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1. Abstract 

Neuregulin (NRG) 1 contains an epidermal growth factor (EGF)-like signaling domain 

and serves as a ligand for receptor tyrosine kinases of the ErbB family. ErbB4, the 

main neuronal NRG1 receptor in the brain, is enriched in GABAergic interneurons. 

NRG1/ErbB4 signaling regulates different aspects of nervous system development 

and synaptic plasticity in the mature brain. Variants of the human NRG1 and ERBB4 

genes are genetic risk factors for schizophrenia, and inhibitory network dysfunctions 

have been implicated in schizophrenia. For NRG1 most of the at-risk haplotypes are 

located in non-coding regions, implicating that expression of NRG1 isoforms might 

be altered in SZ. In line with this, increased NRG1 expression and ErbB4 

hyperphosphorylation was observed in postmortem brains of schizophrenia patients, 

suggesting that NRG1/ErbB4 hyperstimulation represents a possible 

pathomechanisms in schizophrenia. To test this hypothesis several NRG1 loss- and 

gain-of-function mouse models were employed to examine effects of altered NRG1 

signaling on nervous system development and adult brain functions. 

Conditional ablation of NRG1 in the embryonic cortex (Emx-Cre*Nrg1f/f mice) had no 

effect on cortical development, whereas pan-neuronal overexpression of the CRD-

NRG1 isoform in transgenic mice lead to ErbB4 hyperactivation, altered numbers of 

cortical interneurons, changes in dendritic spine morphology, ventricular 

enlargement, increased anxiety-like behavior, and impaired sensorimotor gating. 

These data suggest that the human NRG1 risk haplotypes exert a gain-of-function 

effect. 

To study NRG1/ErbB4 hyperstimulation in a more selective in vivo model, a 

‚conditional’ transgenic mouse line (Stop-Nrg1) was generated, which allows Cre 

recombinase-mediated CRD-NRG1 overexpression. This mouse line was examined 

in combination with different Cre ‚driver’ lines to model distinct temporal and spatial 

aspects of CRD-NRG1 overexpression in the brain. Postnatal onset of CRD-NRG1 

overexpression had only minor effects on nervous system development and 

behavior, whereas early embryonic onset of NRG1 hyperstimulation lead to 

hyperactivity, consistent with the neurodevelopmental hypothesis of schizophrenia. 

Cortical-restricted CRD-NRG1 overexpression had no effect on ventricular size or 

sensorimotor gating, indicating functions of CRD-NRG1 signaling in subcortical 

networks. Finally, CRD-NRG1 was present in synaptosomal fractions and appears to 

recruit LIMK1-cofilin signaling, providing a potential mechanism for the regulation of 

dendritic spine dynamics. 
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2. Introduction 

2.1 The central nervous system 

The human brain is the most complex biological structure on earth. It performs a 

large variety of complex tasks, including the reception, processing, integration and 

storage of information. In addition, by controlling the central and peripheral nervous 

system it controls and adapts body functions and motor behavior.  

In the beginning of the 20th century Santiago Ramón y Cajal layed the foundation for 

our understanding of the nervous system by describing its central information 

processing unit, the neuron. The human brain consists of approximately 1011 neurons 

(Brose, 1999). These neurons are electrically excitable cells that form neuronal 

networks (Fig. 1). In order to achieve higher brain functions, neurons communicate 

with each other via two kinds of elaborations: multiple dendrites, which receive 

incoming informations and send them to the cell soma, and a single axon that passes 

electrical informations on to the next cell.  

If the electrical excitation of a neuron reaches a certain threshold, an action potential 

is generated at the axon hillock and travels along the axon and eventually reaches a 

nerve terminal, the synapse. Neurons communicate via 1014 to 1015 of these 

synapses (Brose, 1999). At the synapse the plasma membranes of two cells come 

into close proximity and form a synaptic cleft. Both, the pre- and the postsynaptic 

membrane are specialized to transmit information from one cell to another. Neurons 

communicate with each other through electrical and chemical signals. Besides rare 

electrical synapses, the majority of neurons in the vertebrate central nervous system 

(CNS) communicate via chemical synapses. During neuronal communication an 

action potential that reaches a synapse triggers the fusion of synaptic vesicles with 

the presynaptic membrane. These vesicles contain neurotransmitters, that are 

released into the synaptic cleft and thereby transform electrical information into 

chemical signals. Neurotransmitters bind to receptors in the postsynapse. Depending 

on the neurotransmitter released and the neurotransmitter receptor it binds to, 

different postsynaptic reactions are triggered. Two kinds of neurotransmitter 

receptors exist in the nervous system, ligand-gated (ionotropic) receptors and G-

protein-coupled (metabotropic) receptors. Ionotropic receptors can either be excited, 

by neurotransmitters like glutamate or aspartate, or inhibited by ligands like GABA or 

glycine. Metabotropic receptors are not directly channel-linked. Upon ligand binding a 

conformational change is induced, which allows the receptor to activate adapter 

molecules, so called G-proteins, by exchanging their bond GDP by GTP. Thereupon, 

the G-protein dissociates and effects intracellular signaling cascades, that ultimately 
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lead to ion channel opening or altered gene expression, and therefore can induce 

long-term changes in the activated cell (Kandel, 2013). 

Cortical networks comprise two classes of neurons: excitatory (mostly glutamatergic) 

pyramidal neurons and inhibitory (mostly GABAergic) interneurons (Fig. 1). 

Pyramidal neurons process sensory or motor informations and generate output 

signals, that control other parts of the nervous system and body, including muscles in 

the periphery. Interneurons connect locally between neurons, are typically inhibitory 

and modulate the activity of pyramidal neurons by finetuning their excitability. In line 

with their different function, pyramidal neurons and interneurons also originate from 

different brain regions and progenitor cells. While excitatory neurons derive from 

progenitors in the ventricular zone (VZ) of the pallium and migrate radially into the 

emerging neocortex, inhibitory neurons originate from several progenitor pools in the 

subpallium, from where they migrate along tangential routes to the developing 

neocortex, where they shift from tangential to radial migration and invade different 

neocortical cell layers (Marin, 2013; Marin and Müller, 2014). GABAergic 

interneurons can be classified into nearly 30 different subtypes based on molecular, 

morphological and physiological criteria (DeFelipe et al., 2013). Since they originate 

from distinct progenitor pools and adopt their final cortical position following specific 

rules, interneuronal migration is a highly complex process (Marin, 2013). 

Pyramidal neurons possess two kinds of dendrites. Basal dendrites elaborate from 

the side of the cell body from which also the axon originates. Apical dendrites 

originate from the opposite side. Dendrites of pyramidal neurons possess specific 

synaptic microdomains, the so-called dendritic spines, at which excitatory synapses 

terminate (Fig. 1). Dendritic spines are equipped with a postsynaptic density (PSD), 

which contains neurotransmitter receptors, ion channels and enzymes that serve in 

synaptic neurotransmission (Kennedy, 1997; Ziff, 1997). PSD95 (postsynaptic 

density protein of 95 kDa) is an important component of the PSD, involved in the 

molecular organisation of the postsynaptic complex. Pyramidal neurons form 

synapses with both other excitatory (glutamatergic) pyramidal neurons and inhibitory 

(GABAergic) interneurons (Markram et al., 2004). Excitatory synapses on pyramidal 

neurons are usually formed with dendritic spines. Inhibitory interneuron dendrites 

usually do not form dendritic spines and excitatory synapses on interneurons are less 

studied, however they are also equipped with a PSD. 
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Fig. 1: A cortical neuronal microcircuit. A central excitatory pyramidal neuron is innervated 
by different classes of interneurons. Basket cells target the soma and basal dendrites of 
pyramidal cells, whereas chandelier cells synapse on the axon initial segment (AIS). 
Martinotti and neurogliaform cells types contact pyramidal cell dendrites. Bipolar cells are 
specialized in targeting other interneurons (modified from Marin, 2012). 

 

About 20-30% of neocortical neurons are inhibitory interneurons. They are 

morphologically diverse and their precise classification is subject to ongoing 

discussion (see Fig. 1 and DeFelipe et al., 2013). Inhibitory interneurons use GABA 

as their main neurotransmitter. Inhibitory synapses to pyramidal neurons are usually 

formed with dendrites, the soma and the axonal initial segment (Freund and Buzsáki, 

1996; Benes and Berretta, 2001) and constitute up to 16 % of all synapses on 

cortical pyramidal neurons (Markram et al., 2004). Interneurons usually have smooth 

dendrites, without spines, and they receive excitatory and inhibitory synapses to their 

cell soma. Basket cells for instance usually form synapses with the perisomatic 

regions of pyramidal cells (Markram et al., 2004), whereas so-called „Chandelier“-

cells innervate the axonal initial segment and the axon hillock (Somogyi, 1977). 

„Neurogliaform“ and „double-bouquet“-cells on the other hand form synapses with 

dendrites of pyramidal cells (see Fig. 1 and Benes and Berretta, 2001; Markram et 

al., 2004). Apart from these innervation profiles, interneurons can also be classified 

via their molecular properties, the expression of certain marker proteins, usually 

calcium-binding proteins, such as parvalbumin (PV), calretinin or calbindin, but also 
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neuropeptides, including somatostatin, cholecystokinin (CCK), neuropeptide Y 

(NPY), and vasoactive intestinal peptide (VIP) (Freund and Buzsáki, 1996; DeFelipe 

et al., 2013). A newly imerging criterium is the origin of interneuron subpopulations, 

whether they originate from the medial ganglionic eminence (MGE), lateral and 

dorsocaudal ganglionic eminence (CGE) or the preoptic area (POA). Yet another is 

the classification via electrical properties. Interneurons exhibit a variety of different 

firing patterns, including “fast-spiking” (FS) and “Non-adapting, non-fast-spiking” (NA-

NFS) cells (reviewed in DeFelipe et al., 2013). Parvalbumin-positive (PV+) 

interneurons for instance are usually fast-spiking interneurons that play an important 

role in the synchronization of pyramidal cell activity and the generation of -

oszillations (Bartos et al., 2007). 

Besides neurons, the nervous system consists of another, even more abundant cell 

type, the glial cells (Fig. 2). In fact glial cells outnumber neurons by 10 to 15 times 

(Kandel, 2013). The name glia comes from the Greek word for glue, because these 

cells were first thought to glue together nervous tissue. In addition to the stabilizing 

function, glial cells have been shown to provide several important functions, including 

myelination and metabolic support of axons. 

Glial cells can be subdivided into two different cell classes, micro- and macroglia. 

While microglia are specialized macrophages, that are mobile, serve immune 

functions and protect the nervous system, CNS macroglia can be further divided into 

oligodendrocytes and astrocytes (Fig. 2).  

The main function of oligodendrocytes is the insulation of axons of the central 

nervous system. By enwrapping axons with multiple layers of extended plasma 

membrane they produce a densly packed insulating sheath, the so-called myelin 

sheath (Fig. 2A). Because voltage-dependent sodium channels are only present at 

the nodes of ranvier, action potentials jump from node to node, in saltatory impulse 

propagation, increasing propagation speed by ~100-fold and reducing space and 

energy consumption (Garbay et al., 2000; Salzer, 2003). Unlike Schwann cells in the 

PNS, one oligodendrocyte can myelinate multiple axonal segments (Fig. 2A). Recent 

results also suggest a metabolic support function for axons, that is required for 

functional integrity and long-term survival (Funfschilling et al., 2012; Saab et al., 

2013). 

