

(171)

= −CJ h̄J̄
2

1

(z̄′ − z̄′
1)2(z̄′

1 − z̄′
2)3(z′

1 − z′
2)

+ . . . .
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In the limit when z1 goes to 0 we obtain

〈T (z)J(z1)J(z2)〉 = −CJ h̄J̄
2

1

z1z̄1

1

z4
. (172)

Comparing (168) to (172) we obtain the relation

kc = −CJ h̄J̄ = −CJhJ . (173)

A particular example of such a deformation is given by combining free boson
and free fermion CFTs (such that c = c̄ = 3/2). In such a theory the vector
operator Jµ = i∂µXψψ̄ of the correct dimension and using the standard free
field OPEs

X(z)X(w) ∼ − 1

4π
ln |z − w|2 + . . . , (174)

ψ(z)ψ(w) ∼ 1

2π

1

z − w
+ . . . . (175)

it is straightforward to check that CJ = 1
(2π)3 and k = − 1

(2π)3 in agreement

with (173).

5.2.3 Conformal perturbation theory in d=2

Next we use the general OPEs (165) in order to obtain the beta function
and anomaly in the deformed theory. This will allow us to reproduce the
structure of our three-dimensional gravity results.

Consider a deformation of the CFT by a term of the form ǫ
∫

d2xAµJ
µ =

ǫ
∫

d2z(ĀJ + AJ̄), i.e.

S = SCFT + ǫ
∫

d2z(ĀJ + AJ̄). (176)

Then J has dimension (3/2, 1/2) and J̄ has dimension (1/2, 3/2) in the case
of interest.

Expanding exp[−ǫ ∫ d2z(ĀJ + AJ̄)] to the second order in A and using
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the OPEs (165) we get

exp[−ǫ
∫

d2z(ĀJ + AJ̄)] ∼ 1 − ǫ
∫

d2z(ĀJ + AJ̄) (177)

− ǫ2

2
CJ

∫

d2z1d
2z2



c1

(

A(z1)Ā(z2) + Ā(z1)A(z2)
)

δ2(z12z̄12)

z12z̄12

+ Ā(z1)Ā(z2)
[

1

2z3
12z̄12

+
3

2c

T (z2)

z12z̄12

]

+ A(z1)A(z2)
[

1

2z12z̄
3
12

+
3

2c̄

T̄ (z2)

z12z̄12

]



.

Let us take a closer look at possible divergences. All the z2 integrals can be
explicitly evaluated in polar coordinates, e.g.

∫

d2z1d
2z2

A(z1)A(z2)

z12z̄
3
12

= 2π log(Λ−1)
∫

d2z1A(z1)∂̄2A(z1), (178)

where Λ−1 << 1 is a UV cutoff. The cutoff introduces a scale and thus
breaks Weyl invariance, and the logarithmic divergence is removed by a log-
arithmic counterterm. Noting that A∂̄2A + Ā∂2Ā = 1

16
FijF

ij − 1
8
(∂iAi)2 +

total derivative we see that it precisely mimics (50).
Another divergent term arises from

∫

d2z1d
2z2

A(z1)A(z2)

z12z̄12

T̄ (z2) = 4π log(Λ−1)
∫

d2z1A(z1)A(z1)T̄ (z1). (179)

This involves the stress-energy tensor and thus renormalizes the metric (δS =√
g

2
Tµνδg

µν ; recall that T = −2πTzz)

gz̄z̄ → gz̄z̄R = gz̄z̄ − 16π2 3CJ
2c

log(Λ−1)AzAz. (180)

Equivalently

∂gRzz

∂ log(Λ−1)
= 4π2 3CJ

2c
AzAz= AzAz (181)

and similarly

∂gRz̄z̄

∂ log(Λ−1)
= 4π2 3CJ

2c
Az̄Az̄= Az̄Az̄, (182)
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where we used the relation CJ = c/(6π2) which follows from (252). In the
gravity computation this renormalization arose from the h[2](0) correction in
2 dimensions. Recall that h[2](0)ij = −AiAj + 1

2
AkA

kg[0](0)ij . Using

h[2](0)zz=AzAz =
1

4
(AtAt −AxAx + 2iAxAt); (183)

h[2](0)z̄z̄=Az̄Az̄ =
1

4
(AtAt −AxAx − 2iAxAt); (184)

h[2](0)tt = h[2](0)zz + h[2](0)z̄z̄ = −h[2](0)xx=
1

2
(AtAt − AxAx). (185)

If we want to compare with the gravitational results we should analytically
continue to Lorentzian signature AtAt → −AτAτ and h[2](0)tt → −h[2](0)ττ .
Then the CFT expression for h[2](0) agrees exactly with the gravity computa-
tion. Switching on only the deformation by the time-component of the vector
leads to z = 1 + ǫ2, in agreement with our bulk computation.

The most leading divergence comes from

∫

d2z1d
2z2A(z1)Ā(z2)

δ2(z12, z̄12)

z12z̄12

= 2
∫

Λ−1

dρ
δ(ρ)

ρ2

∫

d2z1A(z1)Ā(z1). (186)

This divergence is removed by a local counterterm which is the counterpart
of (47).

The generating functional of connected diagrams transforms under Weyl
variations as [68]

δWW =
dW

d log(Λ)
=

∂W

∂ log(Λ)
+
∑

i

βiOi + a, (187)

where βi are the beta functions for the operators coupled to Oi and a is
the trace anomaly (not to be confused with A). In our case there are non-
vanishing beta functions for the metric g.

