
Efficient Low-Rank Solution of Large-Scale Matrix Equations

Dissertation

zur Erlangung des akademischen Grades

doctor rerum naturalium
(Dr. rer. nat.)

von Patrick Kürschner, M. Sc.

geb. am 26.02.1983 in Frankenberg

genehmigt durch die Fakultät für Mathematik

der Otto-von-Guericke-Universität Magdeburg

Gutachter: Prof. Dr. Peter Benner

Prof. Dr. Serkan Gugercin

eingereicht am: 15.10.2015

Verteidigung am: 19.02.2016

Shaker Verlag
Aachen 2016

Forschungsberichte aus dem Max-Planck-Institut
für Dynamik komplexer technischer Systeme

Band 45

Patrick Kürschner

Efficient Low-Rank Solution of
Large-Scale Matrix Equations

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche
Nationalbibliografie; detailed bibliographic data are available in the Internet at
http://dnb.d-nb.de.

Zugl.: Magdeburg, Univ., Diss., 2016

Copyright Shaker Verlag 2016
All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise, without the prior permission
of the publishers.

Printed in Germany.

ISBN 978-3-8440-4385-3
ISSN 1439-4804

Shaker Verlag GmbH • P.O. BOX 101818 • D-52018 Aachen
Phone: 0049/2407/9596-0 • Telefax: 0049/2407/9596-9
Internet: www.shaker.de • e-mail: info@shaker.de

PUBLICATIONS

Large parts of this thesis have been published in the papers summarized below.
The Chapters 3 and 4 are rearranged, partly revised, and extended versions of

[37]: Peter Benner, Patrick Kürschner, Jens Saak: An Improved Numeri-
cal Method for Balanced Truncation for Symmetric Second Order Systems,
Mathematical and Computer Modelling of Dynamical Systems, 19(6), pp.
593–615, 2013.

[38]: Peter Benner, Patrick Kürschner, Jens Saak: Efficient Handling of
Complex Shift Parameters in the Low-Rank Cholesky Factor ADI Method,
Numerical Algorithms, 62(2), pp. 225–251, 2012.

[36]: Peter Benner, Patrick Kürschner, Jens Saak: A Reformulated Low-
Rank ADI Iteration with Explicit Residual Factors, Proceedings of Applied
Mathematics and Mechanics, 19(1), pp. 585–586, 2013.

[32]: Peter Benner, Patrick Kürschner: Computing Real Low-Rank Solu-
tions of Sylvester Equations by the Factored ADI Method, Computers &
Mathematics with Applications 67(9), pp. 1656–1672, 2014.

Chapter 5 includes

[39]: Peter Benner, Patrick Kürschner, Jens Saak: Self-Generating and Ef-
ficient Shift Parameters in ADI Methods for Large Lyapunov and Sylvester
Equations, Electronic Transactions on Numerical Analysis, 43, pp. 142–162,
2014.

but several substantial extensions were added.

Chapter 6, especially Section 6.2, contains a modified version of

[41]: Peter Benner, Patrick Kürschner, Jens Saak: Low-Rank Newton-ADI
methods for Large Nonsymmetric Algebraic Riccati Equations, Journal of
the Franklin Institute 353(5), pp. 1147—1167, 2016.

iii

Chapter 7 contains selected material from [37] as well as

[33]: Peter Benner, Patrick Kürschner, Jens Saak: A Goal-Oriented Dual
LRCF-ADI for Balanced Truncation, I. Troch and F. Breitenecker, eds., Vol.
7 of Proceedings of the MathMod 2012, IFAC-PapersOnline, Mathematical
Modelling, Vienna, Austria, 2012, pp. 752–757.

[178]: C. Nowakowski, Patrick Kürschner, Peter Eberhard, Peter Benner:
Model Reduction of an Elastic Crankshaft for Elastic Multibody Simulations,
ZAMM - Journal of Applied Mathematics and Mechanics 93(4), pp. 198–216,
2013.

[40]: Peter Benner, Patrick Kürschner, Jens Saak: Frequency-Limited Bal-
anced Truncation with Low-Rank Approximations, SIAM Journal on Scien-
tific Computing 38(1), pp. A471–A499, 2016.

In particular, Section 7.3 is a slightly altered version of [40].

iv

ACKNOWLEDGEMENTS

First of all, I want to thank my supervisor Professor Peter Benner for his guidance
during all these years I have been employed in his research group. He always managed
to push me towards the right directions. Without his inspiring lectures in my days as
undergraduate, I would not have found so much delight in numerical linear algebra and
control theory.
I also thank Professor Serkan Gugercin who agreed to be the second referee for this
thesis.
During my time in the research groups Mathematics in Industry and Technology Tech-

nik it the TU Chemnitz and Computational Methods in Systems and Control Theory at
the Max Planck Institute for Dynamics of Complex Technical Systems in Magdeburg, I
had the pleasure to work or even share an office with several friendly colleagues. I am
very grateful for all the countless inspiring research-related and private conversations. A
few of those good colleagues I’d like to point out explicitly. I want to thank Jens Saak for
introducing me to the topic of matrix equations and to TikZ a long time ago in Chem-
nitz. I would also like to thank my colleagues Tobias Breiten, Matthias Voigt, André
Schneider, Norman Lang, and Heiko Weichelt for creating such a friendly atmosphere
at work. The latter deserves my special gratitude for proofreading this thesis.
I am also thanking Michiel Hochstenbach from TU Eindhoven and Melina Freitag

from the University of Bath. The scientific exchange with them inspired and helped
me a lot in pursuing my second favorite topic in numerical linear algebra: large-scale
eigenvalue problems. Both organized research visits for me at their universities.

Zum Abschluß gilt mein Dank meinen Eltern, die mich stets unterstützt und mir
Rückhalt gegeben haben. Natürlich danke ich auch meiner Freundin Maria, die immer
für mich da war, inbesondere in der Zeit des Aufschreibens der Arbeit. Ich wünsche Dir
ein ebenso schönes Promotionsstudium.

v

ABSTRACT

In this thesis, we investigate the numerical solution of large-scale, algebraic
matrix equations. The focus lies on numerical methods based on the al-
ternating directions implicit (ADI) iteration, which can be formulated to
compute approximate solutions of matrix equations in form of low-rank fac-
torizations. These low-rank versions of the ADI iteration can be used to deal
with large-scale Lyapunov and Sylvester equations. The major part of this
thesis is devoted to improving the performance of these iterative methods.
At first, we develop algorithmic enhancements that aim at reducing the com-
putational effort of certain stages in each iteration step. This includes novel
low-rank expressions of the residual matrix, which allows an efficient compu-
tation of the residual norm, and approaches for the reduction of the amount
of occurring complex arithmetic operations. ADI based methods rely on shift
parameters, which influence how fast the iteration generates an approximate
solution. For this, we propose novel shift generation strategies which improve
the convergence speed of the low-rank ADI iteration and, at the same time,
can be performed in an automatic and cost efficient numerical way. Later
on, the improved low-rank ADI methods for Lyapunov and Sylvester equa-
tions are used in Newton type methods for finding approximate solutions of
quadratic matrix equations in the form of symmetric, continuous-time, but
also more general nonsymmetric, algebraic Riccati equations. In the last
part of this thesis, the methods for solving large-scale Lyapunov equations
are applied in order to execute balanced truncation model order reduction for
linear control systems in a numerically feasible way. For frequency-limited
balanced truncation, which is a special variant of balanced truncation, a
novel algorithmic framework is proposed that enables an efficient numerical
execution of this model reduction technique.

vii

ZUSAMMENFASSUNG

Die vorliegende Arbeit befasst sich mit der numerischen Lösung von großska-
ligen, algebraischen Matrixgleichungen. Der Fokus liegt hierbei auf numeri-
schen Verfahren, die auf der Methode der alternierenden Richtungen (ADI)
basieren und so formuliert werden können, dass sie Näherungslösungen von
Matrixgleichungen in Form von Niedrigrangfaktorisierungen berechnen. Die-
se Niedrigrang-Versionen der ADI Iteration sind in der Lage, hochdimensio-
nale Lyapunov- und Sylvestergleichungen zu behandeln. Im Hauptteil dieser
Arbeit werden numerische Verbesserungen dieser iterativen Verfahren unter-
sucht. Dazu werden einige algorithmische Erweiterungen entwickelt, um den
Rechenaufwand von bestimmten Abschnitten der einzelnen Iterationsschrit-
te zu senken. Dies beinhaltet neue Niedrigrangdarstellungen des Residuums,
welche eine recheneffiziente Berechnung der Residuumsnorm erlauben, sowie
Strategien zur Verringerung der Anzahl auftretender Rechenoperationen in
komplexer Arithmetik. Die ADI Iteration benötigt Shiftparameter, die be-
einflussen, wie schnell das Verfahren eine Näherungslösung findet. Neuartige
Strategien zur Shiftberechnung werden vorgestellt, die sowohl die Konver-
genzgeschwindigkeit der Niedrigrang-ADI Iteration verbessern, als auch au-
tomatisch und kosteneffizient durchgeführt werden können. Die verbesserten
Niedrigrang-ADI Iterationen werden später innerhalb Newton-artiger Ver-
fahren angewendet, um Näherungslösungen von quadratischen Matrixglei-
chungen zu berechnen. Dabei werden symmetrische, zeit-kontinuierliche und
auch die allgemeineren unsymmetrischen, algebraischen Riccatigleichungen
betrachtet. Im letzten Abschnitt der vorliegenden Arbeit finden die Verfah-
ren zur numerischen Lösung von großskaligen Lyapunovgleichungen Anwen-
dung, um eine Modellordnungsreduktion für lineare Regelungssysteme mit-
tels balancierten Abschneidens mit geringen Rechenaufwand durchzuführen.
Für balanciertes Abschneiden in begrenzten Frequenzintervallen, eine Son-
derform des balancierten Abschneidens, wird eine neue numerische Strategie
erarbeitet, die eine effiziente numerische Durchführung dieses speziellen Mo-
dellordnungsreduktionsverfahrens ermöglicht.

ix

CONTENTS

Acknowledgements v

Abstract vii

List of Figures xiii

List of Tables xv

List of Algorithms xvii

Acronyms and Notation xix

1 Introduction 1
1.1 Motivation and Background . 1
1.2 A First Illustrative Example . 1
1.3 Overview of this Thesis . 3

2 Mathematical Basics and Preliminaries 5
2.1 Useful Concepts from Matrix- and Eigenvalue Theory 5
2.2 Important Concepts from Linear Control Theory 11
2.3 Matrix Equations . 12
2.4 Used Software, Hardware, and Test Examples 27

3 Low-Rank ADI Iteration for Lyapunov and Sylvester Equations 31
3.1 Origin of the ADI Iteration . 32
3.2 LR-ADI Iteration for Lyapunov Equations 32
3.3 The Factored ADI Iteration for Sylvester Equations 48
3.4 Conclusions . 60

4 Efficient Handling of Complex ADI Shift Parameters 61
4.1 Complex Shift Parameters in the G-LR-ADI Iteration for Lyapunov Equa-

tions . 62
4.2 Computing Real Low-rank Solutions by the fADI Iteration 75
4.3 Conclusions . 85

xi

Contents

5 Self-Generating ADI Shift Parameters 87
5.1 Introduction and Motivation . 87
5.2 A Short Overview of Precomputed ADI Shift Parameters 88
5.3 Self-Generating Shifts . 91
5.4 Shift Parameters for the Sylvester ADI Iteration 115
5.5 Summary and Further Research Perspectives 125

6 Low-Rank Newton Methods for Algebraic Riccati Equations 129
6.1 Continuous-time Algebraic Riccati Equations 129
6.2 Nonsymmetric Algebraic Riccati Equations 144
6.3 Conclusions . 156

7 Applications to Model Order Reduction 159
7.1 Concepts and Goals of Model Order Reduction 159
7.2 Balanced Truncation Model Order Reduction 161
7.3 Balanced Truncation in Limited Frequency Intervals 172
7.4 Conclusion and Outlook . 200

8 Conclusions and Outlook 201
8.1 Summary . 201
8.2 Future Research Perspectives . 202

A Additional Algorithms 205

B Theses 207

Bibliography 209

xii

LIST OF FIGURES

1.1 Singular values and approximation error against consumed storage. . . . 2

2.1 Singular value decay of the solutions of different Lyapunov equations. . . 24

3.1 Computation times of different variants of computing the Lyapunov resid-
ual norm. 47

3.2 History of computation times spent for computing the Sylvester residual
norm via different approaches. 59

4.1 Surface plot of the norm of the Cayley transforms against two real and
one complex shift. 64

4.2 Residual history of complex and different real versions of the G-LR-ADI
iteration. 74

4.3 Numerical results obtained with the real fADI iteration. 85

5.1 Plot of the G-LR-ADI residual norm in dependence of the shift parameter. 99
5.2 Results obtained with different approximation approaches of the residual

norm-minimizing shifts. 108
5.3 Residual history of the G-LR-ADI iteration with different shifts strategies. 109
5.4 Comparison of different low-rank solvers for GCALEs. 114
5.5 Residual history of the G-fADI iteration using different shift strategies. . 124

6.1 Problematic behavior of the inner iteration in the LR-NADI-N method. . 155

7.1 Results of the dual ADI iteration . 171
7.2 Reduction results obtained by low-rank SRBT. 173
7.3 Eigenvalues of different Gramians and systems transfer function 194
7.4 Transfer function and error plots w.r.t. different BT variants. 198

xiii

LIST OF TABLES

2.1 Matrices for the singular value decay experiment. 24

3.1 Results obtained with different strategies for computing the Lyapunov
residual norm within the G-LR-ADI iteration. 47

3.2 Numerical results obtained with standard and structure exploiting G-
fADI Iteration. 59

4.1 Comparison of complex and different real versions of the G-LR-ADI iter-
ation. 74

4.2 Results obtained with real and complex version of the G-fADI iteration. . 85

5.1 Results obtained with the G-LR-ADI iteration using different shift ap-
proaches. 110

5.2 Comparison of different low-rank algorithms for GCALEs. 113
5.3 Numerical results obtained with different shift strategies within the G-

fADI iteration. 123

6.1 Comparison of different shift strategies for the LR-NADI-C iteration. . . 141
6.2 Results of the Galerkin accelerated LR-NADI-C iteration. 142
6.3 Comparison of the different low-rank methods for GCAREs. 143
6.4 Results of the NARE examples w.r.t. different shift parameters. 153
6.5 Results of the Galerkin accelerated LR-NADI-N iteration. 156

7.1 Convergence and reduction results obtained with the dual G-LR-ADI. . . 172
7.2 Numerical rank of different Gramians . 194
7.3 Results obtained by different low-rank methods applied to different Grami-

ans . 195
7.4 Approximation of frequency-limited Gramians via different Krylov sub-

space methods . 196
7.5 Reduction result obtained by different BT versions. 199

xv

LIST OF ALGORITHMS

3.1 Ordinary G-LR-ADI iteration for GCALEs. 36
3.2 Reformulated G-LR-ADI iteration . 41
3.3 Reformulated SO-LR-ADI iteration . 45
3.4 Reformulated generalized factored ADI (G-fADI) iteration for GCASEs. . 54

4.1 Completely real G-LR-ADI iteration. 66
4.2 Augmentation of Z by real block columns 67
4.3 G-LR-ADI-r iteration for computing real low-rank solution factors. 71
4.4 G-fADI-r iteration for GCASEs . 80
4.5 G-fADI-r iteration for cross Gramian Sylvester equations 82
4.6 G-fADI-r iteration for GCALEs with unsymmetric right hand sides 83
4.7 G-LR-ADI-r iteration for GDALEs . 84

5.1 Evaluation of objective function and its derivatives. 102

6.1 Newton-Kleinman method for GCAREs 131
6.2 Low-rank Newton-ADI for GCAREs (LR-NADI-C) 133
6.3 Newton-Kleinman method for NAREs . 145
6.4 Low-rank Newton-ADI iteration for NAREs (LR-NADI-N) 146
6.5 Low-rank Newton-ADI iteration for GNAREs 152

7.1 Square root balanced truncation using low-rank factors 163
7.2 The dual G-LR-ADI iteration . 164
7.3 Krylov subspace method for frequency-limited CALEs 187

A.1 Rational Krylov subspace method for GCALEs 205
A.2 LR-NADI-N-r iteration for NAREs . 206

xvii

ACRONYMS AND NOTATION

Acronyms and Abbreviations

ADI alternating directions implicit
ARE algebraic Riccati equation
(FL)BT (frequency-limited) balanced trunction
DAE differential-algebraic equation
EKSM extended Krylov subspace method
EVD eigenvalue decomposition
(G)CALE (generalized) continuous-time algebraic Lyapunov equation
(G)CASE (generalized) continuous-time algebraic Sylvester equation
(G)DALE (generalized) discrete-time algebraic Lyapunov equation
(G)CARE (generalized) continuous-time algebraic Riccati equation
(G)DARE (generalized) discrete-time algebraic Riccati equation
IRKA iterative rational Krylov algorithm
LTI linear time-invariant
MATLAB software from The MathWorks Inc.
(M)NARE nonsymmetric algebraic Riccati equation (associated to M -

matrix)
MOR model order reduction
RKSM rational Krylov subspace method
SVD singular value decomposition

Notation

R, C fields of real and complex numbers
C+, C− open right/open left complex half plane
R+, R− strictly positive/negative real line
Rn, Cn vector space of real/complex n-tuples
Rm×n, Cm×n real/complex m× n matrices
|ξ|, absolute value of real or complex scalar
arg ξ argument of complex scalar
D := {z ∈ C : |z| < 1}, the open unit disc
j imaginary unit (j2 = −1)
Re (A), Im (A) real and imaginary part of a complex

quantity A = Re (A) + j Im (A) ∈ Cn×m

xix

Acronyms and Notation

A := Re (A)− j Im (A), complex conjugate of A ∈ Cn×m

aij the i, j-th entry of A
A(i : j, :), A(:, k : �) rows i, . . . , j of A and columns k, . . . , � of A
A(i : j, k : �) rows i, . . . , j of columns k, . . . , � of A
AT the transpose of A
AH := (A)T , the complex conjugate transpose
A−1 inverse of nonsingular A
A−T , A−H inverse of AT , AH

In, In,r identity matrix of dimension n, first r columns of In
1r := (1, . . . , 1)T ∈ Rr

Λ(A), Λ(A,M) spectrum of matrix A/matrix pair (A,M)
λj(A), λj(A,M) j-th eigenvalue of A/(A,M)
ρ(A,M) := max

j
|λj(A,M)|, spectral radius of (A,M)

σmax(A) largest singular value of A
tr (A) :=

∑n
i=1 aii, trace of A

‖u‖p := p

√
n∑

i=1

|ui|p for u ∈ Cn and 1 ≤ p < ∞
‖u‖∞ the maximum norm (‖u‖∞ = maxi |ui|)
‖A‖p := sup {‖Au‖p : ‖u‖p = 1}, subordinate matrix p-norm, 1 ≤

p ≤ ∞
‖A‖F :=

√∑
i,j |aij|2 =

√
tr (AHA), the Frobenius-norm of ma-

trix A ∈ Cm×n

‖u‖, ‖A‖ Euclidean vector-, or subordinate matrix norm ‖ · ‖2
κp(A) := ‖A‖p‖A−1‖p the p-norm condition number for regular A
κ(A) the 2-norm condition number for regular A
A � (�)0, A ≺ ()0 short form for A is self-adjoint positive/negative

(semi)definite, also abbreviated by s(s)pd and s(s)nd
A > (≥)B :⇔ A−B > (≥)0, i.e., element wise partial ordering: (aij −

bij > (≥)0, ∀ij)
A⊗ B the Kronecker product of A and B (Definition 2.17)
vec (A) vectorization operator applied to matrix A (Definition 2.17)
∂xj

f := ∂
∂xj
f partial derivative with respect to xj of f

∂xjxk
f = ∂2

∂xj∂xk
f := ∂xj∂xkf , second order partial derivative with respect to

xj and xk of f
∂2xj

f := ∂xjxj
f second order partial derivative with respect to xj of f

ḟ := ∂tf := ∂
∂t
f the derivative with respect to time of f

f̈ := ∂2

∂t2
f second derivative with respect to time of f

∇f := (∂x1f, . . . , ∂xnf)
T the gradient of f

Δf :=
n∑

i=1

∂2xi
f the Laplacian operator applied to f

∇2f :=

[
∂2
x1

f ··· ∂x1xnf

...
...

...
∂xnx1f ··· ∂2

xn
f

]
the Hessian matrix of f

xx

CHAPTER 1

INTRODUCTION

Contents
1.1 Motivation and Background . 1

1.2 A First Illustrative Example . 1

1.3 Overview of this Thesis . 3

1.1. Motivation and Background

Matrix equations arise in many scientific areas, e.g., optimal control, observer design and
approximation of control systems, image reconstruction, transport theory, game theory,
damping optimization, and eigenvalue perturbation theory, to name only a few. In the
last decades, especially the success and extensive research on model order reduction,
an area devoted to the approximation of large control systems, has lead to a growing
demand for efficient numerical methods for large-scale matrix equations. Here, large-
scale should be understood as the situation when the size of the matrices defining a
matrix equation is so large that using eigenvalue or related factorizations as well as
storing the sought solution cannot be done in a reasonable amount of computation time
and memory consumption. In practice one, therefore, tries to approximate the solution
by a low-rank factorization which consumes much less memory and, at the same time,
can be computed even for large dimensions using different numerical algorithms that
employ techniques from large-scale numerical linear algebra. The use of such low-rank
approximations is justified by the experimentally observed and theoretically investigated
rapid decay of the singular values of the solutions. The following small experiment
illustrates this strategy.

1.2. A First Illustrative Example

Consider the matrix equation

AX +XAT +BBT = 0, A = − diag (1, . . . , n) ∈ Rn×n, B = 1n ∈ Rn

1

1. Introduction

10 20 30 40 50
10−18

10−9

100

umach

i

σ
i(
X
)

50 100 150 200 250 300
10−15

10−7

101

memory [Kb]

‖X
−
X

r
‖ 2

Figure 1.1.: Singular values of X (left) and approximation error against consumed stor-
age (right).

with n = 1, 000, and X = XT ∈ Rn×n is the sought solution. This matrix equation
belongs to the class of Lyapunov equations which are discussed in more detail later on.
Although n = 1, 000 can not actually be considered as large, this small toy example
will prove sufficient to explain the basic strategies to deal with large matrix equations.
Obviously, the coefficient matrix A is sparse, i.e., only a small number of the total n2

entries are nonzero. This property is not passed to the solution X for whose entries it
is easy to see that

Xij =
−1

aii + ajj
=

1

i+ j
�= 0, i, j = 1, . . . , n.

Hence, taking the symmetry of X into account yields a total number of 1
2
n(n − 1) =

499, 500 entries which have to be computed and stored. In the usual double precision
arithmetic, this amounts to roughly 7.6 Mb of storage. Let X = UΣV T be a singular
value decomposition (SVD) of X with UTU = In and Σ = diag (σ1, . . . , σn) � 0. The
singular values are ordered non-increasingly and, due to the symmetry of X, it holds
V = U . The left plot in Figure 1.1 shows the first 50 computed singular values which
obviously decay very rapidly towards zero. The dashed line indicates the machine pre-
cision umach = 2.2204 · 10−16 in the double-precision floating-point format w.r.t. the
IEEE 754 standard. The constant behavior of the computed singular values below that
line should not be trusted as it is merely an effect of the difficulties in computing quan-
tities whose magnitude is close to or smaller than umach. More information regarding
what properties and conditions influence this decay will be given later. We can use the
first r singular values and vectors to construct an approximate solution Xr = ZrZ

T
r ≈ X

with Zr := U(:, 1 : r) diag
(√

σ1, . . . ,
√
σr

) ∈ Rn×r. The matrix Zr is per construction
of rank r and therefore referred to as low-rank solution factor which requires only nr
entries to store. By the well known theory of such SVD based approximations [111],
this yields an error ‖X − Xr‖2 = σr+1. For instance, taking r = 20 already leads to
‖X − X20‖2 = 2.25 · 10−11 requiring only 20000 entries which corresponds to approx-
imately 156 Kb. The right plot in Figure 1.1 shows the obtained error against the
consumed memory as r is increased. It is evidently possible to accurately approximate

2

1.3. Overview of this Thesis

the solutionX byXr = ZrZ
T
r of low-rank which requires much less storage. For practical

relevant problems, however, it will neither be possible to construct X explicitly via such
a simple formula as above, nor computing its SVD in a reasonable numerical effort to
construct such low-rank approximations. The numerical algorithms investigated in the
thesis at hand construct the low-rank solution factors Zr by different concepts than the
above SVD based approach. These approaches will work without computing singular or
eigenvalue decompositions of the defining matrices and mostly employ only operations
with sparse matrices that can be performed efficiently even for large dimensions n.

1.3. Overview of this Thesis

In Chapter 2 some concepts of eigenvalue and mathematical control theory, which are
required in this thesis, are reviewed. The different classes of algebraic matrix equations
the thesis is concerned with are introduced along with a description of the already
mentioned low-rank phenomenon which forms the backbone of the upcoming investigated
algorithms. Afterwards, a concise overview of available numerical methods for various
different classes of matrix equations is given. Large parts of this thesis are devoted to
enhancements of numerical methods for matrix equations. These improvements will be
evaluated using different test examples which are introduced as well.

This thesis is mainly concerned with one particular numerical approach for matrix
equations which is based on the alternating directions implicit (ADI) iteration. This
method is introduced in more depth in Chapter 3 for solving large-scale Lyapunov and
Sylvester equations. There, we introduce the low-rank version of the ADI iteration
for computing low-rank solutions of the considered large-scale linear matrix equations.
Different issues of this low-rank iteration are investigated step by step to improve the
efficiency of the algorithms. As first numerical enhancement, a novel result on the
structure of the residual in the low-rank ADI iteration is derived, which not only enables
a cheap way to compute the residual norm as an obvious stopping criterion, but also gives
new alternative formulations of the low-rank ADI methods. Specially tailored variants
for dealing with certain structured matrix equations are also investigated.

In general, ADI methods require shift parameters to converge rapidly. Although in
almost every practical situation the arising matrix equations to be solved are defined in
the field of real numbers, the shift parameters can nevertheless be complex in several
situations. This introduces complex arithmetic operations in the ADI iteration and also
leads to the generation of complex approximate solutions of the matrix equations. The
efficient treatment of these undesirable effects is topic of Chapter 4.

The dependence on shift parameters itself is often considered as the biggest disadvan-
tage of ADI based methods. Chapter 5 targets this problem and some new computation-
ally efficient shift strategies are derived, where the shifts are computed automatically
in the course of the low-rank ADI iteration, basically erasing the need to worry about
shift parameters at all. It will turn out that those novel shift parameters are capable
of outperforming several existing shift approaches in most cases, and even make the
low-rank ADI iteration competitive to other low-rank solvers.

3

1. Introduction

The next two chapters have a more application oriented character because the previ-
ously investigated low-rank ADI iterations are employed there for dealing with matrix
equations that arise as part of a greater goal. Chapter 6 considers the numerical compu-
tation of low-rank solutions of algebraic Riccati equations via hybrid methods of New-
ton’s schemes and ADI methods. All of the previously derived numerical enhancements
are included in these algorithms.
Afterwards, Chapter 7 is concerned with a particular model order reduction tech-

nique, namely balanced truncation and related approaches. There, large-scale algebraic
matrix equations have to be solved as intermediate task for which the previously exam-
ined low-rank methods are used. In the second part of this chapter, a novel efficient
numerical framework for carrying out balanced truncation in limited frequency intervals
is proposed. This modification of balanced truncation again involves large-scale matrix
equations to be solved, but also further demanding tasks which haves to be dealt with
numerically.

4

CHAPTER 2

MATHEMATICAL BASICS AND PRELIMINARIES

Contents
2.1 Useful Concepts from Matrix- and Eigenvalue Theory 5

2.1.1 Matrices and Their Eigenvalues 5

2.1.2 Kronecker Product and Vectorization Operator 10

2.2 Important Concepts from Linear Control Theory 11

2.3 Matrix Equations . 12

2.3.1 Linear Matrix Equations . 13

2.3.2 Nonlinear Matrix Equations of Riccati Type 17

2.3.3 Low-Rank Phenomena . 19

2.3.4 Concise Overview of Full / Low-Rank Methods 25

2.4 Used Software, Hardware, and Test Examples 27

2.1. Useful Concepts from Matrix- and Eigenvalue
Theory

2.1.1. Matrices and Their Eigenvalues

Definition 2.1:

For a matrix A ∈ Cn×n, an eigenvalue λ ∈ C and its (right) eigenvector x ∈ Cn\{0}
form an eigenpair (λ, x) of A which satisfies the eigenvalue problem

Ax = λx. (2.1)

Likewise, the left eigenvector y ∈ Cn\{0} corresponding to λ fulfills

yHA = λyH . (2.2)

Together, they form an eigentriple (λ, x, y) of A . The eigenvalues are also the roots
of the characteristic polynomial pA(λ) = det (A− λIn). The spectrum Λ(A) is the set
of all eigenvalues {λ1, . . . , λn} of A. ♦

5

2. Mathematical Basics and Preliminaries

The algebraic multiplicity α(λ) of a particular eigenvalue is the number of times λ
appears as root of pA(λ). The number of linearly independent right and left eigenvectors
x, y associated to λ can, however, be smaller than α(λ) and is given by the geometric
multiplicity 1 ≤ γ(λ) := dimker(A − λIn) ≤ α(λ). If γ(λ) = α(λ) then λ is called
(semi)simple eigenvalue. For most parts of this thesis it will be sufficient to restrict to
diagonalizable matrices in the sense of the next definition.

Definition 2.2:

If for A ∈ Cn×n there exists a nonsingular matrix X ∈ Cn×n containing n right
eigenvectors as columns such that

X−1AX = diag (λ1, . . . , λn) =: Λ,

where the eigenvalues λi ∈ Λ(A) are now counted with their algebraic multiplicities,
then A is called diagonalizable matrix. Otherwise, we speak of an non-diagonalizable
matrix. ♦

Lemma 2.3 ([198]):

Let A ∈ Cn×n be diagonalizable having distinct eigenvalues Λ(A) = {λ1, . . . , λn̂} with
n̂ ≤ n. Then it holds γ(λi) = α(λi) for all i = 1, . . . , n̂. ♦

If the right and left eigenvectors are scaled such that yHi xi = 1, ∀ i = 1, . . . , n, i.e., they
form bi-orthogonal bases, then the matrix Y := X−H contains the left eigenvectors as
columns, and, hence, Y HAX = Λ, Y HX = In.

Definition 2.4:

A matrix A ∈ Cn×n is called normal if it is diagonalizable and its left coincide with
its right eigenvectors. Otherwise, A is a non-normal matrix. ♦

Lemma 2.5 ([151, 132]):

The following statements are equivalent:

a) A is a normal matrix.

b) AHA = AAH .

c) There exist a unitary matrix Q ∈ Cn×n, QHQ = In such that QHAQ = Λ with
Λ := diag (λ1, . . . , λn). ♦

It is easy to see that Hermitian (A = AH) and skew-Hermitian (A = −AH) matrices are
normal.

Definition 2.6:

For two matrices A, M ∈ Cn×n the generalized eigenvalue problem is given by

Ax = λMx, yHA = λyHM, (2.3)

6

2.1. Useful Concepts from Matrix- and Eigenvalue Theory

where the definitions of eigenvalues, right and left eigenvectors, eigenpairs and -triples,
as well as algebraic multiplicity, for (2.3) are directly adopted from Definition 2.1.
In the following the matrices A, M linked to a generalized eigenvalue problem are
referred to as matrix pair (A,M). The set of all eigenvalues is again called spectrum
and denoted by Λ(A,M). The characteristic polynomial of (A,M) is pA,M(λ) =
det (A− λM). If M is singular, Λ(A,M) contains eigenvalues at infinity and the
finite spectrum Λf (A,M) denotes the set of all finite eigenvalues of (A,M). A matrix
pair (A,M) is called singular if A−λM is singular for all λ ∈ C, otherwise it is called
regular. ♦

The concept of diagonalizable and non-diagonalizable matrix pairs (A,M) is analogue
to Definition 2.2 and Lemma 2.3. We restrict ourselves to regular, diagonalizable matrix
pairs in the remainder. In the diagonalizable case, the eigenvectors corresponding to
finite and infinite eigenvalues can be scaled such that yHi Mxi = 1 and yHi Mxi = 0,
respectively, such that the right and left eigenvectors corresponding to finite eigenvalues
form bi-orthonormal bases w.r.t. the matrix M . Hence, for nonsingular M there exist
nonsingular matrices X, Y ∈ Cn×n having the right and left eigenvectors as columns
such that

Y HAX = diag (λ1, . . . , λn) , Y HMX = In,

where Y := (MX)−H . Moreover, Λ(A,M) = Λ(M−1A).

Definition 2.7:

A matrix pair (A,M) ∈ Cn×n × Cn×n with nonsingular M is called normal matrix
pair if it is diagonalizable and its left coincide with its right eigenvectors. ♦

Lemma 2.8:

Let (A,M) be a regular matrix pair with nonsingular M . Then the following state-
ments are equivalent:

a) (A,M) is a normal matrix pair.

b) There exists a Q ∈ Cn×n such that QHAQ = diag (λ1, . . . , λn) and Q
HMQ = In.♦

Remark 2.9:

So far everything was defined for complex matrices, but the main parts of this work
are devoted to real matrices since they are more relevant in practice. A real matrix
pair (A,M) ∈ Rn×n × Rn×n might have real as well as complex eigenvalues. The
latter ones occur in complex conjugate pairs, i.e., it holds {λ, λ} ∈ Λ(A,M) if λ ∈ C.
Similarly, if x, y are the right and left eigenvectors corresponding to the eigenvalue
λ ∈ C, then x, y are the eigenvectors corresponding to λ. Note that if, e.g., A = AT

and M =MT � 0, all eigenvalues, and hence all eigenvectors, are real. ♦
The next definition is for brevity only provided for eigenvalues of matrix pairs. In case
of a single matrix, M needs to be replaced by In.

7

2. Mathematical Basics and Preliminaries

Definition 2.10:

Let λi ∈ Λ(A,M), i = 1, . . . , n, with nonsingular M . Then the eigenvalue λi is called

a) c-(anti)stable if Re (λi) < 0 (Re (λi) > 0),

b) d-(anti)stable if |λi| < 1 (|λi| > 1).

Likewise, (A,M) is called c-stable, c-antistable, d-stable, or, d-antistable if the above
properties hold for all eigenvalues, i.e., Λ(A,M) ⊂ C−, Λ(A,M) ⊂ C+, Λ(A,M) ⊂ D,
or D � Λ(A,M). A c-stable matrix A is also called Hurwitz. ♦

The prefixes c- and d- are motivated by stability concepts for the study of continuous-
time and discrete-time differential equations, respectively, which will also play a role
later. There, semisimple eigenvalues on the boundary of the stability region, i.e. Re (λi) =
0 (|λi| = 1), might also be called c-(d-)stable (cf. [129, Theorem 3.3.211], Defini-
tion 2.21).
A concept closely related to eigenvalue problems is the singular value problem.

Definition 2.11:

Let A ∈ Cn×m and assume w.l.o.g. that n ≥ m. The singular value problem of A is to
be understood as finding non-negative singular values σ ∈ R, right and left singular
vectors u ∈ Cm, v ∈ Cn satisfying

Au = σv, AHv = σu. (2.4)

The singular values form, together with their singular vectors, a singular triple (σ, u, v).
The singular value decomposition (SVD) of A is given by

A = V ΣUH , V = [v1, . . . , vn] ∈ Cn×n, U = [u1, . . . , um] ∈ Cm×m unitary,

Σ =

[
Σ1

0

]
∈ Rn×m, Σ1 = diag (σ1, . . . , σm) ∈ Rm×m,

σmax := σ1 ≥ . . . ≥ σr > σr+1 = σm = 0,

where r = rank (A).
The thin SVD of A is obtained by taking only the first m singular triples into

account:

A = V1Σ1U
H
1 , V1 = [v1, . . . , vm] ∈ Cn×m, U1 = [u1, . . . , um] ∈ Cm×m. ♦

Next to the rank of a matrix A, the singular values also enable the definition of the
numerical rank of A which is of tremendous importance for the algorithms considered
in this thesis.

Definition 2.12:

Let A ∈ Cn×m.

a) If r = rank (A) � min(m,n), we refer to A as low-rank matrix.

8

2.1. Useful Concepts from Matrix- and Eigenvalue Theory

b) The numerical rank [58] of A ∈ Cm with respect to a threshold τ ∈ R+ (typically
τ � 1) is defined by

rank (A, τ) = argmax
j

{
σj
σ1

≥ τ, j = 1, . . . ,min(m,n)

}
.

c) The matrix A is said to be of low numerical rank (w.r.t. the threshold τ) if
rank (A, τ) � r ≤ min(m,n). This trivially includes low-rank matrices. ♦

Functions of Matrices and Spectral Transformations

At several occasions in this thesis we will also encounter functions of square matrices in
the sense of the following definition.

Definition 2.13 (Matrix functions [128, Definition 1.11]):

Consider a matrix A ∈ Cn×n and a function f which is analytic on and inside a closed
contour Γ surrounding Λ(A). Then the function f evaluated at A is to be understood
in the sense

f(A) =
1

2πj

∫
Γ

f(z)(zIn − A)−1dz. ♦

Lemma 2.14 (spectral mapping theorem [128, Theorem 1.13]):

Let f : D → C be an analytic function defined in a domain D ⊂ C. For any A ∈ Cn×n

with Λ(A) = {λ1, . . . , λn} ⊂ D it holds that Λ(f(A)) = {f(λ1), . . . , f(λn)}. ♦
The following special rational matrix function is important for dealing with the matrix
equations in this thesis.

Definition 2.15 (Cayley transformation):

Let A ∈ Cn×n and μ, ν ∈ C with −μ /∈ Λ(A).

a) A generalized Cayley transformation of A is defined by the rational matrix function

C(A, μ, ν) =: (A+ μIn)
−1(A− νIn).

In the special case ν = μ, we simply write C(A, μ) = (A + μIn)
−1(A − μIn) and

omit the prefixed generalized.

b) For matrix pairs (A,M), the generalized Cayley transformation is given by

C(A,M, μ, ν) := (A+ μM)−1(A− νM)

with −μ /∈ Λ(A,M). As above we use the notation C(A,M, μ) := C(A,M, μ, μ).♦

9

2. Mathematical Basics and Preliminaries

Proposition 2.16:

Consider (A,M) ∈ Cn×n with nonsingular M and μ, ν ∈ C with −μ /∈ Λ(A,M).

a) The generalized Cayley transformations can be represented by

C(A, μ, ν) = (A+ μIn)
−1(A− νIn) = (A− νIn)(A+ μIn)

−1

= In − (μ+ ν)(A+ μIn)
−1 and

C(A,M, μ, ν) = (A+ μM)−1(A− νM) =M−1(A− νM)(A+ μM)−1M

= In − (μ+ ν)(A+ μM)−1M =M−1(In − (μ+ ν)M(A+ μM)−1)M.

b) The eigenvalues of C(A,M, μ, ν) are given by (λ− ν)/(λ+ μ) for λ ∈ Λ(A,M).

c) The transformation C(A,M, μ) with μ ∈ C− maps the c-stable, c-antistable and
imaginary eigenvalues of (A,M) to the interior, exterior and, respectively, bound-
ary of the unit disc D. Thus, if Λ(A,M) ⊂ C−, it holds Λ(C(A,M, μ)) ⊂ D so that
ρ(C(A,M, μ)) < 1. Stated differently, C(A,M, μ) is a d-stable matrix if (A,M) is
a c-stable matrix pair. ♦

Proof. The expressions in part a) follow from simple algebraic manipulations. The
part b) is a direct consequence of Lemma 2.14 and the invertibility of M . For the last
part consider

|λ(C(A,M, μ))|2 = |(λ− μ)/(λ+ μ)|2 = 1− 4Re (μ) Re (λ) /|λ+ μ|2, λ ∈ Λ(A,M)

from which the claims follow easily.

2.1.2. Kronecker Product and Vectorization Operator

For certain theoretical investigations, the Kronecker product and vectorization operator
are useful.

Definition 2.17 ([111, Section 12.1]):

Let X = [x1, . . . , xm] ∈ Cn×m and Y ∈ Cp×q. Then

vec (X) :=

⎡
⎢⎣x1...
xm

⎤
⎥⎦ ∈ Cnm×1, X ⊗ Y =

⎡
⎢⎣x11Y . . . x1mY

...
...

xn1Y . . . xnmY

⎤
⎥⎦ ∈ Cnp×mq. ♦

Proposition 2.18 ([111, Chapter 12.3]):

Let X ∈ Cn×m, Z ∈ Cp×q, U ∈ Cm×r, Q ∈ Cq×�, and Y ∈ Cm×p. Then the following
statements hold.

a) (X ⊗ Z)(U ⊗Q) = (XU)⊗ (ZQ).

10

2.2. Important Concepts from Linear Control Theory

b) vec (XY Z) = (ZT ⊗X) vec (Y).

c) If m = n = r, p = q = �, and U, Q are nonsingular, then

Λ(X ⊗ Z, U ⊗Q) = {λjμk : λj ∈ Λ(X, U), μk ∈ Λ(Z, Q),

j = 1, . . . , n, k = 1, . . . , p}.
If xj (yj) and zk (vk) are the linearly independent right (left) eigenvectors of (X, U)
and, respectively, (Z, Q), then the corresponding right (left) eigenvectors of (X ⊗
Z, U ⊗Q) are xj ⊗ zk (yj ⊗ vk). ♦

The next theorem gives a result on the eigenvalues of certain functions of Kronecker
products and is crucial for investigating the linear matrix equations discussed in this
thesis.

Theorem 2.19 (Theorem of Stephanos [169, Theorem 43.8]):

Let A ∈ Cn×n, B ∈ Cm×m with Λ(A) = {λ1, . . . , λn}, Λ(B) = {μ1, . . . , μm}. For a

bivariate polynomial p(x, y) =
k∑

i,j=0

cijx
iyj, cij ∈ C we define by

p(A, B) :=
k∑

i,j=0

cij(A
i ⊗ Bj)

a polynomial of the two matrices. Then the spectrum of p(A, B) is

Λ(p(A, B)) = {p(λr, μs), r = 1, . . . , n, s = 1, . . . ,m}. ♦

2.2. Important Concepts from Linear Control Theory

Before we discuss matrix equations, we briefly introduce some preliminaries from linear
control theory. This is motivated by the fact that several of the considered classes of
matrix equations have important applications in control theory.

Definition 2.20:

Linear, time-invariant, continuous-time, control systems in generalized state space
form are given by

Eẋ(t) = Ax(t) + Bu(t), x(0) = x0,

y(t) = Cx(t) +Du(t).
(2.5)

The matrices A, E ∈ Rn×n, E nonsingular, B ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m

are referred to as generalized state-space and mass, input, output, and feed-through
matrix, respectively. The time-dependent, vector valued functions x(t) ∈ Rn, u(t) ∈
Rm, y(t) ∈ Rp are typically called generalized state, input or control, and output vector.

11

2. Mathematical Basics and Preliminaries

Likewise, linear, time-invariant, discrete-time, control systems in generalized state
space form are for k ∈ N0 defined by

Ex(k + 1) = Ax(k) + Bu(k), x(0) = x0,

y(k) = Cx(k) +Du(k).
(2.6)

We will make use of the following notation (E; A, B, C, D) to refer to systems (2.5)
and (2.6) defined by A, E, B, C, D. For most parts of this thesis it is sufficient to
consider the case D = 0 denoted by (E; A, B, C) because D �= 0 will not change the
used concepts and derivations. If the matrix E in (2.5) above is singular one usually
speaks of differential-algebraic equations (DAEs). For this thesis these will only play a
minor role such that we restrict ourselves to nonsingular E here. The following concepts
of stability, controllability, observability, stabilizability, and detectability in the next
definition will be crucial for providing existence theorems regarding the solutions of
matrix equations. More information as well as the proofs of the given (and further)
equivalences can be found, e.g., in the textbooks [150, 72, 3, 129].

Definition 2.21:

Let A, E, B, C be defined as above with E nonsingular. The system (E; A, B, C)
is

a) asymptotically c-(d-)stable if Λ(A, E) ⊂ C− (Λ(A, E) ⊂ D),

b) c-(d-)stable if Λ(A, E) ⊆ C− (Λ(A, E) ⊆ D) and α(λ) = γ(λ) for all eigenvalues
with Re (λ) = 0 (|λ| = 1),

c) controllable if rank ([A− μE, B]) = n, ∀μ ∈ C, or equivalently yHB = 0 for every
left eigenvector of (A, E),

d) observable if rank
(
[AT − μET , CT]

)
= n, ∀μ ∈ C, or equivalently Cx = 0 for

every right eigenvector of (A, E),

e) c-(d-)stabilizable if rank ([A− μE, B]) = n, ∀μ ∈ C+ (μ ∈ (C\D)) and
f) c-(d-)detectable if rank

(
[AT − μET , CT]

)
= n, ∀μ ∈ C+ (μ ∈ (C\D)), respec-

tively. ♦
As before, the prefixes c- and d- point towards the use of these concepts w.r.t. (2.5) and
(2.6), respectively. For instance, c-stabilizability is of importance only for (2.5) while
d-stabilizability is typically not. We will employ the typical slight misuse of language
and neglect the word asymptotically w.r.t. to stability definitions.

2.3. Matrix Equations

Throughout this thesis, a matrix equation should be understood as the problem of finding
the solution X ∈ Cm×n of

F(X) = 0, F : Cm×n → Cn×k, (2.7)

12

2.3. Matrix Equations

where F is a function in X. It might, e.g., involve sums, and products of X with
other, known matrices, but also nonlinear and other expressions of X. We consider
only algebraic matrix equations, i.e., F is a purely algebraic expression. This excludes
differential matrix equations, where X is a sought matrix with functions as entries and
F involves its derivatives. Furthermore, we restrict to cases where F is a superposition
of linear, quadratic, or rational functions of X and exclude cases involving, e.g., XT ,
XH , or X. Although the majority of topics can be covered using complex matrices,
we mainly consider the case of real matrix equations, because almost every practical
application, where algebraic matrix equations arise, leads to real matrices. In what
follows, we introduce the algebraic matrix equations covered by this thesis and also give
some remarks on the existence of a unique solution. We distinguish between linear and
certain nonlinear matrix equations.

2.3.1. Linear Matrix Equations

Definition 2.22 (Linear matrix equation):

A linear matrix equation is of the form

�∑
i=1

AiXBi +Q = 0, Ai ∈ Rn×n, Bi ∈ Rm×m, Q ∈ Rn×m (2.8)

with the sought solution X ∈ Rn×m. The constant term Q is usually called inhomo-
geneity of (2.8). The number of summands � ≥ 1 is referred to as the length of the
matrix equation. ♦

This thesis is exclusively concerned with matrix equations with Q �= 0.

Lemma 2.23:

The linear matrix equation (2.8) has a unique solution X if and only if 0 /∈ Λ(A),
where

A :=
�∑

j=1

BT
i ⊗ Ai ∈ Rnm×nm. ♦

Proof. Vectorization of (2.8) leads with Proposition 2.18b to the equivalent linear system

A vec (X) = − vec (Q) (2.9)

from which the claim follows.

In general it is hard to specify the statement of the above lemma, e.g., in terms of the
spectra of the coefficient matrices Ai, Bi. We only consider linear matrix equations of
length � = 2 in this thesis. These cases are not only very important in practice but for
this situation Lemma 2.23 can be made more precise. In the next subsections we discuss
important classes of linear matrix equations of length two.

13

2. Mathematical Basics and Preliminaries

Lyapunov Equations

Lyapunov equations are symmetric matrix equations in the sense that X = XT ∈ Rn×n

and Q = QT ∈ Rn×n. For the general linear matrix equation (2.8), this means that for
each i = 1, . . . , � there exists a j such that Ai = BT

j and Bi = AT
j . For matrix equations

of length � = 2 there are the following very important cases which are introduced below.

Definition 2.24 (Continuous-time Lyapunov equations):

For A ∈ Rn×n and Q = QT ∈ Rn×n a continuous-time, algebraic Lyapunov equation
(CALE) is of the form

AX +XAT +Q = 0. (2.10)

For a nonsingular E ∈ Rn×n a generalized, continuous-time, algebraic Lyapunov equa-
tion (GCALE) is defined by

AXET + EXAT +Q = 0. (2.11)

The additional specification continuous-time originates from the relation of the above
Lyapunov equations with (2.5). The next lemma gives conditions for the existence of a
unique solution of (2.11). For (2.10), the result translates by setting E = In.

Lemma 2.25 ([3, 151, 129]):

The generalized Lyapunov equation has a unique solution if and only if λj �= −λk
∀λj, λk ∈ Λ(A, E). Sufficient conditions for this case are (A, E) being c-stable or
c-antistable.
In the c-stable case, X can be written as

X =

∞∫
0

exp (E−1At)E−1QE−T exp (E−1At)Tdt

which is positive (negative) semi-definite ifQ is positive (negative) semi-definite. Strict
definiteness of X can be also achieved if (E; A, Q) is controllable.
For the c-antistable case similar results follow by changing the signs, the order of

the integration limits, and by interchanging positive with negative semi-definiteness.♦

Proof. Due to E nonsingular, (2.11) can be equivalently rewritten to the Lyapunov
equation E−1AX + XATE−T + E−1QE−T = 0. This amounts to setting A1 = E−1A,
B2 = ATE−T = AT

1 , A2 = B1 = In in (2.8) so that

A = In ⊗ E−1A+ E−1A⊗ In.

By Theorem 2.19, Λ(A) = {λj + λk : ∀λj, k ∈ Λ(E−1A)}. Thus, 0 ∈ Λ(A) if and only
if λj +λk = 0 for some j, k from which the first claim follows since Λ(E−1A) = Λ(A, E).
The statements regarding c-stable and c-antistable spectra easily follow, too. For the rest

14

2.3. Matrix Equations

of the proof we restrict to the c-stable case, as the remaining results of the c-antistable
case can be deduced easily. The integral expression can be verified by plugging it into
the Lyapunov equations, using d

dt
exp (Ht) = H exp (Ht) ∀H ∈ Rn×n, and because the

matrix exponential converges to zero as t → ∞ for c-stable matrices [129]. From the
integral formula and the fact that Q � 0, the definiteness properties of X can be read
off.
For the strict positive definiteness of X in the case Q � 0, (E;A, Q) controllable,

we restrict ourselves for simplicity as well as brevity to the standard case E = In and
follow [151, Chapter 13, Theorem 4]. Assume X is singular, i.e. X � 0, which implies
∃ 0 �= v ∈ Rn such that Xv = 0. Consequently, vTQv = vT (AX + XAT)v = 0 and,
thus, vTAX = vTQ − vTXAT . Inserting (2.10) n − 1 times into this equation leads to
vTAkQ = 0 for k = 0, . . . , n− 1 which, by [3, Corollary 4.8], violates the controllability
assumption. For the case E �= 0 we refer to, e.g., [217].

Definition 2.26 (Discrete-time algebraic Lyapunov equations):

For A ∈ Rn×n and Q = QT ∈ Rn×n, a discrete-time, algebraic Lyapunov equation
(DALE) is given by

AXAT −X +Q = 0 (2.12)

and its generalized version, the generalized, discrete-time, algebraic Lyapunov equation
(GDALE)),

AXAT − EXET +Q = 0 (2.13)

for nonsingular E ∈ Rn×n. ♦
Here, the additional specification discrete-time originates from discrete-time, linear,
time-invariant, dynamical systems (2.6).

Remark 2.27:

In some works, the DALEs and GDALEs are called Stein and generalized Stein equa-
tions, respectively. These denominations are, however, not used consistently and
sometimes also refer to discrete-time Sylvester equations (see Definition 2.31) whereas
(2.12) is referred to as symmetric Stein equation. Hence, to avoid confusion we
mainly stick to the term (generalized) discrete-time algebraic Lyapunov equation for
(2.12),(2.13). ♦

Conditions regarding a unique solution of (2.11) are given by the next lemma which can
be proved similarly as Lemma 2.25.

Lemma 2.28 ([151],[150]):

The GDALE (2.13) has a unique solution if and only if λjλk �= 1, ∀λj, λk ∈ Λ(A, E).
Obvious sufficient conditions are (A, E) being d-stable (Λ(A, E) ⊂ D) or d-antistable
(Λ(A, E) ∩ D = ∅). In the d-stable case, the solution can be expressed as

X =
∞∑
k=0

(E−1A)kE−1QE−T (AT (E−T))k

15

2. Mathematical Basics and Preliminaries

and X � (�)0 is if Q � (�)0. For (A, E) d-antistable, similar statements are given
by changing the sign, the order of the limits in the infinite sum, and by replacing
positive with negative semi-definiteness. ♦

Remark 2.29:

In the context of DAEs, some results concerning solutions of GCALEs and GDALEs
with singular E can, e.g., be found in [217, 171, 218]. ♦

Remark 2.30:

The identification “generalized“ is used differently for linear matrix equation with
� > 2, e.g., in [20]. In this thesis, we exclusively use ”generalized“ for matrix equations
with � = 2, where the coefficients can be related to a matrix pair (A, E). ♦

Sylvester Equations

A Sylvester equation is a general matrix equations (2.8) without symmetry restrictions
on the involved matrices. In the following, we discuss important cases for � = 2.

Definition 2.31 (Sylvester equations):

For A ∈ Rn×n, B ∈ Rm×m and Q ∈ Rn×m, a matrix equation

AX −XB +Q = 0 (2.14)

is referred to as continuous-time, algebraic Sylvester equation (CASE). For nonsingu-
lar E ∈ Rn×n, C ∈ Rm×m its generalized version, the generalized, continuous-time,
algebraic Sylvester equation (GCASE), is given by

AXC − EXB +Q = 0. (2.15)

Discrete-time, algebraic, Sylvester and generalized, discrete-time, algebraic Sylvester
equations (DASEs and GDASEs) are of the form

AXB −X +Q = 0 and AXB − EXC +Q = 0. (2.16)

The minus sign in front of the second summand in X is chosen for notation purposes.

Remark 2.32:

For Sylvester equations, the terminologies continuous- and discrete-time are not as
stringent as for Lyapunov equations. Since GDASEs (2.16) are special cases of
GCASEs (2.15) and vice versa, we drop the distinction between continuous- and
discrete-time in the following and only speak of GCASEs if this does not lead to con-
fusion. In fact, notice that also GCALEs and GDALEs are special cases of GCASEs
(2.15). We have already mentioned in Remark 2.27 that GDASEs (2.16) are occasion-
ally also referred to as Stein equations in the literature. ♦

The following lemma gives conditions for the existence of a unique solution of the
Sylvester equations defined above. We restrict to the generalized case (2.15) since the
other Sylvester equations are just special cases of (2.15) (and vice versa) such that
existence properties for those can be deduced easily.

16

2.3. Matrix Equations

Lemma 2.33 (Existence of unique GCASE solutions [169],[68]):

The generalized Sylvester equation (2.15) has a unique solution if and only if

Λ(A, E) ∩ Λ(B, C) = ∅. If both or one of the matrices E, C is singular, then one
has to additionally assume that the corresponding pairs (A, E), (B, C) are regular.
If all matrices A,B,E,C are nonsingular, Λ(A, E) ⊂ C−, and Λ(B, C) ⊂ C+, the
solution can be represented as

X =

∞∫
0

exp (E−1At)E−1FGTC−1 exp (−BC−1t). (2.17)

2.3.2. Nonlinear Matrix Equations of Riccati Type

In this subsection we describe a certain class of nonlinear matrix equations which are
commonly known as algebraic Riccati equations (AREs). For this thesis, these are given
by adding a certain quadratic or rational term in X to the linear matrix equation intro-
duced in the previous section. We mention three classes of algebraic Riccati equation:
continuous- and discrete-time (symmetric), as well as nonsymmetric Riccati equations.
These equations and some selected theoretical properties are introduced in the following.

Symmetric Algebraic Riccati Equations

Definition 2.34 (Continuous-time algebraic Riccati equations):

The (continuous-time) algebraic Riccati equation (CARE) and its generalized version,
the generalized (continuous-time) algebraic Riccati equation (GCARE), are defined by

ATX +XA−XRX +Q = 0 and (2.18)

ATXE + ETXA− ETXRXE +Q = 0, (2.19)

respectively, where A, E, R = RT , Q = QT ∈ Rn×n with E nonsingular and X ∈
Rn×n is the sought solution. ♦

(G)CAREs of the above form occur frequently in optimal control problems of control
systems of the form (2.5). Due to the nonlinear nature, (2.18), (2.19) might have no
unique, but several solutions. In practice, one is usually interested in the c-stabilizing
solution X∗.

Theorem 2.35 (Uniqueness of the c-stabilizing GCARE solution [55, 150]):

If R, Q � 0, (E; A, R, Q) c-stabilizable and c-detectable, there exists a unique, sym-
metric c-stabilizing solution X∗ of the GCARE (2.19) such that Λ(A− ERX∗, E) ⊂
C−. If (E; A, R, Q) is even observable, then X∗ � 0. ♦

For the sake of completeness, we also mention discrete-time AREs which correspond to
discrete-time, control systems (2.6).

17

2. Mathematical Basics and Preliminaries

Definition 2.36 (Discrete-time algebraic Riccati equations):

For A, Q = QT ∈ Rn×n, B, CT ∈ Rn×m, and R = RT ∈ Rm×m, the rational matrix
equation

ATXA−X − (BTXA+ C)T (R +BTXB)−1(BTXA+ C)T +Q = 0 (2.20)

is referred to as (discrete-time) algebraic Riccati equation (DARE). Introducing a
nonsingular E ∈ Rn×n,

ATXA− ETXE − (BTXA+ C)T (R +BTXB)−1(BTXA+ C)T +Q = 0 (2.21)

is called generalized discrete-time algebraic Riccati equation (GDARE). ♦
Usually, a d-stabilizing solution is of interest such that
Λ

(
A− B(R +BX∗BT)−1(BTX∗A+Q), E

) ⊂ D. Uniqueness and existence condi-
tions can be found, e.g., in [150, Theorem 13.1.1., Corollary 13.1.2.-3.].

Nonsymmetric Algebraic Riccati Equations

In the same way Sylvester equations generalize Lyapunov equations, we can find general
variants of the symmetric Riccati equations above.

Definition 2.37 (Nonsymmetric algebraic Riccati equations):

A nonsymmetric algebraic Riccati equation (NARE) is defined by

AX +XB −XRX +Q = 0 (2.22)

with A ∈ Rn×n, B ∈ Rm×m, R ∈ Rm×n, C ∈ Rn×m, and X ∈ Rn×m is the sought
solution. If the matrix

M :=

[
B −R
Q A

]
∈ Rm+n×m+n

is an M-matrix, i.e., M = σIm+n − N with N ≥ 0 and σ ≥ ρ(N), then (2.22) is
abbreviated MNARE. ♦

Here, ≤, ≥ should be understood as the element wise partial orderings, i.e., X ≥ Y

when all elements of X − Y are greater or equal to zero. MNAREs originate in certain
applications, e.g., in the study of fluid queue models [187] and transport equations
[140]. One is typically interested in the minimal or maximal non-negative solutions
Xmin, Xmax ≥ 0 which satisfy Xmin ≤ X, Xmax ≥ X for all possible solutions X of
(2.22). Conditions for the existence of these solutions are given in the next theorem
which summarizes results from [55, Theorem 2.9, 2.13].

Theorem 2.38 (Existence of nonnegative solutions of MNAREs [55]):

If M associated with (2.22) is a nonsingular M-matrix or a singular, irreducible M-
matrix, then there exists a nonnegative solution Xmin ≥ 0. It holds Xmin > 0 if M

18

2.3. Matrix Equations

is irreducible. Let, for a singular, irreducible M-matrix M, u and v be the vectors
satisfying Mu = MTv = 0 with vTu = 0. If μ = 0, where

μ := vT
[

0 Im
−In 0

]
u

is the so called drift, then Xmin is unique. If μ �= 0 or M is nonsingular, there is a
second nonnegative solution Xmax. ♦

2.3.3. Low-Rank Phenomena

For solving algebraic matrix equations of large dimensions, one of the most crucial
properties exploited in several algorithms is the often observed very small numerical
rank of the solution X, i.e., rank (X, τ) � min(n,m). It can be frequently seen that the
singular values of the solution decay rapidly to zero. A main requirement for this effect
is that the right hand side Q has a small (exact) rank r = rank (Q) � min(n,m), but
also other quantities of the defining coefficient matrices contribute to this decay. For
Lyapunov and Sylvester equations, there are several theoretical results [158, 184, 213, 4,
113, 112, 222, 20, 7] that qualitatively describe the singular value decay of the solution
X and how well it can be approximated by a rank k approximation X̃k. We briefly
mention two approaches: a quadrature based approach for GCASEs and an approach
using a certain factorization of solutions of GCALEs. For the first one we need the
following representation of the inverse of a c-stable matrix.

Lemma 2.39 (Integral representation of the inverse of a matrix [112]):

Let R be a square, Hurwitz matrix. Then

R−1 = −
∞∫
0

exp (Rt)dt. ♦

The following theorem shows how well R−1 can be approximated by applying quadrature
to the above integral.

Theorem 2.40 (Quadrature approximation of the inverse [112]):

Assume that Λ(R) ⊂ −[2, u]⊕j[−c, c] ⊂ C− with u, c ∈ R+ and let Γ be the boundary
of Ψ := −[1, u+1]⊕ j[−c−1, c+1] ⊂ C−. For a k ∈ N define the quadrature weights
and points

ti := ln
(
exp (ih) +

√
1 + exp (2ih)

)
, ωi :=

h√
1 + exp (−2ih)

with h := π/
√
k and i = −k, . . . , k. Then there exists a problem independent constant

φ > 0 such that∥∥∥∥∥∥
∞∫
0

exp (Rt)dt−
k∑

i=−k

ωi exp (Rti)

∥∥∥∥∥∥ ≤ φ

2π
exp

(
1 + c

π
− π

√
k

) ∮
Γ

‖(τIn −R)−1‖dΓτ.

(2.23)

in any matrix norm. ♦

19

2. Mathematical Basics and Preliminaries

If R has only real eigenvalues, i.e, c = 0, the error expression (2.23) can be simplified
further. The above theorem enables us to prove the existence of a low-rank solution X̃
of the generalized Sylvester equation (2.15). It is an adaption of more general results in
[113, 20].

Corollary 2.41 (Low-rank solutions of Sylvester equations [113, 20]):

Consider the generalized Sylvester equation (2.15) defined by A, E ∈ Rn×n, B, C ∈
Rm×m, E, C nonsingular, Q = FGT with F ∈ Rn×r, G ∈ Rm×r having full column
rank r. Assume that λ − μ ∈ C− ∀λ ∈ Λ(A, E), μ ∈ Λ(B, C), and define γmin :=
min |Re (λ− μ) |, γmax := max |Re (λ− μ) |, and d := max | Im (λ− μ) |. Let Γ be
the boundary of the region Ψ from Theorem 2.40 with u = 2γmin

γmax
, c = 2d

γmin
. Then there

exists an approximate solution X̃ of rank (2k + 1)r given by

X̃ = −
k∑

i=−k

ω̃i exp
(
t̃iE

−1A
)
E−1FGTC−1 exp

(−t̃iBC−1
)
, (2.24)

where ω̃i := 2ωi

γmin
, t̃i := 2ti

γmin
with the quadrature weights and points ωi, ti from

Theorem 2.40. The corresponding error is

‖X − X̃‖F ≤ ζSylv
∥∥E−1FGTC−1

∥∥
2

with ζSylv :=
φ

2π
exp

(
1 + 2dγ−1

min

π
− π

√
k

) ∮
Γ

∥∥∥ (τγmin

2
Inm −A

)−1 ∥∥∥
F
dΓτ

and A := In ⊗ E−1A− C−TBT ⊗ Im.

(2.25)

Proof. The Sylvester equation (2.15) with Q = FGT can be rewritten to the equivalent
linear system

A vec (X) = vec
(
E−1FGTC−1

)
= (C−TG⊗ E−1F) vec (Ir) := Z.

We multiply this linear system by 2
γmin

since 2
γmin

M satisfies the conditions of Theorem
2.40. Applying the integral representation of Lemma 2.39 and the quadrature approxi-
mation of 2.40 yields

vec (X) = − 2

γmin

∞∫
0

exp

(
2

γmin

At

)
dtZ ≈ −

k∑
i=−k

ω̃i exp (At̃i)Z =: vec
(
X̃

)
.

Since exp (In ⊗M −N ⊗ Im) = exp(−N) ⊗ exp(M) for N ∈ Rn×n, M ∈ Rm×m [132],
this approximation can be rewritten as

vec
(
X̃

)
= −

k∑
i=−k

ω̃i exp (−C−TBT t̃i)⊗ exp (E−1At̃i)(C
−TG⊗ E−1F) vec (Ir)

= −
k∑

i=−k

ω̃i exp (−C−TBT t̃i)C
−TG⊗ exp (E−1At̃i)E

−1F vec (Ir)

20

2.3. Matrix Equations

from which (2.24) follows by reversing the vectorization operator and applying Lemma 2.18a.
The error expression is simply obtained by

‖X − X̃‖F = ‖ vec (X)− vec
(
X̃

)
‖F = ‖(A−1 − Ã−1)Z‖F

≤ ‖(A−1 − Ã−1)‖F‖E−1FGTC−1‖2

and using (2.23) of Theorem 2.40.

Remark 2.42:

The condition λ− μ ∈ C− ∀λ ∈ Λ(A, E), μ ∈ Λ(B, C) can be relaxed by assuming
that the spectra Λ(A, E) and μ ∈ Λ(B, C) are separated by a line [113]. Then there
exists a complex constant ν such that Λ(νA, E) and μ ∈ Λ(νB, C) are separated by
a vertical line parallel to the imaginary axis and, hence, λ̂− μ̂ ∈ C− ∀λ̂ ∈ Λ(νA, E),
μ̂ ∈ Λ(νB, C). One then applies the above theorem to the equivalent, but complex,
GCASE νA(ν−1X)C − E(ν−1X)(νB) = FGT . ♦

Remark 2.43:

In [20] an extension of the above result for certain symmetric, linear matrix equations
of type (2.8) with � > 2 can be found. Applying a quadrature formula to the Dunford-
Cauchy representation of the matrix exponentials in the solution formula (2.17) leads
to more sophisticated results for Sylvester equations [113]. ♦

The error expression in Corollary 2.41 should not be understood as very accurate way to
estimate the error of low-rank approximations. In practice, much smaller errors can be
achieved by approximations with lower rank. The result of Corollary 2.41 is nevertheless
interesting as it theoretically explains the often observed fast singular value decay of the
solutions of Sylvester equations and the existence of low-rank approximations due to
the almost exponentially decreasing character of the approximation error (2.25) which
depends on exp (

√
k).

Moreover, the constant ζSylv indicates some quantities of the defining coefficient ma-
trices which influence this decay: the rank r of the right hand side as well as the values
γmin and d. In particular, the ratio β := d/γmin appears to be influential in (2.25). It
determines a certain delay before the almost exponentially fast decrease of the approx-
imation error takes place: only if k is large enough such that

√
k > 1+2β

π2 , we have that

exp
(

1+2β
π

− π
√
k
)
< 1. However, one should not conclude that r and β are the only

important quantities and that the influence of r and β is directly visible. For instance,
larger values of β might not necessarily lead to a slower singular value decay. The eigen-
vectors of (A, E) and (B, C) also effect (2.25), but their influence is somewhat hidden
in the value of the integral and not easily read off.

For GCALEs, the low-rank approximation and error bound in Corollary 2.41 are
simplified in a straightforward way by setting C = −ET , B = AT , and G = F . In that

21

2. Mathematical Basics and Preliminaries

case, the constant in the error expression (2.25) is

ζLyap :=
φ

π
exp

(
1 + 2β̃

π
− π

√
k

) ∮
Γ

∥∥(τ γ̃minIn2 −A)−1
∥∥
F
dΓτ

with β̃ := max |Im (λ)|
min |Re (λ)| , γ̃min := min |Re (λ)|, λ ∈ Λ(A, E).

(2.26)

The scalar β̃ is closely related to the opening angle of Λ(A, E) ⊂ C−:

ψ(A, E) = max |arg λ| = max arctan
∣∣∣ Im (λ)
Re (λ)

∣∣∣. (2.27)

Hence, if there are eigenvalues close to the imaginary axis but with imaginary parts
which dominate the real parts, we expect that this slows down the singular value decay
of the GCALE solution. The opening angle of the spectrum ψ(A, E) will also play a
role in other topics later.
For GCALEs there are alternatives to this quadrature based approach for quanti-

fying the singular value decay [184, 213, 4, 242, 222]. Since the sought solutions are
positive semidefinite, one can equivalently look at the decay of the eigenvalues in an
non-increasing order. As example, we mention a result from [4]. Consider a CALE
(2.10) defined by a diagonalizable matrix A, E = In and Q = ffT , f ∈ Rn. Then the
solution X can be expressed as

X = WfKW
H
f , Wf := W diag

(
W−1f

)
, (2.28)

whereW is the matrix containing the right eigenvectors of A as columns, i.e.,W−1AW =
diag (λ1, . . . , λn), λi ∈ Λ(A). The matrixK is a Hermitian positive (semi)definite Cauchy

matrix K =
(

−1
λi+λj

)n

i,j=1
. It is proven in [4, Theorem 3.1] that there exist rank-k

approximations of X satisfying

‖X −Xk‖ ≤ δk+1((n− k)κ(W)‖f‖)2

with δk+1 =
1

−2Re (λk+1)

k∏
j=1

∣∣∣∣λk+1 − λj

λk+1 + λj

∣∣∣∣2 . (2.29)

The δ’s are related to the Cholesky factorization of K [108] and can, under a certain
ordering of the eigenvalues of A, be ordered in a non-increasing form δ1 ≥ δ2 . . . ≥ δn ≥ 0.
Furthermore, every factor in the product defining δk+1 is smaller than one and, thus, the
error decreases with increasing k. Moreover, the δ’s often decay very fast towards zero
and if A is not too far from normal, this decay mimics the singular value decay of X.
Hence, (2.29) can, to some extent, also be used as explanation for the fast singular value
decay of CALE solutions. In Section 7.3.1, we will use a similar approach to investigate
the singular value decay of certain special CALEs related to model order reduction. A
generalization of the above results to inhomogeneities Q = FF T , F = [f1, . . . , fr] ∈ Rn×r

is given by

X =
r∑

i=1

WfiKW
H
fi
, Wfi := W diag

(
W−1fi

)
,

‖X −Xrk‖ ≤ δ1ηr((n− k)2κ(W)‖B‖)2,
(2.30)

22

2.3. Matrix Equations

for an approximation Xrk of rank rk and η > δk+1/δ1, see [4, Theorem 3.2]. In [222], an
improved error bound is proposed which also considers certain non-diagonalizable ma-
trices. For GCALEs, similar relations can be found by using Wf = W diag (W−1E−1f)
in (2.28). In [108], an expression analog to (2.28) can be found for GCASEs.
The expression in (2.28) reveals an interesting relation between f and the inverse

eigenvector matrix which is not directly reflected in the prior approximation result (2.29).
Since the matrix of left eigenvectors is Y = W−H , the magnitudes of the entries yHi f ,
i = 1, . . . , n, of the vector f̃ := diag

(
Y Hf

)
influences Wf . This has, e.g., also been

discussed in [222], where the authors conclude that, next to the eigenvalues of K, the
vector f̃ has a significant impact on the eigenvalue decay rate of the solution. In an
extreme case, where (A, f) is not completely controllable, yHi f = 0 for some i and, thus,
Wf will be singular which directly influences the exact rank of X. The argumentation
for the case r > 1 is similar and can be deduced from (2.30). Due to the appearance of
κ(W) in (2.29), the above approximation result ceases to be useful for highly non-normal
matrices as it is, e.g., investigated in [7]. More precise effects of the eigenvectors on the
eigen- or singular value decay rates are, to the author’s knowledge, not available and are
subject to current research. Some discussions regarding the impact of non-normality on
the eigenvalue decay can be found, e.g., in [202, 7].
It is important to point out that both the above approaches suggest by (2.24) and

(2.30) that the rank of the approximation, to achieve a certain accuracy, increases with
r. This, in turn, means that the singular value decay decreases as r increases. While
this can indeed be observed in many cases, the conjecture is in general not true. In the
upcoming short experiment, but also in Chapter 7.3, we will encounter situations where
an inhomogeneity of higher rank does not at all lead to a deceleration of the singular
value decay rate. Again, more thorough insights into the interaction of the eigenvectors
and F are required to explain these effects.
Despite the various results for linear matrix equations, less research has been done

regarding theoretical results for the singular, and eigenvalue decay as well as low-rank
approximations of solutions of AREs. In [23], the authors address this issue for CAREs
by using similar techniques based on Cauchy matrices as the ones for CALEs above.
We end this section with a small CALE example to illustrate some of the mentioned

aspects of the low-rank phenomenon.
We use CALEs

AiXi +XiA
T
i +Qi, Qi = FiF

T
i (2.31)

defined by different matrices Ai and inhomogeneities Qi = FiF
T
i which are summarized,

together with the values β and r, in Table 2.1. The CALEs for five different pairings
of Ai, Fi are solved by the MATLAB routine lyap. Figure 2.1 shows the scaled singular
values σj(X)/σ1(X) which were computed using the svd command. Apparently, for all
five test cases, the scaled singular values drop below the machine precision umach before
j reaches n. With the same reasoning as in the example in the introduction, the values
below umach should by no means be trusted and should not be considered as accurate
singular values. The slower decay of these computed singular values once they fall below

23

2. Mathematical Basics and Preliminaries

Table 2.1.: Matrices defining the CALEs (2.31)

Matrix A β Factor F of inhomogeneity r

A1 = diag (−[1, 1, . . . , 50, 50]) 0 F1 ∈ Rn random 1
A2 = A1 + I50 ⊗ [

0 −10
10 0

]
10 F2 = [F1, c2], c2 ∈ Rn×2 random 3

A3 = A2 +
9
10In 100 F3= [F1, c3 +[e2, . . . , e10]], c3 ∈ Rn×9, ‖c3‖ ≈ 10−7 10

10 20 30 40 50 60 70 80 90 100

100

10−8

umach

j

σ
j
(X

)

σ
1
(X

)

A1, F1

A2, F1

A2, F2

A3, F2

A3, F3

Figure 2.1.: Scaled singular values (σj/σ1) of the solutions of the different CALEs.

umach might possibly only be a numerical artifact caused by the difficulties to accurately
compute quantities smaller or within the range of the machine precision. More robust
singular value algorithms, e.g., [80], might reveal that even below umach the singular
values keep decaying at a similar rate as before. The plot in Figure 2.1 nevertheless
shows a different fast singular value decay for the different settings. The fastest decay
is achieved with the diagonal matrix A1 and the inhomogeneity F1F

T
1 of rank one. In

comparison, using the non-symmetric matrix A2 instead, yields a considerably slower
singular value decay since the complex eigenvalues lead to β̃(A2) = 10 > 0 = β̃(A1).
Replacing F1F

T
1 by F2F

T
2 increases the rank of the inhomogeneity to r = 3 and clearly

slows down the singular value decay further. Shifting A2 closer to the imaginary axis
gives A3 with an increased β̃3 = 100 which yields a further deceleration of the decay. So
far, these observations are in line with the observations regarding the error expression
(2.25) of Corollary 2.41. With the inhomogeneity F3F

T
3 with r = 10 one would expect

from (2.25) and (2.30) an even slower singular value decay. However, the decay is
significantly faster than with F2F

T
2 of rank three. This suggests that the solution of the

CALE can be more easily approximated by a low-rank matrix than for the CALE defined
by A3, F2F

T
2 . An explanation for this is difficult to find with Corollary 2.41, but the

expressions (2.28), (2.30) are more insightful. Apparently, the additional columns of F3

are nearly orthogonal to some left eigenvectors of A3. Hence, some of the corresponding
Wfi in (2.30) are nearly singular which obviously influences the singular values and, thus,
also the numerical rank of the CALE solution.

