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Synthesis and characterization of COOH@SiNPs   

Alkenyl-terminated silicon nanoparticles 

Anhydrous octane (300 mL) was added into 500 mL flask with Mg2Si (1.0 g, 7.8 mmol). Then, 

Br2 (3.2 mL, 62 mmol) was added slowly, stirred at room temperature for 2 h and the reaction 

was refluxing for 72 h. After cooling down to room temperature, octane was removed by 

vacuum and new 100 mL dried THF was added. To the solution, 3-butenylmagnesium bromide 

(0.5 M, 100 mL, 50 mmol) was added slowly and stirred at room temperature overnight. It was 

quenched with NH4Cl(aq), washed twice with 2M HCl(aq) and washed with DI water until neutral 

pH was reached. The organic layers were collected and dried with MgSO4. Finally, the 

nanoparticles were purified by size exclusion chromatography (biobeads S-X1) to obtain a 

yellow wax. 

Carboxylic acid terminated silicon nanoparticles (COOH@SiNPs) 

NaIO4 (877 mg, 4.1 mmol) was dissolved in a mixture of CH3CN : ethyl acetate : H2O = 6:6:9 

mL. Alkenyl-terminated silicon nanoparticles and RuCl3 (5 mg, 0.02 mmol) were subsequently 

added. The solution was stirred at room temperature for 4 h. Ethyl acetate was subsequently 

added and washed with deionized water twice. All organic layers were collected and dried with 

MgSO4. The final product was purified by size exclusion chromatography (LH-20) to obtain a 

yellow wax. 

XPS measurement 

X-ray Photoelectron Spectroscopy (XPS) measurements were performed using a Thermo 

Scientific K-Alpha X-ray Photoelectron Spectrometer using a monochromatic AlKα radiation 

(hν= 1486.6 eV). 200 eV analyzer pass energy and a 1 eV energy step size were used in survey 

scan measurements. Element scans were performed with a 50 eV analyzer pass energy and a 

0.1 eV energy step size. All the obtained binding energies were referenced to carbon 1s peak at 

284.8 eV. The samples were prepared on the gold thin film substrates. 
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Figure S1. XPS data of COOH@SiNPs. (a) Survey scan of COOH@SiNPs. (b), (c), (d) Si, 

C, O elemental scan of COOH@SiNPs. 

 

Table S1. XPS data of COOH@SiNPs 

Element Peak BE FWHM eV Area (P) CPS.eV Atomic % 

C1s 284.80 2.88 1220912 75.66 

O1s 531.95 3.02 624249 16.01 

Si2p 102.09 1.87 135063.3 8.33 

 

 



S 5 

 

Molecular weight determination of COOH@SiNPs by analytical ultracentrifugation (AUC) 

 

Figure S2. Analytical ultracentrifugation data. 

 

AUC measurements were performed in an Optima Max-E centrifuge (Beckman-Coulter) 

equipped with a ML-80 fixed angle rotor. The sample was dispersed into EtOH and spun (45000 

rmp) at 20 °C for 18–20 h. The hydrodynamic Stokes’ diameter was obtained from the Svedberg 

equation and the Stoke-Einstein relation, giving the well-known expression for Stoke-

equivalent spherical diameters in AUC1 which is shown above. ρP: particle density, ρs: solvent 

density, ηS: the viscosity of the liquid, M: molecular weight, dP: diameter of NPs, kb: 

Boltzmann’s constant, T: temperature, D: diffusion coefficient, S: sedimentation coefficient. 