On the other hand [68]

∂W

∂ log(Λ)
= −〈T ii 〉 + 〈J i〉Ai. (188)

Comparing with (61) this gives us an interpretation of the non-local term
AitijA

j appearing in A: it comes from beta functions!
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We can compute dW
d log(Λ)

directly from the renormalized action. A arises

essentially from the logarithmic divergences (178) and (179), which combine
to give a total logarithmic divergence proportional to

(

A∂̄2A+ Ā∂2Ā
)

+ 4
3

2c
(ĀT Ā+ AT̄A). (189)

Note that

A∂̄2A + Ā∂2Ā =
1

16
FijF

ij − 1

8
(∂iA

i)2 + total derivative (190)

and

ĀT Ā+ AT̄A =
1

4
AiTijA

j . (191)

Thus the logarithmic divergence (which is equal in this case to the anomaly)
is

(

1

16
FijF

ij − 1

8
(∂iA

i)2
)

+
3

2c
AiTijA

j . (192)

To compare to the gravitational computation recall that Newton’s constant
is related to the central charge of the underlying CFT through c = 3

2G3
. We

rewrite our holographic anomaly (62) as

A =
1

2
Ai(0)〈Tij〉[0]A

j
(0) − c

24π

(1

4
F(0)ijF

ij
(0) − 1

2
(∇iA

i
(0))

2
)

, (193)

where we omitted the curvature term as we cannot see it in our CFT compu-
tation because we are working in a flat background. Recalling that TCFT =
−2πTbulk we see that the gravity and CFT computations indeed produce
exactly the same Weyl anomaly. Recalling that in our holographic model
CJ = 1/(4π2G3) one can check that even the overall coefficient of the anomaly
agrees with the gravity computation.

5.2.4 d>2

In this section we adapt the discussion of [69] to the case of the 3-point
function 〈Tµν(x1)Jσ(x2)Jρ(x3)〉, where J is a vector field of dimension ∆
(equivalent results can be obtained using the embedding formalism [70]).
Here we will assume that there is a unique spin-2 conserved current i.e. the
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stress-energy tensor is unique. Our goal is to derive the general OPE and
compute the beta function for the metric.

Our starting point is the following expression [69] for the 3-point function
under consideration:

〈Tµν(x1)Jσ(x2)Jρ(x3)〉 =
1

xd12x
d
13x

2∆−d
23

Iµν,γδ(x13)Iσα(x23)t̃γδαρ(X12) (194)

=
1

xd12x
d
13x

2∆−d
23

Iσα(x13)Iρβ(x23)tµναβ(X23),

where xij = xi − xj , Iµν(x) = δµν − 2xµxν

x2 , X12 = x13

x2
13

− x23

x2
23

and

Iµν,σρ(x) =
1

2
(Iµσ(x)Iνρ(x) + Iνσ(x)Iµρ(x)) − 1

d
δµνδσρ. (195)

The tensors t and t̃ are homogeneous of degree zero in X and they satisfy

t̃µνσρ(X) = Iσα(X)tµναρ(X), tµνσρ = tνµσρ = tµνρσ, tµµσρ = 0. (196)

We can write the OPE of Tµν with Jρ in the form

Tµν(x1)Jρ(x2) ∼ Aµνρσ(x12)Jσ(x2) +Bµνρλσ(x12)∂λJσ(x2) + . . . . (197)

Using the methods of [69] one can show that

t̃γδαρ(X12) = CJ
xd12

xd13x
d
23

Aγδαρ(X12). (198)

The OPE coefficient Aµνσρ must be traceless and symmetric in the first two
indices and it must satisfy ∂µAµνσρ = 0. Furthermore, IσλAµνλρ must be
symmetric in σ and ρ (this can be shown by multiplying the OPE (197) with
Jλ and taking expectation value on both sides). This fixes its form to be

Aµνσρ(x) =
[

(a+ db)h1
µν(x)gσρ + (d2 − 4)bh1

µν(x)h1
σρ(x) (199)

+ b(h2
µνσρ(x) − h3

µνσρ(x)) + eh̃µνσρ(x)
]

1

xd

with so far undetermined constants a, b, e. We have introduced the following
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notation from [69]

h1
µν(x) =

xµxν
x2

− 1

d
gµν , (200)

h2
µνσρ(x) =

xµxσ
x2

gνρ + (µ ↔ ν, σ ↔ ρ) − 4

d

xµxν
x2

gσρ − 4

d

xσxρ
x2

gµν +
4

d2
gµνgσρ,

h3
µνσρ(x) = gµσgνρ + gµρgνσ − 2

d
gµνgσρ,

h̃µνσρ(x) =
xµxσ
x2

gνρ +
xνxσ
x2

gµρ − xµxρ
x2

gνσ − xνxρ
x2

gµσ.

Under conformal transformations the transformation of the current is
given by the integral over the sphere [71]

δJσ(0) = −
∫

x=ǫ
αµ(x)Tµν(x)xνxd−2Jσ(0)dΩ (201)

where dΩ is normalized such that
∫

dΩ = 1. If we now consider a dilatation
αµ = αxµ under which δJσ(0) = ∆αJσ(0) we get

∆Jσ(0) = −
∫

xµxνxd−2Aµνσρ(x)Jρ(0)dΩ (202)

= −
∫ 1

x2

(

(d+ 1)(d− 2)bxρxσ +
(d− 1)a+ 2b

d
x2gρσ

)

Jρ(0)dΩ.

(this is equivalent to the Ward identity at coincident points). Evaluating the
integrals we obtain an additional relation

a + db = − d∆

d− 1
. (203)

The leading coefficient of the OPE is not restricted by the special conformal
and translation transformations because their contribution to the integral in
(201) vanishes (the integrand is odd in xi). Thus, the leading term in the
OPE of Tµν with Jρ is fixed up to two independent coefficients.