24

2.3. Matrix Equations

2.3.4. Concise Overview of Full / Low-Rank Methods

Instead of giving an exhaustive summary of algorithms for solving matrix equations, we
mention selected approaches, including the ones important for comparative studies in
this thesis. Further methods, as well as more details, can be found, e.g., in the survey
articles [210, 52]. Whenever we give lists of references in the following short summary,
these are most likely not complete but selective. Therefore, these lists should always be
understood as directions towards the cited literature as well as the references therein.
For small to medium scale linear matrix equations of length � = 2, methods based on

(generalized) Schur, eigenvalue, or Hessenberg decompositions of the involved coefficient
matrices can be applied, such as the popular Bartels-Stewart algorithm [14] for Sylvester
and Hammerling’s method [124] for Lyapunov equations, where the latter one directly
computes a Cholesky factor of the solution. Other related methods can be found in,
e.g., [214, 109, 90, 105, 68]. Another class of methods based on the matrix sign function
iteration was investigated in, e.g., [133, 46, 17]. The ADI (alternating direction implicit)
iteration is another iterative scheme that can be applied to solve CALEs and CASEs
[229, 233]. This approach will be reviewed in the next chapter as its represents the
backbone of the methods discussed in this thesis. For matrix equations with � > 2, some
iterative methods which solve an equation with � = 2 in each iteration step by using
one of the just mentioned methods, can be found in, e.g., [71, 20, 21]. The solution of
algebraic Riccati equations can be built from certain invariant subspaces of the associated
Hamiltonian (CAREs), symplectic (DAREs), or M -matrices (MNAREs). We refer to
[150, 55] for overviews of these concepts. Algorithms which employ these properties by
computing certain decompositions of the involved block matrices can be found in, for
instance, [154, 155, 121, 55, 63]. The application of the sign function iteration for solving
GCAREs and GDAREs is considered in [191, 106, 144, 143]. A generalization of the ADI
iteration for CAREs, the quadratic ADI iteration (QADI), is proposed in [238]. Due to
the nonlinear nature of AREs, Newton schemes present another well suited approach for
their solution [145, 126, 122]. There, in each Newton step a linear matrix equation has
to be solved. All of these methods involve computations with and manipulations of the
original coefficient matrices, such as constructing the factorizations mentioned before.
This yields a cubic complexity and quadratic storage requirements and, hence, they are
not feasible for large and sparse matrices. Furthermore, they do not exploit the often
present low numerical rank of the solution. There are, however, specialized methods for
GCASEs when only one of the pairs (A, E) or (B, C) is large and sparse, but the other
one is much smaller and dense [215, 30].

Algorithms for handling large matrix equations defined by sparse matrices are usually
based on the assumption that matrix-vector products, as well as solutions of (shifted)
linear systems with the coefficient matrices, can be efficiently computed in contrast to,
e.g., Schur decompositions. As outlined before, one typically computes a low-rank ap-
proximation X̃ of the solution X, such that rank{X̃} = k � min (n,m). This approach
is, of course, only valid if the problem at hand actually admits such a low-rank solution,
e.g., when rank{FGT} = r � min (n,m) and β is sufficiently small which we assume
in the following. Typically, this low-rank solution is computed in a factorized form

25

2. Mathematical Basics and Preliminaries

X̃ = ZDY T with Z ∈ Rn×k, D ∈ Rk×k, and Y ∈ Rm×k. For equations having positive
(semi)definite solutions (GCALEs, GCAREs, as well as their discrete-time versions),
this can be simplified to X̃ = ZZT or X̃ = ZDZT with D = DT � 0.

A large class of methods for this purpose is built upon projections onto low-dimensional
subspaces. We briefly outline the main idea for CALEs. Given a subspace U =
span {U} ⊂ Cn with U ∈ Cn×k, UHU = Ik, k � n, the solution X is approximated by
X̃ = UDUH . Imposing a Galerkin condition [196] onto the residual

L = A(UDUH) + (UDUH)AT + FF T ,

leads to UHAUD + DUHAHU + UHFF TU = 0, i.e., D is the solution of a small, k-
dimensional CALE which can be solved by the algorithms mentioned above. Usually,
one produces sequences of subspaces of increasing dimensions in an iterative manner.
Different algorithms mainly differ in the choice of the subspace U. For (G)CALEs, stan-
dard Krylov subspaces Kk(A, F) = span

{
F,AF, . . . , Ak−1F

}
have been employed in

[196, 137]. The extended Krylov subspace method (EKSM) [209, 218] uses extended
Krylov subspaces EKk(A, F) = Kk(A, F) ∪ Kk(A

−1, A−1F) which leads to a signifi-
cantly faster convergence compared to using Kk(A, F) alone. A further generalization
is the rational Krylov subspace method (RKSM) [83, 82, 84] which works with sub-
spaces Krat

k (A, F, ξ) = dk−1(A)
−1Kk(A, F), where dk−1 is polynomial whose roots are

given real or complex parameters ξ = {ξ1, . . . , ξk}. An illustration of RKSM is given
in Algorithm A.1 in the appendix. Several modifications and generalizations of similar
methods are available for GDALEs [203], GCASEs [89, 11, 12, 138, 134, 60], and AREs
[127, 211, 167]. A related approach, based in some sense on H2 interpolation and using
also rational Krylov subspaces, is proposed in [21].

The algorithms investigated in this thesis are low-rank versions of the aforementioned
ADI iteration which, for GCALEs, were extensively studied in [183, 161, 18, 42, 201].
These methods can be carried over to GDALEs [27, 203] and GCASEs [162, 43, 32].
In the chapters to come, we will review and improve these methods regarding various
computational aspects. There, we will also see that the ADI iteration can be understood
as functional iteration, where the next iterate Xk is obtained via Xk = f(Xk−1) for
k ≥ 1. The Smith method [29, 165] and, in particular, its low-rank variations [183, 202]
also fit into this framework. Solving the occurring linear matrix equations in Newton
methods for GCAREs and GDAREs by the low-rank ADI iteration is considered in
[42, 49, 201, 50, 27, 94, 10, 125]. In Chapter 6, we will discuss a similar method to
deal with large-scale NAREs. Low-rank versions of the QADI iteration for GCAREs are
investigated in [238, 201, 23, 24]. The Riccati-ADI iteration [170] is a further variant of
the ADI iteration directly applicable to GCAREs.

There are several alternatives to low-rank Krylov and ADI type methods. For general
linear matrix equations (2.8) with � ≥ 2, one can apply iterative methods in a matrix-
valued fashion. In fact, any available Krylov subspace method for linear systems [199,
225] can be used as in [59, 20]. It appears that this approach is particularly well suited
for the situation � > 2 when an appropriate preconditioner is employed. For AREs, there
exist further methods that iteratively exploit the relation of certain invariant subspaces

26

2.4. Used Software, Hardware, and Test Examples

of the associated block matrices and the solution. This includes the subspace methods
discussed in [211, 23] and doubling algorithms [70, 69, 56, 55].

2.4. Used Software, Hardware, and Test Examples

Throughout this thesis we will evaluate the considered algorithms by several numerical
experiments which are all carried out in MATLAB 8.0.0.783 (R2012b) on a Intel Xeon
CPU X5650 @ 2.67GHz with 48 GB RAM. This is one computing node of the linux
cluster otto1 at the Max Planck Institute for Dynamics of Complex Technical Systems
in Magdeburg. It should be mentioned that the majority of numerical experiments
could also be exercised on lesser hardware, e.g., smaller amounts of memory. This holds
especially for the numerical methods, where the enhancements proposed in this thesis
are included.
Here, we briefly introduce a number of test examples which are used several times in

the upcoming numerical experiments. Often, these examples are related to a dynamical
system of the form (2.5). A few further examples will be introduced in the upcoming
sections on occasion for single use.

An Ocean Circulation Problem

A finite element model of an ocean circulation problem [227] yields a nonsymmetric
Hurwitz matrix A with n = 42, 249 which we use to define a CALE (2.10). If not stated
otherwise, the factor F of the inhomogeneity Q = FF T is constructed by r = 20 columns
with uniformly distributed random entries. We will abbreviate this example by ocean.

Scalable Finite Difference Discretizations of a Partial Differential Equation

An often used academic example for CALEs is obtained by using centered finite differ-
ences to discretize the partial differential equation

v̇ = −Δv − f1
∂v

∂ξ1
− f2

∂v

∂ξ2
− f3 = 0

for v = v(ξ1, ξ2) defined on Ω = (0, 1)2 with homogeneous Dirichlet boundary condi-
tions. Here, fi, i = 1, 2, 3, are functions depending on ξ1, ξ2 and are often referred
to as convection and reaction terms. Using n0 equidistant grid points for each spatial
dimension yields a dimension n = n2

0 for A. The factor F ∈ Rn×r of the inhomogeneity
is usually taken as random matrix. The terms f1, f2 influence the symmetry of A. By
varying fi, n0, and r, we will employ different versions of this example which is abbre-
viated by FDM. The particularly selected settings are mentioned at each occurrence in
numerical experiments. A frequently used choice is f1 = 102ξ1, f2 = 103ξ2, and f3 = 0
as in, e.g., [184].

1See http://www.mpi-magdeburg.mpg.de/1012477/otto for more information.

27

2. Mathematical Basics and Preliminaries

Cooling Process of Steel Rails

The steel profile cooling models are part of the Oberwolfach Model Reduction Bench-
mark Collection2. They represent spatial finite element discretizations of a heat transfer
problem arising in the cooling of steel rail profiles [200, 47, 48]. Different grid sizes result
in matrices A ≺ 0, E � 0 of different dimensions which we use to define GCALEs (2.11).
We use the cases with n = 20, 209 and n = 79, 841, which are abbreviated by rail20k and
rail79k, respectively. The model constitutes a dynamical system (2.5) and also provides
an input matrix B with r = 7 which serves as F . For the parts of this thesis devoted to
model order reduction, the output matrix C ∈ R6×n in (2.5) is also used.

A Finite Element Discretization of a Convection-Diffusion Problem

The IFISS 3.23 package [207] provides the example T-CD3, where a time-dependent
convection diffusion equation defined on (0, 1)2 is discretized by Q1 finite elements on
a uniform grid. We use the default settings for this example, but different grid sizes
to generate A, E: 64 × 64, 128 × 128, and 256 × 256 grids leading to the dimensions
n = 4, 225, n = 16, 641, and n = 66, 049. The corresponding abbreviations are ifiss4k,
ifiss16k and ifiss66k. The matrix F is typically constructed by r = 5 random columns.

The Triple Chain Oscillator

In several applications, linear control systems of the form

Mq̈(t) +Dq̇(t) +Kx(t) = B1u(t),

y(t) = Cpq(t) + Cvq̇(t)
(2.32)

with M, D, K ∈ Rn×n, B1 ∈ Rn×r, and Cp, Cv ∈ Cp×n, arise. The functions
q(t), u(t), y(t) are defined as in (2.5). Since (2.32) involves the second derivative w.r.t.
time t, such systems are usually referred to as second order, linear, time-invariant, con-
trol systems. They are often dealt with by rewriting (2.32) formally into an equivalent
generalized state space system (2.5) of first order with E, A ∈ R2n×2n, F ∈ R2n×r,
L ∈ Rp×2n and the augmented generalized state vector x(t) = [q(t)T , q̇(t)T]T . This is
closely related to rewriting the associated quadratic matrix polynomial λ2M + λD +K
into a linear pencil λE − A [220]. Hence, we will refer to this transformation as lin-
earization. The two most standard linearizations are the first companion linearization

E1 =

[
N1 0
0 M

]
, A1 =

[
0 N1

−K −D
]
, F1 =

[
0
B1

]
, L1 =

[
Cp Cv

]
(2.33a)

and the second companion linearization

E2 =

[
D M
N2 0

]
, A2 =

[−K 0
0 N2

]
, F2 =

[
B1

0

]
, L2 =

[
Cp Cv

]
, (2.33b)

2Available at http://portal.uni-freiburg.de/imteksimulation/downloads/benchmark under
the ID=38881.

3See http://www.maths.manchester.ac.uk/~djs/ifiss/.

28

2.4. Used Software, Hardware, and Test Examples

where N1, N2 are arbitrary nonsingular n × n matrices. Common choices for those are
N1 = In or N1 = −K in (2.33a) and N2 = In or N2 =M in (2.33b), respectively.

The scalable triple chain oscillator [223], abbreviated by chain, describes three coupled
chains of masses interlinked with springs and dampers. Its equations of motion can
be formulated in the form (2.32). Using n0 = 7, 000 masses yields matrices M � 0
and K � 0 of dimension n = 3n0 + 1 = 21, 001. The matrix D � 0 is modeled as
D = 0.02M + 0.5K with ν = 5 added to the first, n-th, and 2n + 1-th diagonal entry,
and B1 is a random matrix of dimension n× 5.

The Brazilian Interconnected Power System Examples

The Brazilian interconnected power system models4 provide a number of differential-
algebraic systems (2.5) defined by the block structured matrices

E =

[
E11 0
0 0

]
, A =

[
A11 A12

A21 A22

]
∈ Rn×n, F =

[
F1

F2

]
∈ Rn×r (2.34)

with E11 ∈ Rnf×nf and A22 ∈ R(n−nf)×(n−nf) nonsingular. All the other subordinate
block matrices have appropriate dimensions. The number nf < n refers to the number
of finite eigenvalues in Λ(A, E), which are supposed to be located in C−. The special
structure of E implies that the pair (A, E) is of index one [148]. Since the inverse of
E does not exist, the formulation of an associated GCALE is not as straightforward as
before. In [98] a GCALE associated to (2.34) is defined by

ÂP̂E11 + E11P̂ Â
T = −F̂ F̂ T

with Â := A11 − A12A
−1
22 A21 ∈ Rnf×nf , F̂ := F1 − A12A

−1
22 F2 ∈ Rnf×r

(2.35)

which we employ for our studies. By the abbreviation bips we refer to the system
bips07 3078 with n = 21, 128, nf = 3, 078, E11 = Inf

, and r = 4. As in [98, Section V.A]
the shifted matrix A−0.05E is used since the original pair (A, E) has finite eigenvalues
very close to the imaginary axis.

4Available at http://sites.google.com/site/rommes/software.

29

CHAPTER 3

THE LOW-RANK ALTERNATING DIRECTIONS IMPLICIT

ITERATION FOR LYAPUNOV AND SYLVESTER

EQUATIONS

Contents
3.1 Origin of the ADI Iteration . 32

3.2 LR-ADI Iteration for Lyapunov Equations 32

3.2.1 Application of ADI to CALEs 32

3.2.2 ADI Shifts . 36

3.2.3 Stopping Criteria . 37

3.2.4 The Low-Rank Structure of the Residual Matrix and a Re-
formulated Iteration . 39

3.2.5 Structure Exploiting Versions of the G-LR-ADI Iteration for
Special GCALEs . 44

3.2.6 Numerical Examples . 46

3.3 The Factored ADI Iteration for Sylvester Equations 48

3.3.1 Derivation, Shift Parameters and Stopping Criteria 48

3.3.2 The Sylvester Residual Matrix within the fADI Iteration . . 51

3.3.3 Special Cases of Generalized Sylvester Equations 55

3.3.4 Numerical Examples . 58

3.4 Conclusions . 60

This chapter introduces the most important algorithm of this thesis, the low-rank
alternating direction implicit (LR-ADI) iteration for computing low-rank solution fac-
tors of large-scale Lyapunov and Sylvester equations. A short summary of the historical
origin of ADI methods is given in the next section. The subsequent two sections treat
the application of the ADI iteration for Lyapunov and Sylvester equations separately.
The low-rank ADI iteration for standard and generalized Lyapunov equations is derived
in Subsection 3.2.1 which is followed by a brief overview of the shift parameter problem

31

3. Low-Rank ADI Iteration for Lyapunov and Sylvester Equations

and suitable termination criteria in Subsections 3.2.2 and 3.2.3, respectively. In Subsec-
tion 3.2.4, we investigate the structure of the Lyapunov residual in the ADI iteration
and develop a novel formulation of the low-rank ADI iteration, where the residual norm
can be computed much more efficiently compared to other approaches. Some specially
tailored versions of this reformulated ADI iteration for certain structured problems are
given in Subsection 3.2.5, and 3.2.6 presents some numerical experiments. Afterwards,
similar investigations are carried out for generalized Sylvester equations in Section 3.3,
where also special cases, e.g., discrete-time Lyapunov equations, are considered. After
numerical examples illustrating the performance of the proposed methods, Section 3.4
summarizes and gives some further research perspectives.

3.1. The Origin of the Alternating Directions Implicit
Iteration

The original ADI iteration was developed in [181] for solving linear systems

Au = b

with A ∈ Rn×n symmetric, positive definite, arising in the numerical solution of elliptic
and parabolic differential equations. Assume A can be expressed as A = H + V with
symmetric, positive definite matrices H, V ∈ Rn×n, such that the above linear system
can be equivalently stated as

Hu+ V u = b.

For instance, if A represents a centered finite difference discretization of a partial dif-
ferential equation in two dimensions, then H and V can be chosen as centered finite
difference discretizations with respect to the x and y direction, respectively. The ADI
iteration is for j = 1, 2, . . . defined in terms of double steps

(H + αjIn)uj− 1
2
= (αjIn − V)uj−1 + b,

(V + αjIn)uj = (αjIn −H)uj− 1
2
+ b,

(3.1)

where αj ∈ R+ are appropriately chosen parameters. Provided that H and V commute
(HV = V H), there exist shift parameters such that the ADI iteration above converges
with a superlinear convergence rate [15].

3.2. The Low-Rank ADI Iteration for Large-Scale
Continuous-Time Lyapunov Equations

3.2.1. The Application of the ADI Iteration to Lyapunov Equations

The standard CALE (2.10)

AX +XAT = −FF T , F ∈ Rn×r (3.2)

32

3.2. LR-ADI Iteration for Lyapunov Equations

with a c-stable A represents an ADI model problem since the operator L : X �→ AX +
XAT is a sum of the commuting operators LL : X �→ AX and LR : X �→ XAT . The
original approach to derive an ADI scheme for (3.2) is to formally apply the iteration
(3.1) to LL, LR which gives

(A+ αjIn)Xj− 1
2
= −FF T −Xj−1(A

H − αjIn),

(A+ αjIn)X
H
j = −FF T −XH

j− 1
2
(AH − αjIn),

(3.3)

where the shift parameters αj ∈ C− are allowed to be complex now, and the iteration is
started with an initial guess X0 = XT

0 ∈ Rn×n. Rewriting (3.3) into a single step yields

Xj = (A+ αjIn)
−1(A− αjIn)Xj−1(A− αjIn)

H(A+ αjIn)
−H

− 2Re (αj) (A+ αjIn)
−1FF T (A+ αjIn)

−H

= C(A,αj)Xj−1C(A,αj)
H + Q(αj)

(3.4)

with the Cayley transformation (see Definition 2.15)

C(A,α) := (A+ αIn)
−1(A− αIn) and (3.5a)

Q(α) := −2Re (α) (A+ αIn)
−1FF T (A+ αIn)

−H . (3.5b)

We will refer to the iterative scheme (3.4) as ADI iteration for CALEs. There, the Xj

are always Hermitian matrices although the iterates Xj− 1
2
in the double-step iteration

(3.3) are not. The restriction αj ∈ C− leads to ρ(C(A,αj)) < 1 by Proposition 2.16c.

Before we continue, we show an alternative insightful way to derive the ADI iteration
(3.4) on the ground of the following important lemma.

Lemma 3.1 ([212, 183, 119]):

For all α /∈ Λ(A) the CALE (3.2) is equivalent to the DALE (Definition 2.26)

X = C(A,α)XC(A,α)H + Q(α) (3.6)

with C(A,α) and Q(α) as in (3.5). ♦
The equivalent DALE (3.6) motivates the functional iteration

Xj = C(A,α)Xj−1C(A,α)
H + Q(α) (3.7)

for j = 1, 2, . . . which is essentially the Smith iteration [212]. Varying also the shifts
α, i.e., a different αj is used in (3.7) for each j, immediately yields the ADI iteration
(3.4). As discussed in [119], the iteration (3.7) (with or without varying shifts) can
also be interpreted as transforming a continuous-time dynamical system (2.5) into a
discrete-time dynamical system (2.6).

33

3. Low-Rank ADI Iteration for Lyapunov and Sylvester Equations

The Low-Rank ADI Iteration The ADI iteration (3.4) operates on n × n matrices
and does not exploit the low-rank structure of the right hand side FF T in (3.2). Hence,
it is not suitable for computing low-rank solution factors of large-scale equations. For
deriving a low-rank formulation of (3.4), the following lemma will be useful.

Lemma 3.2:

For allM ∈ Cn×n and α, β ∈ C, the matrices (M±αIn)±1 and (M±βIn)±1 commute,
provided the inverses exist. ♦

If we introduce the low-rank factorization Xj = ZjZ
H
j and set Z0 = 0, then (3.4)

accumulates the low-rank factor Zj via

Z1 =
√

−2Re (α1)(A+ α1In)
−1F, (3.8)

Zj =

[√
−2Re (αj)(A+ αjIn)

−1F, C(A,αj)Zj−1

]
, (3.9)

where we exploited the symmetric structure of Q(αj). In this way, rj columns have to be
processed at iteration j, i.e., j shifted linear system with r right hand sides each have to
be solved, such that the iteration gets increasingly expensive. Introducing the notations

γj :=
√

−2Re (αj), Fj := (A+ αjIn)
−1F,

Cj := C(A,αj), and Ci,j := C(A,αi, αj) = (A− αiIn)(A+ αjIn)
−1,

the low-rank factor Zj in the above scheme can be written as

Zj = [γjFj, γj−1CjFj−1, γj−2CjCj−1Fj−2, . . . , γ1Cj · · ·C1F1] .

Now by Lemma 3.2 one observes that CiFj = Ci,jFi and CiCj = Ci,jCj,i ∀i, j, such that

Zj = [γjFj, γj−1Cj−1,jFj, γj−2Cj−2,j−1Cj−1,jFj, . . . , γ1C1,2 · · ·Cj−1,jFj] .

Thus, Zj is for j > 1 augmented by r columns which are constructed from applying
a Cayley transform to the previous r columns processed at the iteration step j − 1.
Reversing the order of the shift parameters yields the low-rank ADI iteration

V1 = (A+ α1In)
−1F, Z1 =

√
−2Re (α1)V1 (3.10a)

Vj = Cj−1,jVj−1 = Vj−1 − (αj + αj−1)(A+ αjIn)
−1Vj−1, j > 1, (3.10b)

Zj =

[
Zj−1,

√
−2Re (αj)Vj

]
, (3.10c)

where we used Proposition 2.16a to rewrite Cj−1,j. In this form, only r columns need
to be processed in each iteration step and the main computational effort comes from
the solution of the associated shifted linear system with r right hand sides. From now
on, we assume that we are able to solve the linear systems efficiently by either sparse
direct [87, 74] or iterative solvers [199, 225], and that the obtained numerical solutions
are approximate enough such that any errors can be neglected. The case of inexact

34

3.2. LR-ADI Iteration for Lyapunov Equations

linear system solves is considered, e.g., in [202, 219]. As the low-rank solution factor Z
is augmented by r columns in each iteration step, the approximate solution is given as
sum of dyadic products of these columns:

Xj = ZjZ
H
j = −2

j∑
i=1

Re (αi)ViV
H
i . (3.11)

Dealing with Generalized CALEs. Generalized, continuous time Lyapunov equations

AXET + EXAT = −FF T (3.12)

with nonsingular E can be transformed to standard CALEs

ÂX +XÂT = −F̂ F̂ T with Â = E−1A, F̂ = E−1F

and the iteration (3.10) can be applied to Â, F̂ in a straightforward way. From a
numerical point of view, this is not wise since forming Â might be too expensive in a
large-scale setting. Moreover, it can possibly become ill-conditioned and dense. A more
sound way to deal with E is using

(Â+ αIn)
−1 = (A+ αE)−1E

in the linear systems in (3.10). This amounts to work with generalized Cayley trans-
formations (Definition 2.15b) in the above derivation of the ADI iteration which yields,
again by using Proposition 2.16a,

V1 = (A+ α1E)
−1F,

Vj = Vj−1 − (αj + αj−1)(A+ αjE)
−1(EVj−1), j > 1,

see, e.g., [18, 201]. Compared to (3.10), the identity In in the shifted linear systems
is replaced by E and the right hand side for j > 1 is EVj−1. The resulting low-rank
ADI iteration for GCALEs (G-LR-ADI) is summarized in Algorithm 3.1. For standard
CALEs (3.2), we use the abbreviation LR-ADI for Algorithm 3.1.

Remark 3.3:

Due to the Cholesky-type structure X ≈ ZZH of the computed approximate solution,
Algorithm 3.1 is also frequently called (generalized) low-rank Cholesky-factor ADI
iteration and abbreviated by (G-)LRCF-ADI. In this thesis we refrain from using the
term Cholesky-factor since the computed low-rank factors Z are not triangular and
because it shortens the used abbreviations for the algorithm to come. Also note that
in several instances, the (G-)LR-ADI iteration is formulated using scaled iterates of
the form

√
Re (αj) /Re (αj−1)Vj. ♦

In Algorithm 3.1, the G-LR-ADI iteration is written using complex arithmetic op-
erations because some of the shift parameters can be complex numbers. Hence, the
computed low-rank factors Z are complex matrices in this case, although the intrin-
sic GCALE is defined by real matrices. Chapter 4 is entirely devoted to handle this
undesirable property.

35

3. Low-Rank ADI Iteration for Lyapunov and Sylvester Equations

Algorithm 3.1: G-LR-ADI iteration for GCALEs [18, 201]

Input : Matrices A, E, F defining (3.12) and shift parameters
{α1, . . . , αjmax} ⊂ C−.

Output: Z ∈ Cn×rjmax such that ZZH ≈ X.
1 Z0 = [].
2 for j = 1, . . . , jmax do
3 if j = 1 then
4 Solve (A+ α1E)V1 = F for V1.
5 else

6 Solve (A+ αjE)V̂ = EVj−1 for V̂ .

7 Vj = Vj−1 − (αj + αj−1)V̂ .

8 Zj =
[
Zj−1,

√−2Re (αj)Vj

]
.

3.2.2. Error Reduction and Shift Parameters

The shift parameters in the iteration schemes (3.3), (3.4) of the ADI iteration and, thus,
also in the low-rank version (3.10) and Algorithm 3.1 are crucial for a fast convergence.
Often, these shifts are constructed such that they reduce the error Xj − X. The next
lemma quantifies this error, where we stick to the case E = In for simplification and due
to the equivalence discussed in the previous subsection.

Lemma 3.4 (Error of the ADI iteration [202, 94, 135]):

The error at iteration step j of (3.4) and of the equivalent reformulations (3.3), (3.10),
is given by

Xj −X =

[
j∏

i=1

Ci

]
(X0 −X)

[
j∏

i=1

CH
i

]
. (3.13)

Proof. Combining Lemma 3.1 with (3.4) immediately gives the result.

This lemma yields ‖Xj −X‖ ≤
∥∥∥∥ j∏
i=1

Ci

∥∥∥∥2

‖X0 −X‖. Assuming that A is diagonalizable,

it can be factorized as A = QΛQ−1 with Λ = diag (λ1, . . . , λn), and Q contains the right
eigenvectors of A. Then∥∥∥∥∥

j∏
i=1

Ci

∥∥∥∥∥ =

∥∥∥∥∥Q
(

j∏
i=1

C(Λ, αi)

)
Q−1

∥∥∥∥∥ ≤ κ(Q)

∥∥∥∥∥
(

j∏
i=1

C(Λ, αi)

)∥∥∥∥∥
= κ(Q)

j∏
i=1

ρ (C(Λ, αi)) = κ(Q)

∥∥∥∥∥diag
(

j∏
i=1

λ1−αi

λ1+αi
, . . . ,

j∏
i=1

λn−αi

λn+αi

)∥∥∥∥∥ ,
see, e.g., [160, 161, 119]. A few remarks concerning the non-diagonalizable case can be
found in [119]. By Proposition 2.16c, if αi ∈ C−, ∀i ≥ 1 it holds ρi := ρ (C(Λ, αi)) < 1

36

3.2. LR-ADI Iteration for Lyapunov Equations

and, hence, rj :=
j∏

i=1

ρi < 1. Moreover, rj = ρjrj−1 < rj−1 indicating that the sequence

of the spectral radii rj is monotonically decreasing and, in the limit, will approach the
value zero. Hence, for every prescribed tolerance τ > 0, there is a j(τ) ∈ N such that
‖Xj(τ) −X‖ < τ . Now consider the resulting error bound

‖Xj −X‖ ≤ κ(Q)2r2j‖X0 −X‖ =: r̂j.

If there exists 0 < ρ̂ < 1 such that ρj < ρ̂, ∀j ≥ 1, the sequence r̂j converges by [142,
Definition 4.1.1.] q-linearly to zero and, consequently, the iterates Xj converge r-linearly
towards X.
From the above bound we see that, for non-normal A, the speed at which the error is

reduced is slowed down because κ(Q) > 1. Further investigations concerning the effects
of non-normality can be found in [202, 7]. One often used approach to achieve a fast
reduction of the error is to make the spectral radii rj as small as possible which yields
the min-max problem

{α∗
1, . . . , α

∗
j} = argmin

α1,...,αj⊂C−

(
max
1≤�≤n

∣∣∣∣∣
j∏

i=1

λ� − αi

λ� + αi

∣∣∣∣∣
)
, λ� ∈ Λ(A), (3.14)

where Λ(A, E) is used for GCALEs. This rational optimization problem is also known
as ADI shift parameter problem [232, 233]. We postpone further details regarding (3.14)
until Chapter 5 which is entirely concerned with strategies for computing shift param-
eters. There, we also give information on approaches for solving (3.14) analytically or
heuristically. For now we only mention that one heuristic approach [183] consists of
replacing Λ(A, E) by a small number of approximate, stable eigenvalues of (A, E) and
solve (3.14) in some sense approximately, resulting in a small number J � n of shift
parameters. This is especially helpful for the large-scale case in this thesis since the
entire spectrum is unlikely to be available or efficiently computable in this situation.
Typically, these J shifts are used in a cyclical manner if the number of iteration steps
exceeds J . In this case, bounding the spectral radii is trivial because ρ̂ := max

1≤�≤J
(ρ�) < 1.

The approximate eigenvalues of (A, E) in the heuristic approach, but also in several
other shift generation strategies [202, 39], are typically taken as Ritz values, i.e., the
eigenvalues of (QTAQ, QTEQ) for Q ∈ Rn×k, QTQ = Ik. For obtaining ρ̂ < 1 it has to
hold Λ(QTAQ, QTEQ) ⊂ C−. This is, for instance, the case when E = In and it holds
for the field of values [132] of A: W(A) := {zHAz, 0 �= z ∈ Cn, ‖z‖ = 1} ⊂ C−. This
condition holds not generically, e.g., when A+AT is not negative definite [132]. In that
situation, some additional precautions are required to obtain αi ∈ C− and, therefore,
ρ̂ < 1. These techniques, as well as alternatives to the heuristic shift selection approach
mentioned above, will also be subject of Chapter 5.

3.2.3. Stopping Criteria

One way to stop Algorithm 3.1 is when the change in the approximate solution is small,
i.e., when ‖Xj − Xj−1‖ < τ , which can be computed efficiently in the spectral and

37

3. Low-Rank ADI Iteration for Lyapunov and Sylvester Equations

Frobenius norms via

‖Xj −Xj−1‖ = ‖ZjZ
H
j − Zj−1Z

H
j−1‖ = −2Re (αj) ‖VjV H

j ‖ = −2Re (αj) ‖Vj‖2,
see [161]. A relative change can also be used, e.g., by scaling with ‖Xj‖. However,
the computation of the norm of the approximate solution might be expensive in large
dimensions. Taking the computed symmetric low-rank structure ZjZ

H
j into account,

using a power iteration or Lanczos process [111] can be employed to reveal the spectral
norm since ‖M‖2 = |λmax(M)| = ρ(M) for any symmetric matrixM . A similar stopping
criterion is based on the relative change in the low-rank factors [42, 184] measured in
the Frobenius norm, i.e., to stop the ADI iteration if

‖Vj‖F/‖Zj‖F ≤ τ.

It is not necessary to compute ‖Zj‖F every time, because ‖Zj‖2F = ‖Zj−1‖2F + ‖Vj‖2F ,
only the Frobenius norm of Vj has to be computed in each iteration step. A disadvantage
of both approaches is that the used (relative) norms do not necessarily decrease as the
LR-ADI iteration progresses and one often observes a quiet irregular behavior. Hence,
we do not employ these approaches in the remainder.
Instead we focus on terminating Algorithm 3.1 based on the norm of the (generalized)

Lyapunov residual matrix

Lj := AXjE
T + EXjA

T + FF T . (3.15)

A popular stopping condition is

‖Lj‖/φj < τ,

where φj is a suitable scaling constant. Typical choices are φj ≡ φ = ‖FF T‖ and a
backward error related scaling φj = ‖FF T‖+2‖A‖‖E‖‖Xj‖ which is more expensive to
evaluate. We will usually employ the first choice. For large-scale Lyapunov equations,
using the Lyapunov residual for terminating the ADI iteration is difficult since Lj is
a large and dense matrix, such that even constructing and storing it is infeasible and
computing, e.g., the spectral or Frobenius norm is expensive. We mention briefly two
approaches for this purpose.

Computing the Lyapunov Residual Norm One approach to compute ‖Lj‖F more
efficiently was proposed in [182, 183] and uses the decomposition

Lj = HjDjH
H
j , Hj := [AZj, EZj, F], Dj :=

[
0 Irj 0
Irj 0 0
0 0 Ir

]
. (3.16a)

Using the thin QR decomposition QjRj = Hj, Qj ∈ Cn×(2j+1)r, Rj ∈ C(2j+1)r×(2j+1)r,
the spectral and Frobenius norms of the residual can by computed by

‖Lj‖ = ‖RjDjR
H
j ‖. (3.16b)

38

3.2. LR-ADI Iteration for Lyapunov Equations

To reduce the computation costs, the QR decomposition can be updated incrementally
in each step since Hj is updated by 2r columns. As j increases, this approach can
nevertheless become easily more expensive than the remaining computation in each step
of the G-LR-ADI iteration.
Alternatively, since Lj is also a symmetric matrix and ‖Lj‖2 coincides with the spectral

radius of Lj, one could use, by exploiting the low-rank structure Xj = ZjZ
T
j provided

by the G-LR-ADI iteration, a power iteration or a Lanczos process (see, e.g., [111])
to retrieve this largest eigenvalue. This would essentially require only matrix vector
products with A, E, G, Z and their transposes. Unless the power iteration or Lanczos
process converge in very few steps, this can still lead to a high portion of computational
effort in the G-LR-ADI iteration. Especially the power iteration tends to converge
increasingly slow when the residual gets smaller. Since the column dimension of the low-
rank solutions factor increases as the G-LR-ADI iteration proceeds, the computational
costs for applying a power iteration or a Lanczos process will also increase.
In the next subsection we investigate the Lyapunov residual (3.15) in more depth. A

novel result on the low-rank structure of (3.15) will be derived which not only enables
a cheap evaluation of ‖Lj‖, but also reveals a new way to reformulate Algorithm 3.1.

3.2.4. The Low-Rank Structure of the Residual Matrix and a
Reformulated Iteration

The next theorem gives a novel result on the structure of Lj within the G-LR-ADI
iteration and constitutes the main contribution of this section.

Theorem 3.5 (Low-rank structure of Lj [37]):

The residual at iteration step j of the G-LR-ADI iteration is of rank at most r and
given by

Lj = AZjZ
H
j E

T + EZjZ
H
j A

T + FF T = WjW
H
j , (3.17)

where Wj ∈ Cn×r is given by

Wj := (A− αjE)Vj (3.18a)

= Wj−1 − 2Re (αj)EVj (3.18b)

= W0 + EZjΓj(1j ⊗ Ir) (3.18c)

with W0 := F , Γj := diag (γ1, . . . , γj) ⊗ Ir, γi :=
√−2Re (αi) for i = 1, . . . , j, and

1h = [1, . . . , 1]T ∈ Rh. If αj �∈ Λ(A, E) for all j, then the rank is exactly r. Moreover,
the iterates Vj in Algorithm 3.1 can be equivalently constructed by

Vj = (A+ αjE)
−1Wj−1, j ≥ 1. (3.19)

Proof. To ease the representation, we consider the application of the LR-ADI iteration
to the standard CALE

ÂX +XÂT + F̂ F̂ T = 0, Â := E−1A, Ĝ := E−1F, (3.20)

39

3. Low-Rank ADI Iteration for Lyapunov and Sylvester Equations

which is equivalent to applying the G-LR-ADI iteration to the GCALE (3.12). Using
Lemma 3.4:

Xj −X =

[
j∏

i=1

C(Â, αi)

]
(X0 −X)

[
j∏

i=1

C(Â, αj)
H

]

reveals, by employing the Lemmas 3.1 and 3.2, as in [94, Lemma 5.3], [135, Lemma
3.5.2], that the residual at iteration step j of Algorithm 3.1 can be written as

L̂j = ÂXj +XjÂ
T + F̂ F̂ T = Â(Xj −X) + (Xj −X)ÂT

=

[
j∏

i=1

C(Â, αi)

]
L̂0

[
j∏

i=1

C(Â, αj)
H

]
.

Now since X0 = 0 in our setting, we have L̂0 = F̂ F̂ T such that the above relation
immediately yields

L̂j = ŴjŴ
H
j with Ŵj :=

j∏
i=1

C(Â, αi)F̂ . (3.21)

This already shows that rank(L̂j) = r if αj /∈ Λ(Â), ∀j. If any shift αj is an eigenvalue of

Â, then the inverse of Â+αjIn still exists, but the matrix Â−αjIn has a rank deficiency
and, thus, the rank of Lj may drop below r. The increment Vj can be expressed as

Vj = (Â− αj−1In)(Â+ αjIn)
−1Vj−1

= (Â− αj−1In)(Â+ αjIn)
−1(Â− αj−2In)(Â+ αj−1In)

−1Vj−2

= (Â+ αjIn)
−1(Â− αj−1In)(Â+ αj−1In)

−1(Â− αj−2In)Vj−2

= . . . = (Â+ αjIn)
−1

j−1∏
i=1

C(Â, αi)F̂ , (3.22)

where we used Lemma 3.2 again. Comparing (3.21) and (3.22) yields Ŵj = (Â−αjIn)Vj
which is (3.18a). The relations (3.18b), (3.19) are then established by

Vj = (Â+ αjIn)
−1(Â− αj−1In)Vj−1 = (Â+ αjIn)

−1Ŵj−1,

Ŵj = (Â− αjIn)Vj = (Â− αjIn)(Â+ αjIn)
−1Ŵj−1

=
(
In − (αj + αj)(Â+ αjIn)

−1
)
Ŵj−1 = Ŵj−1 − 2Re (αj)Vj

which holds also for j = 1 if we define Ŵ0 := F̂ .
The results (3.18a), (3.18b), (3.19) for GCALEs are obtained via

Lj = EL̂jE
T = EŴjŴ

H
j E

T = WjW
H
j ,

Wj := EŴj = (A− αjE)Vj = Wj−1 − 2Re (αj)EVj,

Vj = (Â+ αjIn)
−1Ŵj−1 = (A+ αjE)

−1EŴj = (A+ αjE)
−1Wj,

40

3.2. LR-ADI Iteration for Lyapunov Equations

Algorithm 3.2: Reformulated G-LR-ADI iteration

Input : Matrices A, E, F defining (3.12), shift parameters
{α1, . . . , αjmax} ⊂ C−, and tolerance 0 < τ � 1.

Output: Z ∈ Cn×rj such that ZZH ≈ X.
1 Z0 = [], W0 = F, j = 1.
2 while ‖WH

j−1Wj−1‖ ≥ τ‖F TF‖ do
3 Solve (A+ αjE)Vj = Wj−1 for Vj.
4 Wj = Wj−1 − 2Re (αj)EVj.

5 Zj = [Zj−1,
√−2Re (αj)Vj].

6 j = j + 1.

and W0 := F . The expression (3.18c) simply follows from subsequently using (3.18b)
and the definition of the low-rank solution factor Zj in Algorithm 3.1.

Remark 3.6:

Note that the relations in (3.18b), (3.18c) were (in a slightly altered notation) in-
dependently derived in a different way in [235, Theorem 5.1., Corollary 5.1.], where
the authors used the relation of the LR-ADI iteration with rational Krylov subspaces
[160, 161, 96, 21]. ♦

This novel result has the following impacts. At first it enables the computation of the
spectral or Frobenius norm of the Lyapunov residual via ‖Lj‖ = ‖WjW

H
j ‖ = ‖WH

j Wj‖
which is much cheaper than the other approaches mentioned above. For the spectral
norm it also holds ‖Lj‖2 = ‖Wj‖22. The only requirement is the computation of the
spectral norm of a small r × r or a thin rectangular n × r matrix. This is significantly
cheaper than the approaches mentioned in Subsection 3.2.3 as we will also see in the nu-
merical example in 3.2.6. Moreover, the result is exact (in finite arithmetics) compared
to the approximate results obtained with power iteration and Lanczos process. Another
effect of the Theorem 3.5 is that combining (3.18) and (3.19) reveals a novel but mathe-
matically equivalent formulation of the G-LR-ADI iteration, where the low-rank factors
Wj of Lj are an integral part of the iteration, see also [234, Corollary 5.15]. Due to
the initialization W0 = F , no distinction between the first and all other iteration steps
j ≥ 2, as in Algorithm 3.1, is required. The complete reformulated G-LR-ADI iteration
is given in Algorithm 3.2, where we used (3.18b) and already included a termination
criterion based on the scaled residual norm.

Remark 3.7:

We point out that the relations developed in Theorem 3.5 only hold if the linear
systems (3.19) are solved exactly as we assumed from the beginning on. If they are
solved inexactly, e.g., by applying an iterative solver until the norm of the linear
system’s residual falls below a certain tolerance, Algorithm 3.2 can still be applied.
However, in that case the Wj are not anymore the low-rank factors of Lj such that
‖WH

j Wj‖ is not equal to ‖Lj‖. If the tolerance regarding the linear system is chosen

41

3. Low-Rank ADI Iteration for Lyapunov and Sylvester Equations

too large, ‖WH
j Wj‖ appears to underestimate ‖Lj‖ and the Lyapunov residual norm

should be estimated in a different way, e.g., via the Lanczos approach mentioned
above. Choosing a small enough tolerance gives a negligible discrepancy between
‖WH

j Wj‖ and ‖Lj‖. Deeper investigations regarding the ADI iteration with inexact
linear solves can be found in [202, 219]. ♦

This new formulation also reveals another insightful point of view of the G-LR-ADI
iteration. In each step Algorithm 3.2 implicitly solves a GCALE defined by A, E and
the previous residual matrix Wj−1W

H
j−1.

Corollary 3.8:

Consider the GCALE (3.12) and the shift parameters {α1, . . . , α�+k} ⊂ C−. Let Zk

be the low-rank solution factor after k iterations of the G-LR-ADI iteration (Algo-

rithm 3.1 or 3.2). Moreover, let Z̃
(k)
� denote the low-rank factor after � iteration steps

applied to the GCALE

AXET + EXAT +WkW
H
k = 0 (3.23)

and the shift parameters α̃i := αk+i for i = 1, . . . , �. Then for k + � iteration steps of

Algorithm 3.2 it holds Zk+� = [Zk, Z̃
(k)
�]. ♦

Proof. The cases k = 0 and � = 0 are trivial to proof. For k ≥ 1 we have

Vk = (A+ αkE)
−1Wk,

Wk = F + EZkΓk(1k ⊗ Ir),

Zk = [γ1V1, . . . , γkVk], Γk = diag (γ1, . . . , γk)⊗ Ir

with γi :=
√−2Re (αk), i = 1, . . . , k. Let Ṽ

(k)
� , W̃

(k)
� denote the iterates and residual

factors after � ≥ 1 steps of the G-LR-ADI iteration applied to the GCALE (3.23) and
the shifts α̃i, i = 1, . . . , �. By Theorem 3.5 it holds

Ṽ
(k)
� = (A+ α̃�E)

−1W̃
(k)
�−1 = (A+ αk+�E)

−1(A− αk+�−1E)Ṽ
(k)
�−1

= . . . = (A+ αk+�E)
−1(A− αk+�−1E) · · · (A+ αk+1E)

−1W̃
(k)
0

= (A+ αk+�E)
−1(A− αk+�−1E) · · · (A+ αk+1E)

−1Wk = Vk+�.

Hence,

Z̃
(k)
� = [γ̃1Ṽ

(k)
1 , . . . , γ̃kṼ

(k)
�] = [γk+1Vk+1, . . . , γk+�Vk+�]

and the result is established. Also note that

W̃
(k)
� = W̃

(k)
0 + EZ̃

(k)
� Γ̃

(k)
� (1� ⊗ Ir) = Wk + EZ̃

(k)
� Γ̃

(k)
� (1� ⊗ Ir)

= F + E
[
Zk, Z̃

(k)
�

]
diag

(
Γk, Γ̃

(k)
�

)
(1�+k ⊗ Ir)

= F + E [γ1V1, . . . , γkVk, γk+1Vk+1, . . . , γk+�Vk+�] Γk+�(1�+k ⊗ Ir)

= F + EZk+�Γk+�(1�+k ⊗ Ir) = Wk+�.

42

3.2. LR-ADI Iteration for Lyapunov Equations

With the help of the relations (3.18), the low-rank solution factors generated by the G-
LR-ADI iteration can also be expressed as the solutions of certain Sylvester equations.
Similar results regarding the original G-LR-ADI iteration (3.10) can be found in [160,
161].

Corollary 3.9 (Adaptation of [235, Lemma 3.1], [234, Lemma 5.12]):

For the GCALE (3.12), shift parameters {α1, . . . , αj} ⊂ C−, and γi =
√−2Re (αi),

i = 1, . . . , j, the low-rank solution factor Zj after j steps of the G-LR-ADI iteration
(Algorithm 3.2) satisfies the Sylvester equations

AZj + EZjBADI = FGT
ADI, (3.24a)

AZj − EZjB
T
ADI = WjG

T
ADI (3.24b)

with

BADI :=

⎡
⎢⎣

α1 −γ1γ2 ··· −γ1γj

... ...
...

... −γj−1γj
αj

⎤
⎥⎦ ⊗ Ir ∈ Cjr×jr, GADI := Γj(1j ⊗ Ir). (3.24c)

Note that only a real transposition is applied to the possibly complex matrix BADI in
(3.24b).

Proof. The GCASE (3.24a) is exactly the one in [235, Lemma 3.1], [234, Lemma 5.12]
adapted to our notation. The basic idea of the proof is to consider and merge (3.19),
(3.18b) for i = 1, . . . , j:

AVi = Wi−1 − αiEVi = W0 − αiEVi − 2E
i−1∑
k=1

Vk Re (αk)

= W0 − E[V1, . . . , Vi][2 Re (α1) Ir, . . . , 2Re (αi−1) Ir, αiIr]
T

such that

A[V1, . . . , Vj] = W0(1
T
r ⊗ Ir)− E[V1, . . . , Vj]

⎛
⎜⎝

⎡
⎢⎣

α1 2Re (α1) ··· 2Re (α1)

... ...
...

... 2Re (αj−1)
αj

⎤
⎥⎦ ⊗ Ir

⎞
⎟⎠ .

Incorporating Zj = [V1, . . . , Vj]Γj into this formula yields (3.24a) after some basic ma-
nipulations.
For (3.24b) it is by iteratively using (3.18b) easy to see that

Wj−i = Wj + 2E
i−1∑
k=0

Vj−k Re (αj−k) , i = 1, . . . , j − 1.

Hence, it holds for i = 1, . . . , j − 1

AVj−i = Wj + E[Vj−i, . . . , Vj][−αj−iIr, 2Re (αj−i) Ir, . . . , 2Re (αj) Ir]
T

43

3. Low-Rank ADI Iteration for Lyapunov and Sylvester Equations

such that with AVj = Wj − αjEVj,

A[V1, . . . , Vj] = Wj(1
T
r ⊗ Ir) + E[V1, . . . , Vj]

⎛
⎝

⎡
⎣ −α1

2Re (α2) −α2

...
... ...

2Re (αj) ··· 2Re (αj) −αj

⎤
⎦ ⊗ Ir

⎞
⎠ .

The final result (3.24b) is again obtained by inserting Zj = [V1, . . . , Vj]Γj.
Representing the low-rank solution factor Zj via (3.24) will be useful in the upcoming
Chapters 5 and 6. It is known that the G-LR-ADI iteration can be connected to rational
Krylov subspace methods [160, 161, 82, 96, 235, 237, 234]. In this context the relations
(3.24) do not appear surprising as they represent generalizations of some results from
[193, 194]. The authors in [235, 237, 234] use (3.24a) to investigate the connection
between the G-LR-ADI iteration and H2 model order reduction, see also [96, 21]

3.2.5. Structure Exploiting Versions of the G-LR-ADI Iteration for
Special GCALEs

The Second Order LR-ADI Iteration

Second order systems (2.32) are often formally rewritten as equivalent generalized state
space systems (2.5) of first order with matrices E, A ∈ R2n×2n, F ∈ R2n×r, L ∈ Rp×2n

defined by, e.g., (2.33) (cf. Section 2.4).
In order to compute and approximate solutions to the GCALEs defined by E, A, F, L

it is not recommended to explicitly form these augmented matrices. It is possible to ex-
ploit the structure given by (2.33) efficiently by suitably rewriting the occurring matrix
vector products and shifted linear systems. For the G-LR-ADI iteration in its original
form (3.12) this has been done in [201, 51, 178, 37] which leads to the so called sec-
ond order LR-ADI iteration (SO-LR-ADI). Here we briefly sketch the adaption of this
approach to the reformulated G-LR-ADI iteration in Algorithm 3.2, where we restrict
ourselves to the second companion linearization (2.33b) with N2 =M , i.e.,

E2 =

[
D M
M 0

]
, A2 =

[−K 0
0 M

]
, F2 =

[
B1

0

]
, L2 =

[
Cp Cv

]
.

The key ingredient is to partition the 2n× r arrays Vj and Wj into blocks of dimension
n× r

Vj =

[
V

(p)
j

V
(v)
j

]
, Wj =

[
W

(p)
j

W
(v)
j

]
.

Then, the linear systems (A2 + αjE2)Vj = Wj−1 are equivalent to

(α2
jM − αjD +K)V

(p)
j = −W (p)

j−1 + αjW
(v)
j−1, (3.25a)

V
(v)
j = −αjV

(p)
j +M−1W

(v)
j−1, (3.25b)

44

3.2. LR-ADI Iteration for Lyapunov Equations

Algorithm 3.3: Reformulated SO-LR-ADI iteration

Input : Matrices M, D, K and F defining (2.33b), shift parameters
{α1, . . . , αjmax} ⊂ C−, and tolerance 0 < τ � 1.

Output: Z ∈ C2n×rj such that ZZH ≈ X.

1 Z0 = [],

[
W

(p)
0

W
(v)
0

]
= F, j = 1.

2 while ‖WH
j−1Wj−1‖ ≥ τ‖F TF‖ do

3 Solve (α2
jM − αjD +K)V

(p)
j = −W (p)

j−1 + αjW
(v)
j−1 for V

(p)
j .

4 if j = 1 then

5 V
(v)
j = −αjV

(p)
j .

6 if W
(v)
0 �= 0 then V

(v)
j = V

(v)
j +M−1W

(v)
0 .

7

8 else

9 V
(v)
j = −αjV

(p)
j + V

(v)
j−1 − αj−1V

(p)
j−1.

10 W
(p)
j = W

(p)
j−1 − 2Re (αj) (DV

(p)
j +MV

(v)
j).

11 W
(v)
j = W

(v)
j−1 − 2Re (αj)MV

(v)
j .

12 Zj =

[
Zj−1,

√−2Re (αj)

[
V

(p)
j

V
(v)
j

]]
.

13 j = j + 1.

and, likewise, the blocks for the residual factor are given by

W
(p)
j = W

(p)
j−1 − 2Re (αj) (DV

(p)
j +MV

(v)
j), (3.25c)

W
(v)
j = W

(v)
j−1 − 2Re (αj)MV

(v)
j . (3.25d)

Multiplying (3.25d) by M−1 yields with (3.25b)

M−1W
(v)
j =M−1W

(v)
j−1 − 2Re (αj)V

(v)
j = V

(v)
j + (αj − 2Re (αj))V

(p)
j

and, thus, it holds for (3.25b) and j > 1

V
(v)
j = −αjV

(p)
j + V

(v)
j−1 + (αj−1 − 2Re (αj−1))V

(p)
j−1.

This way the required additional linear solve with M in (3.25b) can be circumvented

for j > 1. For iteration step j = 1 it is only required once if W
(v)
0 �= 0. Otherwise,

(3.25b) simplifies to V
(v)
1 = −α1V

(p)
1 . For this particular choice of the linearization, the

resulting reformulated SO-LR-ADI iteration is illustrated in Algorithm 3.3.
It is worth mentioning that Algorithm 3.3 can be easily modified to handle the first

companion linearization (2.33a) and we outline only the essential changes: In the Lines 3

– 9 one simply has to interchange V
(p)
j with V

(v)
j . If N2 = K in (2.33a), M in Line 6 has

to be replaced by K. The blocks of the residual factors in the Lines 10,11 are simply
deduced from the structure of E1, see [37].

45

3. Low-Rank ADI Iteration for Lyapunov and Sylvester Equations

The SLRCF-ADI Iteration for Index One DAEs

Another special case we will frequently use in the upcoming numerical examples is given
by the dynamical system (2.5) with the structure (2.34). One can associate a generalized
Lyapunov equation defined by Â := A11−A12A

−1
22 A21 and F̂ := F1−A12A

−1
22 F2 to (2.34)

(cf. [98]).
Solving this generalized Lyapunov equation with G-LR-ADI is of course possible,

but the matrices Â + αjE11 in the occurring linear systems will in general be dense
which prohibits the use of sparse solvers. In [98], the Sparse LRCF-ADI (SLRCF-
ADI) iteration, a specially tailored G-LR-ADI iteration, is proposed which solves (2.35)
without forming the matrices Â, F̂ explicitly. The prefix SPARSE in SLRCF-ADI refers
to this sparsity preserving implementation. The key ingredient exploited in [98] is the
observation that the solution of the dense linear system (Â + αjE11)Vj = Wj−1 of size
nf can be equivalently and more efficiently be obtained from the sparse linear system[

A11 + αjE11 A12

A21 A22

] [
Vj
Ψ

]
=

[
Wj−1

0

]
, (3.26)

of size n, where Ψ ∈ Cn−nf×r is an auxiliary variable. It can be shown that the right
hand side in the first iteration can be set to [F T

1 , F
T
2]

T . The residual factors are given
by Wj = Wj−1 − 2Re (αj)E11Vj, where for W0, the matrix F̂ has to be computed once
at the beginning of the iteration which requires one solve with the (n− nf)× (n− nf)
matrix A22, or, alternatively, the solution of the larger system[

Inf
A12

0 A22

] [
F̂
Ψ

]
=

[
F1

F2

]
.

There are also LR-ADI approaches for handling DAE systems of higher indices [217, 171].
For instance, in [10] the authors work with an approach regarding the index-2 case arising
in optimal control of the (Navier)-Stokes equation. In [31], a combination of the SO-LR-
ADI and SLRCF-ADI iterations for second-order systems of index one is investigated.

3.2.6. Numerical Examples

Here, we briefly use the ocean and rail79k examples to investigate the novel approach for
computing the Lyapunov residual norm in the G-LR-ADI iteration. For both examples,
we use a fixed number J of heuristic shift parameters [184] which are obtained from k+
and k− Ritz and inverse Ritz values, respectively, which are computed by two Arnoldi
processes (w.r.t. A and A−1) using F1r as starting vector. We employ the scaled residual
norm εj := ‖Lj‖2/‖F TF‖2 as stopping criterion with a tolerance τ . For comparison we
employ the three previously mentioned different approaches to compute the spectral
norm of Lj. At first, an incrementally updated QR factorizations as in (3.16) and,
secondly, a Lanczos process without reorthogonalization applied to Lj to approximate
its largest eigenvalue. The Lanczos process is started with the initial vector 1n and
is terminated after 5 steps or when the relative change of the approximate eigenvalue

46

3.2. LR-ADI Iteration for Lyapunov Equations

Table 3.1.: Results obtained with different strategies for computing the Lyapunov resid-
ual norm within the G-LR-ADI iteration.

Parameters Results

Example k+, k−, J τ jiter εjiter tADI tW tQR tLan

ocean 40, 40, 30 10−10 69 7.5·10−11 117.4 6.2 467.4 85.2

rail79k 40, 40, 20 10−10 54 7.0·10−11 53.4 0.7 35.6 7.7

5 10 15 20 25 30 35 40 45 50 55 60 65
10−2

10−1

100

101

iteration step j

ti
m
in
gs

in
se
c.

tADI,j tW,j tQR,j tLan,j

Figure 3.1.: Computation times of the G-LR-ADI iteration itself and of the different
variants of computing ‖Lj‖ against the iteration step j for the ocean exam-
ple.

is smaller than 10−2. The last approach uses the novel low-rank factorization of Lj

established in Theorem 3.5 with the cheap expression (3.18a) for the residual factor Wj,
which allows to determine the spectral norm via ‖Lj‖ = ‖WH

j Wj‖. We measure and
compare the times spend in seconds for computing ‖Lj‖ via each of these approaches as
well as the time spend in the remaining computations of the G-LR-ADI iteration.

The used parameters to set up the shift parameter generation and the LR-ADI iter-
ation, as well as the results, are summarized in Table 3.1. It is evident that using the
low-rank factors of the Lyapunov residual leads to a negligible amount of time spent for
computing ‖Lj‖. The approaches using a Lanczos process or updated QR factorizations
require considerably more computation time, where the time tQR of the QR approach can
even surpass the remaining computation time tADI of the iteration. This can also be seen
in Figure 3.1 showing the progress of the computation times as the LR-ADI iteration
proceeds for the ocean example. The timings tADI and tW remain at an approximately
constant level whereas tQR and tLan clearly increase with tQR becoming greater than
tADI at some point of the iteration. To conclude, the new approach to compute the Lya-
punov residual norm via the low-rank factors Wj substantially outperforms the existing
approaches. We remark that this is only the case when the linear systems are solved
exactly or to a high accuracy because otherwise ‖WH

j Wj‖ might not be a good indicator

47

3. Low-Rank ADI Iteration for Lyapunov and Sylvester Equations

for ‖Lj‖. In that case, the Lanczos approach appears to be an reasonable alternative. In
the next section we continue with similar investigations regarding Sylvester equations.

3.3. The Low-rank ADI Iteration for Sylvester Equations

We now consider the numerical solution of Sylvester equations of the form

AX −XB = FGT (3.27)

with A ∈ Rn×n, B ∈ Rm×m, F ∈ Rn×r, G ∈ Rm×r, and the sought solution X ∈ Rn×m.
We assume that the spectra Λ(A) and Λ(B) are disjoint which ensures the existence of
a unique solution of (3.27), see e.g., [151, 132]. We also assume that A, B are large,
sparse matrices. In what follows we review the ADI iteration for (3.27) and its low-
rank version in the next subsection. There, we also briefly discuss the shift parameter
problem, stopping criteria, and the handling of generalized Sylvester equations. After
that, we generalize the results for GCALEs given in Section 3.2.4. This includes new
properties of the Sylvester residual and a reformulated low-rank algorithm.

3.3.1. Derivation, Shift Parameters and Stopping Criteria

The ADI scheme for (3.27) with two sets of shift parameters {α1, . . . , αjmax} and
{β1, . . . , βjmax} is given by

(A− βjIn)Xj− 1
2
= Xj−1(B − βjIm) + FGT ,

Xj(B − αjIm) = (A− αjIn)Xj− 1
2
− FGT ,

(3.28)

see [229]. By assuming βj /∈ Λ(A), αj /∈ Λ(B) ∀j the above two half steps can be written
into one single step

Xj =(A− αjIn)(A− βjIn)
−1Xj−1(B − βjIm)(B − αjIm)

−1

+ (βj − αj)(A− βjIn)
−1FGT (B − αjIM)−1

(3.29)

=C(A, −βj, αj)Xj−1C(B, −αj, βj) + T (αj, βj), (3.30)

where

T (α, β) := (β − α)(A− βIn)
−1FGT (B − αIm)

−1 (3.31)

and C denotes Cayley transformations (Definition 2.15). Alternatively, there is the
following connection [212] between continuous and discrete-time Sylvester equations.

Lemma 3.10:

For every β /∈ Λ(A), α /∈ Λ(B), α �= β the CASE (3.27) is equivalent to the DASE
(Definition 2.31)

X = C(A,−β, α)XC(B,−α, β) + T (α, β). (3.32)

48

3.3. The Factored ADI Iteration for Sylvester Equations

Proof. The proof can be carried out along the lines of [135, Lemma 3.1.1].

Similarly to the CALE case, this represents another motivation for the iteration (3.29).
As detailed in [162, 43], similar techniques as in Section 3.2 can be employed to derive
a low-rank version of the above ADI iteration for (3.27). Setting X0 = 0, exploiting the
structure of the iterates given by the low-rank right hand side FGT , and reordering the
shifts, leads to the low-rank ADI iteration for (3.27) which is in the remainder referred to
as factored ADI (fADI) iteration [19], [43, Algorithm 1], [162, Algorithm 2.1]. It follows
the iterative scheme

V1 = (A− β1In)
−1F, S1 = (B − α1Im)

−HG, (3.33a)

Vj = Vj−1 + (βj − αj−1)(A− βjIn)
−1Vj−1, (3.33b)

Sj = Sj−1 + (αj − βj−1)(B − αjIm)
−HSj−1 (3.33c)

for j > 1. After jmax iteration steps of (3.33a)-(3.33c), low-rank solution factors Zjmax ∈
Cn×rjmax , Yjmax ∈ Cm×rjmax , Γjmax ∈ Crjmax×rjmax are computed such that ZjmaxΓjmaxY

H
jmax

≈
X. In each iteration step, these low-rank solution factors are constructed via

Zj = [Zj−1, Vj], Yj = [Yj−1, Sj], Γj = diag (Γj−1, (βj − αj)Ir) (3.33d)

i.e., r new columns are added to the low-rank factors Yj−1, Zj−1, and Γj−1 is augmented
by an r × r diagonal matrix. In terms of fADI iterates, the solution is constructed as

Xjmax =

jmax∑
j=1

(βj − αj)VjS
H
j .

which is for efficiency reasons never built explicitly. At the start, Z0, Y0, and Γ0 are
initialized as empty arrays. Note that for Lyapunov equations (B = −AT , G = −F ,
βj = −αj) the above scheme gives the low-rank ADI (LR-ADI) iteration in Algorithm 3.1
[183, 161, 201, 42]. The main computational tasks are the solutions of the linear systems
of equations with the shifted A, B matrices. As before we assume that we are able to
employ sparse-direct or iterative Krylov subspace methods. Moreover, it should hold
that r � n since the column dimension r of F , G determines the number of right hand
sides in the linear systems. A small value of r is by Theorem 2.41 also crucial for the
existence of a low-rank solution of the Sylvester equation. The shift parameters {αj},
{βj} steer the convergence of the iteration and are discussed briefly in Subsection 3.3.1.

Generalized Sylvester Equations Generalized Sylvester equations

AXC − EXB = FGT (3.34)

with nonsingular E ∈ Rn×n and C ∈ Rm×m can also be dealt with by the fADI iteration
(3.33). As for GCALEs, the key is to formally consider the equivalent standard Sylvester
equation ÂC − XB̂ = F̂ ĜT with Â := E−1A, B̂ = BC−1, F̂ = E−1F , and Ĝ =
C−TG. Applying the same manipulations as those leading to the G-LR-ADI iteration

49

3. Low-Rank ADI Iteration for Lyapunov and Sylvester Equations

(Algorithm 3.1) for GCALEs, one finds that (3.33) for the equivalent standard Sylvester
equation can be written as

V1 = (A− β1E)
−1F, S1 = (B − α1C)

−HG, (3.35a)

Vj = Vj−1 + (βj − αj−1)(A− βjE)
−1(EVj−1), (3.35b)

Sj = Sj−1 + (αj − βj−1)(B − αjC)
−H(CTSj−1) (3.35c)

which is from now on referred to as generalized fADI (G-fADI) iteration. For some of
the following theoretical investigations using the equivalent standard Sylvester equations
simplifies the occurring derivations.

Remark 3.11:

In [158] a generalized ADI scheme for (3.27) is introduced. There, “generalized“ does
not refer to generalized Sylvester equations (3.34). Instead, it reflects the case when
the iteration (3.28) is modified such that different numbers of incremental steps are
carried out w.r.t. A and B. Here, we do not follow this approach and restrict ourselves
to the case when single steps w.r.t. A and B are employed as in (3.28), (3.29). ♦

The Error of the fADI Iteration and Shift Parameters The following lemma is helpful
for providing insights into the ADI iteration (3.29) and represent a straightforward
generalization of Lemma 3.1.

Lemma 3.12 (Generalization of Lemma 3.4, [202]):

The error after j iteration steps of the Sylvester ADI scheme (3.29) can be expressed
as

Xj −X =

[
j∏

i=1

C(A,−βi, αi)

]
(X0 −X)

[
j∏

i=1

C(B,−αi, βi)

]
. (3.36)

Proof. Combining Lemma 3.32 with (3.29) and using Lemma 3.2 immediately yields

Xj −X = C(A,−βj, αj)(Xj−1 −X)C(B,−αj, βj)

and (3.36) follows from a repeated application of this identity.

By taking norms in the error expression (3.36) we obtain

‖Xj −X‖
‖X0 −X‖ ≤

j∏
i=1

‖C(A,−βi, αi)‖‖C(B,−αi, βi)‖. (3.37)

By similar steps as in Subsection 3.2.2 for the ADI iteration for GCALEs, this leads to
the two-variable ADI parameter problem [230]

min
αi∈C
βi∈C

max
λ∈Λ(A)

μ∈Λ(B)

j∏
i=1

∣∣∣∣(λ− αi)(μ− βi)

(λ− βi)(μ− αi)

∣∣∣∣ (3.38)

50

3.3. The Factored ADI Iteration for Sylvester Equations

for finding shifts that minimize the right hand side in (3.37). For generalized Sylvester
equations (3.34), one has to use Λ(A, E) and Λ(B, C) in (3.38). Some approaches for
solving (3.38) analytically, approximately, or heuristically can be found in [230, 233, 202,
162, 43]. For large-scale problems the often used approach [162, 43] is, similar to the
Lyapunov case, to replace both spectra by small numbers kA+, k

B
+ and kA−, k

B
− of Ritz and,

respectively, inverse Ritz values w.r.t. A, E and B, C. We postpone further discussions
regarding shift parameters for (G-)fADI until Chapter 5 which is solely concerned with
this issue.

Stopping Criteria The G-fADI iteration (3.35) can, similar to the G-LR-ADI iteration,
be stopped when the residual

Sj = AXjC − EXjB − FGT ∈ Cn×m

is small enough, where one usually employs a condition like

‖Sj‖ ≤ τφj, 0 < τ � 1.

There, φj is a scaling factor for which a popular choice is, e.g., φj ≡ ‖FGT‖. Further
remarks regarding the efficient computation of the residual norm are given in the next
subsection.
Alternatively, the relative changes of the low-rank solution factors Z, Y can be used

as stopping criteria, as it is also used in the G-LR-ADI iteration for Lyapunov equations
[42]. There, one stops the iteration if

‖Vj‖F
‖Zj‖F ≤ τ,

‖Sj‖F
‖Yj‖F ≤ τ,

where ‖Zj‖2F , ‖Yj‖2F can be computed cheaply using the accumulation technique pre-
sented in Subsection 3.2.3. However, both quantities can converge quite irregularly as in
the Lyapunov case. Moreover, for the G-fADI iteration it is theoretically possible that
this stopping criterion is fulfilled for the Z-, but not for the Y -factors, or vise-versa.
In principle one could still continue the Y -iterations alone which would, after fulfilling
the relative change criterion there as well, produce Z- and Y -factors with different col-
umn dimensions and a rectangular Γ-factor. For instance, if Z- and Y -sequences are
stopped after jZ and jY iterations, respectively, then ZjZ ∈ Cn×jZr, YjY ∈ Cm×jY r, and
Γ ∈ CjZr×jY r. We do not pursue this idea further and exclusively use the residual based
stopping criterion in the remainder. For the Sylvester residual matrix we will in the
following establish similar results as in the GCALE case in Section 3.2.3.

3.3.2. The Sylvester Residual Matrix within the fADI Iteration

The next lemma reveals that the Sylvester residual matrix within the fADI iteration can
be written in a similar expression as the error in (3.36).

51

3. Low-Rank ADI Iteration for Lyapunov and Sylvester Equations

Lemma 3.13 (Generalization of [135, Lemma 3.5.2], [94, Lemma 5.3]):

For the residual after j iteration steps of (3.29) it holds

Sj = AXj −XjB − FGT =

[
j∏

i=1

C(A,−βi, αi)

]
S0

[
j∏

i=1

C(B,−αi, βi)

]
. (3.39)

Proof. Using AXj − XjB − FGT = A(Xj − X) − (Xj − X)B yields with (3.36) the
sought expression because A and C(A, βj, αj), as well as B and C(B,αj, βj), commute
for all j by Lemma 3.2.

The following theorem generalizes Theorem 3.5 for the G-LR-ADI iteration applied to
GCALEs [33] and is the main contribution of the current section.

Theorem 3.14 (Generalization of Theorem 3.5, [33, Theorem 1]):

Assume that rank (G) = rank (F) = r. Then the residual after j iteration steps of the
G-fADI iteration (3.35) is of rank at most r and can be factored as

Sj := AXjC − EXjB − FGT = −WjT
H
j . (3.40)

The residual factors Wj ∈ Cn×r, Tj ∈ Cm×r and G-fADI iterates Vj, Sj are given by

Wj : = (A− αjE)Vj Tj : = (B − βjC)
HSj (3.41a)

= Wj−1 + γjEVj = Tj−1 − γjC
TSj (3.41b)

= W0 + EZjΓj(1j ⊗ Ir), = T0 − CTYjΓ
H
j (1j ⊗ Ir), (3.41c)

Vj = (A− βjE)
−1Wj−1, Sj = (B − αjC)

−HTj−1, (3.41d)

where γj := βj − αj, W0 := F , T0 := G. ♦

Proof. For simplification we go through the proof for the fADI iteration applied to the
equivalent Sylvester equation defined by Â = E−1A, B̂ = BC−1, F̂ = E−1F , and Ĝ =
C−TG. Since fADI (3.33) starts from X0 = 0, it holds Ŝ0 = ÂXj−XjB̂− F̂ ĜT = −F̂ ĜT

and the expression (3.39) yields already Ŝj = −ŴjT̂
H
j with

Ŵj =

[
j∏

i=1

C(Â, −βi, αi)

]
F̂ , T̂j =

[
j∏

i=1

C(B̂, −αi, βi)
H

]
Ĝ. (3.42)

This shows that rank(Ŝj) = r if βj, αj /∈ Λ(Â) ∪ Λ(B̂). If αj ∈ Λ(Â) or βj ∈ Λ(B̂) for

some j, the inverses still exist but Â− αjIn, or respectively B̂ − βjIm, is singular, such

that the column rank of Ŵj or T̂j can be smaller than r. Following the manipulations in
Theorem 3.5, [33, Theorem 1], the increments Vj, Sj in (3.33a)–(3.33c) can be expressed

52

3.3. The Factored ADI Iteration for Sylvester Equations

as

Vj = (Â− αj−1In)(A− βjIn)
−1Vj−1

= (Â− βjIn)
−1(Â− αj−1In)(Â− αj−2In)(Â− βj−1In)

−1Vj−2

= (Â− βjIn)
−1C(Â,−βj−1, αj−1)(Â− αj−2In)Vj−2

= . . . = (Â− βjIn)
−1

[
j−1∏
i=1

C(Â, βi, αi)

]
F̂ = (Â− βjIn)

−1Ŵj−1, (3.43a)

Sj = (B̂ − αjIm)
−H

[
j−1∏
i=1

C(B̂, −αi, βi)
H

]
Ĝ = (B̂ − αjIn)

−H T̂j−1. (3.43b)

A comparison of (3.42) with (3.43) yields ∀j ≥ 1

Ŵj = (Â− αjIn)Vj, T̂j = (B̂ − βjIn)
HSj.

Consequently,

Ŵj = (Â− αjIn)(Â− βjIn)
−1Ŵj−1 = Ŵj−1 + γjVj = Ŵ0 + ZjΓj(1j ⊗ Ir), (3.44a)

T̂j = (B̂ − βjIm)
H(B̂ − αjIm)

−H T̂j−1 = T̂j−1 − γjSj = T̂0 − YjΓ
H
j (1j ⊗ Ir), (3.44b)

where the right most expressions are obtained from setting Ŵ0 := F̂ , T̂0 := Ĝ and using
the definition of the low-rank solution factors Zj, Yj and Γj. The desired formulas (3.41)
for the low-rank factors Wj, Tj of Sj and the iterates Vj, Sj corresponding to GCASEs

are easily established from Sj = EŜjC = EŴjT̂
H
j C = WjT

H
j and transforming the

linear systems in (3.43).

Theorem 3.14 reveals an equivalent formulation of the G-fADI iteration (3.35), where
the low-rank factorsWj, Tj of the residual matrix Sj are an integral part of the iteration.
This reformulated G-fADI iteration is illustrated in Algorithm 3.4 which uses the recur-
sive expression (3.41b) for Wj, Tj and a stopping criterion based on the scaled residual
norm. A generalization of Corollary 3.8 for the G-LR-ADI iteration (Algorithm 3.2)
can be formulated in a straightforward way, i.e., the G-fADI iteration implicitly solves
the Sylvester equation AXC − EXB − WjS

H
j = 0 in each iteration step. The fac-

torization (3.40) of Sj enables a cheap and efficient computation of the residual norm
‖Sj‖ = ‖WjT

H
j ‖ in the spectral norm via

‖WjT
H
j ‖ = σmax(WjT

H
j) =

√
λmax(TjWH

j WjTH
j) =

√
λmax((TH

j Tj)(W
H
j Wj)). (3.45)

There, we used that the nonzero eigenvalues of AB are the same as those of BA for
all A ∈ Cn×m, B ∈ Cm×n, see, e.g., [128, Theorem 1.32]. This essentially reduces the
residual norm computation to the computation of the largest eigenvalue of the r × r
matrix (TH

j Tj)(W
H
j Wj). Although its eigenvalues are obviously real, roundoff errors

might introduce very small imaginary parts, therefore it is wise to take the square
root only over the real parts. This approach is slightly cheaper than the approach

53

3. Low-Rank ADI Iteration for Lyapunov and Sylvester Equations

Algorithm 3.4: Reformulated generalized factored ADI (G-fADI) iteration for
(3.34)

Input : A, B, E, C, F, G as in (3.34), shift parameters {α1, . . . , αjmax},
{β1, . . . , βjmax}, and tolerance 0 < τ � 1.

Output: Zjmax ∈ Cn×rjmax , Yjmax ∈ Cm×rjmax , Γjmax ∈ Crjmax×rjmax such that
ZjmaxΓjmaxY

H
jmax

≈ X.

1 W0 = F, T0 = G, Z0 = Γ0 = Y0 = [], k = 1.
2 while ‖Wj−1T

H
j−1‖ ≥ τ‖FGT‖ do

3 Vj = (A− βjE)
−1Wj−1, Sj = (B − αjC)

−HTj−1.
4 γj := βj − αj.
5 Wj = Wj−1 + γjEVj, Tj = Tj−1 − γjC

TSj.
6 Zj = [Zj−1, Vj], Yj = [Yj−1, Sj], Γj = diag (Γj−1, γjIr).
7 j = j + 1.

proposed in [32] which uses a thin QR decomposition of either Wj or Tj. Beyond
that, it is significantly cheaper than, e.g., estimating the spectral norm indirectly via a
Power iteration or a Lanczos process applied to SH

j Sj or SjS
H
j . There, the main work

for each Lanczos iteration would be matrix-vector products y = Sjx, x ∈ Cm, and
z = SH

j y, y ∈ Cn. These products can be formed without an explicit construction of Sj,
requiring only matrix-vector products with the involved matrices and their transposes.

Remark 3.15:

Alternative approaches based on the product SVD, e.g. [80], can also be used to
efficiently compute ‖WjT

H
j ‖. These methods are constructed for computing the SVD

of products of matrices to a very high accuracy in a numerically robust way. For
using the residual norm as stopping criterion, only σmax(WjT

H
j) is of interest and one

is usually satisfied when the exponent ν in ‖WjT
H
j ‖ ≈ c · 10−ν is computed exactly.

Hence, computing ‖WjT
H
j ‖ by the approach (3.45) is sufficient for our purposes, and

also never failed to deliver an accurate estimate of ‖Sj‖. ♦
The approach employing a Lanczos process might, however, still be useful if the low-rank
solution is improved by Galerkin projection approaches [43] since then (3.41) does not
hold anymore. Some numerical evidence that computing the residual norm via (3.45) is
more efficient than using Lanczos can be found in Section 3.3.4, [32]. Also, if the linear
systems (3.41d) are solved inexactly, considerations similar to Remark 3.7 can be drawn
as the computed quantity ‖WjS

H
j ‖ might be no longer equal to ‖Sj‖. Other approaches

for computing ‖Sj‖ similar to the ones mentioned in Subsection 3.2.3 are also possible
but unlikely to be more efficient than (3.45).

The low-rank solution factors Z, Y are solutions of GCASEs.

With the help of Theorem 3.14, the following results can be derived which constitutes a
generalization of (3.24a) in Corollary 3.9, [235, Lemma 3.1], [234, Lemma 5.12].