Astrocytes are named after the Greek word for star (‚astron’) because of their 

numerous projections giving them a star shape and allow them to connect to blood 

vessels and other cells. They are the most abundant cell type in the human brain and 

support endothelial cells in building the blood-brain barrier. Thereby they provide 
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nutrients to the nervous tissue and also regulate the external chemical environment 

by removing excess ions, especially K+ ions. Perinodal astrocytes contact the nodes 

of ranvier of CNS myelin, where they are thought to buffer the extracellular ion 

concentrations, but also stabilize the nodes and provide nutrients (see Fig. 2A and 

Black and Waxman, 1988). According to the tripartite synapse theory astrocytic 

processes engulf neuronal synapses and not only recycle neurotransmitters, but are 

also thought to modulate synaptic efficacy by release of „gliotransmitters“, like 

glutamate or ATP (see Fig. 2B and Lalo et al., 2009; Santello and Volterra, 2009). 

 

 

Fig. 2: Glial cells of the central nervous system. (A) Oligodendrocytes are the myelin 
forming cells of the CNS. In contrast to Schwann cells in the PNS, oligodendrocytes engulf 
multiple axonal segments with a myelin sheath. The myelin sheath speeds up neuronal signal 
propagation by saltatory impulse propagation. Perinodal astrocytes contact the nodes of 
ranvier, where they buffer the extracellular ion concentrations, stabilize the nodes and provide 
nutrients (modified from Poliak and Peles, 2003). (B) Astrocyte processes engulf neuronal 
synapses and form the so-called tripartite synapse. Astrocytes recycle neurotransmitters and 
modulate synaptic efficacy by releasing „gliotransmitters“ (modified from Allen and Barres, 
2009). 

 

Taken together the central nervous system is a highly complex and dynamic 

structure, which comprises multiple cell types. By cell-cell communication the 

nervous system can dynamically adapt and rewire, for instance during learning when 
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new synaptic connections are formed or some axonal pathways are strengthened, 

while others are retracted during development. 

Apart from electrical and neurotransmitter-mediated neuronal communication, 

communication modules, consisting of ligands and receptors, regulate essential 

processes of neuronal development and maintenance. These modules are potentially 

involved in functions like neuronal migration, synapse formation and cortical network 

establishment and myelination. Defects in these signaling modules can result in 

impaired neuronal development and abnormalities in synaptic signaling, 

dysconnectivity, neuroinflammation and -degeneration. Ultimately, these processes 

can precipitate neurodegenerative diseases, e.g. Alzheimers disease or 

neuropsychiatric disorders such as schizophrenia. 

 

2.2 Schizophrenia 

Schizophrenia (SZ) is a devastating mental illness that affects an estimated 0.5 to 1 

% of the general population world wide. The estimated financial burden to the 

European health care systems is 30 billion € annually. SZ has been considered a 

neurodegenerative disorder by some, but the most established data suggest that SZ 

is a late onset neurodevelopmental disorder. The age of onset of the disease is 

usually in late adolescence or during early adulthood. Data suggest that SZ is 

affecting glutamatergic, dopaminergic and GABAergic cortical microcircuits directly or 

indirectly, as well as grey and white matter (Harrison and Weinberger, 2005; Owen et 

al., 2005). No clear causal genetic, biochemical or pathophysiological relationships 

have been identified yet. Thus, a clear classification of the disease by hallmark 

biomarkers is not possible. The diagnoses of SZ is based on characterization of 

behavioral phenotypes of patients (Andreasen, 1995; McKenna, 2013). These 

psychological and cognitive impairments can be grouped into positive (delusions, 

hallucinations and thought disorder) and negative symptoms (social withdrawal, 

cognitive deficits) (Harrison, 1999; McGuffin et al., 2004). Problems of establishing 

the validity and boundaries of SZ diagnosis, as in any syndromal diagnosis, exist, 

impacting on research regarding its pathological basis and causative genes 

(Jablensky, 1995; Kennedy, 1996). Although a clear cause of SZ is lacking, twin 

studies suggest a significant genetic component based on a 50 % concordance in 

monozygotic twins. These studies also showed that SZ has a 80 % heritability 

(Gottesman, 1991; McGuffin et al., 2004). In addition to a genetic predisposition, 

exposure to environmental factors seems to impact greatly on developing SZ. 
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Environmental stressors that can occur in early development, during pregnancy or 

childhood, include for instance social stress or drug abuse. During adolescence, 

environmental factors can further damage the brain (Leask, 2004). 

A number of morphological abnormalities have been identified in schizophrenia, 

including ventricular enlargement and reduced cerebral (cortical and hippocampal) 

volume. In addition alterations in synaptic, dendritic and axonal organization have 

been observed. Advances in microscopy enabled extensive studies of dendritic and 

axonal structures as well as synapses in postmortem tissue of SZ patients. These 

studies have shown abnormalities in neuronal processes and reduction of dendritic 

spines in SZ tissue (Moyer et al., 2014), suggesting SZ to be a synaptic disorder. 

These structural changes are supported by functional studies. Aberrant activity in the 

components of cortical circuits, involving the prefrontal cortex (PFC), the 

hippocampus and certain subcortical structures, like the dorsal thalamus, has been 

demonstrated through functional imaging data. Neuronal dysconnectivity between 

aforementioned brain regions is thought to result from functional abnormalities 

(Harrison, 1999).  

Genome-wide association studies (GWAS) have identified multiple candidate genetic 

risk factors for SZ (>100). Alongside the ‚classic’ SZ at-risk locus disrupted in 

schizophrenia-1 (DISC1), the Neuregulin (NRG) 1 gene has emerged as a major risk 

gene for SZ (Harrison, 2015). NRG1 and its major brain receptor ErbB4 (see below) 

are embedded in a pathway of SZ risk factors also comprising PI3K–AKT1. 

Dysregulated expression of such signaling modules could trigger abnormal activity in 

the signaling pathways they are embedded in and thereby ultimately lead to 

morphological and physiological dysfunctions with relevance for neuropsychiatric 

disorders, including SZ. 

Although none of these genes alone is significant in GWAS studies, there is evidence 

for the involvement of all four genes in SZ (Emamian et al., 2004; Harrison and Law, 

2006; Norton et al., 2006a; Nicodemus et al., 2010; Law et al., 2012; Hatzimanolis et 

al., 2013). 

 

2.3 Neuregulin1 isoforms 

The NRG1 gene belongs to a gene family, which includes six members (NRG1, 

NRG2, NRG3, NRG4, NRG5 and NRG6), with NRG1 being the best characterized 

(Falls, 2003; Mei and Nave, 2014). NRG1 is one of the largest mammalian genes 

(1.4 megabases in humans), located on the short arm of chromosome 8. Due to 

alternative splicing and differential promoter usage, the NRG1 gene gives rise to a 
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family of growth and differentiation factors with more than 30 different isoforms (see 

Fig. 3 and Steinthorsdottir et al., 2004). NRG1 isoforms include secreted and 

transmembrane proteins, all of which share a common epidermal growth factor 

(EGF)-like signaling domain that is necessary and sufficient for the activation of 

receptor-tyrosine kinases of the ErbB family (Falls, 2003). The EGF-like domain exist 

in an -, and -form, with the binding affinity of the β-form being 100-fold stronger 

than the -form (Jones et al., 1999). NRG1 isoforms can be grouped into six main 

classes (types I – VI; see Figure 3 and Mei and Xiong, 2008) based on distinct N-

terminal domains. Types IV to VI have not been extensively characterized and will 

not be further discussed in this thesis.  

 

 
 

Fig. 3: NRG1 isoforms. (A) Alternative splicing and differential promoter usage give rise to at 
least 30 NRG1 isoforms that can be grouped into six classes based on N-terminal protein 
domains. All NRG1 isoforms share a common EGF-like domain. Ig-NRGs (Type I, II, IV and 
V) carry an immunoglobulin (Ig)-like domain. The N-terminal domain of NRG1 type III 
(cystein-rich domain; CRD) habors a second transmembrane domain (TMn). (B) Most NRG1 
isoforms are produced as transmembrane proteins, also referred to as pro-NRG1s, which 
undergo proteolytic cleavage in the juxtamembrane linker (‚stalk’) region (flash) by proteases 
such as BACE1 or ADAMs metalloproteases, generating soluble („mature“) NRG1s. In case 
of NRG1 type III, the processed form remains membrane thethered due to the second TMn 
(modified from Mei and Xiong, 2008). 
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NRG1 type I, II, IV and V isoforms contain an immunoglobulin (Ig)-like domain 

between the N-terminal sequence and the EGF-like domain, and are therefore 

referred to as “Ig-NRGs” (see Fig. 3 and Harrison and Law, 2006; Mei and Xiong, 

2008). Members of the type I group were identified independently and originally 

named heregulin (Holmes et al., 1992), acetylcholine receptor-inducing activity 

(ARIA) (Falls, 2003), or neu-differentiation factor (NDF) (Wen et al., 1992). The type 

II isoforms, also referred to as glial growth factor (GGF) (Marchionni et al., 1993), 

harbor a “kringle” domain, located N-terminally to the Ig-like domain. Sensory and 

motor neuron derived factor (SMDF) (Ho et al., 1995), nowadays referred to as 

NRG1 type III, harbors a cystein-rich domain (CRD) that serves as a second 

transmembrane domain (Fig. 3). These isoforms are also known as “CRD-NRGs” 

(Falls, 2003). Additional NRG1 variants are generated by splicing different linkers 

into the juxtamembrane ‘stalk’ region. Finally, the cytoplasmic tail of NRG1 is 

structurally variable, as isoforms of different length (a, b, c) exist (Wen et al., 1994) 

(Fig. 3). 

Further complexity is added to NRG1 signaling by posttranslational modifications, 

e.g. glycosylation (Burgess et al., 1995), and proteolytic processing (Fig. 3B). NRG1 

is cleaved in the stalk region by proteases such as BACE1 (-site APP-cleaving 

enzyme) (Hu et al., 2006, 2008; Willem et al., 2006) and metalloproteases of the 

ADAMs family, ADAMS17 (or tumor-necrosis factor‐ -converting enzyme; TACE), 

and ADAMS19 (or Meltrin beta) (Horiuchi et al., 2005; Yokozeki et al., 2007). While 

processing in the stalk region releases extracellular parts of NRG1 type I and type II 

proproteins from the cell surface for paracrine signaling, the N-terminal fragment of 

the type III isoforms, is thought to remain membrane anchored (Fig. 3B). Their 

signaling is thought to proceed in a juxtacrine fashion (Mei and Xiong, 2008). 

However, it has recently been shown that further processing of type III isoforms 

releases the EGF-like domain, allowing paracrine signaling (Birchmeier and Nave, 

2008; Willem et al., 2009; Fleck et al., 2013). 

In addition to EGF-like domain-mediated ‚forward signaling’ to ErbB4, the intracellular 

C-terminal domain of NRG1 (NRG1-ICD or -CTF) has also been linked to signaling 

processes (Fig. 6). Specifically, it has been shown that after initial extracellular 

cleavage, -secretase can cleave the C-terminal domain, releasing the NRG1-ICD 

(Mei and Xiong, 2008; Talmage, 2008). NRG1-ICD signaling is of relevance for 

neuropsychiatric diseases, as a schizophrenia at risk mutation (substitution at valine 

321) results in a NRG1 type III protein that fails to undergo -secretase-mediated 

cleavage and nuclear localization. Pharmacological and genetic studies have shown 
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that this mutation impairs dendritic development independent of ErbB kinase activity 

(Chen et al., 2010).  