As an aside, we note that the two dimensional case is special. In his
case, the scaling of operators is characterized by two parameters, hJ and h̄J ,
instead of one (the overall conformal dimension ∆ = hJ + h̄J = d). In two
flat dimensions (200) becomes

Aµνσρ(x) =
[

(a+ 2b)h1
µν(x)gσρ + eh̃µνσρ(x)

] 1

x2
(204)

=
[

− 4h1
µν(x)gσρ + eh̃µνσρ(x)

] 1

x2
,
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since h2
µνσρ(x)−h3

µνσρ(x) vanishes identically. The only independent constant
e is determined entirely by the holomorphic weight hJ . One can see this by
considering the OPE (205) in complex coordinates:

TzzJz ∼ 1

z2
(−1 +

e

2
)Jz, (205)

where we have used h1
zz = z̄

4z
, h1

z̄z̄ = z
4z̄

, h̃zzzz̄ = z
4z̄

.
In two dimensions the Ward identity (201) can be rewritten as

δJz(0) =
1

2πi

∫

Γ
[v(z)Tzz(z) − v̄(z̄)T̄z̄z̄(z̄)]Jz(z), (206)

where Γ is some contour around the origin. Using a holomorphic rescaling
v(z) = z, v̄(z̄) = 0, under which δJz(0) = hJJz(0), we identify

e = 2(hJ + 1). (207)

Going back to (194) we can determine part of the JJ OPE. Recall that

〈Tγδ(x2)Tµν(x1)〉 =
CT
x2d

1

Iγδ,µν(x1), (208)

where CT is a constant determining the overall scale of the correlator; it is an
analog of the central charge. Evaluating 〈TJJ〉 by first using the JJ OPE
and comparing it then to (194) we deduce that

Jµ(x)Jν(0) ∼ CJ
Iµν(x)

x2d
+ . . .+

CJ
CT

Iµα(x)Aγδαν(x)Tγδ(0) + . . . . (209)

Note however that Aγδαν(x) is traceless in γ, δ.
From this OPE we can immediately derive the leading divergence in the

partition function

1

2

∫

ddxddyAµ(y)Aν(x)Jµ(y)Jν(x) (210)

=
CJ
2

∫

ddxddy(Aµ(x) + . . .)Aν(x)
Iµν(y − x)

(y − x)2d
+ . . .

=
CJ
2

(d− 2)Λd

d2

∫

ddxAµ(x)Aµ(x) + . . . (d > 2).

In d = 2 leading divergence equals CJ

2
Λ2
∫

d2xAµ(x)Aµ(x). This divergence
can be cancelled by the obvious local counterterm.
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The OPE (209) also allows us to compute the beta function for the back-
ground metric. To this end we expand the deformed action up to second
order in the deformation
∫

ddxddyAµ(y)Aν(x)Jµ(y)Jν(x) (211)

= . . .+
CJ
CT

∫

ddxddy(Aµ(x) + . . .)Aν(x)Iµα(y − x)Aγδαν(y − x)Tγδ(x) + . . . .

The logarithmic divergence comes from the y-integral
∫

ddyIµα(y)Aγδαν(y) (212)

=
∫

ddy
1

yd

[

− d∆

d− 1
h1
γδ(y)(

d− 2

d
gµν − 2h1

µν(y))

+ b(d2 − 4)h1
γδ(

2 − d

d
h1
µν + 2

1 − d

d2
gµν) + e(−h2

γδµν + 4h1
γδh

1
µν)

+ b
(

4(2 − d)

d
h1
γδh

1
µν +

4(2 − d)

d2
h1
γδgµν + h2

γδµν − h3
γδµν

)]

.

Using
∫

dΩ
yiyj
y2

=
gij
d
,

∫

dΩ
yiyjykyl
y4

=
gijgkl + gikgjl + gilgkj

d(d+ 2)
, (213)

this integral can be evaluated to give
∫

ddyIµα(y)Aγδαν(y) = log Λ
2

d+ 2

(

∆

d− 1
+ b

(d− 2)(d+ 1)

d
− e

)

Πγδµν ,

(214)

where Πγδµν = gγµgδν+gγνgδµ−2
d
gµνgγδ is the projector on symmetric traceless

part. Thus the beta function is

βµν = 2
2

d+ 2

CJ
CT

(

∆

d− 1
+ b

(d− 2)(d+ 1)

d
− e

)

(AµAν − 1

d
AλA

λgµν). (215)

Note that it is traceless because Aγδαν is traceless in its first two indices
by construction (this just reflects the fact that the stress energy tensor it
multiplies is traceless). Thus we indeed obtain the expected beta function.

5.3 Three-dimensional examples

We now turn to specific examples of three dimensional field theories.
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5.3.1 Example I

Consider a theory of two free scalar fields φ1 and φ2 with the stress energy
tensor

Tµν = ∂µφ1∂νφ1 − 1

8

(

∂µ∂ν + δµν∂
2
)

φ2
1 + (1 ↔ 2). (216)

The propagators are 〈φ1(x)φ1(0)〉 = 〈φ2(x)φ2(0)〉 = 1
S3

1
x
, where S3 is the

volume of the 3-sphere. For notational convenience we set S3 = 1. The
constant CT = 3/2 in this theory.

We can construct a dimension three vector operator as

Jµ = (φ2
1 − φ2

2)(φ2∂µφ1 − φ1∂µφ2). (217)

It is straightforward to check that this vector is a conformal primary operator
of dimension 3, i.e. it transforms according to

J ′µ(x′) = J
∆−1

d
∂x′µ

∂xν
Jν(x) (218)

with ∆ = 3 and where J is the Jacobian of the coordinate transformation.
Now we compute the Aµνσρ coefficient in the OPE of Tµν with Jσ, see

section 5.2.4). The result is

Tµν(x)Jσ(0) ∼ (219)

· · · +
3

4

[

− 5
xµxνxσxρ

x7
Jρ(0) − 3

xνxσJµ(0) + xµxσJν(0) + xµxνJσ(0)

x5

+ 3
δµνxσxρ
x5

Jρ(0) +
xρ
x5

(

δνσxµ + δµσxν

)

Jρ(0)

+
1

x3

(

δνσJµ(0) + δµσJν(0) +
1

3
δµνJσ(0)

)]

+ · · · ,

where we omitted contributions which are not proportional to Jµ. This form
matches (200) with coefficients b = −3/4 and e = −3/2.
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As a consistency check we compute

Jµ(x)Jν(0) ∼ 8

x6
Iµν(x) +

8

x5

(

3δµν − 7
xµxν
x2

)

φ2
1(0) (220)

+
8

x5
φ1(0)

(

xµ∂νφ1(0) − xν∂µφ1(0)
)

+
8

x5

(

3δµν − 7
xµxν
x2

)

xσφ1(0)∂σφ1(0)

+
8

x3

[

∂µφ1(0)∂νφ1(0) +
xσ
x2

(

xµ∂σφ1(0)∂νφ1(0) + (µ ↔ ν)
)

− 1

2

xρxσ
x2

(

3δµν − 7
xµxν
x2

)

∂σφ1(0)∂ρφ1(0)
]

+
8

x3

[

− 1

2

xσxν
x2

∂µ∂σφ
2
1(0) +

1

4

xρxσ
x2

(

3δµν − 7
xµxν
x2

)

∂σ∂ρφ
2
1(0)

]

+ (1 → 2) + . . .