54

3.3. The Factored ADI Iteration for Sylvester Equations

Corollary 3.16 (Sylvester Equations for the fADI low-rank solution factors):

The low-rank solution factors Zj, Yj constructed after j steps of the G-fADI iteration
(Algorithm 3.4) satisfy the GCASEs

AZj − EZjσ
α
j = WjG

T
j , BTYj − CTYjσ

β
j = TjG

T
j (3.46)

with σβ
j := diag (α1Ir, . . . , αjIr)− γj , σβ

j := diag (β1Ir, . . . , βjIr) + γj

γj :=

[0
γ2 0

...
...

γj ··· γj 0

]
⊗ Ir ∈ Cjr×jr, Gj := (1j ⊗ Ir) ∈ Rjr×r,

and Wj, Tj are the low-rank factor of the residual Sj. ♦
Proof. The result can be established in analogy to the proof of Corollary 3.9. By (3.41a)
in Theorem 3.14 it holds AVi = Wj + αiEVi, i = 1, . . . , j. Inserting (3.41b) in these
relations reveals

AVi = Wj + αiEVi − E

j−i∑
k=1

γj−k+1Vj−k+1, i = 1, . . . , j − 1

such that

A[V1, . . . , Vj] = [Wj, . . . ,Wj] + E[V1, . . . , Vj]

[α1−γ2 α2

...
...

−γj ··· −γj αj

]
⊗ Ir

from which the GCASE for Zj in (3.46) can be easily deduced. The GCASE for Yj is
established in the same way using the relations for Sj, Tj in (3.41).

3.3.3. Special Cases of Generalized Sylvester Equations

We already mentioned that for generalized Lyapunov equations (B = −AT ,C = ET ,
G = −F , αj = −βj), the G-fADI iteration reduces to the G-LR-ADI iteration. In this
section we discuss further special cases of the general Sylvester equation (3.34) which
also lead to specially tailored variants of the G-fADI iteration.

Cross Gramian Sylvester Equation

Choosing B = −A, C = E leads to GCASEs of the form

AXE + EXA = FGT (3.47)

which occur, e.g., in cross Gramian model order reduction [215]. There, the defining
matrices A,E, F,G represent a linear, time-invariant control system (2.5). We use the
usual assumption that this underlying system defining (3.47) is asymptotically stable,
i.e., Λ(A, E) ⊂ C−. The reasonable choice βj = −αj leads to the iteration

Vj = (A+ αjE)
−1Wj−1, Sj = −(A+ αjE)

−HTj−1, (3.48a)

Wj = Wj−1 − 2αjEVj, Tj = Tj−1 + 2αjE
TSj. (3.48b)

55

3. Low-Rank ADI Iteration for Lyapunov and Sylvester Equations

If the linear system for Vj is solved using a sparse LU decomposition LU = (A+ αjE),
the LU factors can be reused for solving the second linear system for Sj since U

HLH =
(A+ αjE)

H .

Remark 3.17:

Although we mainly employ sparse direct solvers for the solution of the linear systems,
a few remark regarding iterative solvers are in order. There exist some iterative
Krylov subspace methods which can be used to solve the adjoint systems in (3.48)
simultaneously, i.e., only one run of the particular iterative solver is required to obtain
both Vj and Sj. This holds especially in the case r = 1, where Krylov subspace
methods based on the two-sided Lanczos process can be applied. Prominent methods
belonging to this class are the bi-conjugate gradient (BiCG) [97] and quasi-minimal
residual (QMR) [101, 168] methods. Next to the ability to solve adjoint linear systems
simultaneously, another advantage of BiCG, QMR is that both are short-recurrence
methods which essentially fixes their computational effort and memory requirements
to a constant level through their whole progress. However, due to the inherent two-
sided Lanczos process, they are susceptible to breakdowns for which countermeasures
can be found, e.g., in [8, 9, 99]. The case r > 1 can be tackled by proceeding column-
wise through Wj−1 and Tj−1 or by employing block versions [179, 100]. Other, less
known methods also capable of solving both linear system simultaneously are the
GLSQR [188, 110] and unsymmetric MINRES [204] methods. ♦

Lyapunov Equations with Unsymmetric Inhomogeneity

A similar special case is the matrix equation (B = −AT , C = ET)

AXET + EXAT = FGT (3.49)

which might be considered as generalized Lyapunov equation with an unsymmetric right
hand side. A sufficient condition for a unique solution is Λ(A, E) ⊂ C−. Setting
βj = −αj yields

Vj = (A+ αjE)
−1Wj−1, Sj = −(A+ αjE)

−1Tj−1, (3.50a)

Wj = Wj−1 − 2Re (αj)EVj, Tj = Tj−1 + 2Re (αj)ESj. (3.50b)

Since the coefficient matrices in both linear systems are identical, we can solve for Vj, Sj

at once via

[Vj, Sj] = (A+ αjE)
−1[Wj−1, Tj−1]

which requires, if a sparse direct solver is applied, only one factorization of the coefficient
matrix. In Section 7.3, we will encounter GCALEs of the form (3.49).

Discrete-Time Lyapunov Equations

It is obvious that a GCASE (3.34) can be seen as a discrete-time Sylvester equation and,
thus, also those equations can be solved by the G-fADI iteration. Choosing C = AT ,

56

3.3. The Factored ADI Iteration for Sylvester Equations

B = ET , and G = −F leads to a generalized discrete-time Lyapunov equation (GDALE,
see Definition 2.26)

AXAT − EXET = −FF T (3.51)

which has a unique symmetric positive (semi)definite solution if |λj| < 1 for all λj ∈
Λ(A, E) by Lemma 2.28. Often, A, E, F are the matrices defining a discrete-time,
linear, time-invariant system (2.6). There exists already some work on solving large-scale
GDALEs, e.g., by Krylov subspace [203], Smith [29, 165], or ADI type methods [27],[203,
Section 6.3]. Here we follow a rather unconventional approach by solving (3.51) with
the G-fADI iteration for generalized Sylvester equations. There, some simplifications
occur as follows, where we assume that 0 /∈ Λ(A, E) and αj �= 0, |αj| < 1 ∀j. Since

Λ(B, C) = Λ(ET , AT) = 1/Λ(A, E), we set βj = 1/αj. Then Vj, Wj are given by

Vj = (A− βjE)
−1Wj−1 = (A− αj

|αj |2E)
−1Wj−1,

Wj = Wj−1 + αj
1−|αj |2
|αj |2 EVj.

For Sj, Tj first note that

AVj =
αj

|αj |2EVj +Wj−1 =
1

1−|αj |2Wj − |αj |2
1−|αj |2Wj−1.

Then one finds for the first iteration

S1 = (B − α1C)
−HG = (α1A− E)−1F = − 1

α1
V1,

T1 = −F + 1−|α1|2
α1

AS1 = −F + 1−|α1|2
|α1|2 AV1 = − 1

|α1|2S1.

Subsequently applying this procedure for j = 2, 3, . . . yields

Sj =
θj−1

αj
Vj, Tj = −θjWj

with θj := (|α1|2 · . . . · |αj|2)−1
, θ0 = 1. Hence, Sj, Tj as well as the solution factor Yj

are not required. Accumulating the constants in front of Sj in the above expressions
into the Γ-factor leads to the iteration

Vj = (A− αj

|αj |2E)
−1Wj−1, Wj = Wj−1 + αj

1−|αj |2
|αj |2 EVj, (3.52a)

Zj = [Zj−1, Vj], Γj = diag
(
Γj−1, (1− |αj|2)θjIr

)
, θj =

θj−1

|αj |2 . (3.52b)

The spectral norm of the residual can be computed via ‖Lj‖ = |θj|‖Wj‖2. The itera-
tion (3.52) can be rewritten such that the coefficient matrices in the linear systems are
|αj|2E−αjA or αjA−E. This will essentially introduce other constants in the defining
equations for Vj, Wj and Γj. Which choice will be the best, e.g., w.r.t. numerical ro-
bustness, might be a topic for further research. Note that this iteration is different from
the ADI scheme for (3.51) presented in [27, 203]. There, the whole low-rank solution

57

3. Low-Rank ADI Iteration for Lyapunov and Sylvester Equations

factor Zj−1 has to be processed similar to the iteration (3.8) and no residual factors are
incorporated.

The construction of θj constitutes a weakness of the above iteration since it can easily
become extremely large if |αj| � 1 for some shifts. This was also observed in some
numerical examples. Moreover, the case |αj| ≈ 1 can lead to cancellation. We plan
to pursue the circumvention of these issues in future work regarding ADI methods for
discrete-time Lyapunov equations.

If the right hand side of (3.51) is FGT , similar techniques as for (3.49) in Section 3.3.3
can be applied to construct a modified version of iteration (3.52).

3.3.4. Numerical Examples

Efficient Computation of the Norm of the Sylvester Residual

Similar to the experiments in Section 3.2.6, the novel strategy for the residual norm
computation in the G-fADI iteration is briefly investigated. To define a GCASE we use
two different versions of the ifiss example (cf. Section 2.4: the matrices −A, E and
B, C are taken from the ifiss16k (n = 16641) and, likewise, the smaller ifiss4k example
(m = 4225). The complete GCASE example is denoted by ifiss16k/4k. This setup is
motivated by the Sylvester example in [21], where the authors use different versions of
the rail example to define a GCASE.

We employ the G-fADI iteration (Algorithm 3.4) and use J = L = 30 heuristic shift
parameters proposed in [162, 43] which are generated from kA+ = kB+ = 10, kA− = kB− = 20
Ritz and inverse Ritz values. The iteration is terminated when εj := ‖Sj‖/‖FGT‖ < τ =
10−10, where the Sylvester residual norm is computed using the novel approach (3.45)
which takes the low-rank structure of Sj from Theorem 3.14 into account. For comparison
we also apply a Lanczos process to SH

j Sj which was set up as in the GCALE examples
before. Without taking the residual computation into account, the G-fADI iteration
required tADI=31.2 seconds in jit=89 iteration steps leading to εj = 7.22 · 10−11. Using
(3.45) for computing ‖Sj‖ took in total 0.0771 seconds which amounts to a negligible
fraction of tADI. In comparison, using a Lanczos process required in total 63.2 seconds,
i.e., roughly twice the amount of tADI would be spent in computing the residual norm. In
Figure 3.2, the time for computing the residual norm is plotted along with the timings of
the remaining computations for each iteration step j and clearly, the time tLan,j for the
Lanczos approach increases notably with j whereas the time tWS,j for the novel approach
(3.45) stays approximately constant. The Lanczos timings tLan,j are also visibly close to
the remaining computation times tADI,j.

Modifications of the G-fADI Iteration for Special Sylvester Equations

Here we investigate the proposed versions of the G-fADI iteration for the special cases
of Sylvester equations in Section 3.3.3. We use the following examples for comparing
the specially tailored iterative schemes (3.48), (3.50), and (3.52) to the standard G-fADI
iteration.

58

3.3. The Factored ADI Iteration for Sylvester Equations

10 20 30 40 50 60 70 80

10−3

10−1

101

iteration j

ti
m
in
gs

in
se
c.

tADI,j tWS,j tLan,j

Figure 3.2.: Time (in seconds) needed for computing the Sylvester residual norm with
different approaches and for the remaining computations in the G-fADI
iteration against the step number j for the ifiss16k/4k example.

Table 3.2.: Numerical results obtained with standard and structure exploiting G-fADI
Iteration.

Parameters Results

Matrix Equation kA+, k
A
−, J jiter εjiter tstandard tmodified

cross Gramian (3.47) 10, 20, 30 110 4.7·10−11 71.9 70.5

unsymmetric GCALE (3.49) 10, 20, 30 111 4.0·10−11 74.1 54.1

DALE (3.51) 10, 0, 10 68 9.4·10−11 12.6 6.4

To define a cross Gramian Sylvester equation of the form (3.47), we use the matrices
A, E from example ifiss16k and B = −A, C = E. The resulting equation is dealt with
by the specially tailored iteration (3.48) of Section 3.3.3.

Similarly, using the same matrices A, E, but now B = −AT , C = ET leads to an
equation of the form (3.49) such that the iteration (3.50) is applied as well.

To generate a DALE (3.51) to be solved by the iteration (3.52), we take the matrix
A = CT from [203, Example 1] which is of dimension n = 50000, skew-symmetric, and
tridiagonal with −0.49, 0, 0.49 on the lower, main, and upper diagonal. Furthermore,
B = E = In and F = −G consist of the first r = 2 canonical vectors.

As tolerance for termination the iterations we use again τ = 10−10. Table 3.2 sum-
marizes the used parameters, the required number of iterations jiter, the final residual
norm εjiter , as well as the computation times tstandard and tmodified for the standard and
modified G-fADI iterations, respectively. Note that these timings incorporate also the
times needed to compute the residual norm and, since for these special cases no β shifts
are required, no values for kB± , L are listed.

For the cross Gramian Sylvester equation there is only a negligible difference between
the timings of the G-fADI iteration and scheme (3.48). Note that the adjoint linear
systems in the iteration are solved separately since computing and reusing LU factors
of A − αE as mentioned above took more than twice as long, i.e. around 193 seconds.
The reason for those large differences is, to our knowledge, that the MATLAB backslash

59

3. Low-Rank ADI Iteration for Lyapunov and Sylvester Equations

command uses different techniques to compute the LU factors than the lu command.
In other software and hardware environments it can be possible that reusing the LU
factors pays off.
For the matrix equation (3.49), the application of the adapted iteration (3.50) leads

also to a significant reduction of the computation time. This is mainly because the
factorization of the shifted linear system has to be computed only once for constructing
both Vj and Sj.
A clear decrease of the run times is also apparent for the DALE example when applying

(3.52) instead of the G-fADI iteration. However, in some cases the algorithm broke
down when some of the αj were too small in magnitude which resulted in an overflow
when computing the value θj. Hence, we set kA− = 0 and used only the Ritz values
approximating the eigenvalues with the largest magnitude.

3.4. Conclusions

The low-rank ADI iteration for computing low-rank solution factors of large-scale gen-
eralized Lyapunov and Sylvester equations has been reviewed. Special emphasis was
put on considerations regarding the matrix equation’s residual. It was shown that the
rank of the residual in low-rank ADI methods is at most equal to the rank r of the
inhomogeneity. Hence, the residuals can be written in terms of a low-rank factorization.
We also proposed explicit and easy ways to obtain the low-rank residual factors which,
in fact, turned out to appear directly within the iteration. These relations lead to the
derivation of reformulated versions of the G-LR-ADI and G-fADI iterations for GCALEs
and GCASEs, respectively, where the low-rank factors of the residual are an integral part
of the process. As main contribution of this chapter, the low-rank residual factors enable
a very cheap and efficient computation of the residual norm during the iteration. In this
way the computation of the residual norm only requires a negligible amount of effort
which is significantly cheaper than traditional approaches for estimation the residual
norms as the numerical experiments confirm. However, the proposed low-rank expres-
sions for the residuals do not hold if the occurring linear systems are solved inexactly.
This issue is subject of current research [202, 219] which also includes investigations
regarding the minimum required accuracy of the approximate linear system solves such
that convergence of the low-rank ADI methods is still maintained.
We also discussed certain modification of the G-LR-ADI and G-fADI iterations to deal

with problems having a special structure, e.g., GCALEs arising from the study of second
order control systems. For special GCASEs, e.g., cross-Gramian Sylvester and GDALEs,
new modified low-rank ADI methods have been proposed. Numerical experiments with
those methods reveal that additional, considerable computational savings can be gained
from this structure exploitation. Further research in this direction includes especially
to make the proposed low-rank ADI iteration for GDALEs more robust with respect to
shift parameters of small magnitude.

60

CHAPTER 4

EFFICIENT HANDLING OF COMPLEX ADI SHIFT

PARAMETERS

Contents
4.1 Complex Shift Parameters in the G-LR-ADI Iteration for Lyapunov

Equations . 62

4.1.1 Proper Shift Parameters . 62

4.1.2 A Short Motivation for the Need of Complex Shift Parameters 63

4.1.3 Previous Approaches . 63

4.1.4 A New Approach Based on the Interconnection of ADI Iterates 67

4.1.5 Numerical Examples . 73

4.2 Computing Real Low-rank Solutions by the fADI Iteration 75

4.2.1 Interconnections Between Complex Iterates 75

4.2.2 Special Sylvester Equations 79

4.2.3 Numerical Examples . 83

4.3 Conclusions . 85

ADI based methods require a number of shift parameters to attain a fast convergence.
These shifts are in one way or another related to the spectra of the coefficient matrices (or
matrix pairs), where we explicitly focus on the case when there are complex eigenvalues
in these spectra. This might lead to complex shift parameters for the ADI iteration,
which will produce a complex (low-rank) solution, or complex low-rank solution factors.
Since the original matrix equations we consider in this thesis involve only real matrices,
but the ADI will then contain complex arithmetic operations and storage, which yields
higher computational costs as in the real case, this is an undesirable property. Therefore,
our goal is to investigate strategies for computing real low-rank solution factors with
modified versions of the low-rank and factored ADI iteration, which should employ no,
or at least only an absolutely necessary amount of complex arithmetic operations and
storage. In the following section we investigate this issue for the G-LR-ADI iteration for
GCALEs (Section 3.2). We start by introducing the concept of proper shifts and give a
brief motivation why complex shift parameters might be beneficial for the convergence

61

4. Efficient Handling of Complex ADI Shift Parameters

speed of the iteration. After that we review two existing approaches to deal with complex
shift parameters, where we give a slight improvement of a completely real G-LR-ADI
iteration [42, 161, 183]. In Section 4.1, we establish some novel interconnections of the
data in the G-LR-ADI iteration w.r.t. complex conjugate shifts. A careful usage of these
interconnections will lead to a further modification of the algorithm, which employs
a considerably reduced amount of complex arithmetic operations as well as memory
demand and produces real low-rank solution factors in the end. Numerical experiments
illustrate the performance of this new modified algorithm and compare it to the other
approaches. Similar considerations for the G-fADI iteration for generalized Sylvester
equations are carried out in Section 4.2, where novel interconnections of complex iterates
are proved. A modified G-fADI iteration that computes real low-rank solution factors
at a reduced effort is presented. The adaption of this approach to the special GCASEs
(cf. Section 3.3.3) is given in Section 4.2.2. Selected numerical examples shown the
efficiency of this modified G-fADI iteration in Section 4.2.3 and conclusions are given in
Section 4.3.

4.1. Complex Shift Parameters in the G-LR-ADI
Iteration for Lyapunov Equations

4.1.1. Proper Shift Parameters

All the considerations and approaches discussed in this section require the natural and
important convention that the used sets of shift parameters are proper in the sense of
the following definition.

Definition 4.1:

(Proper Complex Sets) A complex set A ⊂ C is said to be proper if it is closed under
complex conjugation (A = A) and if its elements are ordered in the form

{α1, . . . , αJ} = {μ1, . . . , μL} , L ≤ J,

where μj is either a real number μj = αj or a pair of complex conjugate numbers
μj = {αj, αj+1 = αj} for j = 1, . . . , L. ♦

This convention is obviously not a restrictive, but very natural, assumption since complex
eigenvalues of a real matrix also appear in complex conjugate pairs. Assuming that the
set of used ADI shift parameters is proper directly implies that, if for every complex shift
also its conjugate is used, ZZH ∈ Rn×Jm although Z will in general be a complex matrix.
Hence, it is not advised to terminate ADI in between a pair of complex conjugated shift
parameters. When we speak in the following of proper shifts for the ADI iteration for
GCALEs, this automatically implies A ⊂ C−.

62

4.1. Complex Shift Parameters in the G-LR-ADI Iteration for Lyapunov Equations

4.1.2. A Short Motivation for the Need of Complex Shift
Parameters

If the spectrum of the matrices defining the GCALEs contains complex eigenvalues, then
the ADI shift parameters, which are in one way or another related to the spectrum, can
be complex as well. This can also be seen from the associated optimization problem
(3.14) which can have complex solutions. The following small example shows that for
matrices with complex eigenvalues, a larger error reduction can be achieved by using
complex shifts compared to real shifts. Let for this

A =

⎡
⎣−1 0 0

0 −1
2

1

0 −1 −1
2

⎤
⎦ with Λ(A) =

{−1,−1
2
± j

}
.

Since the complex eigenvalues occur complex conjugate pairs and by the demand for
proper shift parameters, we compare two complex conjugated shifts versus two real
shifts. Recall from Lemma 3.4 that the error reduction at iteration step j of the ADI
iteration is related to the norm of the product of j Cayley transformations. Hence, for
our example, we use

f(α1, α2) := ‖C2C1‖ = ‖(A+ α2I)
−1(A− α2I)(A+ α1I)

−1(A− α1I)‖,
where α1, α2 ∈ R− for one instance, and α1 = Re (α1) + j Im (α1) ∈ C−, α2 = α1 in a
second test. Note that since A is normal, the spectral norm coincides with the spectral
radius of C2C1. We employ an optimization routine to find the values of α1, α2 where
f achieves its minimal value fmin in both situations. This leads, one the one hand, to
fmin(α1, α2) = 0.382 with α1 = α2 = −1.118 for two consecutive real shifts, and, on the
other hand, to fmin(α1, α1) = 0.1998 with α1 = −0.7362 + j0.8158. The surface plot
of f in Figure 4.1 shows that f w.r.t. a pair of complex conjugated shifts achieves a
considerably deeper sink compared to two real shifts.
However, if the imaginary parts of the eigenvalues are small compared to real parts,

i.e., the spectrum is located within a small strip in C−, then using only real shift param-
eters might be adequate, see, e.g., [232, 233]. Complex shift parameters are therefore
particularly interesting for problems having eigenvalues with large imaginary parts, i.e.,
the spectrum has a large opening angle ψ(A, E) (cf. (2.27)).

4.1.3. Previous Approaches

Here we briefly describe two older approaches that deal with complex shift parameters
in the G-LR-ADI iteration before we present our new one.

Completely Real Formulation of the LR-ADI Iteration

In [42, 161, 183], a real formulation of the original LR-ADI iteration (3.2) for (3.2) is
presented, which exploits the identity

(A± αIn)(A± αIn) = A2 + 2Re (α)A+ |α|2In, ∀A ∈ Rn×n, α ∈ C.

63

4. Efficient Handling of Complex ADI Shift Parameters

fmin = 0.382

*

−2 −1.5 −1 −0.5 0

−2

−1.5

−1

−0.5

0

α1

α
2

fmin = 0.1998

*

−2 −1.5 −1 −0.5 0
0

0.5

1

1.5

2

Re (α1)

Im
(α

1
)

0.2

0.4

0.6

0.8

1

Figure 4.1.: Surface plot of f in dependence of α1, α2 ∈ R− (left) and Re (α1), Im (α1)
for α1 ∈ C− (right).

Concatenating two LR-ADI iteration steps associated with a pair of complex conjugate
shift parameters into one step leads to a completely real LR-ADI iteration (LR-ADI-R)
[42, Algorithm 4.]. To illustrate this method let, for instance, μj = {αj, αj+1 := αj} be
such a pair, αj−1 be real and j > 2. Then the LR-ADI-R iteration updates the low-rank
solution factor as

Zj+1 = [Zj−1, 2
√

−Re (αj)|αj|Ṽj, 2
√

−Re (αj)Ṽj+1], (4.1)

where Ṽj, Ṽj+1 ∈ Rn×r are real iterates constructed via

Ṽj =
(
A2 + 2Re (αj)A+ |αj|2In

)−1
(
(A− αj−1In)Ṽj−1

)
, Ṽj+1 = AṼj (4.2)

and Ṽj−1 is also real due to an appropriate treatment of the complex shifts in the pre-
ceding iterations. The other situations, i.e., j ≤ 2 as well as αj−1 ∈ C− are dealt
with similarly. A complete algorithm following this strategy can be found in [42, Algo-
rithm 4.],[161], but unfortunately no derivations of the involved formulas are given. A
complete derivation of this implementation can be found in the appendix of the preprint1

of [38]. This reformulation has the advantage that no complex arithmetic operations are
required but the disadvantage that linear systems with coefficient matrices of the form
A2 + 2Re (αj)A + |αj|2In are encountered. For large-scale matrices, A2 might not be
computable in an efficient way and even if, it will not preserve the original sparsity of
A such that the application of sparse direct solvers is derailed. Iterative solvers can still
be applied since they work with matrix-vector products only, such that the explicit con-
struction of the operator is not needed. However, the condition number can be increased
due to the squaring which might deteriorate the efficiency of iterative solvers as well.

1Available at https://www2.mpi-magdeburg.mpg.de/preprints/2011/08/.

64

4.1. Complex Shift Parameters in the G-LR-ADI Iteration for Lyapunov Equations

The situation worsens for GCALEs (3.12) for which the above equations are

Ṽj =
(
AE−1A+ 2Re (αj)A+ |αj|2E

)−1
(
(A− αj−1E)Ṽj−1

)
, Ṽj+1 = E−1AṼj. (4.3)

Solving the linear system in (4.3) requires to build – or multiply a vector to – the matrix
AE−1A which can, depending on the structure of E, easily become dense. Hence, except
when E is an easy matrix (e.g., diagonal), this real formulation of G-LR-ADI is inefficient
in a large-scale setting. Moreover, for each complex pair, an additional solve with E is
required which introduces even higher computation costs. Nevertheless, an algorithm
following this approach for GCALEs is referred to as G-LR-ADI-R iteration and given in
[35, Algorithm 1], where also similar modifications for the SO-LR-ADI and SLRCF-ADI
iteration can be found.
So far, for both CALEs and GCALEs, this strategy has been only worked out for

the original (G-)LR-ADI iteration (3.2), (3.12) and not for the new formulation (Algo-
rithm 3.2) which we developed in the previous chapter. A straightforward application
of the techniques mentioned above to Algorithm 3.1 yields

Ṽj =
(
AE−1A+ 2Re (αj)A+ |αj|2E

)−1
Wj−1, Ṽj+1 = E−1AṼj, (4.4)

Wj+1 = Wj−1 − 4Re (αj)EṼj+1 = Wj−1 − 4Re (αj)AṼj (4.5)

In contrast to (4.2),(4.3), these relations hold for each pair of complex conjugated shifts,
independent of j and the type of shifts encountered before, which simplifies the resulting
completely real G-LR-ADI iteration.
We show now how (4.4) can be further rewritten to get rid of the difficult coefficient

matrices. The occurrence of AE−1A and the additional solve with E for Ṽj+1 can be
circumvented by solving the augmented linear system[

Ṽj
Ṽj+1

]
=

[
2Re (αj)A+ |αj|2E A

A −E
]−1 [

Wj−1

0

]
(4.6)

which is equivalent to the construction of Ṽj, Ṽj+1 in (4.4). Instead of (4.4) one has
to solve a 2n dimensional, real, linear system. The numerical properties of the 2n
dimensional matrix in (4.6) might, however, be better compared to the one in (4.4),
especially since it is still sparse if A, E are. This strategy can, of course, also be
applied in the case E = In to avoid working with A2 in (4.2). Algorithm 4.1 illustrates
the completely real G-LR-ADI in the new formulation and using the augmented linear
systems (4.6). We will use the reformulated versions (4.4), (4.6) of the G-LR-ADI-R
iteration for comparison to our novel, and often more efficient approach later on.

LyaPack Approach

Another approach can be found in the latest implementations of the LR-ADI iteration in
LyaPack [185]. Unfortunately, a derivation of this approach cannot be found anywhere
in the literature. The crucial point there is that again for Vj, Vj+1 corresponding to

65

4. Efficient Handling of Complex ADI Shift Parameters

Algorithm 4.1: G-LR-ADI-R

Input : Matrices A, E, F defining (3.12), proper set of shift parameters
{α1, . . . , αjmax} ⊂ C−, tolerance 0 < τ � 1.

Output: Z = Zjmax ∈ Rn×rjmax , such that ZZT ≈ X.
1 W0 = F, Z0 = [], j = 1.
2 while ‖W T

j−1Wj−1‖ ≥ τ‖F TF‖ do
3 if Im (αj) = 0 then

4 Solve (A+ αjE)Ṽj = Wj−1 for Ṽj.

5 Wj = Wj−1 − 2Re (αj)EṼj, Zj = [Zj−1,
√−2αjṼj].

6 j = j + 1.

7 else

8 γj = 2
√
Re (αj).

9 Solve
[
2Re (αj)A+|αj |2E A

A −E

] [
Ṽj

Ṽj+1

]
=

[
Wj−1

0

]
for Ṽj, Ṽj+1.

10 Wj+1 = Wj−1 + γ2jEṼj+1.

11 Zj+1 =
[
Zj−1, γj|αj|Ṽj, γjṼj+1

]
.

12 j = j + 2.

μj = {αj, αj+1 := αj}, provided that Re (Vj) , Im (Vj) have both full column rank r, it
holds

rank (Nj) = 2r, Nj := [Re (Vj) , Im (Vj) , Re (Vj+1) , Im (Vj+1)] ∈ Rn×4r (4.7)

which will be derived in the next subsection. In LyaPack, the current solution factor Z
is expanded by real block columns using Algorithm 4.2 which processes column wise the
imaginary and real parts of Vj, Vj+1. Hence, the matrix Ñj used there is of dimension
n × 4 and has rank 2. To neglect the linearly dependent part, a thin singular value
decomposition (SVD)

Ñj = UΣQT = [u1, u2, u3, u4]

[
σ1

σ2
0
0

] [
q1 q2 q3 q4

]T
= [u1, u2]

[
σ1

σ2

] [
qT1
qT2

]

in Line 2 of Algorithm 4.2 reveals the blocks corresponding to range(Ñj). Adding Ñj to
the current low-rank factor will introduce the new blocks2

ÑjÑ
T
j = [u1, u2]

[
σ2
1

σ2
2

]
[u1, u2]

T = TjT
T
j

2We point out that in the original implementation a superfluous SVD HSPT = [h1, h2]
T [p1, p2] is

used to get the new blocks via [Z̃j(:, �), Z̃j+1(:, �)] = T = [σ1u1, σ2u2]HS.

66

4.1. Complex Shift Parameters in the G-LR-ADI Iteration for Lyapunov Equations

Algorithm 4.2: Augmentation of Z by real block columns

Input : Low-rank factor Zj−1 ∈ Rn×(j−1)r, iterates Vj, Vj+1 ∈ Cn×r w.r.t.
μj = {αj, αj}

Output: Zj+1 ∈ Rn×(j+1)r, that is, Zj−1 augmented by 2m new real columns.
1 for � = 1, . . . , r do
2 Compute (thin) singular value decomposition (SVD)

UΣQT = [Re (Vj(:, �)) , Im (Vj(:, �)) ,Re (Vj+1(:, �)) , Im (Vj+1(:, �))] ∈ Rn×4

3 Partition U, Σ w.r.t. nonzero singular values

U =
[
u1, u2, u3, u4

]
, Σ = diag (σ1, σ2, 0, 0)

4 Determine new real columns Z̃j(:, �) = σ1u1, Z̃j+1(:, �) = σ2u2.

5 Zj+1 = [Zj−1, Z̃j, Z̃j+1] ∈ Rn×(j+1)r.

with Tj := [σ1u1, σ2u2] in the approximate solution of (3.2). This is carried out in Line 4
and ensures that only the columns of U which correspond to the linearly independent
part of Ñj are added to Zj−1. Obviously, this approach generates a real low-rank
factor Z after termination of Algorithm 3.2, but uses complex arithmetic and requires
the computation of r singular value decompositions of n× 4 matrices for each complex
pair νj encountered. Since r is typically much smaller than n this usually yields minor
additional costs. This approach does not alter the linear systems to be solved compared
to the previous approach, such that the performance of sparse direct or iterative solvers
is not negatively affected. In the next part we propose a new approach which explicitly
determines the linear dependence of the real and imaginary parts of Vj, Vj+1 and makes
the linear system with A+ αj+1E = A+ αjE redundant.

4.1.4. A New Approach Based on the Interconnection of ADI
Iterates

Our new approach exploits (4.7) by using the correct linear combination of the linearly
dependent part of Nj without using a SVD. The following theorem states that Vj+1 is
explicitly known once Vj has been computed.

Theorem 4.2 (Revised version of [38, Theorem 1]):

Assume a proper set of shift parameters and real matrices A, E, F defining the
GCALE (3.12). Then for two subsequent blocks Vj, Vj+1 of the G-LR-ADI iteration
(Algorithm 3.2) associated with a pair of complex conjugated shifts νj = {αj, αj+1 := αj}

67

4. Efficient Handling of Complex ADI Shift Parameters

it holds

Vj+1 = Vj + 2δj Im (Vj) , (4.8a)

Wj+1 = Wj−1 − 4Re (αj)E (Re (Vj) + δj Im (Vj)) ∈ Rn×r (4.8b)

with δj :=
Re (αj)

Im (αj)
. Furthermore, regardless of the type of shifts encountered before, if

αj is real, then Vj and Wj are real n× r matrices. ♦

Proof. Assume at first that we are at iteration j of the G-LR-ADI iteration and Wj−1 is
a real matrix. This is obviously the case when j = 1 since W0 = F and when all shifts
α1, . . . , αj−1 are real. According to the G-LR-ADI iteration (3.12) we have

(A+ αjE)Vj = Wj−1

and, by splitting αj, Vj and Wj into their real and imaginary parts,

(A+ Re (αj)E) Re (Vj)− Im (αj)E Im (Vj) = Wj,

(A+ Re (αj)E) Im (Vj) + Im (αj)E Re (Vj) = 0

since Im (Wj−1) = 0. Hence, E Re (Vj) = − 1
Im (αj)

(A+Re (αj)E) Im (Vj) which reveals

Wj = Wj−1 − 2Re (αj)E (Re (Vj) + j Im (Vj))

= Wj−1 + 2
Re (αj)

Im (αj)
((A+ Re (αj)E) Im (Vj)− j Im (αj)E Im (Vj))

= Wj−1 + 2δj(A+ αjE) Im (Vj) .

For Vj+1 associated to αj+1 = αj this yields

Vj+1 = (A+ αjE)
−1Wj = (A+ αjE)

−1Wj−1 + 2δj(A+ αjE)
−1(A+ αjE) Im (Vj)

= Vj + 2δj Im (Vj)

and (4.8a) is established. The relation (4.8b) follows easily from

Wj+1 = Wj − 2Re (αj)EVj+1 = Wj−1 − 2Re (αj)E
(
Vj + Vj + 2δj Im (Vj)

)
which is a real n× r matrix. Hence, the assumption Wj ∈ Rn×r is always fulfilled after
a complex conjugated pair has been processed. If αj ∈ R− it holds obviously Vj ∈ Rn×r

by (3.12) and Wj ∈ Rn×r follows which completes the proof.

Remark 4.3:

Theorem 4.2 adapts [38, Theorem 1] to the new formulation of the G-LR-ADI iteration
proposed in Section 3.2.1 which incorporates the residual factors Wj. In [38] the
original iteration (3.2) is used which yields exactly the same expression for Vj+1, but
the proof is more complicated. The residual factors Wj are the right hand sides of the
linear systems to be solved and, since it is proven that these are always real, minor
additional computational savings can be achieved in the solutions process [36]. ♦

68

4.1. Complex Shift Parameters in the G-LR-ADI Iteration for Lyapunov Equations

The above theorem reveals that, in the case of a pair of complex conjugate shifts, Vj+1,
Wj+1 corresponding to the shift αj+1 := αj can be constructed entirely from the previous
iterate Vj and shift αj without solving a second complex linear system with A + αjE.
This reduces the numerical costs for generating both iterates roughly by one half and
enables to process the whole complex conjugate pair at once. However, it is still required
to solve one complex linear system.

Remark 4.4:

To get rid of the remaining complex arithmetic operation, it is possible to rewrite the
complex linear system into an equivalent real representation [75], e.g.,[

A+ Re (αj)E − Im (αj)E

Im (αj)E A+ Re (αj)E

] [
Re (Vj)

Im (Vj)

]
=

[
Wj−1

0

]
(4.9)

and also formulate the rest of the G-LR-ADI iteration in terms of Re (Vj), Im (Vj).
This leads to another completely real version of the G-LR-ADI iteration. For algo-
rithms see [34, 35], where the original iteration (3.12) is used. The price one has to pay
is that the augmented linear systems (4.9) are of dimension 2n and typically harder
to solve than the original complex system which can usually be dealt with perfectly
by modern computing environments. This is also confirmed in the numerical experi-
ments later on. Moreover, there are different ways of an equivalent real representation
of the complex linear systems. Sparse direct as well as iterative solvers might perform
differently on different real formulations [75]. In the remainder we use the form (4.9).♦

Using (4.8), (4.9), it can be shown that Re (Vj) , Im (Vj) and the iterates Ṽj, Ṽj+1 in
(4.6) of the old completely real G-LR-ADI iteration (4.3) are related to each other via

Ṽj =
−1

Im (αj)
Im (Vj) , Ṽj+1 = Re (Vj) + 2βj Im (Vj) ,

see also [36]. Relation (4.8a) shows moreover that for two subsequent iterates Vj, Vj+1

generated with a complex pair αj, αj of shift parameters, statement (4.7) holds indeed,
as it is also implicitly exploited in LyaPack using a singular value decomposition, see
Algorithm 4.2. Hence, instead of adding Vj, Vj+1 to the current low-rank solution
factor, it is sufficient to add Re (Vj) , Im (Vj) in the correct way as we will show next.
This will also reduce the amount of memory required to store complex data.
The approximate solution incorporating the data generated in the iteration steps

j, j + 1 w.r.t. αj, αj is given by

Xj+1 = Zj−1Z
T
j−1 + ẐẐH

where Ẑ denotes the n× 2r block to be added to Zj−1 which we assume to be real. By
(4.8a)

Ẑ = γj
[
Vj Vj+1

]
=

[
Re (Vj) Im (Vj)

]
T̂ , T̂ := γj

[
Ir Ir
jIr (2δj − j)Ir

]

with γj :=
√−2Re (αj).

69

4. Efficient Handling of Complex ADI Shift Parameters

Remark 4.5:

Note that it is claimed in [98] that the columns in the factor Z which were generated
using αj and αj are complex conjugate to each other and hence, Z can be transformed
into a real form by applying

T =
√
2
2

[
1 j

1 −j
]

to these columns. As Theorem 4.2 shows, only the imaginary parts of these columns
are complex conjugate versions of each other, rendering the above claim and the
transformation incorrect. ♦

With Z̃ :=
[
Re (Vj) Im (Vj)

] ∈ Rn×2r the contribution of Ẑ to the low-rank solution
of (3.2) is given by

ẐẐH = Z̃T̂ T̂HZ̃T = Z̃γ2j

[
2Ir 2δjIr
2δjIr (4δ2j + 1)Ir

]
Z̃T .

The 2r × 2r matrix T̂ T̂H in the middle is always real symmetric and positive definite
which can be shown using the factorization T̂ T̂H = γ2j L̂Γ̂L̂

T with

L̂ =

[
1 0

δj 1

]
⊗ Ir, Γ̂ =

[
2 0

0 2(δ2j + 1)

]
⊗ Ir.

Thus, it has a unique Cholesky factorization given by

T̂ T̂H = LLT , L := γ̂j

[
1 0

δj
√
δ2j + 1

]
⊗ Ir ∈ R2r×2r

with γ̂j := 2
√−Re (αj) =

√
2γj which follows immediately from the above L̂Γ̂L̂T -

factorization. Since ẐẐH = Z̃LLT Z̃T we can add the 2r real columns

Z̃L = [Re (Vj) , Im (Vj)]L = γ̂j

[
Re (Vj) + δ Im (Vj) ,

√(
δ2j + 1

) · Im (Vj)

]
(4.10)

to Zj−1 and, hence, a purely real low-rank solution factor is generated throughout the
whole iteration.

The resulting G-LR-ADI iteration equipped with this strategy is shown in Algo-
rithm 4.3, where storing complex data is only needed for the iterate Vj and the linear
system A + αjE (e.g., for the sparse LU factors) whenever a pair of complex conju-
gated shifts αj, αj is encountered. Compared to the standard G-LR-ADI iteration
(Algorithm 3.2), the memory required for storing the low-rank solution factor Z is con-
sequently reduced by a factor of two. Notice that the variable Vj+1 w.r.t. αj+1 = αj is
not formed since only Wj−1 is required to continue the iteration. Furthermore, in order
to stay as much in real arithmetic as possible, stopping criteria, e.g., the residual norm
should be computed only after the complete complex pair is processed. Although we do
not discuss strategies like column compression and Galerkin projection [201], they also
naturally benefit from real, low-rank solution factors which reduce their computational
effort, too.

70

4.1. Complex Shift Parameters in the G-LR-ADI Iteration for Lyapunov Equations

Algorithm 4.3: G-LR-ADI-r iteration for computing real low-rank solution fac-
tors.
Input : Matrices A, E, F defining (3.12), proper set of shift parameters

{α1, . . . , αjmax} ⊂ C−, tolerance 0 < τ � 1.
Output: Zj ∈ Rn×rj, such that ZZT ≈ X.

1 W0 = F, Z0 = [], j = 1.
2 while ‖W T

j−1Wj−1‖ ≥ τ‖F TF‖ do
3 Solve (A+ αjE)Vj = Wj−1 for Vj.
4 if Im (αj) = 0 then
5 Wj = Wj−1 − 2Re (αj)EVj, Zj = [Zj−1,

√−2αjVj].

6 j = j + 1.

7 else

8 γ̂j = 2
√−Re (αj), δj =

Re (αj)

Im (αj)
.

9 Wj+1 = Wj−1 + γ̂2jE (Re (Vj) + δj Im (Vj)).

10 Zj+1 =
[
Zj−1, γ̂j (Re (Vj) + δj Im (Vj)) , γ̂j

√
(δ2j + 1) · Im (Vj)

]
.

11 j = j + 2.

The Sylvester equation corresponding to the real low-rank solution factor

We can also generalize Corollary 3.9 in order to express the generated real low-rank
solution factor as solution of a generalized Sylvester equation. For the sake of brevity
we restrict these consideration to generalization of (3.24b) as we will use this relation
in the upcoming chapters. The following corollary is a generalization of Corollary 3.9,
[235, Lemma 3.1], [234, Lemma 5.12].

Corollary 4.6 (Generalization of Corollary 3.9):

The real low-rank solution factor Zj after j steps of the G-LR-ADI-r iteration corre-
sponding to the proper set of j shift parameters satisfies the GCASE

AZj − EZjBADI-r = WjG
T
ADI-r. (4.11)

There,

GADI-r := [γR1 , . . . , γ
R
j]

T , γRi :=

{
γiIr, αi ∈ R−,

[γi, 0]⊗ Ir, αi, αi+1 = αi ∈ C−,
(4.12a)

BADI-r := δ−1αδ, δ = diag (δ1, . . . , δj) , α =

[α11

...
...

αj1 ··· αjj

]
, (4.12b)

δi : =

{
γiIr, αi ∈ R−,√
2γi

[
1 0

δi
√

1+δ2i

]
⊗ Ir, αi ∈ C−,

(4.12c)

71

4. Efficient Handling of Complex ADI Shift Parameters

αii : =

{
αiIr, αi ∈ R−,[

3Re (αi) − Im (αi)

Im (αi)(1+4δ2j) −Re (αi)

]
⊗ Ir, αi ∈ C−,

(4.12d)

αki : =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2Re (αk) Ir, αk, αi ∈ R−,

[2 Re (αk) , 0]⊗ Ir, αk ∈ R−, αi ∈ C−,

4
[

Re (αk)
δk Re (αk)

]
⊗ Ir, αk ∈ C−, αi ∈ R−,

4
[

Re (αk) 0
δk Re (αk) 0

]
⊗ Ir, αk ∈ C−, αi ∈ C−

(4.12e)

for 1 ≤ k < i ≤ j. ♦
Proof. At first note that by (4.8a) for Vi+1, Vi corresponding to a pair of complex con-
jugate shifts αi, αi+1 = αi it holds

AVi+1 = Wi+1 + αjEVi+1 = Wi+1 + αiE
(
Vi + 2δi Im (Vi)

)
.

Inserting (4.8a) also in the left hand side of the above equation, collecting the real and
imaginary parts of Vi into Z̃i = [Re (Vi) , Im (Vi)] yields, after performing some basic
manipulations,

AZ̃i = [Wi+1, 0] + EZ̃iαii with αii :=
[

3Re (αi) − Im (αi)

Im (αi)(1+4δ2i) −Re (αi)

]
.

If we do this for all the involved shifts and iteration data we end up with

A[Z̃1, . . . , Z̃j] = [Ŵ1, . . . , Ŵj] + E[Z̃1, . . . , Z̃j] diag (α11, . . . ,αjj) ,

Z̃i =

{
Vi, αi ∈ R−,

[Re (Vi) , Im (Vi)], αi ∈ C−,
Ŵi =

{
Wi, αi ∈ R−,

[Wi, 0], αi ∈ C−,

and the diagonal blocks αii from (4.12d). Using (3.18b) for real and (4.8b) for pairs
of complex conjugated shifts yields, similar to the proof of Corollary 3.9 and using the
notation introduced in (4.12e),

Wj−i = Ŵj + 2E
i−1∑
k=0

Z̃j−kαki, i = 1, . . . , j − 1,

such that

A[Z̃1, . . . , Z̃j] = [Ŵj, . . . , Ŵj] + E[Z̃1, . . . , Z̃j]α.

By (4.10), we have for the generated real low-rank solution factor

Zj := [Z̃1, . . . , Z̃j]δ

such that

Zj = [Ŵj, . . . , Ŵj]δ + EZjδ
−1αδ. (4.13)

from which the result (4.11) can be easily established after rewriting [Ŵj, . . . , Ŵj]δ.

72

4.1. Complex Shift Parameters in the G-LR-ADI Iteration for Lyapunov Equations

Similar to the short discussion after Corollary 3.9, by the connections of the G-LR-ADI
iteration to rational Krylov subspace methods [82, 96, 235, 237, 234], the relation (4.11)
can be seen as generalized version of results from [195]. The relation (4.11) will be useful
in the next chapter for computing AZj without matrix vectors products involving A.

4.1.5. Numerical Examples

In this section we test the different ways to generate real, low-rank solution factors with
the G-LR-ADI iteration. We employ the following variants:

M1 G-LR-ADI (Algorithm 3.2) without any handling of complex shifts,

M2 G-LR-ADI-R (cf. Section 4.1.3, [42, Algorithm 4.], [36]) in the new formulation
(4.4),

M2* M2 using the augmented linear system (4.6) (Algorithm 4.1),

M3 G-LR-ADI with LyaPack realification (Algorithm 4.2),

M4 novel approach given in Algorithm 4.3 in Section 4.1.4,

M4* completely real version of M4 using real linear systems (4.9) (cf. Remark 4.4).

We test the different approaches for solving standard (3.2) and generalized (3.12) Lya-
punov equations. The examples ocean, ifiss16k, chain and bips are used (cf. Section 2.4).
The latter two examples inherit the structures (2.33b) and (2.34) such that the SO-
LR-ADI and SLRCF-ADI iteration is employed (cf. Section 3.2.5), respectively, which
includes appropriate adaptations of the variants M2 – M4*. In all variants, the scaled
residual norm εj := ‖Lj‖2/‖F TF‖2 is used as stopping criterion with a tolerance τ . As
before we employ a fixed number J of heuristic shift parameters [183] which are obtained
from k+ and k− Ritz and inverse Ritz values, respectively. In the remainder JR denotes
the number of real shifts, and, respectively, JC the number of pairs of complex conjugate
shifts.

For the ocean example, Figure 4.2 illustrates the scaled residual norm against the iter-
ation number. Apparently, all six tested variants show almost indistinguishable residual
norms during the iteration and converge after 86 iterations to the desired accuracy of
τ = 10−10. This illustrates the mathematical equivalence of the different approaches.
The small deviations in the residuals occur in variant M1 in the iteration steps which
work with a pair αj, αj of complex shifts, see the enlarged area in Figure 4.2 around
step j = 15. There, the intermediate residual after the first complex shift parameter αj

is computed in M1, but this does not happen in the other variants M2–M4*. After the
conjugate shift αj has been processed, too, the residual norms coincide again.
Now we compare the different variants in terms of the computation times required

until termination. The results as well as the used setup parameters for the G-LR-ADI
iteration and its variants are summarized in Table 4.1. Apparently, for all examples the
novel approach M4 requires the smallest computation times, closely followed by M4*

73

4. Efficient Handling of Complex ADI Shift Parameters

5 10 15 20 25 30 35 40 45 50 55 60 65 70
10−12

10−8

10−4

100

τ

iteration number j

sc
al
ed

re
si
d
u
al

n
or
m

M1 M2
M2* M3
M4 M4*

Figure 4.2.: History of the normalized residual norms obtained with the LR-ADI itera-
tion and its variants generating real low-rank solutions factors for the ocean
example. The dashed thin black line indicates the chosen tolerance τ .

Table 4.1.: Parameters, required ADI iteration steps jit, final normalized residual norm
εjit , and computation times in seconds for the examples ocean and bips.

Parameters Computation time in seconds

Example k+, k−, J, (JR, JC) τ jit εjit M1 M2 M2* M3 M4 M4*

ocean 40, 40, 30, (18, 6) 10−10 69 7.52·10−11 122.2 103.6 84.1 122.7 68.2 81.7

ifiss66k 30, 20, 20, (10, 5) 10−10 165 8.62·10−11 233.5 – 223.7 234.3 135.6 192.9

chain 80, 80, 50, (20, 15) 10−8 476 9.98·10−9 46.6 >1 h 31.1 40.1 19.4 31.5

bips 80, 80, 61, (11, 25) 10−8 194 9.36·10−9 25.5 16.8 18.3 24.3 13.3 17.6

and then M2* is most cases. Only for the examples FDM and bips the approach M2,
which uses the squared matrix A2, is competitive. It needs considerably more time for
the other examples and could not be carried out for example ifiss66k in a reasonable
amount of time and is therefore neglected there. Over one hour of computation time is
consumed by M2 for example chain. Apart from these two examples, M1 and M3 require
the longest computation time since two complex linear systems have to be solved for
each complex conjugate pair of shift parameters.

To conclude, an intelligent treatment of complex shift parameters can greatly reduce
the computational complexity of the G-LR-ADI iteration. The approaches M2*, M4 and
M4* outperform the other, existing approaches in all examples. Here, our novel variant
M4 performed best w.r.t. the required computation times. For other examples and com-
puting environments which of the approaches M2*, M4, M4* is superior appears to be
problem dependent and essentially reduces to the question whether the original complex,
or the augmented 2n×2n linear systems (4.6), (4.9) can be solved more efficiently. Only
in a few cases, e.g., if E = In and forming A2 does not introduce too much fill-in, the
traditional completely real approach M2 [42] can also be competitive. However, for the

74

4.2. Computing Real Low-rank Solutions by the fADI Iteration

general case with E �= In it is very expensive and cannot be recommended.

4.2. Computing Real Low-rank Solutions of Sylvester
Equations by the Factored ADI Iteration

In this section, we consider approaches for generating real low-rank solutions within the
fADI iteration. This will lead to a generalization of Theorem 4.2. As for the GCALE
case we require that the matrices defining (3.27), (3.34) are real. Moreover, another
main and natural ingredient for generating real solution factors is that both sets of shift
parameters are proper in the sense of Definition 4.1, i.e., they are of the form

{α1, . . . , αJ} = {μ1, . . . , μJ̃} ⊂ C,

{β1, . . . , βL} = {ν1, . . . , νL̃} ⊂ C,

where μj, νi, (j = 1, . . . , J̃ , i = 1, . . . , L̃) are either real numbers or pairs of complex
conjugate numbers μj := {αj, αj}, νi := {βi, βi}. Moreover, we restrict the pairs (μj, νj)
to the following cases:

1) Both μj and νj are real numbers αj and βj.

2) Both μj = {αj, αj+1 = αj} and νj = {βj, βj+1 = βj} are pairs of complex conjugate
numbers.

3) One complex pair and two real shifts:

a) αj, αj+1 are real numbers and νj is a complex pair,

b) μj is a complex pair and βj, βj+1 are real numbers.

This is not a severe restriction since it can be achieved by a simple and usually slight
reordering and rearrangement of the sets of shifts. Moreover, the iterates of the (G-)fADI
iteration after a number of iterations do not change if the order of the processed shifts
is changed. These restrictions, however, drastically simplify the encountered equations
for generating real low-rank factors which will become clear later.

4.2.1. Interconnections Between Complex Iterates

Our approach for computing real solution factors is motivated by Theorem 4.2 regarding
the G-LR-ADI iteration for GCALEs. It will turn out that, depending on the type of
the current shift parameters, the current iterates can be constructed from the real and
imaginary parts of previous iterates. We work through the different cases of possible
subsequences of shift parameters and begin with case 2 since nothing has to be taken
care of in case 1.

75

4. Efficient Handling of Complex ADI Shift Parameters

Theorem 4.7:

Let Wj−1 ∈ Rn×r, Tj−1 ∈ Rm×r, {αj, αj+1 := αj}, {βj, βj+1 := βj}, and define
γj := βj − αj. Then it holds at iteration step j + 1 of Algorithm 3.4:

Vj+1 = Vj +
γj

Im (βj)
Im (Vj) , (4.14a)

Wj+1 = Wj−1 + 2Re (γj)E Re (Vj)

+ 2Re (γj)E
(

|γj |2
Im (βj)

− 2 Im (γj)
)
Im (Vj) ∈ Rn×r,

(4.14b)

Sj+1 = Sj +
γj

Im (αj)
Im (Sj) , (4.14c)

Tj+1 = Tj−1 − 2Re (γj)C
T Re (Sj)

−
(

|γj |2
Im (αj)

+ 2 Im (γj)
)
CT Im (Sj) ∈ Rm×r.

(4.14d)

Proof. At Line 3 of Algorithm 3.4, Vj is obtained from (A − βjE)Vj = Wj−1 ∈ Rn×r.
Splitting βj and Vj into their real and imaginary parts gives

(A− Re (βj)E) Re (Vj) = Wj−1,

(A− Re (βj)E) Im (Vj) = Im (βj)E Re (Vj) . (4.15)

For Vj+1 this yields, employing (4.15),

Vj+1 = (A− βjE)
−1Wj−1 = (A− βjE)

−1(Wj−1 + γjEVj)

= Vj + γj(A− βjE)
−1

(
1

Im (βj)
(A− Re (βj)E) Im (Vj) + jE Im (Vj)

)
= Vj +

γj
Im (βj)

(A− βjE)
−1(A− βjE) Im (Vj)

and (4.14a) is established. The relation (4.14b) follows from

Wj+1 = Wj + γj+1EVj+1 = Wj−1 + γjEVj + γjE
(
Vj +

γj
Im (βj)

E Im (Vj)
)

= Wj−1 + 2Re (γj)E Re (Vj) +
(

|γj |2
Im (βj)

− 2 Im (γj)
)
E Im (Vj) .

For Sj we have (B − Re (αj)C)
T Im (Sj) = − Im (αj)C

T Re (Sj) and thus,

Sj+1 = (B − αjC)
−H

(
Tj−1 − γjC

TSj

)
= Sj+

γj
Im (αj)

(B−αjC)
−H

(
(B−Re (αj)C)

T Im (Sj)−j Im (αj)C
T Im (Sj)

)
giving (4.14b) and consequently (4.14d) via

Tj+1 = Tj − γj+1C
TSj+1

= Tj−1 − 2Re (γj)C
T Re (Sj)−

(
|γj |2

Im (αj)
+ 2 Im (γj)

)
CT Im (Sj) .

76

4.2. Computing Real Low-rank Solutions by the fADI Iteration

Note that only Wj+1, Tj+1 are required to continue the iteration and since both are real,
the result also holds if the algorithm is continued with two further pairs of complex
conjugate shifts.
Exactly as in the result for the G-LR-ADI iteration for Lyapunov equations, the data

corresponding to iteration step j + 1 is constructed from quantities already available
after iteration step j such that the linear systems w.r.t. the complex conjugate shifts
αj, βj are obsolete which significantly reduces the overall computational costs.
The solution factors Zj−1, Yj−1, and Γj−1 are augmented by

[Vj, Vj+1] = [Re (Vj) + j Im (Vj) , Re (Vj+1) + j Im (Vk+1)]

= [Re (Vj) , Im (Vj)]︸ ︷︷ ︸
=:Ẑj

[
1 1

j
Re (βj)−αj

Im (βj)

]
⊗ Ir︸ ︷︷ ︸

=:GZj

,

[Sj, Sj+1] = [Re (Sj) , Im (Sj)]︸ ︷︷ ︸
=:Ŷj

[
1 1

j
βj−Re (αj)

Im (αj)

]
⊗ Ir︸ ︷︷ ︸

=:GYj

,

Γ(j,j+1) := diag (γj, γj)⊗ Ir.

The corresponding part of the solution Xj+1 is

[Vj, Vj+1]Γ(j,j+1)[Sj, Sj+1]
H = ẐjΓ̂

(2)
j Ŷ T

j ∈ Rn×m

with

Γ̂
(2)
j : = GZj

Γ(j,j+1)G
H
Yj

=

⎡
⎣ 2Re (γj)

|γj |2
Im (αj)

+2 Im (γj)

|γj |2
Im (βj)

−2 Im (γj)

(
|γj |2

Im (βj) Im (αj)
+2

)
Re (γj)

⎤
⎦ ⊗ Ir ∈ R2r×2r,

(4.16)

such that only real data is added to the existing low-rank factors. This finishes the
treatment of case 2.

In case 3, i.e., if only one of the two pairs is complex and the other two involved shifts
are real, the situation changes slightly but can be deduced directly from the previous
theorem.

Corollary 4.8:

Let Wj−1, Tj−1 be real. For case 3a, i.e., βj, βj+1 := βj and αj, αj+1 ∈ R it holds

Vj+1 = Re (Vj) +
Re (γj)

Im (βj)
Im (Vj) ∈ Rn×r, (4.17a)

Wj+1 = Wj−1 + (Re (γj) + Re (γj+1))E Re (Vj)

+
Re (γj)Re (γj+1)−Im (βj)

2

Im (βj)
E Im (Vj) ∈ Rn×r,

(4.17b)

Sj+1 = Sj − γj+1S̃j+1, S̃j+1 := (B − αj+1C)
−TCTSj ∈ Rn×r, (4.17c)

Tj+1 = Tj−1 − (Re (γj) + Re (γj+1))C
TSj + δjC

T S̃j+1 ∈ Rm×r, (4.17d)

77

4. Efficient Handling of Complex ADI Shift Parameters

where δj := α2
j+1 − 2Re (βj)αj+1 + |βj|2.

For case 3b, i.e. βj, βj+1 ∈ R and αj, αj+1 = αj ∈ C we have

Vj+1 = Vj + γj+1Ṽj+1 ∈ Cn×r, Ṽj+1 := (A− βj+1E)
−1EVj ∈ Rn×r, (4.18a)

Wj+1 = Wj−1 + (Re (γj) + Re (γj+1))EVj + δjEṼj+1 ∈ Rn×r, (4.18b)

Sj+1 = Re (Sj) +
Re (γj)

Im (αj)
Im (Sj) ∈ Rm×r, (4.18c)

Tj+1 = Tj−1 − (Re (γj) + Re (γj+1))C
T Re (Tj)

+
−Re (γj)Re (γj+1)+Im (αj)

2

Im (αj)
CT Im (Tj) ∈ Rm×r,

(4.18d)

where δj := β2
j+1 − 2Re (αj) βj+1 + |αj|2. ♦

Proof. In case 3a the relation (4.17a) follows directly from relation (4.14a) by using
Im (αj) = 0. Plugging this into the constituting equations for Wj+1 leads, after some
simplifications, to (4.17b). The equation (4.17d) is nothing else but the original con-
structing formula for Sj+1 = Sj − γj+1

(
(B − αj+1C)

−T (CTSj)
)
and exploiting that the

solution of the occurring linear system is real due to αj,j+1 ∈ R, Sj ∈ Rm×r. Using this
with some simple rearrangements leads then to (4.17d). The case 3b is proved using
similar steps.

Along the lines of case 2 the new parts in the low-rank factors in case 3a are given by
the real blocks Ẑj := [Re (Vj) , Im (Vj)], Ŷj := [Sj, S̃j+1], and

Γ̂
(3a)
j :=

[
Re (γj)+Re (γj+1) −δj

Re (γj)Re (γj+1)−Im (βj)
2

Im (βj)

−Re (γj)δj
Im (βj)

]
⊗ Ir ∈ R2r×2r. (4.19)

Similarly, the low-rank factors in case 3b are augmented by Ẑj := [Vj, Ṽj+1], Ŷj :=
[Re (Sj) , Im (Sj)], and

Γ̂
(3b)
j :=

⎡
⎣ Re (γj)+Re (γj+1)

Re (γj)Re (γj+1)−Im (αj)
2

Im (αj)

δj
δj Re (γj)

Im (αj)

⎤
⎦ ⊗ Ir ∈ R2r×2r (4.20)

which finishes the discussion regarding case 3.

Remark 4.9:

Without the restrictions on the possible shift subsequences (cases 1 - 3) it is possible
that there are longer recurrences of the Vj, Wj iterates. Consider, for instance, the
sequence βj, βj+1 = βj, βj+2, βj+3 = βj+2 ∈ C, αj ∈ R, αj+1, αj+2 = αj+1 and
αj+3 ∈ R. Using the same techniques as above, it is possible to show, e.g., that

Vj+3 =
Im (βj+2)−Im (αj+1)

Im (βj+2)
Re (Vj+2) +

Re (βj+2)−Re (αj+1)

Im (βj+2)
Im (Vj+2)

− Im (αj+1)

Im (βj+2)
Re (Vj)− Im (αj+1)

Im (βj+2)

Re (βj)−αj

Im (βj)
Im (Vj) ∈ Rn×r

and similar, equally complicated relations exist for Wj+3, Sj+3, and Tj+3. Hence, 4r
new columns are added to Zj−1, Yj−1, and j − 1 is augmented by an 4r× 4r block at

78

4.2. Computing Real Low-rank Solutions by the fADI Iteration

its diagonal. However, if αj+3 is complex, the expressions get even longer and more
complicated. Real extensions for the low-rank factors can only be generated if the
shift sequence ends with either an α or β shift being real. However, since ADI type
iterations are independent of the order of the shifts, these longer relations are not
required. ♦

Using the relations and real expansions discovered in the previous section, we are now
able to provide a modified G-fADI iteration which takes proper care of complex shifts
with respect to the above considered cases. Note that the Ṽ , S̃ quantities encountered
in case 3 do not require additional storage of an n× r array in a clever implementation.
Algorithm 4.4 illustrates the complete G-fADI iteration for generating real low-rank
solution factors (G-fADI-r). Moreover, some of the constants calculated for the com-
putation of the W, T matrices can be reused in the Γ̂ factor. It is also reasonable
to test for convergence via the residual norm when the W, T variables are real, i.e.,
after the current case has been processed. The same holds if one wishes to improve the
solution Xj via Galerkin projection ideas [43, 162], or decrease the storage requirements
by employing column compression techniques on the low-rank factors [19, 201], which
then can be carried out in real arithmetic only.

Avoiding All Complex Operations Algorithm 4.4 computes real low-rank solution
factors, but temporarily employs some complex arithmetic operations and storage al-
though the amount is significantly reduced compared to the original Algorithm 3.4. In
particular, these are the solutions of the linear systems when a shift is complex, and the
corresponding Vj and Sj iterates. These remaining complex instances can be circum-
vented by rewriting the linear system w.r.t. complex shifts into augmented real ones as
in Remark 4.4 and formulate Algorithm 4.4 in terms of Re (Vj), Im (Vj), Re (Sj), and
Im (Sj). The solution of the augmented 2n×2n system can, however, be more expensive
compared to solving the original n× n complex ones.
Another way to work exclusively with real arithmetic operations is given by gener-

alizing the ideas of the LR-ADI-R iteration . Exemplary for {α1, α1} and {β1, β1}, we
obtain V2 = −α1Ṽ1 + Ṽ2, S2 = −β1S̃1 + S̃2, where

Ṽ1 := (AE−1A− 2Re (β1)A+ |β1|2E)−1F, Ṽ2 := E−1(AṼ1),

S̃1 := (BC−1B − 2Re (α1)B + |α1|2B)−TG, S̃2 := C−T (BT S̃1).

It is possible to solve instead 2n× 2n linear systems similar to (4.6). As the numerical
experiments in Section 4.1.5 suggest, keeping the n×n complex system seems to be the
most efficient way in the majority of cases and we do not pursue these completely real
approaches either.

4.2.2. Special Sylvester Equations

In this section we discuss how to deal with complex shift parameters in the G-fADI
modifications proposed in Section 3.3.3 for certain special GCASEs. This will lead to
specially tailored variants of Algorithm 4.4.

79

4. Efficient Handling of Complex ADI Shift Parameters

Algorithm 4.4: G-fADI-r iteration for generating real low-rank solutions of (3.34)

Input : A, B, E, C, F, G as in (3.34), proper, suitably ordered sets of shift
parameters {α1, . . . , αjmax}, {β1, . . . , βjmax}, tolerance 0 < τ � 1.

Output: Zjmax ∈ Rn×rjmax , Yjmax ∈ Rm×rjmax , Γjmax ∈ Rrjmax×rjmax such that
ZjmaxΓjmaxY

T
jmax

≈ X.

1 W0 = F, T0 = G, j = 1.
2 while ‖Wj−1T

T
j−1‖ ≥ τ‖FGT‖ do

3 Vj = (A− βjE)
−1Wj−1, Sj = (B − αjC)

−HTj−1.
4 γj = βj − αj.
5 if Case 1: βj ∈ R ∧ αj ∈ R then
6 Wj = Wj−1 + γjEVj, Tj = Tj−1 − γjC

TSj.
7 Zj = [Zj−1, Vj], Yj = [Yj−1, Sj], Γj = diag (Γj−1, γjIr).
8 j = j + 1.

9 if Case 2: βj ∈ C ∧ αj ∈ C then

10 Wj+1 = Wj−1 + 2Re (γj)E Re (Vj) +
(

|γj |2
Im (βj)

− 2 Im (γj)
)
E Im (Vj).

11 Tj+1 = Tj−1 − 2Re (γj)C
T Re (Sj)−

(
|γj |2

Im (αj)
+ 2 Im (γj)

)
CT Im (Sj).

12 Zj+1 = [Zj−1, Re (Vj) , Im (Vj)], Yj+1 = [Yj−1, Re (Sj) , Im (Sj)].

13 Γj = diag
(
Γj−1, Γ̂

(2)
j

)
with Γ̂

(2)
j from (4.16).

14 j = j + 2.

15 if Case 3a: βj ∈ C ∧ αj ∈ R ∧ αj+1 ∈ R then

16 γj+1 = βj − αj+1, δj := α2
j+1 − 2Re (βj)αj+1 + |βj|2.

17 Wj+1 = Wj−1+(Re (γj + γj+1))E Re (Vj)+
Re (γj)Re (γj+1)−Im (βj)

2

Im (βj)
E Im (Vj).

18 Tj = Tj−1 − (Re (γj) + Re (γj+1))C
TSj.

19 Sj+1 = (B − αj+1C)
−TCTSj, Tj+1 = Tj + δjC

TSj+1.
20 Zj+1 = [Zj−1, Re (Vj) , Im (Vj)], Yj+1 = [Yj−1, Sj, Sj+1].

21 Γj = diag
(
Γj−1, Γ̂

(3a)
j

)
with Γ̂

(3a)
j from (4.19).

22 j = j + 2.

23 if Case 3b: βj ∈ R ∧ βj+1 ∈ R ∧ αj ∈ C then
24 γj+1 = βj+1 − αj, δj := β2

j+1 − 2Re (αj) βj+1 + |αj|2.
25 Wj = Wj−1 + (Re (γj) + Re (γj+1))EVj.
26 Vj+1 = (A− βj+1E)

−1EVj, Wj+1 = Wj + δjEVj+1.
27 Tj+1 = Tj−1 − (Re (γj) + Re (γj+1))C

T Re (Sj)

28 +
−Re (γj)Re (γj+1)+Im (αj)

2

Im (αj)
CT Im (Sj).

29 Zj+1 = [Zj−1, Vj, Vj+1], Yj+1 = [Yj−1, Re (Sj) , Im (Sj)].

30 Γj = diag
(
Γj−1, Γ̂

(3b)
j

)
with Γ̂

(3b)
j from (4.20).

31 j = j + 2.

80

4.2. Computing Real Low-rank Solutions by the fADI Iteration

Cross Gramian Sylvester Equation A variant of the G-fADI iteration for the cross
Gramian Sylvester equation

AXE + EXA = FGT (4.21)

is given in (3.48). Obviously, case 3 cannot happen and for αj, αj+1 = αj one gets, using
(4.14a)–(4.14d),

Vj+1 = Vj + 2
αj

Im (αj)
Im (Vj) ,

Wj+1 = Wj−1 − 4Re (αj)E Re (Vj)− 4Re (αj) δjE Im (Vj) ,

Sj+1 = Sj + 2
αj

Im (αj)
Im (Sj) ,

Tj+1 = Tj−1 + 4Re (αj)E
T Re (Sj)− 4Re (αj) δjE

T Im (Wj) .

with δj := Re (αj) / Im (αj). The 2r × 2r augmentation of Γj−1 can also be deduced
from (4.16):

Γ̂j = −4Re (αj)
[

1 −δj
δj 2δ2j+1

]
⊗ Ir = −4Re (αj)

[
1 0
δj 1

] [
1
δ2j+1

] [
1 −δj
0 −1

] ⊗ Ir,

where we assumed that αj ∈ C−, ∀k. This factorization of Γ̂j can implicitly be ac-

cumulated into the augmentations of Zj−1 and Yj−1 such that Γ̂j is not required. The
resulting modification of the G-fADI-r iteration for solving the cross Gramian equation
(3.47) is given in Algorithm 4.5. Note that the equations for Wj+1 as well as Zj+1, Yj+1

are very close to the formulas in Algorithm 4.3 for GCALEs.

Lyapunov Equation with Unsymmetric Inhomogeneity For the matrix equation

AXET + EXAT = FGT (4.22)

an adapted G-fADI iteration is given in (3.50), where case 3 can also not occur. If αj is
a complex shift followed by its complex conjugate, we find, using (4.14a),(4.14b), that

Wj+1 = Wj−1 − 4Re (αj)E Re (Vj) + 4
Re (αj)

2

Im (αj)
E Im (Vj) ,

Tj+1 = Tj−1 + 4Re (αj)E Re (Wj)− 4
Re (αj)

2

Im (αj)
E Im (Wj) ,

as well as a similar 2r × 2r augmentation of Γj−1 by the

Γ̂j = −4Re (αj)
[

1 δj
δj 2δ2j+1

]
⊗ Ir = −4Re (αj) L̂jM̂jL̂

T
j ,

L̂j =
[

1 0
δj 1

] ⊗ Ir, M̂j = diag
(
1, δ2j + 1

) ⊗ Ir

which is the same LDLT factorization as used in the G-LR-ADI-r iteration for GCALEs
([38], Algorithm 4.3 in Section 4.1.4). The factors L̂j, M̂j can be again implicitly mul-
tiplied to [Re (Vj) , Im (Vj)] and [Re (Wj) , Im (Wj)]. The resulting G-fADI-r iteration
for solving (3.49) is given in Algorithm 4.6. Note that the conjugation of αj in the linear
system has been revoked since it is not important in which order the shifts of a complex
conjugated pair are processed.

81

4. Efficient Handling of Complex ADI Shift Parameters

Algorithm 4.5: G-fADI-r for generating real low-rank solutions of (4.21)

Input : A, E, F, G as in (4.21) and proper shift parameters
{α1, . . . , αjmax} ⊂ C−, tolerance 0 < τ � 1.

Output: Zjmax ∈ Rn×rjmax , Yjmax ∈ Rn×rjmax such that ZjmaxY
T
jmax

≈ X.

1 W0 = F, T0 = G, j = 1.
2 while ‖Wj−1T

T
j−1‖ ≥ τ‖FGT‖ do

3 Vj = (A+ αjE)
−1Wj−1, Sj = −(A+ αjE)

−HTj−1.
4 if αj ∈ R then
5 Wj = Wj−1 − 2αjEVj, Tj = Tj−1 + 2αjE

TSj.

6 Zj = [Zj−1,
√−2αjVj], Yj = [Yj−1,

√−2αjSj], j = j + 1.

7 else

8 γj := 2
√−Re (αj), δj :=

Re (αj)

Im (αj)
.

9 Wj+1 = Wj−1 + γ2jE (Re (Vj)− δj Im (Vj)).

10 Tj+1 = Tj−1 − γ2jE
T (Re (Sj) + δj Im (Sj)).

11 Zj+1 =
[
Zj−1, γj(Re (Vj) + δj Im (Vj)), γj

√
(δ2j + 1) · Im (Vj)

]
.

12 Yj+1 =
[
Yj−1, γj(Re (Sj)− δj Im (Sj)), γj

√
(δ2j + 1) · Im (Sj)

]
.

13 j = j + 2.

Discrete-time Lyapunov Equations A low-rank ADI method for the GDALE

AXAT − EXET = −FF T (4.23)

was previously derived and given in (3.52). For dealing with complex shifts, let Wj−1 ∈
Rn×r and αj, αj+1 = αj ∈ D\{0}. By using similar techniques as above we obtain

Vj+1 = Vj +
αj(1−|αj |2)

Im (αj)
Im (Vj) ,

Wj+1 = Wj−1 +
2Re (αj)(1−|αj |2)

|αj |2 E Re (Vj) +
(1−|αj |2)(|αj |2−|αj |4−2 Im (αj)

2)

|αj |2 Im (αj)
E Im (Vj) ,

and

Γ̂j :=
√
(1− |αj|2)γj+1

[
1+|αj |2 δj(1−|αj |2)

δj(1−|αj |2) |αj |2+δ2j (1−2|αj |2)+|αj |4(1+δ2j)

]
⊗ Ir ∈ R2r×2r

with γj+1 =
γj−1

|αj |4 , δj :=
Re (αj)

Im (αj)
. It can be easily shown that Γ̂j is positive definite

since we assumed |αj| < 1, and its Cholesky factor can implicitly be multiplied to

[Re (Vj) , Im (Vj)] such that Γ̂j is also not required.
As a small extension of the method proposed in [32, Algorithm 5], we present a further

simplification for dealing with pairs of purely imaginary shifts αj = j Im (αj) , αj+1 =
−j Im (αj), 0 < | Im (αj) | < 1. It is in this case easily established that

Vj+1 = Vj + j(1− Im (αj)
2) Im (Vj) ,

Wj+1 = Wj−1 +
Im (αj)

4−1

Im (αj)
E Im (Vj)

82

4.2. Computing Real Low-rank Solutions by the fADI Iteration

Algorithm 4.6: G-fADI-r for generating real low-rank solutions of (4.22)

Input : A, E, F, G as in (4.22) and proper shift parameters
{α1, . . . , αjmax} ⊂ C−, tolerance 0 < τ � 1.

Output: Zjmax ∈ Rn×rjmax , Yjmax ∈ Rn×rjmax such that ZjmaxY
T
jmax

≈ X.

1 W0 = F, T0 = G, j = 1.
2 while ‖Wj−1T

T
j−1‖ ≥ τ‖FGT‖ do

3 [Vj, Sj] = (A+ αjE)
−1[Wj−1,−Tj−1].

4 if αj ∈ R then
5 [Wj, Tj] = [Wj−1, Tj−1] + 2αjE[−Vj, Sj].

6 Zj = [Zj−1,
√−2αjVj], Yj = [Yj−1,

√−2αjSj], j = j + 1.

7 else

8 γj = 2
√−Re (αj), δj :=

Re (αj)

Im (αj)
.

9 Wj+1 = Wj−1 + γ2jE (Re (Vj)− δj Im (Vj)).

10 Tj+1 = Tj−1 − γ2jE (Re (Sj)− δj Im (Sj)).

11 Zj+1 =
[
Zj−1, γj (Re (Vj) + δj Im (Vj)) , γj

√
(δ2j + 1) · Im (Vj)

]
.

12 Yj+1 =
[
Yj−1, γj (Re (Sj) + δj Im (Sj)) , γj

√
(δ2j + 1) · Im (Sj)

]
.

13 j = j + 2.

and, since δj = 0, Γ̂j =
√
(1− |αj|2)γj+1(1 + |αj|2) diag (Ir, |αj|2Ir).

The resulting algorithm for computing real, low-rank solutions factors for (4.23) is
given in Algorithm 4.7. The constants �1,2,3 in the Steps 9, 12, and 13 are the entries of

the Cholesky factor of Γ̂j(
√
γj+1)

−1.

4.2.3. Numerical Examples

Now we test the modification of the G-fADI iteration that exploits the interconnections
between the complex iterates. As before we stop the iteration when εj := ‖Sj‖/‖FGT‖ <
τ = 10−10, where the residual norm was computed using the novel relation (3.45). The
shift parameters were computed as in Section 3.3.4.

The following CASE example is constructed entirely for testing purposes and without
any background in applications. To obtain the matrix A, we use the example FDM (cf.
Section 2.4) with n0 = 110, f1 = eξ1+ξ2 , f2 = 1000ξ2, and f3 = ξ1. Likewise, −B is
obtained from using n0 = 90 and f1 = sin(ξ1 + 2ξ2), f2 = 20eξ1+ξ2 , and f3 = ξ1ξ2. This
yields n = 12100 and m = 8100 and the matrices F, G are random matrices with r = 4
columns. We abbreviate this example by FDM-S which is similar to [138, Example 2].
For a generalized Sylvester equation we take the example ifiss16k/4k introduced in

Section 3.3.4 consisting of the matrices from the ifiss16k and ifiss4k examples.
The special Sylvester equations used in Section 3.3.4 are also reused here and dealt

with by the iterations (3.48), (3.50), (3.52) as well as their real implementations (Algo-
rithms 4.5–4.7) proposed in Section 4.2.2.