Finally, NRG1 isoform expression has been shown to be differentially regulated 

during development. The most prominant isoforms in the human and rat brain are 

type III and type II isoforms, followed by type I and type V. It is important to note that 

all isoforms show dynamic expression profiles during developmental stages with 

expression peaks during early embryonic stages (embryonic day (E) 13) and around 

postnatal day (P) 5, suggesting functions in early neural development and the 

neonatal critical period. Most of the NRG1 isoforms are expressed by excitatory 

neurons, but are also present in GABAergic interneurons and astrocytes (Liu et al., 

2011). NRG1 expression is also regulated by neuronal activity. Using a rat model of 

epileptic seizures induced by kainic acid (KA) treatment, type I and II isoforms were 

found to be significantly upregulated, while KA treatment had no effect on the 

expression of types III, V and VI isoforms. (Liu et al., 2011), suggesting isoform-

specific  regulation of distinct NRG1 isoforms. 

In 2002, NRG1 was identified as a SZ susceptibility gene by fine mapping of the 

locus on chromosome 8p22 and haplotype association analysis performed in families 

of Icelandic origin. A „core at-risk” region in the 5’ region of the NRG1 gene was 

identified and named the "Icelandic haplotype" by Stefansson et al. (2002). This 

region surrounds an exon that encodes the NRG1 type II-specific domain. Several 

but not all subsequent studies in other populations have replicated the association to 

SZ, hence NRG1 has been on and off the lists of major SZ risk genes since then 

(Harrison and Weinberger, 2005). However, of the 23.094 single nucleotide 

polymorphisms (SNPs) found in the human NRG1 gene approximately 40% have 

been linked to SZ. ErbB4, the most prominent NRG1 receptor in the brain, has as 

well been identified as a SZ at risk gene in several studies (Nicodemus et al., 2006; 

Silberberg et al., 2006; Law et al., 2007). Both genes are on the list of major SZ 

susceptibility genes (for both NRG1 and ErbB4 see Schizophrenia Gene Resource, 

Vanderbilt University; http://bioinfo.mc.vanderbilt.edu/SZGR). 

 

2.4 The ErbB receptor family 

NRG1 signals via its EGF-like domain to receptor tyrosine kinases of the ErbB family 

(Mei and Xiong, 2008). The family name derives from the erythroblastic leukemia 

viral oncogene (v-erbB). ErbB receptors play an important role in the development of 

the heart and in different types of cancer. In the nervous system, ErbB receptors 

have been implicated in the regulation of a variety of neuronal developmental 

http://bioinfo.mc.vanderbilt.edu/SZGR
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processes, including neuronal migration, Schwann cell- and oligodendrocyte-

mediated myelination, axon guidance, synapse and neuromuscular junction 

formation (Mei and Xiong, 2008). 

ErbB receptors are structurally related to the epidermal growth factor receptor 

(EGFR, HER or ErbB1), which was identified in the early 1980s. Since then the ErbB 

family has grown to four members, ErbB1 to 4, which together integrate at least 11 

different ligands (Yarden and Sliwkowski, 2001). ErbB transmembrane receptors 

have similar structures, with a large glycosylated extracellular N-terminal domain that 

carries the ligand binding site (seperated into four subdomains) (Fig. 4, 5). The 

cystein-rich domains II and IV can form 25 disulfide-bridges and play an important 

role in receptor dimerization (Fig. 4). All receptors have a transmembrane domain 

and a cytoplasmic tyrosine kinase domain with several potential tyrosine 

phosphorylation sites (Linggi and Carpenter, 2006). Upon ligand binding 

conformational changes are induced that render a dimerization arm accessible and 

allow the receptors to form homo- and heterodimers (Burgess et al., 2003), followed 

by activation of the intracellular tyrosine kinase domain. Dimerized receptors then 

auto- and transphosphorylate themselves at the C-terminus (Fig. 4). This process 

was shown to depend on receptor endocytosis (Gu et al., 2005; Yang et al., 2005; 

Liu et al., 2007). The intracellular phosphorylated tyrosine-residues then serve as 

binding sites for adaptor proteins that stimulate downstream signaling cascades. 

ErbB receptors differ in their function. ErbB1 does not to bind NRG1, but is activated 

by at least seven other ligands, including EGF, TGF-, and heparin-binding EGF-like 

growth factor (HB-EGF). Also ErbB2 (also known as Her2 or Neu) does not bind 

NRG1, as it has an impaired ligand binding domain and functions only as a 

coreceptor (see Fig. 4 and Klapper et al., 1999). Although ErbB2 can not bind 

ligands, its conformation allows dimerization without ligand binding. ErbB2 is the 

preferred dimerization partner for other ErbBs, as heterodimers involving ErbB2 have 

a higher ligand affinity (Citri et al., 2003). In addition, interaction with ErbB2 allows its 

dimerization partners to bind additional ligands (Citri et al., 2003). 

ErbB3 (also known as Her3) binds NRG1 and NRG2. Since ErbB3 is lacking a 

functional kinase domain, it must form heterodimers with other ErbB receptors in 

order to convey signals (see Fig. 4 and Guy et al., 1994). Thus, ErbB4, which binds 

to all NRGs, epiregulin, betacellulin and HB-EGF, is the only receptor that can form 

functional NRG-binding homodimers (Fig. 5). In addition, it forms heterodimers with 

all other ErbBs (Mei and Xiong, 2008). Although ErbB2 and ErbB3 alone are inactive, 

in vitro studies have shown that they form the most potent heterodimer to regulate 

cell growth and transformation (Wallasch et al., 1995; Pinkas-Kramarski et al., 1996). 
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In summary the following functional ErbB receptor dimers can be activated by NRG1 

binding: ErbB1-3, 1-4, 2-3, 2-4, 3-4, 4-4 (Mei and Xiong, 2008). 

 

 
 

Fig. 4: ErbB receptors: ligand binding and receptor dimerization. Binding of NRG 
molecules to ErbB receptors is illustrated for an ErbB2/ErbB3 heterodimer. ErbB2 has an 
inactive ligand-binding site and only functions as a co-receptor. ErbB3 is lacking an active 
intracellular kinase domain and also only functions as a heterodimer. Conformational changes 
are induced by ligand binging and result in receptor dimerization, which leads to auto- and 
transphosphorylation of intracellular tyrosin residues and recruitment of adaptor proteins, and 
activation of downstream signaling cascades (modified from Citri et al., 2003). 
 

Activation of ErbB receptors and recruitment of adaptor proteins triggers intracellular 

signaling pathways that regulate cellular responses, including stimulation or inhibition 

of proliferation, apoptosis, migration, differentiation, and adhesion (Yarden and 

Sliwkowski, 2001). 

 

2.5 The ErbB4 receptor 

Analyses of ErbB receptor expression patterns and functions revealed that ErbB4 is 

the main neuronal receptor for NRG1 in the brain (Fig. 5). ErbB4 is predominantly 

expressed by the majority of PV+ interneurons (Neddens and Buonanno, 2009, 2011; 

Vullhorst et al., 2009; Neddens et al., 2011). Similar to the multimodal signaling 

properties of NRG1, ErbB receptors exhibit different signaling properties. In 

canonical forward signaling, the aforementioned auto- and transphosphorylation and 

recruitment of adaptor proteins triggers intracellular signaling pathways, including the 

Raf–MEK–ERK and PI3K–AKT–S6K pathways (Si et al., 1999; Fu et al., 2001; 

Yarden and Sliwkowski, 2001; Bjarnadottir et al., 2007). 

Similar to NRG1, ErbB4 transcripts are alternatively spliced, resulting in four different 

isoforms by differential pairing of the cytoplasmic C-terminal CYT-1 and CYT-2 

domains and the extracellular („juxtamembrane“) JMa and JMb domains. The four 
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ErbB4 isoforms show distinct tissue- and brain-region-specific expression patterns 

and trigger distinct signaling cascades. Both cytoplasmic isoforms regulate DNA 

synthesis and proliferation by activation of the Shc–Ras–MAPK signaling pathway. 

However, only the CYT‐ 1, but not CYT‐ 2 isoform, can activate PI3K and 

subsequently AKT (see Fig. 5 and Elenius et al., 1999), that regulates chemotaxis 

and apoptosis (Elenius et al., 1997; Sawyer et al., 1998; Junttila et al., 2000; 

Kainulainen et al., 2000; Rio et al., 2000; Lewis et al., 2005; Norton et al., 2006b). 

Both JMa and JMb can bind NRG1, but only JMa is a substrate for TACE-mediated 

cleavage and release of an extracellular domain of ErbB4 (ecto-ErbB4, Fig. 5) 

(Sawyer et al., 1998; Rio et al., 2000; Cheng et al., 2003; Arasada and Carpenter, 

2005). TACE-mediated cleavage is part of non-canonical ErbB4 forward signaling 

(Fig. 6) and mediated by ligand-binging or protein kinase C (PKC) activity (Vecchi et 

al., 1996; Zhou and Carpenter, 2000; Zhu et al., 2000). This first cleavage renders 

the remaining protein fragment accessible to -secretase-mediated cleavage and 

release of the ErbB4 intracellular domain (ErbB4-ICD), similar to NRG1-ICD 

cleavage (Fig. 6). The ErbB4-ICD can be translocated into the nucleus and is thought 

to act as a chaperon that promotes the nuclear transport of transcription factors 

STAT5 (signal transducer and activators of transcription) and YAP1 (Yes-associated 

protein-1), thereby regulating gene expression (Ni et al., 2001; Lee et al., 2002; 

Komuro et al., 2003; Omerovic et al., 2004; Williams et al., 2004; Sardi et al., 2006; 

Mei and Xiong, 2008). 
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Fig. 5: Splice isoforms of the ErbB4 receptor. (A) Four different ErbB4 variants are 
produced by alternative splicing of juxtamembrane regions JMa or JMb and the cytoplasmic 
CYT-1 or CYT-2 domains. (B) ErbB4 is produced as a singlepass membrane protein with two 
extracellular cysteine-rich (CRD) domains, important for receptor dimerization. Only the JMa 
region is a substrate of TACE-mediated cleavage (flash) and release of the extracellular 
domain of ErbB4 (ecto-ErbB4). Both cytoplasmic isoforms can activate the Shc-Ras-MAPK 

signaling pathway, but only the CYT‐ 1 containing variant activates PI3K and AKT signaling 

(modified from Mei and Xiong, 2008). 

 

ErbB4, as the only member of the ErbB family, contains a C-terminal T-V-V peptide 

motive that allows the interaction with PDZ-domains of other proteins (Garcia et al., 

2000). PDZ were originally identified in PSD95 (Cho et al., 1992; Kistner et al., 1993) 

and a colocalization of ErbB4 and PSD95 was observed in the excitatory 

postsynapse (Garcia et al., 2000; Huang et al., 2000; Ma et al., 2003). It has been 

suggested that ErbB4/PSD95 signaling could potentially modulate NMDA and AMPA 

receptor functions and K+ channels (Kim and Sheng, 2004). Thus, interactions of 

ErbB4 with synaptic proteins, like the scaffold protein PSD95, could link NRG1/ErbB4 

signaling to synaptic organization by impacting on synaptic integrity and function. 