First, we can read off CJ = 16. Secondly, we note that the last line includes
descendants of φ2

1. Since the 2-point function 〈Tµν(x)φ2
1(y)〉 vanishes, these

terms do not contribute to the 3-point function 〈Tµν(x1)Jσ(x2)Jρ(x3)〉 and
therefore they do not contribute to Aγδαρ coefficient in the 3-point function
or OPE. The remaining terms which are quadratic in derivatives and fields
(fourth and fifth lines) are what we are really interested in since these should
be equal to Iµα(x)Aγδαν(x)Tγδ(0). We find that

Iµα(x)Aγδαν(x)Tγδ(0) (221)

=
8

x3

[

∂µφ1(0)∂νφ1(0) +
xσ
x2

(

xµ∂σφ1(0)∂νφ1(0) + (µ ↔ ν)
)

− 1

2

xρxσ
x2

(

3δµν − 7
xµxν
x2

)

∂σφ1(0)∂ρφ1(0)
]

+ descendants of φ2
1

+ (1 → 2).

We conclude that up to unimportant descendant fields this theory reproduces
(200) with coefficients b = −3/4 and e = −3/2. This immediately gives the
beta function for the background metric field according to (215).

5.3.2 Example II

In our second example we consider the theory of one free real scalar φ and
one free real fermion ψ. The stress-energy tensor is given by

Tµν = T φµν + Tψµν , (222)
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with

T φµν = ∂µφ∂νφ− 1

8

(

∂µ∂ν + δµν∂
2
)

φ2, (223)

Tψµν =
1

2
ψ̄(γµ

↔
∂ ν + γν

↔
∂µ)ψ. (224)

Note that any linear combination of T φµν and Tψµν is still a conserved current.
which leads to some complications as we see below. We can construct a
conformal primary ∆ = 3 vector

Jµ = φ2ψ̄γµψ. (225)

The basic propagators are

〈φ(x)φ(0)〉 =
1

x
,

〈

ψ(x)ψ̄(0)
〉

=
γ · x
x3

, (226)

where the Dirac gamma matrices satisfy as usual {γµ, γν} = 2gµν . Using this
information it is straightforward to obtain

CJ = 4, Cφ
T = 3/2, Cψ

T = −3. (227)

We compute the relevant term in the OPE as

Tµν(x)Jσ(0) ∼ (228)

∼ . . .+
1

x3

(3

2
gµνJσ − 9

2

xµxν
x2

Jσ +
3

2

xρ
x2

(gµσxν + gνσxµ)Jρ

− 3

2

xσ
x2

(xνJµ + xµJν)
)

+ . . .

which matches (200) with b = 0, e = −3/2, determining the beta function
for the background metric field according to (215).

Computing the JJ OPE we find

Jµ(x)Jν(0) (229)

∼ . . .+
1

x3
Iµα(x)

(

(4h1
γδ(x)gαν + 2h̃γδαν(x))Tψγδ(0) − 4h1

γδ(x)gανT
φ
γδ(0)

)

+ . . .

∼ . . .+
1

x3
Iµα(x)

(

(12h1
γδ(x)gαν + 4h̃γδαν(x))(Tψγδ(0) + T φγδ(0))

+6(4h1
γδ(x)gαν + h̃γδαν(x))(

1

Cψ
T

Tψγδ(0) − 1

Cφ
T

T φγδ(0))
)

+ . . . ,
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where we again omitted descendants. The first term on the right-hand side
is precisely CJ

CT
Iµα(x)Aγδαν(x)Tγδ(0) while the remainder gives a vanishing

contribution to the 3-point function 〈Tµν(x1)Jσ(x2)Jρ(x3)〉. As we might
have anticipated, a generic linear combination of T φµν and Tψµν can appear
in this OPE. However this can always be rewritten in terms of the true
stress-energy tensor (i.e. the one obtained by varying the action with respect
to the metric) plus another linear combination which is orthogonal to the
stress-energy tensor. The beta function for the metric arises from the factor
multiplying the true stress-energy tensor.

5.4 Summary

Let us conclude this section by summarising the general structure of the
deformed theory. We observed that the singular terms in the JJ operator
product expansion are associated with the renormalisation of the background
metric and the emergence of Lifshitz symmetry. Using conformal perturba-
tion theory, the universal terms in this OPE give rise to a volume divergence
and a divergence involving the stress energy tensor. Non-universal terms in
the OPE can generate beta functions for other background fields (apart from
the metric) which in general break the Lifshitz symmetry. Such additional
terms in the OPE also imply that one cannot truncate to just the stress en-
ergy tensor and the vector operator, which will be reflected by the absence
of a corresponding consistent truncation in the bulk.

In the two dimensional example, there were no non-universal divergences
occurring in the OPE and therefore this case exactly realised the bulk sce-
nario. In a typical higher dimensional model one may well obtain additional
divergences and therefore running of associated background fields. In the
first of our three dimensional examples there would be divergences arising
from relevant operators such as φ2. We observed using our other 3d exam-
ple that generically additional operators of dimension d can also arise in the
OPE, both descendants of lower dimension operators and primary operators
which are orthogonal to the stress-energy tensor, and in this example there
was a beta function for a second dimension d operator.

50



6 Conclusions

In this paper we have developed holography for Lifshitz spacetimes with
dynamical exponent z = 1+ ǫ2, working perturbatively in ǫ. We showed that
the bulk theory is dual to a d-dimensional CFT deformed by a vector operator
of dimension d. Such a continuous deformation changes the relativistic fixed
point into a non-relativistic one.