83

4. Efficient Handling of Complex ADI Shift Parameters

Algorithm 4.7: G-LR-ADI-r iteration for GDALEs (4.23)

Input : A, E, F as in (4.23) and proper shift parameters {α1, . . . , αjmax} with
0 < |αj| < 1, tolerance 0 < τ � 1.

Output: Zjmax ∈ Rn×rjmax such that ZjmaxZ
T
jmax

≈ X.

1 W0 = F, γ0 = 1, j = 1.
2 while |γj−1|2‖Wj−1‖2 ≥ τ‖F‖2 do
3 Vj = (A− αj

|αj |2E)
−1Wj−1.

4 if αj ∈ R then

5 Wj = Wj−1 +
1−α2

j

αj
EVj, γj =

γj−1

α2
j
.

6 Zj =
[
Zj−1,

√
(1− α2

j)γjVj
]
.

7 j = j + 1.

8 else

9 γj+1 =
γj−1

|αj |4 , �1 :=
√

1− |αj|4.
10 if Re (αj) �= 0 then

11 Wj+1 = Wj−1 +
2Re (αj)(1−|αj |2)

|αj |2 E Re (Vj)

+
(1−|αj |2)(|αj |2−|αj |4−2 Im (αj)

2)

|αj |2 Im (αj)
E Im (Vj).

12 δj :=
Re (αj)

Im (αj)
, �2 := �−1

1 δj(1− |αj|2)2.
13 �3 :=

√
(1− |αj|2)(|αj|2 + δ2j (1− 2|αj|2) + |αj|4

(
1 + δ2j

)
)− �22.

14 Zj+1 =
[
Zj−1,

√
γj+1 (�1 Re (Vj) + �2 Im (Vj)) ,

√
γj+1�3 Im (Vj)

]
.

15 else

16 Wj+1 = Wj−1 +
Im (αj)

4−1

Im (αj)
E Im (Vj).

17 Zj+1 =
[
Zj−1,

√
γj+1�1 Re (Vj) ,

√
γj+1�1| Im (αj) | Im (Vj)

]
.

18 j = j + 2.

The settings kA+, k
A
−, k

B
+ , k

B
− , J, L for the shift parameter computation, the number

of the required fADI iteration steps jit until termination, the final scaled residual norm
ρjit , and the computation times tC, tR in seconds for the standard complex as well as
the G-fADI-r iteration (Algorithms 4.4 – 4.7) for computing real, low-rank solutions
are summarized in Table 4.2. There, JR, LR denote the numbers of real α, β shifts
whereas JC, LC refer to the number of complex pairs of shifts. It is evident that for
all examples the methods computing real solution factors required, depending on the
number of processed complex shifts, substantially less computation time. By exploiting
the interconnections between complex iterates up to half of computation time could be
saved. The obtained solutions were almost identical, except for possible deviations on
the level of rounding errors. This can also be seen in the residual history shown in
Figure 4.3 for the FDM-S example. Both the complex (Algorithm 3.4) and real version
(Algorithm 4.4) have almost identical residual norms throughout the iteration. Only

84

4.3. Conclusions

Table 4.2.: Parameters, required iteration steps jit, final scaled residual norm εjit , and
computation times tC, tR in seconds of basic and real implementations of
G-fADI iteration and its special modifications.

Parameters Results

Example kA+, k
A
−, k

B
+ , k

B
− J(JR, JC), L(LR, LC) jit εjit tC tR

FDM-S 10,10,10,10 20 (6,7), 20 (12,4) 70 6.5·10−11 13.7 8.1

ifiss16k/4k 10,20,10,20 30 (12,9), 30 (12,9) 89 6.2·10−11 31.2 18.1

ifiss16k (4.21) 10,20,– 30 (12,9), – 110 4.7·10−11 70.5 40.1

ifiss16k (4.22) 10,20,– 30 (12,9), – 111 4.01·10−11 54.1 29.3

DALE (4.23) 10,0,– 10 (0,5), – 68 9.4·10−11 6.4 3.3

10 30 50
10−12

10−8

10−4

100

τ

iteration number j

‖S
j
‖/

‖F
G

T
‖

fADI

fADI-r

100 200

100

200

#nonzeros = 504

Figure 4.3.: Results for the FDM-S example: residual norms against iteration number j
for the fADI and fADI-r iteration (left), sparsity pattern of the matrix Γjit

in the fADI-r iteration (right).

minor deviations occurred exactly when the complex method is in between processing a
pair of complex conjugated shifts, i.e., cases 2 or 3. This is a similar observation as in
[38, Example 1, Figure 1] and Figure 4.2. From the sparsity pattern of the matrix Γjit

in Figure 4.3, one can see that the cases 2 and 3 were encountered 27 times which is
revealed by the respective number of 2r × 2r blocks along the diagonal.

4.3. Conclusions

We considered the issue of dealing with complex shift parameters in low-rank ADI meth-
ods for both GCALEs as well as GCASEs. Novel interconnections between the iterates
corresponding to pairs of complex conjugate shift parameters have been established.
Based on these results, modified G-LR-ADI and G-fADI iterations were proposed which
are able to compute real, low-rank solution factors in the presence of complex shift pa-

85

4. Efficient Handling of Complex ADI Shift Parameters

rameters. They achieve this at a reduced amount of complex computations and storage
requirements. Similar modifications are also derived for certain special cases of GCASEs.
Several numerical tests show that these modified algorithms are indeed more efficient
than the standard complex iterations. In the GCALE case they also outperform existing
approaches for handling complex shifts in the majority of cases.

86

CHAPTER 5

SELF-GENERATING ADI SHIFT PARAMETERS

Contents
5.1 Introduction and Motivation . 87

5.2 A Short Overview of Precomputed ADI Shift Parameters 88

5.2.1 Wachspress Shifts and Related Approaches 89

5.2.2 The Heuristic Penzl Strategy 90

5.2.3 Other Shift Strategies . 91

5.3 Self-Generating Shifts . 91

5.3.1 Shifts Obtained from a Galerkin Projection on Spaces Spanned
by LR-ADI Iterates . 92

5.3.2 Residual-Norm Minimizing Shifts 97

5.3.3 Numerical Experiments . 107

5.4 Shift Parameters for the Sylvester ADI Iteration 115

5.4.1 Existing Shift Strategies . 115

5.4.2 Self-Generating Shifts . 117

5.4.3 Numerical Experiments . 122

5.5 Summary and Further Research Perspectives 125

5.5.1 Conclusions . 125

5.5.2 Future Research Possibilities and Outlook 126

5.1. Introduction and Motivation

In the previous two chapters we mainly discussed structural properties and their im-
provement of the low-rank ADI iteration for GCALEs and GCASEs. We have not
extensively touched the problem of finding good shift parameters which are crucial for
a fast convergence. The dependence on shift parameters is probably the largest disad-
vantage of ADI methods. Optimal or high quality shifts are usually difficult to obtain,

87

5. Self-Generating ADI Shift Parameters

especially for large-scale problems. Either, they rely on spectral data which is hard to
get for large problems, or their generation involves inefficient and expensive computa-
tions. Thus, the emphases in the current chapter are new and efficient strategies for
computing shift parameters that also lead to fast convergence but without these draw-
backs. We especially focus on approaches that are automatic in the sense that they do
not require any special a-priori knowledge or setup data. In the following, we start by
restricting the discussion to the G-LR-ADI iteration for GCALEs, where we review some
existing strategies, which compute shifts before the actual ADI iteration is started, in
the next section. After that we present in Section 5.3 novel shift strategies whose goal
is to compute shifts adaptively in the course of the G-LR-ADI iteration, ideally without
the need for any setup data. These new strategies will be evaluated in several numerical
experiments regarding their computational efficiency as well as their influence on the
convergence speed of the G-LR-ADI iteration. There, we also compare the G-LR-ADI
iteration equipped with the most promising shift approaches with some other, compet-
itive, low-rank methods for GCALEs. Afterwards, in Section 5.4, the shift parameter
strategies, both the precomputed and proposed self-generating versions, are adapted to
the G-fADI iteration for Sylvester equations. Finally, we conclude and give possible
future research perspectives in Section 5.5.

5.2. A Short Overview of Precomputed ADI Shift
Parameters

By Lemma 3.4 in Section 3.2, the error of the ADI iteration (3.4) and its low-rank
versions (Algorithms 3.1-3.2) after iteration step j is given by

Xj −X = Aj(X0 −X)AH
j , Aj :=

j∏
i=1

Ci, Ci := (A+ αiE)
−1(A− αiE). (5.1)

Clearly, the convergence speed of the ADI iteration is influenced by the spectral radii
ρ(Aj) of the Aj, see also [119, 202, 233]. One strategy to produce good shifts is to make
the radii ρ(Aj) as small as possible to ensure fast convergence. We briefly reestablish a
result from Section 3.2.2. Assuming that all eigenvalues of (A, E) are semi-simple and
taking norms in the equation above yields

‖Xj −X‖
‖X0 −X‖ ≤ ‖Aj‖2 ≤ κ(U)2

∥∥∥∥∥diag
(

j∏
i=1

λ1−αi

λ1+αi
, . . . ,

j∏
i=1

λn−αi

λn+αi

)∥∥∥∥∥
2

= κ(U)2 max
1≤�≤n

∣∣∣∣∣
j∏

i=1

λ�−αi

λ�+αi

∣∣∣∣∣
2

,

where U is the matrix containing the (right) eigenvectors of (A, E) with AU = EUΛ,
Λ = diag (λ1, . . . , λn).

88

5.2. A Short Overview of Precomputed ADI Shift Parameters

A well known result for minimizing the spectral radii of Aj is, see, e.g., [232, 233],
that the optimal shifts {α1, . . . , αj} for j iteration steps of (3.4) (and, thus, also of its
low-rank versions) are given by the solution of the rational min–max problem

min
α1,...,αj⊂C−

(
max
1≤�≤n

∣∣∣∣∣
j∏

i=1

λ�−αi

λ�+αi

∣∣∣∣∣
)
, λ� ∈ Λ(A, E), (5.2)

which is also referred to as the ADI shift parameter problem [231, 232, 233].
One very apparent conceptual issue of using this optimization problem for finding ADI

shift parameters is that in the transition from the error expression (5.1) to the min–max
problem (5.2), all information regarding the inhomogeneity FF T of the GCALE is lost.
However, we know that the inhomogeneity is of tremendous significance for the existence
of low-rank solutions as we discussed in Section 2.3.3, see also, e.g., [184, 4, 113, 222]. In
particular, the low-rank of FF T , i.e, rank (F) = r � n, is one influential factor, which
is not embraced in (5.2). Moreover, no information regarding the eigenvectors of (A,E)
enters (5.2).
Apart from this issues, (5.2) has lead to a number of different shift strategies which

are frequently and often also successfully applied in low-rank ADI methods. We briefly
describe some of those strategies, which we are also going to employ in our numerical
tests.

5.2.1. Wachspress Shifts and Related Approaches

In [233], an analytic solution for (5.2) is proposed which uses

a := min
1≤�≤n

Re (λ�) , b := max
1≤�≤n

Re (λ�) , and ψ := ψ(A, E) = max
1≤�≤n

arctan

∣∣∣∣Im (λ�)

Re (λ�)

∣∣∣∣
for λ� ∈ Λ(A, E) to estimate the shape of the spectrum Λ(A, E) via an elliptic functions
domain. The computation of optimal shifts to achieve ‖Xj −X‖ ≤ ε is then based on
elliptic integrals involving the desired tolerance ε and the above spectral data a, b, and
ψ, see [233, 201] for details. If the spectrum Λ(A, E) is real or the imaginary parts
of the complex eigenvalues are small compared to the real parts, this approach always
provides real shift parameters. In the case of large imaginary parts which dominate
the real parts, there exists a modification that produces complex shift parameters. We
will refer to these shifts as Wachspress shifts in the following. For large-scale matrices
the required spectral data, especially the angle ψ for complex spectra, can be hard to
obtain exactly. An easy way to get approximate Wachspress shifts [45] (also called
suboptimal shifts [201, Section 4.3.2.]) is to approximate Λ(A, E) by small numbers of
k+ Ritz and k− inverse Ritz values, i.e., Ritz values w.r.t. E−1A and A−1E, respectively.
These Ritz values can be computed using two Arnoldi processes. If A = AT ≺ 0,
E = ET � 0, an alternative is to use a single Lanczos process equipped with the E-
inner product [6, Chapter 5.5] to get approximation to both small and large eigenvalues.
One then computes a, b, ψ on the basis of this typically small set of Ritz values and

89

5. Self-Generating ADI Shift Parameters

carries out the Wachspress computations as before. This approach will be referred to
as approximate Wachspress shifts for which an implementation can be found in [201,
Algorithm 4.2]. The quality of these approximate Wachspress shifts depends on the
quality of the approximation of a, b, and ψ provided by the Ritz values. Differences
in at least one of these values can lead to a considerable different error reduction as it
is investigated, e.g., in [202]. Hence, the prescribed values k+, k−, but also ε, have a
certain influence. From a computational point of view, the employed Arnoldi methods
introduce additional costs which are dominated by the k+ and k− solves with E and A
for generating the Ritz and inverse Ritz values. For symmetric systems, i.e. A = AT � 0
and E = ET ≺ 0, only a, b need to be estimated which can be done less costly in one
run of a Lanczos process using the inner product induced by E. The computability of a,
b, ψ obtained from the Ritz values may be increased by using shifted matrices [45]. The
employed Krylov methods also require a starting vector for which there is also no known
result on how to choose a suitable one. The authors in [38] used F1r in their numerical
experiments, but whether there are better choices remains unclear. The computed Ritz
values can have positive real parts if AET +EAT is indefinite. These must be neglected.

5.2.2. The Heuristic Penzl Strategy

A frequently used heuristic approach to obtain ADI shifts was proposed by Penzl in
[183]. There, Λ(A, E) is again replaced by a much smaller set N consisting of Ritz
values and reciprocals of Ritz values w.r.t. E−1A and A−1E, respectively, also using k+
and k− steps of Arnoldi or Lanczos processes. Then, the ADI shift parameter problem is
dealt with heuristically in the sense that a prescribed number J ≤ k+ + k− of elements
are chosen from N that minimize the rational function in (5.2) with Λ(A, E) replaced
by N. The complete procedure for the generation of J shift parameters is illustrated
in [183, Algorithm 5.1]. The obtained shifts are often called heuristic or Penzl shifts.
Although this strategy has been used successfully in numerous cases, it comes with
several drawbacks similar to the approximate Wachspress shifts. The procedure requires
that the values k+, k− and here, additionally, J are provided by the user, but there is
no known rule how to actually set these values. The same holds for the initial vector of
the Arnoldi or Lanczos process. Of course, the quality of the Ritz values influences the
quality of the shifts in the end. If the convergence of the Arnoldi or Lanczos processes
is slow and the Ritz values are poor approximations of eigenvalues, the shifts may be
of poor quality. In some cases, the values k+, k− need to be so large that the cost for
the Arnoldi or Lanczos processes is non-negligible. Numerical experiments show that
the performance of these heuristic shifts is more susceptible to changes in k+, k− than
that of the approximate Wachspress shifts. Even small changes in at least one of these
parameters can lead to a significantly differing performance of the G-LR-ADI iteration
in the end.

90

5.3. Self-Generating Shifts

5.2.3. Other Shift Strategies

There exist a number of other shift parameter approaches. For completeness, we mention
a few here. For E = In, an approach based on Leja points is given in [216], where the
spectra of In ⊗AT and AT ⊗ In are embedded in subsets E, F ⊂ C. For arbitrary values
from E, F, shift parameters are recursively obtained by maximizing the rational function
in (5.2). A related potential theory based approach can be found in [202]. For real
spectra and shifts, an improvement of Penzl’s heuristic selection strategy (Section 5.2.2)
which introduces marginal additional costs is also proposed in [202, Section 2.2.4]. In
[223], a shift strategy is presented which uses the eigenvalues of a small sub-block of
A corresponding to the nonzero block of the inhomogeneity FF T which is present in
certain applications. For the case where the considered Lyapunov equation is related
to a linear, time-invariant control system, dominant pole based shifts are mentioned in
[201, Section 4.3.3.], [28]. The investigations show that these shifts can be beneficial
for a subsequent model order reduction process. A number of further shift parameter
approaches can be found in [202].

The iterative rational Krylov algorithm (IRKA) [117] is a prominent method for com-
puting reduced order models of large dynamical systems (2.5) which are locally optimal
in the H2-norm. In [21] it is shown, by drawing connections to a Riemannian optimiza-
tion framework [228], that IRKA can also be used for computing low-rank solutions of
large Lyapunov equations. If A = AT ≺ 0 and E = ET � 0, the obtained approximate
solution satisfies an optimality condition w.r.t. a certain energy norm. For the unsym-
metric case a similar optimality property holds w.r.t. the residual. In [21, 82, 96] it is
shown that this IRKA solutions are identical to the ADI solutions if the shifts provided
by IRKA are used as shifts for the G-LR-ADI iteration. These shifts are usually referred
to as IRKA-shifts and have attracted some attention recently. They represent a rather
theoretical tool because their computation, i.e., running IRKA until a certain stopping
criterion is met, is very expensive. Some numerical experiments with IRKA shifts can
be found in [39], where they cannot compete with other shift strategies in regard of the
computational costs. Moreover, their success appears to be highly dependent on the
particular problem as well as on the data used to initialize the IRKA process.

5.3. Self-Generating Shifts

The previously mentioned shift parameters are computed before the actual iteration of
G-LR-ADI is started. Here we investigate two approaches to compute shift parameters
automatically during the iteration. The first one is based on projecting the coefficient
matrices A, E onto spaces spanned by certain iterates available in the iteration and then
solving the resulting small eigenvalue problem. The second approach aims at finding the
shift that minimizes the Lyapunov residual norm in each iteration step.

91

5. Self-Generating ADI Shift Parameters

5.3.1. Shifts Obtained from a Galerkin Projection on Spaces
Spanned by LR-ADI Iterates

The heuristic shifts in Section 5.2.2 are essentially Ritz values w.r.t. A, E and F . Here
we investigate the use of Ritz values which are generated from different spaces where the
possibly expensive Krylov subspace construction is not needed. Let Q = span {Q} ⊂ Cn

be a k-dimensional subspace with k � n and Q = [q1, . . . , qk] ∈ Cn×k contain the basis
vectors which we assume to be orthonormal. The approaches will be based on a Galerkin
projection of A, E, i.e., the shift will be taken from

Λ(Ã, Ẽ) ∩ C−, Ã := QHAQ, Ẽ := QHEQ.

The intersection with C− ensures that possible unstable eigenvalues of Λ(Ã, Ẽ) are ne-
glected since those would be of no use in the G-LR-ADI iteration. Alternatively, unstable
eigenvalues can just be reflected at the imaginary axis. The matrices Ã, Ẽ are typically
called restrictions of A, E onto Q. In the following we present two approaches from
[39] where Q is generated cheaply in the course of the G-LR-ADI iteration. For this we
assume that we have already processed j iteration steps and wish to compute shifts for
the j + 1-st and subsequent iteration steps.

Using Already Constructed Parts of the Low-rank Solution Factor

The first idea is to simply take the subspace Q = span {Vj}, where Vj is the last computed
block iterate of the G-LR-ADI iteration, and use a matrix Qj which has orthonormal
basis vectors of Q as columns. In [39] it is proposed to take eigenvalues of Ãj, Ẽj as
the shift parameters for the next r iteration steps. The shift parameters constructed
that way will in the following be referred to as V -shifts. After these r shifts have been
used, too, the next shifts are generated from Vj+r in the same way and the iteration is
continued. In case of a pair of complex conjugate shifts, i.e αj = αj−1, Vj and also Ã, Ẽ
are complex matrices. In this situation it is wise to process αj−1, too, and work with
Q = span {[Re (Vj) , Im (Vj)]} instead which will yield 2r new shift parameters.
An extension of the original V -shift approach from [39] is mentioned in [54], where all

iterates Vj−u+1, . . . , Vj, u ≥ 1, corresponding to the last u processed shifts are used to
span the subspace Q. In other words, the last ur columns which were added to Z are
used. We refer to this generalization as V (u)-shifts, where the number u can be seen as
horizon which defines how many previous iteration steps are taken into account. The
set of these u shift parameters should be proper, such that it can happen that r(u+ 1)
columns of Z have to be considered.
A further enhancement of the basic V -shift approach from [39] but also of the V (u)-

shift extension from [54] is obtained by recalling from Corollary 4.6 that

AZj = WjG
T
ADI-R + EZjBADI-R.

This also holds similarly for Ẑj,u := Z(:, (j − u)r + 1 : jr) by taking the appropriate

blocks Ĝj,u := G(: (j−u)r+1 : jr) and B̂j,u := BADI-R((j−u)r+1 : jr, (j−u)r+1 : jr)

92

5.3. Self-Generating Shifts

of GADI-R and BADI-R, respectively:

AẐj,u = WjĜ
T
j,u + EẐj,uB̂j,u. (5.3)

Assume for now that Ẑj,u has full column rank and let Pj ∈ Rur×ur be a nonsingular

matrix such that Qj := Ẑj,uPj is orthonormal, i.e., QT
j Qj = Iur. Then

Ãj = QT
j AQj = QT

j WjĜ
T
j,uPj + ẼjP

−1
j B̂j,uPj, Ẽj = QT

j EZjPj.

Hence, no additional matrix vector products of A with Qj are required to form the
restriction Ãj. Only ur matrix vector products with E have to be stored or recomputed
to build Ãj and Ẽj. The number of obtained Ritz values is ur and a smaller number,
e.g., r or 2r, of these values should be used as the next set of shift parameters. We carry
out a selection by using the ur Ritz values as inputs for the heuristic Penzl strategy
mentioned before.

Using the Residual Factors

Instead of using the space spanned by Vj as projection basis, it is proposed in [39] that one
can conceptually also use the GCALE residual factors Wj, i.e., Q = span {Wj}. Using
an orthonormal matrix Qj for span {Wj} and proceeding similarly as above yields r shift
parameters, which we call W -shifts in the remainder. Unfortunately, Corollaries 3.9 and
4.6 cannot be applied such that it is not possible to construct the small matrices Ãj, Ẽj

without additional multiplications with A and E.
According to (4.8b), the residual factors are always a real n × r matrices such that

no distinction between real and complex shifts is necessary as for the V -shifts. This, of
course, implies that one uses Wj+1 after a complex conjugated pair αj, αj+1 = αj has
been fully processed.

Using the Whole Low-rank Solution Factors

For completeness we mention a third approach which uses Q = span {Zj} at iteration
step j as projection basis and, thus, essentially equals the V (j)-shift strategy. There,
after j shifts have been processed, jm Ritz values are computed. The selection of a
smaller number of shift parameters from these jm Ritz values can be done as for the
V (u)-shifts.
Clearly, this third variant is significantly more expensive than the V -, V (u)-, and W -

shifts since computing an orthogonal space for span {Zj} requires the orthogonalization
of the span of Vj for each j = 1, . . . , j against the previous Zj−1. This might lead to costs
that are not negligible anymore and the same holds for the solution of the eigenvalue
problem which is now of dimension jr. As for the V (u)-shifts, Corollary 4.6 can be used
such that savings for constructing the projected matrices Ãj, Ẽj can be achieved by
storing EZj and using (3.24b), see also [235, 237, 234]. We do not pursue this approach
further but remark that in [201, 50], span {Zj} is used to perform a Galerkin projection
on the GCALE to improve the convergence behavior of the G-LR-ADI iteration.

93

5. Self-Generating ADI Shift Parameters

Initialization, Orthogonalization, and Other Implementational Considerations

Before the V (u)- or W -shifts can be used, G-LR-ADI has to be started with at least one
initial shift parameter. In order to explicitly introduce the matrix F in the process, we
propose to use an initial Ritz-Galerkin projection with Q = span {F} which provides r
shifts to begin with. Let Q0 be an orthogonal matrix for span {F}. Obviously, build-
ing the small, projected matrices Ã0 = QT

0AQ0, Ẽ0 = QT
0EQ0 requires matrix vector

products of A,E with Q0. Another possibility is to use any number of the previously
mentioned precomputed shift parameters as initial shifts and start generating V (u)- or
W -shifts once these have been depleted.

In the considerations we have not specified how to choose the matrix Pj that orthonor-
malizes Vj, Z(:, (j − u)r + 1 : jr), or Wj. We now briefly discuss some possibilities for
the orthogonalization of a matrix N ∈ Rn×k which can be any of the choices above.
One possibility to obtain the orthonormal basis is to use a thin QR-factorizations, e.g.,

N = QR such that P = R−1. Since k � n, the numerical cost for their computation is
often negligible. One could, e.g., also use a singular value decomposition of N to obtain
the orthogonal basis matrix.
It is also possible to employ implicit orthogonalization procedures. The applied Ritz-

Galerkin projection for (A,E) works with the orthogonal projection P = N(NTN)−1NT .
Using the eigenvalue decomposition

N̂D̂N̂T = NTN, N̂T N̂ = Ik, D̂ = diag (θ1, . . . , θk) � 0, θ1 ≥ . . . ≥ θk

leads obviously to P = N̂D̂− 1
2 . The advantage is that computing the eigenvalue decom-

position of size k× k is typically less costly than computing a QR-factorization or SVD
of the n × k matrix N . Moreover, it allows to check N for nearly linearly dependent
columns by monitoring the magnitudes of the eigenvalues θi, i = 1, . . . , k and take only
those which are larger than a certain tolerance (e.g., θi > kθ1umach) and the correspond-
ing eigenvectors in N̂ into consideration. If some nearly linearly dependent columns are
detected and neglected, the number of obtained new shifts will be smaller than k. We
will employ this form of implicit orthogonalization in the remainder. To account for
numerical instabilities caused by possible very small magnitudes of the θi, it is advised
to perform this orthogonalization twice.

We have already mentioned above that Λ(Ãj, Ẽj) might contain unstable eigenvalues
which should not be used. Also, if it happens that Ẽj is singular, the occurring infi-
nite eigenvalues should be neglected as well. Throwing away nearly linearly depended
columns in Qj usually ensures that Ẽj is nonsingular. Taking all this into account, it
may happen in rare occurrences that Λ(Ãj, Ẽj) contains no usable shift parameters at
all. In that case one can simply reuse the previously used V (u)- or W -shifts and try the
shift generation again afterwards.
As already stated, the main computational costs for carrying out the V (u)-, and W -

shift strategies arise in the orthogonalization of an n×rumatrix as well as solving a small
eigenvalue problem whenever new shifts are required. Since ru � n, this is considered
as inexpensive. Only a very small number of additional matrix vector products with

94

5.3. Self-Generating Shifts

E but no linear system solves are required. This makes both proposed shift strategies
significantly cheaper than the previously mentioned precomputed shifts which rely on
spectral data generated from an Arnoldi or Lanczos process. A further big advantage
of both proposed variants is, compared to the Wachspress and heuristic approaches in
Sections 5.2.1–5.2.2, that no setup parameters such as J , k+, k− are required which
makes these approaches completely automatic and, hence, user-friendly. Additionally,
for several numerical tests these shifts even seem to outperform the heuristic shifts. This
seems to be the case especially for the V (u)-shifts and problems defined by matrix pairs
(A, E) having a complex spectrum. Problems can occur for GCALEs with a rank-
one right hand side, i.e., when r = 1. Then, the single shift computed in the W -shift
approach is actually a generalized Rayleigh quotient

αj+1 =
QT

j AQj

QT
j EQj

,

and, hence, will always be a real number which can be disadvantageous for problems
with a complex spectrum. A similar observation can be made for the V -shifts, where, if
αj ∈ R− is the last encountered shift before the computation of new shifts, all subsequent
constructed V -shifts will be real as well. In this situation the V (u)-shift strategy with
u > 1 should be employed. Another drawback of the V (u)- and W -shifts is the lack of
a deeper theoretical foundation. It is also not clear which of the two variants is better,
although in most of our numerical tests the V (u)-shifts seem to be superior.

Special Cases

In this section we briefly discuss the adaption of the proposed V (u)-, andW -shift strate-
gies within the structure exploiting versions of the G-LR-ADI iteration for the special
GCALEs mentioned in Section 3.2.5

SO-LR-ADI The SO-LR-ADI iteration (Algorithm 3.3) for dealing with problems re-
lated to second order dynamical systems 2.32 can easily be equipped with the V (u)- and
W - shifts. For instance, consider the augmented block matrices

A =

[−K 0

0 M

]
, E =

[
D M

M 0

]
∈ R2n×2n, F =

[
B1

0

]
∈ R2n×r

as in (2.33b), where M, D, K ∈ Rn×n, B1 ∈ Rn×r. The construction of Ãj, Ẽj is
implicitly carried out with A, E, i.e., only matrix vector products with M, D, K and
n× r matrices are required. By Corollary 4.6 and (5.3), these products are not required
for the V (u)-shifts. The W -shifts, on the contrary, demand multiplications with A and
E. There, some further savings can be achieved at the construction of Ãj, Ẽj ifM =MT :

Ãj = QT
j AQj = −(Q

(p)
j)TKQ

(p)
j + (Q

(v)
j)TQ

(v)
M , Q

(v)
M :=MQ

(v)
j ,

Ẽj = QT
j EQj = (Q

(p)
j)TDQ

(p)
j +Ms +MT

s Ms := (Q
(p)
j)TQ

(v)
M ,

95

5. Self-Generating ADI Shift Parameters

where Q
(p)
j , Q

(v)
j ∈ Rn×r denote the lower and upper n rows of Qj, adopting the notation

used in Section 3.2.5. Analog observations can be made for block matrices of the form
(2.33a). Regardless if V (u)- or W -shifts are used, the resulting small matrices Ãj, Ẽj

do not inherit the block structure of A, E.

SLRCF-ADI Recall that for index one descriptor systems defined by (2.34), the SLRCF-
ADI iteration [98] computes a low-rank solution of the GCALE ÂP̂ ÊT+ÊP̂ ÂT = −F̂ F̂ T

with Ê := E11, Â := A11 − A12A
−1
22 A21 ∈ Rnf×nf , F̂ := F1 − A12A

−1
22 F2 ∈ Rnf×r, see

(2.35), where these matrices are only dealt with implicitly. Applying the V (u)-shifts in
this framework is straightforward since by Corollary 4.6 and (5.3) at most ru additional
matrix vector products with E11 are required. The W -shifts in contrast, require the
computation of the matrices

QT
j ÂQj = QT

j A11Qj −QT
j A12

(
A−1

22 (A21Qj)
)
, QT

j E11Qj

such that ru solves with the matrix A22 of size n − nf are needed. This can make the
W -shifts substantially more expensive than the V -shifts. Notice that the above matrices
have to be used also if the initial shifts are based on span{F̂} which requires one-time
r further solves with A22.
A modification of the V (1)-shifts proposed in [39] is to carry out the Galerkin pro-

jection with the original matrices (2.34) of dimension n and use span
{
V aug
j

}
with the

augmented iterates V aug
j := [V T

j ,Ψ
T]T ∈ Rn×r from (3.26). We refer to this modification

as V aug-shifts. The spectrum of the projected matrices can be deduced from (5.3) and
is for j > 1 given by

Λ(QH
j AQj, Q

H
j EQj) = Λ

(
(Q

(1)
j)TWj−1, (Q

(1)
j)TE11Vj

)
− αj

with V aug
j = QjRj =

[
Q

(1)
j

Q
(2)
j

]
Rj

for αj ∈ R− and similarly for complex αj. This shows that the construction of the
V aug-shifts is very close to the V (1)-shifts. The exception is the case j = 1 for which

Λ(QH
j AQj, Q

H
j EQj) = Λ

(
(Q

(1)
j)TF1 + (Q

(2)
j)TF2, (Q

(1)
j)TE11Vj

)
− αj.

Similarly, we can modify the W -shifts to W aug-shifts and work with the augmented
residual factors for the W -shifts

W aug
j = W aug

j−1 − 2Re (αj)EV
aug
j =

[
Wj

Υ

]
, W aug

0 = F

with an auxiliary matrix Υ ∈ Cn−nf×m. A simple calculation exploiting the structure of
E shows that Υ = F2. Compared to the V (1)- and W -shifts, the V aug- and W aug-shifts
are slightly more expensive since they need an orthogonalization of an n× r instead of
an n−nf ×r matrix. The initial shifts for both V aug- and W aug-shifts are obtained from
using an orthonormal basis of F .

96

5.3. Self-Generating Shifts

5.3.2. Residual-Norm Minimizing Shifts

As shown in Section 3.2.4, the residual in the spectral or Frobenius norm is, combining
(3.18b) and (3.19), given by

‖Lj‖ = ‖Wj‖2 with Wj = Wj(αj) = Wj−1 − 2Re (αj)E
(
(A+ αjE)

−1Wj−1

)
.

Assume that iteration step j − 1 is completed and we look for the next shift αj. Apart
from that shift every quantity in the above formula is known after iteration step j − 1.
Hence, an intuitive idea is to choose the next shift αj as the value that minimizes ‖Wj‖
because this will also minimize ‖Lj‖. Let α = ν+ jξ with ν < 0 and define the bivariate
function

fj(ν, ξ) := ‖Wj−1 − 2νE
(
(A+ (ν + jξ)E)−1Wj−1

) ‖2
= ‖C(A,E, α)Wj−1‖2,

(5.4)

where C(A,E, α) denotes the generalized Cayley transformation (cf. Definition 2.15b
and Proposition 2.16a). Following the idea proposed in [39], the real and imaginary
parts of the next shift αj = νj + jξj can be obtained from solving the minimization
problem

[νj, ξj] = argmin
ν∈R−,ξ∈R

fj(ν, ξ). (5.5)

In other words, the optimal shift αj is obtained by minimizing the norm of the action of
the generalized Cayley transform C(A,E, α) on the matrix Wj−1. If it is known that the
spectrum of A, E is real, e.g., when A = AT ≺ 0, E = ET � 0, the ADI shifts will also
be real and (5.4) should be simplified accordingly by setting ξ = 0. Complex shifts can
also be alternatively produced by using the relations (4.8) and minimizing the function

gj(ν, ξ) := ‖Wj+1‖ =

∥∥∥∥Wj−1 − 4νE

[
Re (Vj) +

ν

ξ
Im (Vj)

]∥∥∥∥2

, (5.6)

where Vj = (A + (ν + jξ)E)−1Wj−1. In that case, the residual norm is minimized
with respect to two iteration steps associated with a pair of complex conjugate shifts.
Numerical tests did not reveal a significant difference between using (5.4) or (5.6), and,
hence, we decided to use the objective function (5.4) for problems for which it is unknown
if Λ(A, E) contains only real eigenvalues. In practice, unless Λ(A, E) ⊂ R−, one usually
does not know in advance if the minimizing shift αj will be real or complex such that
the simplification ξ = 0 cannot be used. However, the imaginary part ξj of the obtained
solution αj of (5.5) should be neglected if it is very small compared to the real parts νj,
e.g., if ξj/|αj| ≈ 0.
Assuming we found the globally optimal shift α∗

j satisfying (5.5), the decrease from
‖Lj−1‖ to ‖Lj‖ will be the largest one possible in the sense

‖Wj(α
∗
j)‖2 ≤ ‖Wj(αj)‖2 ∀αj ∈ C−.

97

5. Self-Generating ADI Shift Parameters

Since we only consider the residual norm minimization from one iteration step to the
next one, it does in general not hold that the above inequality also holds for k > j.
Some remarks regarding a possible minimization with respect to several future iteration
steps are given later on.

In the given form these residual-norm minimizing shifts are very difficult to obtain. On
the one hand, solving (5.5) is computationally not feasible. Applying any optimization
method to handle (5.5) will require to evaluate the function fj at several values. For
each of these values a linear system with r right hand sides has to be solved. Hence,
the computation of the optimal shift αj itself will easily become more expensive than
carrying out the current iteration step of the G-LR-ADI iteration.

On the other hand, a further issue is that fj (and also gj) might have several local
minima. For the best result regarding the reduction of the residual norm ‖Lj‖, the
global minimum should be used. Taking only a local minima will still decrease ‖Lj‖,
but the convergence speed of the G-LR-ADI iteration will be slower. Including the
constraint νj ∈ R− is essential since fj will have minima at locations in the right half
plane C+ which cannot be used as shifts for G-LR-ADI. Moreover, fj has poles in C+

at −Λ(A, E). Figure 5.1 illustrates these issues for two small examples. On the left,
the CD player example [66] (n = 120, E = In) is used and the plot shows the norm
of the scaled Lyapunov residual ‖Lj‖/‖F‖2 at iteration step j = 18 of the G-LR-ADI
iteration in dependence of real and imaginary part of the shift αj. The shifts before this
iteration step were also global minima of (5.5). Because A, E, Wj−1 are real matrices,
only the upper half of C− is shown. There are clearly two minima of fj visible: the
global one at αmin ≈ −10.34 + j579.3 with ‖Lj‖/‖F‖2 = 1.26 · 10−3 and, respectively,
a local one at α ≈ −10.34 + j55.2 with ‖Lj‖/‖F‖2 = 1.29 · 10−3. Apparently, the
difference of the function values at both minima is in the present situation only minor.
In other situations the difference might be larger, but the LR-ADI iteration will still
converge as long as α ∈ C−. Hence, the possibility of detecting only local minima in
C− is not a severe issue. For the second example, we use a centered finite-difference
discretization of the negative Laplace operator on [0, 1]2. Using Dirichlet boundary
conditions and 10 grid points yields n = 100. Since A = AT ≺ 0, only real values for α
were used and the right plot in Figure 5.1 shows the scaled residual norm for the first
iteration, i.e., ‖C(A,α)F‖/‖F‖2. Clearly, there are local minima located in R+ between
the singularities at α = −λi(A). These minima should not be used as shift because
ρ(C(A,α)) > 1 which can deteriorate the performance of the LR-ADI iteration or even
lead to divergence. Using a constrained optimization routine as mentioned above can
ensure that the detected minima are stable. Of course, one could, similar to the V - and
W -shifts, simple negate any computed unstable shift. However, the restriction to the
open left half plane ensures that (5.4) is continuous.

Another issue that one might face in the case r > 1 is that the function (5.4) might
not be differentiable at some values α. Further details on this issue and how to overcome
it are given later.

In the following we prioritize strategies that aim at reducing the costs of the numerical
realization of computing these residual-norm minimizing shifts.

98

5.3. Self-Generating Shifts

αmin

local min.

−200 −100 0

100

400

800

Re (α)

Im
(α

)

1.28

1.3

1.32

·10−3

−200 0 100

100

101

102

minima in C+

singularities

α

‖C
(A
,α

)F
‖/

‖F
T
F
‖

Figure 5.1.: Plot of ‖C(A,α)Wj−1‖/‖F‖2 in C− and R for CD-Player (left) and, respec-
tively, 2D-Laplacian (right).

Enhancing the Computation of the Residual Norm-Minimizing Shifts

Here we present some strategies for improving the generation of the residual-norm min-
imizing shifts. We mainly restrict to the strategy where the minimization problem (5.5)
is solved by any form of smooth optimization algorithm which requires evaluations of
the objective function and possibly also of its derivatives.

Including First and Second Order Derivatives Several optimization methods for find-
ing min f are based on an iterative solution of the first order optimality system ∇f = 0,
provided f is sufficiently smooth. Hence, adding explicitly computed gradients and Hes-
sians of (5.4) can help to accelerate the iteration of the employed optimization routine.
Note that since the only constraints we will consider are upper and lower bounds for the
optimization variables, the gradient and Hessian of the original objection function can
be used for the constrained optimization problem. We omit the iteration index j if this
does not lead to confusion. The following theorem states how the gradient and Hessian
of (5.4) can be expressed and computed.

Theorem 5.1 (Gradient and Hessian of the objective function (5.4)):

Let α = ν + jξ ∈ C−, W ∈ Rn×r, and define L(ν, ξ) := A+ αE,

WA := EL(ν, ξ)−1W, WAi := EL(ν, ξ)−1WAi−1 , W+ := W − 2νWA,

Ŵ := WA − νWA2 , W(i) := WAi − 2νWAi+1 ,

R̃ν : = −WH
+ Ŵ , R̃ξ := WH

+ WA2

for i = 1, 2. Moreover, assume WH
+ W+ has r distinct eigenvalues and let (θk , uk) =

(θk(ν, ξ) , uk(ν, ξ)) with ‖uk‖ = 1, k = 1, . . . , r, be its eigenpairs ordered such that

99

5. Self-Generating ADI Shift Parameters

θ1 > . . . > θr > 0. Then, gradient and Hessian of (5.4) are given by

∇f = 4

[
Re

(
uH1

(
WH

+ Ŵ
)
u1

)
−ν Im (

uH1
(
WH

+ WA2

)
u1

)
]
= 4

⎡
⎣ Re

(
uH1 R̃νu1

)
−ν Im

(
uH1 R̃ξu1

)
⎤
⎦ (5.7)

and

∇2f =8

[
Re (uH

1 ((WA2−νWA3)HW++ŴHŴ)u1) h12

h12 ν Re (uH
1 (WH

A3W++νWH
A2WA2)u1)

]

+
r∑

k=2

8
θ1−θk

[
|uH

1 (R̃H
ν +R̃ν)uk|2 h̃

(k)
12

h̃
(k)
12 |uH

1 (R̃H
ξ −R̃ξ)uk|2

] (5.8)

with h12 :=
1

2
Im

(
uH1 W

H
(2)W+ − 2νWH

A2W(1)u1
)
,

h̃
(k)
12 := −Re

(
(uH1 (R̃

H
ν + R̃ν)uk)(jνu

H
k (R̃

H
ξ − R̃ξ)u1)

)
. ♦

Proof. With Ĉ(A,E, ν, ξ) = C(A,E, α = ν + jξ), the objective function (5.4) can be
expressed equivalently as

f(ν, ξ) = σ2
max

(
Ĉ(A,E, ν, ξ)W

)
= λmax (F(ν, ξ)) ,

where F(ν, ξ) := W T Ĉ(A,E, ν, ξ)H Ĉ(A,E, ν, ξ)W = WH
+ W+ ∈ Cr×r.

(5.9)

It is clear that W+ = W − 2νEL(ν, ξ)−1W is the factor of the Lyapunov residual w.r.t.
the shift α = ν + jξ. For a parameter-dependent matrix M(s, t) with distinct eigenval-

ues, it holds by [149, 173] for the eigenvalues θ(s, t) that ∂θ(s,t)
∂s

= y(s)H ∂M(s,t)
∂s

x(s) and

similarly for ∂θ(s,t)
∂t

. Here, y(s, t) and x(s, t) are the left and right eigenvectors of M(s, t)
scaled such that y(s, t)Hx(s, t) = 1. In our situation, the parameter-dependent matrix
F(ν, ξ) is Hermitian such that x(s, t) = y(s, t). Hence, the partial derivatives of f(ν, ξ)
are

∂f

∂ν
= uH1

(
∂

∂ν
F(ν, ξ)

)
u1,

∂f

∂ξ
= uH1

(
∂

∂ξ
F(ν, ξ)

)
u1, (5.10)

where u1 is the eigenvector which corresponds to the largest eigenvalue θ1 of F(ν, ξ).
Since

Ĉ(A,E, ν, ξ)H = E−T Ĉ(AT , ET , ν,−ξ)ET

it is easy to see that the derivatives of F are

∂

∂ν
F(ν, ξ) = W T

(
GH
ν + Gν

)
W, Gν := Ĉ(A,E, ν, ξ)H

∂

∂ν
Ĉ(A,E, ν, ξ),

∂

∂ξ
F(ν, ξ) = W T

(
GH
ξ + Gξ

)
W, Gξ := Ĉ(A,E, ν, ξ)H

∂

∂ξ
Ĉ(A,E, ν, ξ),

(5.11)

100

5.3. Self-Generating Shifts

Both partial derivatives of the Cayley transformation are

∂

∂ν
Ĉ(A,E, ν, ξ) = −2EL(ν, ξ)−1(I − νEL(ν, ξ)−1),

∂

∂ξ
Ĉ(A,E, ν, ξ) = 2jνEL(ν, ξ)−1EL(ν, ξ)−1,

where we used Ĉ(A,E, ν, ξ) = I − 2νEL(ν, ξ)−1. The abbreviations defined above yield

W TGνW = −2W T
(
Ĉ(A,E, ν, ξ)HEL(ν, ξ)−1(I − νEL(ν, ξ)−1)

)
W

= 2WH
+ (WA − νWA2) = 2R̃ν

W TGξW = −2jνW T
(
Ĉ(A,E, ν, ξ)HEL(ν, ξ)−1EL(ν, ξ)−1

)
W = 2jνWH

+ WA2 = 2jνR̃ξ

and with (5.10), (5.11)

∇f =

[
2uH1 (R̃

H
ν + R̃ν)u1

2jνuH1 (−R̃H
ξ + R̃ξ)u1

]
= 4

⎡
⎣ Re

(
uH1 R̃νu1

)
−ν Im

(
uH1 R̃ξu1

)
⎤
⎦

and, consequently, (5.7) follows immediately. For the Hessian of f recall from, e.g., [149],
[173, Lemma 2.1.(iv)] that the second order derivatives of the eigenvalue θ1(s, t) of the
matrix M(s, t) ∈ Cr×r are given by

∂2θ1(s, t)

∂s∂t
= yH1

∂2M(s, t)

∂s∂t
u1 + 2Re

⎛
⎝ r∑

k=2

(
yH1

∂M(s, t)
∂s

uk

) (
yHk

∂M(s, t)
∂t

u1

)
θ1 − θk

⎞
⎠ .

As above, (θi, ui, yi), i = 1, . . . , r, are the eigentriplets ofM(s, t) scaled such that yHi ui =
1. For the second partial derivative w.r.t. ν we have, exploiting yi = ui again and using
(5.11),

fνν = uH1
∂2F(ν, ξ)

∂ν2
u1 + 2Re

⎛
⎝ r∑

k=2

(
uH1

∂F(ν, ξ)
∂ν

uk

) (
uHk

∂F(ν, ξ)
∂ν

u1

)
θ1 − θk

⎞
⎠

= uH1 W
T ∂

∂ν

(
GH
ν + Gν

)
Wu1 +

r∑
k=2

8
θ1−θk

|uH1 (R̃H
ν + R̃ν)uk|2. (5.12)

Furthermore,

∂

∂ν
Gν =

∂

∂ν
Ĉ(A,E, ν, ξ)H

∂

∂ν
Ĉ(A,E, ν, ξ) + Ĉ(A,E, ν, ξ)H

∂2

∂ν2
Ĉ(A,E, ν, ξ),

∂2

∂ν2
Ĉ(A,E, ν, ξ) =− 2

∂

∂ν
EL(ν, ξ)−1(I − νEL(ν, ξ)−1)

=2
(
EL(ν, ξ)−1

)2
(I − νEL(ν, ξ)−1)

+ 2
(
EL(ν, ξ)−1

)2 − 2ν
(
EL(ν, ξ)−1

)3
=4EL(ν, ξ)−1EL(ν, ξ)−1 − 4νEL(ν, ξ)−1EL(ν, ξ)−1EL(ν, ξ)−1

101

5. Self-Generating ADI Shift Parameters

Algorithm 5.1: Evaluation of f , ∇f and ∇2f at α = ν + jξ

Input : A, W, E, ν, ξ.
Output: f(ν, ξ), ∇f(ν, ξ), ∇2f(ν, ξ).

1 Compute WA = E ((A+ (ν + jξ)E)−1W) and overwrite W = W − 2νWA.
2 if r :=coldim(W) > 1 then
3 Compute eigendecomposition UHWHWU = diag (θ1, . . . , θr) with U

TU = Ir,
‖ui‖ = 1, θ1 > . . . θr > 0. Set f = θ1.

4 Overwrite W = WU , WA = WAU .

5 else
6 Set f = ‖W‖2.
7 Compute WA2 = E ((A+ (ν + jξ)E)−1WA).

8 Set ∇f =

⎡
⎣ 4Re

(
R̂ν(1, 1)

)
−4ν Im

(
R̂ξ(1, 1)

)
⎤
⎦, R̂ν := (−WA + νWA2)HW , R̂ξ := WHWA2 .

9 Compute WA3 = E ((A+ (ν + jξ)E)−1WA2).

10 Define Ŵ := WA − νWA2 , W(i) := WAi − 2νWAi+1 , i = 1, 2.

∇2f = 8

[
Re ((WA2 (:,1)−νWH

A3 (:,1))W (:,1)+ŴH(:,1)Ŵ (:,1)) 1
2
Im (WH

(2)
(:,1)W (:,1)−2νWH

A2 (:,1)W(1)(:,1))
1
2
Im (WH

(2)
(:,1)W (:,1)−2νWH

A2 (:,1)W(1)(:,1)) ν Re (WH
A3 (:,1)W (:,1)+νWH

A2 (:,1)WA2 (:,1))

]
11

12 if r > 1 then
13 for k = 2, . . . , r do

14 ∇2f=∇2f + 8
θ1−θk

[∣∣∣R̂ν(k,1)+R̂ν(1,k)
∣∣∣2 h̃:=Re

((
R̂ν(k,1)+R̂ν(1,k)

)
jν
(
R̂ξ(k,1)−R̂ξ(1,k)

))
h̃ ν2

∣∣∣R̂ξ(k,1)−R̂ξ(1,k)
∣∣∣2

]

such that by incorporating the introduced notation

W T ∂

∂ν
GνW = 4(WA − νWA2)H(WA − νWA2) + 4WH

+ (WA2 − νWA3)

= 4
(
ŴHŴ +WH

+ (WA2 − νWA3)
)
. (5.13)

Setting (5.13) into (5.12) leads, after some basic manipulations, to the (1, 1) entry of
∇2f . The other entries, i.e., the partial derivatives fνξ, fξξ, can be found using similar
steps yielding the Hessian formula (5.8).

Obviously, Theorem 5.1 reveals that to evaluating both ∇f and ∇2f at ν and ξ, requires
the solution of two additional linear systems with the coefficient matrix (A+(ν + jξ)E)
and r right hand sides. The extra work is usually compensated by the significant lower
number of iteration steps of the optimization routine. If only ∇f is needed or sufficient,
a closer inspection of the gradient formula (5.7) reveals that only WA2u1 is required,
i.e., only a single right hand side WAu1 is needed in the additional linear system for

102

5.3. Self-Generating Shifts

WA2 . A clever incorporation of the necessary eigenvectors ui, i = 1, . . . , r, and reuse of
already computed quantities leads to the following pseudo code in Algorithm 5.1 which
illustrates the evaluation of the objective function, its gradient and its Hessian at the
point α = ν + jξ.

To obtain a new shift αj for the G-LR-ADI iteration for the use in step j, we can use
Wj−1 and call Algorithm 5.1 from within any optimization algorithm. In the upcom-
ing numerical experiments we employ the fmincon routine which is part of the MAT-
LAB optimization toolbox . It comes with different available optimization algorithms
from which the interior-point and trust-region-reflective (see, e.g., [177]) algorithms led
to the best results for our purpose. An often used stopping criterion in optimization
methods is to monitor the gradient of the objective function and stop the iteration, e.g.,
when ‖∇f‖ ≤ τopt. The tolerance 0 < τopt � 1 should be chosen sufficiently small w.r.t.
our goal ‖L‖ = ‖W‖2 ≤ τ‖F TF‖ and we use τopt < τ . Since f will become small in the
course of the iteration, it can be wise to work with a scaled version instead to account
for numerical difficulties, e.g., dividing by the residual norm of the previous iteration
step f/‖Wj−1‖2.

Dealing with Non-Differentiability The assumption in Theorem 5.1 that the para-
meter dependent function F(ν, ξ) in (5.9) has r distinct eigenvalues for all ν, ξ is rather
strict but crucial for our purpose as it ensures analyticity of the parameter dependent
eigenvalues, i.e., the existence of the derivatives of the objective function. In practice this
is, however, difficult to ensure since it can happen for some values of ν, ξ that, e.g., the
largest and second largest eigenvalue θ1, θ2 coalesce. It is, in fact, often observed that this
coalescence occurs exactly at the minimum of f . Thus, θ1(ν, ξ) will not be differentiable
at this point which essentially prohibits applying smooth optimization techniques based
on the first order optimality conditions. For more details regarding these issues and
also possible alternative optimization approaches we refer to, e.g., [180, 159, 173, 174]
and the references therein. If r = 1, the optimization problem reduces to a scalar
one and such issues are not present. Moreover, if we are only interested in real shifts,
i.e. the variable ξ is not considered, conditions ensuring the analyticity of the largest
eigenvalue of univariate Hermitian parameter dependent matrices are mentioned in [173,
174]. The situation for the multivariate case, i.e. an optimal complex shift is sought in
our application, is more difficult. To tackle these potential issues regarding θ1(ν, ξ) not
being differentiable, we simply transform our problem to a scalar one by enforcing r = 1
in the optimization algorithm. This is easily achieved by multiplying the residual factor
W with an appropriate vector d ∈ Rr before we enter the optimization routine. The
computation effort w.r.t. the gradients and Hessian matrices in Algorithm 5.1 is also
relaxed by this simplification since the Lines 2–4 and 12–14 are not required. An obvious
choice is to set d equal to the left singular vector corresponding to the largest singular
value of W . With respect to the upcoming projection approach, this transformation to
a scalar optimization problem represents an additional layer of approximation of (5.5).
In several numerical experiments this approximation does not appear to significantly
deteriorate the quality of the obtained shift parameters. It is, of course, also possible to

103

5. Self-Generating ADI Shift Parameters

use derivative-free optimization routines to avoid computing gradients and Hessians at
all, as is was done in [39].

Decreasing the Numerical Costs by Projection The main issue with the presented
residual-norm minimizing shifts is that solving the optimization problem involves ex-
pensive evaluations of the function (5.4). The main numerical effort of these evaluations
stems from the solutions of the inherent linear systems (A+αE)V̂ = Wj−1 for V̂ . If the
optimization algorithm needs jopt iteration steps to detect the local minimum of f and
if gradient as well as Hessian information is used, approximately 3jopt linear systems
have to be solved to obtain a single shift parameter. This number reduces to 2jopt if
only the function and its gradient are used. Here, we present strategies for reducing
the costs of the linear systems by performing a projection approach which leads to an
approximate objective function and, thus, the obtained shift parameters will be referred
to as approximate residual-norm minimizing shifts.
The first idea is to use, exactly as for the V and V (u)-shifts, the spaces spanned by

block columns of the low-rank solution factor Z corresponding to one or more previous
iteration steps. With the matrix Qj ∈ Rn×ru containing the orthonormal basis vector
of these spaces, we replace A, E, Wj in (5.4) by the projected matrices Ãj = QT

j AQj,

Ẽj = QT
j EQj, W̃j := QT

j Wj to obtain a reduced objective function

f̃(ν, ξ) : = ‖W̃j − 2νẼj

(
(Ãj + (ν + jξ)Ẽj)

−1W̃j

)
‖2. (5.14)

By using the same replacements in (5.7), (5.8), also reduced gradients ∇f̃ and Hessians
∇2f̃ can be constructed. The matrices Ãj, Ẽj are constructed efficiently as we showed for
the V (u)-shifts, see (5.3), Corollaries 3.9, 4.6. Since the linear systems to be solved are
now of dimension ur � n, evaluating f̃ , ∇f̃ , ∇2f̃ by Algorithm 5.1 is much less costly as
with the original matrices. These approximate residual-norm minimizing shifts can be
seen as an augmentation of the V (u)-shift approach. Although there is no guarantee that
f̃(ν, ξ) ≈ f(ν, ξ), our numerical experiments show that the approximate residual-norm
minimizing shifts can lead to a comparable or even better convergence speed compared
to other shift strategies. Increasing the horizon u typically increases the quality of the
obtained shifts. Especially for the situation r = 1 choosing u > 1 is recommended.

An alternative and also obvious approach is to use (block) Krylov subspaces for the
projection. For this, one can exploit the fact that only the shift α in (5.4) changes but
the right hand sides remain constant. For E = In, W = Wj−1 ∈ Rn (r = 1), the well
known shift-invariance of Krylov spaces provides that Kk(A, W) = Kk(A+αIn, W) for
any scalar α. Let Kk(A, W) = span {Qk} with QT

kQk = Ik and Ãk := QT
kAQk ∈ Rk×k

the restriction of A onto Kk(A, W). This enables to extract approximate solution to all
shifted linear systems

(A+ αIn)Ṽ
α = W. (5.15)

from one single Krylov subspace Kk(A, W). For instance, if a Krylov solver based on
a Galerkin condition such as the full orthogonalization method (FOM) [199] and a zero

104

5.3. Self-Generating Shifts

initial condition is used, the approximate solutions of the linear systems extracted from
Kk(A, W) can be represented as

Ṽ α ≈ Ṽ α
k = Qk((Ãk + αIk)

−1QT
kW), (5.16)

which basically corresponds to the multi-shift FOM approach [208]. Hence, for every
shift α we obtain approximate solutions from the same matrices Qk, Ãk, which have to
be constructed only once. For each shift, the approximate solution Ṽ α is obtained by
solving a k dimensional linear system. Numerous other Krylov subspace methods for
(5.15) built upon the shift-invariance exist and might be used as well, e.g., multi-shift
variants of GMRES [103], IDR(s) [85, 226], BiCG [2], or BiCGstab(�) [102], to name a
few. Using as example the approximations by the multi-shift FOM approach in (5.16),
leads to an approximation of the objective function (5.4) of the form

f(ν, ξ) ≈ fk(ν, ξ) : = ‖W − 2νṼ ν+jξ
k ‖2 (5.17)

= ‖W‖‖e1 − 2ν
(
(Ãk + (ν + jξ)Ik)

−1e1

)
‖2, (5.18)

where we exploited the orthogonality of Qk and QT
kW = ‖W‖e1. Using Algorithm 5.1

with Ãk, Ik, e1 to evaluate fk and its derivatives, is now, exactly as with the spaces
generated in the V (u) approach, much cheaper compared to (5.4). For r > 1 everything
can be carried out by employing block Krylov subspace methods which leads to Ãk ∈
Rrk×rk. The usage of preconditioners, which is usually mandatory to achieve a fast
convergence of Krylov methods for linear systems, unfortunately destroys the shift-
invariance in general. For special classes of preconditioners, the shift-invariance can
be restored which leads to preconditioned multi-shift Krylov methods see, e.g., [85,
226, 2]. We do not pursue this topic further since a sufficient discussion of the usage
of different multi-shift Krylov methods as well as appropriate preconditioners would be
beyond the scope of this thesis. Additionally, the subspaces spanned by ur columns of Z
typically lead to better approximate residual norm-minimizing shifts compared to Krylov
subspaces. This was observed in several experiments even if u < k. Moreover, using
Krylov subspaces requires matrix multiplication with A to construct the restriction Ã in
contrast to the spaces w.r.t. block columns of Z, where this is by the Corollaries 3.9, 4.6
not necessary. There are also other reasons that prevent a successful application of these
preconditioned multi-shift Krylov methods. For E �= In, the shift-invariance of Krylov
subspaces is lost since it holds in general Kk(A, W) �= Kk(A + αE, W). In [226],
a shift-and-invert preconditioner P ≈ A + α̂E is used on top of a multi-shift Krylov
subspace method such that the shift-invariance holds for the coefficient matrix of the
preconditioned system. For this the knowledge of a seed shift α̂ is required for which
a reasonable choice is not known for our application. The numerical costs for applying
P , i.e., solving linear systems defined by P , in every iteration step in every call of the
employed Krylov subspace method will easily accumulate such that this approach will
become expensive. Alternatively, one can, similar to (5.14), formally use the restriction
Ẽk = QT

kEQk to obtain a reduced objective function even though this is not justified
theoretically by the shift-invariance. Moreover, the preconditioned multi-shift Krylov

105

5. Self-Generating ADI Shift Parameters

methods often require that the shifts α in (5.15) are known in advance which is not
possible in our situation since we want to solve the optimization problem (5.5) iteratively
by an optimization algorithm.

Restrictions of the Optimization Variables and Initial Guesses In (5.4), we intro-
duced the constraints ν ∈ R− and ξ ∈ R to ensure that the obtained local minimizer
α = ν + jξ ∈ C−. Since we only consider GCALEs defined by real matrices and always
demand proper sets of shift parameters for the G-LR-ADI iteration, we can use the
restriction ξ ∈ R+. We can further tighten these restrictions, e.g., by

ν− ≤ ν ≤ ν+, 0 ≤ ξ ≤ ξ+. (5.19)

This can be helpful for the used optimization method because, roughly speaking, a
smaller set of values of ν, ξ has to be scanned. An obvious choice is to use information
regarding the extremal eigenvalues of (A, E) for ν±, ξ+, i.e., ν− ≤ minRe (λ), ν+ ≥
maxRe (λ), and ξ+ ≤ |max Im (λ) | for λ ∈ Λ(A, E). The minimal and maximal real
and imaginary parts can be obtained approximately by iterative eigenvalue algorithms
or via estimates read off from Ritz values as for the approximate Wachspress shifts.
In [2], a harmonic Arnoldi process is used to obtain approximations of the smallest
eigenvalues in magnitude. A straightforward and easy to compute simplification is ν− =
ξ+ = ρ(A, E) = max |λ| which can be estimated easily by an Arnoldi process. For the
approximate residual norm-minimizing shifts employing the above projection approach,
we propose to use the eigenvalues of (Ãj, Ẽj) to read off the bounds ν±, ξ+.
Some optimization algorithms require an initial guess of the sought local minimizer to

start. Here, we use the first value returned by the heuristic shift approach on the basis
of Λ(Ãj, Ẽj).

Alternative Optimization Approaches The eigopt software proposed in [173, 174]
contains a global eigenvalue optimization method for computing global minimizers or
maximizers of the eigenvalues of a parameter dependent matrix M(s) ∈ Cn×n, s =
(s1, . . . , sd). It restricts to boxed domains si,− ≤ si ≤ si,+, i = 1, . . . , d, similar to
(5.19). It can, therefore, also be applied to find a global minimizer of λmax (F(ν, ξ))
in (5.9) for solving the present minimization problem (5.5) or its reduced counterpart
(5.14). It requires, however, a lower bound for λmin [∇2λmax (F(ν, ξ))]. Since a reliable
bound is currently not available for (5.9), we do not consider this approach further.
First preliminary tests, where λmin [∇2λmax (F(ν, ξ))] was computed explicitly, showed
that especially in the later iteration steps of the G-LR-ADI iteration, eigopt seems to
have difficulties in finding the minimizer.

The chebfun and chebfun2 packages [79] can also be used to deal with (5.4). For
uni- or bivariate functions f , chebfun and chebfun2 construct approximations of f by
expansions in uni- and bivariate Chebychev polynomials, respectively. The commands
min and min2 can then be used to find minima. This can be done in MATLAB, for
instance, by the following commands:

106

5.3. Self-Generating Shifts

cf=chebfun2(@(nu,xi) norm(W-2*nu*E*((A+(nu+1i*xi)E)\W),2),...
[nu$ -$,nu$ +$,0, xi $+$],'vectorize','on');

[fmin,p]=min2(cf); nu=p(1); xi=p(2);

Although technically not designed as optimization routine, chebfun and chebfun2

seemed to be very successful in finding the global minimum of f . However, the con-
struction of the Chebychev polynomials was significantly more expensive compared to
the other approaches, even for the projected objective function (5.14).

5.3.3. Numerical Experiments

We are now going to evaluate and compare the performance of the presented shift gen-
eration strategies. As usual, the G-LR-ADI iteration (Algorithm 4.3) is carried out until
‖L‖ ≤ τ‖F‖2 with 0 < τ � 1 is achieved or a maximum allowed number jmax of itera-
tions is reached. We use the test examples FDM, rail79k, ifiss66k, chain, and bips. For
FDM, n0 = 50 and n0 = 350 grid points lead to dimensions n = 2500 and n = 122500,
respectively. The functions defining the convective and reactive terms are f1 = 102ξ1,
f2 = 103ξ2, and f3 = 0, similar to the settings in [184, Example 1].
The heuristic shift strategy and its settings are denoted by heur(J, k+, k−). Likewise,

Wachs(ε, k+, k−) stands for the approximate Wachspress shifts obtained from k+, k−
Ritz values and a tolerance ε which results in a number of J shifts parameters. For these
two approaches, the initial vector for the Arnoldi processes is F1m. For the rail79k
example having A = AT , E = ET � 0, we do not use a less expensive Lanczos process
in the inner product induced by E [6] because this led to worse approximations of
the eigenvalues of small magnitude, resulting in heuristic and approximate Wachspress
shifts of worse quality. As in the chapters before, these precomputed shifts are used in
a cyclic manner if it occurs that the number of required G-LR-ADI iteration steps is
higher than the number of the available shifts. The computation of the orthonormal
bases for the V (u)- and W -shifts, where u denotes the horizon, is carried out using
an implicit orthogonalization. The residual norm-minimizing shift strategy using the
projected matrices are denoted by V (u)-res.min. and FOM(k)-res.min., where FOM(k)
refers to the usage of the multi-shift FOM approach w.r.t. a Krylov subspace of order
k. Because of the symmetry properties and Λ(A, E) ⊂ R− for example rail79k, all of
the self-generating shift parameter strategies are adapted such that only real shifts are
generated.

Experiments with Exact and Approximate Residual Norm-Minimizing Shifts

At first we investigate the residual norm-minimizing shifts as well as their approximate
versions using different subspaces for the projection. For this we use the FDM example
with n0 = 50 such that n = 2500. This size admits the computation of the exact residual
norm-minimizing shift in a reasonable time. For solving the optimization problems w.r.t.
exact (5.4) and approximate objective function (5.14), we employ the MATLAB routine
fmincon with the interior point algorithm. Both first and second order derivatives are
provided to fmincon by using Algorithm 5.1. This led to better results compared to

107

5. Self-Generating ADI Shift Parameters

20 40 60 80

100

10−4

10−8

1

τ

iteration number j

sc
al
ed

re
si
d
u
al

n
or
m

heur

Wachs

res.min. exact

VV (1)-res.min.1)-res min

V (r)-res.min.

FOM(r)-res.min.

FOM(2r)-res.min.

20 40 60

100

200

300

size of (5.14)

j i
t

V(u)

FOM(k)

Figure 5.2.: Left: History of the normalized residual norms obtained with different ver-
sions of the residual norm-minimizing shifts. Right: number of LR-ADI
iteration steps jit against dimension of (5.14) for V (u) and FOM(k) bases.

the first occurrence [39] of the residual norm-minimizing shifts, where the derivative free
fminsearch routine was used. Notice that using fmincon without second order deriva-
tives still led to useful results. However, providing also no first order derivatives usually
leads to a failure of fmincon. The stopping tolerance for the optimization iteration was
set to τopti =

1
2
τ . The constraints on the optimization variables and initial guesses are

set as described above. For the exact residual minimizing shifts the restrictions Ãj, Ẽj

w.r.t. the V (1)-shift approach were used for determining the initial guesses. For the
approximate residual norm minimizing shifts the subspaces provided by the V (u)-shift
approach and the multi-shift FOM(k) approach are used for different values u and k. For
comparison, we also employ the heuristic and approximate Wachspress shift parameters
which we set up as heur(10, 20, 10) and Wachs(10−10, 20, 20), respectively. The history
of the scaled CALE residual norm against the iterations index j for the different shift
parameters is shown in the left plot in Figure 5.2.

Apparently, the residual norm-minimizing shifts lead to a faster convergence of the
LR-ADI iteration than the heuristic or approximate Wachspress shifts, where the lat-
ter ones yield an extraordinarily slow reduction of the residual norm. It is important
to mention that only minor improvements are attained if more accurate or even exact
spectral data is used for the quantities a, b, ψ. The lowest number of iteration steps is
provided by the projected residual norm-minimizing shifts using the subspaces from the
V (r)-approach and FOM(r). These subspaces yield equally many or even slightly less
iteration steps than the exact residual norm-minimizing shifts. We observed that the em-
ployed optimization method for the exact approach encountered problems in computing
the local minimizers in several iteration steps. These problems showed through a prema-
ture termination of the optimization algorithm before an approximate local minimum
was found which was caused by too small relative changes of the optimization iterates.
The optimization routine seems to have less difficulties to solve the significant smaller,

108

5.3. Self-Generating Shifts

20 40 60
10−12

10−8

10−4

100

1

τ

iteration number j

sc
al
ed

re
si
d
u
al

n
or
m

heuristic

Wachs.

VV (3)-shifts(3) shifts

V (1)-res.min.

50 100 150 200
10−12

10−8

10−4

100

1

τ

iteration number j

heuristic

Wachs.

V (2)-shifts

V (2)-res.min.

Figure 5.3.: Scaled residual norm against iteration step j of the G-LR-ADI iteration
employing different shift strategies for rail79k (left) and ifiss66k (right) ex-
amples.

projected optimization problem. For this, equally good results can also be obtained if
no exact Hessians are provided and also if the trust-region-reflective algorithm within
fmincon is used. We also see that increasing the dimension of the reduced optimization
problem by higher values u for the V (u)-approach usually yields shift parameters of bet-
ter quality, i.e., less required LR-ADI iteration steps jit. In the right plot in Figure 5.2
we observe that the V (u)-approach appears to require smaller subspace dimensions com-
pared to FOM(k). Therefore, this is the method of choice in the remaining experiments
for obtaining the projected optimization problem.

Comparison of Different Shift Parameters for the G-LR-ADI Iteration

The results for all five test examples and different shift strategies are summarized in
Table 5.1. The approximate residual minimizing shifts are now computed with the
trust-region-reflective algorithm within fmincon. We do not include exact Hessians by
Algorithm 5.1 because this brought only minor performance gains of the optimization
routine at the expense of higher shift generation times.
The results for these examples and the different shift strategies are summarized in

Table 5.1: tshift and tADI denote the times (in seconds) spent for computing the shifts
and executing the G-LR-ADI iteration, respectively, and the total consumed time is
ttotal. The required iteration steps jit and the final obtained residual norm εjiter are also
given. The smallest values of tshift, ttotal, and jit for each example are emphasized using
bold letters. We only report the shift strategies where the desired accuracy was met in
in less than jmax iteration steps. In addition, Figure 5.3 shows the scaled residual norm
against the ADI iteration number for the examples rail79k and ifiss66k.
For the heuristic and approximate Wachspress shifts it is apparent that, compared

to the plain ADI computation time tADI, a significant portion tshift of the total execu-
tion time ttotal is spent in the involved Arnoldi processes. They manage to steer the

109

5. Self-Generating ADI Shift Parameters

Table 5.1.: Results for the examples using different shift strategies.

Example shift strategy tshift tADI ttotal jit εjit

FDM
τ = 10−10

jmax = 250

heur(10, 20, 10) 10.4 245.9 256.2 157 7.71·10−11

Wachs(10−10, 20, 20), J = 31 19.8 149.4 169.2 99 9.94·10−11

V (2)-shifts 0.7 150.5 151.2 104 9.44·10−11

W -shift 1.8 160.8 162.6 113 9.59·10−11

V (3)-res.min. 7.4 118.3 125.7 77 8.51·10−11

rail79k
τ = 10−10

jmax = 100

heur(20, 40, 40) 24.9 56.8 81.7 54 7.00·10−11

wachs(10−10, 20, 10), J = 47 6.5 73.9 80.4 47 6.27·10−11

V (3)-shifts 1.2 74.4 75.6 60 5.31·10−11

V (1)-res.min. 2.7 57.6 60.3 49 8.05·10−11

ifiss66k
τ = 10−10

jmax = 200

heur(20, 30, 20) 19.2 141.6 160.8 165 8.62·10−11

Wachs(10−10, 20, 10), J = 33 10.2 163.4 173.6 193 6.88·10−11

V (2)-shifts 1.2 84.9 86.1 103 2.69·10−11

V (2)-res.min. 3.3 79.1 82.4 91 4.03·10−11

chain
τ = 10−8

jmax = 400

heur(50, 80, 80) 18.8 19.6 38.4 476 9.98·10−9

Wachs(10−10, 20, 10), J = 160 1.5 8.6 10.1 370 8.96·10−9

V (1)-shifts 0.4 6.5 6.9 167 8.95·10−9

V (1)-res.min. 4.3 12.2 16.5 153 9.57·10−9

bips
τ = 10−8

jmax = 400

heur(40, 50, 70) 9.3 23.9 33.1 378 5.94·10−9

heur(60, 80, 80) 8.2 12.3 20.5 194 9.36·10−9

Wachs(10−8, 30, 30), J = 216 2.9 16.7 19.6 187 9.65·10−9

V (2)-shifts 0.1 5.6 5.7 85 7.64·10−9

W -shifts 1.7 7.2 8.9 96 9.88·10−9

V aug-shifts 0.1 5.7 5.9 85 9.81·10−9

V (2)-res.min. 2.9 6.0 8.9 81 8.47·10−9

iteration to the desired accuracy, but for each example there is at least one other shift
strategy which required less iteration steps. The number of used Arnoldi steps k+, k−
can substantially influence the quality of the heuristic shifts as it is seen in the bips
example. There, two settings are used: the first one uses exactly the values J , k+, k−
as in the original SLRCF-ADI paper [98, Section V, Table V] while the second one was
chosen through extensive trial and error optimization. The difference in both execution
time as well as iteration steps is distinct. As expected, the approximate Wachspress
shifts lead to a very good performance both in terms of execution time and required
iterations for the symmetric example rail79k. Their typical residual curves can be seen
in Figure 5.3 (left plot). They loose this superiority for the examples where complex
spectra with large imaginary parts are encountered. There, they can often not compete
with the heuristic, and in several accounts also not with the other shift strategies which
is evident in the right plot of Figure 5.3 for the ifiss66k example. In additional tests the

110

5.3. Self-Generating Shifts

Wachspress shifts seemed to be less sensitive w.r.t. the values k+, k− than the heuristic
shifts.
Now, we move on to the novel self-generating shifts proposed in Section 5.3.1-5.3.2.

The V (u)- andW -shifts in all examples require a very small construction time tshift which
is in most cases a negligible fraction of ttotal. However, except for FDM and bips, the
W -shifts did not achieve the required accuracy before jmax ADI iterations. The V (u)-
shifts outperform the heuristic and approximate Wachspress shifts for all but except
the FDM and rail79k examples. Especially for the chain and bips examples they lead
to a drastically reduced number of required iterations. In fact, we never experienced a
faster ADI convergence for the bips system. There, the performance of the V aug-shifts
is comparable to the V -shifts. The W -shifts achieved convergence while the W aug-shifts
did not.
The residual norm-minimizing shifts using the basis of the V (u)-shifts lead to a further

speed up of the G-LR-ADI iteration for most examples. For FDM and ifiss66k this led
also to a lower computation time ttotal. Due to the inherent optimization problems,
the generation times tshift are noticeable larger compared to the V (u)-shifts. Their
generation is still less costly than for the heuristic and approximate Wachspress shifts
which leads to even smaller computation times for the symmetric rail79k examples. In
the left plot in Figure 5.3 we see that they lead to a more even decrease of the residual
norm, compared to the Wachspress shifts which achieve a fast rate of convergence after
a comparable slow phase in the beginning. In some cases, convergence problems in the
employed optimization algorithm were encountered in the residual norm-minimizing shift
approach. This can be seen from the short stagnation phases in the left plot Figure 5.3 for
the rail example. To conclude, the V (u)-shifts appear to be a very promising approach,
especially for Lyapunov equations with nonsymmetric coefficient matrices, where the
spectrum contains complex eigenvalues. For problems with real spectra the approximate
Wachspress shift are usually also a reasonable choice. The extension to the V (u)-residual
norm-minimizing shifts appears to lead to further improvements in most cases.
Another big advantage of both approaches is, although not reflected in the timings

and iteration counts, that they can be applied completely automatically in the sense
that they can be implemented without the user having to take care of selecting ADI
shifts at all. The exception is the horizon parameter u for which u = 2 appears to be
sufficient for most situations. In [39], the setting u = 1 is used which already delivered
significant speed ups compared to existing shift strategies. The V (u)-res.min. shifts
rely on a successful numerical solution of the projected optimization problem, where
problems occurred for some examples. The success of the inherent optimization routine
seemed, in some instances, also to critically depend on the chosen constraints of the
optimization variables and the initial guesses. Further enhancement of this optimization
phase are mandatory for making the V (u)-res.min. shift strategy more robust.

Comparison with Other Low-Rank Methods for GCALEs

Having improved and automated the shift parameter issue for the G-LR-ADI iteration,
we now run some comparative studies with two other low-rank methods for GCALEs.

