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Abstract 
 
Nervous systems of mammalian organisms are composed of various cell types with 

different morphology, function and connectivity. Understanding this complicity from a 

molecular point of view requires the application of systematic, large-scale approaches. 

Several initiatives already analyzed mRNA expression in different brain regions, at 

different time points and in different cell types. However, what is missing so far is a 

comprehensive analysis of the brain proteome and proteomic profiles of distinct cell 

types of the brain. This is challenging, since the tight interact tightly of these cells 

makes it difficult to separate them. 

Here, we performed label-free quantitative proteomics to generate an inventory of  

> 10,000 proteins in astrocytes, oligodendrocytes, microglia and neurons. Analysis of 

our datasets identified novel proteins in these cell types. For example, we identified 

Col11a1 and Bcas1 as novel oligodendrocyte proteins. Extending our analysis to 

proteins expressed by both neurons and oligodendrocytes, we found Lsamp as a 

negative regulator for myelination. These examples demonstrate how our datasets can 

be used as a valuable resource to study development and function of brain cells.  
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Chapter I: Introduction 
 

1.1 Biological membranes serve as permeable barriers 
 

All living organisms are composed of cells that are surrounded by biological 

membranes. These membranes are crucial to separate the cell from the environment to 

enable a controlled access of water, ions and nutrients. Intracellular membranes further 

sub-divide cells into compartments with distinct biological functions. 

Compartmentalization therefore allows various biological processes to take place at the 

same time. 
 

Membranes do not only separate distinct reaction volumes, but they are also the sites 

where biological processes such as oxidative phosphorylation and cell-cell-

communication take place. Despite these different functions, all biological membranes 

are mainly composed of the same building blocks: Phospholipids, such as 

phosphatidyl-choline and phosphatidyl-ethanolamine, are the major components of all 

cell membranes. In the plasma membrane they make up to 70% of all lipids, the 

remaining 30% are mainly composed of sphingomyelin and cholesterol (Siegel, 1998). 
 

In addition to lipids, membranes contain different proteins, but the protein to lipid ratio 

is highly variable between different membranes: While there are three times more 

proteins as lipids in the inner mitochondrial membrane, the plasma membrane contains 

more or less equal amounts of proteins and lipids. In contrast to that, the myelin 

membrane is highly depleted in proteins; there are four times more lipids than proteins. 

Since membranes separate different spaces, membrane proteins are essential for the 

transport of substances from one side to the other. As receptor proteins, they further 

allow the transduction of a signal through membranes.  

1.2 Regulated transport is the basis of nerve cell conduction 
 

Neurons impressively demonstrate how transport of substances across biological 

membrane can be involved in the transmission of information. Flow of sodium and 

potassium ions across the membranes is the fundamental basis of electrically currents 

that are used to communicate with other neurons and the rest of the body. 
 

Without further stimulation, neurons establish a negative resting potential. To establish 

this resting potential, ATP-driven pumps simultaneously transport three sodium ions 

out of the cell and two potassium ions into the cell. This results in a high intracellular 

concentration of potassium and low concentration of sodium. Thereby, neurons 

establishes an overall negatively charge, while the outside is positively charged. 
 



Chapter I: Introduction 

3 
 

Once a neuron receives electrical stimuli, voltage-gated ion channels will open and 

sodium ions can enter the cell. This influx of sodium ions will alter the charge from 

negative to positive and, therefore, depolarize the cell. After a short time, sodium 

channels will close and potassium channels will open, allowing potassium ions to leave 

the cell. This results in a re-polarization of the membrane. At that point, the sodium-

potassium-pumps expel sodium from the intracellular space and exchanges it by 

potassium to re-install the the resting potential. As the depolarization event opens 

sodium channels in the membrane portions ahead of the impulse, an action potential is 

created at this point. This action potential will depolarize the next portion of the axonal 

membrane and the action potential progresses along the axon (Fig. 1.1 a). 
 

1.3 Myelination accelerates nerve cell conduction 
 

With the evolution of bigger animals, conduction velocity had to increase. One way to 

speed up the transmission of information is to increase the diameter of an axon; the 

thicker an axon is, the faster is the speed of the conduction. Consistently, huge axons 

with a diameter of up to 1 mm are found in various invertebrates including giant squids 

and lobsters. 
 

 

A different mechanism to speed up action potentials can be found mainly in 

vertebrates. Many vertebrate axons are surrounded by a multi-layered, insulating 

structure, the myelin sheath (Fig. 1.1 c, d). Between the myelinated tracts are several 

small gaps which are called the nodes of Ranvier. Ion channels involved in the action 

potential are clustered in these nodes. Therefore, the action potential cannot propagate 

continuously along the axon, but “jumps” from one node to the other. This process is 

called saltatory conduction and allows rapid transmission of impulses along relatively 

thin axons and requires considerably less energy (Fig. 1.1 b). 
 

In order to achieve myelination, oligodendrocyte precursor cells (OPCs) need to 

migrate into the right regions of the brain, neurons and oligodendrocytes must 

differentiate in a timely manner and both cell types have to recognize each other. The 

program of myelination involves signaling effects between both cell types, 

transcriptional regulation and eventually leads to a dramatic change of oligodendrocyte 

morphology. All of these steps are fascinating cell biological processes.  
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Fig. 1.1: Myelination allows fast nerve cell conduction Action potentials propagate in a 

continuous manner along unmyelinated axons (a), while they “jump” from one node to another 

in myelinated axons (b). Oligodendrocytes myelinate several tracts of different axons (c); the 

layers of myelin can be visualized by electron microscopy (d) [Illustrations were prepared with 

Adobe Photoshop, EM of myelin in the optic nerve, Scale bar: 1 µm]. 
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1.4 Oligodendrocytes are crucial for the function of the brain 
When myelination is impaired or myelin integrity is disturbed, severe medical problems 

arise. These problems highlight the importance of myelin for the nervous system. 

One example is neonatal ischemia, which leads to a massive loss of OPCs. As a 

consequence, patients show hypo-myelination and suffer from neurological problems, 

such as seizures. The extent of OPC death and the resulting degree of hypo-

myelination largely determine the severity of symptoms  (Rees and Inder, 2005). 
 

Inherited leukodystrophies are further examples for failures in proper myelin formation. 

The most prominent example is Pelizaeus-Merzbacher-disease (PMD). Patients with 

PMD often show a duplication of the PLP1 gene, which encodes for one of the major 

myelin proteins. Also point mutations in the PLP1 gene can be associated with PMD 

(Saugier-Veber et al., 1994). In any case, altered levels of the PLP1 protein seem to 

affect myelin stability, which in turn results in dys- or hypo-myelination. The same was 

observed in genetically modified mice that overexpress PLP1 (Karim et al., 2007). 
 

Even if myelin is correctly formed in the first place, it can be lost later. Such conditions 

are called demyelinating diseases; the most prominent example is Multiple Sclerosis 

(MS). MS is a multifactorial autoimmune disease that is characterized by inflammatory 

events in the central nervous system (CNS) and leads to a loss of myelin. Astrocytes 

can grow into these areas and thereby lead to glial scarring. Inflammation and 

demyelination in MS occur in distinct focal points throughout the entire CNS. The 

localization of these lesions determines the clinical symptoms during a clinical episode, 

but lesions can also be clinically silent. Symptoms can occur in isolated clinical 

episodes (relapsing forms) that remit completely. In progressive forms of MS, 

symptoms increase over time. However, in later stages, relapsing-remitting forms of 

MS can also go over into progressive disease forms with permanent disabilities. This 

can be explained by axonal loss and neuronal cell death in the course of the disease. 

For a previous review on clinical course of MS, as well as the interplay between 

inflammation and neurodegeneration, see Trapp and Nave, 2008. 
 

Histopathological examinations of MS lesions showed that OPCs can migrate into 

these areas and repair lesions. However, in the course of the disease, OPCs fail to 

differentiate so that remyelination is not possible any more. As a consequence, axons 

lack the trophic support of myelin and degenerate. This eventually leads to neuronal 

loss and permanent disability of the patient (Wolswijk, 2000; Kuhlmann et al., 2008).  
 

Understanding the molecular mechanisms of oligodendrocyte differentiation, therefore, 

is a pre-requisite to find targets for the pharmacological treatment of demyelinating 

diseases. 
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1.5 Myelin is highly enriched in lipids 
 

In order to understand how myelin can fulfill its functions, it is necessary to take a 

closer look into its molecular composition. As myelin mainly functions as an electric 

insulation, it is not surprising that 70% of its the dry weight consist of lipids, while 

proteins only account to 30%. None of the lipids is unique for myelin, but certain lipids 

are clearly enriched. Among these lipids are cholesterol, cerebrosides (e.g. galactosyl-

cerebroside, GalC), sulfatides, and galactolipids in general, while the overall amount of 

lecithin and ethanolamine is reduced (Siegel, 1998). 
 

The importance of the special lipid composition can be observed in knockout mice. The 

enzyme ceramide-galactosyl-transferase (CGT) is crucial for the synthesis of GalC, as 

this enzyme transfers a galactose-residue from UTP-Gal to ceramide. Animals lacking 

this enzyme show seizures and a reduced lifespan. Nerve cell conduction is reduced in 

these animals and, upon aging, they develop hindlimb paralysis and abnormalities 

within the spinal cord (Coetzee et al., 1996). 
 

 
Fig. 1.2: Major lipids of myelin Myelin is mainly composed of phosphatidyl choline (PC), 

phosphatidylethanol amine (PE), phosphatidyl serine (PS), sphingomyelin (SM), galactosyl 

cerebrosides (GalC), sulfatides and cholesterol (Chol). [Illustrated using Adobe Photoshop]. 
 

This example demonstrates the importance of certain lipids for proper myelination, 

however, much more is known about the importance of specific proteins in myelin 

formation and maintenance. 
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1.6 Myelin has a specific protein composition 
 

Even though myelin consists to only 30% of proteins, these proteins are rather specific 

and important for the function of the myelin sheath. Already in the 1970s, CNS myelin 

was biochemically purified, separated by gel electrophoresis and stained with dyes 

such as Coomassie Brilliant Blue. These early experiments suggested that the major 

proteins in myelin are the proteolipid protein (PLP1) and its smaller splicing isoform 

DM20 (together 30-45%), the different isoforms of the myelin basic protein (MBP, 22-

35%), and 2′,3′-Cyclic nucleotide 3′-phospho-diesterase (CNP, 4-15%). 
 

The remaining 5-25% are thought to be composed of all other myelin proteins: Among 

these are the myelin oligodendrocyte glycoprotein (MOG), myelin oligodendrocyte 

basic protein (MOBP), the isoforms of the myelin associated glycoprotein (MAG) and 

Claudin 11. The function of these proteins will be shortly summarized in the following 

paragraphs. This knowledge will be important in Chapter II, when I will present data 

from our own proteomic analysis on oligodendrocytes. 

 

 
 

Fig. 1.3: Proteins highly enriched in myelin. The most abundant proteins of myelin are 

the tetraspanin PLP1 and MBP. The membrane-associated protein CNP1, the single-pass 

transmembrane proteins MOG and MAG are found in smaller amounts. This also applies to 

other tetraspanins such as Cldn11. [Illustrated using Adobe Photoshop]. 
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1.6.1 Proteolipid protein 
 

The 30 kDa tetraspanin PLP1 and its 26 kDa splicing isoform DM-20 together 

constitute up to 50 % of all CNS myelin proteins. Mutations in the PLP1 gene have 

been described in patients with Pelizaeus-Merzbacher disease (PMD). The disease 

usually starts in early childhood and is characterized by developmental retardation, 

tremor, general weakness and ataxia. Certain aspects of PMD can be modeled using 

naturally occurring or genetically generated animal models:  

Models based on spontaneous mutations include Jimpy mice, myelin deficient rats and 

shaking pup dogs. Jimpy mice carry a point mutation that causes a deletion of exon 5 

and, as a consequence, leads to a frame shift and premature termination of PLP1 

translation (Nave et al., 1986). Myelin deficient rats and shaking pups show only point 

mutations resulting in single amino acid substitutions (Yool et al., 2000). All of these 

mutations result in severe dysmyelination of the CNS, tremor and early death (Nadlon 

et al., 1990). 
 

Giving the severity of these phenotypes, it is surprising that PLP1 knockout mice are 

fully myelinated, but have only a reduced level of cholesterol in their myelin. Double 

knockout mice lacking both PLP1 and the PLP-related glycoprotein M6B are severely 

hypo-myelinated. These finding support the model that PLP1 sequesters cholesterol to 

enable proper myelination (Werner et al., 2013). Apart from PLP1 mutant and knockout 

mice, also mice that overexpress PLP1 have been generated. These mice show 

dysmyelination (Readhead et al., 1994) and are being used as a model for PMD. In a 

study using these mice, it could be shown that cholesterol-feeding drastically improves 

morphological and clinical outcome of these animals (Saher et al., 2012). 

1.6.2 Myelin Basic Proteins 
 

All members of the MBP family are produced by alternative splicing. The MBP gene is 

part of a larger gene complex, called Golli, which regulates the expression of the Golli- 

and MBP-transcripts. In mice, five different classical MBP-isoforms are known; these 

can be distinguished into the 21.5 kDa, 18.5 kDa, 17.22 kDa, 17.24 kDa and 14 kDa 

isoform. The expression of these isoforms varies during brain development, with 18.5 

and 14 kDa isoforms being most abundant in adult mice (Siegel, 1998). 
 

As the name indicates, MBP is highly basic; at physiological pH the protein has a net 

charge of +19, which allows MBP to bind to negatively charged lipids and probably to 

anionic proteins. This binding to biological membranes seems to induce the formation 

of stable conformations of MBP, while the protein lacks a well-defined 3D structure in 

solution. Negatively charged lipids, such as Phosphatidyl-inositol(4,5)-diphosphate 

(PIP2), seems to be essential for proper folding of MBP (Boggs, 2006). 
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MBP is important for the compaction of myelin membranes. The high-affinity binding to 

membranes allows MBP to zip together two membranes and to squeeze out the 

cytoplasm. During this process, MBP molecules interact with each other to form a 

meshwork that hinders other proteins from entering into compacted regions (Aggarwal 

et al., 2013).  
 

One interesting feature of MBP is that its mRNA is transported in form of granules and 

that MBP is translated locally. Due to the tight binding of MBP to membranes, the local 

translation is probably necessary to enable a correct localization of the protein. 

The importance of MBP is highlighted by the naturally occurring Shiverer mutant mice. 

These animals carry a mutation in the MBP gene and lack most MBP isoforms. As a 

result, myelin in homozygous shiverer mice cannot be compacted properly and these 

mice suffer from convulsions and die at a very young age (Chernoff, 1981). 

1.6.3 Cyclic nucleotide phosphodiesterase 
 

Two isoforms of the 2',3'-cyclic-nucleotide 3'-phosphodiesterase are known; the 45 kDa 

protein CNP1 and the 47 kDa protein CNP2. As the name indicates, CNP exhibits 

enzymatic activity and was shown to hydrolyze artificial substrates. However, neither 

the natural substrate nor the biological function in oligodendrocytes has been identified 

so far (Sprinkle, 1989).  
 

CNP is localized in non-compacted myelin and stays associated with the membrane by 

an isoprenyl-anchor. CNP1-deficient mice appear healthy and myelin structure seems 

normal, but upon aging, these animals develop axonal degeneration (Lappe-Siefke et 

al.; 2003; Radband et al.; 2005; Edgar et al., 2009). Interestingly, CNP1 deficient mice 

seem to be highly susceptible to further damages. The application of a relatively mild 

cryo-lesion in CNP1-deficient mice resulted in enhanced astrogliosis and axonal 

degeneration (Wieser et al., 2013). A recent study from our lab further revealed that 

CNP1-deficient mice at P10 have less non-compacted myelin. In contrast to this, 

heterozygous shiverer mice, which have a lower level of MBP, showed more non-

compacted myelin. This indicates that CNP1 and MBP could be functional antagonists 

that regulate myelin compaction (Snaidero et al., 2014). 

1.6.4 Myelin-oligodendrocyte glycoprotein 
 

The myelin-oligodendrocyte-glycoprotein (MOG) is a single-pass transmembrane 

protein that belongs to the immunoglobulin superfamily of cell adhesion molecules. 

This 28 kDa protein is specifically expressed in mature oligodendrocytes. The 

biological function of MOG is not yet known, but it might have adhesive functions. 
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MOG-deficient mice appear healthy and show no pathological abnormalities (Delarasse 

et al., 2003). 
 

An interesting feature of MOG is that it can function as an auto-antigen. In patients 

suffering from MS, auto-antibodies against MOG have been found. Furthermore, the 

immunization of mice with MOG peptides results in an inflammatory, demyelinating 

disease called Experimental autoimmune encephalomyelitis (EAE), which is used as 

an animal model for inflammatory events in MS (Zamvil and Steinman, 1990).  