 

2.6 NRG1/ErbB4 signaling in cortical networks during health and 

disease 

NRG1 and ErbB4 are implicated in regulating various aspects of neural development, 

including proliferation, migration and differentiation. Dysfunctions in these processes 
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have been considered relevant for neuropsychiatric disorders, including SZ, as 

reduced numbers of inhibitory interneurons (Benes et al., 1991; Chance et al., 2005; 

Holt et al., 2005; Levitt, 2005; Heckers and Konradi, 2014), as well as reduced 

expression of GAD67 in PV+ interneurons of the dorsolateral prefrontal cortex and 

disturbed inhibitory functions (Benes et al., 1991; Akbarian et al., 1995; Hashimoto et 

al., 2003; Lewis et al., 2005; Farzan et al., 2010; Ongür et al., 2010; Yoon et al., 

2010) have been described in cases of SZ. In addition, alterations in dendritic spines 

(Penzes et al., 2011) and deficits in cortical synchronization were observed in SZ 

(Uhlhaas and Singer, 2010). 

Most of the NRG1 at-risk haplotypes have been mapped to the non-coding region of 

the NRG1 gene (Stefansson et al., 2002; Weickert et al., 2012), suggesting that 

rather than altered protein functions per se, changes in NRG1 expression levels 

could cause abnormal NRG1 functions in SZ. Indeed reduced and increased NRG1 

expression were found in postmortem studies of SZ patients (Law et al., 2006; 

Bertram et al., 2007), including elevated expression of CRD-NRG1, the predominant 

isoform of NRG1 in the human brain (Liu et al., 2011; Weickert et al., 2012). In 

addition, NRG1-induced ErbB4 hyperphosphorylation was observed in postmortem 

brains of SZ patients supporting this idea (Hahn et al., 2006). 

By in situ hybridization and immunostainings, NRG1 expression has been detected in 

pyramidal neurons of the human and rat cortex and hippocampus, for instance in 

hippocampal CA3 pyramidal neurons, that form the Schaffer collaterals by projection 

to CA1 neurons (see Fig. 7 and Law et al., 2004; Okada and Corfas, 2004). ErbB4 

on the other hand is expressed by GABAergic interneurons (see Fig. 7 and Neddens 

and Buonanno, 2009, 2011; Vullhorst et al., 2009; Neddens et al., 2011) and has 

been colocalized with PSD95 in the excitatory postsynapse (Garcia et al., 2000; 

Huang et al., 2000). Interaction of ErbB4 with PSD95 has been shown to increase 

the activation of the receptor by NRG and subsequent MAP-kinase signaling (Huang 

et al., 2000). The postulated localization of NRG1 and ErbB4 suggests a potential 

involvement in the regulation of neuronal migration, synaptic plasticity and pyramidal 

neuron-interneuron interaction (Fig. 6, 7). 

Modelling loss- and gain-of-functions of NRG1 and ErbB4 in cell culture and 

transgenic mouse models has become a valuable tool to study their functions in vitro 

and in vivo. These approaches have delivered important insights into NRG1/ErbB4 

signaling functions during the formation and maintenance of cortical circuitry under 

normal and disease conditions. 

Due to a heart defect, ErbB4 null mutant mice die at E10.5 (Gassmann et al., 1995), 

only when ErbB4 is expressed under a heart-specific myosin-promoter („heart 
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rescue“, ErbB4-/- HER4heart) the null mutant is viable (Tidcombe et al., 2003). Such 

genetic ablation of ErbB4 in mice was shown to impair GABAergic interneuron 

migration from the subpallium to the cortex (Flames et al., 2004), and thalamo-

cortical axonal pathfinding (López-Bendito et al., 2006). Interneurons ultimately fail to 

reach the cortex, leading to reduced numbers of GABAergic interneurons in ErbB4-/- 

mice (Flames et al., 2004; Neddens and Buonanno, 2009). In line with this, ErbB4-/- 

mutant mice have comprised inhibitory circuits (Neddens and Buonanno, 2009; 

Fazzari et al., 2010; Wen et al., 2010; Del Pino et al., 2013).  

Treatment of hippocampal slices with soluble NRG1 was shown to block LTP (Huang 

et al., 2000; Kwon et al., 2005; Bjarnadottir et al., 2007). Concordantly, acute 

treatment of hippocampal slices from ErbB4-/- mice with soluble NRG1 had no effect 

on LTP (Pitcher et al., 2008). Conversely, acute blocking of ErbB kinase activity in 

hippocampal slices prevented this blockade, and ablation of ErbB4 in ErbB4-/- mice 

was shown to result in enhanced LTP at the Schaffer-collateral CA1 synapse (Pitcher 

et al., 2008; Chen et al., 2010; Shamir et al., 2012). In addition, loss of ErbB4 also 

lead to enhanced limbic epileptogenesis, an effect reversed by soluble NRG1 

incubation (Li et al., 2011; Tan et al., 2011), demonstrating an important role of 

NRG1/ErbB4 signaling in balancing inhibitory circuit activity. 

Further, ErbB4-/- and PV+ interneuron-restricted PV-Cre*ErbB4-/- mice were shown to 

exhibit novelty-induced hyperactivity and deficits in prepulse inhibition (PPI), in line 

with findings in SZ patients. Interestingly, only ErbB4-/- mice, but not PV-Cre*ErbB4-/- 

mutants, showed reduced anxiety-like behavior and impairments of contextual and 

cued fear memory, in line with broad ErbB4 expression in PV- cells of the amygdala 

(Shamir et al., 2012; Yin et al., 2013b). Further, combined ablation of ErbB2 and 

ErbB4 in the CNS of mice impaired NMDA receptor/PSD95 clusters and dendritic 

spine maturation, increased aggressive behavior and reduced PPI (Barros et al., 

2009). 

Many in vitro and slice culture studies on NRG1/ErbB4 signaling have used the 

recombinant EGF-like signaling domain (commonly referred to as “soluble NRG1”). 

These studies have for instance shown that treatment of cultured neurons or brain 

slices with soluble NRG1 modulates glutamatergic, GABAergic cholinergic and 

dopaminergic neurotransmission (Gu et al., 2005; Kwon et al., 2005; Woo et al., 

2007; Ting et al., 2011). For instance, treatment of cultured prefrontal cortex 

pyramidal neurons with the recombinant EGF-like domain was shown to reduce 

NMDA receptor-mediated excitatory postsynaptic currents (EPSC) (Gu et al., 2005), 

and treatment of hippocampal slices resulted in reduced AMPA receptor-mediated 

EPSCs and triggered the internalization of surface glutamate receptor 1-containing 
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AMPA receptors (Kwon et al., 2005). Soluble NRG1 also promoted dendritic spine 

maturation (Barros et al., 2009).  

In line with this, Thy1.2-mediated overexpression of CRD-NRG1 in mice (NRG1-tg) 

reduced LTP and altered dendritic spine morphology. Conditional inactivation of 

NRG1 from projection neurons, using CamKII-Cre driver mice, had a similar effect on 

LTP, suggesting an inverted U-shaped model (Agarwal et al., 2014). In line with this, 

a disturbed excitatory/inhibitory (E/I) balance was found CA1 pyramidal neurons in 

both NRG1-tg and CamKII-Cre and Emx1-Cre*Nrg1f/f mutant mice. NRG1 

overexpression lead to increased IPSC frequencies, but not amplitudes, suggesting 

that NRG1 overexpression shifts the E/I synaptic balance towards enhanced 

inhibition, probably by increased GABAergic input (Agarwal et al., 2014). Alterations 

in the E/I balance were suggested to result in deficits in cortical synchronization as 

implicated in SZ (Uhlhaas and Singer, 2010). However, it is important to note that 

studies with isoform-specific mouse mutants revealed that the structural variability of 

NRG1 isoforms and their different expression patterns translate into differential 

functions (Meyer et al., 1997; Wolpowitz et al., 2000). Thus, only overexpression of 

CRD-NRG1 impaired LTP, whereas overexpression of Ig-NRG1 impaired -

oscillations, but not LTP (Deakin et al., 2012). In line with isoform-specific functions 

of NRG1 variants, the migration of GABAergic interneurons from the subpallium to 

the developing cortex is regulated by an interplay of long- and short-range attractive 

signals of distinct NRG1 isoforms and ErbB4 receptors. CRD-NRG1 isoforms form a 

permissive corridor along which interneurons migrate, while Ig-NRGs form a 

diffusible signal attracting them toward the cortex (Flames et al., 2004). 

Alterations in dendritic spines have been observed in several SZ cases (Penzes et 

al., 2011). NRG1/ErbB4 signaling has been linked to synaptogenesis, neurite 

outgrowth and dendritic spine dynamics. Mice lacking BACE1 displayed reduced 

numbers of dendritic spines in hippocampal neurons and exhibit SZ-relevant 

phenotypes, including reduced PPI and novelty-induced hyperactivity (Savonenko et 

al., 2008), suggesting that proteolytic processing of NRG1 is important for its 

signaling functions in cortical networks. In a recent study, the NRG1-ICD and -

secretase subunit APH1B were linked to dendritic spine formation (Fazzari et al., 

2014), indicating that CRD-NRG1 backsignaling might play an important role in the 

regulation of synaptogenesis and synaptic plasticity in vivo. A SZ at-risk mutation in 

NRG1, a valine-to-leucine substitution at valine 321 prevents -secretase-mediated 

NRG1 cleavage, subsequent nuclear localization, and transcriptional activation. 

Further, this mutation was shown to impair dendritic development independent of 
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ErbB receptor kinase activity (Chen et al., 2010), underlining the cell autonomous 

backsignaling properties of CRD-NRG1 and their relevance for SZ (Fig. 6).  

 

 

Fig. 6: Model of canonical and non-canonical NRG1/ErbB4 signaling. Both NRG1 and 
ErbB4 can serve as ligand and receptor. Canonical forward signaling includes cleavage 
(flash) of NRG1 in the stalk-region, followed by paracrine or juxtacrine signaling to ErbB4, 

which triggers downstream signaling cascades (ERK, PI3K). -secretase mediated ErbB4 
cleavage induces ErbB4-CTF-mediated non-canonical forward signaling, including nuclear 
translocation and altered gene expression. TACE-mediated extracellular cleavage of ErbB4 

produces ecto-ErbB4, which can signal to NRG1, possibly inducing -secretase-mediated 
NRG1 cleavage, nuclear translocation of the NRG1-ICD and altered gene expression. 
Interaction of the NRG1-ICD with LIMK1 may also trigger backward signaling possibly 
involved in actin cytoskeleton remodelling and dendritic spine dynamics (modified from Mei 
and Xiong, 2008). 
 

Apart from its functions in transcriptional regulation, interaction of the NRG1-ICD with 

LIM Kinase 1 (LIMK1) was reported (see Fig. 6 and Wang et al., 1998). LIMK1 is a 

LIM and PDZ domain containing kinase, which has been implicated in the modulation 

of dendritic spines by regulating actin cytoskeleton dynamics. Abnormalities in spine 

morphology and synaptic functions have been reported for LIMK1-/- mice (Meng et 

al., 2002, 2003). LIMK1 and its family member LIMK2 are key regulators of the actin 

depolymerizing factor cofilin. LIMK1 itself is regulated via phosphorylation by Rho 

GTPase-associated protein kinases PAK and ROCK (Edwards et al., 1999; 

Maekawa et al., 1999), and thus links Rho GTPases Rac, Rho and Cdc42 (Arber et 

al., 1998; Yang et al., 1998) to actin reorganization. Many of these interaction 

partners have also been implicated as downstream targets of ErbB signaling, thus 
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strengthening the importance of LIMK1 interactions with NRG1/ErbB4 signaling in 

the context of dendritic spine remodelling and synaptic plasticity. This is supported by 

a recent study in which it was shown that overexpression of the NRG1 type I isoform 

in transgenic mice alters LIMK1 expression and cofilin phosphorylation. Interestingly, 

these findings were partly independent from ErbB4 (Yin et al., 2013a). 