111

5. Self-Generating ADI Shift Parameters

For this we employ the Extended and Rational Krylov Subspace Methods (EKSM and
RKSM) [209, 82] with the same stopping criterion based on the scaled residual norm
as before. A basic implementation of RKSM can be found in Algorithm A.1 in the
appendix. All of the examples used before have r > 1 and, therefore, block versions
of EKSM and RKSM are employed. RKSM demands, similar to the ADI iteration, a
number of shift parameters ξ1, . . . , ξk ∈ C+ and the adaptive strategy proposed in [83]
is used. Complex shift parameters are dealt with along the lines of [195] (see Line 8 in
Algorithm A.1).
Since Krylov subspaces are usually defined by a single matrix and the initial vector

(or block column), some remarks are in order on how to deal with the matrix E �= In
for generalized problems. Because E is nonsingular, Krylov subspace methods can be
implicitly build from Â := E−1A and B̂ := E−1B. For EKSM also matrix vector
products with Â−1 = A−1E are required such that in each iteration step two linear
systems have to be solved: one with A and one with E. The linear systems required
in each step of RKSM can, in complete analogy to Algorithm 3.2, be expressed by
(A − ξiE)

−1E. Alternatively, one can implicitly work with Â = L−1AL−T , B̂ = L−TB
if 0 ≺ E = LLT , where L is the lower, triangular Cholesky factor of E which has to
be constructed only once in the beginning. Since in this case EKSM also works with
Â−1 = LTA−1L, it requires additional linear solves as well as matrix vector products with
L and LT . The shifted and inverted matrices of RKSM are given by L(A+ξiE)

−1LT see,
e.g., [209, 83]. It is noteworthy that the G-LR-ADI iteration (Algorithm 4.3) does not
require any solves with E or its Cholesky factors. For EKSM it can also be advantageous
to compute and store a factorization of A before the actual iteration and reuse its factors
in each iteration step. For the examples chain and bips, modifications of EKSM and
RKSM are used which employ similar structure exploiting techniques as in the SO-LR-
ADI and SLRCF-ADI iteration.
For example FDM, we will also take the opportunity to compare to the original LR-

ADI iteration (3.10) from Section 3.2 without any of the improvements developed though
the Chapters 3–5. That is, no exploitation of the low-rank structure (Theorem 6.1) of
Lj and therefore computing ‖Lj‖ via a Lanczos process, no handling of complex shift
parameters (cf. Section 4.1), and using only the heuristic shift parameter approach.
The results are summarized in Table 5.2 which gives the column dimension d of the

computed low-rank solution factor. For EKSM and RKSM, this is also the dimension
of the used extended or rational Krylov subspace. Furthermore, computational timings
tsol., torth., tsmall, tshift, and tres. for different stages of the algorithms corresponding to
linear system solves, orthogonalization, solving the small, projected GCALE, computing
the residual norm, and generating shift parameters, respectively, are given as well the
total computation time ttotal. Notice that since we do not include further computational
stages, for instance, initializing data structures, augmenting the low-rank solution fac-
tors, or constructing certain auxiliary quantities, the actual total computation time ttotal
can be slightly larger than the sum of tsol., torth., tsmall, tshift, and tres.. The smallest value
of ttotal is written in bold letters. Due to the nature of particular algorithms, some of
the single timings are not present. Since the G-LR-ADI iteration uses orthogonalization
routines exclusively for the shift generation and not as part of the intrinsic iteration, the

112

5.3. Self-Generating Shifts

corresponding value tshift includes any possible orthogonalization timings. In addition,
Figure 5.4 shows for two examples the progress of the scaled Lyapunov residual norms of
all three low-rank solvers as the column dimension of the low-rank solution factor grows.

Table 5.2.: Comparison between G-LR-ADI iteration, EKSM and RKSM.

Example algorithm dim. tsol. torth. tsmall tshift tres. ttotal

FDM
τ = 10−10

old LR-ADI, heur. 770 411.1 – – 10.2 213.8 636.8

LR-ADI, V (3)-res.min. 385 112.2 – – 7.4 0.7 125.7

EKSM 930 127.6 95.0 134.9 – 0.02 363.6

RKSM 355 101.9 42.5 10.9 14.1 8.1 178.7

rail79k
τ = 10−10

G-LR-ADI, V (1)-res.min. 343 52.9 – – 2.7 0.6 60.3

EKSM 980 83.6 51.4 112.3 – 0.02 251.6

RKSM 294 45.7 13.8 17.6 5.6 5.4 89.2

ifiss66k
τ = 10−10

G-LR-ADI, V (2)-res.min. 450 76.2 – – 3.3 0.4 82.4

EKSM 1030 110.5 49.2 188.3 – 0.03 352.1

RKSM 400 66.4 24.6 20.3 17.1 5.1 134.1

chain
τ = 10−8

SO-LR-ADI, V (1)-shifts 835 5.0 – – 0.4 0.1 6.9

EKSM no convergence

RKSM 775 7.1 58.2 69.7 85.3 12.2 233.4

bips
τ = 10−8

SLRCF-ADI, V (1)-shifts 340 5.5 – – 0.1 0.1 5.7

EKSM no convergence

RKSM 320 4.9 1.1 5.2 11.8 0.2 23.3

In all examples, the G-LR-ADI iteration achieves the desired accuracy in the smallest
amount of time. RKSM requires slightly smaller dimensions of the low-rank solution
factors which directly translates to slightly less iteration steps. Because of the inherent
orthogonalization processes and the solution of the small, projected GCALEs, the com-
putation times are noticeable larger compared to the G-LR-ADI iteration. The adaptive
shift generation within RKSM appears to be also more costly than the used shift strate-
gies for the G-LR-ADI iteration. In contrast, EKSM cannot compete with either RKSM
or the G-LR-ADI iteration as it exhibits a much slower residual norm reduction leading
to significantly higher times torth. and tsmall. EKSM does fail to deliver an approximate
solution for the examples chain and bips. It should be noted that for EKSM and RKSM,
solving the small GCALE only at every couple of steps, e.g., every 5th step, is a very
obvious procedure for reducing tsmall. A further development using a minimal residual
type extraction [166] instead of the Galerkin approach points towards improvements of
the convergence speed of EKSM and RKSM. It is, however, also mentioned in [166] that
this minimal residual extraction becomes expensive for r > 1. Employing tangential
directions [84] can help to reduce the overall computational effort, especially regarding
the orthogonalization, in EKSM and RKSM. There, the basis of the subspace is, e.g. in
RKSM, augmented by s = (I − A/ξ)−1Ud for U ∈ Cn×m and an appropriately chosen

113

5. Self-Generating ADI Shift Parameters

0 200 400 600 800 1,000
10−12

10−8

10−4

100

τ

coldim(Z)

sc
al
ed

re
si
d
u
al

n
or
m

0 200 400 600 800 1,000
10−12

10−8

10−4

100

τ

coldim(Z)

(G)-LR-ADI

EKSM

RKSM

Figure 5.4.: Scaled residual norm against the column dimension of the low-rank solution
factors generated by different low-rank methods for the FDM (left) and
rail79k (right) examples.

tangential direction vector d ∈ Cm. A first concept to introduce tangential directions
into the G-LR-ADI iteration can be found in [236]. For this, however, there is no efficient
generation strategy for the tangential directions d available so far. It is noteworthy that
except rail79k, none of the examples satisfies the condition

E−1A+ ATE−T ≺ 0 ⇔ AET + EAT ≺ 0 (5.20)

which ensures that the coefficient matrices defining the projected GCALE (cf. the de-
scription in Section 2.3.4) are asymptotically stable. Apparently EKSM or RKSM were
not negatively affected by this violation in the majority of experiments. Only for the
bips example, EKSM encountered severe convergence problems caused by a violation of
(5.20). This resulted in a frequent construction of unstable coefficient matrices defining
the projected GCALEs and, consequently, to defective results. Such unstable projected
matrices also appeared with significantly less occurrences in RKSM and, for FDM, for
both RKSM and EKSM. In these cases, however, the algorithms seem to recover from
this and still produce meaningful results. For chain, the convergence speed of EKSM
was comparably very slow as it achieved a scaled residual norm of εjit ≈ 3.6 ·10−3 in 150
iterations and a subspace dimension of 1500 after which we terminated the routine.
To conclude, for the used examples the G-LR-ADI iteration is definitely competitive to

RKSM and EKSM. The good performance of the G-LR-ADI iteration is to a substantial
amount also achieved by the efficiency enhancements introduced prior in Sections 3.2 and
4.1. Without those modifications, any superiority compared to EKSM, RKSM would
be lost, as we see from the large timings of the old version of the LR-ADI iteration for
example FDM. The newly developed self-generating shift parameters further improve
the G-LR-ADI iteration. It is important to keep in mind that both RKSM and the
G-LR-ADI iteration critically depend on good shift parameters, and their absence can
yield severe losses w.r.t. the performance of both methods.

114

5.4. Shift Parameters for the Sylvester ADI Iteration

5.4. Shift Parameters for the Sylvester ADI Iteration

In this section, we discuss shift parameters strategies for the G-fADI iteration for
GCASEs. We begin again by reviewing some selected existing shift strategies. After
that we generalize the projection based and residual norm-minimizing shifts discussed in
Section 5.3 in a straightforward way. Numerical experiments illustrate the performance
of the G-fADI iteration under the influence of different shift generation approaches.

5.4.1. Existing Shift Strategies

Similar to the G-LR-ADI iteration for Lyapunov equations, the error reduction in the
ADI iteration (3.29) and its low-rank version, the G-fADI iteration (Algorithm 3.4),
for generalized Sylvester equations depends by Lemma 3.12 critically on the iteration
matrices

A(j) :=

j∏
k=1

C
(k)
A , C

(k)
A := C(A,E,−βk, αk) = (A− βkE)

−1(A− αkE),

B(j) :=

j∏
k=1

C
(k)
B , C

(k)
B := C(B,C,−αk, βk) = (B − αkC)

−1(B − βkC).

(5.21)

In [230, 202, 162, 43], approaches are presented to obtain shifts for j iteration steps of
the G-fADI iteration such that the spectral radii of A(j), B(j) are as small as possible.
This leads to the rational optimization problem

min
αj ,βj∈C

(
max
1≤�≤n

1≤k≤r

J∏
j=1

∣∣∣∣(λ� − αj)(μk − βj)

(λ� − βj)(μk − αj)

∣∣∣∣
)
, λ� ∈ Λ(A, E), μk ∈ Λ(B, C), (5.22)

which is also referred to as two-variable ADI parameter problem [230, 233] and is harder
to solve than the optimization problem (5.2) for Lyapunov equations. Using (5.22) as
starting point for finding shift parameters has the same conceptual drawback as (5.2),
i.e., the low-rank structure of the inhomogeneity FGT is not embraced. In the following,
we review existing generalizations of the Wachspress and heuristic shifts for the G-fADI
iteration which are based on (5.22). Afterwards, generalizations of the self-generating
shifts presented in Section 5.3 are proposed.

Optimal Shifts for the Two-Variable ADI Parameters Problem

Analytic solutions for solving (5.22) are proposed, e.g., in [230],[233, Chapter 2 &
4] and are based on spectral alignment and, as in the Lyapunov case, elliptic inte-
grals. They require knowledge of the smallest and largest real parts a := mini Re (λi),
b := maxi Re (λi), c := mini Re (μi), d := maxi Re (μi) and the opening angles (cf. 2.27)

ψA := maxi arctan | Im (λi)
Re (λi)

|, ψB := maxi arctan | Im (μi)
Re (μi)

| for λi ∈ Λ(A, E) and μi ∈

115

5. Self-Generating ADI Shift Parameters

Λ(B, C). An implementation of this shift generation strategy is given in the parsyl1

routine provided in [233]. If the spectra Λ(A, E), Λ(B, C) are contained in real, disjoint
intervals [a, b], [c, d], another similar approach for generating an equal number J of α-
and β-shifts is given in [202, Algorithm 2.1].

As in the Lyapunov case, one might use Arnoldi or Lanczos processes to obtain ap-
proximations to a, b, c, d, ψA, ψB in the large-scale case for both approaches. We
propose to approximate Λ(A, E) by a set consisting of kA+ Ritz and kA− inverse Ritz
values w.r.t. E−1A and A−1E. Likewise, Λ(F, G) is replaced by kB+ Ritz and kB− inverse
Ritz values w.r.t. C−1B and B−1C. Approximations to the extremal eigenvalues and
the spectral angles of Λ(A, E) and Λ(B, C) can then be read of easily. However, as
for the approximate Wachspress shifts in the GCALE case, the obtained shifts can be
sensitive w.r.t. the quality of the approximations of the extremal eigenvalues. This was
numerically investigated in [202, Section 2.2.2] for the optimal real shift parameters.

Heuristic Shifts

In [162, 43], a heuristic approach is proposed which generalizes the Penzl shifts (Sec-
tion 5.2.2) to the solution of Sylvester equations. The spectra Λ(A, E), Λ(B, C) are
approximated in the same way as for the optimal shifts above. With these sets of Ritz
values, one solves (3.38) in an approximate sense to get J ≤ kA++kA− α- and L ≤ kB++kB−
β-shifts. A detailed implementation can be found in [162, Algorithm 3.1], [43, Algorithm
2]. In [32], just the kA++k

A
− and kB++kB− Ritz values are used as shifts which worked suffi-

ciently well. This heuristic approach suffers from the same disadvantages as the heuristic
approach for Lyapunov equations discussed in Section 5.2.2: there is no known rule on
how to select the predefined numbers J , L, kA+, k

A
−, k

B
+ , and k

B
− , the quality of the Ritz

values (and, hence, of the shifts) depends on the performance of the Arnoldi processes
which also introduces additional costs due to the required linear solves. Moreover, there
is no known strategy for choosing their initial vectors suitably.

Other Shifts

An overview over several other approaches for generating shifts for the Sylvester ADI
iteration, for instance, generalizations of the Leja point based shifts, can be found in
[202]. For a generalized version of the iteration (3.28), specialized shift strategies can be
found in [158]. Shifts for Sylvester equations occurring in image restoration are proposed
in [64].

For symmetric Sylvester equations with E, −C, −A, −B spd, a generalization of
IRKA for GCASEs (symmetric Sylvester IRKA, (Sy)2IRKA) is given in [21, Algo-
rithm 3],[22]. Similar to the IRKA approach for GCALEs, the obtained approximate
solutions again satisfy an optimality condition w.r.t. their residual in a certain norm.
The shifts obtained from (Sy)2IRKA can also be used within the G-fADI iteration lead-
ing to equivalent approximate solutions as discussed in [96]. (Sy)2IRKA can be easily

1Available at http://extras.springer.com/2013/978-1-4614-5121-1.

116

5.4. Shift Parameters for the Sylvester ADI Iteration

modified to a general Sylvester IRKA (SyIRKA) to handle GCASEs with nonsymmet-
ric coefficients. This strategy has the same drawbacks as the similar one in GCALE
case, especially the high computational cost of SyIRKA makes it a computationally less
feasible as it is reported in the numerical experiments with SyIRKA in [39]. As in the
GCALE case, they also appear to be highly susceptible regarding the starting data for
SyIRKA. The SyIRKA shifts are rather theoretically motivated due to the interesting
theoretical properties [96, 21, 22] of the IRKA shifts.

5.4.2. Self-Generating Shifts

In the upcoming subsections, we present generalizations of the V (u)-, W -, and residual
norm-minimizing shifts from Section 5.3 for the use in the G-fADI iteration. In line with
the considerations in Section 4.2, we assume that the used sets of shift parameters are
proper (Definition 4.1) and are ordered in the introduced form (cases 1–3)

Shifts Obtained via Projections with ADI Iterates

In [39], the V (u)- and W -shifts for GCALEs in Section 5.3.1 are in a straightforward
manner generalized to GCASEs. Assume we completed step j of Algorithm 3.4 having
the iterates Vj, Sj computed, and look for shift parameters for the subsequent iteration
steps. Let Qj, Uj contain orthonormal columns which span the bases of span {Vj} and,
respectively, span {Sj}. Then the α- and β-shifts for the next r iteration steps are
taken as the eigenvalues of the restrictions corresponding to Ritz Galerkin projections
of (A, E) and (B, C) w.r.t. span {Vj} and span {Sj}:

{αj+1, . . . , αj+r} = Λ(Ãj := QH
j AQj, Ẽj := QH

j EQj),

{βj+1, . . . , βj+r} = Λ(B̃j := UH
j BUj, C̃j := UH

j CUj).

In analogy to the V -shifts, this approach is referred to as V/S-shifts, [39]. As in the
GCALE case it is reasonable to work with orthonormal bases of [Re (Vj) , Im (Vj)] and
[Re (Sj) , Im (Sj)] when Vj, Sj are complex iterates. Due to the complicated and bulky
formula derived in Theorem 4.7, Corollary 4.8 w.r.t. the handling of complex shift pa-
rameters, we keep to the complex G-fADI iteration (Algorithm 3.4) as this considerably
eases and shortens the representations.
As for the V (u)-shifts, we can also incorporate the block columns of the low-rank

solution factors Z, Y w.r.t. u > 1 previous iteration steps which directly leads to
V/S(u)-shifts. To construct the restrictions Ãj, B̃j more efficiently we can, along the
lines of (5.3), modify the relation (3.46) or Corollary 3.16:

AẐj,u = WjG
T
j,u + EẐj,uσ

α
j,u, BT Ŷj,u = TjG

T
j,u + CT Ŷj,uσ

β
j,u, (5.23)

where Ẑj,u := Z(:, (j−u)r+1 : jr), Ŷj,u := Y (:, (j−u)r+1 : jr), and σα
j,u, σ

β
j,u ∈ Cru×ru,

Gj,u are the appropriate blocks of σα
j , σ

β
j , Gj.

Incorporating the relations established in Theorem 4.7, Corollary 4.8 will change Ẑj,u,

Ŷj,u σα
j,u, and σβ

j,u to real matrices. The formula (5.23) can be used to construct the

117

5. Self-Generating ADI Shift Parameters

restrictions w.r.t. orthonormal bases of span(Ẑj,u) and span(Ŷj,u) without additional
matrix vector products with A, B. For the restrictions of B, C, the formulas (3.46),
(5.23) suggest to actually work with BT , CT instead which does not represent any
difficulties since both are real matrices. Some matrix vector products with E, CT have
to be stored or recomputed, however. Similar to the V (u)-shifts, we propose to select a
smaller number of, e.g., r, α- and β-shifts from the entire ru eigenvalues by using the
previously mentioned heuristic strategy.

In [39], also an intuitive generalization of the W -shifts, called the W/T -shifts, is
proposed by using orthonormal bases for span {Wj}, span {Tj}. Again, the restrictions
for these W/T -shifts cannot be built without multiplications with A, B.

For both, V/S(u)- and W/T -shifts, initial α- and β-shifts can be constructed by
using orthonormal bases of F and G, respectively. In our upcoming experiments the
orthogonalization process is carried out exactly as in the GCALE case. It can happen in
both shift generation strategies that the number of obtained α- and β-shifts is different,
and, hence, new α- and β-shifts do not need to be calculated at the same time, but we
restrict to this situation here for simplification. Notice that one should ensure that the
new shifts satisfy α �= β.

Residual Norm-Minimizing Shifts

Motivated by the Lyapunov residual norm-minimizing shifts in Section 5.3.2, one can
derive a similar framework for Sylvester equations. At step j of the G-fADI iteration,
the (spectral or Frobenius) norm of the Sylvester residual Sj is by (3.40), (3.45) given
as

‖Sj‖ = ‖WjT
H
j ‖ =

√
λmax((TH

j Tj)(W
H
j Wj)),

where the residual factors are

Wj = Wj−1 + (βj − αj)EVj = Wj−1 + (βj − αj)E
(
(A− βjE)

−1Wj−1

)
,

Tj = Tj−1 − (βj − αj)C
TSj = Tj−1 − (βj − αj)C

T
(
(B − αjC)

−HTj−1

)
.

Since Wj−1, Tj−1 are known at the beginning of step j, the only unknowns above are
the shift parameters αj, βj and we may see ‖Sj‖2 as a function

hj(αj, βj) := λmax((W
H
j Wj)(T

H
j Tj)) (5.24)

in two complex variables. By decomposing α, β as α = ν + jξ, β = δ + jη, we can also
consider hj as function in four real variables hj(αj, βj) = hj(νj, δj, ξj, ηj). Finding the
optimal shifts w.r.t. to (5.24) motivates the optimization problem

[νj, δj, ξj, ηj] = argmin
ν∈R,ξ∈R+
δ∈R,η∈R+

hj(νj, δj, ξj, ηj). (5.25)

The remarks from the GCALE case regarding global and local minimizers of the ob-
jective function fit here as well and we, therefore, restrict to the detection of local

118

5.4. Shift Parameters for the Sylvester ADI Iteration

minima only. Solving (5.25) exactly is again very expensive since each function evalua-
tion of hj in an optimization routine alone requires to solve two shifted linear systems
with r right hand sides. In the following, similar strategies compared to the residual
norm-minimizing shifts in the GCALE case are introduced to help with the formidable
eigenvalue optimization problem.

Derivatives of the Objective Function The same techniques regarding the derivatives
of eigenvalues of parameter dependent matrices [149] which we employed for the residual
norm-minimizing shift in the GCALE case can be applied here to (5.24). Neglecting for
the moment the iteration index j, the next theorem expresses ∇h in terms of the involved
matrices and the shift α, β.

Theorem 5.2 (Gradient of the objective function (5.24)):

With A,E,B,C defining a GCASE, W, T the low-rank factors of the residual of
the G-fADI iteration, two complex numbers α = ν + jξ, β = δ + jη with α �= β,
α, β /∈ Λ(A,E) ∪ Λ(B,C), and let

W+ := W + γEWA, WA := EL−1
A W, WA2,+ := EL−1

A W+, LA := A− βE,

T+ := T − γCTTB, TB := CTL−H
B T, TB2,+ := CTL−H

B T+, LB := B − αC,

γ := β − α = δ − ν + j(η − ξ). ♦
Assume that (WH

+ W+)(T
H
+ T+) has r simple eigenvalues for all α, β and let x1, y1 with

yH1 x1 = 1 be the right and left eigenvector corresponding to the largest eigenvalue.
The gradient of h = h(ν, δ, ξ, η) is given by

∇h = 2

⎡
⎢⎢⎢⎢⎣
−Re

(
yH1 W

H
A W+T

H
+ T+x1

)
Re

(
yH1 W

H
A2,+W+T

H
+ T+x1

)
− Im

(
yH1 W

H
A W+T

H
+ T+x1

)
Im

(
yH1 W

H
A2,+W+T

H
+ T+x1

)

⎤
⎥⎥⎥⎥⎦ + 2

⎡
⎢⎢⎢⎢⎣

Re
(
yH1 W

H
+ W+T

H
B2,+T+x1

)
−Re

(
yH1 W

H
+ W+T

H
B T+x1

)
− Im

(
yH1 W

H
+ W+T

H
B2,+T+x1

)
Im

(
yH1 W

H
+ W+T

H
B T+x1

)

⎤
⎥⎥⎥⎥⎦ . (5.26)

Proof. We can proceed largely similar to the proof of Theorem 5.1, although we now
have to deal with two Cayley transformations and in total four variables. With

H = (WH(ĈA)
H ĈAW)(TH(ĈB)

H ĈBT) = (WH
+ W+)(T

H
+ T+),

ĈA = ĈA(A,E, ν, δ, ξ, η) := In + γEL−1
A , ĈB = ĈB(ν, δ, ξ, η) := Im − γCTL−H

B ,

it holds again by the results from [149, 173] that hχ = yH1
∂
∂χ
Hx1, where χ can be any

of the variables ν, δ, ξ, η. The derivative of H is (using the notation ∂
∂χ

= ∂χ)

∂χH =
(
∂χ(W

H ĈH
A ĈAW)

)
(TH ĈH

B ĈBT) + (WH ĈH
A ĈAW)

(
∂χ(T

H ĈH
B ĈBT)

)
=W T

(
(∂χĈ

H
A)ĈA + ĈH

A∂χĈA

)
WTH

+ T+ +WH
+ W+T

T
(
(∂χĈ

H
B)ĈB + ĈH

B∂χĈB

)
T

=
(
W T (∂χĈ

H
A)W+ +WH

+ (∂χĈA)W
)
TH
+ T+

+WH
+ W+

(
T T (∂χĈ

H
B)T+ + TH

+ (∂χĈB)T
)
.

119

5. Self-Generating ADI Shift Parameters

For instance, the partial derivatives of ĈA, ĈB w.r.t. ν are

∂νĈA = −EL−1
A , ∂νĈB = (Im − γCTL−H

B)CTL−H
B

such that

∂νH = −(WH
A W+ +WH

+ WA)T
H
+ T+ +WH

+ W+

(
TH
B2,+T+ + TH

+ TB2,+

)
.

Using similar steps for the partial derivatives w.r.t. δ, ξ, and η yields

∇h = yH1

⎡
⎢⎢⎢⎣

−(WH
A W+ +WH

+ WA)

(WH
A2,+W+ +WH

+ WA2,+)

j(WH
A W+ −WH

+ WA)

−j(WH
A2,+W+ −WH

+ WA2,+)

⎤
⎥⎥⎥⎦TH

+ T+x1

+ yH1 W
H
+ W+

⎡
⎢⎢⎢⎣
(TH

B2,+T+ + TH
+ TB2,+)

−(TH
B T+ + TH

+ TB)

j(TH
B2,+T+ − TH

+ TB2,+)

−j(TH
B T+ − TH

+ TB)

⎤
⎥⎥⎥⎦ x1.

(5.27)

Obviously, h(ν, δ, ξ, η) = θ1 ∈ R such that the equations for the eigentriplet (θ1, x1, y1)
are

(WH
+ W+)(T

H
+ T+)x1 = θ1x1, (TH

+ T+)(W
H
+ W+)y1 = θ1y1.

Under the given assumptions, ĈB is nonsingular s.t. TH
+ T+ is positive definite and can be

factorized as TH
+ T+ = RH

T RT , where RT ∈ Cr×r is an upper triangular Cholesky factor.
Then with x̃1 := RTx1, ỹ1 := R−H

T y1, the above eigenvalue equations can be rewritten
as

RT (W
H
+ W+)R

H
T x̃1 = θ1x̃1, RT (W

H
+ W+)R

H
T ỹ1 = θ1ỹ1

which reveals x̃1 = ỹ1. Hence, for any matrix K of appropriate size it holds

yH1 KT
H
+ T+x1 = yH1 KR

H
T RTx1 = ỹH1 RTKR

H
T x̃1 = x̃H1 RTKHRH

T ỹ1

= ỹH1 RTKHRH
T x̃1 = yH1 R

−1
T RTKHRH

T RTx1 = yH1 K
HTH

+ T+x1.

In the same manner it can be shown that yH1 W
H
+ W+Kx1 = yH1 W

H
+ W+KHx1. As conse-

quence, (5.27) simplifies to (5.26).

Similar to the formula (5.7), evaluating the gradient requires that two additional linear
systems of equations with LA, LB have to be solved to obtain WA2,+, TB2,+. Similar to
the GCALE situation, only WA2,+y1 and TB2,+T

H
+ T+y1 are required in (5.26), such that

the right hand sides in the necessary linear systems can be reduced to single columns
W+y1 and T+W

H
+ W+y1, respectively. Thus, in order to evaluate both h and ∇h at the

point α, β, the solution of two linear systems with LA, LB and r + 1 right hand sides

120

5.4. Shift Parameters for the Sylvester ADI Iteration

each, is required. We refrain from using also exact Hessians of h since this did not lead
to improvements in the numerical experiments in Section 5.3.3. As in the GCALE case,
the assumption that the largest eigenvalue of (WH

+ W+)(T
H
+ T+) is simple for all values

of ν, δ, ξ, η is difficult to ensure in practice. A violation of this requirement might lead
to a non-differentiable objective function. As a simple measure to circumvent this issue
we again artificially reduce (5.24) to a scalar problem (r = 1) by using WdW , TdT with
dW , dT ∈ Rr instead of W, T , where dW , dT are the left singular vectors corresponding
to the largest singular value of W, T . With this, evaluating the simplified objective
function and its gradient requires the solution of two systems with LA, LB and two
right hand sides each.

Using Projected Data For reducing the numerical effort that comes with the required
linear solves for evaluating the objective function and its gradients, we pursue a similar
approach as in Section 5.3.2. Let Qj, Uj be the orthonormal basis matrices corresponding
to the proposed V/S(u)-shifts, and Ãj = QT

j AQj, Ẽj = QT
j EQj and B̃j = UT

j BUj,

C̃j = UT
j CUj the restrictions of A,E and, respectively, B,C onto span {Qj}, span {Uj}.

With W̃j = QT
j Wj and T̃j = UT

j Tj, one can construct a reduced objective function

h̃j = λmax(W̃ (α, β)HW̃ (α, β)T̃ (α, β)H T̃ (α, β)), (5.28)

W̃ (α, β) = W̃j + (β − α)Ẽj((Ãj − βẼj)
−1W̃j),

T̃ (α, β) = T̃j − (β − α)C̃T
j ((B̃j − αC̃j)

−H T̃j)

whose evaluation is now cheap due to the small dimension ru of the involved matrices
defining the linear systems. The same holds for the gradient of (5.28) which can be
constructed by (5.26) using the projected matrices.

Constraints for the Optimization Variables and Initial Guesses Also similar to the
GCALE case, we employ boxed constraints for the optimization variables:

ν− ≤ ν ≤ ν+, 0 ≤ ξ ≤ ξ+,

δ− ≤ δ ≤ δ+, 0 ≤ η ≤ η+.
(5.29)

If the spectra Λ(A, E) and Λ(B, C) can be strictly separated by a vertical line (cf. Corol-
lary 2.41), this separation should be reflected in (5.29). For instance, when Λ(A, E) ∈
C− and Λ(B,C) ∈ C+, i.e., the vertical line is positioned at the origin, the used shifts
should obey this restriction, i.e., Re (β) − Re (α) = δ − ν > 0, and we set ν+ < 0 and
δ− > 0 in (5.29). This also automatically ensures that β �= α. We point out that the
already used as well as the upcoming GCASE examples fit into this class. We know
that for GCALEs defined by coefficients with Λ(A, E) ∈ C−, the G-LR-ADI itera-
tion constitutes a convergent process as long as also the shifts have negative real parts
since ρ(C(A,E, α)) < 1. The situation for GCASEs is considerably more complicated.
From the viewpoint of (5.21), (5.22), and the reduced objective function (3.39), we may

121

5. Self-Generating ADI Shift Parameters

demand that every pair of shifts α, β satisfies

q(α, β) :=

∣∣∣∣∣(λ̃− α)(μ̃− β)

(λ̃− β)(μ̃− α)

∣∣∣∣∣
2

< 1, ∀λ̃ ∈ Λ(Ãj, Ẽj), ∀μ̃ ∈ Λ(B̃j, C̃j), (5.30)

which implies supλ̃, μ̃ q(α, β) < 1. This represents r2u2 conditions to be satisfied by
the optimization variables. In terms of ν, δ, ξ, η, the rational function q(α, β) can be
written as

q(α, β) =
|λ̃|2 + ν2 + ξ2 − 2(Re(λ̃)ν + Im(λ̃)ξ)

|λ̃|2 + δ2 + η2 − 2(Re(λ̃)δ + Im(λ̃)η)
· |μ̃|

2 + δ2 + η2 − 2(Re (μ̃) δ + Im (μ̃) η)

|μ̃|2 + ν2 + ξ2 − 2(Re (μ̃) ν + Im (μ̃) ξ)
.

These additional restrictions can be added as nonlinear constraints of ν, δ, ξ, η to
the optimization problem (5.25). Numerical experiments show that without (5.30) the
obtained shift parameters can lead to an oscillatory behavior of ‖Sj‖.
If the applied optimization algorithm demands an initial guess, we follow the same

strategy as in the GCALE case, i.e., we take the first pair of shifts returned by the
heuristic approach [162, 43] on the basis of Λ(Ãj, Ẽj), Λ(B̃j, C̃j). This can also be
related to (5.30), where this pair of shifts leads to the smallest nonzero value of q(α, β)
evaluated at Λ(Ãj, Ẽj), Λ(B̃j, C̃j).

5.4.3. Numerical Experiments

In this section, we test some of the proposed shift strategies for the Sylvester ADI
iteration. In all examples, the G-fADI iteration is terminated when εj := ‖Sj‖/‖FGT‖ <
τ with τ = 10−10 or after jmax iteration steps.
We take the following test examples. At first, the example FMD-S introduced in

Section 4.2.3 consisting of two variations of the FDM system. We increase the leading
dimensions to n = 40000, m = 22500 (corresponding to n0 = 200 and m0 = 150 grid
points) and keep r = 4.
As in [21], we construct a GCASE by merging two version of the rail example. The

matrices A,E, F and −B,C,−G are taken from rail79 and rail20k, respectively, where
F,G are the corresponding input matrices of the associated dynamical system (2.5).
Since ‖FGT‖ ≈ 10−14 we use 104 · F, 104 · G instead to avoid potential numerical
instabilities by scalings with ‖FGT‖. This GCASE defined by symmetric matrices with
n = 79881, m = 20209, and r = 7 is abbreviated by rail79k/20k.
In a similar way, the third example is a larger version of the example ifiss16k/4k

from Sections 3.3.4 and 4.2.3. We merge the matrices from ifiss66k and ifiss16k to the
example called ifiss66k/16k with n = 66049, m = 16641, r = 5.
We compare the performance of the G-fADI iteration when different the shift param-

eter approaches are used. The approximate optimal shifts for solving the two-variable
ADI shift parameter problem (5.22) are obtained by the parsyl routine [233], which we
modified such that (inverse) Arnoldi processes are used to obtain the required approx-
imate spectral data. This is more efficient than using eigs as it is done in the original

122

5.4. Shift Parameters for the Sylvester ADI Iteration

Table 5.3.: Setup data and results for the Sylvester examples using different shift strate-
gies. The smallest values of ttotal and j

iter are emphasized by bold letters.

Example shift strategy tshift tADI ttotal j
iter εjiter

FDM-S
jmax = 60
active-set

heur(20, 10, 10, 20, 10, 10) 3.9 26.6 30.5 55 9.42·10−10

Wachs(10, 10, 10, 10), J =12 3.7 22.4 26.1 48 5.74·10−10

V/S(2)-shifts 0.1 17.3 17.5 36 9.13·10−10

W/T -shifts 0.1 18.7 18.8 42 1.04·10−10

V/S(2)-res.min.appr. 5.2 16.4 21.6 36 4.69·10−10

rail79k/20k
jmax = 200
active-set

heur(80, 80, 40, 40, 40, 40) 31.4 217.5 248.9 153 6.25·10−10

Sabino(10, 5, 10, 5), J = 100 4.9 123.6 128.5 93 3.36·10−10

V/S(4)-shifts 2.0 92.6 94.6 73 1.29·10−10

V/S(2)-res.min.appr. 10.4 64.5 74.9 53 5.36·10−10

ifiss66k/16k
jmax = 150
interior-point

heur(30, 30, 10, 20, 10, 20) 16.2 136.6 152.9 139 9.95·10−10

Wachs(20, 20, 20, 20), J =64 18.9 124.4 143.2 126 6.78·10−10

V/S(2)-shifts 1.1 108.0 109.1 106 6.63·10−10

V/S(2)-res.min.appr. 22.7 93.3 116.0 92 1.45·10−10

parsyl implementation. We refer to this strategy by Wachs(kA+, k
A
−, k

B
+ , k

B
−), where

kA+, k
A
−, k

B
+ , k

B
− denote the orders of the used (inverse) Krylov subspaces. The number

J = L of returned shifts is also given. For example rail79k/20k, the parsyl does not
provide good shifts and the method presented in [202, Algorithm 2.1], abbreviated by
Sabino(kA+, k

A
−, k

B
+ , k

B
−), is employed instead. The heuristic shift approach [43, 162]

w.r.t. (5.22) is denoted by heur(J , L, kA+, k
A
−, k

B
+ , k

B
−), employing also (inverse) Arnoldi

processes. The generating of the orthonormal bases for the V/S(u)- and W/T -shifts is
done as in Section 5.3.3. The execution of the optimization process for the projected
residual-norm minimizing shifts is also carried out with the help of fmincon. However,
due to the additional nonlinear constraints (5.30), the trust-region-reflective algorithm,
which we used before, is no longer applicable. The active-set or interior-point algorithms
are employed instead.

The setup data as well as the results are summarized in Table 5.3, where the first
column also indicates which optimization algorithm is used. Additionally, Figure 5.5
shows the scaled residual norm against the iteration number for the examples FDM-S
and ifiss66k/16k.

In part, similar observations can be made as in the GCALE examples. The heuristic
shifts manage to steer the G-fADI iteration to the desired accuracy within jmax iterations
for all examples. Compared to the heuristic shifts, the Wachspress type shifts require
smaller values of kA+, k

A
−, k

B
+ , k

B
− to get the necessary spectral data, leading, therefore,

to smaller times tshift. They also seem to converge similarly to the Wachspress shifts for
Lyapunov equations with real spectra. However, the required setup numbers seemed to
be highly influential for the performance of both the heuristic and Wachspress shifts.
Different values than the ones used here led to a clearly different and often slower

123

5. Self-Generating ADI Shift Parameters

10 20 30 40 50 60
10−12

10−7

10−2

103

τ

iteration number j

sc
al
ed

re
si
d
u
al

n
or
m

heuristic

Wachs.

V/S(2)-shifts

W/T -shifts

V/S(2)-res.min.

20 40 60 80 100 120 140
10−12

10−6

100

106

τ

iteration number j

heuristic

Wachs.

V/S(2)-shifts

V/S(2)-res.min.

Figure 5.5.: Scaled residual norm against iteration index j of the G-fADI iteration us-
ing different shift strategies for the FDM-S (left) and ifiss66k/16k (right)
example.

convergence, especially for the examples FMD-S and ifiss66k/16k which have complex
spectra.

As before, the V/S(u)- as well as theW/T -shifts obtained from projections onto spaces
spanned by G-fADI iterates or residual factors require the smallest generation times tshift.
However, the W/T -shifts only lead to convergence for the example FDM-S. The residual
history of both, the V/S(u)- and W/T -shifts, seems to be highly oscillatory as it is
clearly visible in the residual plots in Figure 5.5 (right plot). There are very high spikes
in ‖Sj‖ which appear to unnecessarily prolong the iteration. An investigation of this
phenomenon revealed that, in terms of (5.21), these peaks are the result of pairs of shifts

αk, βk with ρ(C
(k)
A)ρ(C

(k)
B) � 1. This indicates that the corresponding computed shifts

αk, βk are of no good quality. In some situations and other experiments, these spikes
were so high that numerical overflow led to unusable results in the end. In the results
presented in Table 5.3, the G-fADI iteration manages to recover from these instances.
The approximate residual norm-minimizing shifts largely avoid such oscillations thanks
to the constraint (5.30). Without (5.30) such peaks are also present for the residual norm-
minimizing shifts. The plots in Figure 5.5 reveal that the residual norm-minimizing shifts
allow a much smoother and monotonic decrease of ‖Sj‖ compared to the V/S(u)- and
W/T -shifts which also leads to the smallest number of iteration steps jiter for all examples
except for ifiss66k/16k. There, the residual plot in Figure 5.5 shows some smaller peaks
towards the end of the iteration. However, solving the reduced optimization problem
(5.25) appears to be more formidable than (5.5) for the G-LR-ADI iteration. This shows
in the generation times tshift in Table 5.3 which are sometimes clearly larger compared
to the other shift approaches. The example ifiss66k/16k appears to be exceptionally
difficult for all shift strategies but also w.r.t. the solution of the optimization problem
(5.25). Only the interior-point algorithm leads to useful results but still has severe issues
in detecting a local minimizer in some iteration steps.

The existing shift approaches are outperformed by the proposed self-generating strate-

124

5.5. Summary and Further Research Perspectives

gies but there is still room for improvement. Modifying the V/S(u)-shift such that the
large spectral radii caused by infeasible shifts do not occur, might lead to a further
performance improvement. At the current stage they, unfortunately, lead to numerical
instabilities for difficult GCASEs. However, their small execution and generations times,
as well as the advantage that they are computed in an entirely automatic way, makes the
V/S(u)-shifts nevertheless a promising approach. The V/S(u)-residual norm-minimizing
shifts lead to a much smoother convergence behavior and therefore more robust execu-
tion of the G-fADI iteration. They can also be computed automatically for the most
part, provided the optimization routine is able to detect local minima of (5.25) with low
effort. As for the GCALE case, future research effort should be devoted to improving
the numerical solution of this optimization problem.

5.5. Summary and Further Research Perspectives

5.5.1. Conclusions

We have discussed shift parameter strategies for low-rank ADI methods for solving large-
scale Lyapunov and Sylvester equations. After reviewing some prominent approaches to
compute shifts a-priori, two novel strategies have been proposed which generate shifts
automatically during the ADI iteration without any setup data needed. The first one
uses Galerkin projections onto spaces spanned by the current ADI iterates to obtain a
small number of Ritz values as next shifts. The second one is intrinsically designed to
compute the new shift such that the residual norm is minimized at each step. The latter
approach was enhanced by using derivative information and a projection framework in
order to significantly reduce the computation costs compared to the original setting in
[39]. The obtained shift parameters showed impressive numerical results that consider-
ably outperformed the existing shift strategies w.r.t. both the required execution time
and the required number of ADI iteration steps. The projection based V -, V/S-shifts,
and the associated residual norm-minimizing shifts, are definitely competitive to existing
shift parameter approaches, especially for problems with complex spectra. With these
new shift generation strategies, numerical experiments confirm that the G-LR-ADI it-
eration for GCALEs compares very well with other low-rank algorithms such as EKSM
[209] and RKSM [82]. For Sylvester equations, the proposed dynamically updated shifts
can lead to an oscillatory residual behavior which deteriorates the convergence, espe-
cially for the V/S-shifts. The (approximate) Wachspress shifts appear to be still a viable
choice for problems with real spectra, even though the novel strategies managed to out-
perform them in some cases. Moreover, in contrast to the existing precomputed shift
approaches, the novel strategies admit a largely automatic shift parameter generation
in the course of the iteration, which represents a clear user-oriented advantage.

125

5. Self-Generating ADI Shift Parameters

5.5.2. Future Research Possibilities and Outlook

We already mention in the previous section that the optimization process for the residual-
norm minimizing shifts can be improved further, especially for the G-fADI iteration for
GCASEs.
Here, we propose a few additional strategies that might further enhance the shift

generation itself, but also the overall ADI iteration. We restrict to the G-LR-ADI
iteration since generalizations to the G-fADI iteration are obvious.

The first extension of the residual-norm minimizing shifts is of conceptual nature.
Our motivation for considering (5.5) is to maximally reduce the residual norm from one
iteration step to the next by finding an appropriate shift parameter. In other words, the
goal is to decrease ‖Lj‖ down to ‖Lj+1‖ as much as possible. It is easy to incorporate
more than one, say � ≥ 1, future iteration steps by considering

Wj+� = C(A,E, αj+�)Wj+�−1 = C(A,E, αj+�)C(A,E, αj+�−1)Wj+�−2

= . . . =

(
�∏

i=1

C(A,E, αj+i)

)
Wj.

After iteration step j is completed, Wj is known and, thus, the next � shift parameters
αj+i = νi + jξi, i = 1, . . . , � are obtained from the solution of the optimization problem

[ν1, . . . , ν�, ξ1, . . . , ξ�] = argmin
ν∈R�

−,ξ∈R�
+

fj,�(ν, ξ),

fj,�(ν, ξ) :=

∥∥∥∥∥
(

�∏
i=1

Ĉ(A,E,ν(i), ξ(i))

)
Wj

∥∥∥∥∥
2 (5.31)

in 2� variables. Here, � can be seen as a horizon defining how many future iterations
we look ahead. If the global minimum of (5.31) is found, the resulting residual norm
‖Wj+�‖ will be the smallest one possible w.r.t. to all admissible sets of � shift parameters.
Assuming that all pairs (νi, ξi) are distinct and taking the complex conjugates of the
obtained shifts into account (i.e., using −ξi), these residual minimizing-shifts can be used
in up to 2� iterations. On the one hand, solving (5.31) is likely more demanding than
(5.5) but, on the other hand, it has to be dealt with only every �-th (or 2�-th) iteration
step. Preliminary tests showed no significant speed ups of the G-LR-ADI iteration that
were worth the additional effort resulting from solving the harder optimization problem
(5.31).

A second potential further research topic was already partly discussed when the
reduced objective function (5.14) was introduced. The approach based on the shift-
invariance of Krylov subspaces can be enhanced if the occurring linear systems of the
G-LR-ADI iteration are dealt with by iterative Krylov subspace methods. We could
then in principle employ a multi-shift variant, e.g., [103, 85, 226, 2, 102], of a Krylov
subspace method for solving all linear system that occur in the optimization routine for
(5.5) and, after a local minimizer αj+1 has been detected, also for solving the linear sys-
tem (A+αj+1In)Vj+1 = Wj of the G-LR-ADI iteration. The required iterate Vj+1 could

126

5.5. Summary and Further Research Perspectives

also be reused from the final iteration step of the optimization routine. In [160] it is
shown that the LR-ADI iteration can be rearranged such that the right hand sides of the
linear systems in every iteration step are always equal to F . Hence, the use of multi-shift
Krylov methods can even be extended to the whole algorithm. However, the drawbacks
as mentioned in Section 5.3.2 prevent the success of this strategy: the absence of a priori
knowledge of the occurring shifts and the difficulties arising in the situation E �= I. Also
note that, as remarked in [202], finding good ADI shift parameters might compete with
the goal to obtain a fast convergence of the employed Krylov solver. If these issues can
be solved in future research, this might lead to a highly efficient low-rank ADI iteration
incorporating preconditioned iterative solves and high quality residual norm-minimizing
shifts.

127

CHAPTER 6

LOW-RANK NEWTON METHODS FOR ALGEBRAIC

RICCATI EQUATIONS

Contents
6.1 Continuous-time Algebraic Riccati Equations 129

6.1.1 Newton Methods for GCAREs 130

6.1.2 The Low-Rank Newton-ADI for GCAREs 131

6.1.3 Shift Parameter Strategies for the Inner Iteration 136

6.1.4 Accelerating the Outer Iteration by a Galerkin Projection . 138

6.1.5 Numerical Experiments . 139

6.2 Nonsymmetric Algebraic Riccati Equations 144

6.2.1 Newton Methods for NAREs 144

6.2.2 Low-Rank Newton-ADI for NAREs 146

6.2.3 Numerical Experiments . 151

6.3 Conclusions . 156

This chapter is concerned with the computation of factorized solutions of low-rank
of continuous-time and non-symmetric algebraic Riccati equations. For this, low-rank
implementations of a Newton’s scheme will be considered, where the occurring Lyapunov
and Sylvester equations are dealt with by the respective low-rank ADI iteration. The
previously established enhancements of the low-rank ADI iteration are incorporated as
well.

6.1. Continuous-time Algebraic Riccati Equations

We consider generalized, continuous-time, algebraic Riccati equations (GCARE)

R(X) = ATXE + ETXA− ETXFF TXE + CTC = 0 (6.1)

with A, E, X ∈ Rn×n, E nonsingular, C ∈ Rp×n, and F ∈ Rn×r (cf. Definition 2.34).
Here, in contrast to the GCALEs (3.12), the right most coefficient is AT because such

129

6. Low-Rank Newton Methods for Algebraic Riccati Equations

GCAREs often arise in the design of linear-quadratic-regulators (LQR) to stabilize or
control generalized state-space systems of the form (2.5). There, one is interested in the
stabilizing solution X∗ such that Λ(A − FKT , E) ⊂ C−, where K := ETX∗F ∈ Rn×r

is usually referred to as stabilizing feedback matrix. In contrast to GCALEs, this also
means that the spectrum Λ(A, E) is allowed to have unstable eigenvalues. We assume in
the following that the conditions of Lemma 2.35 are fulfilled which ensure the existence
and uniqueness of X∗. Moreover, with r, p � n one can expect that a fast decay of
the singular values of X∗ which, as in the GCALE and GCASE cases, motivates to
approximate X∗ by a low-rank solution X∗ ≈ ZZT with Z ∈ Rn×�, rank (Z) = � � n.
The singular value decay of X∗ as well as the existence of such a low-rank approximation
is investigated in [23].

6.1.1. Newton Methods for GCAREs

Because the Riccati operator R(X) is nonlinear in X, one can apply a general Newton
iteration to find X. Starting from an initial guess X0, the step k of this iteration is,
following, e.g., [5, 150], given by

X(k) = X(k−1) +N (k−1) (6.2a)

with the update N (k−1) obtained from the Newton step

R′|X(k−1)(N (k−1)) = −R(X(k−1)). (6.2b)

There, R′|X is the Fréchet derivative of the Riccati operator (6.1) at X and is given by

R′|X : N �→ (A− FF TXE)TNE + ETN(A− FF TXE). (6.2c)

Hence, obtaining N (k−1) demands the solution of the GCALE

(A(k))TN (k)E + ETN (k)A(k) = −R(X(k−1)) (6.3)

with the closed-loop system matrix A(k) := A − F (K(k−1))T . By using the Kleinman
trick [145], it is possible to solve for X(k) directly which changes (6.2b) to

R′|X(k−1)(X(k)) = −F̂ (k)(F̂ (k))T , F̂ (k) := [CT , K(k−1)] (6.4a)

with K(k−1) := ETX(k−1)F . In terms of the corresponding GCALE to be solved this
becomes

(A(k))TX(k)E + ETX(k)A(k) = −F̂ (k)(F̂ (k))T . (6.4b)

The resulting Newton-Kleinman iteration is illustrated in Algorithm 6.1. Both formu-
lations (6.2) and (6.4) are in fact equivalent and produce the same iterates X(k) provided
K(0) = ETX(0)F in Algorithm 6.1. It is shown in [150, 145] that, under the conditions

130

6.1. Continuous-time Algebraic Riccati Equations

Algorithm 6.1: Newton-Kleinman method for GCAREs

Input : Matrices A, E, F, C defining (6.1), initial guess X(0) or K(0).
Output: Approximate solution X.

1 for k = 1, . . . , kmax do

2 F̂ (k) := [CT , K(k−1)].
3 Solve the GCARE

(A− F (K(k−1))T)TX(k)E + ETX(k)(A− F (K(k−1))T) + F̂ (k)(F̂ (k))T = 0

for X(k).

4 Set K(k) := ETX(k)F ,.

of Theorem 2.35 and provided X(0) is stabilizing, the sequence of iterates converges
quadratically towards X∗. Moreover, it satisfies

X(1) � X(2) � . . . � X∗ and Λ(A− FF TX(k)E) ⊂ C− ∀k > 0.

A further improvement of the convergence behavior by using a line-search strategy can,
e.g., be found in [25, 16]. If (A, E) is Hurwitz, X0 = 0 is a viable stabilizing initial
guess. Otherwise, if Λ(A, E) contains also anti-stable eigenvalues, finding a good initial
guess is a formidable task. Some strategies are given in [150, Section 5.3],[55, Section
3.3.1], and the references therein. We will later on mention an approach that is also
applicable for large-scale problems.
Comparing the GCALEs to be solved in both the original Newton and the Newton-

Kleinman iteration, one observes that (6.3) and (6.4b) only differ in the right hand side.
In the following we investigate the handling of the occurring GCALEs by the G-LR-ADI
iteration which was studied in the chapters before. The Newton-Kleinman iteration is
the better choice for this because it holds

rank
(
F̂ (k)(F̂ (k))T

)
≤ rank

(
F̂ (k)

)
≤ p+ r � n,

i.e., the right hand side has a very small rank. The right hand sides −R(X(k−1)) of the
original Newton iteration (6.2b) do, in general, not share this property.

6.1.2. The Low-Rank Newton-ADI for GCAREs

Introducing the G-LR-ADI (Algorithm 3.2) into the Newton-Kleinman method (Algo-
rithm 6.1) is straightforward and has already been considered in, e.g., [42, 201, 135, 94,
49, 50, 10, 52]. The main goal of this section is to also insert the improvements for the
G-LR-ADI iteration established in the previous three chapters into this framework. Us-
ing the G-LR-ADI iteration to solve (6.4b) for each k, transforms the Newton-Kleinman
method into an inner-outer iteration, consisting of an outer, the Newton iteration, and
an inner iteration, the G-LR-ADI iteration. To distinguish these two stages we will from

131

6. Low-Rank Newton Methods for Algebraic Riccati Equations

now on use the notation that subscripts j and bracketed superscripts (k) will refer to
quantities associated to the inner and outer iteration, respectively. The inner-iteration
in our novel reformulation (Section 3.2, Algorithm 3.2) follows in each outer iteration k
the scheme

V
(k)
j = (A(k) + α

(k)
j E)−HW

(k)
j−1, W

(k)
j = W

(k)
j−1 − 2Re (αj)E

TV
(k)
j , (6.5)

Z
(k)
j = [Z

(k)
j−1,

√
−2Re (αj)V

(k)
j], j = 1, . . . , jmax,

where W
(k)
0 := [CT , K(k−1)], Z

(k)
0 = [], and α

(k)
j are shift parameters corresponding to

(A(k), E). As before we indent to use the residual norm based criterion

‖L(k)
j ‖ ≤ τADI‖W (k)

0 ‖2, 0 < τADI � 1

for terminating the inner iteration. Including also the relations (4.8) regarding the
treatment of complex shifts as in G-LR-ADI-r (ALgorithm 4.3) leads to the low-rank
Newton-ADI iteration for GCAREs (LR-NADI-C) illustrated in Algorithm 6.2. We

naturally assume that the sets of shift parameters {α(k)
1 , . . . , α

(k)
J } are proper. Hence, the

LR-NADI-C iteration will produce real low-rank solution factors and, consequently, also
real feedback matrices K(k). Some numerical evidence that this leads to computational
savings can be found in [38, Section 5.2].
In the following we go through some further aspects and subproblems of Algorithm 6.2.

Solving the Linear Systems

The coefficient matrices A(k) + α
(k)
j E in the linear systems in Line 6 are the sum of a

sparse matrix A+α
(k)
j E and a low-rank update F (K(k))T . Hence, if sparse-direct solvers

are employed, the Sherman-Morrison-Woodbury formula [111] might be applied:

[VS, VK] = (A+ α
(k)
j E)−H [W

(k)
j−1, K

(k−1)], (6.6)

V
(k)
j = VS + VK

(
Ip − F TVK

)−1
(F TVS). (6.7)

Hence, 2r + p linear systems with the sparse coefficient matrix A + α
(k)
j E have to be

solved in each inner iteration. Iterative solvers [199, 225] that work only with matrix

vector products of the coefficient matrices might be applied directly to A(k) + α
(k)
j E.

However, the low-rank updates might severely increase the condition number such that
the Sherman-Morrison-Woodbury formula might still be preferable.

Implicit Updates of the Feedback Matrices

In each inner iteration, the intermediate feedback matrices can be updated recursively
by

K
(k)
j = −2

j∑
i=1

ET Re (αi)V
(k)
i (V

(k)
i)HF = K

(k)
j−1 − 2Re (αj)E

TV
(k)
j (V

(k)
j)HF

132

6.1. Continuous-time Algebraic Riccati Equations

Algorithm 6.2: Low-rank Newton-ADI for GCAREs (LR-NADI-C)

Input : Matrices A, E, F, C defining (6.1), initial feedback K(0), and stopping
tolerances 0 < τADI, τNM � 1.

Output: Zkmax ∈ Rn×(r+p)j such that Zkmax(Zkmax)T ≈ X, stabilizing feedback
matrix Kkmax ∈ Rn×r with Λ(A− F (Kkmax)T , E) ⊂ C−.

1 for k = 1, . . . , kmax do

2 Determine shifts {α(k)
1 , . . . , α

(k)
J } w.r.t. (A(k) := A− F (K(k−1))T , E) .

3 W
(k)
0 = [CT , K(k−1)], Z

(k)
0 = [], K

(k)
0 = 0, j = 0.

4 while ‖W (k)
j ‖2 > τADI‖W (k)

0 ‖2 do
5 j = j + 1

6 Solve (A(k) + α
(k)
j E)HV

(k)
j = W

(k)
j−1 for V

(k)
j .

7 if Im
(
α
(k)
j

)
= 0 then

8 γ
(k)
j =

√
−2α

(k)
j , V+ := (γ

(k)
j)2ETV

(k)
j .

9 W
(k)
j = W

(k)
j−1 + V+, Z

(k)
j = [Z

(k)
j−1, γ

(k)
j V

(k)
j].

10 K
(k)
j = K

(k)
j−1 + V+(V

(k)
j)TF .

11 else

12 γ
(k)
j = 2

√
−Re

(
α
(k)
j

)
, δ

(k)
j = −Re

(
α
(k)
j

)
Im
(
α
(k)
j

) .
13 W

(k)
j+1 = W

(k)
j−1 + (γ

(k)
j)2ET

(
Re

(
V

(k)
j

)
+ δ

(k)
j Im

(
V

(k)
j

))
.

14 Z+ := γ
(k)
j

[
Re

(
V

(k)
j

)
+ δ

(k)
j Im

(
V

(k)
j

)
,

√
((δ

(k)
j)2 + 1) · Im

(
V

(k)
j

)]
.

15 Z
(k)
j+1 =

[
Z

(k)
j−1, Z+

]
, K

(k)
j+1 = K

(k)
j−1 + ETZ+(Z

T
+F).

16 j = j + 1.

17 K(k) = K
(k)
j , Z(k) = Z

(k)
j .

as in Line 10 and, in the case of a complex shift, Line 15. The matrix vector products
with ET can be reused from the construction of W

(k)
j . Therefore, storing the low-rank

solution factors Z
(k)
j is not needed at all if only the feedback matrices are of interest.

This leads to significant savings regarding the memory requirements of Algorithm 6.2
and was already exploited in the implicit low-rank Newton method [42, Algorithm 6].

Computing Initial Guesses

The outer Newton iteration might benefit from a nonzero K(0) as initial guess, especially
if K(0) ≈ ETX∗F . If Λ(A, E) contains unstable eigenvalues, a nonzero K(0) is even
necessary. Here, we briefly mention one often used approach to generate such K(0) for
large-scale problems [10]. Let (λus,i, qus,i, yus,i), i = 1, . . . , nus � n, be the eigentriples

133

6. Low-Rank Newton Methods for Algebraic Riccati Equations

corresponding to the unstable eigenvalues λus,i ∈ Λ(A, E) ∩ C+ and define

Qus = [qus,1, . . . , qus,nus], Yus = [yus,1, . . . , yus,nus] ∈ Cn×nus .

Then let X̃ABE be the solution of the generalized algebraic Bernoulli equation (GABE)

ÃH
usX̃ABEẼus + ẼH

usX̃ABEÃ
H
us − ẼH

usX̃ABEB̃ usB̃
H
usX̃ABEẼus = 0, (6.8)

Ãus := Y H
usAQus, Ẽus := Y H

us EQus, B̃us := Y H
usB.

The initial feedback matrix is then

K(0) = ETYusX̃ABEB̃us ∈ Cn×r (6.9)

and it can be shown that −λus,i ∈ Λ(A−B(K(0))H , E). The GABE (6.8) is of dimension
nus and can be solved by methods for small, dense Bernoulli equations, e.g., [13]. The
required eigentriples can be computed by iterative algorithms for large-scale eigenvalue
problems, see, e.g., [198, 6, 192]. In practice, however, it can be difficult to guarantee
that said eigenvalue methods have found all unstable eigenvalue of Λ(A, E). For the
use in Algorithm 6.2, it is reasonable to consider a real initial feedback matrix K(0) by
constructing Qus, Yus using the real and imaginary parts of the right and left eigenvectors
corresponding to complex unstable eigenvalues.

The Riccati Residual Matrix and Stopping Criteria

By Theorem 3.5, the Lyapunov residual matrix for each j is given by L
(k)
j = W

(k)
j (W

(k)
j)H

and, hence, rank
(
L

(k)
j

)
≤ p+r. Granted by this low-rank factorization of L

(k)
j , a similar

result can be established for the GCARE residual matrix. For brevity, we keep the
complex formulation of the G-LR-ADI iteration since the incorporation of the relation
(4.8) for generating real residual factors W

(k)
j is obvious.

Theorem 6.1 (Generalization of Theorem 3.5, [37, Theorem 4.1]):

The GCARE residual matrix w.r.t. the solution X
(k)
j = Z

(k)
j (Z

(k)
j)H produced at outer

iteration step k and inner iteration step j has at most rank 2r + p and is given by

R
(k)
j := R(X

(k)
j) = L

(k)
j −ΔK

(k)
j (ΔK

(k)
j)H = L

(k)
j D(L

(k)
j)H , (6.10a)

where

ΔK
(k)
j := K

(k)
j −K(k−1) ∈ Cn×r, L

(k)
j := [W

(k)
j , ΔK

(k)
j] ∈ Cn×2r+p, (6.10b)

D := diag (Ip+r,−Ir) , (6.10c)

with K
(k)
j = ETX

(k)
j F . ♦

134

6.1. Continuous-time Algebraic Riccati Equations

Proof. Writing out the GCARE residual matrix and including the definitions of K(k),
K

(k)
j and W

(k)
0 yields

R(X
(k)
j) = ATX

(k)
j E + ETX

(k)
j A− ETX

(k)
j FF TX

(k)
j E + CTC

= (A− F (K(k−1))H)HX
(k)
j E + ETX

(k)
j (A− F (K(k−1))H)

+K(k−1)F TX
(k)
j E + ETX

(k)
j F (K(k−1))H − ETX

(k)
j FF TX

(k)
j E

+ CTC +K(k−1)(K(k−1))H −K(k−1)(K(k−1))H

= (A(k))HX
(k)
j E + ETX

(k)
j A(k) +W

(k)
0 (W

(k)
0)H

+K(k−1)(K
(k)
j)H +K

(k)
j (K(k−1))H −K

(k)
j (K

(k)
j)H −K(k−1)(K(k−1))H

= W
(k)
j (W

(k)
j)H + [K

(k)
j −K(k−1)][K(k−1) −K

(k)
j]H

from which (6.10) follows since L
(k)
j = W

(k)
j (W

(k)
j)H by Theorem 3.5.

It holds rank(R
(k)
j) = 2r + p only if L

(k)
j has full column rank and there are some

possibilities when this is not the case. Obviously, if K(0) = 0, then rank(W
(1)
j) ≤ p and,

thus, rank(L
(1)
j) ≤ p + r. Also, by the same discussion as in the proof of Theorem 3.5,

if αj ∈ Λ(A(k), E), (A− α
(k)
j E) is singular and W

(k)
j can be of rank smaller than r + p.

Of course, solving the inner GCALE equation exactly, i.e., W
(k)
j (W

(k)
j)H = 0, will lead

to rank(R
(k)
j) ≤ r.

The result of the above theorem can be equivalently proven by using a Taylor ex-
pansion of R(X) of order two [135, 52]. In contrast to the GCALE residual matrix

L
(k)
j , the GCARE residual matrix R

(k)
j is in general indefinite since Λ(D) = {±1}. If

L
(k)
j � ΔK

(k)
j (ΔK

(k)
j)H , it is positive semidefinite and if L

(k)
j = 0, it is negative semidef-

inite. The outer iteration can be stopped, e.g., when

ε
(k)
j := ‖R(k)

j ‖/‖C‖2 ≤ τNM‖C‖2, 0 < τNM � 1. (6.11)

This criterion can actually also be monitored during each single or every couple of steps
of the inner iteration. This allows to stop G-LR-ADI when (6.11) is satisfied, regardless
of the magnitude of L(Xj). Especially in the last outer iteration step this can lead to a
reduction of the number of carried out inner iteration steps and, thus, to computational
savings. Motivated by the expected quadratic convergence rate of the Newton process,
we propose to start monitoring the inner GCARE residual norm when ε(k−1) ≤ √

τNM.
For a given τNM, one typically chooses τADI < τNM to ensure that the required accuracy
can be achieved. From the theory of inexact Newton methods it might conceptually
be possible to solve the Lyapunov equation in each outer iteration less accurately and
still maintain quadratic convergence of the Newton process, see, e.g., [77, 88]. In the
context of algebraic Riccati equations this appears to be less straightforward because
one has to additionally ensure that the Newton method still converges to the desired
stabilizing solution. This issue is subject of ongoing research initiated, e.g., by [94, 135].
In [125], a novel theoretical and numerical framework for the LR-NADI-C iteration with

135

6. Low-Rank Newton Methods for Algebraic Riccati Equations

inexact inner solves is established. We will not further consider inexact solves of the
inner GCALEs in the sense τADI > τNM.
The norm of the GCARE residual matrix can be computed very efficiently in a sim-

ilar fashion as, due to the indefiniteness, for ‖Sj‖ in the fADI iteration for Sylvester
equations:

‖R(k)
j ‖ =

∣∣∣λmax

(
L
(k)
j D(L

(k)
j)H

)∣∣∣ = ∣∣∣λmax

(
(L

(k)
j)HL

(k)
j D

)∣∣∣
=

∣∣∣∣∣λmax

([(
W

(k)
j

)H
W

(k)
j −

(
W

(k)
j

)H
ΔK

(k)
j(

ΔK
(k)
j

)H
W

(k)
j −

(
ΔK

(k)
j

)H
ΔK

(k)
j

])∣∣∣∣∣ .
The matrix (W

(k)
j)HW

(k)
j from the computation of ‖L(k)

j ‖ can be reused here. Hence,

computing ‖R(k)
j ‖ boils down to finding the largest eigenvalue of a matrix of size 2r+ p.

By the same reasoning as in Section 3.2.4, this is considerably less costly than estimating
‖R(k)

j ‖ via a Lanczos process applied to R
(k)
j or using an orthogonal factorization of R

(k)
j

[42, 52] similar to (3.16) for Lj.

6.1.3. Shift Parameter Strategies for the Inner Iteration

The inner G-LR-ADI(-r) iteration requires a set of (proper) {α(k)
1 , . . . , α

(k)
J } ∈ C− shift

parameters corresponding to (A(k) := A − F (K(k−1))T , E). Here we discuss various
strategies for their choices that are based on the approaches mentioned in Chapter 5.

Shifts Computed Before Each Inner Iteration

In Line 2 in each outer iteration step, shift parameters are exemplarily computed before
the G-LR-ADI iteration is started. As proposed in [201], this could be relaxed by keeping
the same sets of shifts for ks > 1 outer iterations. Moreover, the shift computation can
be moved outside the Newton-loop such that only the shift parameters w.r.t. (A(1), E)
are used in the whole process. This might, depending on the magnitude of the changes in
K(k), slow down the convergence speed of the inner G-LR-ADI iteration, but save some
execution time due to skipping the shift generation. Basically, all the shift strategies
mentioned in Section 5.2 can be applied here. Generating the Wachspress or heuristic
shifts at the beginning of each inner iteration will require linear solves with A(k) for
obtaining the inverse Ritz values. For this the Sherman-Morrison-Woodbury formula (cf.
(6.6)) can be used. Notice that even if A = AT , the matrix A(k) is nonsymmetric such
that the spectrum Λ(A(k), E) might contain complex eigenvalues even if E = ET � 0.
Let E = In, for simplicity, in which case

Kh(A
(k), F (k)) = span

{
F (k), A(k)F (k), (A(k))2F (k), . . . , (A(k))h−1F (k)

}
= span

{
CT , K(k−1), ACT , K(k−1)F TCT , AK(k−1), K(k−1)F TK(k−1), . . .

}
= . . . = Kh(A, F

(k)),

a property that is typically referred to as feedback invariance of Krylov subspaces. This
observation can be seen as justification for keeping the same heuristic of Wachspress

136

6.1. Continuous-time Algebraic Riccati Equations

shifts generated from the Krylov subspaces w.r.t. K(A, F (k)) for several outer iteration
steps, especially if the feedback matrices K(k) only change marginally in the course of
the outer iteration.

Self-Generating Shifts

Motivated by the promising results with the proposed self-generating shifts in Section 5.3,
we will adapt this strategies to the LR-NADI-C iteration. The self-generating V (u)-shift
parameters can be included right away into LR-NADI-C by carrying out the projections
using the matrix pair (A(k), E). The same remarks concerning the generation of stable
shifts apply here as well and Corollary 4.6 generalizes as follows.

Corollary 6.2 (Generalization of Corollary 4.6):

The real low-rank solution factor Z
(k)
j at outer iteration step k and after j inner

iteration steps corresponding to a proper set of j shift parameters satisfies the GCASEs

(A(k))TZ
(k)
j − ETZ

(k)
j BADI-r = W

(k)
j GT

ADI-r, (6.12a)

ATZ
(k)
j − ETZ

(k)
j BADI-r = W

(k)
j GT

ADI-r +K(k)BTZ
(k)
j . (6.12b)

There, BADI-r, G
T
ADI-r are defined as in (4.12) but w.r.t. the complex conjugates of the

used complex shifts. ♦

Proof. The result (6.12a) follows directly from Corollary 4.6 by taking care of the fact
that the inner iteration is applied to (A(k))T , ET . The definition of the closed loop
matrix A(k) yields (6.12b).

Similar to (5.3), no additional matrix vector products with (A(k))T are necessary to build
the restriction required for the V (u)-shift parameters.

An alternative but similar approach proposed in [23] is based on the following propo-
sition which is established very easily.

Proposition 6.3 (The residual GCARE [23, Theorem 5(c)]):

The error E
(k)
j := X − X

(k)
j at the inner and outer iteration steps j and k of Algo-

rithm 6.2 is the solution of the residual GCARE

(A
(k)
j)TE

(k)
j E + ETE

(k)
j A

(k)
j − ETE

(k)
j CTCE

(k)
j E + L

(k)
j D(L

(k)
j)T = 0, (6.13)

where A
(k)
j := A−K

(k)
j QT and L

(k)
j , D are the factors of R

(k)
j from Theorem 6.1. ♦

The matrix pair

H
(k)
j :=

[
A

(k)
j CTC

L
(k)
j D(L

(k)
j)T −(A

(k)
j)T

]
, G :=

[
E 0

0 ET

]
∈ R2n×2n

is associated with (6.13). Let ÛHH
(k)
j Q̂ = T̃1, Û

HKQ̂ = T̃2 be the generalized Schur form

of (H
(k)
j , G) with ÛHÛ = Q̂HQ̂ = I2n. Partition the right Schur vectors as q̂i =

[
q̂ti
q̂bi

]
,

137

6. Low-Rank Newton Methods for Algebraic Riccati Equations

q̂ti , q̂
b
i ∈ Cn for i = 1 . . . , 2n. As Algorithm 6.2 converges, the lower left block of H

(k)
j will

become smaller and smaller, and in the limit (6.13) will have a trivial solution. Hence,
the norms ‖Eq̂bi‖ for the right Schur vectors q̂i corresponding to the stable eigenvalues of
(H, G) will also converge towards zero. Assuming the conditions of Theorem 2.35 hold

for (6.13), then by [150, Theorem 7.2.8], (H
(k)
j , G) has exactly n stable and n anti-stable

eigenvalues which are also identical to the spectra ±Λ(A
(k)
j −FF TE

(k)
j E, E). Following

the approach mentioned in [23, Section 3, Example 6-7], one selects the next shift αj+1

as the stable eigenvalue of (H
(k)
j , G) for which Eq̂bi has the largest norm. However, since

(H
(k)
j , G) is a high-dimensional matrix pair, the computation of this eigenvalue is not

feasible. Instead we propose to work with the reduced matrices

H̃
(k)
j :=

[
Ã

(k)
j QT

j C
TCQj

QT
j L

(k)
j D(L

(k)
j)TQj −(Ã

(k)
j)T

]
, G̃

(k)
j :=

[
Ẽ

(k)
j 0

0 (Ẽ
(k)
j)T

]
(6.14)

where Ã
(k)
j = QT

j A
(k)
j Qj, Ẽ

(k)
j = QT

j EQj and Qj are the matrices from the V (u)-shift
approach. We will call the shift parameters obtained with this strategy H(u)-shifts. In
the first occurrence of this approach [23], all columns of the current low-rank solution
factor are used.

The discussed residual norm-minimizing shifts can also be applied here on the basis
of (A(k), E) and W

(k)
j . The use of the reduced objective function (5.14) constructed by,

e.g., Ã
(k)
j , Ẽ

(k)
j and QT

j W
(k)
j from the V (u)-shift approach, is also advised here to lower

the evaluation of the function and the gradient.

6.1.4. Accelerating the Outer Iteration by a Galerkin Projection

In [201, 50], the outer iteration of the low-rank Newton-ADI method for CAREs is
accelerated by performing a Galerkin projection onto the space spanned by the current
low-rank solution factor. This often leads to an impressive convergence boost where the
number of outer iterations is reduced to one or two. For this, let Q

(k)
Z ∈ Rn×g be a

rectangular, orthonormal matrix for the spaces spanned by the low-rank solution factor
Z(k) after the inner iteration in the outer iteration step k has been finished, i.e., right
after the while-loop in Algorithm 6.2 is terminated. A clever orthogonalization routine
should neglect nearly linearly independent columns in Z(k) such that g ≤ (r + p)j

(k)
it ,

where j
(k)
it is the number of executed inner iteration steps. Along the lines of [50] we

look for an approximate solution of (6.1) of the form Xpr = Q
(k)
Z X̃(Q

(k)
Z)T for which the

residual R(Xpr) satisfies a Galerkin condition. In that case, X̃ ∈ Cg×g has to be the
solution of the projected GCARE

ÃT X̃Ẽ + ẼT X̃Ã− X̃F̃ F̃ T X̃ + C̃T C̃ = 0 (6.15)

with the restrictions Ã, Ẽ of A, E and F̃ := (Q
(k)
Z)TF , C̃ := CQ

(k)
Z .

Corollary 6.2 and, in particular, the relation (6.12b) can be used to construct the re-
strictions without additional matrix vector products with AT . Since the inner GCALE is

138

6.1. Continuous-time Algebraic Riccati Equations

defined by (A(k))T , ET , it is reasonable to work with the restriction Ã = (Q
(k)
Z)TATQ

(k)
Z ,

Ẽ = (Q
(k)
Z)TETQ

(k)
Z such that the projected GCARE is given by

ÃX̃ẼT + ẼX̃ÃT − X̃F̃ F̃ T X̃ + C̃T C̃ = 0. (6.16)

The projected GCARE is of much smaller dimension than (6.1). It can be solved directly
by, e.g., the Newton-Kleinman method in Algorithm 6.1, the Schur vector method [55,
Listing 3.4], [154, 155], structure preserving methods for the Hamiltonian eigenvalue
problem [67, 63], or by the sign function iteration [191].
Once X̃ is computed, the next outer iteration step k + 1 in Algorithm 6.2 starts with

the updated feedback matrix Kpr := ETXprF = ETQ
(k)
Z X̃F̃ . The GCARE residual

R(Xpr) does not have the low-rank structure (6.10) from Theorem 6.1. Hence, ‖R(Xpr)‖
has the be computed differently, e.g., via applying a Lanczos process to R(Xpr) to get
an approximation of the largest eigenvalue value in magnitude. Numerical experiments
[201, 50] confirm that this Galerkin acceleration indeed decreases the required number
of outer iteration steps significantly. However, in contrast to the projection for the self-
generating shift parameters above, computing orthonormal basis of Z(k) is usually more
expensive because more columns have to be orthogonalized.

Remark 6.4:

In [201, 50], a very similar Galerkin projection framework is used within the inner G-
LR-ADI iteration of Algorithm 6.2. We refrain from this idea because of the following
reasons. At first, since orthonormal spaces for the low-rank solutions factors of the
inner GCALE are required, one could have used a projection method as inner iteration
from the start. Popular representatives of these methods are Krylov subspace meth-
ods, e.g., [137, 209, 218, 83, 82, 84], which produce the required orthonormal matrices
anyway. Moreover, in [82, 235] it is shown that the G-LR-ADI iteration generates a
rational Krylov subspace, but it works without any orthogonalization and solutions of
projected GCAREs. Hence, from this viewpoint adding explicit orthogonal bases for
the low-rank solution factors is not expected to give significantly better results than
the plain G-LR-ADI iteration. Moreover, as mentioned in [201, 50], adding a Galerkin
projection within the G-LR-ADI iteration destroys some structural properties of the
method. Most notably, the associated GCALE residual does no longer have the low-
rank factorization (3.15). From the view point of the used reformulated iteration (6.5),
it is then not clear what to use as right hand side for the linear systems. ♦

6.1.5. Numerical Experiments

Here, we evaluate and compare the performance of the LR-NADI-C iteration regarding
different shift generation strategies and the Galerkin acceleration.
As mention before we employ stopping criteria based on the scaled residual norm

for both outer and inner iteration using thresholds τADI and τNM. Alternatively, the
inner and outer iteration is stopped after jmax or kmax = 10 iteration steps. We use the
matrices A, E, B of the test examples FDM (n = 122500), rail79k (n = 79841, r = 7)

139

6. Low-Rank Newton Methods for Algebraic Riccati Equations

and ifiss66k (n = 66049), from Section 5.3.3. For example FDM, C in (6.1) is chosen
randomly with p = r = 5. The rail79k example provides a matrix C with p = 6 and φC
with φ = 10 is chosen as factor of the constant term in (6.1). The scaling parameter φ
is used to make this problem more demanding for the outer iteration as in [10]. Finally,
the constant term for ifiss66k is set to C = [C1, 0] with a random C1 ∈ Rr×r, r = 5.
With general C, the outer Newton iteration encountered severe problems for this, but
also for other examples not reported here. These difficulties could be solved by the
enhancements of Algorithm 6.2 proposed in [125]. Since this would be beyond the scope
of this work, these strategies are not investigated here. We restrict the discussion to the
effects of different shift parameters and the outer Galerkin projection.