1.6.5 Myelin-associated glycoprotein 
 

Similar to MOG, the Myelin-associated glycoprotein (MAG) is a transmembrane protein 

of the Immunoglobulin superfamily and shows significant homology to the neural cell 

adhesion molecule (NCAM). Two different isoforms are known; the small S-MAG and 

the larger L-MAG. Theoretically, these proteins have a molecular weight of 64 kDa and 

69 kDa, but are much heavier due to a high degree of glycosylation. 
 

MAG knockout mice show only mild neurological pathologies, in particular, CNS 

myelination is delayed and the animal exhibit abnormal formation of paranodal loops 

(Montag et al., 1994; Li et al., 1998).  

1.6.6 Minor myelin proteins 
 

Several other proteins are highly enriched in myelin, but show lower abundance. 

Tmem10 (Opalin), a type I single pass transmembrane protein, is one of these proteins 

(Kippert et al., 2008, Yoshikawa et al., 2008, Golan et al., 2008). Tmem10 is highly 

enriched in oligodendrocytes, it might interact with the actin cytoskeleton, but the 

physiological function of this protein is unknown (Kippert et al., 2008). Tmem10-

knockout mice do not exhibit any obvious phenotype. 
 

Other myelin proteins have four transmembrane domains and belong to the family of 

tetraspanins. Examples are Claudin 11, MAL, CD81, and CD9. Claudin 11 has a 

molecular weight of 22 kDa and belongs to the tight junction proteins. It is expressed in 

the brain, but also in testis. Knockout mice lack tight junctions in CNS myelin and 

between sertoli cells, these animals have mild neurological deficits such as hindlimb 

weakness and are infertile (Gow et al., 1999). The mice suffer from deafness due to the 

lack of tight junctions between basal cells (Gow et al., 2004, Kitajiri et al., 2004). 

Claudin 11 and PLP1 are both tetraspanins and knockout of both of these genes alone 

results in relatively mild phenotypes. Therefore, Chow et al. (2005) generated double 

knockout mice for PLP1 and Claudin 11. These mice had severe neurological problems 

including abnormal myelin compaction.  
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The myelin and lymphocyte protein (MAL) is a lipid-raft-associated protein and 

predominantly expressed by Schwann cells and oligodendrocytes. An interesting point 

about this protein is that it seems to have different functions in CNS and PNS. 

Overexpression of MAL induces hypo-myelination in the PNS, while knockout animals 

show accelerated myelination, but nerves appear normal (Buser et al., 2009). The 

morphology of CNS nerves, however, seems to be altered in MAL knockout mice 

(Schaeren-Wiemers et al., 2004). 

 

 

1.7 Recent views on myelin protein composition 
 

As described above, previous studies on the abundance of myelin proteins were done 

by gel-based separation and staining for proteins. Based on these results, PLP1 and 

MBP isoforms would make up to 80 % of total myelin proteins, while CNP1 would 

account for another 4-15 %. All other proteins were thought to have very low 

abundance. A recent proteomic study, however, revealed that these numbers are 

probably wrong. Jahn et al. (2009) purified myelin biochemically and performed label-

free, mass spectrometric quantification experiments. They found that PLP1, MBP and 

CNP1 together only contribute to 29 % of all myelin proteins. As MOG, MAG, Sirtuin-1 

and Claudin-11 account for only 1 % each, there are at least another 67 % of other 

proteins in myelin. The authors explained this difference by a low resolution of 1-D gel 

electrophoresis and the low dynamic range of protein staining. 
 

These experiments question the predominant role of classical myelin proteins in 

oligodendrocyte biology. For instance, previously unrecognized proteins could 

contribute to the adhesive functions of PLP1.  
 

As a consequence, these experiments indicate a previously underestimated 

contribution of other myelin proteins. Moreover, approximately 67 % of other myelin 

proteins leave room for new, previously uncharacterized myelin proteins. 
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1.8 Differentiation of OPCs and myelin formation 
 

So far, I described the function and molecular composition of myelin. Next, I will explain 

where myelinating cells come from and how differentiation of these cells is regulated. 
 

In the CNS, oligodendrocytes originate mainly from Subventricular Zone (SVZ) cells. 

These cells differentiate into OPCs. While some of the OPCs persist as adult 

oligodendroglial precursors, the majority of OPCs migrates within the brain, maturates 

to oligodendrocytes and eventually starts myelination. One oligodendrocyte can form 

several processes and myelinate up to 50 axonal tracts. This is a specific feature of 

oligodendrocytes, while Schwann cells can wrap their membrane only around one 

axonal segment.  
 

The detailed timing of myelination varies between different regions of the nervous 

system; it starts in early postnatal life and usually continues into adulthood. In mice, 

spinal cord myelination takes starts around the postnatal day 4 (P4). Myelination of the 

corpus callosum starts about P14 and is mainly completed at P28 (W. Möbius, 

personal communications).  
 

Once OPCs have been formed, these cells proliferate and migrate to the appropriate 

axons. They differentiate into pre-myelinating oligodendrocytes; which are more 

ramified cells that extend processes in order to find axons. After an initial contact has 

been established, oligodendrocytes start myelinating the axonal segment. The mature 

myelin sheath does not only enable rapid nerve cell conduction, but is also important 

for trophic support of the axon.  
 

 
Fig. 1.4: Model of oligodendrocyte differentiation and myelination. OPCs migrate 

through the CNS, proliferate and differentiate into pre-myelinating oligodendrocytes. The 

oligodendrocytes extend numerous processes and contact neuronal axons. After an initial 

contact, oligodendrocytes start myelinating the axons. Established myelin sheaths enable rapid 

conduction of action potentials and provide trophic support [Illustrated using Adobe Photoshop]. 
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1.8.1 Migration and proliferation of OPCs 
 

Even though OPCs arise from the SVZ, oligodendrocytes in adults are distributed 

throughout the brain. Therefore, migration of OPC is an important step in the 

development of the nervous system.  
 

It is not surprising that axonal proteins can mediate the migration of OPCs. Also 

different components of the extracellular matrix, such as fibronectin, can regulate OPC 

migration. Furthermore, secreted molecules from different sources influence OPC 

migration. Among these factors are the platelet-derived growth factor (PDGF), which is 

secreted by neuronal cells, the fibroblast growth factor 2 (FGF2) and the epidermal 

growth factor (EGF). PDGF and FGF2 work together to promote OPC migration, 

proliferation and differentiation. Detailed aspects of OPC migration have been reviewed 

by de Castro and Bribian (2005), Rajasekharan (2008) and de Castro et al. (2013).  
 

OPCs cultured in the presence of PDGF proliferate but do not differentiate, while PDGF 

withdrawal induces cell cycle arrest (Raff et al., 1988). In-vivo studies with mice lacking 

PDGF showed premature cell cycle exit of OPCs, while overexpression of PDGF in 

neurons increased the number of OPCs (Fruttiger et al., 1999). 
 

The presence of other growth factors such as FGF2 can even increase the proliferative 

effect of PDGF. When OPCs are treated with FGF2, the expression of PDGF-receptor 

alpha (PDGF-Rα) is increased, which might explain the synergistic effect of both 

factors (McKinnon et al., 1990). Even when OPCs are grown in the presence of PDGF 

and thyroid hormones in-vitro, they will eventually exit cell cycle and start to 

differentiate. An intrinsic mechanism called the “timer” limits the number of cell 

divisions or the time of proliferation.  
 

Components of the timer are cyclin-dependent kinase inhibitors (CKIs), since these 

proteins regulate cell cycle progression by modulation of cyclins and cyclin-dependent 

kinases (Cdks). Tokumoko et al. (2002) identified the cyclin-dependent kinase 

inhibitors p27/Kip1 and p18/INK as components of the timer. Levels of both proteins 

increase during OPC proliferation and overexpression greatly slows down proliferation 

(Tokumoto et al., 2002). p57/Kip2 was found to be another component of the timer, it 

also accumulates during OPC proliferation and determines how many times OPCs can 

proliferate (Dugas et al., 2007). 
 

While components of the timer regulate the number of cell divisions, exiting the cell 

cycle alone is not sufficient to induced oligodendrocyte differentiation. This can be 

explained by extrinsic and intrinsic signals that inhibit OPC differentiation. 
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1.8.2 Inhibitory signals keep OPCs in the precursor state 
 

OPCs are maintained in a precursor state by various signaling pathways; overcoming 

these inhibitory signals and further activation is necessary for differentiation. Therefore, 

I will briefly introduce the three major repressors of differentiation; these are the 

Notch/Hes5 pathway, the Wnt/beta-catenin pathway and the BMP/ID-pathway. 
 

The single-pass transmembrane receptor Notch is involved in various differentiation 

processes. Most ligands for this receptor are also transmembrane proteins, such as  

Delta-like proteins (DLLs), Jagged-proteins and probably F3/contactin (Lai et al., 2004).  

Notch on OPCs can be activated by Jagged-1, which is present on neuronal axons, 

and that this interaction represses OPC differentiation (Wang et al., 1996). 
 

Studies in knockout mice further showed that a conditional inactivation of Notch-1 in 

OPCs leads to a premature oligodendrocyte differentiation (Genoud et al., 2002).  

The downstream effector of Notch is the transcription factor Hes5, which has an 

inhibitory effect on myelin gene expression. Consistent with this, Hes5 knockout mice 

show increased levels of myelin proteins (Liu et al., 2006). Surprisingly, Hu et al. (2003) 

found that the binding of a different Notch ligand, F3/contactin, can facilitate 

oligodendrocyte maturation.  
 

The second inhibitory pathway for OPC differentiation is the Wnt signaling. The family 

of Wnt ligands comprises 19 secreted proteins.  These proteins can control cellular 

processes by canonical and non-canonical pathways. In the canonical pathway, Wnt 

binds to its receptors frizzled and induces the stabilization of beta-catenin in the 

cytoplasm. This stabilization is achieved by the inactivation of a catenin-destruction 

complex. Upon accumulation in the cytoplasm, beta-catenin can translocate into the 

nucleus and activate transcription factors of the TCF-family. In OPCs, canonical Wnt 

signaling leads to an activation of TCF4. TCF4, in turn, induces the expression of the 

inhibitory proteins ID2 and ID4.  
 

Together with bone morphogenic proteins (BMPs), ID2 and ID4 build the third line of 

differentiation inhibitions. These proteins bind to the myelin transcription factors Olig1, 

Olig2 and Ascl1/Mash1 and impede their activity. 

Taken together, Notch-signaling, canonical Wnt signaling and BMP/ID-proteins are 

responsible to prevent a premature differentiation of oligodendrocyte precursor cells. At 

the right time point, these repressive mechanisms need to be overcome to allow 

oligodendrocyte differentiation. This is, in part, mediated by chromatin remodeling. 
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1.8.3 Chromatin remodeling is a first step towards differentiation of OPCs 
 

Even though all cells in the body share the same genomic information, cellular identity 

is obtained by the expression of particular gene products. In stem and precursor cells, 

specific signaling pathways hinder the expression of lineage specific genes and 

thereby block differentiation. This very general principle also applies to OPCs. 
 

The first step towards lineage specification and differentiation is the epigenetic 

inactivation of inhibitory signals. The DNA binding histone proteins are usually 

acetylated in order to weaken the interaction with the DNA; this allows an expansion of 

the DNA and permits transcription of these unpacked regions. Histone deacetylases 

(HDACs) in turn can remove the acetyl residues of histones, which increases their 

binding to DNA and, as a consequence, blocks the transcription. 
 

When HDACs become active in OPCs, they can silence the inhibitory pathways that 

keep the cells in a precursor state, and therefore enable differentiation. Treatment of 

OPCs with HDAC inhibitors, in turn, leads to impaired differentiation (Marin-Husstege 

et al., 2002). Moreover, conditional knock-out of HDACs in Schwann cells resulted in 

severe hypo-myelination and early death of the animals (Chen et al., 2011).  
 

 

1.8.4 Intrinsic Factors actively promote oligodendrocyte differentiation 
 

Retinoic acid and thyroid hormone receptors 
Once the inhibitory signals that maintain OPCs in the precursor state are overcome, 

certain factors within the cells promote oligodendrocyte differentiation and myelination. 

Among these factors are nuclear hormon receptors such as retinoic acid receptors and 

thyroid hormone receptors. It was shown for instance that retinoic acid triggers 

differentiation of the OPC-derived Oli-neu cells (Gobert et al., 2009) and accelerates 

CNS remyelination (Huang et al., 2011).  
 

The role of thyroid hormones in oligodendrocyte differentiation was demonstrated in 

various animal models: Hypo-thyroid rodents are hypo-myelinated and have decreased 

numbers of oligodendrocytes in the optic nerve (Ahlgren et al., 1997). The same 

observations were made in thyroid hormone receptor deficient mice (Baas et al., 2002). 

Consistent with these data, hyperthyroid mice exhibit faster oligodendrocyte 

differentiation and accelerated rates of myelination (Walters and Morell, 1981). 

While these effects of retinoic acid and thyroid hormones are known, the downstream 

gene targets of their receptors still have to be identified. 
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Basic helix-loop-helix transcription factors 
Basic helix-loop-helix (bHLH) transcription factors are a class of transcription factors 

that are in general important for development and cell differentiation. Members of this 

class are for instance c-Myc and n-Myc, which have been linked to cancer, but also the 

hypoxia-inducible-factor (HIF). In oligodendrocytes, the bHLH-transcription factors 

Olig1, Olig2 and Ascl1/Mash1 play important roles. 
 

Two different Olig1 knockout mice with different phenotypes have been described: 

The first Olig1-deficient mouse was described to develop normally, but after 

demyelination these animals failed to remyelinate (Arnett et al., 2004). A second Olig1-

knockout mouse was generated in a different group. These mice exhibit severe 

neurological symptoms such as tremor and seizures and die within 17 days after birth 

(Xin et al., 2005). In Olig1/Olig2 double knockout mice, oligodendrocyte precursor cells 

are completely abolished, but also motor neurons are largely missing. The authors 

suggest that Olig1 and Olig2 together are responsible for differentiation of progenitors 

into glial subtypes and neurons (Zhou and Anderson, 2002).  
 

Originally, Ascl1/Mash1 has been described in neuronal precursor cell differentiation. 

Homozygous Ascl1-knockout mice die at birth, probably due to breathing problems 

(Guillemont et al., 1993). In later experiments, cells of Ascl1-deficient mice were 

transplanted into the subventricular zone of wildtype mice and found a drastically 

reduced formation of mature oligodendrocytes. Therefore, the authors concluded that 

Ascl1/Mash1 is important for oligodendrocyte differentiation (Parras et al., 2004). Later 

experiments confirmed that Ascl1 is necessary for oligodendrocyte differentiation in the 

spinal cord (Sugimori et al., 2008).  
 

 

Sox-family transcription factors 
All Sox proteins are transcription factors with a homologous sequence called high-

motility group (HMG). There are more than 20 Sox proteins, and all of them are 

involved in different aspects of development. This particular family of transcription 

factors has been extensively studied by Michael Wegner's group. Especially Sox10 

seems to be a key transcription factor in oligodendrocyte differentiation. A recent 

review summarizes the current knowledge of Sox-proteins and highlights important 

roles of Sox10 in chromatin remodeling and discusses interactions with other protein 

complexes (Weider, 2013). 
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Zinc finger transcription factors 
At least three zinc finger proteins are known to mediate myelin gene expression:  

Yin-yang-1 (Yy1), the Zinc finger protein 488 (Zfp488) and the Myelin transcription 

factor 1 (Myt1). 
 

The protein Yy1 is a transcription factor, but also exhibits other biological functions: 

It is, for instance, involved in chromatin remodeling. In oligodendroglial cell lines, Yy1 

was shown to bind to the PLP1 promoter and enhances PLP1 transcription (Berndt et 

al., 2001). Other studies, however, showed that Yy1 can also function as a repressor of 

PLP1 gene expression (Zolova and Wight, 2011).  
 

Inactivation of Yy1 in the oligodendrocyte lineage using CNP-Cre resulted in mice with 

ataxia, tremor and overall defects in myelination. Yy1 further functions as a repressor 

of the differentiation-inhibitors ID4 and TCF4 (He et al., 2007).  
 

Recent studies even indicate an involvement of Yy1 in adult-onset autosomal-dominant 

leukodystrophy (ADLD), a disease with loss of white matter in the CNS. This disease is 

caused by a duplication of the lamin B1 gene. Heng et al. (2013) generated mice 

overexpressing lamin B1 and found a down-regulation of PLP1 and that this effect is 

may be caused by a reduced binding of Yy1 to the PLP1 promoter region.  
 