In the most intense point (cross line), the diffusion coefficient and sedimentation coefficient 

were 1.1x10-10 m2 sec-1 and S = 0.9, respectively. The size of the COOH@SiNPs was calculated 

using the above equation resulting in a diameter of 3.25 nm, a molecular weight of 10546 Dalton, 

and a density of 973 kg m-3. 
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Determination of carboxylic acid content on COOH@SiNPs 

The amount of carboxylic acid group can be quantified by acid-base titration. The NaOH 

aqueous solution (5 x 10-3 M) was added dropwise to the COOH@SiNPs (20.0 mg) solution 

and then the pH change was monitored till the end point of titration. The equivalent point was 

calculated from the second derivative of the titration curve corresponding to 5.0 mL (Figure 

S3). Thus, the amount of carboxylic acid groups was 1.17 μmol per 1 mg SiNPs. Based on the 

particle size and molecular weight determined by AUC measurement, 15 carboxylic acid groups 

were present on one single COOH@SiNP. 

 

Figure S3. The acid-base titration curve of COOH@SiNPs. 

Synthesis and characterization of sugar-dye@SiNPs   

Synthesis of COOH-dye@SiNPs 

To a solution of COOH@SiNPs (30.0 mg, corresponding to 35.1 µmol carboxylic acid groups) 

in DMF (1.0 mL), dye-ATTO647-NH2 stock solution (586 µL of 1.25 mM, 0.73 µmol, ATTO-

TEC) was added under Ar. EDC (13.5 mg, 70.2 µmol), HOBT (10.8 mg, 70.2 µmol) and NEt3 

(10 µL, 71.7 µmol) were then added to the reaction mixture in the dark under Ar and at room 

temperature for 24 h. When the reaction was completed, the DMF was evaporated. The residues 

of nanoparticles were dissolved in ethyl acetate (EtOAc) and were extracted with 1N HCl. The 

organic layer was collected and then evaporated in vacuo to yield COOH-dye@SiNP (25 mg). 
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Figure S4. (a) Synthetic scheme of the preparation of COOH-dye@SiNPs; (b) dynamic light 

scattering (DLS) spectrum of COOH@SiNPs and COOH-dye@SiNPs in methanol; (c) a 

representative photograph of COOH@SiNPs (left) and COOH-dye@SiNPs (right) in DMF; 

(d) the UV absorption spectrum of COOH@SiNPs and COOH-dye@SiNPs in DMF. 

Proton NMR spectra of amino sugar ligands: Glc 1, Lac 2 and Gg3 3.  

Figure S5. NMR spectrum of amino Glc-ligand 1. 
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Figure S6. NMR spectrum of amino Lac-ligand 2.

Figure S7. NMR spectrum of amino Gg3-ligand 3. 
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Synthesis of Glc-dye@SiNPs, Lac-dye@SiNPs and Gg3-dye@SiNPs. 

To a serious solution of COOH-dye@SiNPs (5.0 mg) in dried DMF (1.5 mL), amino 

carbohydrate ligands Glc 1, Lac 2 and Gg3 3 (0.58 mL of stock 10 mM solution, 5.85 µmol) 

were added under Ar, respectively. EDC (2.3 mg, 11.7 µmol), HOBT (1.8 mg, 11.7 µmol) and 

Et3N (10 μL, 71.7 μmol) were added to each reaction mixture and stirred at room temperature 

for 48 h in the dark under Ar. After 48 h, ethanolamine (10 µL, 165.0 µmol) was added to each 

reaction mixture for capping the unreacted carboxyl acid group for another 18 h in the dark 

under Ar. After the reaction, DMF was removed by vacuum and all three samples were purified 

by size exclusion chromatography (LH-20) and dialyzed with Float-A-Lyzer G2 (in size of 0.5 

kD to 1.0 kD)  to get Glc-dye@SiNPs, Lac-dye@SiNPs and Gg3-dye@SiNPs, respectively. 

Dynamic light scattering (DLS) and surface charge determination (zeta-potential) 

measurements  

Dynamic light scattering (DLS) for hydrodynamic diameter determination 

DLS measurements were carried out at a scattering angle of 173° with a Malvern Zeta 

Nanosizer working at 4-mW He–Ne laser (633 nm). The COOH@SiNPs and COOH-

dye@SiNPs were measured in methanol (Figure S4b) and sugar-dye@SiNP (Glc-dye@SiNPs, 

Lac-dye@SiNPs and Gg3-dye@SiNPs) were measured in PBS (Figure S8). 