Influence of Different Shift Generation Strategies for the Inner Iteration

At first, we test the performance of the LR-NADI-C iteration when different shift strate-
gies mentioned in Section 6.1.3 for the inner G-LR-ADI iteration are used. The different
approaches are carried out with the same settings as in Section 5.3.3. For the heuristic
and Wachspress shifts we also investigate the case when these shifts are only computed
every ks > 1 outer iterations. Since for all examples K(0) = 0, such that K(1) is the
first nonzero feedback matrix, this relaxation is started when k > 1, i.e., new shifts are
generated at the steps k = 1, ks, 2ks, . . . of the outer iteration. Table 6.1 summarizes
the setup parameters and the results. There, tshift and ttotal refer to the time consumed
in generating shift parameters and in the complete execution of Algorithm 6.2, kit is
the number of required outer Newton steps, j∑ =

∑kit
i=1 jk is the total number of inner

G-LR-ADI iteration steps, the average over all outer steps is javg. = �j∑/kit , and ε(kit)
is the final obtained scaled norm of the GCARE residual.
Obviously, the different shift parameter approaches do not influence the outer itera-

tion, provided they manage to steer the inner iteration towards the desired accuracy.
Similar to the experiments in Section 5.3.3, the generation times tshift of the heuristic
and Wachspress shifts are considerably large portions of the complete execution times
ttotal. These generation times could be reduced by the setting ks = 2 which resulted
in slightly more inner iteration steps. This effect is more pronounced for the heuristic
shifts: only a slight reduction of ttotal is achieved by ks = 2. Since the first nonzero
feedback matrix occurs in outer iteration k = 2, setting ks > 2 is not recommended
as this resulted in drastically more inner iteration steps for the outer iteration steps
1 < k < ks. In terms of j∑, javg., the approximate Wachspress shifts appear to be a
good choice for the example rail79k with symmetric matrices A, E. Among the self-
generating shift approaches, the V (u)-shift lead to the smallest generating times tshift
and also to good results w.r.t. j∑, javg. for the examples FDM and ifiss66k. For rail79k,
ifiss66k they also lead to the smallest times ttotal. For the FDM and ifiss66k the best
performance of the inner iteration is achieved by the V (u)-residual norm-minimizing
shifts whose generation times tshift are, however, comparably large. This is especially
the case for example ifiss66k. The H-shifts managed only for example FDM to steer the
inner iteration towards convergence. For example rail79k, this approach generated the
same shift over and over again, whereas for ifiss66k the extended Hamiltonian pencil

140

6.1. Continuous-time Algebraic Riccati Equations

Table 6.1.: Setup parameters and results for the examples using different shift strate-
gies. The smallest values of tshift, ttotal and j∑, javg. for each example are
emphasized using bold letters.

Example shift strategy tshift ttotal j∑, javg. kit ε(kit)

FDM
τADI = 10−10,
τNM = 10−9,
jmax = 200

heur(10, 20, 10) 40.6 1353.6 527, 176 3 6.72·10−11

heur(10, 20, 10), ks = 2 25.0 1335.8 527, 176 3 6.84·10−11

Wachs(10−10, 20, 20) 78.9 810.0 305, 102 3 8.74·10−11

Wachs(10−10, 20, 20), ks = 2 49.9 797.1 305, 102 3 8.91·10−11

V (3)-shifts 5.4 648.1 275, 92 3 4.34·10−11

H(1)-shifts 13.6 814.8 317, 106 3 3.38·10−11

V (3)-res.min. 32.3 557.9 235, 79 3 7.22·10−11

rail79k
τADI = 10−10,
τNM = 10−9

jmax = 100

heur(20, 40, 40) 244.82 916.05 271, 55 5 4.56·10−11

heur(20, 40, 40), ks = 2 131.77 788.64 271, 55 5 4.56·10−11

Wachs(10−10, 20, 20) 116.12 683.18 221, 45 5 5.09·10−11

Wachs(10−10, 20, 20), ks = 2 63.91 631.02 221, 45 5 5.09·10−11

V (3)-shifts 4.35 545.25 230, 46 5 1.14·10−11

V (2)-res.min. 20.8 481.5 207, 42 5 9.54·10−11

ifiss66k
τADI = 10−10,
τNM = 10−9

jmax = 50

heur(20, 30, 20) 160.3 371.4 135, 20 7 6.36·10−10

heur(20, 30, 20), ks = 2 89.5 400.3 194, 28 7 6.76·10−10

wachs(10−10, 20, 10) 87.1 341.0 160, 23 7 6.58·10−10

wachs(10−10, 20, 10), ks = 2 48.7 305.2 162, 24 7 6.50·10−10

V (1)-shifts 13.8 304.5 175, 25 7 6.64·10−10

V (1)-res.min. 61.1 265.9 122, 18 7 6.72·10−10

(6.14) had exact or almost purely imaginary eigenvalues which resulted in inappropriate
shift parameters. This was also observed in several further experiments not reported
here. To conclude, similar recommendations regarding the shift generation approach as
for GCALEs can be given for GCAREs: the approximate Wachspress shift are a good
choice in case of real spectra and the V (u)- or V (u)-residual minimizing shifts otherwise.

Galerkin Acceleration of the Outer Iteration

We repeat the above experiments but perform the acceleration approach via the Galerkin
projection in every outer iteration after the inner iteration satisfies the termination
criterion. For this, we do not consider the simplification of the heuristic approach and the
approximate Wachspress shifts with ks > 1. The construction of the orthonormal basis
matrix for the low-rank solution factor is, similar to the V (u)-shift approach, carried out
using a singular value decomposition of (Z(k))TZ(k) with Z(k) ∈ Rn×nZ and exploiting
(6.12). All singular values with σi/σ1 < umach.nZ are neglected. The results are listed
in Table 6.2, where now the time tGP needed for performing the Galerkin projection is

141

6. Low-Rank Newton Methods for Algebraic Riccati Equations

Table 6.2.: Results for the previous examples using the Galerkin projection after each
outer iteration. Here, tGP denotes the execution time spent in performing
the Galerkin projection.

Example shift strategy tGP ttotal j∑, javg. kit ε(kit)

FDM
τADI = 10−10,
τNM = 10−9,
jmax = 200,

heur(10, 20, 10) 5.2 364.1 187, 187 1 4.86·10−11

wachs(10−10, 20, 10) 3.1 244.1 101, 101 1 3.04·10−11

V (3)-shifts 2.8 162.7 89, 89 1 3.56·10−11

H(1)-shifts 3.5 214.8 106, 106 1 2.34·10−11

V (3)-res.min. 2.4 166.2 87, 87 1 4.03·10−11

rail79k
τADI = 10−10,
τNM = 10−9,
jmax = 100

heur(20, 40, 40) 1.5 92.3 51, 51 1 1.80·10−10

wachs(10−10, 20, 20) 3.4 87.7 41, 41 1 6.94·10−11

V (3)-shifts 2.7 80.5 52, 52 1 1.60·10−10

V (2)-res.min. 2.0 61.9 43, 43 1 1.62·10−10

ifiss66k
τADI = 10−10,
τNM = 10−9,
jmax = 50

heur(20, 30, 20) 1.7 96.4 41, 21 2 1.43·10−10

wachs(10−10, 20, 10) 1.4 79.9 41, 21 2 1.49·10−10

V (1)-shifts 1.2 67.8 44, 22 2 2.75·10−13

V (1)-res.min. 1.0 60.1 33, 17 2 9.56·10−11

given. This includes constructing the orthonormal basis as well as solving the projected
GCARE (6.15) by the care command. Apparently, the Galerkin projection reduces the
number of required outer iteration steps down to one or two. This yields a significant
reduction of the computation times compared to the results in Table 5.1. The ranking
regarding the different shift approaches is mainly not changed. The clear reduction of
the required number of outer iteration steps by the Galerkin projection was also observed
in several other experiments, e.g., [50, 201]. The Galerkin acceleration appears to be
worthwhile when the outer Newton iteration requires several steps before the quadratic
convergence phase takes place which is the case for example ifiss66k.

Comparison to Other Low-Rank Methods for CAREs

Here, we will compare the G-LR-NADI-C (Algorithm 6.2) with two other low-rank
methods for GCAREs. Because of the comparison in Section 5.3.3, we will not consider
the case when the inner G-LR-ADI iteration is replaced by EKSM or RKSM since
similar results can be expected. Instead, the extended block Arnoldi method for CAREs
(EBA-CARE) proposed in [127] will be used. This is a straightforward modification
of the EKSM for GCALEs [209], where in each iteration step a projected GCARE
similar to (6.15) has to be solved. The MATLAB routine care is employed for this
task. In the same way RKSM can be modified to deal with GCAREs [211] and we
refer to this modification as RKSM-CARE. We do not include the iterative subspace
method proposed in [167] as the examples there suggest that it cannot compete with
RKSM-CARE although closely related. The shifts for RKSM-CARE are again computed

142

6.1. Continuous-time Algebraic Riccati Equations

adaptively using the strategy in [83]. The results are summarized in Table 6.3, where
dim. stands for the column dimension of the computed low-rank solution factor before
any rank truncation, tsol., torth., tsmall, tshift and tres denote the times (in seconds) spent
for solving the occurring linear systems, the orthogonalization processes, the solution
of the projected GCAREs, the shift generation, and the residual norm computation,
respectively. The total time of the method is ttotal. As explained in Section 5.3.3, ttotal
can be slightly larger than the sum of the single times. For the G-LR-NADI-C iteration
the subspace dimension is the column dimension of the low-rank solution factor in the last
outer iteration. The G-LR-NADI-C iteration is carried out with Galerkin acceleration
and with the shift parameters which lead to the best results in Table 6.2 w.r.t. both the
execution time and required iteration steps.

Table 6.3.: Comparison between the G-LR-NADI-C iteration, EBA-CARE and RKSM-
CARE.

Example algorithm dim. tsol. torth. tsmall tshift tres. ttotal

FDM

LR-NADI-C, V (3)-res.min. 435 124.9 2.4 0.9 9.4 22.5 166.2

EBA-CARE 910 148.0 88.2 303.7 – 0.05 541.1

RKSM-CARE 340 101.3 37.0 19.3 13.3 7.5 179.5

rail79k

LR-NADI-C, V (2)-res.min. 258 44.0 1.2 0.8 4.4 7.0 61.9

EBA-CARE stagnation at ε ≈ 10−5

RKSM-CARE 186 30.5 6.0 12.6 3.9 2.5 56.4

ifiss66k

LR-NADI-C, V (1)-res.min. 170 39.5 0.9 0.02 12.7 4.6 60.1

EBA-CARE 80 8.9 5.4 0.3 – 0.001 15.3

RKSM-CARE 110 18.7 16.5 9.1 3.6 2.9 51.4

The LR-NADI-C method is only the fastest one for the example FDM. It is outper-
formed by RKSM-CARE for the other two examples, and, for ifiss66k also by EBA-
CARE. Comparing to the GCALE results in Section 5.3.3, this is somewhat surprising
because there, EKSM could not compete for the ifiss66k example. Apparently, the al-
tered inhomogeneity present here leads to a significantly different behavior of EKSM.
For the example rail79k, EBA-CARE dropped into stagnation phase which was caused
by problems in solving the projected GCAREs by care. In fewer instances such difficul-
ties could also be observed in RKSM-CARE which, however, still managed to produce
an accurate low-rank solution. Replacing care by a different GCARE solver did not
solve these issues. Compared to the results in Table 6.1, the LR-NADI-C iteration is far
behind if the Galerkin acceleration is not used. Similar to the short discussion after the
comparative experiments in Section 5.3.3 it should, on the one hand, be mentioned again
that the RKSM and EKSM type approach can be further improved by basic simplifica-
tions (solving the projected GCARE only every ks > 1 iterations) and the techniques
proposed in [166, 84]. On the other hand, recent results in [125] promise significant
improvements of the LR-NADI-C iteration by employing inexact GCALE solves of the
inner iteration as well as a clever implementation of a line-search strategy [25, 26]. For

143

6. Low-Rank Newton Methods for Algebraic Riccati Equations

instance, we observed severe difficulties of the outer Newton iteration without these tech-
niques for arbitrarily chosen matrices C in the ifiss66k example. These issues appeared
to be also independent of the employed algorithm for solving the inner GCALEs.

6.2. Nonsymmetric Algebraic Riccati Equations

In this section, we consider non-symmetric algebraic Riccati equations (NARE) of the
form

R(X) = AX +XB −XFGTX + UP T = 0 (6.17)

with A ∈ Rn×n, B ∈ Rm×m, F ∈ Rm×r, G ∈ Rn×r, U ∈ Rn×p, P ∈ Rm×p, and the sought
solution X ∈ Rn×m. Applications where NAREs arise include, e.g., total least square
problems [76], fluid queue models [187], the numerical treatment of transport equations
[140, 163], the study of open loop Nash games [1], and methods to compute or refine
invariant subspaces of matrices or pencils [78, 62]. Often, the block matrix

M :=

[
B FGT

−UP T A

]

is an M-matrix (cf. Definition 2.37). These MNAREs (Definition 2.37) were recently
subject of extensive research in both theoretical and computational aspects, see, e.g.,
[57, 55, 140, 121, 122, 120, 164, 241] and the references therein. We focus on numerical
methods for large-scale NAREs with low-rank matrices F, G, P and U , i.e., r, p �
min{n,m}. For instance, NAREs arising in transport theory [140, 163] involve matrices
F, G, P , and U of low-rank. Often, the minimal, nonnegative solution X(min) ≥ 0
which satisfies X(min) ≤ X for all possible solutions X of (6.17) if of interest. Recall
that ≤, ≥ refer to the element wise partial orderings of matrices. By Theorem 2.38, [55,
Theorem 2.9], this minimal, nonnegative solution always exists if M is a nonsingular, or
an irreducible, singular M-matrix.
The goal of this section is, without using M-matrix properties, to present a generaliza-

tion of the LR-NADI-C method (Algorithm 6.2) for large-scale NAREs which generates
a low-rank approximation Xh. The factored alternating directions implicit iteration
(fADI) see, e.g., Section 3.3, [43] is used to deal with the involved Sylvester equations.

6.2.1. Newton Methods for NAREs

As for CAREs and DAREs, a Newton’s scheme can be applied to (6.17) which yields

X(k) = X(k−1) +N (k), N (k) := −(R′
X(k−1))

−1R(X(k−1)),

where R′
X is again the Fréchet derivative of R at X. The increment N (k) is the solution

of the linear matrix equation

R′|X(k−1)(N (k)) = −R(X(k−1))

144

6.2. Nonsymmetric Algebraic Riccati Equations

Algorithm 6.3: Newton-Kleinman method for NAREs

Input : Matrices A, B, F, G, P, U defining (6.17), initial guesses K(0), H(0),
stopping tolerance 0 < τNM � 1.

Output: Approximate solution X.
1 while ‖R(X(k−1))‖ > τNM‖UP T‖ do

2 F̂ (k) := [U, K(k−1)], Ĝ(k) := [P, H(k−1)].
3 Solve the Sylvester equation

(A−K(k−1)GT)X(k) +X(k)(B − F H(k−1) T) + F̂ (k) Ĝ(k) T = 0 (6.19)

for X(k). Set K(k) := X(k)F , H(k) := (X(k))TG.

which turns out to be a Sylvester equation. The resulting iteration for k ≥ 1 and an
initial guess X(0) ∈ Rn×m is

R(X(k−1)) = UP T + AX(k−1) +X(k−1)B −X(k−1)FGTX(k−1), (6.18a)

0 = (A−X(k−1)FGT)N (k) +N (k)(B − FGTX(k−1)) + R(X(k−1)), (6.18b)

X(k) = X(k−1) +N (k), (6.18c)

see, e.g. [55, Listing 3.11]. It is shown in [122, 120] that if M is a nonsingular or singular
and irreducible M-Matrix, then the iteration (6.18) initialized with X(0) = 0 produces
a sequence of nonnegative matrices X(0) ≤ X(1) ≤ . . . ≤ X(min) that converge to the
minimal nonnegative solution X(min). The convergence is quadratic provided M is a
nonsingular M-matrix, where additional assumptions are needed when M is singular and
irreducible. In some cases, the convergence may be only linear, but there are approaches
that cure this remedy: one can either apply a shifting technique to the NARE or start
the iteration with an appropriate initial guess X0 [55]. For brevity we will not include
these techniques as they can be easily implemented.
Similar to the Newton-Kleinman [145] and Newton-Hewer method [126] for CAREs

and, respectively, DAREs, inserting N (k) = X(k) −X(k−1) into (6.18b) gives a reformu-
lated Newton iteration for NAREs illustrated in Algorithm 6.3. There, we introduced the

matrices K(k) := X(k)F ∈ Rn×r, H(k) := X(k) T G ∈ Rm×r which might be considered
as analogue to the feedback matrices in the CARE / DARE case. The basic New-
ton iteration (6.18) and Algorithm 6.3 are mathematically equivalent if K(0) = X(0)F ,
H(0) = (X(0))TG, and produce the same results in that case.
The Sylvester equations in (6.18b) and (6.19) are defined by the same coefficient but

different right hand side matrices. It holds rank(F̂ (k)(Ĝ(k))T) ≤ r + p in (6.19), which
will enable us to formulate a low-rank version of Algorithm 6.3 provided r + p � n,m.
Solving the Sylvester equation in each iteration step is the main computational effort
for both algorithms. Here, we employ the factored ADI iteration (Section 3.3, [43, 32])
for this purpose since this combination has already been successfully applied for CAREs
[42, 201, 135, 94] as well as DAREs [27]. For special cases of NAREs arising in transport

145

6. Low-Rank Newton Methods for Algebraic Riccati Equations

Algorithm 6.4: Low-rank Newton-ADI iteration for NAREs (LR-NADI-N)

Input : Matrices A, B, F, G, U, P defining (6.17), initial guesses K(0), H(0),
and stopping tolerances τNM, τADI � 1.

Output: Zkmax ∈ Cn×(r+p)j, Ykmax ∈ Cm×(r+p)j, Γkmax ∈ C(r+p)j×(r+p)j such that
ZkmaxΓkmaxY

H
kmax

≈ X.
1 while ‖R(X(k−1))‖ > τNM‖UP T‖ do

2 Determine shifts {α(k)
1 , . . . , α

(k)
J }, {β(k)

1 , . . . , β
(k)
J } w.r.t. A(k) := A−K(k−1)GT

and B(k) := B − F H(k−1)H .

3 W
(k)
0 = [U,K(k−1)], T

(k)
0 = [P,H(k−1)], Z

(k)
0 = Γ

(k)
0 = Y

(k)
0 = [], j = 0

4 while ‖W (k)
j (T

(k)
j)H‖ > τADI‖W (k)

0 (T
(k)
0)H‖ do

5 j = j + 1
6 Solve

(A(k) + β
(k)
j In)V

(k)
j = W

(k)
j−1, (B(k) + α

(k)
j Im)

HS
(k)
j = T

(k)
j−1

for V
(k)
j , W

(k)
j .

7 Update low-rank factors of Sylvester residual

8 W
(k)
j = W

(k)
j−1 + γjV

(k)
j , T

(k)
j = T

(k)
j−1 + γjS

(k)
j , γj = −(β

(k)
j + α

(k)
j).

9 Augment the low-rank solution factors

Z
(k)
j = [Z

(k)
j−1, V

(k)
j], Y

(k)
j = [Y

(k)
j−1, S

(k)
j], Γ

(k)
j = diag

(
Γ
(k)
j−1, γjIr

)
.

10 K(k) = Z
(k)
j Γ

(k)
j ((Y

(k)
j)HF) , H(k) = Y

(k)
j (Γ

(k)
j)H(Z

(k)
j)HG.

theory, this has also been done in [241] but here we focus on the general situation and
also include the enhancements for the fADI iteration discussed in the Sections 3.3, 4.2,
and 5.4.

6.2.2. Low-Rank Newton-ADI for NAREs

Applying the fADI iteration (Algorithm 3.4) to solve the Sylvester equations (6.19) in
the Newton-Kleinman method for NAREs (Algorithm 6.3) directly yields the low-rank
Newton-ADI for NAREs (LR-NADI-N) which is illustrated in Algorithm 6.4.
In Algorithm 6.4 we use the original fADI iteration from Algorithm 3.4 which inhibits

complex arithmetic operations if some of the shifts are complex numbers and, thus,
the resulting low-rank factors Zkmax , Γkmax , Ykmax are also complex. Provided the shift
parameters obey the conditions set in Section 4.2, Algorithm 4.4 for generating real low-
rank solution factor is also applicable here. Since the involved formulas of Algorithm 4.4
are rather long and complicated, but not crucial for this section, we keep the simpler

146

6.2. Nonsymmetric Algebraic Riccati Equations

but possibly complex representation given in Algorithm 6.4 as well as in the upcoming
investigations. In the appendix, a version of the LR-NADI-N method incorporating the
fADI-r iteration (Algorithm 4.4) for generating real solution factors Z

(k)
j ∈ Rn×(r+p)j,

Y
(k)
j ∈ Rm×(r+p)j, Γ

(k)
j ∈ R(r+p)j×(r+p)j, as well as real K(k), H(k), can be found. This

algorithm will be used in the upcoming examples whenever complex shift parameters
occur.
In analogy to the discussion regarding the LR-NADI-C iteration (Algorithm 6.2) for

CAREs, we will now consider some of the major steps of Algorithm 6.4 in more detail.

Solving the Linear Systems

The coefficient matrices of the linear systems in Line 6 will in general be dense, even if
A and B are sparse matrices. In that case A(k) + β

(k)
j In and B(k) +α

(k)
j Im are given as a

sum of a sparse matrix and a low-rank update. In complete analogy to the LR-NADI-C
method, the Sherman-Morrison-Woodbury formula [111] can be used for obtaining V

(k)
j

via

[VW , VK] = (A+ β
(k)
j In)

−1[W
(k)
j−1, K

(k−1)],

V
(k)
j = VW + VK

(
Ip − P TVK

)−1
(P TVW).

The equations for generating S
(k)
j are similar. Similar to the GCARE case, r+2p linear

systems with the sparse coefficient matrices A+ β
(k)
j In, B + α

(k)
j Im have to be solved.

In certain applications, e.g. [140], the matrices A, B are given by

A = Ψ− stT , B = Ψ̂− xyT (6.20a)

with diagonal matrices Ψ ∈ Rn×n, Ψ̂ ∈ Rm×m and s, t ∈ Rn, x, y ∈ Rm. In this
situation, the solutions of the linear system are, by another use of the Sherman-Morrison-
Woodbury formula, given by

V
(k)
j = ṼS + ṼK(Ip+1 − [t, T]T ṼK)

−1[t, T]T ṼS,

ṼS := (Ψ + βjIn)
−1W

(k)
j−1, ṼK := (Ψ + βjIn)

−1[s,K],
(6.20b)

and similarly for S
(k)
j . The inversions of Ψ + βjIn and Ψ̂ + αjIm come basically for

free, leading to a very low computational effort for solving both the linear systems and,
consequently, also for the overall algorithm. More precisely, the complexity for solving a
linear system defined by a diagonal matrix of dimension n and r right hands sides can be
described adequately by 2nr floating point operations. Hence, the complete algorithm
will basically have a linear complexity. Tricks similar to (6.20b) have also been applied
in other methods for MNAREs, see, e.g., [122, 140, 57, 172, 241]. For the case r = p = 1,
explicit and even cheaper to compute solutions of (6.20b) are proposed in [241] which
leads to a specially tailored version of Algorithm 6.4. The implementation for these
special NAREs employed here uses similar techniques for solving the linear systems.

147

6. Low-Rank Newton Methods for Algebraic Riccati Equations

Implicit Updates of K(k), H(k)

The approximate low-rank solution of the Sylvester equations is generated via

X
(k)
j = Z

(k)
j Γ

(k)
j (Y

(k)
j)H =

j∑
i=1

γiV
(k)
i (S

(k)
i)H = X

(k)
j−1 + γjV

(k)
j (S

(k)
j)H

in each inner iteration step. It is again possible to recursively update the matrices
K(k), H(k) in every inner iteration step as well:

K
(k)
j := X

(k)
j U = K

(k)
j−1 + γjV

(k)
j (S

(k)
j)HU,

H
(k)
j := (X

(k)
j)HP = H

(k)
j−1 + γjS

(k)
j (V

(k)
j)HP.

(6.21)

Similar to the implicit low-rank Newton-ADI method for CAREs [42, Algorithm 6], if
only K(k), H(k) are of interest, accumulating and storing the low-rank solution factors in
Line 9 in Algorithm 6.4 is not required which can reduce the overall storage requirements
of the LR-NADI-N method.

Stopping Criteria

As in the GCARE case we stop both the inner and outer iteration using the scaled
residual norm, cf. Line 4 of Algorithm 6.4.

The following theorem from [41] generalizes the Theorems 3.5, 3.14, 6.1 to the LR-
NADI-N method.

Theorem 6.5 (Low-rank structure of the NARE residual [41]):

The NARE residual matrix w.r.t. the solution X
(k)
j = Z

(k)
j Γ

(k)
j (Y

(k)
j)H produced at

outer iteration step k and inner iteration step j in Algorithm 6.4 has at most rank
2r + p and is given by

R(X
(k)
j) = S(X

(k)
j)−ΔK

(k)
j Δ(H

(k)
j)H = L

(k)
j (D

(k)
j)H , (6.22a)

where

ΔK
(k)
j := K

(k)
j −K(k−1) ∈ Cn×r, ΔH

(k)
j := H

(k)
j −H(k−1) ∈ Cm×r, (6.22b)

L
(k)
j := [W

(k)
j , ΔK

(k)
j], D

(k)
j := [T

(k)
j , ΔH

(k)
j] (6.22c)

with K
(k)
j , H

(k)
j defined as in (6.21) and W

(k)
j , T

(k)
j are the low-rank factors of the

Sylvester residual matrix S(X
(k)
j). ♦

148

6.2. Nonsymmetric Algebraic Riccati Equations

Proof. Writing out the NARE residual and including the definitions of K(k), H(k) as well
as of K

(k)
j , H

(k)
j yields

R(X
(k)
j) =AX

(k)
j +X

(k)
j B −X

(k)
j FGTX

(k)
j + UP T

=(A−K(k−1)GT)X
(k)
j +X

(k)
j (B − F (H(k−1))H)

+K(k−1)GTX
(k)
j +X

(k)
j F (H(k−1))H −X

(k)
j FGTX

(k)
j

+ UP T +K(k−1)(H(k−1))H −K(k−1)(H(k−1))H

=A(k)X
(k)
j +X

(k)
j B(k) +W

(k)
0 (T

(k)
0)H

+K(k−1)(H
(k)
j)H +K

(k)
j (H(k−1))H −K

(k)
j (H

(k)
j)H −K(k−1)(H(k−1))H

=W
(k)
j (T

(k)
j)H + [K(k−1) −K

(k)
j][H

(k)
j −H(k−1)]H

from which (6.22) follows.

Similar discussion as for the GCARE (Section 6.1) and the CASE residual matrix (Sec-

tion 3.3.2) w.r.t. a possible rank deficiency of L
(k)
j , D

(k)
j can done here [41]. The result

of the above theorem can again be equivalently proven as in [135, 52] by using a Taylor
expansion of R(X) of order two.

For using (6.11) to stop the outer iteration, the spectral norm of R(X
(k)
j) can then be

computed in the same fashion as (3.45) for the Sylvester residual matrix:

‖R(X(k)
j)‖ = ‖L(k)

j (D
(k)
j)H‖ =

√
λmax((L

(k)
j)HL

(k)
j (D

(k)
j)HD

(k)
j).

Some of the matrices from the computation of ‖S(k)
j ‖ = ‖W (k)

j (T
(k)
j)H‖ can be stored and

reused for forming (L
(k)
j)HL

(k)
j (D

(k)
j)HD

(k)
j). Therefore, computing ‖R(X(k)

j)‖ reduces to
finding the largest eigenvalue of a matrix of size 2r + p.

Shift Parameters

Two sets {α(k)
1 , . . . , α

(k)
J }, {β(k)

1 , . . . , β
(k)
J } of shift parameters corresponding to the matri-

ces A(k) := A−K(k−1)GT and B(k) := B−F (L(k−1))H are required by the fADI iteration.
In Line 2 these shifts are, in each outer iteration step, computed before the fADI itera-
tion is started. In case of an MNARE, after convergence of the method the spectra of
the matrices A(k), B(k) will be located in the right half plane [55, Theorem 2.11.] such
that it might be reasonable to neglect or negate the occasionally computed anti-stable
eigenvalues of the projected matrices.
The self-generating V/S(u)-shift parameters and their residual norm-minimizing ver-

sion from Section 5.4.2, [39] can be easily included into LR-NADI-N by performing the
projections using the matrices A(k), B(k).
An approach similar to the H(u)-shifts for the LR-NADI-C iteration is based on

the following proposition which can be proved very easily along the lines of [21, Theo-
rem 5(c)].

149

6. Low-Rank Newton Methods for Algebraic Riccati Equations

Proposition 6.6 (Generalization of [21, Theorem 5(c)]):

The error E
(k)
j := X − X

(k)
j at the inner and outer iteration steps j and k of the

LR-NADI-N method (Algorithm 6.4) solves the residual NARE

A
(k)
j E

(k)
j + E

(k)
j B

(k)
j − E

(k)
j FGTE

(k)
j + L

(k)
j (D

(k)
j)H = 0, (6.23)

where A
(k)
j := A−K

(k)
j GT and B

(k)
j := B − F (H

(k)
j)H . ♦

The m+ n×m+ n matrix

H
(k)
j :=

[
B

(k)
j FGT

L
(k)
j (D

(k)
j)H −A(k)

j

]

is associated to (6.23). Consider the Schur form Q̂HH
(k)
j Q̂ = T̃ of H with Q̂HQ̂ = Im+n

and partition the Schur vectors as q̂h =
[
ûh
v̂h

]
, ûh ∈ Cm, v̂j ∈ Cn for h = 1 . . . ,m + n.

If Algorithm 6.4 converges, the norm of the lower left block of H
(k)
j will decrease and

in the limit (6.23) will have a trivial solution. Therefore, the norms ‖v̂h‖ and ‖ûh‖
corresponding to the stable and, respectively, anti-stable eigenvalues of H

(k)
j will also

decrease towards zero. In particular, if (6.23) is a MNARE associated to a nonsingular

M-matrix, then by [55, Theorem 2.11], H
(k)
j has exactly n stable and m anti-stable

eigenvalues which are also identical to −Λ(A
(k)
j − E

(k)
j FGT) and Λ(B

(k)
j − FGTE

(k)
j),

respectively. In case of a singular M-matrix, there will be at least one zero eigenvalue
in one of these spectra. In order to modify the approach mentioned in [21, Section 3,
Example 6-7] for GCAREs, a straightforward idea is to choose the next shift αj+1 as the

negative of the stable eigenvalue of H
(k)
j whose v̂h has the largest norm. Likewise, the

shift βj+1 is set to the anti-stable eigenvalue of H
(k)
j with the largest norm of ũh. Since

H
(k)
j is a high-dimensional matrix, this generation strategy of αj+1, βj+1 is too expensive,

and we propose to work instead with the reduced, at most u(r + p) dimensional matrix

H̃
(k)
j :=

[
UH
B B

(k)
j UB UH

B FG
TUA

UH
A L

(k)
j (D

(k)
j)HUB −UH

A A
(k)
j UA

]
,

where UA and UB are the orthogonal matrices associated to the V/S(u)-shifts. The shift
parameters obtained with this strategy will be referred to as H(u)-shifts.

Accelerating the Outer Iteration

We have seen in the experiments w.r.t. the LR-NADI-C iteration for GCAREs that
performing a Galerkin projection onto the space spanned by the low-rank solution factor
often yields an impressive convergence boost, where the number of outer iteration steps
is reduced to one or two. This approach can also be inserted into Algorithm 6.4. For
this, assume Q

(k)
Z ∈ Cn×g and Q

(k)
Y ∈ Cm×h are orthonormal matrices for the spaces

spanned by the low-rank solution factors Z(k) and Y (k) after the inner iteration in the

150

6.2. Nonsymmetric Algebraic Riccati Equations

outer iteration step k has been stopped. We look for an approximate solution of (6.17) of

the form Xpr = Q
(k)
Z X̃(Q

(k)
Y)H for which we impose a Galerkin condition on the residual

R(Xpr), i.e., it holds X̃ ∈ Cg×h solves the projected NARE

ÃX̃ + X̃B̃ − X̃F̃ G̃T X̃ + Ũ P̃ T = 0 (6.24)

defined by Ã := (Q
(k)
Z)HAQ

(k)
Z , B̃ := (Q

(k)
Y)HBQ

(k)
Y , F̃ := (Q

(k)
Y)HF , G̃ := (Q

(k)
Z)HG,

Ũ := (Q
(k)
Z)HU , and P̃ := (Q

(k)
Y)HP . Because of the much smaller dimension of (6.24)

direct methods are applicable, e.g., the Newton methods in (6.18), Algorithm 6.3, or
the Schur vector method [55, Listing 3.5]. The latter method is susceptible to numerical
problems when (6.24) is associated to a singular M-matrix. A modified and more stable
variant of the Schur vector method proposed in [121] should be used for this situation.
With the solution X̃ of (6.24), the next outer iteration step k + 1 of Algorithm 6.4

is initialized by Kpr := XprS = Q
(k)
Z X̃F̃ and Lpr := XH

prT = Q
(k)
Y X̃HG̃. However, The-

orem 6.5 does not apply to the NARE residual matrix R(Xpr) and, thus, ‖R(Xpr)‖ has
to be computed differently, e.g., by computing an approximation of the largest singular
value by a Lanczos process applied to R(Xpr)

HR(Xpr). As before, computing the or-
thonormal bases for Z(k), Y (k) can become expensive. Hence, regarding the numerical
costs the acceleration of the outer iteration will only pay off if the effort for the orthog-
onalization of Z(k), Y (k) is not too high. To achieve this one should keep the number of
processed inner iteration steps small, e.g., by using high quality shift parameters.

Remark 6.7:

The presented acceleration via a Galerkin projection is a straightforward generaliza-
tion of the idea in [43, Section 4], where the authors use basically the same approach
for accelerating the convergence of the fADI iteration. Hence, one could also im-
plement the Galerkin projection within the inner fADI iteration of Algorithm 6.4.
We refrain from this inner Galerkin projection because of similar reasons as given in
Remark 6.4 concerning the LR-NADI-C iteration. ♦

Generalized Equations

Everything discussed in this section so far can be modified to handle NAREs of the form

R(X) = UP T + AXC + EXB − EXFGTXC = 0 (6.25)

which we shall call generalized NAREs (GNARE). The matrices E ∈ Rn×n and C ∈
Rm×m are assumed to be nonsingular. In Algorithm 6.5 only the necessary changes
in the LR-NADI-N method (Algorithm 6.4) are given which can be derived easily by
following, e.g., the manipulations done in Section 3.3, [32] for generalized Sylvester
equations.

6.2.3. Numerical Experiments

We evaluate the performance of the LR-NADI-N iteration, where, similar to previous
experiments, the outer iteration is terminated when ε(k) := ‖R(X(k))‖/‖UP T‖ ≤ τNM

151

6. Low-Rank Newton Methods for Algebraic Riccati Equations

Algorithm 6.5: Low-rank Newton-ADI iteration for GNAREs

2’ Determine shifts {α(k)
1 , . . . , α

(k)
J }, {β(k)

1 , . . . , β
(k)
J } w.r.t. the matrix pairs

(A(k), E) and (B(k), C).

6’ Solve (A(k) + β
(k)
j E)V

(k)
j = W

(k)
j−1, (B(k) + α

(k)
j C)HS

(k)
j = T

(k)
j−1 for V

(k)
j , S

(k)
j .

8’ W
(k)
j = W

(k)
j−1 + γjEV

(k)
j , T

(k)
j = T

(k)
j−1 + γjC

TS
(k)
j , γj = −(β

(k)
j + α

(k)
j).

11’ K(k) = EZ
(k)
j Γ

(k)
j ((Y

(k)
j)HF) , L(k) = CTY

(k)
j (Γ

(k)
j)H(Z

(k)
j)HG.

and, likewise, the inner iteration is stopped using the criterion employed in Algorithm 6.4
with τADI or when jmax iteration steps have been performed. If not stated otherwise, the
initial guess X(0) = 0 is used, i.e., K(0) = 0 and H(0) = 0.
We use the following examples:

mnare1: As an adaptation of [55, Example 3.18] we take

A =

⎡
⎣ 3 −1

... ...
3 −1

−1 1.9

⎤
⎦ ∈ Rn×n, B =

⎡
⎢⎣

2 −1

3
...
... −1

−1 3

⎤
⎥⎦ ∈ Rm×m,

U =

[
U1

0

]
∈ Rn×r, U1 =

⎡
⎣ −1 −1

... ...
−1 −1

−0.9

⎤
⎦ ∈ Rr×r, P = Im,r,

F =

[
F1

0

]
∈ Rm×p, F1 =

[
1
1 1
... ...

1 1

]
∈ Rp×p, G = In,p.

with n = 30000, m = 20000, r = 3, and p = 5. This example constitutes a MNARE and
we use the abbreviation mnare1.

transp: We take the setting from [140] which inherits the structure (6.20a) with

Ψ = diag (δ1, . . . , δn) , Ψ̂ = diag
(
δ̂1, . . . , δ̂n

)
,

t = x = U = P = (q1, . . . , qn)
T , s = y = F = −G = 1n,

δi =
1

cξi(1 + ν)
, δ̂i =

1

cξi(1− ν)
, qi =

ωi

2ξi
for i = 1, . . . , n.

There, 0 < c ≤ 1, 0 ≤ ν < 1, ξi, ωi are the quadrature nodes and weights corresponding
to a Gaussian quadrature on [0, 1], and 1h denotes the column vector of length h with
all entries equal to one. It obviously holds r = p = 1 and the other dimension is set to
n = m = 20000. We set the other defining constants to c = 0.5 and ν = 0.3. The relation
(6.20b) is used to solve the occurring shifted linear systems. The obtained NARE is an
MNARE of the structure arising in transport theory [140] and therefore abbreviated as
trans.

152

6.2. Nonsymmetric Algebraic Riccati Equations

Table 6.4.: Setup parameters and results for the NARE examples using different shift
strategies.

Example shift strategy tshift ttotal kit j∑, javg. ε(kit)

mnare1
τADI = 10−12, τNM = 10−10,
jmax = 40

heur(10,10) 5.41 15.34 5 77, 16 1.44·10−12

V/S(1)-shift 0.12 5.96 5 45, 9 1.41·10−11

H(1)-shift 0.61 8.14 5 55, 11 4.13·10−13

V/S(1)-res.min 9.02 16.60 5 59, 12 2.06·10−11

trans
τADI = 10−10, τNM = 10−9,
jmax = 300

heur(50,40) 12.86 22.67 3 413, 138 9.26·10−10

V/S(1)-shift 0.36 4.24 3 230, 77 5.30·10−11

H(1)-shift 0.73 5.49 3 242, 81 2.44·10−10

V/S(2)-res.min 11.06 13.96 3 177, 59 6.98·10−10

FDMNARE
τADI = 10−10, τNM = 10−8,
jmax = 100

heur(10,10) 19.30 148.66 11 408, 38 5.23·10−9

V/S(1)-shift 0.72 113.88 11 362, 33 2.84·10−9

H(1)-shift 6.44 207.53 11 626, 57 1.78·10−9

V/S(1)-res.min 54.63 161.03 11 345, 32 3.88·10−9

FDMNARE: Similar to the examples FDM-S in Sections 4.2.3 and 5.4.3, we take two
versions of the FDM example (cf. Section 2.4). The settings for A are n0 = 110,
f1 = eξ1ξ2 , f2 = sin(ξ1ξ2), and f3 = (ξ22 − ξ21). Likewise, the matrix B is obtained from
using n0 = 90 and f1 = 100eξ1 , f2 = 10(ξ1 + ξ2), and f3 =

√
ξ12 + ξ22 . These settings are

close to the Sylvester equations used in [60, Example 1]. The matrices F, G, P, U are
random matrices with p = 5 and r = 10 columns of uniformly distributed entries. This
entirely for testing purposes constructed example will be referred to as FDMNARE.

Influence of Different Shift Generation Strategies

At first, we test the performance of LR-NADI-N for these examples when different
shift strategies for the inner fADI iteration are used. We employ the heuristic Ritz
value based shifts [162, 43], the V/S(u)-, and V/S(u)-residual norm-minimizing shifts
from Section 5.4.2, [39], as well as the H(u)-shifts introduced above. The optimiza-
tion problem for the residual norm-minimizing shift dealt with the same settings as in
Section 5.4.2, except that the active-set algorithm is used within fmincon.
Other approaches, e.g., the one proposed in [202, Algorithm 2.1] or the parsyl1 routine

provided in [233] were not able to compete with those strategies. The setup parameters
as well as the results are summarized in Table 6.4. There, heur(k+, k−) refers to the
heuristic shifts [162, 43] which are generated by using k+ = kA+ = kB+ and k− = kA− = kB−
Ritz and inverse Ritz values w.r.t. A(k) and B(k). As before also the total and average
numbers, j∑ and javg. = �j∑/kit , of inner iteration steps are given.
For all examples, the LR-NADI-N algorithm is able to compute low-rank solutions of

the large-scale NAREs in a small amount of time. Apparently, as for the LR-NADI-C

1Available at http://extras.springer.com/2013/978-1-4614-5121-1.

153

6. Low-Rank Newton Methods for Algebraic Riccati Equations

method for GCAREs, the progress of the outer Newton iteration is largely not effected
by the different shift generation strategies, as is it can be seen by the constant number
of required outer iteration steps kit.
For all examples, the V/S(u)-shifts lead to the smallest executions times ttotal, closely

followed by the H(u)-shifts.
For the trans example, the residual norm-minimizing shifts lead to the smallest number

of inner iterations, but due to their computationally more demanding generation, the
resulting time ttotal is larger. The heuristic shift approach required high numbers k+, k−
of Ritz values in this example to provide convergence of the inner iteration within jmax

steps. Although the generation of the heuristic shifts uses (6.20b), the generation time
is larger than for the other shift approaches. We point out that for this MNARE, the
obtained low-rank approximations

X(k) = Z
(k)

j
(k)
it

Γ
(k)

j
(k)
it

(
Y

(k)

j
(k)
it

)T
, k = 1, . . . , kit

were indeed nonnegative matrices, regardless of the used shift strategy. Hence, as for
the Newton methods (6.18) and Algorithm 6.3, the LR-NADI-N iteration produces a

sequence of nonnegative approximations. The low-rank solution factors Z
(k)

j
(k)
it

, Γ
(k)

j
(k)
it

, Y
(k)

j
(k)
it

alone were, however, not nonnegative.
The example FDMNARE appears to be the hardest one for the LR-NADI-N method

resulting in the largest number of outer iteration steps kit. The usage of an appropri-
ately chosen initial guess X(0) could be of great value. Here, the heuristic shifts lead
to a similar progress of the inner iteration compared to the V/S(u)-shifts. The latter
ones can, however, be generated cheaper such that the computation time ttotal is still
smaller than for the heuristic shifts. Moreover, the optimization process for residual
norm-minimizing shifts experienced difficulties very similar to those mentioned in Sec-
tion 5.4.3. We observe that the V/S(u)- and H(u)-shifts lead in some outer iteration
steps to an oscillatory behavior of the inner Sylvester residual norm. The observation is
similar to the experiments regarding the G-fADI iterations for GCASEs in Section 5.4.3
(cf. Figure 5.5) and [32, Section 3.6]. TheH(u)-shifts cannot compete with the other ap-
proach since they had difficulties to steer the inner iteration towards convergence within
jmax steps. This was especially apparent in the early stage of the outer iteration when
the approximate solution is still too far from the real solution. Hence, the H-shifts lead
to the largest number of total inner iterations jit as well as the highest total execution
times ttotal.
In Figure 6.1, we illustrate these issues, where the left plot shows the progress of the

scaled inner Sylvester residual norm at the outer iteration step k = 5 for all three shift
approaches. The right picture shows the number of total required inner iteration steps
j
(k)
it against the outer iteration step k as the outer iteration proceeds.
From the given results in Table 6.4 we suggest to use the V/S(u)-shifts unless better

strategies are available. This choice appears to be a good trade-off between shift genera-
tion effort and the achieved speed of the inner iteration. As for the GCASE experiments
in Section 5.4.3, the optimization process of the residual norm-minimizing shift should
be further enhanced.

154

6.2. Nonsymmetric Algebraic Riccati Equations

Figure 6.1.: Problematic behavior of the inner iteration for the example FDMNARE. Left
plot: History of scaled Sylvester residual norm ‖S(5)

j ‖/‖FGT‖ of the fADI
iteration at the fifth outer iteration step. Right plot: number of required
inner iteration steps j

(k)
it against outer iteration index k.

20 40 60
10−12

10−8

10−4

100

τADI

j

‖S
(5
)

j
‖/

‖F
G

T
‖

2 4 6 8 10
20

40

60

80

jmax

k
j(

k
)

it

heuristic

V/S(2)-shifts

H(1)-shifts

V/S(1)-res.min.

Effect of the Galerkin Acceleration in the Outer Iteration

We repeat the above examples, but employ the Galerkin acceleration after each outer
iteration step. The small, projected NAREs (6.24) are dealt with by the basic Newton-
Kleinman method (Algorithm 6.3). The settings w.r.t. stopping criteria and the shift
parameter generation are kept unchanged. The results are given in Table 6.5. It is again
remarkable that, similar to the LR-NADI-C iteration for GCAREs (Section 6.1.5, [50]),
the Galerkin projection reduces the number of required outer iteration steps down to
one or two. This leads to a reduction of the computation time compared to the results in
Table 6.4. For the example trans the already fast outer iteration is only accelerated by
one iteration step which does not yield a huge reduction of ttotal because of the numerical
costs of the required orthogonalization procedure and the extraordinarily cheap solution
of the linear systems by (6.20b). In summary, the Galerkin acceleration appears to be
a worthwhile strategy, especially when the outer Newton iteration requires several steps
before the quadratic convergence is reached, which is the case for example FDMNARE.

Comparison with Other Methods

Here we briefly compare the LR-NADI-C method (Algorithm 6.4) to two existing ap-
proaches for large-scale NAREs. The first method is the Newton type algorithm pro-
posed in [57] which is intrinsically designed for problems of the form (6.20). The second
competitive method is the structure preserving doubling algorithm given in [164], where
the implementation we gratefully received from the authors is also only applicable to
problems of the form (6.20). Hence, only the example trans can be used for a compari-
son with these two approaches. The LR-NADI-N iteration is carried out with the same
stopping criteria as before, the V/S(1)-shifts, and with the Galerkin projection.
The Newton type method by [57] led to a residual norm of 8.63 ·10−11 after 4 iteration

155

6. Low-Rank Newton Methods for Algebraic Riccati Equations

Table 6.5.: Results for the examples with Galerkin projection in each outer iteration
step. Here, the execution time spent in performing the Galerkin projection
is denoted by tGP.

Example shift strategy tGP ttotal kit j∑, javg. ε(kit)

mnare1
τADI = 10−12, τNM = 10−10,
jmax = 40

heur(10,10) 0.08 1.83 1 11, 11 1.44·10−12

V/S(1)-shift 0.06 2.00 2 17, 9 1.41·10−11

H(1)-shift 0.08 1.09 1 10, 10 4.13·10−13

V/S(1)-res.min 0.06 5.61 2 21, 11 2.06·10−11

trans
τADI = 10−10, τNM = 10−9,
jmax = 300

heur(10,10) 0.84 15.12 2 265, 133 9.26·10−10

V/S(1)-shift 0.25 3.08 2 145, 73 5.30·10−11

H(1)-shift 0.33 2.88 2 142, 71 2.44·10−10

V/S(2)-res.min 0.36 8.61 2 119, 60 6.98·10−10

FDMNARE
τADI = 10−10, τNM = 10−8,
jmax = 100

heur(10,10) 1.36 21.84 2 79, 40 5.23·10−9

V/S(2)-shift 0.71 5.13 1 31, 31 2.84·10−9

H(1)-shift 0.96 7.60 1 42, 42 1.78·10−9

V/S(1)-res.min 0.70 19.37 2 56, 28 3.88·10−9

steps and approximately 256 seconds. It required around 3 GB of memory during its
runtime. For this algorithm we used the original Fortran 90 implementation provided by
the authors compiled (using gfortran-4.8.2 and the compiler options -O2, -march=native)
with netlib.org reference implementations of LAPACK95, LAPACK, and BLAS. We
expect even better results with optimized LAPACK and BLAS, especially when all
CPU Cores are exploited. However, the gain to be expected from such an optimization
is unlikely to make up for the performance gap to the LR-NADI-N iteration.

After roughly one hour of computation time, the doubling algorithm [164] did not
manage to provide an approximate solutions of the desired accuracy. The major part
of time was spent in the necessary rank truncation steps and in evaluating the inher-
ent recursive computations. It also required significantly more memory compared to
Algorithm 6.4.

Consequently, compared to the timings in Tables 6.4 and 6.5, the LR-NADI-N iteration
is clearly superior to both alternative methods for large-scale NAREs.

6.3. Conclusions

We investigated the numerical solution for large-scale GCARES and NAREs by a low-
rank Newton iteration. Motivated by similar approaches for linear matrix equations,
the core idea is to approximate the ARE solution by a factorization of very low rank.
In each step of the Newton iteration, a large Lyapunov or Sylvester equation has to
be solved, for which we employed the relevant low-rank ADI iterations from Chapter 3,
[183, 161, 162, 43]. The improvements discussed in Chapters 3–5, [38, 36, 37, 39, 32]

156

6.3. Conclusions

were incorporated into this combination of Newton scheme and low-rank ADI iteration
which lead to improved low-rank Newton-ADI methods for AREs [42, 201, 135, 94, 49,
50, 10, 52, 41]. This allowed, for instance, to express the residual of the ARE w.r.t.
the approximate solution at any stage of the iterative process explicitly as low-rank
factorization which allows the cheap computations of its norm. Since the performance
of the low-rank ADI iteration heavily relies on the shift parameters, we adapted existing
strategies known for the inner ADI iteration [183, 43, 39], but also approaches which are
closer connected to AREs [21]. An acceleration strategy for the Newton iteration based
on a Galerkin projection [50] has also been presented and shows remarkable speedups in
the execution time at essentially no accuracy loss. With this acceleration, the proposed
low-rank Newton-ADI methods are competitive to other, existing low-rank algorithms
for AREs, e.g., [127, 211, 164]. In the NARE case the proposed low-rank Newton-ADI
iteration was able to highly outperform existing methods for large NAREs [57, 164]. As
for the the low-rank ADI iteration for GCALEs and GCASEs, although the employed
shift parameters also worked satisfactory here, there is still room for improvement. Apart
from the shift parameters, further research effort should also be put w.r.t. speeding
up the Newton iteration, e.g., by the promising techniques in [125]. Carrying over
the improvements of the G-LR-ADI iteration to the low-rank qADI iteration [238, 21],
which are specially tailored low-rank ADI type methods directly applicable to GCAREs,
is currently investigated [24].

157

CHAPTER 7

APPLICATIONS TO MODEL ORDER REDUCTION

Contents
7.1 Concepts and Goals of Model Order Reduction 159

7.2 Balanced Truncation Model Order Reduction 161

7.2.1 Numerical Solution of the Gramians with the Dual LR-ADI
Iteration . 162

7.2.2 Stopping the Dual Iteration 165

7.2.3 Shift Parameters for the Dual Iteration 167

7.2.4 Balanced Truncation for Second Order Systems 168

7.2.5 Numerical Examples . 170

7.3 Balanced Truncation in Limited Frequency Intervals 172

7.3.1 Frequency-Limited Gramians 174

7.3.2 On the Eigenvalue Decay of the Frequency-Limited Gramians 176

7.3.3 Numerical Methods for Computing the Low-Rank Approxi-
mations . 182

7.3.4 Miscellaneous . 189

7.3.5 Numerical Examples . 193

7.4 Conclusion and Outlook . 200

7.1. Concepts and Goals of Model Order Reduction

Linear dynamical control systems of the form (2.5) are used in many fields of appli-
cations, e.g., for simulation and stabilization purposes. In many applications the still
increasing demand for more realistic models can lead to large system order n, i.e., the
size of x(t) and the leading coefficients A,E. For instance, (2.5) can be the result of a
spatial discretization of a partial differential equation. These large degrees of freedom
yield high computational effort for solving the differential equation in (2.5). Model order
reduction is the process of approximating the original large-scale system by a system

159

7. Applications to Model Order Reduction

having a drastically reduced state space dimension that accurately describes the dy-
namical behavior of the original full-size system. These reduced systems, called reduced
order models, enable more cost efficient simulations.
Most model order reduction approaches can be interpreted as a Petrov-Galerkin style

projection using x(t) ≈ TRx̃(t), x̃ ∈ Rr with r � n, and a right projection matrix
TR ∈ Cn×r whose columns span a low-dimensional subspace TR ⊂ Cn. In the following,
let x(0) = 0. The imposed Petrov-Galerkin condition [3] is

Ex̃(t)− Ax̃(t)− Bu(t) ⊥ TL (7.1)

with a second low-dimensional subspace TL ⊂ Cn. Using a basis matrix TL ∈ Cn×r for
TL and adding the appropriately projected output equation, (7.1) leads to the reduced
order model

Ẽx̃(t) = Ãx̃(t) + B̃u(t), ỹ(t) = C̃x̃(t), (7.2)

defined by the reduced matrices Ẽ := TH
L ETR, Ã := TH

L ATR ∈ Cr×r, B̃ := TH
L B ∈ Cr×m,

C̃ := CTR ∈ Cp×r. Since r � n, the reduced system (7.2) can be simulated with much
less computational effort. Of course, ỹ(t) should approximate the original output y(t)
accurately, such that the error ỹ − y is small in an appropriate norm.
Let x(s), u(s), y(s) denote the Laplace transforms of x(t), u(t), y(t). Then y(s) =

H(s)u(s), where

H(s) = C(sE − A)−1B ∈ Cp×m, s ∈ C (7.3)

is the transfer function matrix of (2.5). The H∞-norm of (7.3) is given by

‖H‖H∞ = sup
ω∈R+

σmaxH(jω) = sup
ω∈R+

‖H(jω)‖2. (7.4)

If H̃ is the transfer function matrix of (7.2) it holds [44, Section 1.2] that

‖ỹ − y‖2 ≤ ‖H − H̃‖H∞‖u‖2 (7.5)

such that finding a small error ỹ − y can be recast into obtaining a small error H − H̃
in the H∞-norm. Due to the Paley-Wiener theorem [240], (7.5) holds in time as well
as frequency domain, and ‖ · ‖2 stands for the corresponding 2-induced norm w.r.t. the
function spaces for u, y. The preservation of important system properties, e.g., stability
(Λ(Ã, Ẽ) ⊂ C−), is also an often desired goal.
Different model order reduction approaches [3, 205, 44] differ in the way the subspaces

TR, TL, or more precisely, the projection matrices TR, TL, are generated. Here, we will
exclusively consider model reduction via the balanced truncation [221, 175] framework
which is topic of the next section. There, we will investigate the usage of the G-LR-ADI
iteration for computing low-rank approximations of the involved Lyapunov equations.
We also discuss some stopping criteria adapted to the use in this model reduction context.
A modification of balanced truncation for second order systems (2.32) is also briefly

160

7.2. Balanced Truncation Model Order Reduction

explained. The presented balanced truncation framework is intrinsically designed to
find reduced systems that are accurate for all values of ω in (7.5). In Section 7.3, a
version of balanced truncation is investigated where this goal is relaxed to ω from smaller
intervals Ω ⊂ R+. This restricted form of BT, referred to as frequency-limited BT, will
lead to different Lyapunov equations which incorporate also matrix valued functions,
which makes computing approximate low-rank solutions more demanding. Specialized
methods for computing approximate low-rank solutions of these equations are developed
after a short investigation concerned with the eigenvalue decay of their solution.

7.2. Balanced Truncation Model Order Reduction

Balanced truncation (BT) introduced in [221, 175] has shown to be a reliable system
theoretic method for model order reduction (MOR), see, e.g., [3, 205, 44]. Consider the
generalized state space system (2.5), where E, A ∈ Rn×n, E is assumed to be invertible,
and Λ(A, E) ⊂ C−, i.e., the system (E;A,B,C) is asymptotically stable.
The key ingredients of BT are the reachability and observability Gramians [72, 129, 3]

which are given by

P =

∞∫
0

(exp
(
E−1At

)
E−1BBTE−T exp

(
E−1At

)T
dt, (7.6a)

ETQE = ET

∞∫
0

(exp
(
E−1At

)T
CTC exp

(
E−1At

)
dtE. (7.6b)

Recalling Lemma 2.25, P,Q solve

APET + EPAT = −BBT , (7.7a)

ATQE + ETQA = −CTC, (7.7b)

which we also refer to as reachability and observability GCALEs. The magnitude of the
eigenvalues of P and ETQE constitutes a measure of how well states can be controlled
and, respectively, observed. Following this reasoning, the square roots of singular values
σi of the product of both Gramians, PETQE, represents a joint measure for controlla-
bility and observability. The σi are also called Hankel singular values of the system and
are system invariants w.r.t. state space transformations. The aim of balanced trunca-
tion [221, 175] is to identify and truncate components that are weakly controllable and
observable. This is achieved by a state space transformation via a nonsingular matrix
T ∈ Rn×n that simultaneously diagonalizes both Gramians through congruence, i.e.,

T TPT = T−1ETQET−T = Σ = diag (σ1, . . . , σn)

and, hence, it holds for their product T TPETQET−T = Σ2. In other words, the system
is brought into a balanced realization. This balanced realization allows to easily iden-
tify weakly controllable and observable state components which correspond to diagonal

161

7. Applications to Model Order Reduction

entries of Σ2 that are very small in magnitude. As the system is assumed to be stable
and, thus, P and ETQE are positive (semi-)definite, there exist Cholesky(-like) factor-
izations P = ZPZ

T
P and Q = ZQZ

T
Q. The balancing transformation is then easily found

by computing the singular value decomposition ZT
QEZP = RΣLT , RTR = LTL = In

and defining T := ZPLΣ
− 1

2 . It can be shown that the inverse of T can be written as
T−1 = ZQRΣ

− 1
2 provided P, ETQE > 0 which holds if (2.5) is controllable and observ-

able (cf. Definition 2.21, Lemma 2.25). The truncation is carried out by using only the
r largest singular values σ1, . . . , σr and corresponding singular vectors for constructing
T and T−1. This procedure, often referred to as the square-root balanced truncation
(SRBT) method, was introduced in [221, 156]. One can show [3] that the reduced sys-
tem generating by balanced truncation is, like the original system, asymptotically stable
and that the error is bounded by

‖H − H̃‖H∞ = max
ω∈R

(‖H(jω)− H̃(jω)‖2) ≤ 2
n∑

j=r+1

σj (7.8)

without taking the multiplicities of the σj into account. The error bound (7.8) admits
to automatically determine the reduced dimension r, for instance, one could adjust r
such that

2
n∑

j=r+1

σj ≤ τBT, (7.9)

where 0 < τBT � 1 indicates the desired accuracy of the reduced order model. For
large-scale systems with m, p � n, the Gramians are typically approximated by low-
rank factorizations P ≈ ZPZ

T
P , Q ≈ ZQZ

T
Q with ZP ∈ Rn×r1 , ZQ ∈ Rn×r2 , r1, r2 � n

which can be computed with suitable low-rank algorithms. In that case the GCALEs
(7.7a), (7.7b) are only solved approximately and one occasionally speaks of the low-rank
or approximate square-root balanced truncation method which is summarized in Algo-
rithm 7.1. By construction of the transformations, it always holds that Ẽ = T T

LETR = I
and, moreover, LR-SRBT constitutes a Petrov-Galerkin model order reduction method.
It is important to note that both the stability preservation as well as the error bound
(7.8) are intrinsically only proven for the case when ZP , ZQ are exact solution factors,
i.e. ZPZ

T
P = P , ZQZ

T
Q = Q solving the GCALEs in (7.6) exactly. The effects of using in-

exact Gramians in balanced truncation have been investigated in, e.g., [119, 3, 118, 237],
but to the author’s knowledge, precise ramifications of this inexactness are still not well
understood.
The next section is concerned with the computation of ZP , ZQ by a variant of the

G-LR-ADI iteration.

7.2.1. Numerical Solution of the Gramians with the Dual LR-ADI
Iteration

Obviously, the G-LR-ADI iteration can be readily applied to solve (7.7a) and (7.7b) in
two separate runs. However, one can also establish a variant for a simultaneous solution,

162

7.2. Balanced Truncation Model Order Reduction

Algorithm 7.1: Square root balanced truncation for generalized state-space sys-
tems using low-rank factors (LR-SRBT)

Input : System matrices E, A, B, C defining the dynamical system (2.5),
truncation tolerance εBT

Output: Matrices Ẽ, Ã, B̃, C̃ of reduced system
1 Compute low-rank solution factors ZP , ZQ of the solutions of (7.7) such that
P ≈ ZPZ

T
P , Q ≈ ZQZ

T
Q.

2 Compute and partition a (thin) singular value decomposition

RΣLT =
[
R1 R2

] [
Σ1 0

0 Σ2

] [
L1 L2

]T
= ZT

QEZP , (7.10)

where Σ1 contains the largest (approximate) Hankel singular values.
3 Construct transformation matrices TR and TL

TR := ZPL1Σ
− 1

2
1 , TL := ZQR1Σ

− 1
2

1 . (7.11)

4 Generate reduced order model

Ẽ := T T
LETR, Ã := T T

LATR, B̃ := T T
LB, C̃ := CTR. (7.12)

motivated by the adjoint nature of both GCALEs (7.7). In the following, the subscripts

P and Q denote quantities that belong to the iteration for P and, respectively, Q. Recall
that for the reachability GCALEs (7.7a), the G-LR-ADI iteration proceeds as

VP,j =
(
A+ αjE

)−1
WP,j−1, (7.13)

WP,j = WP,j−1 − 2Re
(
αj

)
EVP,j, (7.14)

ZP,j = [ZP,j−1,
√

−2Re
(
αj

)
VP,j], (7.15)

where WP,0 := B. If we now use the same shifts α1, . . . , αj for the observability GCALE
(7.7b), then this translates to

VQ,j =
(
AT + αjE

T
)−1

WQ,j−1, (7.16a)

WQ,j = WQ,j−1 − 2Re
(
αj

)
ETVQ,j, (7.16b)

ZQ,j = [ZQ,j−1,
√

−2Re
(
αj

)
VQ,j] (7.16c)

with WQ,0 := CT . As before, we assume that the set of shifts is proper, such that
a complex shift is followed by its complex conjugate. In that case, interchanging αj

163

7. Applications to Model Order Reduction

Algorithm 7.2: The dual G-LR-ADI iteration [33]

Input : System matrices E, A, B, C defining (7.7), shift parameters
{α1, . . . , αjmax} ⊂ C−, and tolerance 0 < τL � 1

Output: ZP = ZP,jmax ∈ Rn×mjmax , ZQ = ZQ,jmax ∈ Rn×pjmax such that
ZPZ

T
P ≈ P , ZQZ

T
Q ≈ Q.

1 WP,0 = B, WQ,0 = CT ZP,0 = ZQ,0 = [], j = 1.
2 while ‖(WP,j−1)

TWP,j−1‖ ≥ τL‖BTB‖ or ‖(WQ,j−1)
TWQ,j−1‖ ≥ τL‖CCT‖ do

3 Solve

(A+ αjE)VP,j = WP,j−1, (A+ αjE)
HVQ,j = WQ,j−1 (7.17)

for VP,j, VQ,j.

4 if Im
(
αj

)
= 0 then

5 [WP,j, WQ,j] = [WP,j−1, WQ,j−1]− 2Re
(
αj

)
[EVP,j, E

TVQ,j].

6 ZP,j = [ZP,j−1,
√−2αjVP,j], ZQ,j = [ZQ,j−1,

√−2αjVQ,j].

7 j = j + 1.

8 else

9 γj = 2
√

−Re
(
αj

)
, δj =

Re (αj)
Im (αj)

.

10 [WP,j+1,WQ,j+1] =

[WP,j−1,WQ,j−1]+γ
2
j

(
Re

(
[EVP,j, E

TVQ,j]
)
+ δj Im

(
[EVP,j,−ETVQ,j]

))
.

11 ZP,j+1 =
[
ZP,j−1, γj

(
Re

(
VP,j

)
+ δj Im

(
VP,j

))
, γj

√
(δ2j + 1) · Im (

VP,j
)]

.

12 ZQ,j+1 =
[
ZQ,j−1, γj

(
Re

(
VQ,j

)−δj Im (
VQ,j

))
, γj

√
(δ2j + 1)·Im (

VQ,j

)]
.

13 j = j + 2.

and αj in the iteration (7.16) yields
(
AT + αjE

T
)−1

=
(
A+ αjE

)−H
. The relations for

VP,j+1, WP,j+1, VQ,j+1, WQ,j+1 w.r.t. a pair of complex conjugated shifts can be easily
deduced from (4.8b). The resulting dual G-LR-ADI iteration for simultaneously solving
both GCALEs (7.7) is illustrated in Algorithm 7.2. As for a single GCALE, the most
expensive step is the solution of the linear systems of equations in Line 3. Since the
linear systems are adjoint to each other one can, similar to the fADI iteration (3.48)
for cross-Gramian equations (3.47), compute a LU factorization of (A + αjE) = LjUj

in the P -iteration and reuse it in the Q-iteration via (A + αjE)
H = UH

j L
H
j , i.e., VP,j =

U−1
j (L−1

j WP,j−1), VQ,j = L−H
j (U−H

j WQ,j−1). As we have seen in Section 3.3.4, solving
both linear system separately, e.g., by the MATLAB backslash, can be faster than
computing and storing the triangular LU factors. Again, which way is faster appears to
be highly dependent on the problem and the computing environment. In the case of a
separate solution there is no necessity to use the same set of shift parameters for both
the P - and Q-iteration, although generating a single set might save some computations.

For symmetric matrices A = AT and E = ET , both iterates can be obtained by solving

164

7.2. Balanced Truncation Model Order Reduction

one single linear system with an augmented right hand side:

[VP,j, VQ,j] = (A+ αjE)
−1[WP,j−1, WQ,j−1].

This is the same as the situation in the fADI iteration (3.50) for GCALEs with unsym-
metric inhomogeneities. As reported in Section 3.3.4, this will indeed be faster than
solving for VP,j, VQ,j separately. Obviously, the associated Algorithm 4.6 can be readily
applied here with F = B, G = −C. The low-rank solution factors for P and Q are given
by the computed factors Z and Y . Hence, after the same number of steps, Algorithm 4.6
and Algorithm 7.2 construct identical results in this case.

Remark 7.1:

For the case E = In, a conceptually very different approach that tries to deal with
both CALEs in (7.7) at the same time is proposed in [243]. The approximate im-
plicit subspace iteration with alternating directions (AISIAD) successively computes
dominant, invariant subspaces of P and Q and uses the subspace for P to reduce
the amount of computations in the next step for Q and vice versa. In each itera-
tion step of AISIAD, the key ingredient is to transform the two CALEs in (7.7) into
specially structured Sylvester equations. These can then solved efficiently by Arnoldi
type methods or specialized algorithms for CASEs [215, 30]. For (7.7a), the CASE to
be solved at step k ≥ 1 is of the form

AP̂k + P̂kÂk + M̂k = 0, P̂k, M̂k ∈ Rn×k, Âk ∈ Rk×k.

Since the dimension of Âk ∈ Rk×k increases with k in the course of AISIAD, this ap-
proach is likely to be numerically more expensive compared to our LR-SRBT approach
employing the dual G-LR-ADI iteration. ♦

7.2.2. Stopping the Dual Iteration

As we discussed in the previous chapters, the G-LR-ADI iteration can be terminated
once the norm of the scaled Lyapunov residual is smaller than some tolerance. For
the dual G-LR-ADI iteration, where we have to monitor two residuals LP,j, LQ,j for
(7.7a),(7.7b), this gives a termination criterion

‖LP,j‖ = ‖W T
P,jWP,j‖ < τL‖BTB‖ ∧ ‖LQ,j‖ = ‖W T

Q,jWQ,j‖ < τL‖CCT‖ (7.18)

which is already included in Algorithm 7.2.
In [33, 37], some arguments against this residual based stopping in the context of BT

are given. The residual of the GCALEs is often not directly related to the accuracy of
the reduced order model that we are actually interested in the model order reduction.
On the one hand, one frequently observes very good reduced order model accuracies
even when the G-LR-ADI iteration does not converge at all. On the other hand, there
are examples where one of the ADI iterations converges much faster than the other one.
Since the dimension of the reduced order model is at most as large as the smaller of the

165

7. Applications to Model Order Reduction

two column dimensions of ZP and ZQ, this can limit the accuracy of the reduced order
model and prevent us from fulfilling prescribed error bounds. Therefore, we discuss
alternative stopping criteria ideas next that try to overcome these issues in balanced
truncation model order reduction when the dual G-LR-ADI iteration, but also any other
dual Lyapunov solver, is employed to solve (7.7).

Goal-Oriented Stopping via the Approximate Hankel Singular Values

The actual properties of interest in the (LR)-SRBT method are the Hankel singular
values of the original system. To be precise, we want to capture the leading Hankel
singular values as accurate as possible since these describe the dominant dynamics of
the system and thus need to be reflected in the reduced order model. The two solution
factors ZP , ZQ can be employed to compute (7.10) during the dual iteration for (7.7).
In the following, superscripts (j) denote quantities of the SVD (7.10) at iteration step j
of Algorithm 7.2. Hence, at step j we have j · min(m, p) nonzero approximate Hankel
singular values. We will consider two stopping criteria based on these values.
At first, let us assume we are searching for a reduced order model of a fixed dimension

r ∈ N. Following [33, 37], we monitor the change of the leading r singular values in

Σ
(j)
1 ∈ Rr×r. Once these singular values stagnate we have matched the corresponding

subsystem and, thus, get a good reduced order model evaluating (7.12). This way we find
a reliable criterion when to stop the iteration in contrast to the Lyapunov residuals that
may not tell us anything about the approximation. In finite arithmetic it is sufficient to
drive the relative change of the leading Hankel singular values below a certain tolerance.
Here, relative is to be understood as relative to the largest singular value. This suggests
a termination criterion of the form

Δ∞σ := ‖σ(j)
r − σ(j−1)

r ‖∞/σ(j)
1 < τσ, 0 < τσ � 1, (7.19)

where σ
(j)
r := (σ

(j)
1 , . . . , σ

(j)
r)T . We can use a start-up phase in which we do not evaluate

the stopping criterion at all. This phase is pre-determinated by the size of the matrices
B and C. The dual G-LR-ADI iteration should at least be running as long as ZP and
ZQ do not have a minimum of r linearly independent columns each. Moreover, after the
start-up phase one can also evaluate this measure only every couple of steps, e.g., every
5th-step, of the dual G-LR-ADI iteration.
An alternative but similar approach which does not depend on a pre-specified reduced

order r is motivated by the theoretical error bound (7.8). We can also monitor the
relative change in the sum of all j · min(m, p) computed nonzero singular values. Let

σ(j) := (σ
(j)
1 , . . . , σ

(j)
j·min(m, p))

T such that the stopping criterion becomes

Δ1σ :=
∣∣∣‖σ(j)‖1 − ‖σ(j−1)‖1

∣∣∣ /‖σ(j)‖1 < τσ, σ(j) := (σ
(j)
1 , . . . , σ

(j)
j·min(m, p))

T . (7.20)

If the change in ‖σ‖1 is only marginal, we may stop the iteration since the largest HSVs
are found and the smallest ones will be neglected in the truncation step anyway. Notice
that ‖σ(j)‖1 is also the Ky-Fan and Schatten-1 norm [131] of the matrix Gj = ZT

Q,jEZP,j.

166

7.2. Balanced Truncation Model Order Reduction

The quantitative analysis of the convergence of the Hankel singular values is still
under investigation [118]. In [33], some basic qualitative ideas to motivate the stopping
criteria (7.19),(7.20) above can be found. From a practical point of view it is obvious that
the criteria are reasonable quantities to look at if the Hankel singular values converge.
Unfortunately, as we will see later, both criteria (7.19) and (7.20) often show an irregular
behavior in practice as the dual G-LR-ADI iteration proceeds. It may happen that these
criteria might terminate the dual G-LR-ADI iteration too early which can destroy the
stability preservation of BT [3] due to utilizing crude low-rank approximations of P , Q.
Some of the upcoming numerical experiments indeed show such effects.
The tolerance τσ can in both cases be related to the desired accuracy τBT. Since only

approximate singular values are used in (7.19), (7.20) one should use τσ < τBT.

Implementational Aspects

The stopping criteria above require in each step of Algorithm 7.2 the computation of
a thin SVD of the matrix Gj = ZT

Q,jEZP,j which can become more expensive than
computing the norms of the GCALE residuals. Here, we mention some basic strategies
to make this step less costly. The matrix Gj does not need to be computed completely
from scratch since it can be accumulated efficiently, assuming that the shift αj is real,
via

Gj = ZT
Q,jEZP,j =

[
Gj−1 γZT

Q,j−1EVP,j
γ(VQ,j)

TEZP,j−1 γ2(VQ,j)
TEVP,j

]
,

where γ :=
√−2αj. In the complex case this augmentation can be carried out similarly

by adding 2p rows and 2m columns w.r.t. the the double step. Since Gj is obtained by
adding new columns γ(ZQ,j−1)

TEVP,j and new rows [γ(VQ,j)
TEZP,j−1, γ

2(VQ,j)
TEVP,j]

to Gj−1, updating strategies for the SVD [115, 61] can be employed to reduce the cost
for computing the SVD of Gj. There, however, either new rows or columns are added to
a matrix with an already known SVD but not both as it is the situation here, such that
the proposed updating strategies in [115, 61] have to be applied consecutively, e.g, once
for the new rows and afterwards for the new columns. For most of our examples, the
encountered SVDs are comparably small and only minor savings are expected from these
ideas such that we do not pursue them further. Once the dual G-LR-ADI terminates
using the stopping criterion (7.19) or (7.20), the SVD of Gj can be reused for the
construction of TL, TR in (7.11). Further savings can be made if ZP,j = ZQ,j which is
the case when A and E are symmetric and B = ±CT .

7.2.3. Shift Parameters for the Dual Iteration

We briefly discuss the adaptation of the shift parameters generation strategies from
Chapter 5 to Algorithm 7.2. The a-priori computed Wachspress or heuristic shift pa-
rameters from Section 5.2 can be used right away since these are typically generated
from Ritz values w.r.t. (A, E) resulting in a single set of shift parameters. Regarding

167

7. Applications to Model Order Reduction

the self-generating V (u)-shifts from Section 5.3.1, we propose to merge the Ritz values
obtained from applying this approach to both the P - and Q-iteration. For the latter one
it holds, similarly to (6.12a), by Corollary 4.6 that ATZQ,j = WQ,jG

T
ADI-r+E

TZQ,jB̂ADI-r

with B̂ADI-r constructed as BADI-r w.r.t. the conjugated set of shift parameters. Hence,
(5.3) can be used twice to obtain the restrictions of A and AT without additional matrix
vector products. This will yield a set of cardinality up to (u + 1)(m + p) from which a
smaller number, e.g., max (p,m), is chosen using the heuristic shift approach.
For the residual minimizing extension of the V (u)-shifts, we might look for the single

shift αj+1 that simultaneously minimizes both GCALE residual norms. This can be
easily achieved by considering, e.g., the joint objective function

fdual
j (ν, ξ) :=

1

2

(
‖C(A,E, α)WP,j‖2 + ‖C(A,E, α)HWQ,j‖2

)
. (7.21)

The gradient and Hessian of (7.21) are basically obtained by adding gradient and Hessian
of the two objective functions (5.4) w.r.t. WP,j andWQ,j. The other techniques discussed
in Section 5.3.2 are applied here as well in a straightforward manner.
It should be mentioned that it is indeed possible that the so obtained residual norm-

minimizing shifts lead to a slower convergence compared to using (5.4) separately for
the P - and Q-iteration, i.e., working with different shifts for both GCALEs. However,
in our numerical tests only minor differences were observed and using the single shift
approach with (7.21) paid off due to a cheaper generation effort.