Relatively little is known about molecular aspects of zinc finger protein Zfp488. This 

protein was identified by Wang et al. (2006), when they searched for genes 

downregulated in Olig1-deficient mice. The co-expression of Zfp488 and Olig2 in neural 

tubes of chicken embryos let to ectopic and precocious oligodendrocyte differentiation. 

They further found that Olig2 and Zfp488 physically interact and that siRNA-mediated 

knockdown of Zfp488 in an oligodendroglial cell line decreased myelin gene 

expression. In further experiments, Zfp488 was overexpressed in the subventricular 

zone of adult mice and demyelination induced via Cuprizone treatment. In this study, 

Zfp488-transduced mice showed a significantly improved restoration of motor function. 

These findings might indicate an involvement of Zfp488 in remyelination 

(Soundarapandian et al., 2011). 
 

The Myelin transcription factor 1 (Myt1) was found in brain tumor samples by 

Armstrong et al. (1997). This protein can bind to the PLP1 promoter (Kim et al., 1997) 

and seems to modulate oligodendrocyte proliferation and differentiation (Nielsen et al., 

2004). Vana et al. (2007) infected mice with murine hepatitis virus A59 to induce 

demyelination of the spinal cord. They found an upregulation of Myt1 in these lesions 

and during remyelination. Similar observations were made in multiple sclerosis lesions, 

which suggest an involvement of Myt1 in both murine and human remyelination. 
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Myelin Gene Regulatory Factor 
 

A potential master regulator of oligodendrocyte differentiation was found by Emery et 

al., 2009. They performed expression profiling of immuno-panned brain cells and 

identified MRF as an oligodendrocyte-specific transcription factor. RNAi-mediated 

knockdown resulted in a diminished differentiation of oligodendrocytes. Overexpression 

of MRF resulted in myelin gene expression in spinal cords of chicken embryos. 

Conditional knockout of MRF in mice led to severe dysmyelination and death of the 

animals within the first three weeks of life. 

In a recent follow up study, an inducible PLP1-Cre was used to inactivate MRF in 

oligodendrocytes of adult mice. The inactivation resulted in demyelination, inhibition of 

myelin gene expression and, eventually, loss of mature oligodendrocytes. These 

findings suggest that MRF is not only necessary for precursor cell differentiation, but 

also crucial for oligodendrocyte survival (Koenning et al., 2012). 
 

1.8.5 Myelination – Contact formation, wrapping, trophic support 
 

After differentiation, oligodendrocytes extent huge amounts of membrane, which can 

be spirally wrapped around axonal tracts. Several models for the wrapping process 

have been suggested (Bauer et al., 2009). Recent electron microscopy studies show 

that the myelin membrane wraps in several layers, before compation actually starts 

from the outer part of the myelin sheath (Snaierdo et al., 2014). 

More important for us is, how oligodendrocyte processes recognize axons and vice 

versa. It is known that only axons of a certain diameter are myelinated, while thinner 

axons remain non-myelinated. Furthermore, it is known that electric activity of axons is 

important for myelination. On a molecular level, the neuronal cell adhesion molecule 

(PSA-NCAM), Gpr17 and Lingo seem to regulate the timing of myelination by 

oligodendrocytes, but they do not seem to regulate the extent of myelination (recently 

reviewed by Simons and Lyons, 2013).  
 

Another open question regarding myelination is how oligodendrocytes exhibit trophic 

support towards neurons. While it has been shown that oligodendrocytes are 

metabolically coupled to axons (Fünfschilling et al., 2012), it is not clear if there are 

additional oligodendroglial factors that mediate axonal integrity and survival of neurons.  
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1.9 Oligodendrocyte differentiation in vitro 
 

Myelination in-vivo obviously requires the presence of axons which can be enwrapped 

by oligodendrocyte membrane. However, differentiation of oligodendrocytes per se can 

also be observed in primary cell cultures of OPCs without neurons. 
 

OPCs can be harvested from glial mixed cultures and maintained in vitro. When 

cultured in an appropriate medium with thyroid hormones, insulin and transferrin, these 

cells can differentiate into mature oligodendrocytes (Sommer and Schachner, 1981). 

Cultured OPCs first show a bipolar morphology and are immuno-reactive for markers 

such as the platelet-derived growth factor receptor alpha (PDGFRα). Within one day, 

processes branch out and cells form a complex network. At this point, cells become 

immuno-reactive for the O4 antibody, which recognizes sulfatides. The cells continue to 

branch and express galactosyl lipids that can be recognized by O1 antibody. After 

approximately four days in culture, oligodendrocytes exhibit flat, MBP-positive 

membrane sheets and non-compacted, CNP1-positive channels (Fig. 1.4). 

 
Fig. 1.4: Stages of oligodendrocyte differentiation. Very young oligodendrocytes are positive 

for PDGFRα. A little later, they become O4-positive and PDGFRα-negative. Upon further 

differentiation, cells are O1-positive and, subsequently, start expressing MBP. 
 

Previous studies from our lab showed that oligodendrocytes differentiated in vitro 

basically resemble oligodendrocytes in vivo regarding protein composition and 

polarization. Therefore, we see oligodendrocytes in vitro as a model system to study 

the influence of different factors on oligodendrocyte differentiation. 
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1.10 Aims of this study 
 

Oligodendrocytes are the myelin forming cells in the CNS and a target in demyelinating 

diseases such as MS. Oligodendrocyte differentiation can be studied in-vitro using 

primary OPC cultures. Even in the absence of neurons, these cells form large, myelin-

like membrane sheets. The overall goal of this thesis was to contribute knowledge 

about how oligodendrocytes in cell culture form myelin-like membrane sheets. From a 

molecular point of view, we wanted to know which proteins are differentially expressed 

during oligodendrocyte maturation and membrane sheet formation. In particular, the 

aims were: 

 
 

Aim 1: To identify gene products differently expressed during oligodendrocyte 
differentiation. Previous proteomic profiling studies on oligodendrocytes and myelin 

struggled from low coverage of the proteome. Transcriptomic studies were limited to 

microarray analysis, which does not allow a really quantitative analysis. Therefore, we 

wanted to: 
 

a) Perform an in-depth proteomic analysis of highly pure primary cell cultures. 

b) Run transcriptomic profiling experiments using next-generation-sequencing. 

c) Analyze datasets for statistically enriched, novel oligodendrocyte proteins. 
 

 

 

 

Aim 2: To perform a biological characterization of a promising candidate gene.  
At least one candidate protein should be further characterized in biological 

experiments. For this we wanted to: 
 

a) Confirm expression by quantitative real-time PCR 

b) Generate a transgenic mouse model with a targeted mutation for the 

particular gene. This mouse should be further crossbred with appropriate 

Cre-recombinase mice to allow oligodendrocyte-specific knockout. 
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Chapter II: Materials and Methods 
 

2.1 General consumables 
In general, chemicals were purchased from AppliChem, Invitrogen,Merck and Sigma-

Aldrich. Plastic-ware and other consumables were purchased from Eppendorf, Falcon 

and Starlab. Other companies are indicated when products are mentioned.  
 

2.2 Animal work 
Animals were kept in the animal facility of the Max-Planck-Institute of Experimental 

Medicine in a standard 12h light/dark-cycle with water and food ad libidum. All 

procedures were performed according to the Lower Saxony State regulations for 

animal experimentation. Lsamp knockout mice (Innos et al., 2011) were kept and 

perfused in Tartu, Estonia. During this work, the following mouse lines were used: 
 

Tab. 2.1 Mice used in this thesis 
 

 

2.2.1 Fixation by intra-cardial perfusion 
For the preparation of brain and spinal cord sections, mice were anaesthetized, blood 

was removed and tissue was fixed by intra-cardial perfusion. 
 

Avertin-Solution 1.0 g Tribromoethanol, 0.81 ml Amyl alcohol and 71.5 ml 

Millipore-H2O are mixed and dissolved by incubating at 

37°C for 10 min. The solution is sterilized by filtration and 

stored in a dark bottle at 4°C. 

Phosphate-buffered saline 137 mM NaCl, 2.7 mM Kcl,100 mM Na2HPO4, and 

1.8 mM KH2PO4 in ddH2O.   

16 % PFA stock solution 16 g Para-formaldehyde in approx. 70 ml Millipore-H2O 

were heated to 57°C. NaOH was added until all PFA was 

dissolved. 10 ml of 10x PBS were added, the pH was 

adjusted to 7.4 and the solution was filled up to 100 ml 

with Millipore-H2O.  
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4 % PFA working solution 50 ml of 16 % PFA stock were thawn and combined with 

150 ml of 1x PBS. The solution was stored at 4°C. 
 

Mice were anaesthetized by intra-peritoneal injection of a lethal dose of Avertin solution 

(500 µl). To ensure that the mice were properly seduced, the toes were pinched. If the 

mice did not respond, abdomen was wetted with ethanol and skin was opened at the 

level of the diaphragm. After cutting the diaphragm, the rips were cut laterally to expose 

the heart. A butterfly needle was placed into the left ventricle, pump was turned on and 

the right artrium was right opend immediately. The animal was perfused for 5 min with 

PBS to wash out the blood, then perfusion was continued for another 15 min with 4 % 

PFA/PBS. 

2.2.2 Brain and spinal cord slice preparation 
 

Phosphate-buffered saline see 2.2.1! 

Sucrose in PBS  30 % Sucrose in PBS (w/v) 

Tissue-Tek® O.C.T. medium 
 

After perfusion fixation, brains of the mice were extracted and post-fixed overnight in 

4% PFA. For cryo-sections, post-fixed brains were transferred to 30 % sucrose and 

kept in this solution at 4°C until saturated (1-2 days). Then, brains were frozen on dry 

ice, wrapped in aluminium foil and frozen at -80°C overnight. The next day, brains were 

transferred to -20°C. 

For spinal cord preparation, the vertebral column of perfusion fixated animals was cut 

and post-fixed overnight in 4 % PFA/PBS. Then, bones were cut with a pair of scissors 

to extract the spinal cord. Spinal cords were immersed in 30 % sucrose overnight, 

frozen on dry ice in a line of Tissue-Tek® medium and stored at -80°C. 

Frozen brains were cut into 25 µm sections using a Leica CM 1900 Cryostate. Slices 

were collected in 24-well plates with PBS and stored at 4°C until further used. 

2.2.3 Immuno-histochemistry (IHC) 
 

Citrate stock solution A 100 mM Citric acid solution in ddH2O 

Citrate stock solution B 100 mM Sodium citrate solution in ddH2O 
 

NaOH solution   1 M in ddH2O 
 

Citrate buffer   3 ml stock solution A and 17 ml stock solution B were 

    combined, pH was adjusted to 6.0 with NaOH and diluted 

    1:10 with ddH2O 
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Permeabilization buffer 0.5 % Triton-X-100 in PBS (v/v) 
 

Blocking solution  5 % Horse serum and 0.5 % Triton-X-100 in PBS (v/v) 
 

Antibody dilution buffer 3 % Horse serum and 0.5 % Triton-X-100 in PBS (v/v) 
 

DAPI stock solution  0.25 g/ml 4`,6-Diamidin-2-phenylindole in ddH2O 
 

DAPI staining solution stock solution diluted 1 : 1000 in permeabilization buffer  
 

Mowiol mounting medium 2.4 g Mowiol 4-88 , 6 g glycerol,  6 ml ddH2O, 12 ml 

200 mM Tris/HCl pH 8.5, 2.5 % DABCO 
 

Brain slices were transferred onto Super-frost glass slides and dried over night at room 

temperature. Sections were rinsed three times for 5 min with PBS. For antigen 

retrieval, slides were transferred into Citrate Buffer and boiled in a microwave oven for 

2 min. This procedure was repeated three times with fresh buffer. Sections were chilled 

in ddH2O for 5 min and washed three times for 5 min with PBS. 

The tissue was permeabilized by incubation with Permeabilization buffer for 60 min, 

blocked with Blocking solution for another 60 min and incubated with antibodies in 

antibody dilution buffer over night at 4°C. After five consecutive washing steps with 

PBS for 10 min, slices were incubated with secondary antibodies in antibody dilution 

buffer for 90 min, followed by three further washing steps. For staining of nuclei, slices 

were incubated with DAPI staining solution for 15 min, washed five times with PBS and 

rinsed with ddH2O. Slices were air-dried and mounted in Mowiol medium. 

2.2.4 Light microscopy of tissue slices 
Images were obtained using a Leica DM6000 fluorescent microscope using a 20x 

Objective and the Leica LAS AF software package. Stitching of single images to a 

composite picture was performed by the software. Images were processed using 

Adobe Photoshop and Adobe Illustrator. 

2.2.5 Electron microscopy 
Tissue removal was basically performed as described for immunohistochemistry with 

some modifications. The tissue preparation and embedding was performed according 

to established protocols in the Electron Microscopy Facility of the MPI of Experimental 

Medicine (Werner et al., 2013; Snaidero et al., 2014).  

200 mM Phosphate buffer: 20 ml of 200 mM NaH2PO4 and 80 ml of 200 mM Na2HP4 

were combined. 
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Karlsson-Schulz-Fixative 4 % PFA, 2.5 % Glutaraldehyde, 1 % NaCl in 200 mM 

Phosphate buffer 
 

Mice were anesthetized by injection of avertine and intra-cardially perfused with 5 ml of 

Hank’s buffer salt solution (HBSS) followed by 40 ml of Karlsson-Schulz fixative. Brain 

including optic nerve and spinal cord were extracted and post-fixed over night at 4°C.  
 

 

Tab. 2.1 Procedure of Epon embedding for electron microscopy 
 

 
 

 

Entire nerves or brain punches were embedded in Epon (Tab. 2.2), ultrathin sections 

were prepared and contrasted with 1% uranyl acetate and lead citrate. Electron 

micrographs were taken on a LEO 912AB electron microscope (Zeiss) using an on-axis 

2048x2480 charge coupled device camera (Proscan).  

The areas of both axon alone and axon with myelin sheath were measured, diameter of 

a circle with the area was calculated and g-ratio was determined by dividing axonal 

diameter by myelinated diameter. 
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2.3 Tissue culture methods 
 

All cell culture techniques were performed in a Class II biological safety cabinet. All 

materials, media and solutions were sterilized by autoclaving or filtration. Cell culture 

solutions, such as HBSS, Trypsin/EDTA, GlutaMAX, antibiotics and supplements were 

purchased from Gibco/Invitrogen. Generally used solutions included: 
 

Poly-L-lysine stock (50 x) 1.0 g Poly-L-Lysine hydrobromide in 250 ml PBS 
 

PLL for primary cells  10 ml of 50 x PLL stock in 500 ml PBS 
 

Heat-inactivated serum  Serum was incubated at 56°C for 30 min 
 

Triiodoithyronine  5 mM stock solution in 96 % ethanol 
 

L-Thyroxin   4 mM stock solution in 0.25 M NaOH, 25 % ethanol 
 

Putrescin   10 mM stock solution in DMEM 
 

Preparation of Coverslips Glass coverslips were treated with concentrated HCl 

(37%) overnight, washed with ddH2O and dried on 

parafilm. Then, coverslips were baked at 200°C for 6 h. 

2.3.1 Handling of cell-lines 
The major cell-lines used in this thesis were the OPC cell line Oli-neu (Jung et al., 

1995) and the breast cancer cell line SKBR3 (Trempe, 1976). 
 

PLL for cell-lines   3 ml of 50 x PLL stock in 500 ml PBS 
 

DMEM-Medium  DMEM supplemented with 10% Horse serum, 1 x  

    GlutaMax, and 1 x Pen/Strep 
 

Oli-neu Sato-Medium  DMEM supplemented with 1 % ITSA supplement, 1 x 

    GlutaMax, 1 x Pen/Strep, 5 % Horse Serum, 500 pM Tri-

    iodo-Thyronine (TiT), 520 pM L-Thyroxine, 200 nM  

    Progesterone, and 100 µM Putrescein 
  

Oli-neu cells were grown on PLL-coated cell culture dishes or glass coverslips. Oli-neu 

Sato medium was used as a growth medium. SKBR3 cells were also cultured on PLL-

coated cell culture material, DMEM medium was used. Cells were transfected using the 

Trans-IT transfection reagent (Mirus-Bio) according to the manufacturer's guidelines. 
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2.3.2 Cryo-preservation of mammalian cell lines 
Mammalian cell lines were cryo-preserved to avoid aging, minimize genetic changes 

and loss by contamination.  
 

Freezing medium   50 % FCS, 10 % DMSO in DMEM 
 

Cells were detached from culture dishes by trypsinization, pelleted by centrifugation 

and resuspended in freezing medium (approx. 1x10^7 cells/ml). The suspension was 

aliquoted into cryogenic storage vials and cooled down to -80°C  at a cooling rate of -

1°C/min. The next day, cells were transferred to liquid nitrogen storage. 