Conformal perturbation theory was used to study such deformations of a
generic conformal field theory from the field theory perspective. We argued
and demonstrated in specific examples that the Lifshitz invariance indeed ap-
pears generically in a deformed CFT. Without reference to any holographic
dual, we could see directly from the vector operator OPEs that a renormal-
ization of the background metric is induced by the vector deformation; this
renormalization is responsible for the emergence of Lifshitz symmetry.

In standard QFT discussions, after deforming the CFT infinities give
rise to beta functions and these drive the theory towards a new fixed point
in the IR where the beta functions vanish. In our discussion, the effect of
the beta function is to change the condition of scale invariance from that
of relativistic invariance (i.e. tracelessness of the stress energy tensor) to
Lifshitz invariance (i.e. vanishing of the z weighted trace). In other words,
as soon as the operator is switched on the theory finds itself in the non-
relativistic fixed point rather than flowing to it in the IR.

Various extensions of this work would be possible. Firstly, deformations
by other dimension d tensor operators are likely to lead to similar results since
their OPEs should have a similar structure to that of the JJ OPE discussed
here. In particular, one expects a logarithmic divergence proportional to the
stress energy tensor, which should then induce a beta function for the metric.
It would be interesting to systematically investigate all such possibilities.

The finite temperature behaviour of the system studied here will be ex-
plored in our subsequent paper [65]. As mentioned at the beginning, one
could also explore Lifshitz solutions with running scalar couplings (hyper-
scaling violation). In such a case the dual field theory may admit a similar
interpretation as a specific deformation of a relativistic theory which either
already has or acquires a running coupling (corresponding to the hyperscaling
violation).

Top down embeddings of Lifshitz solutions with z ≥ 1 were found in [41]5,

5Note that there are typos in the uplift of the six-dimensional solutions to ten dimen-
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with flows between such solutions being discussed in [42]. Solutions with z
close to one are interpretable in terms of a vector deformation of the dual CFT
[65]. However, these solutions are obtained from hyperboloidal reductions
of (massive) gauged supergravities, which in turn can be uplifted to ten or
eleven dimensions. In these cases the CFTs dual to the AdS solutions are not
well understood; the reduction on the hyperboloid restricts the dynamical
exponent z to be discrete and there are clearly many additional fields in
the bulk description relative to the Einstein-Proca model explored here. As
discussed in the previous section, these fields (and their corresponding dual
operators) are expected to be associated with deformations of the Lifshitz
points. Despite these complications it is clearly interesting to explore the
dual theories in these models using the techniques of this paper and these
solutions will be further discussed in [65].

Given that the bulk theory is relativistic, it is perhaps not surprising that
the non-relativistic dual theory could be related to a relativistic field theory,
but it is nonetheless highly non-trivial that they are continuously connected.
It has been argued in various works, see the recent discussions in [73, 74], that
holography for Lifshitz theories would more naturally be described using non-
relativistic Hořava-Lifshitz type gravities. It would be interesting to explore
the relationship between the non-relativistic and relativistic descriptions for
z close to one. In particular, one might wonder whether they are dual to
different universality classes of Lifshitz invariant theories.
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A Useful formulae

Under a general transformation gij → gij + δgij the Christoffel symbols and
Ricci tensors transform as:

δΓijk =
1

2
gil(∇jδgkl + ∇kδgjl − ∇lδgjk), (230)

δRij =
1

2

(

∇k∇iδgjk + ∇k∇jδgik − ∇2δgij − ∇i∇jtr(δgij)
)

, (231)

δR = δgijRij + gijδRij . (232)

In particular, under a Weyl rescaling δgij = 2σgij we get:

δΓijk = δik∇jσ + δij∇kσ − gjk∇iσ, (233)

δRij = −gij∇2σ + (2 − d)∇i∇jσ, (234)

δR = −2σR + 2(1 − d)∇2σ. (235)

B Expansion of Einstein equations in d=2

To obtain the coefficients in the expansion (41) we need to work out (25) at
order ǫ2. Note that although ǫ appears in M2 it always multiplies a vector
field and hence it can contribute only at higher order in the ǫ perturbation
theory. Therefore to this order we can set M2 = 1. The rhs of (25) can be
expanded near the boundary as follows

e2rt[2](0)ij + e0r(t[2](2)ij + rτ[2](2)ij) + O(e−2r), (236)

where

t[2](0)ij = A(0)iA(0)j − 1

2
A(0)kA

k
(0)g[0](0)ij , (237)

t[2](2)ij =
1

2

(

A(0)ia(2)j + A(0)i∇j(∇kA
k
(0)) + (i ↔ j)

)

(238)

+
1

2
F(0)i

kF(0)jk − 1

4
F(0)klF

kl
(0)g[0](0)ij

+
(

A(0)
kA(2)k − A(0)

ka(2)k − A(0)
k∇k(∇nA

n
(0))

)

g[0](0)ij

+
6π

c
(〈T kl〉[0]A(0)kA(0)lg[0](0)ij −A(0)kA

k
(0)〈Tij〉[0]),

τ[2](2)ij = A(0)
ka(2)kg[0](0)ij . (239)
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Note also the identity

tr(t[2](2)ij + rτ[2](2)ij) =2A(0)iA
i
(2) + (2r − 1)A(0)ia

i
(2) − Ai(0)∇i(∇jA

j
(0))

+
12π

c
Ai(0)〈Tij〉[0]A

j
(0) − 1

4
RAi(0)A(0)i. (240)

The leading term in r on the right-hand side of (25) indicates that a
logarithmic correction h[2](0)ijr must be included at leading radial order in
g[2]. It is given by (42).

In d = 2 the following identities hold

tr(h[2](0)) = 0 (241)

tr(g[0](2)h[2](0)) =
12π

c
tr(〈T 〉[0]h[2](0)) =

1

4
RAi(0)A(0)i − 12π

c
Ai(0)〈Tij〉[0]A

j
(0).