 

Figure S8. DLS hydrodynamic diameter spectrum of sugar-dye@SiNPs in double distilled-

water. 

Zeta potential 
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A Malvern Zetasizer instrument was used to measure the electrophoretic mobility of 

nanoparticles. The Helmholtz-Smoluchowski equation was used to correlate the measured 

electrophoretic mobilities to the zeta potentials. Three replicates of each sample were measured 

six times at 25°C in double distilled water (Figure 1b). 

Infrared spectroscopy spectra 

 

Figure S9. IR spectra of sugar-dye@SiNPs.  
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Proton- and carbon-NMR spectra of sugar-dye@SiNP and molecular weight 

estimation. 

 

Figure S10. Proton-NMR of sugar-dye@SiNPs. In addition, CHCl3 (6.5 μmol) was added to 

CD3OD as internal standard for sugar quantification on sugar-dye@SiNPs. 

Table S2.  Sugar determination on the nanoparticles and its corresponding molecular weight 

calculation.  

 Glc-dye@SiNP Lac-dye@SiNP Gg3-dye@SiNP 
mg (in NMR tube) 3.00 5.50 2.00 

CHCl
3 
(intenal standard, 6.5 μmol) 1.00 1.00 1.00 

NMR integral, H1 ratio 0.44 0.80 0.20 
ligands umol in total 2.86 5.20 1.30 
ligands umol per mg 0.95 0.95 0.65 

coupling yield 81.5% 80.8% 55.6% 
sugar per nanoparticle 12.2 12.1 8.3 

molecular weight of each SiNP 13.7 kD 15.7 kD 15.7 kD 
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(b)
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Figure S11. (a) Carbon NMR spectra of sugar-dye@SiNPs. (b) The enlarged carbon NMR 

spectra in the sugar anomeric carbon section. 

 

Photoluminescence excitation spectrum of COOH-dye@SiNPs and sugar-dye@SiNPs. 

 

Figure S12. Emission spectra were excited at 370 and 600 nm.   
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XPS of COOH-dye@SiNPs and sugar-dye@SiNPs 

 

Figure S13. XPS data of COOH-dye@SiNPs. (a) survey scan of COOH-dye@SiNPs. (b), 

(c), (d) Si, C, O elemental scan of COOH-dye@SiNPs. 

 

Table S3. XPS data of COOH-dye@SiNPs 

Element Peak BE FWHM eV Area (P) CPS.eV Atomic % 

C1s 284.80 3.04 912666.1 47.66 

O1s 531.65 3.08 1661913 35.91 

N1s 399.83 4.19 82390.6 2.77 

Si2p 101.85 2.65 65753.01 3.42 
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Figure S14. XPS data of Glc-dye@SiNPs. (a) survey scan of Glc-dye@SiNPs. (b), (c), (d), 

(e) Si, C, O, N elemental scan of Glc-dye@SiNPs. 

Table S4. XPS data of Glc-dye@SiNPs. 

Element Peak BE FWHM eV Area (P) CPS.eV Atomic % 

C1s 284.80 3.09 1181356 66.82 

O1s 531.50 3.06 813437.7 19.03 

N1s 399.11 2.68 288407 10.51 

Si2p 101.65 2.56 31820.55 1.79 
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Figure S15. XPS data of Lac-dye@SiNPs. (a) survey scan of Lac-dye@SiNPs. (b), (c), (d), 

(e) Si, C, O, N elemental scan of Lac-dye@SiNPs. 

Table S5. XPS data of Lac-dye@SiNPs. 

Element Peak BE FWHM eV Area (P) CPS.eV Atomic % 

C1s 284.80 3.22 1111220 64.50 

O1s 531.58 3.06 948267.9 22.77 

N1s 399.43 2.75 239710.7 8.97 

Si2p 101.59 2.72 31995.13 1.14 
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Figure S16. XPS data of Gg3-dye@SiNPs. (a) survey scan of Gg3-dye@SiNPs. (b), (c), (d), 

(e) Si, C, O, N elemental scan of Gg3-dye@SiNPs. 