Taken together the NRG1/ErbB4 signaling module plays a critical role in cortical 

development and synaptic functions in the mature brain. It regulates various aspects 

of neuronal plasticity and connectivity and has been implicated in multiple processes 

that could underlay the pathomechanisms of neuropsychiatric disorders, including 

SZ. As most of the NRG1 at-risk haplotypes have been mapped in the non-coding 

region of the NRG1 gene, chronic changes in NRG1/ErbB4 signaling could confer 

increased risk for SZ. However, the precise pathomechanism underlying SZ 

pathogenesis still remain elusive. 

 

 

 

Fig. 7: NRG1/ErbB4 signaling regulates various aspects of cortical networks. Simplified 
hippocampal microcircuit and possible sites of NRG1/ErbB4 signaling. NRG1 is mainly 
expressed by pyramidal neurons, whereas ErbB4 is predominantly expressed in subsets of 
GABAergic interneurons, including basket cells and chandelier synapse-forming axoaxonic 
interneurons (ACC), and neurogliaform cells. According to this model, NRG1 and ErbB4 in 
different cell types and subcellular locations serve distinct regulatory functions at cortical 
synapses. Question mark indicates the unclear role of soluble NRG1 in paracrine signaling. 
CA3, Schaffer collateral-CA1 projections; EC, input from entorhinal cortex; SLM, Stratum 
lacunosum-moleculare; SO, Stratum oriens; SP, Stratum pyramidale; SR, Stratum radiatum. 
(kindly provided by Dr. Markus H. Schwab, adapted from Lewis et al., 2005). 
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2.7 Aim of this study 

SZ is considered as a disorder of brain disconnectivity. Human NRG1 and ERBB4 

genes are possible genetic risk factors for SZ. NRG1/ErbB4 signaling regulates 

synaptic functions in the brain, but the underlying pathomechanisms linked to SZ 

remain elusive. Reduced and increased expression of NRG1 and ErbB4 

hyperstimulation has been observed in post mortem brain of SZ patients. Thus, 

altered NRG1 expression and ErbB4 activation could represent a possible 

pathomechanism with relevance for SZ. To test this hypothesis, the first aim of the 

PhD project was to systematically investigate loss- and a gain-of-function mouse 

models of NRG1 for changes in brain functions, including development of cortical 

interneurons. 

NRG1 isoforms show dynamic and complex expression patterns in the brain. Thus, 

cell type- or stage-specific changes in NRG1 expression could  differentially affect 

brain functions. Therefore, the second aim of the PhD project was to characterize a 

novel conditional NRG1 transgenic mouse line, and to model cell type- and stage-

specific overexpression of CRD-NRG1 in vivo. The third aim of this project was to 

examine consequences of stage-specific, cortical-restricted overexpression of CRD-

NRG1 on brain development and behavioral functions. Further,  the project aimed at 

obtaining a first insight into molecular pathomechanisms of cortical network 

dysfunctions downstream of hyperstimulated NRG1/ErbB4 signaling with relevance 

for schizophrenia. 
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3. Results 

3.1 Consequences of NRG1 deficiency on interneuronal migration and 

integration 

GABAergic interneurons control the excitatory-inhibitory balance in cortical networks 

and mediate the precise gating of information (Vogels and Abbott, 2009; Marin, 

2012). Abnormal inhibitory functions have been reported in schizophrenia (SZ) 

patients (Lewis et al., 2005; Farzan et al., 2010; Ongür et al., 2010; Yoon et al., 

2010). ErbB4, the main neuronal receptor for NRG1 in the brain, is expressed in 

GABAergic interneurons (Neddens and Buonanno, 2009, 2011; Vullhorst et al., 2009; 

Fazzari et al., 2010), and plays an important role for interneuronal development 

(Flames et al., 2004; Neddens and Buonanno, 2009). The human NRG1 gene is a 

major SZ susceptibility gene (Li et al., 2006; Ayalew et al., 2012). Virtually all of the 

„at-risk“ haplotypes are located in non-coding regions of the gene (Stefansson et al., 

2002; Weickert et al., 2012), suggesting that altered expression of NRG1 may 

represent a component of SZ pathology. Both, reduced and increased expression of 

NRG1 variants was found in post-mortem brains of SZ patients (Law et al., 2006; 

Bertram et al., 2007).   

To investigate the effects of NRG1 deficiency on interneuronal migration and 

integration into the cortical network, we examined conditional NRG1 mutants. To 

delete NRG1 from all forebrain progenitor cells beginning at embryonic day (E) 10 

(Fig. 8A) we crossbred floxed Nrg1 mice (Li et al., 2002) to EMX1-Cre driver mice 

(Gorski et al., 2002, referred to as Emx-Cre mice). The cell population derived from 

the Emx1 cell lineage includes radial glia, Cajal-Retzius cells, glutamatergic neurons, 

astrocyes and oligodendrocytes, but not interneurons. The Emx-Cre recombination 

pattern is shown by X-Gal histochemistry on a brain section of an Emx-Cre*R26R-

floxLacZ double-transgenic mouse at postnatal day (P) 46 (Fig. 8A). This approach 

lead to a ~80 % reduction of NRG1 protein in the forebrain of Emx-Cre*Nrg1f/f mice 

(Agarwal et al., 2014).  

To determine the number of GABAergic interneurons in the postnatal brain of NRG1 

deficient mice, coronal paraffin sections of Emx-Cre*Nrg1f/f mice and controls at P14 

were stained for the interneuron marker GAD67 and  interneuron numbers were 

quantified in the somatosensory cortex and hippocampus (bregma -1.7). Total 

interneuron numbers in the hippocampus of Emx-Cre*Nrg1f/f mice were not altered 

compared to controls (Fig. 8D).  In addition, the subcortical distribution of GAD67+ 

interneurons showed no differences in Emx-Cre*Nrg1f/f mice compared to controls 

(Fig. 8E). Finally, cortical layer width (based on GAD67 immunoreactivity) was 
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Fig. 8: Embryonic NRG1 signaling is dispensable for cortex lamination and 
interneuronal migration. (A) Using the Emx1-Cre driver line, NRG1 elimination can be 
achieved in embryonic stages, overlapping with network integration of cortical interneurons 
(IN). X-gal histochemistry on a 20 µm coronal cryo-brain section from an Emx-Cre*R26R-
floxLacZ double-transgenic mouse (P46) shows Cre-mediated recombination of lacZ reporter 
in forebrain projection neurons and glial cells. Scale bar, 1 mm. (B to E) Normal numbers and 
cortical positions of GAD67

+
 interneurons in Emx*Nrg1

f/f
 mutants during cortical maturation. 

(B) Immunostaining for GAD67 on coronal paraffin brain sections from Emx*Nrg1
f/f 

mutants 
and controls (Nrg1

f/f
 and WT) at P14. Higher magnifications (right) show the hippocampal 

CA1 region (boxed in overviews). Scale bars, 500 mm and 50 mm (CA1 region). (C) 
Immunostaining for NeuN and GAD67 (higher magnification of boxed area E in B) reveals 
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normal layering (I–VI, cortical layers) and interneuron positions in the somatosensory cortex 
of Emx*Nrg1

f/f
 mutants in comparison to controls (Nrg1

f/f 
and WT). Bregma -1.7; scale bars, 

50 mm (NeuN), 100 mm (GAD67). (D) Quantification of GAD67
+
 interneurons in the 

hippocampus shows no difference in interneuron numbers at P14 (marked area D in B) of 
Emx*Nrg1

f/f 
mutants and controls (Nrg1

f/f 
and WT). n = 6/genotype. (E) Quantification of 

GAD67
+
 interneurons per layer in the neocortex of Emx*NRG1

f/f 
mutants and controls (Nrg1

f/f
 

and WT) at P14 reveals no difference in interneuron numbers and layering (boxed area E in 
B). n = 6/genotype. Error bars represent SEM. (F) Normal cortical lamination in Emx-Nrg1

f/f 

mutants. Relative cortical layer width was determined based on GAD67 immunostainings on 
coronal paraffin brain sections (left panel, representative micrograph from Nrg1

f/f 
mice, 

bregma -1.7; n=6 per genotype; error bars represent SEM). 

 

normal in Emx-Cre*Nrg1f/f mice at P14 compared to controls (Fig. 8F). Similar 

findings were obtained at one year of age (data not shown). 

Taken together, NRG1 signaling appeared to be dispensible for interneuron 

migration and their integration into cortical layers, and NRG1 mutants did not 

phenocopy the ErbB4 null mutation. 

 

3.2 Elevated CRD-NRG1 expression leads to sustained ErbB4 

hyperstimulation, altered interneuron functions, and abnormal 

behavior 

In a complementary approach, we tested whether chronically increased NRG1 

expression could affect interneuronal migration and neocortical network assembly. 

CRD-NRG1 is the most prominant NRG1 isoform in the brain (Liu et al., 2011) and 

elevated CRD-NRG1 expression has been reported in post-mortem tissue of SZ 

patients (Weickert et al., 2012). To test whether CRD-NRG1 serves as a signal for 

ErbB-receptor-mediated cortical network regulation, we examined Nrg1-tg mice that 

express CRD-NRG1 under control of the neuronal Thy1.2 promoter (Fig. 9A) 

(Michailov et al., 2004). In these mice transgene expression is initiated around E16 

and CRD-NRG1 accumulates on the surface of projection neurons in the neocortex 

and hippocampus, but is absent from interneurons, astrocytes, and oligodendrocytes 

(Agarwal et al., 2014). 

First, we tested whether chronic CRD-NRG1 overexpression alters ErbB4 receptor 

activation. A western blot analysis of hippocampus protein lysates from Nrg1-tg mice 

revealed CRD-NRG1 overexpression at 4 months of age. CRD-NRG1 was 

expressed as a full length protein (~140 kDa) and a processed form (~60 kDa; 

presumably the NRG1 CTF after stalk region cleavage) (Fig. 9B). Phosphorylation of 

ErbB4 was detected using an antibody directed against the phosphorylated tyrosin 

residue Tyr1284, a binding site for the adapter protein ‚SH2 domains containing 

transforming protein 1’ (SHC1) (Schulze et al., 2005). Western blot analysis revealed  
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Fig. 9: Elevated CRD-NRG1 expression results in ErbB4 hyperphosphorylation and 
altered numbers of GABAergic interneurons. (A) Structure of the Thy1.2 transgene 
cassette used in Nrg1-tg mice (grey box, CRD-NRG1 cDNA; white boxes, exons I-IV of the 
Thy1.2 gene). (B) Overexpression of CRD-NRG1 results in a chronic ErbB4 
hyperphosphorylation in the hippocampus of Nrg1-tg mice. Western blot analysis of 
hippocampal total protein sucrose lysates from Nrg1-tg mice (tg) and WT (4 months). 
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Densitometric quantification of phosphorylated ErbB4 (Tyr1284) bands. Integrated density 

values were normalized to -actin loading control (n = 3/genotype; *p < 0.05; Mann-Whitney 
U test). CTF, NRG1 C-terminal fragment; FL, full length; kDa, kilodalton. (C) (Left) 
Immunostaining for GAD67 on 5 µm coronal paraffin sections from brains of WT and Nrg1-tg 
mice at P14 (somatosensory cortex; bregma -1.7). Scale bars, 100 mm. (Right) Quantification 
of GAD67

+
 interneurons reveals a loss of interneurons in layer IV of the cortex (n = 

6/genotype; *p < 0.05, Mann-Whitney U test). I–VI, cortical layers; WM, white matter. (D) 
(Left) Immunostaining for Parvalbumin (PV) as in (C). Scale bars, 100 mm. (Right) 
Quantification of PV

+
 interneurons across all cortical layers shows no difference in total cell 

numbers (n = 6/genotype; Mann-Whitney U test). (E) (Left) 2P-LSM of PV-GFP*Nrg1-tg and 
PV-GFP control mice at 3 months of age. Depicted are 3D projections-rendered live-imaging 
stacks of a cortical column (250x250x500 µm (0.03125 mm

3
); 2 µm stack interval) from the 

MZ to layer V. (Right) Quantification of GFP
+
 interneurons in layers I–V from 2P-LSM live-

imaging stacks reveals an overall loss of cells and more specifically in layers II/III and V. Note 
that parts of layers V and VI could not be imaged. (PV-GFP*Nrg1-tg, n = 6; PV-GFP, n = 5; *p 
< 0.05; Student’s t test). 