For thawing, cells were removed from the storage, thawn in a 37°C water bath and 

transferred into a centrifugation tube with pre-warmed growth medium. After pelleting 

(5 min, 900 x g, 37°C), the cells were resuspended in growth medium and plated on 

prepared cell-culture dishes. 

2.3.3 Glial mixed cultures 
The preparation of primary cell cultures was performed according to our previously 

described protocol (Trajkovic et al., 2006) with varius modifications. Primary glial mixed 

cultures were prepared from newborn NMRI-mice and separated into microglia; 

oligodendrocyte precursor cells (OPCs) and astrocytes by differential shaking. 
 

BME growth medium   BME supplemented with 10 % Horse serum, 1 x 

     GlutaMax, and 1 x  Pen/Strep 
 

In order to prepare the glial mixed cultures, newborn mice (P1) were decapitated; the 

brains were exposed by a midline incision and transferred into Hanks Buffered Saline 

Solution (HBSS). Under a dissection microscope, the meninges were removed and the 

hindbrains were discarded. A total of 5 brains were pooled and incubated with 

0.25 % trypsin/EDTA at 37°C for 10 min. The tissues were washed twice with BME 

growth medium and further dissociated by trituration (10-times) using a glass pipette. 

The cell suspension was passed through a cell sieve and subsequently plated onto 5 

PLL-coated cell culture flasks with BME growth medium. Two thirds of the growth 

medium was exchanged twice a week. 

2.3.4 Primary oligodendrocyte precursor cells 
Primary oligodendrocyte precursor cells were obtained from glial mixed cultures and 

differentiated in “Super-Sato”-medium. 
 

“Super-Sato”-medium  DMEM supplemented with 2 % B27 supplement, 1 x 

    GlutaMax, 1 x Pen/Strep, 110 µg/ml Sodium pyruvate, 
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    1 % Horse Serum, 500 pM Tri-iodo-Thyronine (TiT), 

    520 pM L-Thyroxine 
 

10 days after plating the glial mixed cultures, microglia were removed by gentle, 

manual shaking, leaving a culture that consisting of OPCs on top of a confluent layer of 

astrocytes. The next day, OPCs were shaken off by hand and pelleted by 

centrifugation. The OPC-pellet was re-suspended in Super Sato differentiation medium. 

The OPC suspension was transferred into an untreated cell culture dish and incubated 

at 37°C for 3 min. During this time, contaminating microglia and astrocytes adhered to 

the culture dish, while OPCs remained in suspension. This step was repeated a second 

time, to yield highly pure OPC cultures. These cells were plated onto PLL-coated cell 

culture dishes or glass cover slips with Super Sato. The day of OPC plating was 

defined as DIV-0 and cells were harvested for experiments at the subsequent days. 

2.3.5 Astrocyte cultures 
DMEM growth medium DMEM supplemented with 10 % Fetal calf serum, 1 x 

    GlutaMax, and 1 x Pen/Strep 
 

After shaking off the OPCs, fresh DMEM growth medium was added to the remaining 

astrocytes and the cells were allowed to recover for 72 hours. The astrocytes were 

then harvested for further experiments. The purity of these cells was determined 

separately by trypsinization, seeding onto PLL-coated coverslips and immuno-staining 

after 48 hours. 

2.3.6 Microglia cultures 
The preparation of microglia was performed as described previously (Regen et al., 

2011). In brief, glial mixed cultures were treated with microglia colony stimulating factor 

(MCSF) to enhance microglia proliferation. After 3 days, microglia were harvested by 

gentle shaking and seeded onto PLL-coated cell culture dishes with DMEM growth 

medium (see 2.3.5!). After another 3 days, cells were used for experiments. 

2.3.7 Cortical neurons 
Cultures of cortical neuron were prepared from embryonic mice at E16.5 as described 

by Schneider et al., 2006 with minor modifications. Pregnant NMRI mice were 

euthanized by cervical dislocation and opened to reveal the embryos. The embryos 

were decapitated; the brains were exposed by a midline incision and transferred into 

HBSS. Meninges were stripped from the surface of the brain and hindbrain was 

discarded. 3 brains were pooled, treated with 0.25 % trypsin/EDTA for 10 min and 

washed with neuronal growth medium (MEM with B27-supplement, 0.6 % Glucose, 

0.22 % Bicarbonate, Pyruvate, Glutamax, Penicillin and Streptomycin). Cells were 
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plated onto PLL-coated cell culture dishes with neuronal medium. After 16 hours, 

Cytosine arabinoside (AraC) was added in a final concentration of 4 µM. The addition 

was repeated the second day after plating. The third day, AraC was washed out and 

cells were cultivated in normal growth medium until day 5, day 10, and day 16, 

respectively. 

2.3.8 Preparation of mouse embryonic fibroblasts 
Mouse embryonic fibroblasts (MEF) were obtained from embryonic mice (E15.5). The 

embryos were extracted from the pregnant mother, the head and inner organs were 

removed. The remaining tissue was digested with 0.25 % trypsin/EDTA for 10 min and 

dissociated by tirturation. The cells were grown on untreated cell culture flasks with 

DMEM medium (see 2.3.5!) until the cell layer was confluent. Medium was changed 

twice a week to remove cell debris. After four passages, a pure MEF-cell culture was 

achieved. 

2.3.9 Treatment of cell cultures 
When cells were treated with drugs, the compounds were usually used as working 

solutions dissolved in DMSO. For treatment, approximately half of the growth medium 

of the cells was transferred into an Eppendorf tube, the appropriate amount of drug 

solution was added, mixed and the media was given back to the cells. For controls, the 

same volume of the drug solvent was used. 

2.3.10 Transfection of cell cultures 
Oli-neu and SKBR3 cells were transiently transfected with a pcDNA3.1 (+) plasmid with 

the coding sequence of murine Bcas1 with a C-terminal myc tag connected by a Gly4-

linker. The pmaxGFP (Lonza) was used as a control. Transfections were performed 

using Mirus Trans-IT according to the manufacturer’s recommendations. 

2.3.11 Immunocytochemisty 
Immuno-staining of cells was performed in order to determine the purity of cell 

preparations and to visualize the localization of proteins with the cells. Staining was 

essentially performed as described in Simons et al., 2002. 
 

Phosphate-buffered saline see 2.2.1! 

4% PFA solution  see 2.2.1! 

Permeabilization buffer 0.1 % Triton-X-100 in PBS (v/v) 

Blocking solution  5 % Horse serum and 0.5 % Triton-X-100 in PBS (v/v) 
 

Cells on coverslips were washed with PBS and fixed with pre-warmed 4% PFA in PBS 

for 20 min. After washing with PBS, cells were permeabilized for 1 min and washed 
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with PBS. Cells were incubated with blocking solution for 45 min, followed by 

incubation with primary antibodies in blocking solution for 60 min. After three washing 

steps, secondary antibodies in blocking solution were added. After 60 min, cells were 

washed three times and mounted in Mowiol (see 2.2.3!). 

The following primary antibodies were used, usually in a 1 : 300 dilution: Fluorescent 

and HRP-coupled antibodies were purchased from Dianova (Hamburg). 
 

Tab. 2.3 Antibodies used in this study 
 

 

2.3.12 Light microscopy of cell cultures 
Images were obtained using a Leica DM6000 widefield fluorescent microscope and the 

Leica LAS AF software package. For confocal laser scanning microscopy, a Leica TCS 

SP5 AOBS on a Leica DM6000 was used. Images were further processed using 

ImageJ, Adobe Photoshop and Adobe Illustrator. 
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2.4 Molecular biology methods 
 

In this thesis, mostly standard methods of molecular biology have been used. These 

methods were mainly performed as described by Sambrook and Russel, 2000.  

2.4.1 Isolation of genomic DNA from mouse tail tips 
Tail biopsies were taken from genetically modified mice, DNA isolation was performed 

using the Invisorb Spin Tissue Midi Kit (Invitek) according to the manufacturer's 

instructions. DNA was eluted in 100 µl elution buffer and stored at -20°C. 

2.4.2 Polymerase chain reaction for genotyping 
For genotyping, specific sequences were amplified by polymerase chain reaction 

(PCR) using the GoTaq Flexi DNA Polymerase Kit (Promega). The PCR mix consists 

of 1 x GoTaq Green buffer, 1.25 mM MgCl2, 5 % DMSO, 0.2 mM dNTPs, 1.25 U Taq-

Polymerase  and  0.5 µM of each primer. For every reaction, 20 µl reaction mix and 

1 µl genomic DNA were used. 

Tab. 2.4 Sequencing primers for genotyping 
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2.4.3 Agarose gel electrophoresis 
PCR-products were separated by agarose gel electrophoresis and visualized using the 

intercalating dye SYBR-Safe. 
 

50 x Tris/Acetate-EDTA  242 g Tris, 57.1 ml glacial acetic acid, 100 ml 0.5 M 

    EDTA (pH 8.0) to a final volumen of 1000 ml  

1 x Tris/Acetate-EDTA Dilute 50 x solution 1:50 in ddH2O  
 

1.5 % agarose in 1 x TAE-buffer were heated in a microwave oven until dissolved. 

SYBR-Safe DNA Gel stain (Life technologies) was added and gel was cast in a home-

made apparatus. 20 µl of each PCR mix were added into every pocket and separation 

was performed at 130 V for 90 min. The gel was visualized using the INTAS UV-

System and INTAS DR software, 

2.4.4 High-fidelity polymerase chain reaction for cloning 
For the amplification of DNA sequences for cloning, the Phusion High-Fidelity Master 

Mix (Thermo Scientific) was used according to the manufacturer's instructions. In brief, 

10 µl of 2 x Master mix, 8 µl ddH2O, 0.5 µM of each primer and 1 µl of a 50 ng/µl 

template DNA were used. 

2.4.5 Enzymatic digestion of PCR products and plasmids 
Restriction digestion was performed using enzymes and buffers from New England 

Biolabs. Every reaction consist of 1-2 µg DNA, 3 µl 10 x restriction buffer, 0.3 µl 100x 

BSA and 1 µl of each enzyme in 30 µl total volume. 

2.4.6 Ligation 
For the ligation of digested inserts and vector, the DNA T4 ligase system from 

Fermentas was used according to the manufacturer’s recommendations. 

2.4.6 Transformation of competent E. coli and plasmid preparation 
50 µl of DH5a chemically competent E. coli (Invitrogen) were thawn on ice and 0.5 µg 

plasmid DNA were added. The mixture was incubated on ice for 30 min, heat-shocked 

at 42°C for 30 sec and returned to the ice for 2 min. 700 µl of LB media was added, 

cells were shaken at 37°C and 200 rpm for 60 min. 200 µl of the bacterial culture was 

given onto LB agar plates with appropriate antibiotic and incubated over night at 37°C. 

The next day, single colonies were picked and transferred into liquid LB media with the 

appropriate antibiotic. Bacteria were grown over night and used for preparations using 

the NucleoBond Xtra Midi or Mini Kit (Macherey-Nagel) according to the manufacturer's 

recommendations. DNA sequencing was performed at the AGCT lab.  
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2.5 RNA methods 
RNA-isolation and -handling was generally done in a special fume hood. Surfaces were 

cleaned with RNase-AWAY (Roth) and all steps were performed on ice. Whenever 

possible, RNase-free disposable plastic-ware was used. All glassware was pre-treated 

either with 0.1 % DEPC in ddH2O and autoclaved, or baked at 200°C for 6 hours. 

2.5.1 Preparation of TRIzol-Lysates 
Cultured cells were washed 3-times with sterile PBS, scraped in TRIzol reagent 

(Invitrogen) and incubated at room temperature for 5 min to dissociate complexes of 

nucleic acids and proteins. Lysates were stored at -20°C before isolation of RNA. 

Tissue samples were flash-frozen in liquid nitrogen, ground using liquid-nitrogen-cooled 

mortar and pestle and the powder was dissolved in TRIzol reagent. 

 

2.5.2 Isolation of total RNA 
Total RNA was isolated using a modified version of the Chomczynski-/Sacchi-method, 

as described in manual for the TRIzol reagent.  
 

DEPC-H2O 0.1 % Diethylpyrocarbonate and 100 ml of Millipore-H2O 

are mixed, incubated over night at 37°C and autoclaved. 

70% Ethanol in DEPC-H2O  70 ml of absolute ethanol (molecular biology grade) 

filled up to100 ml with DEPC-H2O 

5 M Ammonium acetate 3.854g (0.05 mol) in 10 ml with DEPC-H2O 

70 % Ethanol in ddH2O  70 ml of absolute ethanol (molecular biology grade) filled 

up to 100 ml with Millipore-H2O 
 

1.0 ml TRIzol lysate was mixed with 200 µl chloroform (1/5 volume) and incubated on 

ice for 15 min. Phase separation was facilitated by centrifugation (15 min, 4°C, 

10.000xg) and upper phase was transferred into a new Eppendorf cup. An equal 

volume (500 µl) of Isopropanol was added, mixed by inversion and incubated for 

another 15 min on ice or 60 min at -20°C. RNA was pelleted by centrifugation (15 min, 

4°C, 10.000xg), supernatant discarded and RNA was resuspended in 200 µl DEPC-

H2O. 500 µl of 96 % Ethanol and 70 µl of 5 M Ammonium acetate were added and 

RNA was precipitated at -80°C for several hours. The precipitated RNA was harvested 

by centrifugation (30 min, 4°C, 10.000xg), washed with 500 µl of 70 % Ethanol (in 

Millipore- H2O, not DEPC-treated) and centrifuged again (10 min, 4°C, 10.000xg). 

Supernatant was aspirated, RNA pellet air-dried for 5 min and resuspended in 25 µl of 
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sterile Millipore-H2O. The concentration and purity of RNA was determined spectro-

photometrically (A260/A280) in a 1: 100 dilution and RNA was stored at -80°C. 

2.5.3 Denaturating agarose electrophoresis 
As a quality control, RNA was checked by denaturating agarose gel electrophoresis.  
 

De-ionized formamide A glass beaker with magnetic stir-bar was was baked at 

200°C for 6 hours. 100 ml of formamide and 10 g of 

Amberlite ion-exchange resign were added and stirred for 

30 min. This de-ionized formamide was sterile-filtered and 

stored at -20°C in RNase-free tubes. 
 

Agarose-runing buffer (10x)  20.93 g MOPS (0.1 mol), 2.05 g Sodium acetate (25 

mmol), 1.46 g EDTA and 2.0 g NaOH were dissolved in 

approx. 300 ml of DEPC-H2O. pH was adjusted to 7.0 with 

1 M NaOH, made up to 500 ml with DEPC-H2O and 

autoclaved. 
 

Agarose-runing buffer (1x) 100 ml of 10x buffer were combined with 20 ml 37 % 

formaldehyde and 880 ml of DEPC-H2O. 
 

Bromophenol blue solution Saturated solution in DEPC-H2O 
 

RNA loading dye (5x) 100 µl Bromophenol blue, 80 µl 0.5 M EDTA (pH 8.0), 

720 µl 37 % formaldehyde, 2.0 ml Glycerol, 3.0 ml de-

ionized formamide and 4.0 ml of 10x agarose running 

buffer were combined and filled to 10 ml with DEPC-H2O. 
 

For casting of the gels, 1.2 g low-melting Agarose, 10 ml Agarose-runing buffer (10x) 

and 90 ml of DEPC-H2O were combined and heated in a microwave-oven. The gel was 

allowed to cool down to 65°C in a water bath, 1.8 ml of 37 % Formaldehyde and 1.0 µg 

of 10 mg/ml EtBr-stock were added. The gel was cast and allowed to polymerize for 60 

min. The gel was equilibrated with Agarose-runing buffer (1x) for at least 30 min before 

gel running.  

1 volume of RNA loading dye (5x) was combined with 4 volumes of RNA-sample 

(2 µg), incubated at 65°C for 5 min, chilled on ice and loaded onto the equilibrated gel. 

Gel-run was performed under for 60 min at 60 V (5-7 V / cm).  
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2.5.4 Reverse-transcription quantitative real-time PCR 
Expression of different target genes was analyzed using quantitative real-time PCR 

using the SYBR Green method. For this analysis, total RNA is reverse transcribed into 

cDNA and quantitative real-time PCR is performed on a Roche Light Cycler. 
 

Reverse Transcription 
Reverse Transcription of RNA into cDNA was performed using the SuperScript III First-

Strand Synthesis System (Invitrogen) according to the manufacturer’s instructions.  