7.2.4. Balanced Truncation for Second Order Systems

By rewriting a second order system (2.32) into an equivalent generalized first order
system (2.5) defined by, e.g., (2.33a) or (2.33a), LR-SRBT can be readily applied. The
low-rank factors ZP , ZQ of the Gramians can be computed by the SO-LR-ADI iteration
(Algorithm 3.3) which is especially tailored for this purpose. The reduced system (7.2)
will, however, no longer have the second order structure of the original system (2.32).
Hence, the reduced states no longer have physical interpretations which is, e.g., especially
important in elastic multibody systems [157, 92, 91, 178] or certain electrical systems
[239]. These applications demand the preservation of the second order form. Several
structure preserving variants of BT have been developed for this purpose [65, 239, 189,
51, 53, 178, 31, 37] and are often referred to under the name second order BT.
The main idea is to partition the Gramians P and Q accordingly to the structure

present in the equivalent generalized first order system:

P =

[
Pp P1,2

P T
1,2 Pv

]
, Q =

[
Qp Q1,2

QT
1,2 Qv

]
,

where Pp, Qp ∈ Rn×n and Pv, Qv ∈ Rn×n are called position, velocity reachability and
observability Gramians, respectively.
We will restrict in the following to symmetric second order systems, i.e., M,D,K � 0

symmetric and B1 = ±CT
p , Cv = 0 or B1 = ±CT

v , Cp = 0. This class is especially

168

7.2. Balanced Truncation Model Order Reduction

present in the applications [157, 92, 91, 178, 239] mentioned above. Symmetric second
order systems can be transformed into an equivalent symmetric first order system with
E = ET , A = AT and B = ±CT such that P ≡ Q, see, e.g., [37]. Consequently, it
is enough to consider only Pp and Pv [178, 37], or respectively low-rank factorizations
Pp ≈ ZpZ

T
p and Pv ≈ ZvZ

T
v . Following the approach in [189], one can choose between

four possible SVDs

ZT
χ1
MZχ2 =Xχ1χ2Σχ1χ2Y

T
χ1χ2

=[Xχ1χ2,1, Xχ1χ2,2]

[
Σχ1χ2,1 0

0 Σχ1χ2,2

]
[Yχ1χ2,1, Yχ1χ2,2]

T ,
(7.22)

where the subscripts χ1, χ2 ∈ {p, v} denote whether the position or velocity blocks of
P are used. Similar to the first order case, the Σχ1χ2,1 ∈ Rr×r block contains the largest
singular values. Depending on the choice of χ1, χ2, they are referred to as position-
position (PP) if χ1 = χ2 = p, velocity-velocity (VV) if χ1 = χ2 = v, velocity-position
(VP) if χ1 = v, χ2 = p, and position-velocity (PV) singular-values if χ1 = p, χ2 = v.
This yields four different pairs of matrices which perform the reduction:

TR,χ1χ2 := Zχ1Yχ1χ2,1Σ
− 1

2
χ1χ2,1

, TL,χ1χ2 := Zχ2Xχ1χ2,1Σ
− 1

2
χ1χ2,1

. (7.23)

Hence, second order BT can be carried out in four variants which yields four different
possible reduced order models in second order form:

M̃χ1χ2
¨̃x(t) + D̃χ1χ2

˙̃x(t) + K̃χ1χ2 x̃(t) = B̃χ1χ2u(t),

ỹ(t) = C̃p
χ1χ2

x̃(t) + C̃v
χ1χ2

˙̃x(t),

with

M̃χ1χ2 := T T
L,χ1χ2

MTR,χ1χ2 , D̃χ1χ2 := T T
L,χ1χ2

DTR,χ1χ2 ,

K̃χ1χ2 := T T
L,χ1χ2

KTR,χ1χ2 ∈ Rr×r, B̃χ1χ2 := T T
L,χ1χ2

B ∈ Rr×m,

C̃p
χ1χ2

:= BTTR,χ1χ2 , C̃v
χ1χ2

:= BTTR,χ1χ2 ∈ Rm×r.

(7.24)

It can easily be shown that the reduced mass matrices M̃χ1χ2 are always equal to the
identity. The reduced position and velocity output matrices C̃p

χ1χ2
, C̃v

χ1χ2
are only built if

they exist in the original model. The preservation of the second order structure comes at
the price of the absence of the guaranteed stability preservation of BT (if exact Gramians
are used). Hence, second order BT does not provide an error bound like (7.8). As an
alternative one can monitor the ratio of the entries in Σχ1χ2 and determine the reduced
dimension once

σj,χ1χ2

σ1,χ1χ2

≤ τBT (7.25)

is fulfilled [201]. There is no theoretical result describing which variant of second order
balanced truncation will lead to the most accurate reduced order models. One advantage

169

7. Applications to Model Order Reduction

of the position-position and velocity-velocity approaches is that they preserve stability
[178, 37] and also the symmetry of the system, i.e., all reduced coefficient matrices remain
symmetric, positive definite, and the reduced input matrix is still the transpose of the
reduced (position or velocity) output matrix. The velocity-position and position-velocity
reduced order models are adjoint to each other. Hence, they show the same frequency
response plot in the spectral or Frobenius norm [178].

The goal-oriented stopping criteria mentioned before can by directly carried over to
second order BT and the SO-LR-ADI iteration by simply using the relevant singular
values in Σχ1χ2 , see [37].

7.2.5. Numerical Examples

Here, we evaluate the execution of LR-SRBT (Algorithm 7.1) by means of low-rank
solution factors computed by the (dual) G-LR-ADI iteration (Algorithms 4.1, 7.2) using
a few numerical studies. We consider the test examples ifiss66k, bips and chain. The
matrices B,C for the ifiss66k example consist ofm, p = 5 columns and rows with random
entries. For bips the SLRCF-ADI iteration [98] (cf. Section 3.2.5) and the corresponding
adapted version of BT is used. The chain example is a symmetric second order system
such that the SO-LR-ADI iteration (Algorithm 3.3) is used and the reduction is carried
out to first as well as second order form.

At first, we briefly compare to solution of the GCALEs for both Gramians (7.7)
by two separate runs of the G-LR-ADI iteration and by the dual G-LR-ADI iteration
(Algorithm 7.2) for the examples ifiss66k and bips. The residual norm-minimizing
shift approach from Section 5.3.2 is employed as well as the modification using (7.21)
for the dual iteration. We do not reuse the LU factorizations because this did not led
any performance gains. The history of the normalized residual norm of the P - and
Q-iteration by both approaches is plotted in Figure 7.1. For the ifiss66k example the
dual iteration requires slightly fewer iteration steps and a smaller computation time of
164.1 seconds compared to 170 seconds for the separate iterations. The result for the
bips example are similar: the dual G-LR-ADI iteration required with 21.8 seconds less
time than the separate approach which took 27.4 seconds. Using the joint objective
function (7.21) to obtain shift parameters appears to work satisfactorily for the dual
iteration. Figure 7.1 also shows the progress of the goal oriented stopping quantity Δ1σ
from (7.20) during the dual G-LR-ADI iteration. Apparently, Δ1σ leads to an earlier
termination of the iteration but its highly oscillatory behavior makes it somewhat less
reliable as anticipated. The criterion (7.19) showed similar oscillations which is in line
with the observations reported in [33, 37].

Now, we carry out LR-SRBT (Algorithm 7.1) on the basis of the low-rank factors
obtained after the residual norm related termination using (7.18) and via the goal-
oriented stopping with (7.20). The dimension of the reduced order model was determined
adaptively using (7.9) with τBT = 10−5. As error measurement we compute the transfer
function matrices H(s) and H̃(s) of original and reduced systems and consider the

170

7.2. Balanced Truncation Model Order Reduction

20 40 60 80 100
10−12

10−8

10−4

100

1

τσ

τL

iteration number j

εP
/
Q
,
Δ

1
σ

50 100 150
10−9

10−5

10−1

103

1

τσ
τL

iteration number j

εPj dual

εQj dual

Δ1σ

εPj single

εQj single

Figure 7.1.: History of the residual norms within single and dual G-LR-ADI iteration as
well as Δ1σ for the ifiss66k (left) and bips (right) test systems.

absolute and relative errors

Eabs(ω) := ‖H(jω)− H̃(jω)‖2, Erel(ω) := Eabs(ω)/‖H(jω)‖2 (7.26)

for values ω ∈ Ω = [ω1, ω2] ⊂ R+ from a prescribed interval. Table 7.1 gives the
used interval Ω and stopping tolerances τL, τσ, the number of dual G-LR-ADI iteration
steps jPit , j

Q
it , the final obtained residual norms εPjit , ε

Q
jit

w.r.t. both Gramians, the total
consumed execution time tADI of the dual G-LR-ADI iteration, the obtained reduced
order r, the largest values of the relative errors (7.26) in Ω, as well as the value of
theoretical error bound (7.8). In the last column we also indicate if the generated
reduced order model is stable. The error bound, absolute and relative errors Eabs and
Erel of the ifiss66k and bips examples are illustrated in Figure 7.2.
Evidently, using the goal-oriented stopping approach (7.20) leads to fewer total it-

eration steps and smaller G-LR-ADI execution times tADI, but also to larger residual
norms εPjit , ε

Q
jit

and the generated reduced order models are also less accurate judging

by the values of Erel
max. For the examples ifiss66k and chain, this earlier termination

of the dual G-LR-ADI iteration has drastic consequences because of the generation of
unstable reduced order models. This could also be observed for the residual based stop-
ping with larger values of τL which suggests that a minimum accuracy of the Gramian
approximations might be required in order to preserve stability. Recall that in case of an
unstable reduced order model, the error bound (7.8) looses its meaning. Hence, the cri-
teria (7.19),(7.20) based on the approximate Hankel singular values should be employed
with care.
It is also important to note that for the examples ifiss, chain a violation of the theo-

retical error bound (7.8) can be observed in some case. As remarked earlier, we suspect
that this is caused by the usage of approximate GCALE solutions since (7.8) only holds
when exact solutions are used.
For the symmetric second order system chain, we additionally apply the second order

171

7. Applications to Model Order Reduction

Table 7.1.: Results for the examples regarding Gramian approximation and model re-
duction.

Example stop jPit , jQit εPjit , εQjit tADI r Erel
max bound C−?

ifiss66k
Ω=[10−1, 104]

τL = 10−10 91, 91 6.8·10−12, 7.6·10−12 164.1 339 1.1·10−10 7.5·10−6 1

τσ = 10−7 60, 60 6.3·10−7, 5.1·10−7 110.7 282 1.4·10−6 3.3·10−6 0

bips
Ω=[10−1, 103]

τL = 10−8 86, 143 7.6·10−9, 9.7·10−9 21.9 159 2.7·10−5 8.4·10−6 1

τσ = 10−7 85, 85 1.6·10−7, 3.5·10−2 16.7 157 2.6·10−5 8.2·10−6 1

chain
Ω=[10−3, 103]

τL = 10−10 192 6.7·10−11 22.7 644 2.1·10−7 4.6·10−6 1

τσ = 10−8 105 8.6·10−6 16.4 433 4.8·10−5 3.0·10−6 0

chain
Ω=[10−3, 103]
reduction to second order form with
r = 300

stop type jPit εPjit tADI Erel
max C−?

τL=10−10

pp

192 9.6·10−10 22.9

1.3·10−1 1

vv 9.5·10−4 1

vp 3.2·10−3 1

τσ=10−8

pp 87 3.2·10−4 12.5 2.0·10−2 1

vv 123 2.9·10−7 21.6 9.5·10−4 1

vp 123 2.9·10−7 21.7 2.0·10−2 1

BT variants but fix the reduced dimension to r = 300 which roughly corresponds to
the half of the dimension of the reduced system obtained by BT to first order form.
The obtained reduced order models in second order form are, however, less accurate
than the reduced systems in first order form. The results from using the goal-oriented
stopping criteria lead to reduced systems of comparable accuracy at an reduced amount
of G-LR-ADI iteration steps. Because of the required SVD computations, no significant
time savings are gained despite the smaller numbers of iteration steps compared to the
residual based stopping. Other goal-oriented stopping ideas, e.g., based on (7.25), led
to similar reduction results.
To conclude this section, the G-LR-ADI iteration can be used right away to construct

low-rank solution factors of the Gramians (7.6). This can be done simultaneously by
the dual G-LR-ADI iteration. The proposed goal-oriented stopping criteria lead to an
earlier termination of the iteration at the price of less accurate reduced order models
which are occasionally also unstable. Hence, further research effort should be put to deal
with these disadvantages. For instance, taking also the singular vectors of the matrix
Gj into account might give more reliable criteria.

7.3. Balanced Truncation in Limited Frequency Intervals

By looking at the error bound (7.8), the above balanced truncation framework aims at
generating reduced order models that are accurate for all values ω ∈ R, which, from an
application oriented view, are typically considered as frequencies. In several applications,
however, the underlying physical or technical system operates only in a small frequency
interval [ω1, ω2] of interest. Restricting the BT procedure to this frequency interval

172

7.3. Balanced Truncation in Limited Frequency Intervals

10−1 100 101 102 103 104
10−12

10−8

10−4

100

τBT

frequency ω

E
(ω

)a
b
s/
re
l

10−1 100 101 102 103

10−4

10−6

10−8

τBT

frequency ω

E(ω)abs,‖L‖ E(ω)rel, ‖L‖
E(ω)abs,Δ1σ E(ω)rel, Δ1σ

(7.8),‖L‖ (7.8) ,Δ1σ

Figure 7.2.: Absolute and relative errors w.r.t. the transfer function matrix for the
ifiss66k (left) and bips (right) test systems.

establishes frequency-limited balanced truncation (FLBT) which was proposed in [107].
One motivation for FLBT is that, compared to ordinary, unrestricted BT, by restricting
to a small interval [ω1, ω2], we hope to obtain higher accuracies with reduced order
models of the same dimension, or to achieve a comparable accuracy with smaller reduced
order models inside the interval, while allowing for larger errors outside.
The main purpose of this section is to provide a numerical efficient framework for car-

rying out FLBT for high-dimensional systems. For the ease of representation we restrict
to standard state-space systems (E = In, A,B,C) = (A,B,C) in the main part of this
section. The general situation E �= In is elaborated on later. We start by reviewing the
concept of frequency-limited Gramians and show how to formulate a procedure similar
to the square root approach in Algorithm 7.1 for balanced truncation without frequency
limitations. In Section 7.3.2, we investigate the eigenvalue decay of the frequency-limited
Gramians. For the occurring CALEs, we will, as in the unlimited case, employ low-rank
approximations of the solutions. It turns out that frequency-limited balanced trunca-
tion involves, in addition to solving these CALEs, evaluating a nonlinear matrix valued
function whose efficient numerical treatment is topic of Section 7.3.3. We will show that
it is possible to deal efficiently with both the matrix valued function and the CALEs in
a single algorithm using extended or rational Krylov subspaces with appropriate shifts.
Generalized LTI systems (2.5) and some comments on further modifications and vari-
ations of balanced truncation with restrictions are given in Section 7.3.4. Numerical
experiments in Section 7.3.5 illustrate the performance of our approaches with respect
to the accuracy of the constructed reduced systems and the computational efficiency
regarding the GCALE solution.

Remark 7.2:

The techniques discussed prior in Section 7.2, i.e., the simultaneous solution of both
occurring matrix equations, the goal-oriented stopping criteria, and structure exploit-
ing variants for second order systems, can be modified easily for the use in FLBT and

173

7. Applications to Model Order Reduction

are, hence, omitted for the sake of brevity. ♦

7.3.1. Frequency-Limited Gramians

By employing the Fourier transformation, the Gramians (7.6) of (A,B,C) can be rep-
resented in the frequency domain as

P =
1

2π

∞∫
−∞

Ψ(jν)BBTΨ(jν)Hdν, Q =
1

2π

∞∫
−∞

Ψ(jν)HCTCΨ(jν)dν (7.27)

with the resolvent Ψ(jν) := (jνI−A)−1. Restricting the integration limits in the integrals
(7.27) to certain (unions of) intervals Ω ⊆ R, gives the frequency-limited Gramians PΩ,
QΩ.

Definition 7.3 (Frequency-limited Gramians [107]):

For the system (A,B,C), the frequency-limited reachability and observability Grami-
ans w.r.t. Ω ⊂ R are defined by

PΩ =
1

2π

∫
Ω

Ψ(jν)BBTΨ(jν)Hdν, QΩ =
1

2π

∫
Ω

Ψ(jν)HCTCΨ(jν)dν. (7.28)

Since the system (A,B,C) is defined by real matrices, the considered frequency region
should be symmetric w.r.t. zero: Ω = −Ω, for instance, in the form

Ω := [−ω2,−ω1] ∪ [ω1, ω2], 0 ≤ ω1 < ω2 < ∞. (7.29)

The following Theorems 7.4–7.5 give important representations of PΩ, QΩ and their
proofs can be found in, e.g., [107, Section 4] and [186, Section 3.1].

Theorem 7.4 (CALEs for the frequency-limited Gramians [107, 186]):

Consider the system (A,B,C) and a frequency region Ω ⊂ R, Ω = −Ω. Then the
frequency limited Gramians PΩ and QΩ are given in the following equivalent ways:

1. Using the ordinary reachability and observability Gramians P and Q from (7.6),
it holds that

PΩ = FΩP + PF T
Ω , QΩ = F T

ΩQ+QFΩ (7.30)

with

FΩ :=
1

2π

∫
Ω

Ψ(jν)dν. (7.31)

174

7.3. Balanced Truncation in Limited Frequency Intervals

2. One can express PΩ, QΩ as the solutions of the frequency-limited reachability
and observability CALEs

APΩ + PΩA
T + FΩBB

T +BBTF T
Ω = 0, (7.32a)

ATQΩ +QΩA+ F T
ΩC

TC + CTCFΩ = 0. (7.32b)

The eigenvalues of the product PΩQΩ are, similar to the case Ω = R, called frequency-
limited Hankel singular values. The next theorem establishes that the matrix FΩ is real
and can also be represented via the matrix-valued natural logarithm.

Theorem 7.5 (Expression of FΩ [107, 186]):

The matrix-valued integral (7.31) can, for Ω as in (7.29), be expressed via

FΩ =
1

π
Re

⎛
⎜⎝

ω2∫
ω1

Ψ(jν)dν

⎞
⎟⎠ (7.33a)

= Re

(
j

π
ln

(
(A+ jω1In)

−1(A+ jω2In)
))

= Re

(
j

π
ln (C(A, jω1, jω2))

)
,

(7.33b)

where C(A, μ, ν) = (A + μIn)
−1(A + νIn) denotes a Cayley transformation of A

(cf. Definition 2.15) and ln(M) is the principal branch of the matrix valued natural
logarithm of M with Λ(M) ∩ R− = ∅. ♦

For frequency regions of the form Ω = [−ω, ω], it can be shown that (7.33b) simplifies
to

FΩ = Re

(
j

π
ln (−A− jωIn)

)
.

Moreover, the above Theorems 7.4 and 7.5 can be generalized to multiple, concatenated
segments in the frequency domain

Ω =
k⋃

i=1

[−ω2i, −ω2i−1] ∪ [ω2i−1, ω2i] with 0 ≤ ω1 < ω2 < . . . < ω2k < ∞,

where the matrix-valued logarithm of a product of k Cayley transformations occurs,
see [186, Corollary 3.1]. For simplification and brevity, we mainly focus on frequency
restrictions of the form (7.29) in the remainder.
Computing FΩ involves the evaluation of a function f(.) in A with f(z) = ln z+jω2

z+jω1
,

i.e., the logarithm of a Cayley transformation. For matrices of large dimensions, this ap-
pears to be a very formidable and expensive task. Some strategies that make an efficient
treatment of FΩ possible are proposed in Section 7.3.3. There, the numerical approxima-
tion of the frequency-limited Gramians by means of low-rank solutions PΩ ≈ ZPΩ

ZT
PΩ
,

QΩ ≈ ZQΩ
ZT

QΩ
is also investigated. The eigenvalue decay of PΩ, QΩ and, consequently,

175

7. Applications to Model Order Reduction

how well they can be approximated by such low-rank solutions is considered in the next
section. With the low-rank solution factors ZPΩ

, ZQΩ
, FLBT can be carried out in a

similar way as Algorithm 7.1 by substituting the CALEs (7.6) for the infinite Gramians
by the frequency-limited CALEs (7.32) in Line 1 and using ZPΩ

, ZQΩ
in the remaining

steps. In contrast to BT without frequency restrictions, FLBT is not guaranteed to
preserve the stability of the original system and also no error bound like (7.8) can be
given. We briefly come back to this issue in Section 7.3.4.

7.3.2. On the Eigenvalue Decay of the Frequency-Limited Gramians

We expect that the frequency-limited Gramians PΩ, QΩ in (7.32) can be well approxi-
mated by low-rank solutions because their inhomogeneities are of low rank 2m, 2p � n.
Comparing the infinite CALEs (7.6) with the frequency-limited ones (7.32), these inho-
mogeneities are the only differences in (7.46). Recalling the theory on the existence of
low-rank solutions of matrix equations [184, 4, 113, 222], the rank of the inhomogeneity
of a matrix equation is an influential factor on the numerical rank of the solution. The
rank of the inhomogeneities in (7.32) is twice as large as the rank of the inhomogeneities
BBT and CTC of the CALEs (7.6) for the infinite Gramians. Thus, one is, e.g., by
reviewing Corollary 2.41, tempted to expect that the numerical ranks of PΩ, QΩ are
larger than the numerical ranks of P , Q. Observations in practice, however, often show
the exact opposite phenomenon, i.e., PΩ, QΩ have smaller numerical ranks than P , Q.
On the one hand, this seems to be counterintuitive as the coefficient matrices in

both (7.6) and (7.32) are identical. On the other hand, comparing (7.27) and (7.28), it
appears intuitively clear that PΩ, QΩ have smaller numerical ranks since the integration
range is smaller such that less information enters the integrals. A general approach
for investigating the numerical rank of solutions of matrix equations is to look at the
eigenvalue decay of the solutions. As for the unlimited Gramians, however, obtaining a
general analytic prediction on the exact eigenvalue decay is difficult. Motivated by the
approaches used in [4, 222] (cf. Section 2.3.3), we try to bound the eigenvalues of P
and PΩ in the following. To this end, we restrict to the infinite and frequency-limited
reachability Gramians P , PΩ in the SISO case, i.e., B = b ∈ Rn. The observability
Gramians can be dealt with similarly and generalizations to the MIMO case can be
drawn from, e.g, [4]. We introduce the notation μ↓

j which refers to the j-th largest
element in magnitude of a complex set {μi} ⊂ C, i ≥ 1, i.e., the μi’s are assumed to be
ordered like |μ1| ≥ . . . ≥ |μn|. The next lemma provides useful factorizations of P and
PΩ.

Lemma 7.6 (Factorization of P and PΩ):

Let A in (7.6) and (7.32a) be diagonalizable, i.e., there exists a nonsingular matrixX ∈
Cn×n such thatA = XΛX−1 with Λ = diag (λ1, . . . , λn), λi ∈ Λ(A) (cf. Definition 2.2).
Furthermore, assume that (A, b) is controllable (cf. Definition 2.21).

a) The reachability Gramian P can be expressed as

P = XbKX
H
b with Xb := X diag

(
X−1b

)
. (7.34)

176

7.3. Balanced Truncation in Limited Frequency Intervals

The matrix K =
(

−1
λi+λj

)n

i,j=1
is a Hermitian positive definite Cauchy matrix.

b) The frequency-limited reachability Gramian PΩ can be factorized as

PΩ = XbKΩX
H
b , where KΩ := ΓK +KΓH (7.35)

with Γ = X−1FΩX = diag (φ1, . . . , φn). The matrix KΩ is a Hermitian positive
definite Loewner matrix. ♦

Proof. The result a) is established in [4, Lemma 3.2], see also (2.28).

For b), the expression (7.30) reveals

PΩ = FΩP + PFH
Ω = XΓX−1XbKX

H
b +XbKX

H
b X

−HΓHXH

= XΓdiag
(
X−1b

)
KXH

b +XbK diag
(
X−1b

)H
ΓHXH ,

from which the factorization follows since diagonal matrices commute. Upon closer

inspection, KΩ = ΓK +KΓH =
(

φi+φj

λi+λj

)n

i,j=1
is obviously a Hermitian Loewner matrix

[95], which inherits the positive definiteness from PΩ � 0.

For every product FTL of three matrices F, T, L of appropriate dimensions, there is
the well known result [132, Theorem 3.3.2] that σj(FTL) ≤ ‖F‖‖L‖σj(T). Applying
this to (7.34) and (7.35) yields

λ↓j(P) ≤ ζλ↓j(K), λ↓j(PΩ) ≤ ζλ↓j(KΩ) (7.36)

with ζ := ‖Xb‖2. Here, we used that for any Hermitian positive definite matrix, its
eigenvalues in a decreasing order coincide with its singular values. Hence, the eigenvalues
of P and PΩ are bounded by the eigenvalues of K and KΩ, respectively. However, as
‖Xb‖ can be arbitrarily large, e.g., when A is non-normal (κ(X) > 1), there might be a
large deviation between λ↓j(P), λ

↓
j(PΩ) and λ

↓
j(K), λ↓j(KΩ). The effect of non-normality

to CALE solutions is investigated from a different perspective in [7]. At this point we
stress out that the focus of this section is not to give a precise estimation of the eigenvalue
decay of the Gramians, but to relate λ↓j(P) to λ

↓
j(PΩ) in the sense that λ↓j(KΩ) can be

bounded by λ↓j(K). For this, the following bound can be readily established.

Lemma 7.7:

For the eigenvalues of the matrices K and KΩ in (7.34) and (7.35), respectively, it
holds for j = 1, . . . , n that

λ↓j(KΩ) ≤ 2|λ↓j(Γ)|λ↓j(K) ≤ 2ρ(Γ)λ↓j(K),

and, thus, λ↓j(PΩ) ≤ 2ζ|φ↓
j |λ↓j(K). ♦

177

7. Applications to Model Order Reduction

Proof. Recall that, for any matrix M ∈ Cn×n its Hermitian part is HM := 1
2
(M +MH).

The eigenvalues of HM can be bounded by the singular values of M by [132, Corol-
lary 3.1.5]. Obviously, KΩ is twice the Hermitian part of N := ΓK, i.e, KΩ = 2HN =
N+NH and a straightforward application of the said corollary and [132, Theorem 3.3.2]
yields λ↓j(KΩ) ≤ 2σj(N) ≤ 2σj(Γ)σj(K), which leads to the result since both Γ is diag-
onal and K Hermitian positive definite.

This result should by no means be understood as very accurate because [132, Corollary
3.1.5] introduces a large over estimation regarding the magnitudes of λ↓j(KΩ). To the
authors knowledge, there are no tighter bounds for the eigenvalues of the Hermitian
part of a matrix available. Nonetheless, Lemma 7.7 reveals that the spectral radius
ρ(Γ) = ρ(FΩ) has a huge influence on the eigenvalues of KΩ. In the next lemma we
derive insightful bounds for the eigenvalues and the spectral radius of FΩ.

Lemma 7.8 (Eigenvalue bound for FΩ):

Let A satisfy the same assumptions as above and define

ρ̂ := |λq|, η̂ := | Im (
λq

) |, λq := argmax
λ∈λ(A)

∣∣∣ Im (λ)
Re (λ)

∣∣∣ ,
i.e., λq is the eigenvalue where the opening angle ψ(A) of Λ(A) is attained (cf. (2.27)
in Section 2.3.3). Then FΩ is nonsingular and for φj ∈ Λ(FΩ), j = 1, . . . , n, it holds
that

0 < Re
(
φj

)
<

1

2
, (7.37a)

| Im (
φj

) | < 1
4π

ln ρ̂+η̂
ρ̂−η̂

=: ι (7.37b)

and, consequently, ρ(FΩ) = ρ(Γ) < 1
2

√
1 + 4ι2. ♦

Proof. Since A is assumed to be diagonalizable, we have

FΩ = Re

(
j

π
ln (C(A, jω1, jω2))

)
= Re

(
j

π
X ln (diag (θ1, . . . , θn))X

−1

)

= Re

(
X diag

(
φ̂1, . . . , φ̂n

)
X−1

)
,

where

φ̂j :=
j

π

(
ln |θj|+ j arg θj

)
, θj =

λj + jω2

λj + jω1

∈ Λ(C(A, jω1, jω2)), λj ∈ Λ(A).

Since θj �= 1 it holds φ̂j �= 0 ∀j, which proves the non-singularity of FΩ. Furthermore,
the eigenpairs of A occur either in the form (λj, xj) ∈ R− × Rn or as two complex
conjugate pairs (λj, xj), (λj+1 = λj, xj+1 = xj) ∈ C− × Cn. Hence, there exists a
block-diagonal, nonsingular matrix T = diag (T1, . . . , Tn) with Tj = 1 if λ ∈ R−, and

Tj =
[
1 −j
1 j

]
if λj ∈ C−, such that XR := XT ∈ Rn×n and, hence,

FΩ = XR Re

(
T−1 diag

(
φ̂1, . . . , φ̂n

)
T

)
X−1

R . (7.38)

178

7.3. Balanced Truncation in Limited Frequency Intervals

Let us at first investigate the case of real eigenvalues λj for which Tj = 1 and the diagonal
entries above are

φ̂j = φj := Re
(
φ̂j

)
=

− arg θj
π

.

Since

θj =
λ2j + ω1ω2

λ2j + ω2
1

+ j
(ω2 − ω1)λj
λ2j + ω2

1

, (7.39)

we have Re
(
θj

)
> 0 and Im

(
θj

)
< 0 such that −π

2
< arg θj < 0, which yields the

desired result (7.37a), as well as trivially (7.37b).
For each complex conjugate pair of eigenvalues λj, λj the associated 2 × 2 block in

(7.38) is

Re

(
T−1
j diag

(
φ̂j, φ̂j+1

)
Tj

)
=

1

2
Re

([
1 1
j −j

] [
φ̂j 0

0 φ̂j+1

] [
1 −j
1 j

])

=
1

2
Re

([
φ̂j+φ̂j+1 −j(φ̂j−φ̂j+1)

j(φ̂j−φ̂j+1) φ̂j+φ̂j+1

])

=
1

2π

[
− arg θj−arg θj+1 ln |θj |−ln |θj+1|
− ln |θj |+ln |θj+1| − arg θj−arg θj+1

]
=

1

2π

[
− arg θj ·θj+1 ln |θj/θj+1|
− ln |θj/θj+1| − arg θj ·θj+1

]
.

Hence, FΩ has the eigenvalues

{φj, φj+1 = φj} =

{−1

2π

(
arg (θj · θj+1)∓ j ln |θj/θj+1|

)}

corresponding to each complex pair of eigenvalues {λj, λj} ⊂ Λ(A). It holds

θjθj+1 =
1

z

(
(|λj|2 − ω2

2)(|λj|2 − ω2
1) + 4ω1ω2 Re

(
λj

)2
+j2Re

(
λj

)
(|λj|2 + ω1ω2)(ω2 − ω1)

) (7.40)

with z = (|λj|2 − ω2
1)

2 + 4ω2
1 Re

(
λj

)2
and we find Im

(
θjθj+1

)
< 0 such that −π <

arg θjθj+1 < 0 from which Re
(
φj

)
= Re

(
φj

)
= − 1

2π
arg (θjθj+1) <

1
2
follows. For the

imaginary parts of φj assume w.l.o.g. Im
(
λj

)
> 0 and consider

0 < Θj :=
∣∣∣ θj
θj+1

∣∣∣2 = (
|λj |2+ω2

1−2 Im (λj)ω1

|λj |2+ω2
1+2 Im (λj)ω1

) (
|λj |2+ω2

2+2 Im (λj)ω2

|λj |2+ω2
2−2 Im (λj)ω2

)
= ζ1ζ2

with 0 < ζ1 ≤ 1 < ζ2. Hence,

| lnΘj| < max
(
lnmaxΘj, | lnminΘj|

)
.

179

7. Applications to Model Order Reduction

Now , ζ2 is, for a fixed λj, maximal if ω2 = |λj|. In that case

ζ2 =
|λj |+Im (λj)
|λj |−Im (λj)

=

√
1+q2j+qj√
1+q2j−qj

, qj :=
Im (λj)
|Re (λj)|

,

which increases as qj increases and, hence, the maximum value of ζ2 is attained at

qmax =
Im (λq)
|Re (λq)| , i.e., for λq. Using also max ζ1 = 1 (attained at ω1 = 0), yields

maxΘj <
(

ρ̂+η̂
ρ̂−η̂

)
.

Furthermore, min ζ2 = 1 and, for a fixed λj, ζ1 is by a similar reasoning minimal if
ω1 = |λq|. This leads finally to

| lnΘj| < max

(
ln ρ̂+η̂

ρ̂−η̂
,
∣∣∣ln ρ̂−η̂

ρ̂+η̂

∣∣∣)

from which (7.37b) follows.

Because the proof deals with the real and imaginary parts of the φi independently,
the results represent upper bounds for the largest attainable real, imaginary part and
spectral radius. Also, if ω1 = 0, the bound for ρ(Γ) can be slightly altered to ρ(Γ) <
1
4

√
1 + 16ι2. Together with Lemma 7.7 these bounds reveal how the spectral radius of

Γ influences the eigenvalues of KΩ. In particular, we can deduce possibilities when the
λ↓j(KΩ) are significantly smaller than the λ↓j(K). For matrices A with real spectra, FΩ

also has only real eigenvalues with 0 < φj <
1
2
by Lemma 7.8. Thus, Γ � 0 such that the

bound in Lemma 7.7 becomes λ↓j(KΩ) ≤ 2φ↓
jλ

↓
j(K), for j = 1, . . . , n. Obviously, if the

considered frequency interval is small, i.e., ω2 − ω1 is small compared to
λj

λ2
j+ω1ω2

, then

Im
(
θj

)
will be close to zero and so will arg θj.

If Λ(A) has complex eigenvalues the situation is considerable more subtle, but the
proof of Lemma 7.8 already indicates that setting the interval limits ω1, ω2 equal or
close to absolute values of eigenvalues of A can increase the spectral radius ρ(FΩ). In
particular, setting the interval limits close to |λq| will lead to the largest values of ι in
(7.37b) and, thus, to large spectral radii. This is observed in numerical experiments but,
however, even if ρ(Fω) >

1
2
, the eigenvalues of KΩ seem to be never much greater then

the ones of P .
To conclude, we expect that the values of λ↓j(KΩ) will be noticeably smaller than

λ↓j(K) if the chosen interval [ω1, ω2] is small compared to the spectral radius of A and
if the interval boundaries ω1, ω2 are not close to the magnitude of the eigenvalues of
A whose imaginary parts dominate their real parts. This argumentation will also carry
over to λ↓j(PΩ) and λ

↓
j(P) by (7.36).

The main conclusion of this section is that although

rank
(
FΩBB

T +BBTF T
Ω

)
= 2 rank

(
BBT

)
,

180

7.3. Balanced Truncation in Limited Frequency Intervals

under reasonable and quantifiable assumptions on the interval [ω1, ω2], we can expect
that the eigenvalues of PΩ decay at a faster rate than those of P . Hence, PΩ has a
smaller numerical rank than P . Consequently, we can expect that there exist low-rank
solution factors ZP and ZPΩ

leading to low-rank solutions of comparable accuracy in the
sense

‖P − ZPZ
H
P ‖ ≈ ‖PΩ − ZPΩ

ZH
PΩ

‖
but with rank (ZP) ≥ rank

(
ZPΩ

)
. This is also confirmed by our numerical experiments.

The same holds trivially also for low-rank approximations of Q and QΩ. Moreover, it
will turn out later that in some cases computing ZPΩ

, ZQΩ
is less costly than computing

ZP , ZQ, which can even make FLBT numerically cheaper than the standard (unlimited)
BT. Algorithms for computing the low-rank solution factors are topic of the next section.

Remark 7.9:

a) For the standard CALEs (7.6), the above considerations are continued in [4], where
a square-root free Cholesky factorization of the form K = LΔLH with a unit lower

triangular L and Δ = diag
(
δ(1), . . . , δ(n)

)
� 0 is used. There are explicit formulas

[108] for the diagonal entries δ(i), which appear to decay to zero at a similar rate
as the eigenvalues of P , especially if A is not too far from normal. A square-root
free Cholesky factorization also exists for the frequency-limited Gramian: KΩ =

LΩΔΩL
H
Ω with ΔΩ = diag

(
δ
(1)
Ω , . . . , δ

(n)
Ω

)
� 0. A basic Cholesky algorithm [111]

can be employed to find how the entries of LΩ and ΔΩ are built from the entries
of L, Δ, and Γ. It is easy to show that δ

(1)
Ω = 2Re (φ1) δ

(1) < δ(1), but the
calculations for the remaining entries become very tedious and lengthy such that
we do not report them here as this would clutter the presentation.

b) In Corollary 2.41 we mentioned another well known theoretical result from [113]
regarding the existence of low-rank solutions of linear matrix equations. Following
[113], low-rank solutions of P and PΩ are given by Pk :=

∑k
i=−k ω̃iBiB

T
i , Bi :=

exp(t̃iA)B and PΩ,k :=
∑k

i=−k ω̃iB̃iFmB̃
T
i , B̃i := exp(t̃iA)[B, BΩ], respectively,

with the flipping matrix

Fh := [0 1
1 0]⊗ Ih. (7.41)

Using (2.25) the approximation errors can be bounded by

‖P − Pk‖ ≤ ζLyapπ
−1‖B‖2, ‖PΩ − PΩ,k‖ ≤ ζLyapπ

−1‖[B, BΩ]Fm[B, BΩ]
T‖,

where the constant ζLyap depends entirely on A (cf. (2.26)). Obviously, the bound
rank

(
PΩ,k

) ≤ 2(k + 1)m is larger than rank (Pk) ≤ (k + 1)m and the above error
bounds differ only by the norms of the inhomogeneities of the CALEs (7.6), (7.32a).
Notice that the difference in the decay rates of the eigenvalues of P and PΩ can
be also observed if the inhomogeneities would be scaled to unit norm. Hence, this
approach offers no useful explanation why PΩ can in practice often be approximated
by low-rank solutions of smaller rank compared to P . ♦

181

7. Applications to Model Order Reduction

7.3.3. Numerical Methods for Computing the Low-Rank
Approximations

Motivated by the expected low numerical rank of PΩ, QΩ, we aim at computing, as in
standard BT, low-rank approximations PΩ ≈ ZPΩ

ZT
PΩ
, QΩ ≈ ZQΩ

ZT
QΩ

with ZPΩ
∈ Rn×r1 ,

ZQΩ
∈ Rn×r2 , r1, r2 � n. Before the frequency-limited CALEs can be approached

by numerical methods which compute low-rank solution factors, the matrix FΩ has to
be treated. This is the subject of the next subsection. After that, some strategies for
computing the low-rank solution factors ZPΩ

, ZQΩ
will be discussed.

Dealing with the Matrix-Valued Logarithm

In FLBT, the matrix FΩ requires the evaluation of a matrix-valued function f in A.
Most state-of-the-art algorithms for that purpose work, e.g., with the Schur form of A
and additional matrix multiplications [128]. For the matrix-logarithm, a very robust
and often applied method is the inverse scaling and squaring algorithm [128, Chapter
11] and its variants. The method is called by the MATLAB routine logm. However,
as computing the Schur form has a cubic complexity and quadratic memory demands,
these approaches are not feasible for the large-scale case we are interested in.
If we plan to obtain the frequency-limited Gramians PΩ, QΩ via approximate solutions

of the frequency-limited CALEs (7.32), we observe that only

BΩ := FΩB = f(A)B and CΩ := CFΩ = Cf(A) (7.42)

are required for setting up the inhomogeneities in (7.32). Hence, only the products
f(A)B and f(A)HCT , i.e., m and p matrix-vector products with f(A) and f(A)H ,
respectively, are needed. Although f(A) is still involved, computing the matrix-vector
products of the form

w = f(A)v, w, v ∈ Cn (7.43)

constitutes a much more attractive problem to overcome, even for large matrices A, see,
for instance, [128, Chapter 13], [146, 73, 104, 147, 123] and the references therein, which
provide several efficient numerical methods for this task.

Remark 7.10:

The computation of the frequency-limited reachability Gramians PΩ by (7.30) and
using a low-rank solution factor ZP of the ordinary Gramian P can also be reduced
to the problem of computing the matrix-vector products of f(A) with ZP ∈ Rn×kP

and similarly the problem of computing QΩ by (7.30) using f(A)HZQ ∈ Rn×kQ . This
approach is in general more expensive than using (7.42) and subsequently solving
(7.32) because, in general, kP > m and kQ > p, such that significantly more matrix-
vector products with f(A) would be required. ♦

In the following we discuss some approaches for (7.43) and their usage in frequency-
limited balanced truncation.

182

7.3. Balanced Truncation in Limited Frequency Intervals

Quadrature Based Approaches Recall that FΩ was at first defined as the integral
(7.31) which simplifies to (7.33a). These integrals are also obtained by using the integral
expression [190]

lnM =

1∫
0

(M − In) (t(M − In) + In)
−1 dt, ∀M ∈ Cn×n, Λ(M) ∩ R− = ∅

and setting M = C(A, jω1,−jω2). Exemplary, for BΩ = FΩB, one can approximate
(7.53) by means of a quadrature rule, i.e.,

BΩ =
1

π
Re

⎛
⎜⎝

ω2∫
ω1

(jνIn − A)−1Bdν

⎞
⎟⎠ ≈ 1

π
Re

⎛
⎝ h∑

k=1

ζk(jνkIn − A)−1B

⎞
⎠ (7.44)

using quadrature nodes νk ∈ [ω1, ω2], and weights ζk, k = 1, . . . , h whose choice depends
on the selected quadrature approach. In principle, any quadrature rule can be applied,
where for reasons of accuracy, as well as efficiency, a method using an adaptive selection
of nodes and weights is typically chosen. The integral command in MATLAB, e.g.,
employs adaptive Gauss-Kronrod quadrature [141] and will be used in our numerical
examples. Using (7.44) requires the solution of h shifted linear systems withm right hand
sides, which might easily become expensive, depending on the number of quadrature
nodes. In [136], numerical quadrature is applied directly to the integrals (7.53) to obtain
low-rank solution factors of PΩ, QΩ. The POD approach in [93] is analogous.

Projection Type Methods A further, often successfully applied, and investigated ap-
proach for the matrix function times vector problem (7.43) is to use projections onto
low-dimensional subspaces. Let Q ⊂ Cn be a subspace with dimQ = k � n and let
Qk = [q1, . . . , qk] ∈ Cn×k with {q1, . . . , qk} being an orthonormal basis of Q. Typically,
v ∈ Q such that v = Qkṽk with ṽk := QH

k v ∈ Ck. Approximating w by its orthogonal
projection onto Q gives

w ≈ QkQ
H
k w = Qkw̃ ∈ Q, w̃k = QH

k w ∈ Ck.

Imposing a Ritz-Galerkin condition on this approximation yields

Qkw̃k − f(A)Qkṽk ⊥ Q ⇔ w̃k = QH
k f(A)Qkṽk ≈ f(Ãk)ṽk

with Ãk := QH
k AQk. Hence, the approximate result can be computed by

wk := Qkf(Ãk)Q
H
k v.

Due to the small size of Ãk ∈ Ck×k, the computation of f(Ãk) can then be carried
out using methods for small, dense problems, e.g., the inverse scaling and squaring
method discussed earlier in this section for our particular application. The quality of

183

7. Applications to Model Order Reduction

the approximation wk depends on how good Qkf(Ãk)Q
H
k v approximates f(A)v which,

for general matrices A and functions f , is difficult to predict. The above projection
framework is usually carried out in an iterative manner using a sequence of nested
subspaces Q1 ⊆ Q2 ⊆ . . . ⊆ Qk ⊆ Qk+1 with increasing dimensions. To stop this
iteration, we will employ the simple stopping criterion

‖wk − wk−1‖ ≤ τf‖wk‖. (7.45)

For certain choices of Q, special matrices, and functions, more advanced stopping tests
as well as error bounds can be found, e.g., in [128, Chapter 13.2], [104, 147, 123, 139].
The the sequence of subspaces can be constructed in different ways and we will re-
strict ourselves to the most common ones, e.g., similar approaches as we used before in
Section 5.3.3.
Setting up the subspace Q as standard Krylov subspace

Kk(A, v) = span
{
v, Av,A2v, . . . , Ak−1v

}
is used for the approximation of (7.43) in, e.g., [146, 197]. The construction of the
matrices Qk, Ãk is usually done by the Lanczos or Arnoldi algorithm [111] for Hermitian
and, respectively, non-Hermitian A. It can be shown that with Kk, the function f
is approximated by a polynomial pk−1 of degree at most k − 1 whose roots are the
eigenvalues of Ãk. To obtain a good approximation of (7.43), often large dimensions k
are needed, which makes this approach less practical.
Rational Krylov subspaces [83, 123] often provide much better approximations with

smaller subspace dimension k. They can by defined via

Krat
k (A, v) = dk−1(A)

−1Kk(A, v)

with the denominator polynomial dk−1(z) =
k−1∏
j=1

(1 − z
ξj
) of degree k − 1 having the

poles ξ1, . . . , ξk−1 ∈ C ∪ {∞}. Hence, with Krat
k the function f is approximated by a

rational function rk = pk−1/dk−1. The poles ξ of rk are typically referred to as shifts
for the rational Krylov subspace. The orthonormal basis for Krat can be constructed by
the rational Arnoldi algorithm [193] whose main numerical costs occur at solving linear
systems of the form (I − A/ξ)s = u for s.
The shifts are crucial for a fast convergence and good approximation results. A com-

prehensive overview addressing various choices of a priori selected shifts for several func-
tions f can be found in [123]. In [83], an adaptive strategy is proposed, where the shift
ξk+1 is computed from the data available after the rational Arnoldi iteration step k is
completed. The main idea is to consider the greedy method,

ξk+1 = argmax
s∈Dk

|rk(s)|−1,

where Dk is a set of discrete points from the boundary of the convex hull of −Λ(Ãk).
As in the experiments in Section 5.3.3, we will use this adaptive shift generation in the
upcoming numerical examples.

184

7.3. Balanced Truncation in Limited Frequency Intervals

In our situation f can be represented as integral (see (7.27)) of Ψ(jν) within the inte-
gration domain Ω and, thus, it appears reasonable to restrict the shifts to the imaginary
region jΩ. Therefore, we propose as modifications of the above adaptive shift strategy to
choose the set Dk as set of discrete points from the purely imaginary interval j[ω1, ω2].
In most examples this leads to better results compared to the adaptive shifts based on
the convex hull of −Λ(Ãk). A simplification of this approach is to simply use the shifts
ξ2k = jω1 and ξ2k−1 = jω2 alternatingly.
Choosing the shifts ξ2k = ∞ and ξ2k−1 = 0 in an alternating fashion yields the

extended Krylov subspace Kext
k (A, v) proposed in [81] and further investigated in [147].

In [209], an efficient algorithmic framework for constructing the basis and representation
matrix Qk, Ãk is established. One advantage of that choice is that the coefficient matrix
of the linear system to solve does not change such that one can store and reuse a
factorization of A if direct solvers are applied. This can also be done if the shifts ξ for
Krat are constant which yields the shift-and-invert Krylov subspace KSI

k (A, v) [176, 224].
For the alternate use of jω1, jω2, two sparse matrix factorizations might be saved. We
end this short introduction to Krylov subspace methods for v = f(A)w with a number of
comments regarding actual implementations. For the numerical tests in this section, we
will use a version of Algorithm A.1 in the appendix, modified to tackle also the problem
(7.43).

Remark 7.11:

1. As before, complex shifts ξ are dealt with by the modification of the rational
Arnoldi process proposed in [195]. This will also yield a real restriction Ãk.
Using this modification is, of course, reasonable because the number of com-
plex arithmetic operations is reduced. In our application, since establishing
the relation (7.33b) from (7.31) relied heavily on the fact that the matrix A in
Ψ(jν) = (jνI − A)−1 is real, having a real restriction Ãk appears to be also
important if we want to safely employ (7.33b) to Ãk. Issues with complex shifts
are not present in methods using standard or extended Krylov subspaces.

2. For the casem > 1 we utilize block versions of Krat and Kext. Alternatives might
be global Arnoldi methods [218] or, in the case of rational Krylov subspaces,
tangential approaches [84].

3. In our application we also need matrix vector products z = f(A)Tu of the trans-
posed matrix function for computing CΩ = CFΩ. Thus, the above approaches
have to be also applied using AT and u, leading to a subspace Z generated by
AT and u, e.g.,

Z = Kk(A
T , u) = span

{
u,ATu, . . . , (AT)k−1

}
and the dual versions of Krat, Kext are easily deduced. It is possible to utilize
a two-sided Petrov-Galerkin condition [130] and construct Z bi-orthogonal to
Q. Both spaces can be generated simultaneously with the two-sided Lanczos
process or modifications thereof. Further details on generating dual subspaces
Q, Z can, e.g., be found in [179, 114, 117]. ♦

185

7. Applications to Model Order Reduction

Computing Low-Rank Solution Factors of the Frequency-Limited Gramians

Having computed approximations of BΩ and CΩ, the frequency-limited CALEs (see also
(7.32))

APΩ + PΩA
T +BΩB

T +BBT
Ω = 0, (7.46a)

ATQΩ +QΩA+ CT
ΩC + CTCΩ = 0 (7.46b)

have to be solved for low-rank approximations. Any low-rank solution algorithm for
large-scale CALEs can be employed here. In the following, we will discuss extended and
rational Krylov subspace methods as well as the LR-ADI iteration from the previous
chapters for this task. We will mainly focus the treatment of the frequency-limited
reachability CALE since the frequency-limited observability CALE can be dealt with
analogously.

Using Krylov Subspace and Related Methods

In a similar way as we discussed in Section 7.3.3, we can use a projection approach
for solving the frequency-limited CALEs. Having a low-dimensional subspace Qk =
span {Qk} constructed, the low-rank solution is obtained as PΩ ≈ PΩ,k := QkP̃Ω,kQ

T
k ,

where P̃Ω,k is the solution of the projected frequency-limited CALE

ÃkP̃Ω,k + P̃Ω,kÃ
T
k + B̃Ω,kB̃

T
k + B̃kB̃

T
Ω,k = 0, B̃k := QT

kB. (7.47)

Due to its small dimension, it can be solved by direct methods. Choices for Qk include
the same possibilities as for the matrix-function evaluations: standard [137], extended
[209], as well as rational Krylov subspaces [83, 84], generated using A, B, and possibly
a collection of (adaptively computed) shift parameters. If PΩ,k is not accurate enough,
the particular Krylov process used is continued.
Now assume BΩ is approximated by such an projection approach, i.e., BΩ ≈ BΩ,k :=

QkB̃Ω,k with B̃Ω,k := f(Ãk)Q
T
kB, Ãk := QT

kAQk, where Qk is a real orthogonal matrix,
which spans one of the aforementioned (rational or extended) Krylov subspaces. In that
case an obvious strategy is to reuse the information contained in the basis matrix Qk and
continue the Krylov method for solving the frequency-limited CALE. In the majority
of our numerical tests only very few additional iteration steps of the employed Krylov
subspace method were necessary to obtain the desired accuracy for PΩ once an accurate
BΩ,k was found. Often, accurate approximations BΩ,k and PΩ,k were obtained in the
same iteration step k, which makes this approach exceptionally efficient. Provided that
P̃Ω,k ≥ 0 in the projected equation (7.47), low-rank solution factors of PΩ are given by
ZPΩ,k = QkLk, where Lk is a lower triangular Cholesky factor of P̃Ω,k. Alternatively,
an eigendecomposition of P̃Ω,k can be used which also enables a rank truncation, see,
e.g., [209]. In Algorithm 7.3, we illustrate this strategy for approximating BΩ and PΩ

in a single Krylov subspace algorithm. In Lines 1 and 14, orth should be understood
as any stable (block) orthogonalization routine. By adjusting the basis generation in
Line 14 appropriately, any version of extended, rational or adaptive rational Krylov

186

7.3. Balanced Truncation in Limited Frequency Intervals

Algorithm 7.3: Krylov subspace method for frequency-limited CALEs (7.46a)

Input : A, B, [ω1, ω2] as in (7.46a), tolerances 0 < τf , τP � 1.

Output: ẐPΩ,j ∈ Rn×kPΩ such that ẐPΩ,j(ẐPΩ,j)
T ≈ PΩ with kPΩ

≤ mj � n.
1 Q1 = orth(B).
2 for j = 1, 2, . . . do

3 Ãj = QT
j AQj, B̃j = QT

j B.

4 B̃Ω,j = Re

(
j
π
ln

(
C(Ãj, jω1, jω2)

)
B̃j

)
, BΩ,j = QjB̃Ω,j.

5 if ‖BΩ,j − BΩ,j−1‖/‖BΩ,j‖ < τf then
6 Solve

7 ÃjP̃Ω,j + P̃Ω,jÃ
T
j + B̃Ω,jB̃

T
j + B̃jB̃

T
Ω,j = 0 for P̃Ω,j.

8 Set

9 ξj :=
∥∥∥BΩ,jB

T +BBT
Ω,j

∥∥∥ =
∥∥∥B̃Ω,jB̃

T
j + B̃jB̃

T
Ω,j

∥∥∥ and

Lj :=
∥∥∥A(

QjP̃Ω,jQ
T
j

)
+

(
QjP̃Ω,jQ

T
j

)
AT +BΩ,jB

T +BBT
Ω,j

∥∥∥ /ξj.
10 if Lj < τP then

11 Compute (and truncate) Eigendecomposition P̃Ω,j = X̃jΛ̃Ω,jX̃
T
j ,

X̃T
j X̃j = Imj, Λ̃Ω,j = diag

(
λ̃1, . . . , λ̃mj

)
.

12 Construct low-rank solution factors ẐPΩ,j = QjX̃jΛ̃
1
2
Ω,j.

13 Stop Krylov process.

14 Orthogonally extend basis matrix Qj by new basis vectors S:
Qj+1 = orth([Qj, S]).

subspace methods (cf. Algorithm A.1) can be incorporated easily. The restriction Ãj

in Line 3 can be computed efficiently without additional matrix vector products with
A by using relations developed in [209] and [193] for extended and rational Krylov
subspace methods, respectively. Typically one has span {B} ⊂ span

{
Qj

}
and, thus,

B̃j = QT
j B = [βT , 0]T ∈ Rmj×m with β ∈ Rm×m such that the inhomogeneity of the

projected CALE in Line 7 is given by

B̃Ω,jB̃
T
j + B̃jB̃

T
Ω,j =

[
β̃βT + ββ̃T gT

g 0

]
,

where g : = δβT , B̃Ω,j =

[
β̃

δ

]
, β̃ ∈ Rm×m, δ ∈ R(j−1)m×m.

(7.48)

After ‖BΩ,j−BΩ,j−1‖/‖BΩ,j‖ < τf is achieved, one can also skip the computation of newer
approximations BΩ,k, k > j, in the following iterations to save some computations in
Step 4. In Line 10, we employed a stopping criterion based on the scaled norm Lyapunov
residual matrix. This norm can be computed efficiently without working with matrices

187

7. Applications to Model Order Reduction

A, B, BΩ,j, Qj of leading dimension n [209]. If the rational Krylov subspace method with
the adaptive, imaginary shifts has been used to approximate BΩ,j, one should switch to
the convex hull based adaptive shifts in the iteration steps associated to the CALE. For

the approximation of the CALE solution, the LR-ADI iteration can be an alternative.

Using the LR-ADI Iteration

We can also employ the LR-ADI iteration which was extensively studied in the previous
chapters. The LR-ADI iteration considered so far expects that the inhomogeneity of
the CALE to be solved is given in a symmetric definite form, BBT . However, the
inhomogeneities of the frequency-limited CALEs (7.46) are given by

BΩB
T +BBT

Ω = B̂FmB̂
T , B̂ = [B, BΩ],

CT
ΩC + CTCΩ = ĈTFpĈ, Ĉ =

[
C
CΩ,

]
with the flipping matrix Fh from (7.41). Since λ(Fh) = {±1}, these inhomogeneities are
in general indefinite matrices. To tackle the indefiniteness of the inhomogeneities, the
LDLT -variant [152, Algorithm 1], [153] of the LR-ADI iteration can be used. This will
only introduce the following slight changes to Algorithm 3.2: the computed approximate
solution and the corresponding residual after j iteration steps are of the form

PΩ ≈ PADI
Ω,j = ZPΩ,j

(
Ij ⊗ Fm

)
(ZPΩ,j)

T ,

Lj(P
ADI
Ω,j) = ‖WjFmW

H
j ‖ = λmax(W

H
j WjFm).

Although Ij ⊗Fm is an indefinite matrix, we assume PADI
Ω,j � 0 since PΩ � 0. In practice

this might only hold if PADI
Ω,j is a sufficiently accurate approximation of PΩ. A semidefi-

nite factorization of PADI
Ω,j can be obtained as follows: compute a thin QR-decomposition

U1R = ZPΩ,j followed by a spectral decomposition U2Λ̂U
T
2 = R

(
Ij ⊗ Fm

)
RT with

UT
2 U2 = I2mj, Λ̂ = diag

(
λ̂1, . . . , λ̂2mj

)
. Then, the approximate solution PADI

Ω,j can

be represented by a semidefinite factorization

PADI
Ω,j = ẐPΩ,j(ẐPΩ,j)

T , ẐPΩ,j := U1U2Λ̂
1
2 .

By neglecting very small eigenvalues λ̂ and the corresponding columns of U2, this proce-
dure also enables a rank truncation of the approximate solution PADI

Ω,j , similar to Line 12
in Algorithm 7.3, to get rid of nearly linearly dependent columns.
Observe that PΩ = NΩ +NT

Ω , where NΩ solves the Sylvester equation

ANΩ +NΩA
T +BBT

Ω = 0. (7.49)

Hence, the modification of the factored ADI (fADI) iteration [43] given by (3.50), Algo-
rithm 4.6, [32, Algorithm 4] can be applied directly to (7.49) and yields, after j iteration
steps,

NΩ ≈ NΩ,j = Z̃PΩ,j(ỸPΩ,j)
T , Z̃PΩ,j, ỸPΩ,j ∈ Rn×mj.

188

7.3. Balanced Truncation in Limited Frequency Intervals

The constructed low-rank approximation is PΩ ≈ [Z̃PΩ,j, ỸPΩ,j]Fjm[Z̃PΩ,j, ỸPΩ,j]
T which

can be transformed into a semidefinite factorization using similar steps as above. Ne-
glecting this transformation, both approaches are equivalent. The numerical effort of
both methods is also identical and we use the LDLT version of the LR-ADI iteration in
the remainder.
The additional requirement to construct semidefinite low-rank factorizations intro-

duces additional costs. This can be seen as a disadvantage of the LR-ADI iteration.
Another shortcoming is that the information from computing BΩ is not reused which, as
observed in practice, often leads to more required iteration steps of the LR-ADI iteration
compared to the projection type approach mentioned above, e.g, Algorithm 7.3.

7.3.4. Miscellaneous

Generalized State-Space Systems

Until now we only considered standard state-space systems, but everything can easily
be modified to handle generalized state-space systems (2.5) with a nonsingular I �= E ∈
Rn×n by using similar techniques as in the unlimited BT framework in Section 7.2.

Corollary 7.12 (Frequency-limited Gramians for generalized systems):

For a generalized state-space system (2.5) and the frequency intervals Ω in (7.29), the
frequency-limited Gramians are PΩ and ETQΩE, which are obtained from either of
the following two approaches:

1. Using the solutions P and Q of the ordinary reachability and observability and
GCALEs (7.7), it holds

PΩ = FΩEP + PETF T
Ω , QΩ = F T

ΩE
TQ+QEFΩ (7.50a)

with

FΩ :=
1

2π

∫
Ω

(jνE − A)−1dν. (7.51)

2. The frequency-limited Gramians are given from the solutions of the frequency-
limited reachability and observability GCALEs

APΩE
T + EPΩA

T +BΩB
T +BBT

Ω = 0, BΩ := EFΩB (7.52a)

ATQΩE + ETQΩA+ CT
ΩC + CTCΩ = 0, CΩ := CFΩE. (7.52b)

The matrix-valued integral can be represented in terms of the matrix logarithm via

FΩ = Re

(
j

π
ln

(
(A+ jω1E)

−1(A+ jω2E)
))

E−1 (7.53a)

= E−1 Re

(
j

π
ln

(
(A+ jω2E)(A+ jω1E)

−1
))

. (7.53b)

189

7. Applications to Model Order Reduction

Proof. Using the equivalent standard state-space system defined by Â := E−1A, B̂ :=
E−1B, C leads, by employing (7.31) and (7.51), to

1

2π

∫
Ω

(jνIn − Â)−1dν = FΩE

which, by applying [186, Theorems 3.1-3.2] and (7.30), immediately gives (7.50). The
reachability CALE w.r.t. Â, B̂ is

0 = ÂPΩ + PΩÂ
T + FΩEB̂B̂

T + B̂B̂TF T
ΩE

T

= E−1APΩ + PΩA
TE−T + FΩBB

TE−T + E−1BBTF T
Ω

⇔ 0 = APΩE
T + EPΩA

T + EFΩBB
T +BBTF T

ΩE
T

and (7.52a) is established. The frequency-limited observability GCALE (7.52b) is de-

rived using similar steps. For (7.53), first note that FΩ = 1
2π

∫
Ω

(jνIn − Â)−1dνE−1

from which (7.53a) easily follows by using Theorem 7.5. Alternatively, it holds FΩ =

E−1 1
2π

∫
Ω

(jνIn − AE−1)−1dν, which, by applying Theorem 7.5 again, leads to (7.53b).

The algorithms we suggested in the standard state-space case for computing approx-
imations of BΩ, CΩ, PΩ, and QΩ are also applicable here with minor modifications.
Some care must be taken when Krylov subspace methods are used for this purposes,
since they implicitly work on E−1A or on L−1AL−T if 0 ≺ E = LLT . Hence, the
correct formulation of FΩ should be chosen. As alternative, the use of the generalized
LR-ADI (G-LR-ADI) iteration (Algorithm 3.2, [39]) for the GCALEs is straightforward.
The concept of frequency-limited Gramians for descriptor systems and certain classes
of nonlinear control systems is considered in [136] and [206], respectively. However, the
numerical efficient realization, e.g. in terms of low-rank approximations, of FLBT for
such systems is still not investigated.

Stability Preservation and Modified Frequency-Limited Balanced Truncation

It is not guaranteed that FLBT preserves stability in the reduced order model [107]. In
[116], a modification of frequency-limited BT is presented which ensure this preservation.
Consider the EVDs of the inhomogeneities of (7.46) and (7.52):

BΩB
T +BBT

Ω = QBSBQ
T
B, SB = diag (θ1, . . . , θ2m, 0, . . . , 0) ∈ Rn×n,

CT
ΩC + CTCΩ = QCSCQ

T
C , SC = diag

(
η1, . . . , η2p, 0, . . . , 0

) ∈ Rn×n

with QT
BQB = QT

CQC = I, QB, QC ∈ Rn×n. Assuming that rank ([B, BΩ]) = rB ≤ 2m
and rank

(
[CT , CT

Ω]
)
= rC ≤ 2p, it holds θi, ηj �= 0 for i = 1, . . . , rB, j = 1, . . . , rC . How-

ever, there can be both negative and positive values of θi, ηj. Let QB,1 ∈ Rn×rB , QC,1 ∈
Rn×rC be the first rB as well as rC columns of QB and QC , and consider the modified

190

7.3. Balanced Truncation in Limited Frequency Intervals

frequency-limited GCALEs

APmod
Ω ET + EPmod

Ω AT +Bmod
Ω Bmod

Ω

T
= 0,

ATQmod
Ω E + ETQmod

Ω A+ Cmod
Ω

T
Cmod

Ω = 0
(7.54)

with Bmod
Ω := QB,1 diag

(|θ1|, . . . , |θrB |) 1
2 , Cmod

Ω := diag
(|η1|, . . . , |ηrC |) 1

2 QT
C,1.

That is, the negative values in SB and SC are essentially simply negated. Computing
the rB, rC � n nonzero eigenvalues θi, ηj and their corresponding eigenvectors can be
done very inexpensively. Performing balancing and truncation on the basis of these
modified frequency-limited Gramians Pmod

Ω , Qmod
Ω yields modified FLBT (FLBTmod).

This approach ensures that, under some mild conditions [116, Theorem 11], the reduced
order model is asymptotically stable and that, similar to (7.8), the error bound

‖H − H̃‖H∞ ≤ 2‖JB‖‖JC‖
n∑

j=r+1

σmod
j , (7.55)

JB := diag (() |ηB1 |, . . . , |ηBrB |)−
1
2QT

B,1B, JC := CQC,1 diag (() |ηC1 |, . . . , |ηCrC |)−
1
2 ,

can be established, where the σmod
j denote the modified frequency-limited singular values,

i.e., the square roots of the eigenvalues of Pmod
Ω Qmod

Ω . The computation of low-rank
factors of Pmod

Ω , Qmod
Ω can be carried out similarly as without this modification using

Algorithm 7.3, i.e., after an accurate approximation to, e.g., BΩ has been computed,
Bmod

Ω is constructed as above. For reusing the generated Krylov basis to subsequently
compute low-rank solution factors of Pmod

Ω , some small changes are necessary. Since
Bmod

Ω is obtained by altering B, BΩ, the inhomogeneity of the projected, modified,
frequency limited GCALE cannot be built similar to (7.48). Hence, Bmod

Ω has to be
projected explicitly via QT

kB
mod
Ω . The inhomogeneities of (7.54) are symmetric positive

semidefinite, such that the (G-)LR-ADI iteration can be applied directly.
However, because Pmod

Ω , Qmod
Ω do not fulfill the relations (7.30) and (7.50), one cannot

expect that they also exhibit a fast eigenvalue decay similar to PΩ, QΩ. Some numerical
experiments show that the eigenvalues of Pmod

Ω , Qmod
Ω decay at a similar speed as those

of the infinite Gramians P , Q. This can also lead to more iteration steps required by
the applied Krylov subspace method or the G-LR-ADI iteration compared to PΩ, QΩ.

Time-Limited Variants

In [107], a series of related approaches is proposed which restrict BT (for the case E = In)
in certain ways. One possibility is to consider a time interval T, e.g., T = [0, t1], t1 < ∞.
Restricting BT to T leads to time-limited BT and aims at finding a reduced model whose
output ỹ is an accurate approximation of the original output y, but only within the time
frame T. This leads to time-limited Gramians PT, QT which are the solutions of the
time-limited CALEs

APT + PTA
T +BBT − BTB

T
T = 0, ATQT +QTA+ CTC − CT

TCT = 0,

191

7. Applications to Model Order Reduction

where BT := FTB, CT := CFT with FT := eAt1 . Hence, the numerical approaches for
FLBT presented before can be easily adjusted to this time limiting setting. The main
difference is that one has to deal with the matrix valued exponential. It is also possible
to combine frequency and time-limited BT, where products of the form FΩFT occur that
have to be dealt with.

Restricted Balanced Truncation for Discrete-Time Systems

Both frequency- and time-limited BT can also be carried out for discrete-time systems
(2.6). Let for example Ωd = [−ω1, ω1], ω1 < π, and Td = [0, i1], i1 ∈ N+ be the
considered frequency and discrete-time intervals. The infinite, frequency-, and time-
limited Gramians are the solutions of the DALEs

P − APAT = BBT , Q− ATQA = CTC,

PΩd
− APΩd

AT = BΩd
BT +BBT

Ωd
, QΩd

− ATQΩd
A = CT

Ωd
C + CTCΩd

,

PTd
− APTd

AT = BBT +BTd
BT

Td
, QTd

− ATQTd
A = CTC + CT

Td
CTd

,

where

BΩd
:= FΩd

B, CΩd
:= CFΩd

, FΩd
:= 1

2π
Re

(
ω1I − 2j ln (I − Ae−jω1)

)
,

BTd
:= FTd

B, CTd
:= CFTd

, FTd
:= Ai1 ,

see, e.g., [107, 186]. Approximating the products with the different matrix valued func-
tions FΩd

, FTd
can be done exactly as we described above. Subsequently, computing

low-rank solution factors of the DALEs can also be done by similar methods, e.g. Al-
gorithm 4.7, as we used before, which again enables an efficient realization of these BT
variants also for large-scale systems. We plan to investigate the eigenvalue decay of the
Gramians mentioned in this section, as well as specially tailored numerical algorithms
for their approximation, in future work.

BT at a Single Frequency

Another conceptually very different modification is presented in [86], where BT is re-
stricted to a single frequency ω1 ∈ R+. There, the CALEs to be solved are

Aω1Pω1 + Pω1A
H
ω1

+Bω1B
T
ω1

= 0, AH
ω1
Qω1 +Qω1Aω1 + CT

ω1
Cω1 = 0,

where Bω1 := Fω1B, Cω1 := CFω1 with Fω1 := ε(εIn + jω1In −A)−1 and Aω1 := jω1In +
ε(εIn + jω1In − A)−1(jω1I − A), ε > 0. Here, Bω1 , Cω1 are easily obtained by solving
linear systems of equations, but since the coefficients of the occurring CALEs are now also
matrix-valued functions of A, the application of low-rank solvers is not as straightforward
as for the cases considered before. Also note that the CALEs are defined by complex
data such that Pω1 , Qω1 will be complex. An extension of this approach to frequency
intervals is under current research. First experiments in [86] raise the expectation that
the eigenvalues of Pω1 , Qω1 also decay faster than those of P , Q.

192

7.3. Balanced Truncation in Limited Frequency Intervals

7.3.5. Numerical Examples

Here, we numerically evaluate the results of Section 7.3.2 regarding the eigenvalue decay
of the frequency-limited Gramians, the numerical approaches presented in Section 7.3.3
to approximate the product with the matrix-valued function as well as the low-rank
approximations of the GCALE solutions, and the accuracy of the reduced order models
obtained by the considered BT variants employing these low-rank approximations.
As test cases we use the FDM example with f1 = 102ξ1, f2 = 103ξ2 with n0 = 350

grid points, as well as the rail79k and ifiss66k examples (cf. Sections 2.4, 5.3.3).

Eigenvalue Decay and Numerical Rank of the Gramians

For illustrating the eigenvalue decay, we use a small version of the FDM example with
n0 = 30 grid points such that n = n2

0 = 900 for A. The input matrix B ∈ Rn is chosen
as vector with random entries from a normal distribution. This small system admits
an exact numerical computation of the controllability Gramians P , PΩ, and Pmod

Ω (cf.
(7.54)) by using the lyap routine of MATLAB.
At first, the frequency interval boundaries are ω1 = 103, ω2 = 104 and the matrix

valued function FΩ can be computed by the logm routine. The eigenvalues of all three
Gramians P , PΩ, and P

mod
Ω , scaled by their respective largest entry, are plotted in the left

plot of Figure 7.3. Apparently, the eigenvalues of PΩ decay significantly faster than the
ones of P and Pmod

Ω , which decay nearly identically. The numerical rank of the infinite
Gramian w.r.t. the machine precision obtained by the MATLAB command rank is
rank (P,umach) = 72.
In Table 7.2 we list the numerical ranks of the frequency-limited Gramian PΩ, of the

modification Pmod
Ω , and the spectral radius of the matrix Γ. For the used frequency

interval, the numerical rank of PΩ is, as predicted by Figure 7.3, noticeable smaller then
the numerical rank of P . We also tested other frequency intervals, where we used the
quantity |λq| from Lemma 7.8 , i.e., the magnitude of the eigenvalue where | Im (λ)|

|Re (λ)| is
maximal. Notice that in the right plot of Figure 7.3, the Bode magnitude plot of the
transfer function matrix H shows a distinct bulk near |λq|. According to the discussion
in the end of Section 7.3.2, setting the interval boundaries equal to |λq|, can increase
the spectral radius ρ(Γ) and thus slow down the eigenvalue decay of PΩ. The results in
the last row confirm this for the choice ω2 = |λq| which yields ρ(Γ) > 1

2
and very close

numerical ranks of PΩ and P . In conclusion, the results in Table 7.2 seem to confirm
the expected influence of ρ(Γ) on the numerical rank of PΩ. For the last frequency
interval [0, 105], one can also see that ρ(Γ) approaches 1

2
for increasingly large frequency

intervals. The numerical rank of the modified frequency-limited Gramian Pmod
Ω appears

to be largely unaffected by different frequency intervals and is always very close to the
numerical rank of P .

Influence of the Different Inhomogeneities to the Low-Rank Solvers

Before we test the proposed Algorithm 7.3 and carry out frequency-limited balanced
truncation using the computed low-rank GCALE solutions, we consider how the different

193

7. Applications to Model Order Reduction

20 40 60 80 100 120
10−20

10−14

10−8

10−2

umach

j

λ
↓ j
/λ

↓ 1

P

PΩ

Pmod
ΩPP

102 103 104 105

10−3

10−2

|λq|
frequency ω

|H
(j
ω
)|

Figure 7.3.: Left: Scaled eigenvalues of the Gramians. Right: Transfer function plot of
the system.

Table 7.2.: Computed numerical rank of the different Gramians w.r.t. various frequency
interval boundaries. Here, rank (P,umach) = 72 and |λq| = 2.5337 · 104.

ω1, ω2 ρ(Γ) rank(PΩ,umach) rank(Pmod
Ω ,umach)

103, 104 0.43 39 74

102, 103 0.21 10 69

103, |λq| 0.57 67 74

0, 105 0.49 74 74

low-rank solvers perform when applied to the standard GCALE (7.7), the frequency-
limited GCALEs (7.30) and (7.50) as well as the modified frequency-limited GCALE
(7.54). In other words, we investigate how the performance of the low-rank solvers
differs w.r.t. to the different inhomogeneities, as these are the only differences in all
three GCALEs. For this we restrict the investigation to the controllability Gramians
P , PΩ and Pmod

Ω . Since the direct calculation of the matrix valued logarithm via the
logm command is too much memory and time consuming, we use approximations of BΩ

obtained by numerical quadrature employing the integral command. The necessary
eigenvalues and -vectors to construct Bmod

Ω for (7.54) (cf. Section 7.3.4) are computed
using the eigs routine, which took less then one second in all cases. We employ EKSM
[209], RKSM with the convex hull based shifts (RKSM(D)) [83] as well as the G-LR-ADI
iteration [183, 36, 39] (and its LDLT -variant [153] for PΩ) for computing the low-rank
solution factors. We point out that computing low-rank solution factors of PΩ and Pmod

Ω

in this way only serves a comparative purpose. As shown later in Section 7.3.5, using
the proposed approach in Algorithm 7.3, is clearly more practical and efficient as it
also provides approximations to BΩ at once. The shifts for the G-LR-ADI iteration are
generated adaptively using the approximate residual norm-minimizing shifts proposed in
Section 5.3. All methods are terminated as before when the scaled GCALE residual norm
(cf. Line 10 in Algorithm 7.3) drops below τP = 10−8. Afterwards, a rank truncation (cf.
Lines 11-12 in Algorithm 7.3) is invoked, where all eigenvalues of the low-rank solution

194

7.3. Balanced Truncation in Limited Frequency Intervals

Table 7.3.: Numerical results regarding the approximation of the different Gramians by
different methods.

P PΩ Pmod
Ω

Example method d g tc d g tc d g tc

ifiss66k
ω1 = 1, ω2 = 102

EKSM 850 334 237.3 880 233 157.3 1060 344 242.1

RKSM 300 290 95.4 490 242 118.5 550 359 141.9

LR-ADI 335 322 63.8 680 247 95.8 720 350 103.4

rail79k
ω1 = 10−2, ω2 = 10

EKSM 812 202 168.2 1260 190 325.1 1092 217 232.4

RKSM 245 202 76.4 252 172 59.5 336 208 84.9

LR-ADI 315 225 60.2 588 189 88.9 574 218 93.9

FDM
ω1 = 10, ω2 = 103

EKSM 800 345 246.9 60 38 9.5 no conv.

RKSM 305 305 144.9 90 38 26.7 860 294 450.2

LR-ADI 340 318 108.1 800 42 179.6 650 299 147.6

with λ/λmax ≤ 10−12 are neglected. The required subspace dimensions d = dim(Q),
the ranks g of the obtained low-rank solutions after this truncation, as well as the
computations times tc for all methods and test systems are summarized in Table 7.3.
Due to the applied rank truncation, g also coincides with the column dimension of the
low-rank solution factors. For the LR-ADI methods, d is the column dimension of the
computed low-rank solution factor.

The different inhomogeneities of the frequency-limited GCALEs (7.30) and (7.50)
clearly affect the performance of EKSM and RKSM. As expected in Section 7.3.2, the
ranks g of the low-rank approximations of PΩ are smaller compared to the approxima-
tions of P . However, the required subspace dimensions d for the low-rank approximations
of PΩ are only smaller for the example FDM, where the computation time is also smaller
compared to P . For the ifiss66k and rail79k examples, these differences are less pro-
nounced since the subspace dimensions d = dim(Q) and computation times tc are higher
for PΩ. However, recalling that the inhomogeneities of (7.30) and (7.50) are of rank
2m, one can see that the number of required iteration steps is actually less compared
to P . For the rail79k system, the ranks of the approximations for P and PΩ show a
less pronounced difference which also explains the higher subspace dimensions. The
LR-ADI iteration seems to be somewhat less affected by the different inhomogeneities
since the computation times for PΩ are in the majority of cases larger than for P . It
achieves, however, the smallest computation times for the infinite Gramian P for the
examples FDM, and ifiss66k. In most cases, computing the low-rank solution factors
of the modified frequency-limited Gramians Pmod

Ω seems to be more demanding for all
methods compared to P , PΩ. Apparently, the ranks of the computed low-rank approxi-
mations for Pmod

Ω are very close to those for P , which is one explanation for the higher
computational effort.