 

a significant increase in the steady-state level of phosphorylated ErbB4 (Fig. 9B). 

Thus, Nrg1-tg mice represent a model for CRD-NRG1 overexpression-mediated 

ErbB4 hyperstimulation beginning at late embryonic stages. 

Interneurons migrate along a chemo-attractive corridor towards the cortex. It has 

been shown in vitro that CRD-NRG1 provides one of the permissive signals for this 

migration (Flames et al., 2004), suggesting that interneuron migration could be 

affected in Nrg1-tg mice. Similar to the loss-of-function study above, we performed 

chromogenic immunostainings for GAD67 on coronal paraffin sections of the 

somatosensory cortex and hippocampus (bregma -1.7) of Nrg1-tg mice and WT 

controls at P14. The analysis revealed minor changes in the cortical distribution of 

GAD67+ cells in Nrg1-tg mice, as we found a reduced number of GAD67+ cells in the 

cortical layer IV, but no change in the total number of hippocampal interneurons (Fig. 

9C). We also quantified the number of neocortical and hippocampal PV+ interneurons 

in chromogenic stainings for parvalbumin and found no significant changes in PV+ 

interneuron numbers for both regions in Nrg1-tg mice at P14 (Fig. 9D). 

To visualize PV+ interneurons in vivo, we crossbred Nrg1-tg mice to PV-GFP 

transgenic mice that express GFP under control of regulatory sequences of the PV 

gene (Meyer et al., 2002). In vivo imaging of PV-GFP*Nrg1-tg double-transgenic 

mice at the age of 3 months by two-photon laser scanning microscopy (2P-LSM) 

revealed a lower number of GFP+ cells in cortical layers II/III and V and a reduction in 

the total number of GFP+ cells in the cortex by ~20 % compared to PV-GFP single 

transgenic controls (Fig. 9E). These findings were confirmed in a second transgenic 

mouse line (HA-Nrg1-tg), which expresses a N-terminally hemagglutinin (HA) 

epitope-tagged variant of CRD-NRG1 under control of the same Thy1.2 cassette as 

in Nrg1-tg mice (Velanac et al., 2011; Fig. 10A; and data not shown).  
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Taken together CRD-NRG1 serves only minor permissive functions, as cortical 

layering of GAD67+ interneurons is only mildly altered at P14. However, chronic 

overexpression of CRD-NRG1 and hyperstimulation of ErbB4 affects the survival of 

PV+ interneurons or the expression of the parvalbumin promoter in 3 months old PV-

GFP*NRG1-tg and PV-GFP*HA-NRG1-tg mice.  

Next, we tested whether hyperstimulated CRD-NRG1/ErbB4 signaling causes 

behavioral dysfunctions. The neuromuscular junction in Nrg1-tg mice is severely 

compromised (W.J. Thompson, personal communication), which prevents behavioral 

analyses. Thus, we examined behavior in HA-Nrg1-tg mice (Velanac et al., 2011; 

Fig. 10A). Similar to Nrg1-tg mice, we observed HA-NRG1 expression all over the 

brain, in the neocortex and hippocampus, but also in subcortical regions, such as the 

thalamus, striatum and amygdala (Fig. 10B). Fluorescent immunostaining 

demonstrated that HA-NRG1 accumulates on the surface of cortical projection 

neurons, but was absent from GABAergic interneurons, GFAP+ astrocytes and Olig2+ 

oligodendrocytes (Fig. 10C). 

To assess general locomotor activity and anxiety, we performed the open field test. 

Mice are neophobic and find open spaces aversive, thus normal mice prefer to stay 

close to the walls of the open field arena (thigmotaxis). Time spent in the corners or 

the center of the arena can be quantified as a measure of anxiety. Mice were placed 

into the open field arena for 10 minutes and movements were tracked automatically. 

HA-Nrg1-tg mice showed normal locomotor activity, as the distance travelled in the 

open field test was unaltered (WT: 44.17 ± 1.93, HA-Nrg1-tg: 42.49 ± 2.21; Fig. 10E). 

However, HA-Nrg1-tg mice spent less time in the center of the open field arena (WT: 

24.16 % ± 3.77 %, HA-Nrg1-tg: 10.61 % ± 2.13 %) and performed fewer rearings, 

when compared to WT controls (WT: 56.28 ± 3.86, HA-Nrg1-tg: 39 ± 4.64), 

suggesting diminished exploratory behavior. In addition they displayed more frequent 

defecation (WT: 1.778 ± 0.586; HA-Nrg1-tg: 4.13 ± 0.72), in line with increased 

anxiety (Fig. 10E). 

Disrupted sensorimotor gating is implicated in the neuropathology of SZ and has 

frequently been found in rodent models for SZ. Its disruption in SZ may be related to 

the processes of sensory flooding and cognitive fragmentation and could underlie the 

positive symptoms of the disease (Braff et al., 2001; Swerdlow et al., 2008). Prepulse 

inhibition (PPI) is considered a psychometric measure of sensorimotor gating and 

can be studied both in rodents and humans (Braff and Geyer, 1990). To assess the 

effect of NRG1 overexpression on sensorimotor gating, we performed the prepulse 

inhibition test, where HA-Nrg1-tg mice showed a profound PPI deficit in comparison 

to controls. Moreover, they displayed an increased startle response (WT: 184.9 ±  
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Fig. 10: HA-Nrg1-tg mice exhibit SZ-relevant behavior reduced numbers of 
interneurons in the cortex. (A) In HA-NRG1-tg mice two HA epitope tags are located at the 
N-terminus of CRD-NRG1, that can be detected via anti-HA antibody reactivity. The NRG1 C-
Term antibody binds to the C-terminal cytoplasmatic tail. CRD, cystein-rich domain; EGF, 
epidermal growth factor-like domain; HA, hemagglutinin epitope tag; TM, transmembrane 
domain. Structure of the Thy1.2 transgene cassette (red box, HA epitope; grey box, full-length 
CRD-NRG1 cDNA; white boxes, exons I-IV of the Thy1.2 gene). (B) Chromogenic NRG1 
immunostaining (HA-NRG1) on 5 µm coronal paraffin brain sections from wildtype (WT) and 
HA-Nrg1-tg mice at 4 months of age. Note enlarged lateral ventricle in the HA-Nrg1-tg brain. 
Scale bars, 1 mm. (C) Fluorescent immunostainings for HA-NRG1 and cell type-specific 
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markers (neurons, NeuN; interneurons, PARV; oligodedrocytes, Olig2; astrocytes, GFAP) on 
coronal brain sections from HA-Nrg1-tg mice (age 4 months) show projection neuron-specific 
HA-NRG1 overexpression. Scalebars, 25 μm (PARV, 20 μm). (D) HA-Nrg1-tg mice show 
reduced PPI (Effect of genotype F(1,32) = 4.31; *p < 0.05; two-way ANOVA; Bonferroni’s 
multiple comparison test), and increased startle responses to 120 dB pulses (WT, n = 18; HA-
Nrg1-tg mice, n = 16; **p < 0.01; Mann-Whitney U test. AU, arbitrary units, Error bars 
represent SEM). (E) HA-Nrg1-tg mice display anxiety-like behavior in the open field test. 
Distance travelled was similar in HA-Nrg1-tg and WT male mice, but HA-Nrg1-tg mice spent 
less time in the center of the open field arena, performed less rearings and showed increased 
defecation in the open field test compared to WT controls (age 2-3 months, p = 0.5575, 
Mann-Whitney test; error bars represent SEM). (F) Reduced overall number of GFP

+
 

interneurons in a cortical column of 250*250*500 μm (0.03125 mm
3
) of PV-GFP*HA-Nrg1-tg 

mice (n=2) and PV-GFP controls (n=5) obtained by 2P-LSM in vivo imaging (*p < 0.05; 
Student’s t test). 

 

39.56, HA-Nrg1-tg: 344.9 ± 42.07) (Fig. 10D). 

In summary, CRD-NRG1 overexpression triggers SZ-relevant behavior. Enhanced 

CRD-NRG1/ErbB4 signaling impacts on anxiety-related pathways in the brain of HA-

Nrg1-tg mice and impairs sensorimotor gating, indicating that enhanced 

NRG1/ErbB4 signaling could contribute to SZ pathology. 

 

3.3 Generation of a conditional CRD-NRG1 transgenic mouse line 

The human NRG1 gene encodes for more than 30 isoforms (Falls, 2003; Mei and 

Xiong, 2008). Additional complexity of NRG1 signaling is added by posttranslational 

modifications and dynamic expression patterns in the brain (Liu et al., 2011). The 

expression of CRD-NRG1 is regulated during development and peaks at E13 and P5 

suggesting roles in neural development and in the neonatal critical period (Liu et al., 

2011). Nrg1-tg and HA-Nrg1-tg mice show endophenotypes associated with SZ, but 

the Thy1.2-based transgene cassette offers no chance to manipulate the temporal 

and spatial aspects of NRG1 overexpression. 

To match the complexity of endogenous NRG1 biology and to model different 

scenarios of NRG1 overexpression, a more sophisticated mouse model was 

generated by oocyte injection to manipulate cell type-specific, temporal and spatial 

aspects of NRG1 overexpression. Stop-Nrg1 transgenic mice harbor an expression 

cassette that is driven by a ubiquitously expressed chicken -actin promoter and 

contains a GFP-Stop cassette flanked by loxP sites followed by the same HA-tagged 

CRD-NRG1 variant (HA-NRG1) as in HA-Nrg1-tg mice. Crossbreeding Stop-Nrg1 

mice to Cre recombinase expressing mouse lines (‘driver’ lines) results in Cre-

mediated removal of the GFP-Stop cassette and HA-NRG1 expression in the cell 

type and at the expression start defined by the chosen Cre driver line (Fig. 11A).  
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Fig. 11: A -actin GFP-Stop-flox transgene cassette allows Cre-mediated transgene 

expression. (A) Basic principle of the -actin Stop-flox transgene cassette used in Stop-Nrg1 

mice. Using a fragment of the chicken -actin promoter, a GFP-Stop cassette (Stop) is 
expressed, that is flanked by loxP sides. Upon Cre recombinase-mediated excision of the 
GFP-Stop-flox cassette, a tagged downstream transgene is expressed. (B) Different Cre 
driver mouse lines define the celltype-specificity and start of recombination in Stop-Nrg1 
double transgenic mice. NEX-Cre driver mice enable early embryonic cortical projection 
neuron-restricted overexpression starting at E12 (Goebbels et al., 2006), while CamKII-Cre 
driver mice express Cre recombinase in cortical projection neurons starting at P5 (Minichiello 
et al., 1999). NEX-CreERT2 driver mice enable tamoxifen-induced acute stimulation of Cre 
recombination and transgene expression in mice of all stages (Agarwal et al., 2011). 
 