Table S6. XPS data of Gg3-dye@SiNPs. 

Element Peak BE FWHM eV Area (P) CPS.eV Atomic % 

C1s 284.80 3.07 1168631 67.13 

O1s 531.55 3.06 816307.9 19.40 

N1s 399.43 2.61 266307 9.86 

Si2p 101.74 2.40 25846.21 1.48 
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TEM of sugar-dye@SiNPs 

 

Figure S17. TEM images of different sugar-dye@SiNPs. (a) Glc-dye@SiNPs. Scale bar: 20 

nm; (b) Lac-dye@SiNPs. Scale bar: 50 nm; (c) Gg3-dye@SiNPs. Scale bar: 50 nm. 

Surface plasmon resonance (SPR) measurements 

For binding studies, GM3-functionalized and biotinylated poly[N-(2-

hydroxyethyl)acrylamide] polymers (GM3-biotin-PAA; Lectinity Holdings, Moscow, Russia) 

were immobilized on a streptavidin-coated SA sensor chip (GE Healthcare, Waukesha, WI, 

USA). SPR measurements were performed using a Biacore T100 instrument (GE Healthcare). 

As control, Lactose (Lac)-biotin-PAA was immobilized on the reference flow cell. The chip 

surface was first conditioned with three consecutive injections of 1 M NaCl in 50 mM NaOH 

(one minute each). A stock solution of Lac- or GM3-biotin-PAAs in MilliQ (1 mg/mL) was 

used for preparation of a working solution (15 µg/mL) in HBS buffer (10 mM Hepes, 150 mM 

NaCl, 2 mM CaCl2, 2 mM MgCl2, 0.005% Tween 20, pH 7.4). For immobilization, each 

working solution was injected at a flow rate of 5 µL/min for 420 s. After injection of the ligand, 

an extra wash using 50% isopropanol in 1 M NaCl and 50 mM NaOH was included according 

to the manufacturer’s instructions. The HBS buffer was also used as running buffer. For binding 

studies, different concentrations of the sugar-dye@SiNPs (20, 40, 60, and 80 µg/mL) were 

prepared in HBS buffer using a stock solution of 10 mg/mL in MilliQ. The sugar-dye@SiNPs 

were injected at a flow rate of 30 µL/min for 120 s followed by a dissociation phase of 180 s. 

To regenerate the chip after each run, two consecutive 30 s injections of EDTA (20 mM) in 

HBS buffer were performed at a flow rate of 100 µL/min followed by a stabilization time of 

30 s. Data were analyzed using the Biacore Evaluation software (GE Healthcare). For analysis, 

the response units measured in the reference flow cell were subtracted from the ones detected 

in the flow cell with immobilized GM3-biotin-PAA. Additionally, the response units of a blank 

sample (running buffer alone) were subtracted from the binding curve of each analyte. Final 
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SPR sensorgrams were generated using the Prism software (GraphPad Software, La Jolla, CA, 

USA). Steady-state affinity analysis was performed using the Biacore T100 Evaluation 

Software (GE Healthcare). 

For interaction studies with the asialoglycoprotein receptor (ASGPR), recombinant human 

ASGPR H1 (R&D Systems, Minneapolis, MN, USA) was immobilized on a CM5 sensor chip 

(GE Healthcare) using the amine coupling kit (GE Healthcare). The chip surface was first 

activated by injection of the EDC/NHS mixture according to the manufacturer’s instructions. 