195

7. Applications to Model Order Reduction

Table 7.4.: Results for approximating BΩ, PΩ by Algorithm 7.3 using extended and ra-
tional Krylov subspaces with different (adaptive) shifts.

Example method d dBΩ
dPΩ

Rfinal Lfinal tc

ifiss66k,
tquad = 788

RKSM(D) 415 415 0 1.73·10−8 1.25·10−8 182.6

RKSM(jΩ) 295 295 0 5.92·10−10 3.85·10−10 98.6

rail79k,
tquad = 556

EKSM 868 868 0 8.06·10−9 7.79·10−9 454.3

RKSM(D) 336 336 0 7.25·10−9 1.51·10−9 103.0

RKSM(jΩ) 273 273 0 1.93·10−8 1.66·10−8 73.6

RKSM(j[ω1, ω2]) 322 259 63 1.19·10−8 1.55·10−8 90.2

FDM,
tquad = 374

EKSM 130 130 0 2.44·10−10 2.26·10−10 23.2

RKSM(D) 320 320 0 1.18·10−8 1.08·10−8 169.2

RKSM(jΩ) 65 65 0 9.63·10−12 8.83·10−12 23.6

RKSM(j[ω1, ω2]) 65 65 0 1.23·10−11 1.13·10−11 23.6

Numerical Approximations for f(A)b and the Gramians by Krylov Subspace
Methods

Here, we evaluate the numerical strategies presented in Section 7.3.3 for obtaining ap-
proximations of BΩ and PΩ. We employ the projection approach given in Algorithm 7.3
for different choices of Krylov subspaces. The results are summarized in Table 7.4. For
RKSM, the abbreviations (D), (jΩ), (j[ω1, ω2]) refer to the use of the adaptive shifts
based on the convex hull, the imaginary interval jΩ, and the alternating usage of jω1,
jω2 and their complex conjugates. The approximation of BΩ is regarded as accurate
enough when the basis criterion (7.45) is satisfied with τf = 10−8. After reaching this
condition, Algorithm 7.3 continues with computing the low-rank solution factor of PΩ

until the criterion based on the GCALE residual norm in Line 10 with τP = 10−8 is
satisfied. In case of RKSM(jΩ) and RKSM(j[ω1, ω2]), these iteration steps devoted to
the GCALE solution were carried out using the convex hull based adaptive shifts, i.e.,
RKSM(D). We also list the dimension d = dBΩ

+ dPΩ
= dim(Q) of the generated sub-

spaces, where dBΩ
denotes the subspace dimension necessary to approximate BΩ to the

desired accuracy and dPΩ
is the number of (additional) basis vectors required to achieve

also the desired accuracy w.r.t. the GCALEs. The quadrature approximation of BΩ

from the previous examples serves as reference solution Bref
Ω . The final relative error

Rfinal := ‖Bref
Ω − B̃Ω‖/‖B̃Ω‖,

the final normalized GCALE residual norm Lfinal obtained after a rank truncation, as
well as the consumed computing times tquad and tc in seconds for the quadrature ap-
proximation Bref

Ω and the Krylov method (Algorithm 7.3), respectively, are also given.
Apparently, the projection approaches need less time than the quadrature approxi-

mation. Also, once the approximation of BΩ is found, in most situations there are no
additional basis vectors necessary for generating the low-rank solution factor of PΩ. Us-
ing RKSM with adaptively computed shifts based on jΩ appears to be the best choice

196

7.3. Balanced Truncation in Limited Frequency Intervals

regarding the required subspace dimensions (which directly reflect the required itera-
tion steps) as well as the consumed computation time. RKSM(D) leads to higher sub-
space dimensions and longer computing times for all test systems. The simplification
RKSM(j[ω1, ω2]) of RKSM(jΩ) as well as EKSM are competitive candidates only for the
FDM example. They required larger subspaces for the rail79k example and failed to
compute accurate approximations for the ifiss66k example. Notice that EKSM did not
manage to compute a low-rank solution factor of PΩ (cf. Table 7.3 in the previous Sec-
tion) for the ifiss66k system. To conclude, using the adaptive, purely imaginary shifts
from jΩ, leads to a fast convergence of RKSM for approximating BΩ and sufficiently
accurate low-rank solutions of the frequency-limited GCALEs are obtained immediately
from the generated rational Krylov basis.

Reduction Results

Now we carry out the standard BT, frequency-limited BT, and its stability preserving
modification [117] on the basis of low-rank solutions of the respective GCALEs. For the
infinite Gramians P, Q, we use the low-rank solution method that achieved the smallest
time in the experiment in Section 7.3.5 (cf. Table 7.3). The low-rank factors of PΩ

are selected from the fastest method from Table 7.4 in Section 7.3.5. The observability
Gramians as well as the modified frequency-limited Gramians Pmod

Ω , Qmod
Ω are similarly

dealt with by Algorithm 7.3 with the same settings of τf , τP . The obtained low-rank
solution factors are used within Algorithm 7.1 to carry out the three balanced truncation
variants to generate reduced order models of a prescribed order r. It is noteworthy that
no significantly differing reduced order models were constructed when another method
is employed to compute the low-rank solution factors.
For each test system, the Bode magnitude plots of the original and reduced transfer

functionH and H̃, respectively, as well as the relative errors Erel(ω) (cf. (7.26)) are shown
in Figure 7.4, where the thick red lines indicate the frequency interval boundaries ω1,
ω2. We also indicate the theoretical error bounds (7.8) and (7.55) of BT and FLBTmod,
respectively, for ω ∈ R. For the ifiss example, (7.8) and (7.55) overestimate the true
error by several order of magnitude (cf. Table 7.5) and are, thus, not shown in the
respective error plot in Figure 7.4. While the reduced systems from BT match H in
the entire frequency range, those obtained with the frequency-limited variants FLBT,
FLBTmod show slight deviations outside the considered frequency interval [ω1, ω2]. The
relative error plots clarify this as they reveal smaller errors obtained by the frequency-
limited approaches within [ω1, ω2], where especially unmodified FLBT yields superior
approximations. With the exception of example rail79k, it also achieves a somewhat
higher accuracy for ω ≤ ω1.
To quantitatively measure the approximation quality, we consider the largest relative

error within the relevant frequency region Ω via

Erel
max(Ω) := max

ω∈[ω1,ω2]
Erel(ω).

The results are given in Table 7.5 which also includes the overall time tMOR which sums
up the computation time to acquire the low-rank Gramian factors and the generation

197

7. Applications to Model Order Reduction

10−1 100 101 102 103
104.5

105

105.5

‖H
(j
ω
)‖

ifiss

10−1 100 101 102 103

10−6

10−4

10−2

100

E
(ω

)

10−4 10−2 100 102 104

10−1

10−4

10−7

‖H
(j
ω
)‖

rail

10−4 10−2 100 102 104
10−5

10−4

10−3

10−2

10−1

100

E
(ω

)

10−1 101 103 105
10−3

10−2

10−1

101 103

frequency ω

‖H
(j
ω
)‖

fdm

original

BT

FLBT

FLBTmodd

bound (7.8).

bound (7.55).

10−1 101 103 105

10−7

10−5

10−3

10−1

frequency ω

E
(ω

)

Figure 7.4.: Results obtained by different BT versions: Bode magnitude plot of original
and reduced transfer functions (left), relative errors and theoretical error
bounds (right). The vertical red bars indicate the frequency limits ω1, ω2.

198

7.3. Balanced Truncation in Limited Frequency Intervals

Table 7.5.: Reduction result obtained by different BT versions.

Example, settings BT type algorithms tMOR Erel
max(Ω) bound stable?

ifiss66k
[ω1, ω2] = [1, 102],
r = 160

BT LR-ADI 130.2 1.48·10−4 1.89·102 1

FLBT RKSM(jΩ) 201.0 8.82·10−6 – 1

FLBTmod RKSM(jΩ) 320.9 5.68·10−5 1.21·103 1

rail79k
[ω1, ω2] = [10−2, 10],
r = 50

BT LR-ADI 105.4 1.53·10−2 1.54·10−4 1

FLBT RKSM(jΩ) 144.8 2.59·10−3 – 1

FLBTmod RKSM(jΩ) 187.9 2.41·10−2 3.42·10−4 1

FDM
[ω1, ω2] = [10, 103],
r = 30

BT LR-ADI 221.1 8.76·10−2 1.09·10−1 1

FLBT EKSM 54.9 1.03·10−7 – 0

FLBTmod RKSM(jΩ) 330.6 7.61·10−2 2.17 1

of the reduced order model by Algorithms 7.3 and 7.1, respectively. We also indicate if
the constructed reduced system is asymptotically stable.

It can be clearly confirmed that FLBT provides reduced systems with the best ap-
proximation quality in [ω1, ω2] for all test systems. Hence, the goal, mentioned in the
beginning, to achieve better accuracies at the same reduced order is fulfilled. For com-
parison, BT achieves a comparable accuracy, e.g., for system ifiss66k, if the reduced
order is increased to r ≈ 200. Regarding the computation times tMOR, FLBT is in some
cases more expensive due to the required handling of the matrix function. If an efficient
numerical low-rank approach is used, computing the required low-rank solution factors
of the frequency-limited Gramians can, however, be cheaper compared to the infinite
Gramians. This is especially the case when the numerical ranks of the frequency-limited
Gramians are noticeable smaller than those of the infinite ones, e.g., for the FDM ex-
ample. There, carrying out FLBT requires less time than BT. For the FDM example,
however, FLBT returned an asymptotically unstable reduced system. This was also
observed for the other systems for some smaller reduced dimensions r. The stability
preserving modification FLBTmod does always provide a stable reduced order models
but the computation times are significantly higher than for BT and FLBT. Similar to
the experiments in Section 7.3.5, it seems to be harder to solve (7.54) for low-rank so-
lutions. Moreover, this stability preservation appears to sacrifice the obtained accuracy
in [ω1, ω2]. In particular, for the rail79k and FDM systems, the accuracies of FLBTmod

and ordinary, unrestricted BT are very similar which renders the introduction of the
frequency restrictions essentially redundant. If stability preservation is really crucial
and FLBT fails in this direction, but if also the efficient numerical realization of the
model order reduction approach is demanded, we suggest to use BT without frequency
limitations.

Similar to the results in Section 7.2.5, in some cases a violation of at least one of
the theoretical error bounds (7.8), (7.55) associated to BT, FLBTmod can be seen in
Figure 7.4 and Table 7.5. In particular, this occurs for the rail and fdm example. This
is again caused by the errors induced by the approximate GCALE solutions.

199

7. Applications to Model Order Reduction

7.4. Conclusion and Outlook

We considered the execution of BT by means of approximate low-rank solutions of the
Gramians which are computed by the G-LR-ADI iteration a dual version thereof. This
admits to monitor the approximate Hankel singular values as the iteration proceeds
and use these as goal-oriented stopping criterion instead of the GCALE residual norms.
Numerical experiments show that this might lead to a earlier termination of the dual
G-LR-ADI iteration which can save some numerical effort but the produced reduced
order models can potentially be less accurate or even unstable. A structure preserving
variant of BT for second order systems was also discussed.
As second main topic of this chapter, BT restricted to limited frequency intervals

(FLBT) was investigated. Compared to standard BT in the first two sections, in FLBT
a matrix-valued function occurs in the inhomogeneities of the Gramians which have
to be computed. The effects of this matrix-valued function on the eigenvalues of the
Gramians within FLBT have been investigated. The established eigenvalue bounds
indicate faster decaying eigenvalues of the frequency-limited Gramians compared to the
infinite Gramians which can result in smaller numerical ranks. Due to some of the
employed eigenvalue inequalities, the found bounds are not very tight such that further
research in that direction will yield further insights. A single rational Krylov subspace
method with suitable shift parameters can be employed to intelligently deal with the
matrix-valued functions, as well as the computation of low-rank solution factors of the
occurring GCALEs. This suggested approach was, in the numerical tests, superior to
other approaches, e.g., the extended Krylov subspace method or the G-LR-ADI iteration.
Further improvements of RKSM [84, 166] might yield additional performance gains and
are subject to future investigations. Carrying out FLBT using this method led to reduced
order models of better accuracy compared to BT. In some cases, the numerical effort of
FLBT was even smaller because of the lower effort to approximate the frequency-limited
Gramians. The stability preserving modified FLBT approach [116] was also considered,
but, although similar techniques can be employed, the occurring GCALEs appear to be
significantly harder to deal with, independent of the used low-rank method. Improving
the handling of these modified Gramians, as well as related approaches with restrictions
on time or for discrete-time systems, are also further research perspectives.

200

CHAPTER 8

CONCLUSIONS AND OUTLOOK

Contents
8.1 Summary . 201

8.2 Future Research Perspectives . 202

8.1. Summary

This thesis investigated the numerical feasible computation of low-rank solution factors
for large-scale algebraic matrix equations. It is motivated by the often observed as well
as theoretically predicted fast decay of the singular values of the solutions [184, 4, 113,
222, 20, 23, 7]. The main focus of this thesis lay on approaches based on the low-rank
ADI iteration for Lyapunov and Sylvester equations [183, 161, 43]. The first contribution
in Chapter 3 was, that the residual during these iteration has a small, fixed rank and
can be given explicitly in a low-rank factorization. The incorporated low-rank factors of
the residual can be plugged into the method as intrinsic part which led to reformulated
versions of the low-rank ADI iteration. Moreover, this also enabled to compute the
residual norm very cheaply compared to older approaches.

Methods based on the ADI iteration require a number of shift parameters to achieve
a fast convergence. In various applications, these parameters can be complex and we
proposed in Chapter 4 a novel efficient approach to deal with these complex shifts and
still generate real low-rank solution factors in the end.

The efficient numerical generation of high quality shift parameters was investigated
in Chapter 5 which led to novel strategies, where the shifts are generated during the
low-rank ADI iteration. This is done completely automatic during the course of the
iteration such that the low-rank ADI methods essentially become independent of a pre-
computed shift parameters and, to a large extent, also to setup data required for the
shift generation. One key concept of these shifts is based on successively minimizing
the residual norm which is considered as function dependent on the shift parameter as
variable. These new shift generation strategies lead to a faster convergence of the ADI
iteration compared to traditional approaches in the majority of cases and also made the

201

8. Conclusions and Outlook

low-rank ADI iteration competitive with other low-rank methods, e.g., rational Krylov
subspace methods [83, 82].

As application, the usage of the low-rank ADI iteration for Lyapunov and Sylvester
equations within Newton methods for large-scale, symmetric [42, 201, 94] and, respec-
tively, nonsymmetric algebraic Riccati equations [241] was considered in Chapter 6. The
proposed efficiency enhancements also led to performance improvements and reduced
computation times in this situation. The outer Newton iteration of these algorithms
can be further drastically accelerated by performing a Galerkin projection using the
space spanned by the current low-rank solution factors. By incorporating all these tech-
niques, the low-rank Newton-ADI method performed well compared to other, existing
algorithms. However, the rational Krylov subspace method [211] was superior in some
experiments w.r.t. symmetric Riccati equations.

Balanced truncation model order reduction [175] was selected in Chapter 7 as second
application of the investigated low-rank matrix equation solvers. Here, a pair of adjoint
Lyapunov equations has to be solved by means of low-rank solution factors for which a
dual low-rank ADI iteration was used. This admitted to monitor quantities relevant for
the model order reduction application during the iteration and formulate goal-oriented
stopping criteria. Using the low-rank solution factors generated by this dual low-rank
ADI iteration led to accurate reduced order models. This accuracy was noticeably de-
creased when the iteration was terminated earlier because of the goal-oriented stopping
and in some cases, unstable reduced order models were constructed. Balanced truncation
can be restricted to finite frequency intervals which leads to frequency-limited balanced
truncation [107]. There, the inhomogeneities of the occurring Lyapunov equations in-
volve a complicated, matrix valued function which has to be dealt with in addition. The
eigenvalue decay of the solutions of these Lyapunov equations was investigated in more
detail and a different behavior compared to the Lyapunov equations in unrestricted bal-
anced truncation was revealed. It is possible to tackle both the matrix valued functions
as well as the Lyapunov equations by a single rational Krylov subspace algorithm with
appropriate shift parameters and utilizing a subspace recycling idea. It is due to the
presence of the matrix valued function that the low-rank ADI iteration is not compet-
itive in this particular situation. The generated reduced order models were of smaller
dimension and of better accuracy in the considered frequency interval in comparison to
unrestricted balanced truncation. In some cases it was even possible to generate the
required low-rank Lyapunov solution factors with smaller numerical effort.

8.2. Future Research Perspectives

With respect to the theoretical prediction of the singular value decay of solutions of ma-
trix equations, there is still not much known about the influence of the inhomogeneities
and the eigenvectors of the coefficient matrices. Some first investigations in this direction
can found, e.g., in [160, 222, 7]. Non-normality of the coefficient matrices seems to lead
to counter-intuitive effects as reported in [7]. For algebraic Riccati equations even less is
known w.r.t. these topics. Some results w.r.t. Lyapunov equations can be generalized to

202

8.2. Future Research Perspectives

symmetric Riccati equations [23]. A better understanding of these issues could help to
further improve the existing or develop new low-rank algorithms for matrix equations.
The developed low-rank factorization of the residual within low-rank ADI methods

does only hold when the occurring linear systems are solved exactly. Some investigations
regarding inexact solutions, e.g., by iterative Krylov methods for large linear systems
can be found in [160, 202, 219], but there the original low-rank ADI methods were used
without the explicitly incorporated low-rank residual factors. Further research w.r.t.
those inexact linear solves is necessary, especially when sparse direct solvers cannot be
applied in a computationally feasible way.
The developed novel automatic shift approaches in Chapter 5 led to a significant per-

formance improvement of the low-rank ADI methods. However, further enhancements
can be achieved by applying more sophisticated and specially tailored optimization rou-
tines, e.g., approaches designed intrinsically for the occurring eigenvalue minimization
problems, see, e.g., [173, 174, 180]. Especially in the case of Sylvester equations, the op-
timization problems appear to be demanding for the optimization routines. Of course,
knowledge or further theoretical investigations of the analytic solution of the occur-
ring optimization problem might be invaluable to further enhance the residual norm-
minimizing shifts.
All the just mentioned points naturally also apply to the considered Newton-ADI

hybrids in Chapter 6 for large-scale algebraic Riccati equations. Further research topics
include the use of inexact solves of the inner, linear matrix equations and using line-
search strategies [25, 94, 135]. Both ideas are subject to current research in [125], where
it is shown that they potentially yield additional, noticeable performance gains and even
enable convergence when the standard Newton-ADI method fails.
Regarding the low-rank balanced truncation framework an open problem is how the

inexact solutions of the Lyapunov equations influence the reduction process. The ex-
periments in Chapter 7 reveal that a premature termination of the low-rank method
can yield noticeable less accurate and unstable reduced order models. Hence, further
research is needed in this direction, e.g., by determining bounds for a minimal required
accuracy of the Gramian approximations in order to preserve stability. This, in turn,
might provide more reliable goal-oriented termination criteria.
The bounds regarding the eigenvalue decay of the Lyapunov solutions occurring in

frequency-limited balanced truncation are descriptive but somewhat conservative and
not very tight. Obtaining better bounds might yield further insights how the frequency
restrictions influence the eigenvalue decay. This might then be used to improve the
methods for dealing with the involved matrix valued function and computing the low-
rank Gramian factors. Computing low-rank solution factors of the stability preserving
modification [116] of frequency-limited balanced truncation was computationally more
demanding compared to original, frequency-limited as well as unrestricted balanced trun-
cation. The accuracy of the obtained reduced order models appear to also suffer from
this modification. Hence, further research effort might be devoted to alternative ways
to maintain stability in frequency-limited balanced truncation.

203

APPENDIX A

ADDITIONAL ALGORITHMS

In Algorithm A.1, a basic implementation of the rational Krylov subspace method
(RKSM) [82] for GCALEs is illustrated. There, in Lines 1,6,8, orth refers to any stable
(block) orthogonalization routine. The matrix Ãj in Line 9 as well as ‖L(QjX̃jQ

T
j)‖ in

Line 11 can be computed more efficiently [83]. Moreover, E can also be incorporated us-
ing its Cholesky factors [209, 83] if E = ET � 0. By adjusting Line 3, Algorithm A.1 can
be rewritten into a standard [196, 137] or extended Krylov subspace method (EKSM)
[209].

Algorithm A.1: Rational Krylov subspace method (RKSM) for GCALEs

Input : A, E, F as in (3.12), shifts {s1, . . . , sjmax} ⊂ C, tolerance 0 < τ � 1.
Output: Z ∈ Rn×k such that ZZT ≈ X with k � n.

1 FE := E−1F , Q0 = orth(FE).
2 for j = 1, 2, . . . , jmax do
3 Generate new basis vectors qj = (A− sjE)

−1Eqj−1.
4 Orthogonally extend basis matrix Qj−1:
5 if sj ∈ R then
6 Qj = orth([Qj−1, qj]).
7 else
8 Qj = orth([Qj−1, Re(qj), Im(qj)]), j = j + 1.

9 Ãj = QT
j E

−1AQj, F̃j = QT
j FE.

10 Solve ÃjX̃j + X̃jÃ
T
j + F̃jF̃

H
j = 0 for X̃j.

11 if ‖L(QjX̃jQ
T
j)‖ < τ‖FF T‖ then

12 Compute (and truncate) EVD X̃j = WjΛ̃jW
T
j , W

T
j Wj = Irj,

Λ̃j = diag
(
λ̃1, . . . , λ̃rj

)
.

13 Construct low-rank solution factor Z = QjWjΛ̃
1
2
j .

14 Stop rational Krylov process.

205

A. Additional Algorithms

Algorithm A.2: LR-NADI-N-r for generating real low-rank solutions of NAREs

Input : Matrices A, B, F, G, U, P defining (6.17), initial guesses K(0), H(0),
and stopping tolerances τNM, τADI � 1.

Output: Z(k) ∈ Rn×tj , Y (k) ∈ Rm×tj , Γ(k) ∈ Rtj×tj s.t. Z(k)Γ(k)(Y (k))T ≈ X.
1 k = 1.

2 while ‖R(X(k−1))‖ > τNM‖UP T‖ do
3 Get shifts {αi}, {βi} w.r.t. A(k) := A−K(k−1)GT , B(k) := B−F (H(k−1))T .

4 W0 = [U,K(k−1)], T0 = [P,H(k−1)], Z
(k)
0 = Γ

(k)
0 = Y

(k)
0 = [], j = 0

5 while ‖Wj(Tj)
H‖ > τADI‖W0(T0)

H‖ do
6 j = j + 1, γj = βj + αj.

7 Vj = (A(k) + βjIn)
−1Wj−1, Sj = (B(k) + αjIm)

−HTj−1.
8 if Case 1: βj ∈ R ∧ αj ∈ R then
9 Wj = Wj−1 − γjVj, Tj = Tj−1 − γjSj.

10 Z+ = Vj, Y+ = Sj, Γ+ = −γjIr+p, h = 1.

11 if Case 2: βj ∈ C ∧ αj ∈ C then

12 Wj+1 = Wj−1 − 2Re(γj) Re(Vj)−
(|γj |2
Im(βj)

− 2 Im(γj)
)
Im(Vj).

13 Tj+1 = Tj−1 − 2Re(γj) Re(Sj) +
(|γj |2
Im(αj)

− 2 Im(γj)
)
Im(Sj).

14 Z+ =
[
Re(Vj), Im(Vj)

]
, Y+ =

[
Re(Sj), Im(Sj)

]
.

15 Γ+ = Γ̂
(2)
j from (4.16), j = j + 1, h = 2.

16 if Case 3a: βj ∈ C ∧ αj ∈ R ∧ αj+1 ∈ R then

17 γj+1 = βj + αj+1, δj := α2
j+1 + 2Re(βj)αj+1 + |βj|2.

18 Wj+1 = Wj−1 − (Re(γj + γj+1)) Re(Vj)− Re(γj)Re(γj+1)−Im(βj)
2

Im(βj)
Im(Vj).

19 Tj = Tj−1 − (Re(γj) + Re(γj+1))Sj.

20 Sj+1 = −(B(k) + αj+1Im)
−TSj, Tj+1 = Tj + δjSj+1.

21 Z+ = [Re(Vj), Im(Vj)], Y+ = [Sj, Sj+1].

22 Γ+ = Γ̂
(3a)
j from (4.19), j = j + 1, h = 2.

23 if Case 3b: βj ∈ R ∧ βj+1 ∈ R ∧ αj ∈ C then
24 γj+1 = βj+1 + αj, δj := β2

j+1 + 2Re(αj)βj+1 + |αj|2.
25 Wj = Wj−1 − (Re(γj) + Re(γj+1))Vj.

26 Vj+1 = (A(k) + βj+1In)
−1Vj, Wj+1 = Wj + δjVj+1.

27 Tj+1 = Tj−1−(Re(γj) + Re(γj+1)) Re(Sj)− Im(αj)
2−Re(γj)Re(γj+1)

Im(αj)
Im(Sj).

28 Z+ = [Vj, Vj+1],Y+ = [Re(Sj), Im(Sj)].

29 Γ+ = Γ̂
(3b)
j from (4.20), j = j + 1, h = 2.

30 Z
(k)
j = [Z

(k)
j−h, Z+], Y

(k)
j = [Y

(k)
j−h, Y+], Γ

(k)
j = diag(Γ

(k)
j−h, Γ+), k = k + 1.

31 K(k) = Z
(k)
j Γ

(k)
j ((Y

(k)
j)TF), H(k) = Y

(k)
j (Γ

(k)
j)T (Z

(k)
j)HG, tj = (r + p)j.

206

APPENDIX B

THESES

1. This thesis deals with numerical methods for large-scale algebraic matrix equa-
tions. Linear matrix equations of Sylvester and Lyapunov type, but also quadratic
equations of Riccati type, are considered.

2. The low-rank phenomenon exhibited by the solutions of large-scale algebraic ma-
trix equations is reviewed. This leads to the concept of computing approximate
solutions in the form of low-rank factorizations which is the backbone of the in-
vestigated algorithms.

3. For Sylvester and Lyapunov equations, the main emphasis lies on methods based
on the low-rank version of the alternating directions implicit (LR-ADI) iteration.

4. It is shown that in each step of the LR-ADI iteration, the residual with respect to
the current approximation of the solution can be exactly expressed as a low-rank
factorization. The rank of the residual is bounded from above by the rank of the
inhomogeneity of the matrix equation. This leads to a novel way to formulate the
LR-ADI iteration and to efficient approaches for computing the residual norm.

5. The ADI iteration demands shift parameters which have a significant influence on
the rate of the error reduction. If the considered matrix equation is defined by real
nonsymmetric matrices, these shift parameters can occur in complex conjugated
pairs. Based on newly discovered interconnections of the iteration data associated
to these complex conjugated pairs, new strategies to reduce the amount of the
resulting complex arithmetic operations and storage are presented.

6. The dependence on shift parameters is a conceptual disadvantage of the LR-ADI
iteration, because shifts of high quality are usually hard to obtain for large-scale
matrices. Novel shift generation and selection approaches are developed, where the
shifts are efficiently and automatically computed during the course of the iteration,
making the LR-ADI iteration basically parameter free.

7. The newly established low-rank factorization of the residual can be exploited to
develop a shift generation strategy based on a minimization of the residual norm.

207

B. Theses

8. The proposed self-generating shifts outperform existing shift selection approaches
in the majority of experiments, leading to fewer iteration numbers and less con-
sumed computation time.

9. Equipped with the established numerical enhancements and the new shift strate-
gies, the LR-ADI iteration compares well against competitive approaches, e.g.,
projection based methods using rational or extended Krylov subspaces.

10. Large-scale symmetric and nonsymmetric algebraic Riccati equations can be solved
by Newton type methods, where the occurring Lyapunov and Sylvester equations
can be dealt with the LR-ADI iteration, including all of the proposed performance
improvements. Adding a Galerkin projection to the Newton iteration can further
accelerate the algorithms.

11. Balanced truncation model order reduction requires the solution of two Lyapunov
equations which are adjoint to each other. These can be handled simultaneously by
a dual LR-ADI iteration, which can be equipped with specialized stopping criteria
connected to the model reduction process.

12. Balanced truncation restricted to limited frequency regions leads to Lyapunov
equations, where the inhomogeneity involves a nonlinear function of a matrix.
It is investigated why the eigenvalues of the solutions of these special Lyapunov
equations often decay faster compared to the equations arising in classical bal-
anced truncation. Results explaining the influence of the frequency limits on this
accelerated eigenvalue decay are established.

13. A projection approach employing rational Krylov subspaces is proposed which can
handle both the matrix function and the Lyapunov equation by a single, computa-
tionally efficient algorithm. As result, frequency-limited balanced truncation can
be carried with a numerical effort comparable to unrestricted balanced truncation
and yields reduced order models of higher accuracy in the considered frequency
region.

208

BIBLIOGRAPHY

[1] H. Abou-Kandil, G. Freiling, V. Ionescu, and G. Jank, Matrix Riccati
Equations in Control and Systems Theory, Birkhauser, 2003.

[2] M. I. Ahmad, D. B. Szyld, and M. B. van Gijzen, Preconditioned multi-
shift BiCG for H2-optimal model reduction, Tech. Rep. 12-06-15, Department of
Mathematics, Temple University, June 2012. Revised March 2013.

[3] A. C. Antoulas, Approximation of Large-Scale Dynamical Systems, SIAM,
Philadelphia, PA, 2005.

[4] A. C. Antoulas, D. C. Sorensen, and Y. Zhou, On the Decay Rate of Hankel
Singular Values and Related Issues, Sys. Control Lett., 46 (2002), pp. 323–342.

[5] W. F. Arnold, III and A. J. Laub, Generalized Eigenproblem Algorithms and
Software for Algebraic Riccati Equations, Proc. IEEE, 72 (1984), pp. 1746–1754.

[6] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst,
Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide,
SIAM, Philadelphia, PA, 2000.

[7] J. Baker, M. Embree, and J. Sabino, Fast singular value decay for Lyapunov
solutions with nonnormal coefficients, SIAM J. Matrix Anal. Appl., 36 (2015),
pp. 656–668.

[8] R. E. Bank and T. F. Chan, An analysis of the composite step biconjugate
gradient method, Numer. Math., 66 (1993), pp. 295–319.

[9] , A composite step bi-conjugate gradient algorithm for nonsymmetric linear
systems, Numer. Algorithms, 7 (1994), pp. 1–16.

[10] E. Bänsch, P. Benner, J. Saak, and H. K. Weichelt, Riccati-based bound-
ary feedback stabilization of incompressible Navier-Stokes flows, SIAM J. Sci. Com-
put., 37 (2015), pp. A832–A858.

[11] L. Bao, Y. Lin, and Y. Wei, Krylov subspace methods for the generalized
Sylvester equation, Appl. Math. and Comput., 175 (2006), pp. 557–573.

[12] , A new projection method for solving large Sylvester equations, Appl. Numer.
Math., 57 (2007), pp. 521–532.

209

B. Bibliography

[13] S. Barrachina, P. Benner, and E. S. Quintana-Ort́ı, Efficient algorithms
for generalized algebraic Bernoulli equations based on the matrix sign function,
Numer. Algorithms, 46 (2007), pp. 351–368.

[14] R. Bartels and G. Stewart, Solution of the Matrix Equation AX+XB = C:
Algorithm 432, Comm. ACM, 15 (1972), pp. 820–826.

[15] B. Beckermann and A. Gryson, Extremal Rational Functions on Symmetric
Discrete Sets and Superlinear Convergence of the ADI Method, Constr. Approx.,
32 (2010), pp. 393–428.

[16] P. Benner, Contributions to the Numerical Solution of Algebraic Riccati Equa-
tions and Related Eigenvalue Problems, Dissertation, Fakultät für Mathematik,
TU Chemnitz–Zwickau, 09107 Chemnitz (Germany), Feb. 1997.

[17] , Factorized Solution of Sylvester Equations with Applications in Control, in
Proc. Intl. Symp. Math. Theory Networks and Syst. MTNS 2004, http://www.
mtns2004.be, 2004.

[18] , Solving Large-Scale Control Problems, IEEE Control Systems Magazine, 14
(2004), pp. 44–59.

[19] , The Matrix Factorization Paradigm in Solving Matrix Equations. House-
holder Symposium XVI, Seven Springs Mountain Resort, Champion, Pennsylva-
nia, USA, see http://www.mpi-magdeburg.mpg.de/mpcsc/benner/talks/hh05.
pdf., 2005.

[20] P. Benner and T. Breiten, Low rank methods for a class of generalized Lya-
punov equations and related issues, Numer. Math., 124 (2013), pp. 441–470.

[21] , On optimality of approximate low rank solutions of large-scale matrix equa-
tions, Sys. Control Lett., 67 (2014), pp. 55–64.

[22] , Rational interpolation methods for symmetric Sylvester equations, Electr.
Trans. Num. Anal., 42 (2014), pp. 147–164.

[23] P. Benner and Z. Bujanović, On the solution of large-scale algebraic Riccati
equations by using low-dimensional invariant subspaces, Linear Algebra Appl., 488
(2016), pp. 430–459.

[24] P. Benner, Z. Bujanović, P. Kürschner, and J. Saak, The RADI al-
gorithm for solving large-scale algebraic Riccati equations, e-prints 1510.00040,
ArXiv, Sept. 2015. Available from http://arxiv.org/abs/1510.00040v2.

[25] P. Benner and R. Byers, Newton’s Method with Exact Line Search for Solv-
ing the Algebraic Riccati Equation, Tech. Rep. SPC 95 24, Fakultät für Math-
ematik, TU Chemnitz–Zwickau, 09107 Chemnitz, FRG, 1995. Available from
http://www.tu-chemnitz.de/sfb393/spc95pr.html.

210

[26] , An Exact Line Search Method for Solving Generalized Continuous-Time Al-
gebraic Riccati Equations, IEEE Trans. Automat. Control, 43 (1998), pp. 101–107.

[27] P. Benner and H. Faßbender, On the numerical solution of large-scale sparse
discrete-time Riccati equations, Adv. Comput. Math., 35 (2011), pp. 119–147.

[28] P. Benner, M. Hochstenbach, and P. Kürschner, Model order reduction
of large-scale dynamical systems with Jacobi-Davidson style eigensolvers, in Pro-
ceedings of CCCA11, 2011. IEEE Catalog Number: CFP1154M-ART.

[29] P. Benner, G. E. Khoury, and M. Sadkane, On the Squared Smith Method
for Large-Scale Stein Equations, Numer. Lin. Alg. Appl., 21 (2014), pp. 645–665.

[30] P. Benner, M. Köhler, and J. Saak, Sparse-Dense Sylvester Equations in
H 2-Model Order Reduction, Tech. Rep. MPIMD/11-11, Max Planck Institute
Magdeburg Preprints, 2011. Available from http://www.mpi-magdeburg.mpg.

de/preprints/2011/11/.

[31] P. Benner, B. Kranz, J. Saak, and M. M. Uddin, Efficient Reduced Order
State Space Model Computation for a Class of Second Order Index One Systems,
Proc. Appl. Math. Mech., 12 (2012), pp. 699–700.

[32] P. Benner and P. Kürschner, Computing Real Low-rank Solutions of Sylvester
equations by the Factored ADI Method, Comput. Math. Appl., 67 (2014), pp. 1656–
1672.

[33] P. Benner, P. Kürschner, and J. Saak, A Goal-Oriented Dual LRCF-
ADI for Balanced Truncation, vol. 7 of Proceedings of the MathMod 2012,
IFAC-PapersOnline, Mathematical Modelling, Vienna Univ. of Technology, 2012,
pp. 752–757.

[34] , Avoiding complex arithmetic in the low-rank ADI method efficiently, Proc.
Appl. Math. Mech., 12 (2012), pp. 639–640.

[35] , Real versions of low-rank ADI methods with complex shifts, Tech. Rep.
MPIMD/12-11, Max Planck Institute Magdeburg Preprints, 2012. Available from
http://www.mpi-magdeburg.mpg.de/preprints/.

[36] , A Reformulated Low-Rank ADI Iteration with Explicit Residual Factors,
Proc. Appl. Math. Mech., 13 (2013), pp. 585–586.

[37] , An Improved Numerical Method for Balanced Truncation for Symmetric Sec-
ond Order Systems, Math. Comput. Model. Dyn. Sys., 19 (2013), pp. 593–615.

[38] , Efficient Handling of Complex Shift Parameters in the Low-Rank Cholesky
Factor ADI Method, Numer. Algorithms, 62 (2013), pp. 225–251.

211

B. Bibliography

[39] , Self-Generating and Efficient Shift Parameters in ADI Methods for Large
Lyapunov and Sylvester Equations, Electr. Trans. Num. Anal., 43 (2014), pp. 142–
162.

[40] , Frequency-Limited Balanced Truncation with Low-Rank Approximations,
SIAM J. Sci. Comput., 38 (2016), pp. A471–A499.

[41] , Low-Rank Newton-ADI methods for Large Nonsymmetric Algebraic Riccati
Equations, J. Frankl. Inst., 353 (2016), pp. 1147–1167.

[42] P. Benner, J.-R. Li, and T. Penzl, Numerical Solution of Large Lyapunov
equations, Riccati Equations, and Linear-Quadratic Control Problems, Numer. Lin.
Alg. Appl., 15 (2008), pp. 755–777.

[43] P. Benner, R.-C. Li, and N. Truhar, On the ADI Method for Sylvester
Equations, J. Comput. Appl. Math., 233 (2009), pp. 1035–1045.

[44] P. Benner, V. Mehrmann, and D. C. Sorensen, Dimension Reduction of
Large-Scale Systems, vol. 45 of Lect. Notes Comput. Sci. Eng., Springer-Verlag,
Berlin/Heidelberg, Germany, 2005.

[45] P. Benner, H. Mena, and J. Saak, On the Parameter Selection Problem in
the Newton-ADI Iteration for Large-Scale Riccati Equations, Electr. Trans. Num.
Anal., 29 (2008), pp. 136–149.

[46] P. Benner, E. Quintana-Ort́ı, and G. Quintana-Ort́ı, Solving Stable
Sylvester Equations via Rational Iterative Schemes, J. Sci. Comp., 28 (2005 (elec-
tronic)), pp. 51–83.

[47] P. Benner and J. Saak, Efficient numerical solution of the LQR-problem for
the heat equation, Proc. Appl. Math. Mech., 4 (2004), pp. 648–649.

[48] , A Semi-Discretized Heat Transfer Model for Optimal Cooling of Steel Pro-
files, in Dimension Reduction of Large-Scale Systems, P. Benner, V. Mehrmann,
and D. Sorensen, eds., vol. 45 of Lect. Notes Comput. Sci. Eng., Springer-Verlag,
Berlin/Heidelberg, Germany, 2005, pp. 353–356.

[49] , Efficient solution of large scale Lyapunov and Riccati equations arising in
model order reduction problems, Proc. Appl. Math. Mech., 8 (2008), pp. 10085–
10088.

[50] , A Galerkin-Newton-ADI Method for Solving Large-Scale Algebraic Riccati
Equations, Preprint SPP1253-090, SPP1253, January 2010. http://www.am.

uni-erlangen.de/home/spp1253/wiki/index.php/Preprints.

[51] , Efficient Balancing based MOR for Large Scale Second Order Systems, Math.
Comput. Model. Dyn. Sys., 17 (2011), pp. 123–143.

212

[52] , Numerical solution of large and sparse continuous time algebraic matrix
Riccati and Lyapunov equations: a state of the art survey, GAMM Mitteilungen,
36 (2013), pp. 32–52.

[53] P. Benner, J. Saak, and M. M. Uddin, Second Order to Second Order Balanc-
ing for Index-1 Vibrational Systems, in 7th International Conference on Electrical
& Computer Engineering (ICECE) 2012, IEEE, 2012, pp. 933–936.

[54] P. Benner, J. Saak, and M. M. Uddin, Structure Preserving MOR for Large
Sparse Second Order Index-1 Systems and Application to a Mechatronic Model,
Preprint MPIMD/14-23, Max Planck Institute Magdeburg, Dec. 2014. Available
from http://www.mpi-magdeburg.mpg.de/preprints/.

[55] D. A. Bini, B. Iannazzo, and B. Meini, Numerical Solution of Algebraic
Riccati Equations, SIAM, 2011.

[56] D. A. Bini, B. Iannazzo, B. Meini, and F. Poloni, Nonsymmetric algebraic
Riccati equations associated with an M-matrix: recent advances and algorithms., in
Matrix Methods: Theory, Algorithms and Applications, V. Olshevsky and E. Tyr-
tyshnikov, eds., World Scientific Publishing, 2010, ch. 10, pp. 176–209.

[57] D. A. Bini, B. Iannazzo, and F. Poloni, A Fast Newton’s Method for a
Nonsymmetric Algebraic Riccati Equation, SIAM J. Matrix Anal. Appl., 30 (2008),
pp. 276–290.

[58] C. H. Bischof and G. Quintana-Ort́ı, Algorithm 782: Codes for rank-
revealing QR factorizations of dense matrices., ACM Trans. Math. Software, 24
(1998), pp. 254–257.

[59] M. Bollhöfer and A. K. Eppler, A Structure Preserving FGMRES Method
for Solving Large Lyapunov Equations, in Progress in Industrial Mathematics at
ECMI 2010, M. Günther, A. Bartel, M. Brunk, S. Schöps, and M. Striebel, eds.,
Mathematics in Industry, Springer Berlin Heidelberg, 2012, pp. 131–136.

[60] A. Bouhamidi, M. Hached, M. Heyouni, and K. Jbilou, A preconditioned
block Arnoldi method for large Sylvester matrix equations, Numer. Lin. Alg. Appl.,
20 (2011), pp. 208–219.

[61] M. Brand, Fast online SVD revisions for lightweight recommender systems, in
SIAM International Conference on Data Mining, 2003.

[62] J. Brandts, The Riccati algorithm for eigenvalues and invariant subspaces of
matrices with inexpensive action, Linear Algebra Appl., 358 (2003), pp. 335–365.

[63] A. Bunse-Gerstner and H. Faßbender, Breaking Van Loan’s Curse: A
Quest forStructure-Preserving Algorithms for Dense Structured Eigenvalue Prob-
lems, in Numerical Algebra, Matrix Theory, Differential-Algebraic Equations and

213

B. Bibliography

Control Theory, P. Benner, M. Bollhöfer, D. Kressner, C. Mehl, and T. Stykel,
eds., Springer International Publishing, 2015, pp. 3–23.

[64] D. Calvetti and L. Reichel, Application of ADI iterative methods to the
restoration of noisy images, SIAM J. Matrix Anal. Appl., 17 (1996), pp. 165–186.

[65] Y. Chahlaoui, D. Lemonnier, A. Vandendorpe, and P. Van Dooren,
Second-order balanced truncation, Linear Algebra Appl., 415 (2006), pp. 373–384.

[66] Y. Chahlaoui and P. Van Dooren, A collection of benchmark examples for
model reduction of linear time invariant dynamical systems, SLICOT Working
Note 2002–2, University of Manchester, Feb. 2002. Available from www.slicot.

org.

[67] D. Chu, X. Liu, and V. Mehrmann, A numerical method for computing the
Hamiltonian Schur form, Numer. Math., 105 (2006), pp. 375–412.

[68] E. K.-W. Chu, The solution of the matrix equations AXB − CXD = E and
(Y A−DZ, Y C − BZ) = (E,F), Linear Algebra Appl., 93 (1987), pp. 93–105.

[69] E. K.-W. Chu, H.-Y. Fan, and W.-W. Lin, A structure-preserving doubling
algorithm for continuous-time algebraic Riccati equations, Linear Algebra Appl.,
396 (2005), pp. 55–80.

[70] E. K.-W. Chu, H.-Y. Fan, W.-W. Lin, and C.-S. Wang, Structure-
preserving algorithms for periodic discrete-time algebraic Riccati equations, Inter-
nat. J. Control, 77 (2004), pp. 767–788.

[71] T. Damm, Direct methods and ADI-preconditioned Krylov subspace methods for
generalized Lyapunov equations, Numer. Lin. Alg. Appl., 15 (2008), pp. 853–871.

[72] B. N. Datta, Numerical Methods for Linear Control Systems, Elsevier Academic
Press, 2004.

[73] P. I. Davies and N. J. Higham, Computing f(A)b for Matrix Functions f ,
vol. 47 of Lecture Notes in Computational Science and Engineering, Springer Berlin
Heidelberg, 2005, pp. 15–24.

[74] T. A. Davis, Direct Methods for Sparse Linear Systems (Fundamentals of Algo-
rithms 2), SIAM, Philadelphia, PA, 2006.

[75] D. Day and M. A. Heroux, Solving Complex-Valued Linear Systems via Equiv-
alent Real Formulations, SIAM J. Sci. Comput., 23 (2001), pp. 480–498.

[76] B. De Moor and J. David, Total Linear Least Squares and the Algebraic Riccati
Equation, Sys. Control Lett., 18 (1992), pp. 329–337.

[77] R. S. Dembo, S. C. Eisenstat, and T. Steihaug, Inexact Newton Methods,
SIAM J. Numer. Anal., 19 (1982), pp. 400–408.

214

[78] J. W. Demmel, Three methods for refining estimates of invariant subspaces, Com-
puting, 38 (1987), pp. 43–57.

[79] T. A. Driscoll, N. Hale, and L. N. Trefethen, Chebfun guide, Pafnuty
Publications, Oxford, 2014.

[80] Z. Drmac, Accurate computation of the product-induced singular value decompo-
sition with applications., SIAM J. Numer. Anal., 35 (1998), pp. 1969–1994.

[81] V. Druskin and L. A. Knizhnerman, Extended Krylov Subspaces: Approxi-
mation of the Matrix Square Root and Related Functions, SIAM J. Matrix Anal.
Appl., 19 (1998), pp. 755–771.

[82] V. Druskin, L. A. Knizhnerman, and V. Simoncini, Analysis of the rational
Krylov subspace and ADI methods for solving the Lyapunov equation, SIAM J.
Numer. Anal., 49 (2011), pp. 1875–1898.

[83] V. Druskin and V. Simoncini, Adaptive rational Krylov subspaces for large-
scale dynamical systems, Systems & Control Letters, 60 (2011), pp. 546–560.

[84] V. Druskin, V. Simoncini, and M. Zaslavsky, Adaptive Tangential Inter-
polation in Rational Krylov Subspaces for MIMO Dynamical Systems, SIAM J.
Matrix Anal. Appl., 35 (2014), pp. 476–498.

[85] L. Du, T. Sogabe, and S.-L. Zhang, IDR(s) for solving shifted nonsymmetric
linear systems, J. Comput. Appl. Math., 274 (2015), pp. 35–43.

[86] X. Du, P. Benner, G. Yang, and D. Ye, Balanced truncation of linear time-
invariant systems at a single frequency, Preprint MPIMD/13-02, Max Planck In-
stitute Magdeburg, Jan. 2013. Available from http://www.mpi-magdeburg.mpg.

de/preprints/.

[87] I. Duff, A. Erisman, and J. Reid, Direct methods for sparse matrices, Claren-
don Press, Oxford, UK, 1989.

[88] S. C. Eisenstat and H. F. Walker, Choosing the Forcing Terms in an Inexact
Newton Method, SIAM J. Sci. Comput., 17 (1996), pp. 16–32.

[89] A. El Guennouni, K. Jbilou, and A. Riquet, Block Krylov Subspace Methods
for Solving Large Sylvester Equations, Numer. Algorithms, 29 (2002), pp. 75–96.

[90] M. Epton, Methods for the solution of AXD−BXC = E and its application in
the numerical solution of implicit ordinary differential equations, BIT, 20 (1980),
pp. 341–345.

[91] J. Fehr, Automated and Error Controlled Model Reduction in Elastic Multibody
Systems, PhD thesis, Institut für Technische und Numerische Mechanik, Univer-
sität Stuttgart, 2011.

215

B. Bibliography

[92] J. Fehr, P. Eberhard, and M. Lehner, Improving the Reduction Process in
Flexible Multibody Dynamics by the Use of 2nd Order Position Gramian Matrices,
in ENOC-2008, St. Petersburg, Russia, 2008.

[93] J. Fehr, M. Fischer, B. Haasdonk, and P. Eberhard, Greedy-based ap-
proximation of frequency-weighted Gramian matrices for model reduction in multi-
body dynamics, ZAMM - J. Appl. Math. Mech., 93 (2013), pp. 501–519.

[94] F. Feitzinger, T. Hylla, and E. W. Sachs, Inexact Kleinman-Newton
Method for Riccati Equations, SIAM J. Matrix Anal. Appl., 31 (2009), pp. 272–288.

[95] M. Fiedler, Hankel and Loewner matrices, Linear Algebra Appl., 58 (1984),
pp. 75–95.

[96] G. M. Flagg and S. Gugercin, On the ADI method for the Sylvester equation
and the optimal H2 points, Appl. Numer. Math., 64 (2013), pp. 50–58.

[97] R. Fletcher, Conjugate gradient methods for indefinite systems, in Numerical
Analysis, G. Watson, ed., vol. 506 of Lecture Notes in Mathematics, Springer
Berlin / Heidelberg, 1976, pp. 73–89.

[98] F. Freitas, J. Rommes, and N. Martins, Gramian-Based Reduction Method
Applied to Large Sparse Power System Descriptor Models, IEEE Trans. Power
Systems, 23 (2008), pp. 1258–1270.

[99] R. W. Freund, M. Gutknecht, and N. M. Nachtigal, An Implementation
of the Look-Ahead Lanczos Algorithm for Non-Hermitian Matrices, SIAM J. Sci.
Comput., 14 (1993), pp. 137–158.

[100] R. W. Freund and M. Malhotra, A block QMR algorithm for non-Hermitian
linear systems with multiple right-hand sides, Linear Algebra Appl., 254 (1997),
pp. 119–157.

[101] R. W. Freund and N. M. Nachtigal, QMR: a quasi-minimal residual method
for non-Hermitian linear systems, Numer. Math., 60 (1991), pp. 315–339.

[102] A. Frommer, BiCGStab(�) for Families of Shifted Linear Systems, Computing,
70 (2003), pp. 87–109.

[103] A. Frommer and U. Glässner, Restarted GMRES for Shifted Linear Systems,
SIAM J. Sci. Comput., 19 (1998), pp. 15–26.

[104] A. Frommer and V. Simoncini, Matrix Functions, in Model Order Reduction:
Theory, Research Aspects and Applications, W. Schilders, H. A. van der Vorst, and
J. Rommes, eds., vol. 13 of Mathematics in Industry, Springer Berlin Heidelberg,
2008, pp. 275–303.

216

[105] J. Gardiner, A. J. Laub, J. Amato, and C. Moler, Solution of the Sylvester
Matrix Equation AXB + CXD = E, ACM Trans. Math. Software, 18 (1992),
pp. 223–231.

[106] J. D. Gardiner and A. J. Laub, A Generalization of the Matrix-Sign-Function
Solution for Algebraic Riccati Equations, Internat. J. Control, 44 (1986), pp. 823–
832.

[107] W. Gawronski and J. Juang, Model reduction in limited time and frequency
intervals, Int. J. Syst. Sci., 21 (1990), pp. 349–376.

[108] I. Gohberg and I. Koltracht, Triangular factors of Cauchy and Vandermonde
matrices, Integr. Equat. Oper. Th., 26 (1996), pp. 46–59.

[109] G. H. Golub, S. Nash, and C. F. Van Loan, A Hessenberg–Schur method
for the problem AX + XB = C, IEEE Trans. Automat. Control, AC-24 (1979),
pp. 909–913.

[110] G. H. Golub, M. Stoll, and A. Wathen, Approximation of the Scattering
Amplitude and Linear Systems, Electr. Trans. Num. Anal., 31 (2008), pp. 178–203.

[111] G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins
University Press, Baltimore, fourth ed., 2013.

[112] L. Grasedyck, Existence and computation of low Kronecker-rank approximations
for large linear systems of tensor product structure, Computing, 72 (2004), pp. 247–
265.

[113] , Existence of a low rank or H-matrix approximant to the solution of a
Sylvester equation, Numer. Lin. Alg. Appl., 11 (2004), pp. 371–389.

[114] E. J. Grimme, Krylov projection methods for model reduction, PhD thesis, Univ.
of Illinois at Urbana-Champaign, USA, 1997.

[115] M. Gu and S. C. Eisenstat, A Stable And Fast Algorithm For Updating The
Singular Value Decomposition, technical report, Department of Computer Science,
Yale University, 1994.

[116] S. Gugercin and A. C. Antoulas, A survey of model reduction by balanced
truncation and some new results, Internat. J. Control, 77 (2004), pp. 748–766.

[117] S. Gugercin, A. C. Antoulas, and C. Beattie, H 2 Model Reduction for
Large-Scale Dynamical Systems, SIAM J. Matrix Anal. Appl., 30 (2008), pp. 609–
638.

[118] S. Gugercin and J.-R. Li, Smith-type methods for balanced truncation of
large systems, in Dimension Reduction of Large-Scale Systems, P. Benner,
V. Mehrmann, and D. Sorensen, eds., vol. 45 of Lect. Notes Comput. Sci. Eng.,
Springer-Verlag, Berlin/Heidelberg, Germany, 2005, pp. 49–82.

217

B. Bibliography

[119] S. Gugercin, D. C. Sorensen, and A. C. Antoulas, A modified low-rank
Smith method for large-scale Lyapunov equations, Numer. Algorithms, 32 (2003),
pp. 27–55.

[120] C. Guo and N. Higham, Iterative Solution of a Nonsymmetric Algebraic Riccati
Equation, SIAM J. Matrix Anal. Appl., 29 (2007), pp. 396–412.

[121] C.-H. Guo, Efficient methods for solving a nonsymmetric algebraic Riccati equa-
tion arising in stochastic fluid models, J. Comput. Appl. Math, 192 (2006),
pp. 353–373.

[122] C.-H. Guo and A. J. Laub, On the Iterative Solution of a Class of Nonsymmet-
ric Algebraic Riccati Equations, SIAM J. Matrix Anal. Appl., 22 (2000), pp. 376–
391.

[123] S. Güttel, Rational Krylov approximation of matrix functions: Numerical meth-
ods and optimal pole selection, GAMM Mitteilungen, 36 (2013), pp. 8–31.

[124] S. Hammarling, Numerical Solution of the Stable, Non-negative Definite Lya-
punov Equation, IMA J. Numer. Anal., 2 (1982), pp. 303–323.

[125] M. Heinkenschloss, H. K. Weichelt, P. Benner, and J. Saak, Inex-
act low-rank Newton-ADI method for large-scale algebraic Riccati equations, Tech.
Rep. MPIMD/15-06, Max Planck Institute Magdeburg Preprints, 2015. Available
from http://www.mpi-magdeburg.mpg.de/preprints/.

[126] G. A. Hewer, An Iterative Technique for the Computation of Steady State Gains
for the Discrete Optimal Regulator, IEEE Trans. Automat. Control, AC-16 (1971),
pp. 382–384.

[127] M. Heyouni and K. Jbilou, An extended block Arnoldi algorithm for large-
scale solutions of the continuous-time algebraic Riccati equation, Electr. Trans.
Num. Anal., 33 (2009), pp. 53–62.

[128] N. J. Higham, Functions of Matrices: Theory and Computation, Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA, 2008.

[129] D. Hinrichsen and A. J. Pritchard, Mathematical Systems Theory I,
Springer-Verlag, Berlin, 2005.

[130] M. Hochbruck and M. Hochstenbach, Subspace extraction for matrix func-
tions, tech. rep., 2005.

[131] R. Horn and C. Johnson, Matrix Analysis, Cambridge University Press, Cam-
bridge, 1985.

[132] , Topics in Matrix Analysis, Cambridge University Press, Cambridge, 1991.

218

[133] W. D. Hoskins, D. S. Meek, and D. J. Walton, The Numerical Solution of
A′Q+QA = −C, IEEE Trans. Automat. Control, AC-22 (1977), pp. 882–883.

[134] D. Hu and L. Reichel, Krylov-subspace methods for the Sylvester equation,
Linear Algebra Appl., 172 (1992), pp. 283–313.

[135] T. Hylla, Extension of inexact Kleinman-Newton methods to a general mono-
tonicity preserving convergence theory, dissertation, Universität Trier, 2011.

[136] M. Imran and A. Ghafoor, Model reduction of descriptor systems using fre-
quency limited Gramians, J. Frankl. Inst., 352 (2015), pp. 33–51.

[137] I. Jaimoukha and E. Kasenally, Krylov subspace methods for solving large
Lyapunov equations, SIAM J. Numer. Anal., 31 (1994), pp. 227–251.

[138] K. Jbilou, Low rank approximate solutions to large Sylvester matrix equations,
Appl. Math. Comput., 177 (2006), pp. 365–376.

[139] Z. Jia and H. Lv, A posteriori error estimates of Krylov subspace approximations
to matrix functions, Numer. Algorithms, 69 (2015), pp. 1–28.

[140] J. Juang and I. D. Chen, Iterative solution for a certain class of algebraic
matrix Riccati equations arising in transport theory, Transport Theor. Stat., 22
(1993), pp. 65–80.

[141] D. Kahaner, C. Moler, S. Nash, and G. E. Forsythe, Numerical Methods
and Software, Prentice-Hall, Englewood Cliffs, NJ, 1988.

[142] C. T. Kelley, Iterative Methods for Linear and Nonlinear Equations, SIAM,
Philadelphia, PA, 1995.

[143] C. Kenney and A. J. Laub, The Matrix Sign Function, IEEE Trans. Automat.
Control, 40 (1995), pp. 1330–1348.

[144] C. Kenney, A. J. Laub, and P. M. Papadopoulos, Matrix-sign algorithms
for Riccati equations, IMA J. Math. Contr. Info., 3 (1992), pp. 331–344.

[145] D. Kleinman, On an Iterative Technique for Riccati Equation Computations,
IEEE Trans. Automat. Control, AC-13 (1968), pp. 114–115.

[146] L. A. Knizhnerman, Calculation of functions of unsymmetric matrices using
Arnoldi’s method, Comput. Math. Math. Phys., 31 (1992), pp. 1–9.

[147] L. A. Knizhnerman and V. Simoncini, A new investigation of the extended
Krylov subspace method for matrix function evaluations, Numer. Lin. Alg. Appl.,
17 (2010), pp. 615–638.

[148] P. Kunkel and V. Mehrmann, Differential-Algebraic Equations: Analysis and
Numerical Solution, Textbooks in Mathematics, EMS Publishing House, 2006.

219

B. Bibliography

[149] P. Lancaster, On eigenvalues of matrices dependent on a parameter, Numer.
Math., 6 (1964), pp. 377–387.

[150] P. Lancaster and L. Rodman, The Algebraic Riccati Equation, Oxford Uni-
versity Press, Oxford, 1995.

[151] P. Lancaster and M. Tismenetsky, The Theory of Matrices, Academic Press,
Orlando, 2nd ed., 1985.

[152] N. Lang, H. Mena, and J. Saak, An LDLT factorization based ADI algorithm
for solving large scale differential matrix equations, Proc. Appl. Math. Mech., 14
(2014), pp. 827–828.

[153] , On the benefits of the LDLT factorization for large-scale differential matrix
equation solvers, Linear Algebra Appl., 480 (2015), pp. 44–71.

[154] A. J. Laub, A Schur Method for Solving Algebraic Riccati Equations, IEEE Trans.
Automat. Control, AC-24 (1979), pp. 913–921.

[155] , Invariant Subspace Methods for the Numerical Solution of Riccati Equations,
in The Riccati Equation, S. Bittanti, A. J. Laub, and J. C. Willems, eds., Springer-
Verlag, Berlin, 1991, pp. 163–196.

[156] A. J. Laub, M. T. Heath, C. C. Paige, and R. C. Ward, Computation of
system balancing transformations and other application of simultaneous diagonal-
ization algorithms, IEEE Trans. Automat. Control, 32 (1987), pp. 115–122.

[157] M. Lehner, Modellreduktion in elastischen Mehrkörpersystemen (in German),
Schriften aus dem Institut für Technische und Numerische Mechanik der Univer-
sität Stuttgart, 10 (2007). Dissertation.

[158] N. Levenberg and L. Reichel, A generalized ADI iterative method, Numer.
Math., 66 (1993), pp. 215–233.

[159] A. Lewis, The mathematics of eigenvalue optimization, Mathem. Prog., 97 (2003),
pp. 155–176.

[160] J.-R. Li, Model Reduction of Large Linear Systems via Low Rank System Grami-
ans, PhD thesis, Massachusettes Institute of Technology, September 2000.

[161] J.-R. Li and J. White, Low Rank Solution of Lyapunov Equations, SIAM J.
Matrix Anal. Appl., 24 (2002), pp. 260–280.

[162] R.-C. Li and N. Truhar, On the ADI Method for Sylvester Equations, Technical
Report 2008-2, Department of Mathematics, University of Texas at Arlington,
2008. Available at http://www.uta.edu/math/preprint/rep2008_02.pdf.

220

[163] T. Li, E. K.-w. Chu, J. Juang, and W.-W. Lin, Solution of a Nonsymmet-
ric Algebraic Riccati Equation from a Two-dimensional Transport Model, Linear
Algebra Appl., 434 (2011), pp. 201–214.

[164] T. Li, E. K.-w. Chu, Y. Kuo, and W.-W. Lin, Solving Large-Scale Nonsym-
metric Algebraic Riccati Equations by Doubling, SIAM J. Matrix Anal. Appl., 34
(2013), pp. 1129–1147.

[165] T. Li, P. C.-Y. Weng, E. K.-w. Chu, and W.-W. Lin, Large-scale Stein
and Lyapunov equations, Smith method, and applications, Numer. Algorithms, 63
(2013), pp. 727–752.

[166] Y. Lin and V. Simoncini, Minimal residual methods for large scale Lyapunov
equations, Appl. Numer. Math., 72 (2013), pp. 52–71.

[167] , A new subspace iteration method for the algebraic Riccati equation, Numer.
Lin. Alg. Appl., 22 (2015), pp. 26–47.

[168] J. Lu and D. L. Darmofal, A Quasi-Minimal Residual Method for Simulta-
neous Primal-Dual Solutions and Superconvergent Functional Estimates, SIAM J.
Sci. Comput., 24 (2002), pp. 1693–1709.

[169] C. C. Mac Duffee, The Theory of Matrices, Chelsea, New York, 1946.

[170] A. Massoudi, M. Opmeer, and T. Reis, The ADI method for algebraic Riccati
equations, Preprint 2014-16, Hamburger Beiträge zur Angewandten Mathematik,
2014.

[171] V. Mehrmann and T. Stykel, Balanced Truncation Model Reduction for
Large-Scale Systems in Descriptor Form, in Dimension Reduction of Large-Scale
Systems, P. Benner, V. Mehrmann, and D. Sorensen, eds., vol. 45 of Lecture Notes
in Computational Science and Engineering, Springer-Verlag, Berlin/Heidelberg,
Germany, 2005, pp. 83–115.

[172] V. Mehrmann and H. Xu, Explicit Solutions for a Riccati Equation from Trans-
port Theory, SIAM J. Matrix Anal. Appl., 30 (2009), pp. 1339–1357.

[173] E. Mengi, A Support Based Algorithm for Optimization with Eigenvalue Con-
straints, tech. rep., Oct. 2013.

[174] E. Mengi, E. A. Yildirim, and M. Kiliç, Numerical Optimization of Eigen-
values of Hermitian Matrix Functions, SIAM J. Matrix Anal. Appl., 35 (2014),
pp. 699–724.

[175] B. C. Moore, Principal component analysis in linear systems: controllability,
observability, and model reduction, IEEE Trans. Automat. Control, AC-26 (1981),
pp. 17–32.

221

B. Bibliography

[176] I. Moret and P. Novati, RD-Rational Approximations of the Matrix Exponen-
tial, BIT, 44 (2004), pp. 595–615.

[177] J. Nocedal and S. J. Wright, Numerical optimization., Springer-Verlag, 1999.

[178] C. Nowakowski, P. Kürschner, P. Eberhard, and P. Benner, Model
reduction of an elastic crankshaft for elastic multibody simulations, ZAMM - J.
Appl. Math. Mech., 93 (2013), pp. 198–216.

[179] D. P. O’Leary, The block conjugate gradient algorithm and related methods,
Linear Algebra Appl., 29 (1980), pp. 293–322.

[180] M. L. Overton, Large-Scale Optimization of Eigenvalues, SIAM J. Optimiz., 2
(1992), pp. 88–120.

[181] D. Peaceman and H. Rachford, The numerical solution of elliptic and
parabolic differential equations, J. Soc. Indust. Appl. Math., 3 (1955), pp. 28–41.

[182] T. Penzl, Numerische Lösung großer Lyapunov-Gleichungen, Logos–Verlag,
Berlin, Germany, 1998. Dissertation, Fakultät für Mathematik, TU Chemnitz,
1998.

[183] , A cyclic low rank Smith method for large sparse Lyapunov equations, SIAM
J. Sci. Comput., 21 (2000), pp. 1401–1418.

[184] , Eigenvalue decay bounds for solutions of Lyapunov equations: the symmetric
case, Sys. Control Lett., 40 (2000), pp. 139–144.

[185] , Lyapack Users Guide, Tech. Rep. SFB393/00-33, Sonderforschungsbere-
ich 393 Numerische Simulation auf massiv parallelen Rechnern, TU Chemnitz,
09107 Chemnitz, Germany, 2000. Available from http://www.tu-chemnitz.de/

sfb393/sfb00pr.html.

[186] D. Petterson, A Nonlinear Optimization Approach to H2-Optimal Modeling
and Control, PhD thesis, Linköping University, 2013. Available from http://

www.diva-portal.org/smash/get/diva2:647068/FULLTEXT01.pdf.

[187] V. Ramaswami, Matrix analytic methods for stochastic fluid flows, in Teletraffic
Engineering in a Competitive World, D. Smith and P. Key, eds., Proc. of the
16th International Teletraffic Congress, Edinburgh, UK, 1999, Elsevier Science,
pp. 1019–1030.

[188] L. Reichel and Q. Ye, A generalized LSQR algorithm, Numerical Linear Alge-
bra with Applications, 15 (2008), pp. 643–660.

[189] T. Reis and T. Stykel., Balanced truncation model reduction of second-order
systems, Math. Comput. Model. Dyn. Sys., 14 (2008), pp. 391–406.

222

[190] H. Richter, Zum Logarithmus einer Matrix, Archiv der Mathematik, 2 (1949),
pp. 360–363.

[191] J. Roberts, Linear Model Reduction and Solution of the Algebraic Riccati Equa-
tion by Use of the Sign Function, Internat. J. Control, 32 (1980), pp. 677–687.
(Reprint of Technical Report No. TR-13, CUED/B-Control, Cambridge Univer-
sity, Engineering Department, 1971).

[192] J. Rommes, N. Martins, and F. Freitas, Computing Rightmost Eigenvalues
for Small-Signal Stability Assessment of Large-Scale Power Systems, IEEE Trans.
Power Systems, 25 (2010), pp. 929–938.

[193] A. Ruhe, Rational Krylov Sequence Methods for Eigenvalue Computation, Linear
Algebra Appl., 58 (1984), pp. 391–405.

[194] , Rational Krylov algorithms for nonsymmetric Eigenvalue problems, II: Ma-
trix pairs, Linear Algebra Appl., 197/198 (1994), pp. 283–296.

[195] , The Rational Krylov algorithm for nonsymmetric Eigenvalue problems. III:
Complex shifts for real matrices, BIT, 34 (1994), pp. 165–176.

[196] Y. Saad, Numerical Solution of Large Lyapunov Equation, in Signal Processing,
Scattering, Operator Theory and Numerical Methods, M. A. Kaashoek, J. H.
van Schuppen, and A. C. M. Ran, eds., Birkhäuser, 1990, pp. 503–511.

[197] , Analysis of Some Krylov Subspace Approximations to the Matrix Exponential
Operator, SIAM J. Numer. Anal., 29 (1992), pp. 209–228.

[198] , Numerical Methods for Large Eigenvalue Problems, Manchester University
Press, Manchester, UK, 1992.

[199] , Iterative Methods for Sparse Linear Systems, SIAM, Philadelphia, PA, 2003.

[200] J. Saak, Effiziente numerische Lösung eines Optimalsteuerungsproblems für die
Abkühlung von Stahlprofilen, Diplomarbeit, Fachbereich 3/Mathematik und Infor-
matik, Universität Bremen, D-28334 Bremen, Sept. 2003.

[201] , Efficient Numerical Solution of Large Scale Algebraic Matrix Equations in
PDE Control and Model Order Reduction, PhD thesis, TU Chemnitz, July 2009.
Available from http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200901642.

[202] J. Sabino, Solution of Large-Scale Lyapunov Equations via the Block Modified
Smith Method, PhD thesis, Rice University, Houston, Texas, June 2007. Available
from: http://www.caam.rice.edu/tech_reports/2006/TR06-08.pdf.

[203] M. Sadkane, A low-rank Krylov squared Smith method for large-scale discrete-
time Lyapunov equations, Linear Algebra and its Applications, 436 (2012),
pp. 2807–282.

223

B. Bibliography

[204] M. A. Saunders, H. D. Simon, and E. L. Yip, Two Conjugate-Gradient-Type
Methods for Unsymmetric Linear Equations, SIAM J. Numer. Anal., 25 (1988),
pp. pp. 927–940.

[205] W. H. A. Schilders, H. A. van der Vorst, and J. Rommes, Model Order
Reduction: Theory, Research Aspects and Applications, Springer-Verlag, Berlin,
Heidelberg, 2008.

[206] H. Shaker and M. Tahavori, Frequency-interval model reduction of bilinear
systems, IEEE Trans. Automat. Control, 59 (2014), pp. 1948–1953.

[207] D. Silvester, H. Elman, and A. Ramage, Incompressible Flow and Iterative
Solver Software (IFISS) version 3.2, May 2012.

[208] V. Simoncini, Restarted Full Orthogonalization Method for Shifted Linear Sys-
tems, BIT, 43 (2003), pp. 459–466.

[209] , A new iterative method for solving large-scale Lyapunov matrix equations,
SIAM J. Sci. Comput., 29 (2007), pp. 1268–1288.

[210] , Computational methods for linear matrix equations. Available at http:

//www.dm.unibo.it/~simoncin/, March 2013.

[211] V. Simoncini, D. B. Szyld, and M. Monsalve, On two numerical methods
for the solution of large-scale algebraic Riccati equations, IMA J. Numer. Anal.,
34 (2014), pp. 904–920.

[212] R. A. Smith, Matrix Equation XA+BX = C, SIAM J. Appl. Math., 16 (1968),
pp. 198–201.

[213] D. Sorensen and Y. Zhou, Bounds on Eigenvalue Decay Rates and Sensitivity
of Solutions to Lyapunov Equations, Tech. Rep. TR02-07, Dept. of Comp. Appl.
Math., Rice University, Houston, TX, June 2002. Available online from http:

//www.caam.rice.edu/caam/trs/tr02.html.

[214] , Direct methods for matrix Sylvester and Lyapunov equations, J. Appl. Math,
2003 (2003), pp. 277–303.

[215] D. C. Sorensen and A. C. Antoulas, The Sylvester equation and approximate
balanced reduction, Linear Algebra and its Applications, 351–352 (2002), pp. 671–
700.

[216] G. Starke, Optimal Alternating Directions Implicit Parameters for nonsymmet-
ric systems of linear equations, SIAM J. Numer. Anal., 28 (1991), pp. 1431–1445.

[217] T. Stykel, Analysis and Numerical Solution of Generalized Lyapunov Equations,
dissertation, TU Berlin, 2002.

224

[218] T. Stykel and V. Simoncini, Krylov subspace methods for projected Lyapunov
equations, Appl. Numer. Math., 62 (2012), pp. 35–50.

[219] K. Sun, Model order reduction and domain decomposition for large-scale dy-
namical systems, PhD thesis, Rice University, Houston, 2008. Available from
http://search.proquest.com/docview/304507831.

[220] F. Tisseur and K. Meerbergen, The Quadratic Eigenvalue Problem, SIAM
Rev., 43 (2001), pp. 235–286.

[221] M. S. Tombs and I. Postlethwaite, Truncated balanced realization of a stable
nonminimal state-space system, Internat. J. Control, 46 (1987), pp. 1319–1330.

[222] N. Truhar and K. Veselić, Bounds on the trace of a solution to the Lyapunov
equation with a general stable matrix, Sys. Control Lett., 56 (2007), pp. 493–503.

[223] , An efficient method for estimating the optimal dampers’ viscosity for linear
vibrating systems using Lyapunov equation, SIAM J. Matrix Anal. Appl., 31 (2009),
pp. 18–39.

[224] J. van den Eshof and M. Hochbruck, Preconditioning Lanczos Approxima-
tions to the Matrix Exponential, SIAM J. Sci. Comput., 27 (2005), pp. 1438–1457.

[225] H. A. Van der Vorst, Iterative Krylov Methods for Large Linear Systems,
Cambridge University Press, Cambridge, 2003.

[226] M. B. van Gijzen, G. L. G. Sleijpen, and J.-P. M. Zemke, Flexible and
multi-shift induced dimension reduction algorithms for solving large sparse linear
systems, Numer. Lin. Alg. Appl., 22 (2015), pp. 1–25.

[227] M. B. van Gijzen, C. B. Vreugdenhil, and H. Oksuzoglu, The Finite
Element Discretization for Stream-Function Problems on Multiply Connected Do-
mains, Journal of Computational Physics, 140 (1998), pp. 30–46.

[228] B. Vandereycken and S. Vandewalle, A Riemannian Optimization Ap-
proach for Computing Low-Rank Solutions of Lyapunov Equations, SIAM J. Matrix
Anal. Appl., 31 (2010), pp. 2553–2579.

[229] E. L. Wachspress, Iterative solution of the Lyapunov matrix equation, Appl.
Math. Lett., 107 (1988), pp. 87–90.

[230] , Optimum parameters for two-variable ADI iteration, Ann. Nuc. Ener., 19
(1992), pp. 765–778.

[231] , The ADI Model Problem, 1995. Available from the author.

[232] , ADI Iteration Parameters for the Sylvester Equation, 2000. Available from
the author.

225

B. Bibliography

[233] , The ADI Model Problem, Springer New York, 2013.

[234] T. Wolf, H2 Pseudo-Optimal Model Order Reduction, PhD thesis, Technische
Universität München, 2015.

[235] T. Wolf and H. K.-F. Panzer, The ADI iteration for Lyapunov equations
implicitly performs H2 pseudo-optimal model order reduction, Internat. J. Control,
89 (2016), pp. 481–493.

[236] T. Wolf, H. K.-F. Panzer, and B. Lohmann, ADI iteration for Lya-
punov equations: a tangential approach and adaptive shift selection, arXiv e-prints
1312.1142v1, Cornell University, Dec. 2013. math.NA.

[237] , Model Order Reduction by Approximate Balanced Truncation: A Unifying
Framework, at-Automatica, 61 (2013), pp. 545–556.

[238] N. Wong and V. Balakrishnan, Quadratic Alternating Direction Implicit Iter-
ation for the Fast Solution of Algebraic Riccati Equations, in Proc. Int. Symposium
on Intelligent Signal Processing and Communication Systems, 2005, pp. 373–376.

[239] B. Yan, S. X.-D. Tan, and B. McGaughy, Second-Order Balanced Truncation
for Passive-Order Reduction of RLCK Circuits, 55 (2008), pp. 942–946.

[240] K. Yosida, Fourier Transform and Differential Equations, in Functional Analysis,
vol. 123 of Classics in Mathematics, Springer Berlin Heidelberg, 1995, pp. 145–193.

[241] B. Yu, D.-H. Li, and N. Dong, Low memory and low complexity iterative
schemes for a nonsymmetric algebraic Riccati equation arising from transport the-
ory, J. Comput. Appl. Math., 250 (2013), pp. 175–189.

[242] Y. Zhou, Numerical Methods for Large Scale Matrix Equations with Applications
in LTI System Model Reduction, PhD thesis, Rice University, Houston, Texas,
May 2002.

[243] Y. Zhou and D. C. Sorensen, Approximate implicit subspace iteration with
alternating directions for LTI system model reduction, Numer. Lin. Alg. Appl., 15
(2008), pp. 873–886.

226

EHRENERKLÄRUNG

Ich versichere hiermit, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter und
ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe; verwendete
fremde und eigene Quellen sind als solche kenntlich gemacht. Ich habe insbesondere nicht
wissentlich:

Ergebnisse erfunden oder widersprüchliche Ergebnisse verschwiegen,

statistische Verfahren absichtlich missbraucht, um Daten in ungerechtfertigter Wei-
se zu interpretieren,

fremde Ergebnisse oder Veröffentlichungen plagiiert oder verzerrt wiedergegeben.

Mir ist bekannt, dass Verstöße gegen das Urheberrecht Unterlassungs- und Schadener-
satzansprüche des Urhebers sowie eine strafrechtliche Ahndung durch die Strafverfol-
gungsbehörden begründen kann.

Die Arbeit wurde bisher weder im Inland noch im Ausland in gleicher oder ähnlicher
Form als Dissertation eingereicht und ist als Ganzes auch noch nicht veröffentlicht.

Magdeburg, 15.10.2015

Patrick Kürschner

227