Since CRD-NRG1 is mainly expressed by cortical projection neurons (Liu et al., 

2011), we chose NEX-Cre mice harboring Cre recombinase as a ‘knock-in’ into the 

NeuroD6 locus as a driver line for Cre-mediated recombination in cortical projection 

neurons starting at E12 (Goebbels et al., 2006), and CamKII-Cre driver mice with a 

similar expression pattern as in NEX-Cre mice, but a recombination onset at P5 

(Minichiello et al., 1999). These two Cre driver lines allow the separation of 

embryonic from postnatal aspects of NRG1 signaling. A third mouse line (NEX-

CreERT2) represents a modification of the original NEX-Cre driver line and 

expresses a tamoxifen-inducible variant of Cre recombinase (CreERT2). 

Administration of tamoxifen, a synthetic estrogen receptor (ER) ligand, induces the 

dissociation of CreERT2 from HSP90, nuclear import of CreERT2, and the site-

specific recombination of loxP site-flanked target genes, enabling tamoxifen induced 

induction of HA-NRG1 overexpression at adult stages (Fig. 11B) (Agarwal et al., 

2011). 
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Fig. 12: Stop-Nrg1 mice express the -actin GFP-Stop-flox transgene in virtually all 

tissues. (A) (left) Structure of -actin GFP-Stop-flox HA-CRD-NRG1 transgene cassette used 
in Stop-Nrg1 mice with location of genotyping primers (1 and 2). (right) Genotyping PCR on 
tail biopsy genomic DNA shows genomic insertion of the Stop-Nrg1 cassette in Stop-Nrg1 

mice (tg) compared to WT littermates. -Actin PCR was used as DNA quality control. (B) 
Stop-Nrg1 mice display green fluorescence in virtually all tissues due to GFP expression in 
the GFP-Stop-flox cassette. Brightfield and epifluorescence images of organs of Stop-Nrg1 
mice and a tail biopsy of a WT littermate. Scale bars, 1 mm (brain, spinal cord, dorsal root 
ganglia (DRG), heart and tailtip), 2 mm (femur muscles). 

 

Injection of the Stop-Nrg1 transgene cassette into C57bl6n oocytes produced one 

founder mouse line (Fig. 12A). Stop-Nrg1 mice were viable and produced offspring 

according to Mendelian ratios. Since the Stop-Nrg1 transgene harbors a GFP-

expressing Stop cassette, transgene expression (in the absence of Cre 

recombinase) can be assessed by fluorescent light microscopy. When examined 

under fluorescent excitation all tested tissues were green fluorescent (Fig. 12B), 

suggesting that the -actin promoter is expressed in most tissues. This also enabled 

‚phenotyping’ of Stop-Nrg1 mice using tailtip biopsies instead of genotyping PCR. 
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To examine which neural cell types in the brain of Stop-Nrg1 mice express the 

transgene cassette, we performed fluorescent co-immunostainings on coronal cryo-

sections (Bregma -1.7) from Stop-Nrg1 mice for GFP and cell type-specific markers. 

Confocal laser microscopy revealed a predominant expression of the Stop-Nrg1 

transgene in neurons and oligodendrocytes, as shown by co-staining for GFP and 

neuronal marker NeuN and oligodendroglial marker Olig2, respectively (Fig. 13A, B). 

Co-immunostaining for GFP and the projection neuron marker neurogranin (NRGN) 

and the interneuronal marker GAD67 revealed that the Stop-Nrg1 cassette was 

predominantly expressed by projection neurons (Fig. 6A). In contrast, only few 

GAD67+ interneurons expressed the Stop-Nrg1 cassette (Fig. 13A). Among glial 

cells, Stop-Nrg1 was preferentially expressed in oligodendrocytes, whereas only few 

astrocytes and microglia expressed the transgene (Fig. 13B), showing that the -

actin promoter was not ubiquitously expressed on the cellular level. Outside the 

brain, spinal cord motoneurons showed prominent Stop-Nrg1 expression (Fig. 13B). 

 

3.4 NEX-Cre mediated recombination of Stop-Nrg1 restricts HA-NRG1 

expression to cortical projection neurons 

To model cortical HA-NRG1 overexpression (Fig. 14A), we crossbred Stop-Nrg1 

mice to NEX-Cre driver mice, in which Cre is selectively expressed by projection 

neurons of the neocortex and hippocampus (Goebbels et al., 2006; Fig. 14A). Cre 

expression starts at E12, allowing for early embryonic initiation HA-NRG1 

overexpression (Fig. 14A). Western blot analysis of hippocampal protein lysates 

showed a pronounced overexpression of HA-NRG1 in 4 months old Stop-Nrg1*NEX-

Cre mice compared to parental controls (Stop-Nrg1 single transgenic and NEX-Cre 

heterozygous mice) (Fig. 14B). As indicated by increased expression of a ~60 kDa 

CTF, transgene-derived full length HA-NRG1 was normally processed in the stalk 

region. In addition, western blot analysis with the phospho-ErbB4 antibody (Tyr1284) 

confirmed sustained ErbB4 hyperphosphorylation in the hippocampus of Stop- 

Nrg1*NEX-Cre mice (Fig. 14B). 

Chromogenic immunostaining on coronal paraffin sections (bregma -1.7) confirmed 

that HA-NRG1 expression was restricted to neocortex, hippocampus, amygdala and 

a few hypothalamic neurons in Stop-Nrg1*NEX-Cre mice mimicking the 

recombination pattern in NEX-Cre mice (Fig. 14C). In contrast to HA-Nrg1-tg mice 

(compare Fig. 10B), no HA-NRG1 expression was detected in subcortical regions, 

e.g. striatum or thalamus. In the dentate gyrus, only the outer granule cells  
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Fig. 13: The Stop-Nrg1 transgene is predominantly expressed in projection neurons. 
(A) Confocal images of immunostaings on 14 µm thick coronal Cryo sections of brains from 
Stop-Nrg1 mice at 3 months of age stained for neuronal markers. GFP fluorescence co-
immunostained for NeuN reveals expression of the Stop-Nrg1 transgene in neurons of the 
cortex and hippocampus of Stop-Nrg1 mice. Expression of Stop-Nrg1 is present in projection 
neurons (filled arrowheads), indicated by collocalization with Neurogranin (NRGN), but only 
minor expression is found in cortical interneurons (GAD67; empty arrowheads). Scale bars, 
20 µm (NeuN, GAD67 Hipp), 15 µm (NRGN, GAD67 Cx). (B) Immunostainings for glial 
markers reveals expression of the Stop-Nrg1 cassette in oligodendrocytes (Olig2) and 
partially in astrocytes (GFAP). Co-immunostaining with IBA1 reveals only minor expression in 

microglia. Ventral horn spinal cord motoneurons (ChaT) express the -actin GFP-Stop-flox 
transgene cassette. Scale bars, 25 µm, 20 µm (GFAP Cx). 

 

expressed HA-NRG1 (Fig. 14C), in line with transient Cre expression in postmitotic 

granule cells in NEX-Cre mice (Goebbels et al., 2006). To validate projection neuron-

specific HA-NRG1 overexpression, we co-immunostained coronal paraffin sections 

(Bregma -1.7) of 4 months old Stop-Nrg1*NEX-Cre mice and controls for HA-NRG1 

and the neuronal markers NeuN, NRGN and GAD67 (Fig. 14D). Similar to Thy1.2 

HA-Nrg1-tg mice, HA-NRG1 accumulated in the somato-dendritic compartment 

(compare with Fig. 10C). In addition, co-immunostaining for the HA epitope and the 

NRG1 CTF almost completely overlapped (Fig. 14D), indicating highly similar 

subcellular localization of the N-terminal fragment (NTF) and the CTF after 

proteolytic processing.  
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Fig. 14: NEX-Cre-mediated activation of Stop-Nrg1 restricts HA-NRG1 expression to 
cortical projection neurons. (A) In Stop-Nrg1 mice two HA epitope tags are located at the 
N-terminus of CRD-NRG1, that can be detected via anti-HA antibody reactivity. The NRG1 C-
Term antibody binds to the C-terminal cytoplasmatic tail. CRD, cystein-rich domain; EGF, 
epidermal growth factor-like domain; HA, hemagglutinin epitope tag; TM, transmembrane 
domain. Structure of Stop-Nrg1 transgene cassette and NEX-Cre-mediated recombination of 
the GFP-Stop cassette. Schematic expression profile of HA-NRG1 in Stop-Nrg1*NEX-Cre 
mice. Endogenous CRD-NRG1 expression peaks at P10 and returns to low expression levels 
in adult mice. In Stop-Nrg1*NEX-Cre mice expression of HA-NRG1 starts after Cre-mediated 
removal of the GFP-Stop cassette at E12 and persists at high levels into adulthood. Structure 
of the targeting construct used for homologous recombination of Cre into exon 2 of the murine 
NEX gene in NEX-Cre mice. X-gal histochemistry indicates NEX-Cre activity in cortical 
projection neurons of a NEX-Cre*R26R-floxLacZ mouse (E1, Exon1; E2, Exon2; Neo, 
Neomycin resistance cassette; adapted from Goebbels et al., 2006). In NEX-Cre mice Cre 
expression starts at E12. (B) Western blotting of hippocampal protein lysates with the NRG1 
C-Term and p-ErbB4 antibody reveals HA-NRG1 overexpression in Stop-Nrg1*NEX-Cre mice 

and chronic ErbB4 hyperphosphorylation (at Tyr1284) at 4 months of age. -Actin was used 
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as loading control. CTF, NRG1 C-terminal fragment; FL, full length; kDa, kilodalton. (C) 
Chromogenic immunostaining for HA-NRG1 on coronal paraffin sections reveals cortex-
restricted HA-NRG1 overexpression in Stop-Nrg1*NEX-Cre mice, consistent with NEX-Cre 
expression profile. Expression is present in neurons of the cortex, hippocampus, amygdala, 
but only few hypothalamic neurons, striatal and thalamic regions. Boxes indicate positions of 
high magnification images. Note that in NEX-Cre mice only the outer dentate gyrus granule 
cells are HA-NRG1-positive. Scale bars, 500 µm, 50µm (Zoom). A, Amygdala; Hy, 
Hypothalamus; St, Striatum; Th, Thalamus. (D) Fluorescent immunostaining on coronal 
paraffin section of Stop-Nrg1*NEX-Cre mice for NRG1 and neuronal markers. HA-NRG1 
expression is restricted to cortical projection neurons (NRGN, NeuN) but absent from GAD67

+
 

interneurons. The HA-epitope overlaps with the NRG1 C-Term. Scale bars, 20 µm, 15 µm 
(HA-NRG1/NRG1 C-Term).

 

 

Taken together, Stop-Nrg1*NEX-Cre mice allow conditional HA-NRG1 

overexpression in cortical projection neurons, which leads to sustained 

hyperstimulation of ErbB4 receptors. 

 

3.5 Stop-Nrg1*NEX-Cre mice model HA-NRG1 overexpression in the 

embryonic cortex 

NRG1 has been suggested to play an important role in interneuronal migration 

(Flames et al., 2004) and the establishment of cortical circuits (Mei and Xiong, 2008). 

In line with this, the expression of CRD-NRG1 isoforms peaks at early embryonic 

stages (Liu et al., 2011). Thus, elevated CRD-NRG1 expression during embryonic 

stages could impact on a variety of developmental processes. By employing NEX-

Cre driver mice, we wanted to model early embryonic overexpression of CRD-NRG1 

(Fig. 15A).  