The ASGPR H1 was dissolved in a 10 mM sodium acetate buffer, pH 4.0, to adjust a 

concentration of 50 µg/mL and was injected for 480 s in a flow rate of 10 µL/min. Potential 

free reactive sites were subsequently quenched using ethanolamine (1 M, pH 8.5). A reference 

flow cell was only activated and quenched without ligand immobilization. The carbohydrate-

functionalized Si-NPs were injected at different concentrations (5, 20, and 40 µg/mL) for 120 s 

followed by a dissociation phase of 180 s. To regenerate the chip after each run, EDTA (20 mM) 

in HBS buffer was injected at a flow rate of 100 µL/min for 30 s followed by a stabilization 

time of 30 s. Data were analyzed using the Biacore Evaluation software as described earlier.  
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Figure S18. SPR analysis of the interaction of immobilized asialoglycoprotein receptor with 

the sugar-dye@SiNPs. For initial SPR binding studies, the recombinant human ASGPR H1 

was immobilized on a CM5 sensor chip. Various concentrations (5, 20, or 40 µg/mL) of (A) 

Glc-dye@SiNPs, (B) Lac-dye@SiNPs, or (C) Gg3-dye@SiNPs were flowed over the chip 

surface as analytes to detect binding to the immobilized ASGPR. The SPR sensorgrams were 

generated by subtraction of the reference flow cell as well as of the signals obtained by injection 

of the running buffer alone. As expected, specific binding was most prominent for the Gg3-

dye@SiNPs. Steady-state affinity analysis revealed an apparent kD value in the micromolar 

range using a theoretical molecular weight of the Gg3-dye@SiNPs of 15.7 kDa. 
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Biological Studies 

Flow cytometry 

 For cell binding studies, B16F10 cells (ATCC® CRL-6475) were used as a murine melanoma 

cell line exhibiting high levels of the GM3 ganglioside2. Cells were seeded in a 48-well plate 

using complete DMEM (supplemented with 10% fetal calf serum, 100 U/mL penicillin, 

100 µg/mL streptomycin, 2 mM ʟ-glutamine) and were cultivated overnight. The next day, cells 

were washed once with PBS and 100 µL of fresh FCS-free DMEM containing various 

concentrations (2 or 5 μg/mL) of the respective sugar-dye@SiNPs were added. After one or 

two hours of incubation at 37°C, cells were washed three times with ice-cold PBS. Subsequently, 

cells were measured by flow cytometry using a FACSCanto II flow cytometer (BD Biosciences, 

San Jose, CA, USA). Data were analyzed with the FlowJo analysis software (Tree Star Inc., 

Ashland, OR).  

Figure S19. The B16F10 melanoma cells were incubated with 2 or 5 μg/mL of the different 

sugar-dye@SiNPs for 1 or 2 h, respectively. Binding/uptake of the carbohydrate-

functionalized SiNPs was analyzed by flow cytometry and was compared to untreated cells 

(shaded curve). 

 

Confocal microscopy studies 

For cell binding/uptake studies, the GM95 cell line (RIKEN BioResource Center) was used as 

control since it represents a B16F10-derived mutant cell line that does not express the GM3 

ganglioside3 which was confirmed by thin layer chromatography (data not shown). For 
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fluorescence microscopy studies, 6 x 104 B16F10 cells in 1 mL complete DMEM were seeded 

onto 12-mm coverslips (Menzel, Braunschweig, Germany) in 24-well plates and were 

incubated at 37 °C overnight. The next day, cells were washed with PBS and the sugar-

dye@SiNPs in 200 μL of FCS-free DMEM with 20 μg/mL were added, respectively. After 2 h 

incubation at 37 °C, cells were washed three times with PBS supplemented with 3% BSA and 

were fixed by incubation in 4% paraformaldehyde in PBS in the dark for 15 min. Cells were 

again washed twice followed by permeabilization of the cells using 0.1% Triton in PBS and 

blocking with 5% FCS in PBS to exclude unspecific binding for 30 minutes at room 

temperature. Subsequently, a rabbit anti-EEA1 (early endosome antigen 1) antibody (Thermo 

Fisher Scientific, Waltham, MA, USA) was diluted 1:200 in the blocking buffer, added to the 

cells and incubated for one hour. Cells were washed three times and a FITC-labeled anti-rabbit 

IgG antibody (Fisher Scientific, Schwerte, Germany) was added 1:800 in the blocking buffer. 