In brief, 2 µg of total RNA, 1 µl 50 µM oligo(dT)20-Primer and 1 µl 10 mM dNTP mix 

were combined and filled up to a final volume of 10 µl with H2O. The mix was incubated 

at 65°C for 5 min and cooled down to 4°C. 10 µl of RT-mix (2 µl 10x buffer, 4 µl 25 mM 

MgCl2, 2 µl 0.1 M DTT, 1 µl RNaseOUT[40 U], 1 µl SuperScript-III-RT) were added and 

incubated at 50°C for 50 min. The reaction was terminated at 85°C for 5 min. After 

RNaseH-treatment, cDNA was diluted 1:20 with H2O and stored at -20°C. 
 

Real-time quantitative PCR (qPCR) 
The expression of target genes was quantified by quantitative realtime-PCR and 

correlated to the expression level of housekeeper genes. PCR was performed using 

the Power SYBR Green PCR Master Mix (Roche) according to the manufacturer’s 

guidelines. Gene specific, exon-spanning primers were designed using the Universal 

Probe-Library Assay Design Center Software (Roche) and synthesized in the AGCT-

Lab (Facility of the MPI-EM).  
 

Tab. 2.5 Primers for quantitative real-time PCR 
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2.5.5 RNA-extraction, generation of the cDNA libraries and Illumina RNA-
Sequencing 

Cell cultures were washed three times with PBS, approximately 1 million cells were 

lysed in 750 µl of RLT buffer (Quiagen) and passed through a 27G needle. Samples 

were stored at -80°C until RAN-preparation. The RNA preparation and cDNA library 

synthesis was performed by Dr. Elena Ciirdaeva. 

Total RNA was isolated using the RNeasy Mini Kit (Quiagen) according to the 

manufacturer’s guidelines. RNA concentration was determined using a NanoDrop 

ND1000 spectrophotometer and RNA integrity was assessed with an Agilent 2100 

Bioanalyzer. 

For the first round of amplification, cDNA synthesis was performed using 300 ng of 

RNA and the Superscript III first strand synthesis kit (Invitrogen). A mixture of T7-B 

primers was used in this reaction. Afterwards, second strand synthesis was performed 

using DNA Polymerase I and 2nd-strand buffer (Invitrogen). The double-stranded cDNA 

was purified using a CyScribe GFX Purification kit (GE Healthcare) and used for in-

vitro-transcription (MEGAscript T7 Kit, Ambion). The resulting aRNA was purified using 

a RNeasy Micro column kit (Quiagen). 

 

 
 

Fig. 2.1: Schematic overview of the first round of amplification. In this step, adaptor B and 

the T7 polymerase sequence are added. Then, anti-sense RNA (aRNA) is generated by in-vitro 

transcription. 
 

For the second round of amplification, between 300 and 800 ng aRNA were mixed with 

a Dec1-hairpin-N9 primer and first strand synthesis was performed using the 

Superscript III first strand synthesis kit (Invitrogen). 2nd strand synthesis was done with 

a B-short primer and Taq-Polymerase. cDNA was purified with the NuleoSpin Extract II 

Kit (Macherey & Nagl).  
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Fig. 2.2: Schematic overview of the second round of amplification. In this step, the Dec1 

adaptor is introduced.  
 

Sequencing codes were introduced by step-out PCR. Therefore, cDNA was mixed with 

the appropriate Code_Cis40 primers and amplified by PCR using the PWO Master Mix 

(Roche). The Illumina sequencing adaptors were introduced in a second PCR using the 

appropriate primers.  

 
Fig. 2.3: Schematic overview of the third round of amplification. In the first PCR reactions, 

sample-specific bar codes are introduced to allow for simultaneous sequencing of several 

samples. In the second PCR, Illumina adaptors are introduced. 
 

Samples were sent to Dr. Richard Reinhardt at the Max Planck Genome Center in 

Cologne for Illumina2000 sequencing. Sven Wiechert performed BLAST analysis of the 

sequencing data in order to identify the nucleotides. Nirmal Kannaiyan analyzed and 

normalized the datasets.  
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2.6 Protein biochemistry methods 

2.6.1 Preparation of lysates for SDS-PAGE 
Lysis buffer   2 % Nonidet P-40, 0.2 % SDS, 0.5 mM EDTA in  

    PBS, supplemented with Boehringer complete and  

    PMSF 
 

Frozen tissue samples were homogenized in Lysis buffer using an Ultra-turrax and 

centrifuged for 5 min at 10.000 x g. Protein concentration was determined using a 

Pierce BCA assay kit according to the manufacturers guidelines. Protein concentration 

was adjusted to 1.0 µg/µl. Samples were combined with the appropriate amount of 5x 

samples buffer (see 2.6.2), heated for 10 min to 95°C and stored at -20°C. 

2.6.2 SDS-PAGE 
Proteins of tissue and cell lysates were separated on sodium dodecyl sulfate poly-

acrylamide gel electrophoreses (SDS-PAGE), transferred onto nitrocellulose 

membranes (Western Blot) and detected with the approriate antibodies. The here 

described method is based on the protocol from Eckert and Kartenbeck, 1996.  
 

Stacking gel buffer  125 mM Tris/HCl, pH 6.8 

Resolving gel buffer  375 mM Tris/HCl, pH 8.8 

Electrophoresis buffer (10x) 25 mM Tris, 192 mM Glycine, 0.1 % SDS 

Sample buffer (5 x)  50 % Glycerol, 10 % SDS, 0.5 %  

    b-Mercaptoethanol, 625 mM Tris (pH 6.8), 5 mM EDTA 

    (pH 8.0) 0.05 % Bromophenolblue 

10 % APS   10 % (w/v) Ammoniumperoxodisulfate in ddH2O 
 

The BioRad Mini-Protean 3 system was used to cast poly-acrylamide gels. The 

composition of the resolving and stacking gels are described in the lower table. The 

resolving gel was cast between the glass plates and covered by a layer of isopropanol. 

After polymerization (45 min), isopropanol was removed and the stacking gel was cast.  

 

 

Samples were loaded onto the gel and SDS-PAGE was performed for 90 min at 100 V. 
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2.6.3 Western Blot Analysis 
 

Transfer buffer (1x)  25 mM TRIS base, 192 mM Glycine, 20 % methanol 

Ponceau S solution  1 % (w/v) in 3 % Chloroacetic acid 

TRIS-buffered saline (TBS) 10 mM TRIS-base, 150 mM NaCl, pH 7.4 

TBS with Tween 20 (TBS-T) 0.1 % Tween 20 in TBS, pH 7.4 

Blocking solution  4 % non-fat milk powder in TBS 
 

After SDS-PAGE, the proteins were transferred onto a nitrocellulose membrane. The 

gel was removed from the glass plates and incubated for 5 min in transfer buffer to 

wash out SDS. Then, the gel was assembled in the blotting cassette with the 

membrane and Whatman filters. The blotting system was filled with transfer buffer, 

cooled with an ice pack and transfer was performed at 100 V for 60 min.  

To check successful transfer, the membrane was stained with Ponceau S for 5 min and 

rinsed with ddH2O. Then, membranes were de-stained with TBS-T and blocked with 

Blocking solution for 60 min. Incubation with the first antibodies (in blocking solution) 

was performed over night at 4°C. The next day, membranes were washed three times 

with TBS and incubated with the appropriate secondary antibodies for 60 min at room 

temperature. After three consecutive washing steps, Pierce ECL solution was added 

and light emission was detected using X-ray-films.  

2.64 Proteomic analysis and data processing  
 

Lysis buffer   4 % SDS, 100 mM DTT, 100 mM TRIS/HCl, pH 7.6  
 

Proteomic analysis was essentially performed as described previously (Nagaraj et al., 

2011). For brain and liver proteomics, mice were perfused with TBS, tissues were 

extracted and snap-frozen in liquid nitrogen. Cell cultures were washed three times 

with TBS, flash-frozen on dry ice and stored at -80°C before sample preparation. Cells 

were lysed in lysis buffer at 99°C for 5 min. These lysates were cooled down to room 

temperature, sonicated using a Branson type sonicator and clarified by centrifugation. 

Protein concentration was adjusted to 2 µg/µl and a total of 100 µg total protein was 

subjected to chloroform-methanol-precipitation. Proteins were digested with LysC and 

trypsin (Shevchenko et al., 2006) and desalted using StageTips (Rappsilber et al., 

2007). 25 µg of the digested peptides were separated into six fractions using strong 

ionic exchange according to the previously described pipette tip protocol (Wiśniewski et 

al., 2009).  
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Eluted peptides were separated during a 4 h run using a 50 cm long reverse phase 

C18 column on an Easy-nLC-system (Thermo Fisher Scientific), directly coupled to a 

Q-Exactive Hybrid Quadrupole-Orbitrap mass spectrometer (Thermo Fisher Scientific). 

Mass spectra were processed using MaxQuant software (Cox and Mann, 2008) and 

analysed by the Andromeda search engine against the Uniprot mouse sequence 

database. Peptides with a minimum of seven amino acids were considered and the 

required FDR was set to 1% at a peptide and protein level. Protein identification 

required at least one unique or razor peptide. Quantification was performed using the 

label-free quantification (LFQ) algorithm of MaxQuant. Bioinformatic analysis was 

performed in the Perseus software environment. All of these steps were prepared by 

Kitri Sharma (Max-Planck-Institute for Biochemistry, Martinsried). 

2.6.5 Fc-fusion protein generation and purification  
 

Binding buffer   20 mM sodium phosphate, pH 7.0 

Elution buffer   0.1 M glycine, pH 2.7 

Neutralization buffer  1 M TRIS/HCl, pH 9.0 
 

Necl1-Fc and Necl4-Fc plasmids were provided by Elior Peles (Weizmann Institute, 

Israel). The Fc fragment was amplified and inserted into a pcDNA3.1(+) plasmid using 

the primers 5'-AAAAGAGCTCGGAGGAGGAGGAGATCCCCGTCGTGCATCTATC-3' 

and 5'-AAAAGGGCCCTCTAGATCATTTACCC-3'. The extracellular domain from 

Lsamp, Ntm, Opcml and MCAM were amplified and inserted into the Fc plasmid using 

NheI restriction sites. Soluble Fc-fusion proteins were purified using Protein A HP Spin 

Trap columns (GE Healthcare), following manufacturer’s instructions. 

In brief, HEK cells were transfected, after 2-3 days, the supernatant was collected and 

centrifuged for 15 min at 4.000 g at 4°C. 1× Complete Protease Inhibitor Cocktail 

(Roche) was added to the supernatant and then concentrated using Amicon Ultra-15 

Centrifugal Filter Units (Millipore) according to manufacturer’s recommendations. The 

final volume of 2 mL was diluted in equal volume of binding buffer. The storage solution 

from the column was removed by centrifugation for 30 s at 100 g. The column was 

equilibrated adding 600 µL of binding buffer, centrifuged for 30 s at 100 g. Then, 600 

µL of the antibody solution were added, incubated for 4 min while gently mixing and 

then centrifuged for 30 s at 100 g. This procedure was repeated until all the volume 

was loaded on the column. Then the column was washed twice adding 600 µL binding 

buffer and centrifuging for 30 s at 100 g. Two collection tubes per sample were 

prepared for eluted fractions, each one containing 30 µL of neutralizing buffer. The 

proteins were eluted twice by adding 400 µL of elution buffer, mixing by inversion, 
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placing the column in a 2 mL microcentrifuge tube containing 30 µL neutralizing buffer 

and centrifuged for 1 min at 50 g. The proteins were aliquoted and kept at -20°C. All 

fusion proteins were prepared by Natalia Manrique-Hoyos. 

2.6.6 Binding assay 
For binding assays, supernatant from transfected HEK cells was centrifuged for 10 min 

at 5000 rpm. Per each 18 mm coverslip of neuronal or oligodendroglial culture, 150 µL 

of media were mixed with 1.5 µL of Cy3-conjugated anti-human Fc antibody (Dianova) 

and incubated for 30 min at RT. Then, the mix was added to each coverslip and 

incubated for 20 min at RT in a humid chamber. Finally, the coverslips were washed 3 

times with PBS and the cells were fixed with 4% PFA for 15 min at RT.  

2.6.7 Adhesion assay 
Glass coverslips in a 24-well plate were coated with 500 µL of a solution with 10 µg/mL 

of donkey anti-human Fc antibody (Dianova) in 50 mM Tris-HCl (pH 9.0) and left 

overnight at 4°C. Then, the coverslips were washed 3 times with supplement-free 

DMEM and 500 µL of a solution containing 10 µg/mL of Fc-fusion protein in 0.2% 

BSA/PBS. After 1h of incubation at 37°C, the coverslips were washed 3 times with 

DMEM and fresh Super SATO media was added. PLL coating (100 µg/mL was used as 

a positive control to verify the quality of the primary oligodendrocyte preparation. After 

washing and placing new media, 25000 OPC were plated and allowed to grow for four 

days, and fixed with 4% PFA. Binding and adhesion assays were performed by Natalia 

Manrique-Hoyos and Caroline Bergner. 
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Chapter III: Results 

3.1 Generation of highly pure primary cell cultures 
In this study, we performed transcriptomics and proteomics of cultured neuronal and 

glial cells, as well as a proteomic analysis of mouse brain. A pre-requisite for this was 

to obtain sufficient amounts of highly pure cell cultures. Therefore, we optimized our 

protocol for cell preparation: We harvested OPCs from glial mixed cultures by 

differential shaking. For a removal of contaminating cells, the cell suspension was 

incubated in uncoated cell-culture dishes, where contaminating cells adhered. The 

supernatant of pure OPCs was transferred to PLL-coated cell culture dishes with 

differentiation medium. 
 

 
Fig. 3.1: Quality controls of primary cell cultures. Immuno-staining of every sample was 

performed using markers of oligodendrocytes (O1, MBP), microglia (Iba1), astrocytes (GFAP) 

and neurons (β-III-tubulin). Samples with a purity > 95% were included in the further analyses. 

 

With this method we obtained highly pure oligodendrocyte cultures. Purity of every 

preparation was confirmed by immuno-staining (Fig. 3.1). We used antibodies against 
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O1 and MBP to stain oligodendrocytes, GFAP was used as a marker for astrocytes, 

Iba1 for microglia and beta-III-tubulin for neurons. Only cells with a purity > 95% were 

included into the further analysis. Cortical neurons were prepared from embryonic day 

16.5 mice and treated with Arabinosyl-Cytosine (AraC) on DIV-1 and DIV-2 to eliminate 

proliferating cells. Medium was changed and cells were allowed to grow at least for 

another 2 days. That way, the effect of AraC treatment on the proteome and 

transcriptome should be minimized. We hardly observed any glial cell in these neuronal 

preparations (purity > 97%). 

 

3.2 Workflow for proteomic and transcriptomic analysis 
 

Mouse brains and cell culture samples were lysed and pre-cleaned using the filter-

aided sample preparation protocol (Wiśniewski et al., 2009). After enzymatic digestion, 

peptides were separated into six fractions using anion exchange in a StageTip format. 

LC-MS/MS was performed using an EASY nLC system coupled to a Q-Exactive 

Orbitrap mass spectrometer. Raw data were transferred into the MaxQuant software 

and the abundance of proteins was determined by label-free quantification (LFQ). 

 
 

Fig. 3.2: Workflow of the proteomic analysis. After purity of cells samples was confirmed, 

cells were lysed and filter-aided sample preparation was done. Proteins were digested with 

LysC and trypsin, and analyzed by LC-MS/MS using a Q-Exactive mass spectrometer. 

MaxQuant software was used to analyze raw data and for label-free quantification. 
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In order to determine the coverage of the proteomic analysis, we wanted to compare 

the proteome with the transcriptome of cultured CNS cells (Fig. 3.3). Therefore, mRNA 

was isolated and cDNA was amplified as described in the Materials and Methods 

section. During the amplification steps, bar code sequences and Illumina adaptors 

were introduced. The resulting cDNA libraries were subjected to Illumina next 

generation sequencing. 
 

 
 

Fig. 3.3: Workflow of the transcriptomic analysis. mRNA was isolated from cell culture 

samples, cDNA libraries with the appropriate adaptors and Barcode sequences were introduced 

to enable simultaneous Illumina sequencing of different samples. 
 

3.3 Adult mouse brain proteome 
 

In a first step of the proteomic analysis, brains from adult mice were lysed, 

enzymatically digested and subjected to proteomic analysis. We could identify and 

quantify 11,328 proteins. We found that 147 proteins are > 10-fold enriched in the brain 

as compared to the expression in the liver. 
 

