Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

4Pi-RESOLFT nanoscopy.

MPG-Autoren
/persons/resource/persons40298

Böhm,  U.
Department of NanoBiophotonics, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons15210

Hell,  S. W.       
Department of NanoBiophotonics, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons15773

Schmidt,  R.
Department of NanoBiophotonics, MPI for biophysical chemistry, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

2247123.pdf
(Verlagsversion), 2MB

Ergänzendes Material (frei zugänglich)

2247123_Suppl_1.pdf
(Ergänzendes Material), 3MB

2247123_Suppl_2.mpg
(Ergänzendes Material), 8MB

2247123_Suppl_3.mpg
(Ergänzendes Material), 8MB

2247123_Suppl_4.mpg
(Ergänzendes Material), 8MB

Zitation

Böhm, U., Hell, S. W., & Schmidt, R. (2016). 4Pi-RESOLFT nanoscopy. Nature Communications, 7: 10504. doi:10.1038/ncomms10504.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0029-78FB-4
Zusammenfassung
By enlarging the aperture along the optic axis, the coherent utilization of opposing objective lenses (4Pi arrangement) has the potential to offer the sharpest and most light-efficient point-spread-functions in three-dimensional (3D) far-field fluorescence nanoscopy. However, to obtain unambiguous images, the signal has to be discriminated against contributions from lobes above and below the focal plane, which has tentatively limited 4Pi arrangements to imaging samples with controllable optical conditions. Here we apply the 4Pi scheme to RESOLFT nanoscopy using two-photon absorption for the on-switching of fluorescent proteins. We show that in this combination, the lobes are so low that low-light level, 3D nanoscale imaging of living cells becomes possible. Our method thus offers robust access to densely packed, axially extended cellular regions that have been notoriously difficult to super-resolve. Our approach also entails a fluorescence read-out scheme that translates molecular sensitivity to local off-switching rates into improved signal-to-noise ratio and resolution.