In the same step, 190 nM of Alexa 555-labeled phalloidin (tebu-bio, Offenbach, Germany) was 

added to the cells in order to stain the actin cytoskeleton. After one hour incubation, cells were 

washed three times with a PBS solution containing 3% BSA. Cells were finally washed and 

mounted in 2,2’-Thiodiethanol mounting media (Sigma-Aldrich). Cells were then analyzed 

using a LSM 700 confocal scanning microscope (Zeiss, Oberkochen, Germany).  

The colors of the confocal microscopy images correspond to the following signals:  

1) The blue color derives from the inherent fluorescence of the SiNPs.  

2) The B16F10 and GM95 cell morphology was shown by differential interference contrast 

microscopy. 

3) The green color is associated with EEA-1 on early endosomes. 

4) The red color corresponds to the actin cytoskeleton.  

5) The purple color derives from the additional ATTO-647N dye coupled to the Si-NPs. 
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Figure S20. Z-stack of B16F10 cells stained for the actin cytoskeleton (red) and early 

endosomes but no incubation with SiNPs (as blank control).  

 

Figure S21-1. First image of the Z-stack of B16F10 cells treated with 20 µg/mL of Gg3-

dye@SiNPs for 2 hours. 
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Figure S21-2. Second image of the Z-stack of B16F10 cells treated with 20 µg/mL of Gg3-

dye@SiNPs for 2 hours.  

 

 

Figure S21-3. Third image of the Z-stack of B16F10 cells treated with 20 µg/mL of Gg3-

dye@SiNPs for 2 hours.  
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Figure S21-4. Forth image of the Z-stack of B16F10 cells treated with 20 µg/mL of Gg3-

dye@SiNPs for 2 hours.  

 

 

Figure S21-5. Fifth image of the Z-stack of B16F10 cells treated with 20 µg/mL of Gg3-

dye@SiNPs for 2 hours.  
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Figure S21-6. Sixth image of the Z-stack of B16F10 cells treated with 20 µg/mL of Gg3-

dye@SiNPs for 2 hours.  

 

 

Figure S21-7. Seventh image of the Z-stack of B16F10 cells treated with 20 µg/mL of Gg3-

dye@SiNPs for 2 hours.  



S 27 

 

 

Figure S21-8. Eighth image of the Z-stack of B16F10 cells treated with 20 µg/mL of Gg3-

dye@SiNPs for 2 hours.  

 

 

Figure S21-9. Ninth image of the Z-stack of B16F10 cells treated with 20 µg/mL of Gg3-

dye@SiNPs for 2 hours.  
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Figure S21-10. Tenth image of the Z-stack of B16F10 cells treated with 20 µg/mL of Gg3-

dye@SiNPs for 2 hours.  

 

 

Figure S21-11. Eleventh image of the Z-stack of B16F10 cells treated with 20 µg/mL of Gg3-

dye@SiNPs for 2 hours.  
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Figure S21-12. Twelfth image of the Z-stack of B16F10 cells treated with 20 µg/mL of Gg3-

dye@SiNPs for 2 hours.  

 

 

Figure S22. Z-stack of B16F10 cells treated with 20 µg/mL of Glc-dye@SiNPs for 2 hours.  
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Figure S23. Z-stack of B16F10 cells treated with 20 µg/mL of Lac-dye@SiNPs for 2 hours.  

 

Figure S24. Z-stack of GM95 cells (as blank control) stained for the actin cytoskeleton (red) 

and early endosomes (green). Scale bar 10 μm. 
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Figure S25. Z-stack of GM95 cells treated with 20 µg/mL of Gg3-dye@SiNP for 2 hours. Scale 

bar 10 μm. 
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Figure S26. Z-stack of GM95 cells treated with 20 µg/mL of Glc-dye@SiNP for 2 hours. Scale 

bar 10 μm. 

 

 

Figure S27. Z-stack of GM95 cells treated with 20 µg/mL of Lac-dye@SiNP for 2 hours. Scale 

bar 10 μm. 
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