Equation (27) allows us to compute tr(h[2](2)):

tr(h[2](2)) =
1

2
(∇iA

i
(0))

2 − 1

4
F(0)

ijF(0)ij . (242)

Note also the following useful relation:

tr(h[2](2) − h[2](0)g[0](2)) = A(0)ia
i
(2) +

1

2
∇j

(

Aj(0)(∇iA
i
(0)) − A(0)iF

ji
(0)

)

. (243)

Collecting terms of order ǫ2 and e0r in (25) we get (for general d)

Ric[2]ij

∣

∣

∣

∣

r
−
[

(2 − d)g[2](2) + (2 − d)rh[2](2) +
d− 4

2
h[2](2) (244)

+ g[0](2)g
−1
[0](0)h[2](0) + h[2](0)g

−1
[0](0)g[0](2)

+
1

2
tr
(

(2r − 1)h[2](0)g[0](2) + (1 − 2r)h[2](2) − 2g[2](2)

)

g[0](0)

+
R

4
(1 + 2r)h[2](0)

]

ij
= t[2](2)ij + rτ[2](2)ij ,

where the trace is taken with g−1
[0](0). Taking the trace of the last equation

and using (231) and properties of Ricci tensor in 2 dimensions

Ric[2]ij

∣

∣

∣

∣

r
=
r

2

(

∇k∇jh[2](0)ik + ∇k∇ih[2](0)jk − ∇2h[2](0)ij

)

(245)
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we see that terms proportional to r cancel separately and we obtain (44).
Now we can solve for h[2](2)ij from (244). The result is given in (43). The

divergence of g[2](2)ij is determined from the e−2r terms in (26), leading to

∇j(h[2](2)ij − 2g[2](2)ij) − ∇itr(h[2](2) − 2g[2](2) − g[0](2)h[2](0)) (246)

−gjk[0](2)∇kh[2](0)ij +
6π

c
Al(0)A

k
(0)∇i〈Tkl〉[0] − 1

4
A(0)iA

j
(0)∇jR

= − gjk[0](2)A(0)kF(0)ij + Aj(0)(∂iA(2)j − ∂jA(2)i) −A(2)i(∇jA
j
(0))

+
(

aj(2) − Aj(2) + ∇j(∇kA
k
(0))

)

F(0)ij + A(0)iA(2)r .
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C Expansion of Einstein equations in d=3

Collecting ǫ2 terms (up to e−r) in (25) gives (we keep explicit d in our for-
mulas, since some of our results apply to arbitrary dimension)

e2r
[

− d

2
h[2](0) − 1

2
tr(h[2](0))g[0](0)

]

ij
+Ric[2]ij

∣

∣

∣

∣

r
(247)

+ r
[

(d− 2)h[2](2) + tr(h[2](2) − h[2](0)g[0](2))g[0](0) + tr(g[0](2))h[2](0)

]

ij

+ e0r
[

4 − d

2
h[2](2) + (d− 2)g[2](2) − h[2](0)g

−1
[0](0)g[0](2) − g[0](2)g

−1
[0](0)h[2](0)

+
1

2
tr(2g[2](2) − h[2](2) + h[2](0)g[0](2))g[0](0) +

1

2
tr(g[0](2))h[2](0)

]

ij

+ re−r
[

3(d− 3)

2
h[2](3) +

3

2
tr(h[2](3) − h[2](0)g[0](3))g[0](0)

]

ij

+ e−r
[6 − d

2
h[2](3) +

3(d− 3)

2
g[2](3) − 3

2

(

h[2](0)g
−1
[0](0)g[0](3) + g[0](3)g

−1
[0](0)h[2](0)

)

+
1

4
tr(h[2](0))g[0](3) +

1

2
tr(3g[2](3) + h[2](0)g[0](3) − h[2](3))g[0](0)

]

ij

= e2r
[

d

2
A(0)iA(0)j +

1

2(1 − d)
A(0)kA

k
(0)g[0](0)ij

]

+ e0r
[

1

2
gkl[0](0)F(0)ikF(0)jl

+
d− 2

2
(A(0)iA(2)j + A(0)jA(2)i) − 1

2
(A(0)i∇jA(0)r + A(0)j∇iA(0)r)

+
1

4(1 − d)

(

− 4(A(0)kA
k
(2) + A(0)k∇kA(0)r)g[0](0)ij + F(0)klF

kl
(0)g[0](0)ij

− 2Ak(0)g[0](2)klA
l
(0)g[0](0)ij + 2A(0)kA

k
(0)g[0](2)ij

)]

+ re−ra(3)kA
k
(0)g[0](0)ij

+ e−r
[

d− 3

2
(A(0)iA(3)j + A(0)jA(3)i) +

2

d− 1
A(0)kA

k
(3)g[0](0)ij

+
1

2(d− 1)
Ak(0)g[0](3)klA

l
(0)g[0](0)ij − 1

2(d− 1)
A(0)kA

k
(0)g[0](3)ij

+
1

2

(

a(3)iA(0)j + a(3)jA(0)i − a(3)kA
k
(0)g[0](0)ij

)]

.
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The trace of it in d = 3 gives:

tr(Ric[2]|r) − e2r
[

3tr(h[2](0)) + (−4r + 1)e−2rtr(h[2](2)) (248)

− 4e−2rtr(g[2](2)) + (3r +
1

2
)e−2rtr(g[0](2)h[2](0)) − (r +

1

2
)e−2rtr(g[0](2))tr(h[2](0))

− 9

2
re−3rtr(h[2](3)) − 9

2
e−3rtr(g[2](3)) +

1

2
(9r + 3)e−3rtr(g[0](3)h[2](0))

]

=
3

4
e2rA(0)iA

i
(0) + e0r

(

5

2
A(0)iA

i
(2) − 1

4
Ai(0)∇i∇jA

j
(0) +

1

8
F(0)ijF

ij
(0)

+
3

4
Ai(0)g[0](2)ijA

j
(0) − 1

4
tr(g[0](2))A(0)iA

i
(0)

)

+ 3re−ra(3)iA
i
(0)

+ e−r
(

3A(0)iA
i
(3) +

3

4
Ai(0)g[0](3)ijA

j
(0) − 1

2
a(3)iA

i
(0)

)

.