We then plotted the amount of protein in the brain (normalized protein intensity) against 

the enrichment in the brain as compared to liver (fold abundance over liver). Within the 

top 40 most abundant and enriched proteins we found components of the myelin 

sheath (CNP1, MBP and PLP1), the cytoskeleton (Actb, GFAP, Map1a, Map2, Map6, 

Nefh, Nefl, Sptan1, Tuba1b, Tubb3), synapses (Bsn, Camk2a, Camk2b, Dnm1, 

Snap25, Stx1b, Syn1, Syn2, Syt1), as well as glycolysis and energy pathways (Aldoa, 

Eno2, Ldhb) (Fig. 3.4). GO-based enrichment analysis further revealed that cell 

surface proteins are highly overrepresented within the brain-enriched proteins (data not 

shown). 
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Fig. 3.4: Proteins enriched in the brain as compared to the liver proteome. Scatter plot of 

log2fold expression versus log2 LFQ intensity in the mouse brain as compared to the liver 

proteome. Among the top 40 most abundant proteins were components of the myelin sheath 

(red), the cytoskeleton (blue) and synapses (green). 
 

3.3 CNS Cell type proteomics 
 

Similar to the results of the mouse brain proteomics, we identified more than 11,000 

proteins in the different CNS cell types (Fig. 3.5 a). Taken together, a total of 12,278 

proteins could be identified. Out of these, 10,287 proteins were found in all of these 

samples (Fig. 3.5 b). Initial NGS data covered a total of 25,658 protein coding 

transcripts, however, but included ultra-low abundant gene products, with abundance 

lower than one RPKM. Such gene products result from rare stochastic transcription 

events and are thought to result in non-functional mRNAs. Therefore, we excluded 

these transcripts and obtained a number of 12,933 protein-coding gene products 

(Fig. 3.5 c). 

 
Fig. 3.5: Number of identified proteins and comparison to RNAseq data. (a) In the 

proteomic analysis, more than 11,000 proteins were identified in each sample. (b) A total of 

10,287 proteins could be identified and quantified in all samples. (c) Venn-diagram of gene 

products found in proteomic and transcriptomic analysis.  
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These results show that we identified approximately 10,000 proteins and almost 13,000 

transcripts. For the transcripts, were no protein could be detected, we performed a 

Gene Ontology (GO) analysis. We found mainly G-protein coupled receptors, including 

olfactory receptors (data not shown). Such gene products are very unlikely to be 

functional in glia and cortical neurons. Therefore, we assume that these gene products 

are not actually translated and that our proteomic analysis is almost complete, which 

means that we found almost all proteins in neurons and glia. 
 

 
 

Fig. 3.6: High correlation between proteomes of similar cell types. Replicates of the same 

samples show high correlation (usually > 95%, colored in red), while there is a lower correlation 

between different cell types (colored blue). 
 

Next, we wanted to validate the quality of our proteomic datasets. The first step was to 

check the correlation between the different replicates of every cell type. Pearson’s 

correlation coefficient was high between the different replicates, usually above 95%, 

indicating that the same proteins could be identified in the different replicates. 

Furthermore, the correlation between related proteomes was very high, in young and 

mature oligodendrocytes, more than 90% identical proteins were found. The correlation 

between oligodendrocytes and astrocytes, both originating from the same precursors, 

was still 80% (Fig. 3.6).  
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3.3 Proteins can be clustered according to their expression in cell types 
 

We clustered the proteins according to their expression level in the certain cell types 

(Fig. 3.7). As expected, proteome profiles are closest between similar cell types, 

oligodendrocytes and astrocytes derive from the same precursors and have related 

proteomes. Microglia are less related and show higher difference in the proteome. 

Neurons differ more from glial cells. 
 

 
 

Fig. 3.7: Clustering of proteins according to their expression. Proteins with a low 

expression level are shown in blue, highly expressed proteins in red. The analysis clearly shows 

that certain clusters are mainly expressed in distinct cell types. 
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3.3 Pathways highly enriched in specific cell types 
 

For a quantitative analysis of the proteins in different cell types, we used the iBAQ 

algorithm. This tool normalizes the summed peptide identities by the number of 

theoretically observable peptides of the protein and, thereby, enables copy number 

estimation for every protein of the proteome. Based on these data, we clustered 

proteins that are at least 10-fold enriched in a particular cell type and performed a gene 

ontology analysis. Since the different cell types have distinct functions, this analysis 

should result in pathways that are important for the specific cell functions. 
 

We found astrocytes to be highly enriched in pathways that are involved in metabolic 

function, such as amino acid metabolism and fatty acid metabolism. Furthermore, 

cytoskeleton related pathways were enriched and, surprisingly, the cilium (Tab. 3.1). 

 
Tab. 3.1 Pathways enriched in astrocytes 

 
 

In microglia, we found different pathways that are connected to their function as 

immune cells, for example “immune response”, “immune effector process” and 

“regulation of cytokine production” (Tab. 3.2). The proteins enriched in neurons 

(Tab. 3.3) were mainly grouped in pathways such as “neurological system process”, 

“synapse” and “axon guidance”. Moreover, it also contained pathways that are 

correlated with neuronal diseases, such as Alzheimer’s disease and Parkinson’s 

disease. Interestingly, also the pathway of “homophilic cell adhesion” was highly 

enriched. 
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Tab. 3.2 Pathways enriched in microglia 

 

 

Tab. 3.3 Pathways enriched in neurons 

 
 

The analysis of pathways in oligodendrocytes was more diverse (Tab. 3.4). Besides 

the most obvious function, “myelin sheath”, also RNA metabolism is highly enriched in 

these cells. We further found that RNA metabolism pathways are enriched in young 

oligodendrocytes, while mature oligodendrocytes are enriched in membrane proteins. 
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Tab. 3.4 Pathways enriched in oligodendrocytes 

 
 

Taken together, the pathway analysis did not reveal any completely unknown pathways 

in these cells. However, it clearly showed that pathways known to be important in the 

biology of these cells are indeed upregulated. This demonstrates that our analysis also 

identified pathways enriched in cultured cells that are similar to their in-vivo functions. 

 

3.4 Determination of new, cell-type specific marker proteins 
 

So far, our analysis focused on pathways that are enriched in the particular cell types. 

Next, we wanted to identify the individual proteins that are enriched. In contrast to the 

pathway analysis, we applied less stringent criteria and sorted for proteins that are 

enriched by a factor of at least four and, at the same time, significantly different 

between cell types.  

The top 20 proteins enriched in astrocytes (Tab. 3.5) included different cytoskeleton 

regulators such as Plekha7, Tppp3 and Advillin, intermediate filament proteins such as 

Synemin, but also metabolic enzymes such as Oxoprolinase and Mono-amine-oxidase. 

These data generally fit to the metabolic function of astrocytes. In microglia (Tab. 3.6), 

we found various proteins of immunological functions, including the macrophage 

mannose receptor, arachidonate lipoxygenases and CD180. Finding these proteins is 

consistent with the role of microglia as immune cells in the central nervous system. 
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Tab. 3.5 Proteins highly enriched in astrocytes 

 
 

Tab. 3.6 Proteins highly enriched in microglia 
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Tab. 3.7 Proteins highly enriched in neurons 

 
Tab. 3.8 Proteins highly enriched in oligodendrocytes 
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The highly enriched proteins of neurons (Tab.3.7) included known synaptic proteins 

such as Syntaxin 1A, Snap25, Synaptotagmin and Piccolo: Furthermore, cell adhesion 

molecules such as L1 and Igsf3 were found. Among the oligodendrocyte-specific 

proteins (Tab. 3.8) are known myelin proteins such as Plp1, Mag, Cnp and Mbp. Other 

proteins have not been described or thoroughly analyzed in oligodendrocytes so far, 

this included Bcas1, Col11a1, Adamts4, Il1rap and Enppp6. 
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To confirm that these gene products are indeed expressed in oligodendrocytes, we 

performed RT-qPCR on cDNA prepared from oligodendrocytes, astrocytes, microglia, 

neurons and fibroblasts. Plp1 served as a positive control. Our data show that all of 

these gene products are indeed expressed in oligodendrocytes (Fig. 3.8). Since Bcas1 

and Col11a1 are the proteins of highest expression level and specificity (Tab. 3.8), we 

chose those proteins for further biological analysis. 

 
 

Fig. 3.8: RT-qPCR analysis confirms expression of highly enriched gene products.  
RT-qPCR analysis of primary cell cultures was performed and expression was calculated 

relative to GAPDH. Expression of the different gene products in oligodendrocytes could be 

confirmed in all cases. Note that Bcas1 is early expressed and stays upregulated. In contrast, 

Col11a1 is high in young cells and decreases over time. Like Plp1, Adamts4, Il1rap and Enpp6 

are upregulated in more mature oligodendrocytes (d1: OPCs on DIV-1, d3: OPCs on DIV-3, d5: 

OPCs on DIV-5, A: Astrocytes, M: Microglia, N: Neurons, F: Fibroblasts, Bars show mean ± SD, 

n=3-4 technical replicates). 
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3.5 Col11a1 as a new marker for immature oligodendrocytes 
 

A first candidate that we chose from the proteomic analysis was Col11a1. We wanted 

to confirm that the protein is indeed expressed in oligodendrocytes and performed 

immuno-cytochemistry of cultured brain cells. Col11a1 is expressed in very young 

oligodendrocytes, but not in mature cells. An expression in astrocytes and microglia 

was not detected, fibroblasts, however, showed a faint staining (Fig. 3.9). 

 
 

Fig. 3.9: Immunocytochemistry shows Col11a1 expression in young oligodendrocytes. 
Oligodendrocytes were fixed with 4% PFA after 14 hours, 2½ and 4 days in culture) and 

immuno-stained for Col11a1 and α-Tubulin. Astrocytes, Microglia and Fibroblasts served as 

controls. Col11a1 is mainly expressed in young oligodendrocytes and, to lower extend, in 

fibroblasts (Scale bar: 20 µm). 

 
Fig. 3.10: Western Blot analysis confirms expression of Col11a1 in young 
oligodendrocytes. Cell lysates were separated in SDS-PAGE, blotted onto nitrocellulose 

membranes and probed with antibodies against Col11a1 and Calnexin. Western blot shows that 

Col11a1 is expressed in young OPCs; no expression was observed in other cell types (Ast: 

Astrocytes, Fib: Fibroblasts, MG: Microglia, Neu: Neurons). 
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We also performed a Western Blot analysis of cell lysates and observed a similar 

expression pattern: Col11a1 was found in OPCs on DIV-1, and, at a lower level, in 

more mature OPCs on DIV-3. The protein was not detected in lysates of mature 

oligodendrocytes, astrocytes, fibroblasts, microglia or neurons (Fig. 3.10). 

 

Besides cultured oligodendrocytes, we wanted to visualize the localization of Col11a1 

in the brain. Even if the protein is further processed and secreted, we expected 

localization within myelinating areas of the brain. When we performed an immuno-

staining of the brain of a three-week old mouse, we observed a staining in the striatum, 

in areas where myelination was already ongoing, as shown by MBP-staining (Fig. 
3.11). 
 

 
 

Fig. 3.11: Expression of Col11a1 in the striatum of a young mouse. Immunostaining on 

brain slices of a three-week old mouse shows localization in myelinating areas (Scale bar: 50 

µm). 
 

These data show that Col11a1 is indeed expressed by cultured oligodendrocytes and 

can be found in myelinated areas within the brain. This finding demonstrates that our 

proteomic analysis successfully identified a novel protein in young oligodendrocytes.  
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3.6 Bcas1 as a new marker for oligodendrocytes 
 

A second protein that we found highly expressed and highly specific in 

oligodendrocytes was the Breast carcinoma amplified sequence 1 (Bcas1). As shown 

above, Bcas1 expression in oligodendrocytes was confirmed by RT-qPCR (Fig. 3.8). 
We wanted to find out if this gene product is also expressed in other tissues apart from 

the brain. Therefore, we performed RT-qPCR analysis of tissues from adult mice and 

found Bcas1 clearly expressed in brain, stomach and testis (Fig. 3.12). 
  

                    
Fig. 3.12: Bcas1 is expressed in brain, stomach and testis. Expression of Bcas1 in different 

tissues of adult mice was determined by quantitative real-time PCR. Expression was highest in 

testis, stomach and brain. A certain level of Bcas1 is also detectable in the lung (Bars show 

mean ± SD, n=3-4 technical replicates). 
 

Besides a potential function Bcas1 in oligodendrocytes, these results indicate that 

Bcas1 might play a role in cells outside of the brain. This finding was important for us 

for the generation of Bcas1-deficient mice. As described later, we started generating 

conditional knockout mice, since it was not clear if conventional knockout mice are 

fertile and viable. 
 

Bcas1 localizes to the cell cortex and actin-rich structures 
 

In order to find out more about the potential function of Bcas1, we wanted to determine 

the subcellular localization of Bcas1. During this study, we found that commercially 

available Bcas1 antibodies were not specific in Western blot and immuno-staining (data 

not shown). As the generation of a specific antibody is still ongoing, we wanted to 

determine subcellular localization of Bcas1 using a tagged expression construct. 

Therefore, we generated an plasmid with the murine Bcas1 cDNA sequence and a C-



Chapter III: Results 

57 
 

terminal myc-tag. This plasmid was used to transfect the oligodendrocyte-precursor cell 

line Olineu. As Bcas1 was first described in breast cancer cells, we also transfected the 

human breast cancer cell line SKBR3 with this construct. A plasmid encoding for the 

cytoplasmic fluorescent protein maxGFP was used as a control. As expected, GPF 

showed general cytoplasmic localization in both cell types. Interestingly, we found 

Bcas1 at the cell cortex together with actin filaments (Fig. 3.13).    
 

     
Fig. 3.13: Bcas1 localizes at actin-rich structures. Oli-neu cells and SKBR3 cells were 

transfected with plasmids encoding myc-tagged Bcas1 or maxGPF and fixed with 4% PFA after 

18 hours. Subsequently, cells were stained using antibodies against the myc-tag and α-Tubulin, 

actin-filaments were visualized using fluorescently labeled Phalloidin. Images show a clear 

localization of Bcas1 at the cortex of the cells and localization to actin-rich structures (Scale bar: 

20 µm). 
 

The localization at the cell cortex together with actin filaments could indicate that Bcas1 

binds to biological membranes and/or actin filaments. One the specific antibody has 

been generated and evaluated, further experiments will be performed to confirm 

localization of Bcas1. As nothing was known about the function of Bcas1, we generated 

targeted Bcas1 mice and, eventually, knockout mice. 
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Generation of Bcas1 targeted mice 
 

So far, we showed that Bcas1 is expressed in the brain and highly enriched in young 

and mature oligodendrocyte. In order to find out more about the function of Bcas1 we 

wanted to generate Bcas1-deficient mice. Since RT-qPCR showed that Bcas1 is also 

expressed in testis, stomach and lung, we could not exclude lethality or infertility of 

conventional knockout mice. As a consequence, we decided to generate targeted 

Bcas1 mice to allow a conditional, oligodendrocyte specific ablation of Bas1. 

We obtained commercially available ES-cells for Bcas1 targeting. These cells 

contained β-galactosidase- and neomycin resistance-cassettes between FRT-

sequences. Furthermore, exon 3 was flanked by loxP sites and a third loxP-sequence 

was localized between the β-galactosidase- and neomycin resistance-cassettes 

(Fig. 3.14). 
 

 
 

Fig. 3.14: Strategy to generate Bcas1 targeted mice (BCASFX). Bcas1 targeted mice were 

prepared from commercially available ES cells. These cells were injected into blastocysts to 

obtain chimeric founder animals. The resulting animals were bred with C57/N Bl6 wildtype mice 

to obtain heterozygous mice. These mice were further bred to gain homozygous targeted mice 

(Bcas1<tm1aMsi>). 
 

We injected these ES cells into mouse blastocysts and obtained five chimeric mice with 

an overall chimerism between 5% and 80%. Two male mice with a chimerism of 80% 

were bred with C57N/Bl6 wildtype mice to check germ-line transmission and to obtain 

heterozygous transgenic mice. Breeding of the first chimera resulted in a total of 17 
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pups, all of which were wildtype. Breeding of the second chimera also resulted in 17 

pups, out of which five mice were heterozygous targeted mice. These animals were 

used bred among each other to obtain homozygous targeted mice. Systematically, this 

mouse line were termed “Bcas1<tm1aMsi>”, in our lab it carries the name “BCASFX” 

(Fig. 3.10). These animals did not exhibit any obvious clinical symptoms, were viable 

and fertile.  

Floxed Bcas1<tm1aMsi> mice contained β-galactosidase- and neomycin resistance-

cassettes flanked by FRT-sites. We removed these cassettes by crossing with FLP-

recombinase mice; offspring was subsequently crossbred with C57/BL6 wildtype mice 

to remove the FLP-recombinase. The short lab name of these mice is “FLIR_Rec”, 

according to official nomenclature, these mice are called “Bcas1<tm1cMsi>” 

(Fig. 3.15). 
 

 
 

Fig. 3.15: Strategy for the removal of resistance and reporter cassettes. Floxed 

Bcas1<tm1aMsi> were bred with FLP recombinase mice. The offspring was heterozygous for 

FLP recombinase and recombined, targeted Bcas1. Breeding of these animals with C57/N Bl6 
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wildtype mice was performed to remove the FLP recombinase and, in a second step, obtain 

homozygous recombined animals. The strain was termed “FLIR-Rec” or “Bcas1<tm1c-Msi>”. 
 

The genotypes of the animals were determined using at least three different PCRs: The 

PCR-A was designed to specifically identify transgenic mice. One primer binds to a 

sequence in exon 3, the other in a transgene-specific sequence. Genomic DNA of 

wildtype mice cannot be amplified with this reaction, while targeted mice give a 347 bp 

PCR product. PCR-B was performed with three primers; the first binds to a part of the 

5’ homology arm, the second to the β-galactosidase cassette, the third in the 3’ 

homology arm. These primers amplify a 647 bp product for wildtype animals and a 

534 bp product for the transgenic animals with β-galactosidase cassette. Upon FLP-

recombination, these primers give a 750 bp product. Furthermore, we used primers to 

detect the LacZ/β-galactosidase cassette (Fig. 3.16). 
 

 

 
 

Fig. 3.16: Generation of Bcas1 targeted mice. Genomic DNA of mice was analyzed by three 

different PCRs to distinguish between wildtype mice and mutant animals before and after FLP-

recombination. PCR-A gives a 347 bp product for genetically modified animals, as long as the 

targeted exon is still there. PCR-B gives a 647 bp product for wildtype, 534 bp for mutant mice 

before and 750 bp after FLP-recombination. The LacZ PCR amplifies a part of the β-

galactosidase cassette. 
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Specific ablation of Bcas1 in oligodendrocytes 
 

To study a potential role of Bcas1 in oligodendrocytes, floxed Bcas1 mice after FLP-

recombination (“Bcas1<tm1c-Msi>”) were cross-bred with homozygous CNP1-Cre-

recombinase mice. CNP1 is expressed in young oligodendrocytes and Schwann cells 

and is therefore used to for the ablation of Bcas1 in these cells (Fig. 3.17 a).  
 

 
 

Fig. 3.17: Generation of conditional Bcas1 knockout mice. (a) Homozygous floxed 

Bcas1<tm1c-Msi> mice after FL recombination were bred with CNP1-Cre recombinase mice. 

The offspring was further bred to obtain homozygous floxed mice with heterozygous CNP1-Cre. 

(b) Genomic DNA was analyzed as mentioned above. Sample 1 represents wildtype, while 

sample 2 is heterozygous CNP1-Cre. Samples 3 - 5 are from heterozygous Bcas1 targeted 

mice, samples 6 - 8 from homozygous targeted mice. 
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After breeding FLR-recombined, targeted Bcas1 mice with CNP-Cre mice and 

subsequent breeding of the offspring, we obtained homozygous floxed Bcas1 mice with 

CNP-Cre (Fig. 3.17, b). These mice were viable, fertile and did not show obvious 

clinical symptoms. 
 

 

Analysis of Bcas1 conditional knockout mice reveals myelin abnormalities 
 

We were interested if myelination might be disturbed in the conditional knockout mice. 

Therefore, we prepared optic nerves of four months and 12 months old animals for 

electron microscopy (Fig. 3.18 a). The ratio between the axonal diameter and the 

diameter of the myelinated axon, the g-ratio, was determined for all samples. In the 

four months old animals, we did not observe a difference in myelin thickness between 

the conditional knockout animals and the floxed Bcas1 controls. In the 12 months old 

animals, however, we found an increased g-ratio in the knockout animals, indicating 

thinner myelin (Fig. 3.18 b).  
 

 
 

Fig. 3.18: Myelin is disturbed in conditional Bcas1 knockout mice. (a) EM images of ultra-

thin section of optic nerve from conditional Bcas1 knockout mice and floxed control animals at 4 

months and 12 months of age. (b) Scatter plots of g-ratios from individual fibers of optic nerves 

from floxed controls (black) and Bcas1 conditional knockout mice (blue) The g-ratio in one year 

old mice is increased in conditional knockout mice, indicating that myelin is thinner in the 

knockout as compared to control animals. 
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Conventional knockout of Bcas1 
 

Besides the effect of Bcas1-loss in myelinating cells, we were further interested in the 

function of Bcas1 in other brain cells and further tissues. Therefore, Bcas1<tm1cMsi> 

mice were bred with E2A-Cre mice, that should have a ubiquitous expression of Cre-

recombinase.  

The F1 generation was further crossed with C57/N Bl6 wildtype mice, to ensure a full 

loss of the exon 3 and to remove the Cre-transgene. The resulting offspring was further 

bred to obtain homozygous Bcas1 knockout mice. This mouse line was termed 

“NBCAS”.  
 

 
Fig. 3.19: Generation of conventional Bcas1 knockout mice. Homozygous floxed 

Bcas1<tm1c-Msi> mice were bred with E2A-Cre recombinase mice. The offspring was further 

bred with wildtype to ensure germ line transmission and remove Cre recombinase. 

Heterozygous offspring was further bred to obtain homozygous knockout mice. 
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Bcas1 (-/-) mice were obtained in the expected Mendelian ratio; these animals were 

viable and indistinguishable from heterozygous or wildtype mice. Furthermore,  

Bcas1 (-/-) mice were fertile and produced litters of the same size as wildtype mice.  

 

Since the conditional knockout mice of Bcas1 already showed alterations in the myelin, 

it is interesting to know if myelin in conventional Bcas1 (-/-) mice is also disturbed. The 

electron microscopy analysis of these animals has, however, not been done so far. 

When we prepared primary oligodendrocyte cultures from Bcas1 (-/-) mice, we found 

that these cells develop normal and form myelin-like membrane sheets (data not 

shown). 

 

Taken together, we found Bcas1 as a protein highly enriched in oligodendrocytes. We 

could confirm expression of Bcas1 by RT-qPCR and generated conditional Bcas1 

knockout mice. These animals show outfoldings of the myelin membrane and, upon 

aging, reduced myelin thickness. While the function of Bcas1 still needs to be 

elucidated, localization of myc-tagged Bcas1 to the cell cortex indicates a potential role 

of Bcas1 in membrane and/or cytoskeleton function.  
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3.7 Identification of new cell-adhesion molecules 
 

So far, we performed a proteomic analysis of cultured glial and neuronal cells and 

showed that the data can be used to identify novel oligodendrocyte proteins. We went 

on and wanted to find out if we can identify pathways that are shared or coupled 

between different cell types.  

Therefore, we looked for the relative enrichment of certain KEGG pathways in different 

cell types. We found that proteins for terpenoid backbone biosynthesis and cell 

adhesion molecules are enriched in both neurons and oligodendrocytes (Fig. 3.20). 
 

 
 

Fig. 3.20: Pathways enriched in different cell types. Expression data were sorted for an 

enrichment of different pathways in cell types. In both neurons and oligodendrocyes, terpenoid 

backbone synthesis and cell adhesion molecules were enriched. 
 

When we looked into the cell adhesion molecules enriched in both neurons and 

oligodendrocytes, we found the IgLON family of cell adhesion molecules. This family 

consists of four GPI anchored glycoproteins with three Ig domains; the limbic system-

associated membrane protein (Lsamp), Neurotrimin (Ntm), the Opioid binding cell 

adhesion molecule (Opcml) and the Neuronal growth regulator 1 (Negr1). Strikingly, 

the three proteins Lsamp, Opcml and Negr1 are xpressed on both neurons and 

oligodendrocytes, and Ntm, the fourth family member, is also expressed on neurons. 
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Since the IgLON family was found on neurons and oligodendrocytes, we wanted to find 

out if these proteins could be involved in the interaction between those cell types. 

Proteins of the IgLON family can promote cell-cell-adhesion by homo- and heterophilic 

interactions. In order to show binding of IgLON proteins, we generated soluble forms of 

these proteins by fusing the extracellular domain to a human Fc fragment. The purified 

extracellular domains were added to cultured oligodendrocytes and neurons to 

determine binding. As it is known that Necl1 and Necl4 bind to oligodendrocytes and 

axons, respectively, soluble Necl1-Fc and Necl4-Fc constructs were used as positive 

controls. MCAM-Fc served as a negative control.  

As expected, the soluble Necl4-Fc-fusion protein bound to neuronal cultures, while 

soluble Necl1 bound to oligodendrocytes. The Lsamp-Fc-fusion protein, however, was 

able to bind to both cell types (Fig. 3.21). 
 

 
 

Fig. 3.21: Binding of soluble Lsamp construct to neurons and oligodendrocytes. Cells 

were incubated with soluble Fc-fusion proteins and visualized by immuno-staining. Images 

show a binding of Lsamp-Fc to both neurons (A) and oligodendrocytes (B). This figure was 

provided by Dr. Natalia Manrique Hoyos. 

 

Having shown that Lsamp can bind to both neurons and oligodendrocytes, we next 

wanted to determine the expression pattern of this protein in the brain. Therefore, 

brains from mice at different age were fixed by perfusion, cryo-sections were prepared 

and stained with an antibody against Lsamp (Fig. 3.22). 
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Fig. 3.22: Lsamp is enriched in fiber tracts before myelination. Immunostaining of brain 

slices for Lsamp and MBP shows that Lsamp is expressed in fiber tracts of the anterior 

commissure and fimbria of P10 mice. At a later time-point (P30), when myelination is ongoing, 

Lsamp staining is reduced. This figure was provided by Dr. Caroline Bergner. 

 

We found that Lsamp is expressed in young (P10) mice in long fiber tracts connecting 

different areas of the limbic system, for example the anterior commissure and the 

fimbria of the hippocampus. In older mice (P30), when myelination is ongoing, the 

staining for Lsamp of these areas was reduced (Fig. 3.22). 

 

Having shown that Lsamp is expressed in areas that can be myelinated before the 

onset of myelination, we wanted to find out if the protein is indeed required for proper 

myelination. 

Since Lsamp-deficient mice are available (Innos et al., 2011), we performed electron 

microscopy analysis on brains from these. Given the fact that Lsamp is mainly found in 

the fimbria and the limbic system, we wanted to assess myelination in this area. 

Lsamp-expression was relatively low in the corpus callosum. Therefore, this brain 

region was used as a control. 

Vibratome sections of wildtype and KO mouse brains at an age of P20, P30 and P60 

were prepared; fimbria and corpus callosum were cut out, embedded in Epon and 

processed for electron microscopy. We determine the diameter of the myelinated axon 

in dependence to the axonal diameter (g-ratio). As expected, analysis of myelination in 

the corpus callosum showed no difference between wildtype and Lsamp KO mice 

(Fig. 3.23). 
 



Chapter III: Results 

68 
 

 
 

Fig. 3.23: Myelination in not altered in the corpus callosum of Lsamp-deficient mice.  
(a) EM images of corpus callosum at P20 and P60 (Scale bar: 1 µm). (b) Scatter plots of g-ratio 

from individual fibers of the corpus callosum from wildtype (black) and Lsamp KO mice (pink) at 

P20 (N = 3 animals, wt: n=382 axons, KO: n=340 axons) and P60 (N = 3 animals, wt: n=250 

axons, KO: n=309 axons). (c) The histogram shows the percentage of myelinated axons with 

respect to axon diameter in 0.3 µm intervals. (d) Average g-ratio at P20 and P60 for wildtype 

and knockout mice (Bars show mean ± SD, n=3-4 animals). 

 

However, when we analyzed myelination in fimbria of wildtype and Lsamp KO mice, we 

found that small caliber axons are prematurely myelinated in Lsamp KO mice at P20. 

At the same time point, no axons with a diameter < 0.7 µm was myelinated in the 

wildtype condition. This difference was not found at P30 or P60 (Fig. 3.24 a - c). 
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Fig. 3.24: Lsamp is a negative regulator for myelination in the fiber tracts of the fimbria-
fornix. (a) EM images of fimbria at P30 and P60 (Scale bar: 1 µm). (b) Scatter plots of g-ratio 

from individual fibers of the corpus callosum from wildtype (black) and Lsamp KO mice (pink) at 

P20 (N = 3, wt: n=245 axons, KO: n=355 axons), P30 (wt: n=276 axons, KO: n=399 axons) and 

P60 (N = 3, wt: n=369 axons, KO: n=328 axons). (c) The histogram shows the percentage of 

myelinated axons with respect to axon diameter in 0.3 µm intervals. There is a shift towards 

myelination of small caliber axons in Lsamp KO mice. (d) Average g-ratio at P20 and P60 for 

wildtype and Lsamp KO mice (Bars show mean ± SD, n=3-4 animals). (e). Counting of 

myelinated and non-myelinated fibers revealed that during development more axonal segments 

are myelinated in Lsamp KO mice. 
 

As the g-ratio analysis obviously takes only myelinated axons into consideration, we 

also determined the number of myelinated and non-myelinated axons. There, we found 
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a considerably higher number of myelinated axons in the Lsamp KO as compared to 

the wildtype condition (Fig. 3.25 e). 

Taken together, we analyzed our datasets for adhesion molecules that are expressed 

by both neurons and oligodendrocytes. In our lists, we found all members of the IgLON 

family of adhesion molecules. We confirmed that a soluble construct of Lsamp, one 

member of this family, can bind to both neurons and oligodendrocytes. 

Immunohistochemistry showed that Lsamp is expressed in certain areas that can be 

myelinated, but the protein level is high before the onset of myelination and later 

reduced. When we analyzed axons of Lsamp-deficient mice, we found that myelination 

occurs comparably early and faster in these animals. These results indicate that Lsamp 

is a negative regulator of myelination in fimbria and, perhaps, in the entire limbic 

system.  
 

Apart from the biological importance of Lsamp, these findings show that our proteomic 

datasets can not only be used to find novel proteins within a cell type, but that it can 

also help to understand functional coupling, in this case adhesion, between different 

cell types. Therefore, the proteomic analysis that we performed can serve as a 

valuable tool for neurobiological research.  
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Chapter IV: Discussion and future directions 

4.1 Proteomic analyses 
Myelin is an important component of the nervous system of higher organisms; it 

enables fast nerve cell conduction and provides trophic support to neuronal axons. 

Disturbances of myelin result in severe diseases, such as Multiple Sclerosis and 

Leukodystrophies. Understanding the molecular aspects of myelin biogenesis is, 

therefore, a prerequisite for the pharmacological intervention in such diseases. 

Certain groups have already performed proteomic studies on oligodendrocytes and 

myelin. A study performed by Dumont et al. (2007) identified approximately 200 

different proteins in cultured oligodendrocytes; Ishii et al. (2009) analyzed 

biochemically purified myelin and identified 300 proteins. These numbers seem 

extremely small, if we take into consideration that the human genome contains at least 

25,000 protein-coding genes (Pennisi, 2001). The relatively low coverage of the 

proteome can be explained by the fact, that membrane proteins are difficult to analyze 

using classical biochemical approaches such as 2D gel electrophoresis. Moreover, 

mass spectrometers that were previously used for proteomic analyses were not that 

sensitive and accurate. In any case, improved analyses are needed to cover the 

majority of expressed proteins. 

Within the last years Orbitrap mass spectrometers became widely available for 

proteomic analyses. These instruments offer high sensitivity and mass accuracy, which 

allows in-depth proteomic analysis. Another important factor in the advances of 

proteomic analyses was the development of new software for the interpretation of data 

produced by mass spectrometers. MaxQuant is such a software package; it uses 

specific algorithms for an efficient analysis of data obtained by mass spectrometry and, 

thereby, increases the number of identified peptides (Cox and Mann, 2008). Even 

before an analysis is performed, the sample preparation is an important aspect that 

determines the outcome of the proteomic study. One example is the filter-aided 

sample-preparation (FASP) protocol, which results in a clean protein preparation and 

greatly improves proteomic studies (Wisniewski et al., 2009). 

Using the FASP protocol, together with liquid-chromatography, Orbitrap mass 

spectrometry and analysis by MaxQuant, Luber at al. (2010) identified and quantified 

more than 5,000 proteins in dendritic cells. In similar experiments, Wisniewski et al. 

(2013) quantified more than 10,000 proteins from paraffin-embedded samples. 