The Rrr equation (27) gives:

− tr(h[2](0)) + e−2rtr(h[2](2)) +
3

2
re−3rtr(g[0](3)h[2](0) − h[2](3)) (249)

+ e−3rtr(2h[2](3) − 1

2
g[0](3)h[2](0) − 3

2
g[2](3))

=
1

4
A(0)iA

i
(0)

+
1

4
e−2r

(

(∇iA
i
(0))

2 − Ai(0)g[0](2)ijA
j
(0) − 2A(0)iA

i
(2) + Ai(0)∇i∇jA

j
(0) − 1

2
F(0)ijF

ij
(0)

)

− re−3ra(3)iA
i
(0) + e−3r

(

− 1

4
Ai(0)g[0](3)ijA

j
(0) −A(0)iA

i
(3) +

1

2
a(3)iA

i
(0)

)

.
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The Rri Einstein equation (26) reads at order ǫ2

∇jh[2](0)ij − ∇itr(h[2](0)) (250)

+re−2r
(

2hjk[2](0)∇kg[0](2)ij + gjk[0](2)∇ih[2](0)jk − 2∇jh[2](2)ij

+ g[0](2)ik(2∇jh
jk
[2](0) − ∇ktr(h[2](0))) − 2∇itr(g[0](2)h[2](0) − h[2](2))

)

+e−2r
(

∇jh[2](2)ij − 2∇jg[2](2)ij − gjk[0](2)∇kh[2](0)ij − 1

2
hjk[2](0)∇ig[0](2)jk

− 1

2
h[2](0)ik(2∇jg

jk
[0](2) − ∇ktr(g[0](2))) − ∇itr(h[2](2) − 2g[2](2) − g[0](2)h[2](0))

)

+re−3r
(

3hjk[2](0)∇kg[0](3)ij +
3

2
gjk[0](3)∇ih[2](0)jk − 3∇jh[2](3)ij

+
3

2
g[0](3)ik(2∇jh

jk
[2](0) − ∇ktr(h[2](0))) − 3∇itr(g[0](3)h[2](0) − h[2](3))

)

+e−3r
(

∇jh[2](3)ij − 3∇jg[2](3)ij − gjk[0](3)∇kh[2](0)ij − 1

2
hjk[2](0)∇ig[0](3)jk

− ∇itr(h[2](3) − 3g[2](3) − g[0](3)h[2](0))
)

= 2A(0)iA(0)r

+ e−2r
(

2(A(2)iA(0)r + A(0)iA(2)r) − gjk[0](2)F(0)ijA(0)k

+ Aj(0)(∇iA(2)j − ∇jA(2)i) − Aj(2)F(0)ij +
1

2
F(0)ij∇j∇kA

k
(0)

)

+ re−3r
(

2(a(3)iA(0)r + a(3)rA(0)i) + Aj(0)(∇ia(3)j − ∇ja(3)i) − 2aj(3)F(0)ij

)

+ e−3r
(

2(A(3)iA(0)r + A(3)rA(0)i) − gjk[0](3)F(0)ijA(0)k

+ Aj(0)(∇iA(3)j − ∇jA(3)i) − 2Aj(3)F(0)ij + aj(3)F(0)ij

)

.

D Normalization of the current

To fix the normalization of the current in the QFT dual to the Lifshitz
geometry in three bulk dimensions we need to compute the 2-point function
〈Ji(x)Jj(0)〉 holographically and compare its normalization to that in the
CFT. Our discussion follows [75]: note that in [75] only the case of non-
integer conformal dimension was considered but the result can be extracted
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from there by analytic continuation.
The Euclidean action for the bulk vector field is

S =
1

16πGd+1

∫

dd+1x
√
G
[

1

4
F 2 +

1

2
m2A2

]

. (251)

Note that the action in Euclidean signature acquires an overall minus sign.
With such a normalization the two point function in d = 2 for the dual
operator of dimension two is [75]

〈Ji(~x)Jj(0)〉 =
1

4πG3

1

πx4

(

δij − 2
xixj
x2

)

. (252)

In complex coordinates z = x1 + ix2, z̄ = x1 − ix2 the form
(

δij − 2xixj

x2

)

equals
(

−z2+z̄2

2zz̄
iz

2−z̄2

2zz̄

iz
2−z̄2

2zz̄
z2+z̄2

2zz̄

)

.

Using Jz = 1
2
(J1 − iJ2) we get

〈JzJz〉 =
1

4
(〈J1J1〉 − 2i 〈J1J2〉 − 〈J2J2〉). (253)

If the two point function 〈JiJj〉 = CJ

x4

(

δij − 2xixj

x2

)

one obtains

〈JzJz〉 = −CJ
2

1

z3z̄
, (254)

which has a sign in agreement with our CFT computation in (177). Com-
paring (252) to the CFT normalization we can then fix CJ = 1

4π2G3
.

E Stress-energy tensor correlation functions

in two-dimensional Lifshitz theory.

In this appendix we give the 2-point correlation functions of the conserved
stress-energy tensor in the two dimensional theory. Starting from 〈Jtt(t, x)Jtt(0)〉,
〈Jxt(t, x)Jtt(0)〉 (which are given in (129), (134)) and 〈Jxx(t, x)Jxx(0)〉 (see
below) and applying the diffeomorphism Ward identity one can derive all
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other correlation functions. In terms of the quantity fµν,ρσ defined in (141)
the relevant identities are

f ′
tx,tt(χ) = 4zftx,tx(χ) + zχf ′

tx,tx(χ), (255)

f ′
xt,xx(χ) = 2(1 + z)fxx,xx(χ) + zχf ′

xx,xx(χ), (256)

f ′
xt,xt(χ) = (3 + z)fxt,xx(χ) + zχf ′

xt,xx(χ), (257)

f ′
xt,tt(χ) = 2(1 + z)fxt,tx(χ) + zχf ′

xt,tx(χ), (258)

f ′
xt,tt(χ) = 2(1 + z)fxx,tt(χ) + zχf ′

xx,tt(χ), (259)

f ′
xt,tx(χ) = (1 + 3z)fxx,tx(χ) + zχf ′

xx,tx(χ). (260)

These relations together with the symmetry of f with respect to the exchange
of the first pair of indices with the second pair provide enough information to
construct all 2-point correlation functions. We summarize the results here:

〈Jxx(t, x)Jxx(0)〉 =
c

(2π)2
x−2(1+z)

[

χ4 − 6χ2 + 1

(χ2 + 1)4
(261)

− 2ǫ2

3

2χ6 − 43χ4 + 58χ2 − 5

(χ2 + 1)5
+ ǫ2

(χ2 − 1)(χ4 − 14χ2 + 1)

(χ2 + 1)5
log(1 + χ2)

]

,

〈Jxt(t, x)Jxx(0)〉 = −4
c

(2π)2
x−2−(1+z)

[

χ(χ2 − 1)

(χ2 + 1)4
(262)

− ǫ2

6

χ(2χ4 − 5χ2 + 1

(χ2 + 1)5
+ ǫ2

χ(2χ4 − 5χ2 + 1)

(χ2 + 1)5
log(1 + χ2)

]

,

〈Jtx(t, x)Jxx(0)〉 = −4
c

(2π)2
x−(1+z)−2z

[

χ(χ2 − 1)

(χ2 + 1)4
(263)

− ǫ2

6

χ(2χ4 − 5χ2 + 1)

(χ2 + 1)5
+ ǫ2

χ(χ4 − 5χ2 + 2)

(χ2 + 1)5
log(1 + χ2)

]

,

〈Jtx(t, x)Jtx(0)〉 =
c

(2π)2
x−4z

[

− χ4 − 6χ2 + 1

(χ2 + 1)4
(264)

+
ǫ2

6

9χ6 − 209χ4 + 203χ2 − 11

(χ2 + 1)5
+ 2ǫ2

5χ4 − 10χ2 + 1

(χ2 + 1)5
log(1 + χ2)

]

,
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〈Jxt(t, x)Jtx(0)〉 =
c

(2π)2
x−2−2z

[

− χ4 − 6χ2 + 1

(χ2 + 1)4
(265)

+
ǫ2

3

(χ2 − 1)(7χ4 − 94χ2 + 7)

(χ2 + 1)5
− ǫ2

(χ2 − 1)(χ4 − 14χ2 + 1)

(χ2 + 1)5
log(1 + χ2)

]

,

〈Jxt(t, x)Jxt(0)〉 =
c

(2π)2
x−4

[

− χ4 − 6χ2 + 1

(χ2 + 1)4
(266)

+
ǫ2

6

11χ6 − 203χ4 + 209χ2 − 9

(χ2 + 1)5
− 2ǫ2

χ2(χ4 − 10χ2 + 5)

(χ2 + 1)5
log(1 + χ2)

]

,

〈Jtt(t, x)Jxx(0)〉 =
c

(2π)2
x−2(1+z)

[

− χ4 − 6χ2 + 1

(χ2 + 1)4
(267)

+
ǫ2

3

(χ2 − 1)(7χ4 − 94χ2 + 7)

(χ2 + 1)5
− ǫ2

(χ2 − 1)(χ4 − 14χ2 + 1)

(χ2 + 1)5
log(1 + χ2)

]

.

F Scheme-dependence and Weyl invariance

Here we collect some formulas which ae used in our discussion of scheme
dependence and the check of Weyl invariance. We will consider three spe-
cific integrals:

∫ √
γFijF

ij,
∫ √

γ(∇iA
i)2,

∫ √
γRA2. These are finite in two

dimensions and thus one could have added these as finite counterterms. In
this section we consider contributions of these terms to one-point functions,
their Weyl transformations and their possible effect on Ward identities.

Let us begin with
∫ √

γFijF
ij. The variation of such an action is

δ
∫ √

γFijF
ij =

∫ √
γ
[

− 4∇iF
ijδAj + (2FikFjlγ

kl − 1

2
FklF

klγij)δγ
ij
]

.

(268)

We hence obtain the following contributions to one-point functions:

〈J i〉 = −4∇kF
ki
(0), (269)

〈Tij〉 = 4F(0)ikF(0)jlg
kl
[0](0) − F(0)klF

kl
(0)g[0](0)ij . (270)

The Weyl variation is

δW [FijF
ij] = −2σFijF

ij + 4F ijAj∇iσ. (271)

The trace of the stress-energy tensor is:

〈T ii 〉 = 2F(0)ijF
ij
(0). (272)
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Next we consider
∫ √

γ(∇iA
i)2. Its variation is

δ
∫ √

γ(∇iA
i)2 =

∫ √
γ
[

− 2∇j(∇iA
i)δAj (273)

+
(

1

2
(∇kA

k)2γij + Ak∇k∇lA
lγij − 2Aj∇i∇kA

k
)

δγij
]

.

From here we get the following contributions to one-point functions:

〈J i〉 = −2∇j(∇iA
i
(0)), (274)

〈Tij〉 = (∇kA
k
(0))

2g[0](0)ij + 2Ak(0)∇k∇lA
l
(0)g[0](0)ij − 4A(0)j∇i∇kA

k
(0). (275)

The Weyl variation is

δW [(∇iA
i)2] = −2σ(∇iA

i)2 + 2(∇jA
j)Ai∇iσ. (276)

The trace of the stress-energy tensor is:

〈T ii 〉 = 2(∇iA
i)2. (277)

Finally, consider
∫ √

γRA2. Its variation is

δ
∫ √

γRA2 =
∫ √

γ
[

2RAiδAi +RAiAjδγ
ij
]

. (278)

From here we obtain contributions to one-point functions:

〈J i〉 = 2RAi, (279)

〈Tij〉 = 2RAiAj . (280)

The Weyl variation is

δW [RA2] = −2σRA2 − 2A2
�σ. (281)

The trace of the stress-energy tensor is:

〈T ii 〉 = 2RA2. (282)

Putting these results together it is also straightforward to check the Weyl
invariance of the d = 2 analogue of the Deser-Nepomechie action:

LDN = −12π

c
Ai(0)〈Tij〉[0]A

j
(0) +

1

4
F(0)ijF

ij
(0) − 1

2
(∇iA

i
(0))

2 +
R

4
Ai(0)A(0)i.

(283)
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