We used a similar proteomic approach to analyze adult mouse brains and primary 

cultures of murine brain cells. Were able to identify and quantify approximately 10,000 

proteins. 
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4.2 Samples used in this study  
 

As mentioned above, some groups have already performed proteomic analyses on 

cultured oligodendrocytes. Other groups, however, focused on the analysis of 

biochemically purified myelin. One example is the quantitative proteomic analysis 

performed by Jahn et al. (2009), which showed that the classical myelin proteins MBP, 

PLP1, CNP, MAG and MOG contribute to only approximately 30 % to all myelin 

proteins. It is important to keep the advantages and disadvantages of both approaches 

in mind. While the proteomic analysis of biochemically purified myelin is the best 

approach to unravel the molecular composition of myelin sheaths, there are certain 

limitations: 

First, contamination of myelin proteins with other brain proteins during the purification 

process cannot be excluded. Indeed, the analysis by Jahn et al. also identified 

astrocyte proteins such as the Glial fibrillary acidic protein (GFAP), which is unlikely to 

be a component of myelin sheaths. Second, regulators of myelination such as 

transcription factors, kinases and E3 ligases are not necessarily found in the myelin 

sheath, but rather in the cell bodies. Third, myelin can only be analyzed once it has 

been formed. Myelin proteomics can, therefore, not be used to identify regulators of 

OPC differentiation and myelin initiation. Fourth, it is not possible to distinguish if a 

protein is expressed by neurons or oligodendrocytes. This is particularly important 

when tn comes to adhesion molecules and their binding partners on different cell types. 
 

One major advantage of primary cultures is that these cells can be obtained at a very 

high purity; we used only cells with a purity of > 95%. However, cultured cells do not 

resemble the myelin proteome in its full complexity. Oligodendrocyte differentiation in-

vitro differs from differentiation in a living organism. Even if oligodendrocyte cultures 

have been widely used as model systems, this limitation should always kept in 

consideration. Therefore, it was important to validate the data that we obtained in a 

biological context. Among the most enriched oligodendrocyte proteins, we found 

classical myelin proteins such as Plp1, Mbp and Cnp1. As expected, we did not only 

find structural components of myelin, but also known regulators of oligodendrocyte 

differentiation, such as Sox10. As discussed below, we validated the relevance of 

selected hits for oligodendrocyte differentiation in-vivo. Taken together, we can 

conclude that the proteomic analysis of cultured oligodendrocytes is an equally 

powerful approach as the analysis of purified myelin. Both of these approaches have 

their advantages and limitations for certain biological questions. Hence, they should be 

seen as complementary approaches that can help to solve distinct questions in 

oligodendrocyte biology. 
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4.3 Highly enriched proteins in oligodendrocytes 
 

Among the 20 proteins highly expressed and significantly enriched in oligodendrocytes 

was a broad spectrum of proteins: We found classical myelin proteins such as Mbp, 

Plp1 and Cnp, as well as the transcription factor Sox10 and the extracellular matrix 

proteins Versican and Chondroitin sulfate proteoglycan 4. 

Not much is known about other proteins. This is particularly true for Bcas1 and 

Col11a1. Bcas1 has been predominantly described in cancer biology (Collins et al., 

1998; Correa et al., 2000; Beardsley et al., 2003), but nothing is known about the 

detailed molecular function of this protein or its role in oligodendrocytes. The 

identification of Bcas1 in oligodendrocytes in the current study is consistent with other 

data obtained from our lab and others. When we compared transcriptomic profiles of 

oligodendrocytes and astrocytes using microarray technology, Bcas1 was among the 

top 50 oligodendrocyte-enriched transcripts (Budde et al., 2010). Furthermore, it was 

also enriched in Oli-neu cells treated with neuron-conditioned medium (Kippert et al., 

2008). Interestingly, Bcas1 was also found in a proteomic analysis of purified myelin 

(Jahn et al., 2009). This protein will be further discussed in 4.4. 

Collagen 11a1 (Col11a1) was also extraordinarily high and specific expressed in 

oligodendrocytes. This transcript is also among the top 50 candidates in a 

transcriptomic analysis performed by Cahoy et al. (2008). Mutations in the Col11a1 

gene are associated with Stickler syndrome type 2, a disease with craniofacial 

changes, vitreous and retinal abnormalities (Richards et al., 1996), as well as Marshall 

syndrome (Griffith et al., 1998). In this study, we demonstrated that Col11a1 is 

expressed in OPCs and can be found in myelinated areas of the brain.  

Another highly enriched protein was Adamts4, an enzyme that can cleave agrrecan 

and, thereby, alter the extracellular matrix (Westling et al., 2004; Fushimi et al., 2008). 

Enpp6 is another enzyme; it cleaves certain lipids such as sphingosyl-

phosphorylcholine (Sakagami et al., 2005). The detailed role of these enzymes in 

oligodendrocytes has not yet been studied. We also found the Interleukin-1 receptor 

accessory protein (Il1rap), which is involved in IL-1-signaling (Chen et al., 2012). It has 

been shown, that IL-1 signaling regulates the proliferation and differentiation of OPCs 

(Vela et al., 2002).  Thus, it is likely that IL1rap is needed for IL1-mediated regulation of 

OPC proliferation and differentiation. 

The Calcium activated chloride channel regulator 1 (Clca1) has been mainly studied in 

the context of cystic fibrosis and cancer. A recent paper shows that Clca1 is involved in 

the switch between proliferation and differentiation in colorectal cells: When Yang et al. 

(2013) differentiated Caco-2 cells with sodium butyrate, the observed upregulation of 
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Clca1. RNAi-mediated downregulation of Clca1 inhibited differentiation of these cells 

and resulted in enhanced proliferation. Therefore, Clca1 might also play a role in cell 

cycle exit and differentiation of OPCs.  

Yet another protein that we found was Afap1l2. This protein is an adapter for signal 

transduction processes. Overexpression of the protein in COS-7 cell resulted in an 

activation of the c-Src tyrosine kinase. Downregulation of Afap1l2, in contrast, resulted 

in reduced c-Src activity and phosphorylation of Akt and GSK3beta (Xu et al., 2007). 

Moreover, the protein is involved in PI3-kinase activation (Lodyga et al., 2009). This is 

interesting, since PI3-kinase and Akt-signaling are important regulators of myelination 

(Flores et al., 2008). 

In this work, we focused on Bcas1 and Col11a1, since these proteins are most specific 

and highly expressed in oligodendrocytes. However, proteins such as Adamts4, Il1rap, 

Enpp6, Clca1 and Afap1l2 are clearly interesting candidates for further biological 

experiments. 
 

4.4 Bcas1 as a novel oligodendrocyte-protein 
 

When we overexpressed myc-tagged Bcas1 in Oli-neu and SKBR3 cells, we observed 

a localization of the construct at the cell cortex and at certain actin-rich structures. This 

observation is not completely congruent with results published by Beardsley et al., 

2003. They performed immuno-staining on the breast carcinoma cell lines BT-474 and 

SKBR3 with an antibody against Bcas1 and observed cytoplasmic puncta. When we 

used commercially available antibodies, we observed the same staining patterns in 

both SKBR3 cells and oligodendrocytes (data not shon). However, when we used cells 

and lysates derived from our Bcas1-deficient mice, we found that the antibody staining 

was unspecific (data not shown). Therefore, we are currently generating a new 

antibody against Bcas1. 
 

In our RT-qPCR analysis, we also found Bcas1 expression in tissues apart from the 

brain, such as lung, stomach and testis. Similar expression patterns have been 

reported on human tissues using Northern blot analysis (Beardsley et al., 2003). Taken 

together, these data indicate that Bcas1 could also have a function in these tissues. 
 

4.4.1 Myelin abnormalities in conditional Bcas1 knockout mice 
 

In order to understand the role of Bcas1 in oligodendrocytes, we generated conditional 

knockout mice, in which exon 3 is flanked by loxP sites. The LacZ and Neomycin-

resistance cassettes were removed by recombination using the FLIR-recombinase. 
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These mice were further crossed with CNP-Cre mice to allow an oligodendrocyte-

specific ablation of Bcas1. 

We obtained mice that are heterozygous for CNP-Cre and homozygous for the floxed 

Bcas1 allele. These animals looked healthy and were devoid of any obvious 

neurological symptoms. However, when we performed electron microscopy on the 

optic nerves, we found that myelin thickness is altered upon aging, as shown by g-ratio 

analysis of one-year old mice.  
 

A part of this phenotype is also observed in other knockout mice. Mice lacking the 

myelin protein CNP1 develop normal and have proper myelination. After some time, 

however, axons of these mice show a progressive degeneration and the animals die at 

an age of about one year (Lappe-Siefke et al.; 2003; Rasband et al.; 2005; Edgar et al., 

2009). A similar phenotype was has been observed in mice lacking PLP1 (Edgar et al., 

2004).  
 

Even though conditional Bcas1 knockout mice do not show obvious clinical symptoms, 

it might still be interesting to assess motor function using behavioral tests such as a 

rotarod test or a beam balance test in order to reveal more subtle behavioral changes. 

Furthermore, it will be interesting to perform histological examination of these animals 

and check for activated microglia, astrogliosis and axonal degeneration.  
 

One limitation of the conditional knockout mice is that recombination occurs not before 

oligodendrocyte differentiation. A function of Bcas1 in early steps of precursor cell 

migration and differentiation can, therefore, not be studied in these mice. It might still 

be interesting to induce demyelination in these animals, for instance by cuprizone 

feeding, and assess their capability of remyelination. Alternatively, myelination can be 

studied in the conventional Bcas1 knockout mice that were generated during this study. 

4.4.2 The role of Bcas1 in cancer 
 

In this study, we were mainly interested in the role of Bcas1 in oligodendrocytes and 

myelination. When generating knockout mice, we found the alteration in left-right-

patterning. However, we should not forget that Bcas1 has been identified originally in 

the context of breast cancer. These early studies only showed that Bcas1 is differently 

regulated in certain cancer cells. What is not known so far is, if the level of Bcas1 

influences the proliferation and survival of breast cancer cells. This question could be 

addressed my RNAi-mediated knockdown of Bcas1 in breast cancer cells.  
 

Another, probably even more important question is, if Bcas1 influences cancer 

induction and propagation. Such a question cannot be answered using cell culture 

systems, but requires an in-vivo approach. One way of breast cancer induction in mice 
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is to apply medroxyprogesterone acetate (MPA) together with 

dimetylbenz[a]anthracene (DMBA) (Aldaz et al., 1996). Administration of both 

substances can be used as a model for hormone induced breast carcinoma induction 

and has been used in different studies already (e.g. Becks et al., 2010). As 

conventional Bcas1 knockout mice are viable, they could be treated with MPA and 

DMBA, and thereby serve as an interesting model system to study the effect of Bcas1 

on the initiation and progression of hormone-induced breast cancer.  

 

4.5 Proteomic analysis identifies the IgLON cluster of cell adhesion 
molecules 

 

Apart from identifying proteins specifically expressed by one cell type, we were also 

interested in finding functional coupling between different cell types. When we 

searched for pathways that are highly enriched in both oligodendrocytes and neurons, 

we found the pathway “Cell adhesion molecules”. Within this cluster, there were more 

than 280 proteins. The IgLON family of cell adhesion molecules was expressed by both 

cell types. We generated soluble constructs of the extracellular domains and showed 

that these constructs bind to both neurons and oligodendrocytes.  
 

The IgLON protein Lsamp is highly expressed in the limbic system and Lsamp-deficient 

mice show alterations in anxiety-related behavior (Innos et al., 2011; Innos et al., 

2012). Therefore, we analyzed if myelination is altered in this brain region. Indeed, we 

found that Lsamp-knockout mice show premature myelination in the fimbria, while 

myelination in the corpus callosum is not affected. This is a fascinating finding, 

because several psychiatric disorders might be associated with altered myelination in 

some brain areas, rather than general myelination problems. Little is known about such 

regulators that influence regional myelination. Therefore, Lsamp is an interesting 

protein for further studies. Moreover, the identification of the IgLON family of cell 

adhesion molecules also showed that our proteomic database can be used to study 

interactions between different cell types. 
 

4.6 Outlook on proteomic studies 
 

We performed the first in-depth proteomic study on cultured glial and neuronal cells. In 

total, more than 10,000 proteins could be identified. This means, we found ten times 

more proteins than any other proteomic study of brain cells or myelin could ever 

identify. This sensitivity shows the enormous potential of proteomics and 

transcriptomics for biomedical research 
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As a proof of concept, we analyzed Bcas1 and Col11a1 as two novel marker proteins 

for oligodendrocytes. Furthermore, we looked into cell-adhesion molecules and 

identified the IgLON cluster of cell adhesion molecules. We could show that even a 

complex biological question, such as interaction partners on two different cell types, 

can be addressed using our datasets. A next step will be to check for potential 

regulators of oligodendrocyte differentiation. For instance, it would be interesting to 

search the database for all transcription factors, protein kinases and E3-ligases. 

Another option is to extend the analysis to gene products differently regulated in 

neurons of different time points. This could help to find further potential regulators of 

neuronal differentiation.  
 

Regardless the impressive numbers of identified proteins, we should keep in mind that 

all expression profiling experiments eventually just result in lists. These lists will only be 

meaningful in the biological context. Thus, promising candidates resulting from 

expression profiling experiments need to be further characterized in additional 

biological experiments. This includes the confirmation of expression, determination of 

subcellular localization, as well as loss-of-function and gain of function experiments. 

A clear bottleneck of such analysis will, then, be the generation of mouse models to 

study the in-vivo function. 
 

Recently developed mouse genetics methods such as the CRISP/Cas9 genome editing 

system might help to overcome such limitations. This system is based on the nuclease 

Cas9 and single guide RNAs (sgRNAs), which target the nuclease to specific DNA 

sequences. By co-injecting Cas9 mRNA, sgRNAs and DNA-fragments into zygotes, 

Yang et al. (2013) generated targeted mice within a few weeks. Using the same 

approach, Wang et al. (2013) generated mice with simultaneous deletions of up to five 

genes with an efficiency of 80 %. The use of such systems could, therefore, enable 

rapid generation of knockout mice for various candidate genes. Our proteomic 

database can serve as a valuable resource to identify appropriate candidate proteins 

for such studies. 
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Chapter V: Additional experiments 
 

In addition to the experiments described and discussed in the main parts of this thesis, 

I further worked on other projects. One project was to generate knockout mice to study 

the function of actin dynamics in oligodendrocytes in-vivo. 
 

Oligodendrocyte differentiation is accompanied by actin depolymerization 
 

When studying the in-vitro differentiation of oligodendrocytes, we observed that mature 

oligodendrocytes showed a marked decrease in filamentous actin as visualized by 

fluorescently labeled phalloidin (Fig. 5.1 a). We could further confirm this finding using 

biochemical fractionation of oligodendrocyte cultures at different time-points in-vitro 

(Fig. 5.1 b).  

Fig. 5.1: Actin depolymerization during oligodendrocyte differentiation. (a) Staining of in-

vitro differentiated oligodendrocytes for monomeric, globular actin (G-actin, green), filamentous 

acin (F-actin, red) and maturation marker MBP (cyan) shows decrease in filamentous actin upon 

maturation. (b) Ratio between filamentous and globular actin decreases upon differentiation of 

oligodendrocytes. HEK-293 cells without and with Latrunculin A were used as a control. 

Generation of a mouse model to study actin dynamics in-vivo 
 

We were wondering of actin depolymerization in oligodendrocytes is indeed relevant for 

oligodendrocyte differentiation and myelination in-vivo. Hence, we aimed to generate a 

mouse model in which actin depolymerization is distrubed in myelinating cells. 

The actin depolymerizing factor ADF/Destrin and Cofilin-1 (Cfl1) are the two major 

proteins that regulate actin depolymerization and both proteins are expressed in 

oligodendrocytes (data not shown). Therefore, we generated knockout mice in which 

Cfl1-expression was specifically impaired in myelinating glia using CNP-Cre. 
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Furthermore, we generated double knockout mice (DKO) which we also devoid of 

ADF/Destrin (Fig. 5.2 a, b).  

 
Fig. 5.2: Generation of ADF/Cfl1-knockout mice to study the role of actin dynamics in 
oligodendrocytes. (A) Breeding scheme for the generation of conditional Cfl1 knockout mice. 

(B) Scheme for the breeding of ADF/Cfl1-double knockout mice. (C) Genotyping of the different 

knockout mice. (D) Wildtype (left) and ADF/Cfl1-double knockout mouse (right) at P17. Double 

knockout mice show growth retardation, hindlimb clasping and die around P20. 
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The single knockout mice of ADF/Destrin were viable and did not show obvious clinical 

symptoms. The same was true for conditional Cfl1-knockout mice. Double knockout 

mice, in contrast, showed drastic symptoms of dysmyelination: The animals developed 

normally during the first week of life. Then, growth was retarded and subsequently the 

animals showed hindlimb clasping, paralysis of hindlimbs and shivering (Fig. 5.2 D). All 

of the double knockout mice died within the first three weeks of life. These findings 

show that actin depolymerization is indeed essential for the outgrowth of the myelin 

membrane, while stabilizing actin by knockout out depolymerizing factors results in 

disturbances in myelination. 
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