To verify expression onset of HA-CRD-NRG1 in Stop-Nrg1*NEX-Cre mice during 

early embryonic stages, we performed immunohistochemistry on coronal 

cryosections of embryonic brains at E16 (Fig. 15B). The cryofixation preserved the 

GFP fluorescence in this approach. Consecutive sections of the cortical plate were 

immunostained for Cre and HA-NRG1. By confocal microscopy Cre-expressing 

neurons of the cortical plate and subplate were identified (imaged areas depicted in 

Fig. 15B), whereas GFP fluorescence was markedly reduced in Cre-expressing 

regions of Stop-Nrg1*NEX-Cre mice, due to recombination of the GFP-Stop cassette 

(Fig. 15C). As expected, in cortical areas with Cre expression and concomitantly 

reduced GFP fluorescence we observed staining for HA-NRG1 (Fig. 15C, D).  

Taken together, breeding to Stop-Nrg1*NEX-Cre mice initiates HA-NRG1 

overexpression during early embryonic stages, and allows to study the effects of 

increased CRD-NRG1 expression on embryonic development. 
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Fig. 15: NEX-Cre-mediated recombination of Stop-Nrg1 allows early embryonic 
overexpression of HA-NRG1. (A) In NEX-Cre mice Cre expression starts at E12. Structure 
of the targeting construct used for homologous recombination of Cre into exon 2 of the murine 
NEX gene in NEX-Cre mice. (E1, Exon1; E2, Exon2; Neo, Neomycin resistance cassette; 
adapted from Goebbels et al., 2006). Structure of the Stop-Nrg1 cassette and NEX-Cre-
mediated recombination of the GFP-Stop cassette. (B) Schematic drawing of an E16 coronal 
brain section illustrates the position of overview images shown in (C) (dashed blue square 
labelled C) and high magnification images shown in (D) (dashed red square labelled with *D). 
Scale bar, 500 µm. (C) Immunostainings for GFP, Cre recombinase and HA-NRG1 on 
consecutive cryosections of Stop-Nrg1*NEX-Cre and control brains (NEX-Cre and Stop-Nrg1) 
at E16. In Stop-Nrg1*NEX-Cre embryos GFP fluorescence is reduced in the cortical plate, 
subplate and intermediate zone due to NEX-Cre-mediated removal of the GFP-Stop cassette, 
and HA-NRG1 is expressed. Dashed boxes indicate position of high magnification images 
shown in (D). CP, cortical plate; IZ, intermediate zone; LV, lateral ventricle; MZ, marginal 
zone; SP, subplate; SVZ, subventricular zone; VZ, ventricular zone; WM, white matter. Scale 
bars, 100 µm. (D) High magnification images of regions indicated by dashed boxes in (C). 
Scale bars, 10 µm. 
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3.6 CamKII-Cre mice enable postnatal overexpression of HA-NRG1 in 

cortical projection neurons 

SZ is considered a neurodevelopmental disease and first symptoms usually occur in 

early adulthood, between 15 and 25 years of age (Sham et al., 1994). Although most 

of synaptogenesis is completed by two years of age, this process continues until mid-

adolescence in prefrontal and association (temporal and parietal) areas 

(Huttenlocher, 1979; Giedd et al., 1999). Thus, postnatal dysfunctions of signaling 

modules, such as NRG1/ErbB4 could lead to abnormalities in cortical development 

associated with neuropsychiatric disorders, including SZ. 

To distinguish embryonic from postnatal effects of abnormal NRG1/ErbB4 signaling, 

we crossbred Stop-Nrg1 mice to CamKII-Cre driver mice (from now on referred to as 

CKII-Cre mice), which express Cre recombinase under control of the CaMKII 

promoter. Cre activity starts around P5 and is restricted to projection neurons of the 

cortex and hippocampus, but also some subcortical excitatory neurons of the 

striatum, thalamus and hypothalamus express Cre recombinase (Minichiello et al., 

1999; Fig. 16A). Western blot analysis confirmed HA-NRG1 overexpression in 

hippocampus protein lysates. Similar to our previous studies, HA-NRG1 was 

expressed as a full length protein (~140 kDa) and a CTF (60 kDa) (Fig. 16B) as a 

result of proteolytic cleavage in the stalk region. Chromogenic immunostaining 

showed HA-NRG1 overexpression in the neocortex and hippocampus, but minor 

expression was also detected in the striatum and thalamus (Fig. 16C). Higher 

magnification showed that, in contrast to NEX-Cre-mediated HA-NRG1 expression, 

all dentate gyrus granule cells expressed HA-NRG1 (Fig. 16C: DG). Fluorescent 

immunostaining confirmed somato-dendritic accumulation and projection neuron-

specific HA-NRG1 overexpression (Fig. 16D). 

Thus, a comparative analysis of Stop-Nrg1*NEX-Cre and Stop-Nrg1*CKII-Cre mice 

allows to identify possible differences in embryonic versus postnatal effects of HA-

NRG1 overexpression on brain functions. 
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Fig. 16: CKII-Cre-mediated activation of Stop-Nrg1 allows postnatal overexpression of 
HA-NRG1 in cortical projection neurons. (A) In the CKII-Cre driver line Cre activity begins 
at P5. Structure of the CKII–Cre transgene used for generation CKII-Cre mice. Triangle 
represents intronic sequences. pA, polyadenylation signal (adapted from Minichiello et al., 
1999). X-gal histochemistry from a CKII-Cre*R26R-floxLacZ mouse illustrates Cre activity in 
cortical neurons (with kind permission of A. Agarwal). CKII-Cre-mediated activation of Stop-
Nrg1 allows early postnatal onset of HA-NRG1 overexpression. (B) Western blot analysis of 
hippocampal protein lysates of Stop-Nrg1*CKII-Cre and Stop-Nrg1 control mice at 4 months 
of age. NRG1 C-Term antibody immunoreactivity reveals HA-NRG1 overexpression as a full 

length (~140 kDa, FL) and a C-terminal fragment (~60 kDa CTF). -Tubulin was used as a 
loading control. kDa, kilodalton. (C) Chromogenic immunostaining for NRG1 C-Term on a 
paraffin brain section from a Stop-Nrg1*CKII-Cre mouse at 4 months of age reveals 
overexpression of HA-NRG1 in neurons of the cortex and minor overexpression in subcortical 
regions, including striatum (St), thalamus (Th) and hypothalamus (Hy). Boxes indicate 
positions of high magnification images of the cortex (Cx), hippocampal CA1 region (CA1) and 
dentate gyrus (DG). Note that all DG granule cells express HA-NRG1. Scale bars, 1 mm 
(overview), 50 µm (high magnifications). (D) Fluorescent immunostainings for NRG1 C-Term 
and GAD67 on paraffin sections from Stop-Nrg1*CKII-Cre at 4 months of age confirm 
projectionneuron-specific overexpression of HA-NRG1. Cx, cortex; DG, dentate gyrus. Scale 
bars, 50 µm. 
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3.7 Absense of brain pathology in Stop-Nrg1*NEX-Cre and Stop-

Nrg1*CKII-Cre mice 

Overexpression of growth- and differentiation factors could lead to abnormal 

development, neuroinflammation or cell death. Stop-Nrg1*NEX-Cre and Stop-

Nrg1*CKII-Cre mice displayed normal cage behavior compared to control littermates. 

To exclude neuroinflammation or other neuropathology in these mice, we performed 

chromogenic immunostainings for markers of neuropathology and inflammation on 

coronal paraffin sections at 4 months and one year of age. 

Hematoxylin-Eosin (H+E) staining revealed no gross abnormalities in brain 

morphology in both transgenic models (data not shown). Subsequently we tested for 

astrogliosis or microgliosis by chromogenic immunostainings for GFAP, IBA1 and 

MAC3 on coronal paraffin sections (bregma -1.7) (Eng and Ghirnikar, 1994; Hanisch 

and Kettenmann, 2007). Furthermore, we examined brain sections for axonal 

swellings by staining for amyloid precursor protein (APP), and T-cell infiltration by 

staining for the T-cell antigen CD3. 

Stainings for activated microglia, T-cell infiltration, and axonal swellings showed no 

signs of pathology in Stop-Nrg1*NEX-Cre and Stop-Nrg1*CKII-Cre mice at 4 months 

and 1 year of age compared to controls (Fig. 17). Immunostainings for the astrocytic 

marker GFAP were quantified with a semi-automated method, which determined the 

GFAP+ area in relation to the region of interest. Hippocampus and fimbria were 

analyzed as examples for grey and white matter regions, respectively (Fig. 18A). No 

obvious differences in GFAP+ area were observed in the hippocampus of Stop-

Nrg1*NEX-Cre or Stop-Nrg1*CKII-Cre mice. However, the GFAP+ area in the fimbria 

at 4 months was significantly larger in Stop-Nrg1*NEX-Cre (13.41 %  1.49) than in 

Stop-Nrg1*CKII-Cre mice (5.76 %  1.84; *p < 0.05). This effect however, was not 

significant when compared to control mice (Fig. 18B). At 1 year of age there was no 

significant difference detectable in any of the mice tested (Fig. 18C), indicating a 

non-progressive pathology. Taken together, Stop-Nrg1*NEX-Cre and Stop-

Nrg1*CKII-Cre mice showed no signs of progressive astrogliosis (Fig. 18B, C). 
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Fig. 17: Stop-Nrg1*NEX-Cre and Stop-Nrg1*CKII-Cre mice show no signs of 
neuroinflammation. (A) Chromogenic immunostainings for neuropathology markers on 
coronal paraffin sections (bregma -1.7) of 4 months old Stop-Nrg1*NEX-Cre, Stop-Nrg1*CKII-
Cre and control mice for activated microglia (MAC-3), T-cell infiltration (CD3) and axonal 
swellings (APP), reveal no signs of neuropathology or -inflammation. Insets in CD3 stainings 
show high magnifications of occasionally found CD3

+
 T-cells (indicated by boxes in 

overviews). Sections of CNP
-/-

 mice, which received cryo lesions, were used as positive 
controls (Wieser et al., 2013). Scale bars, 50 µm (overviews), 100 µm (CD3), 10 µm (insets). 
(B) Sustained HA-NRG1 overexpression does not lead to neuroinflammation in aged Stop-
Nrg1*NEX-Cre and Stop-Nrg1*CKII-Cre mice. Chromogenic immunostainings on coronal 
paraffin sections from 1 year old mice for MAC-3, CD3 and APP, as in (A). CA3, hippocampal 
CA3 region; CC, corpus callosum; Fim, fimbria; SO, stratum oriens; SP, stratum pyramidale; 
SR, stratum radiatum. Scale bars, 100 µm (overviews), 20 µm (insets). 

 

Likewise, no changes in activated microglia were found in immunostainings for MAC-

3 (Fig. 17). To determine microglia numbers, immunostaining for IBA1 was 
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performed (Fig. 19). Similar to GFAP immunostainings, a semi-automated 

quantification of chromogenic IBA1 immunostainings was conducted. Cortex and 

hippocampus were quantified as examples for grey matter, and the corpus callosum 

as an example for white matter regions (quantified regions are illustrated in Fig. 19A, 

C). At 4 months of age no difference in IBA1+ area was detectable in both transgenic 

models. A trend for increased IBA1+ area in the cortex of NEX-Cre controls and Stop-

Nrg1*NEX-Cre mice was not significant (Fig. 19B). Also at 1 year of age no 

significant differences in IBA1+ area were detected in cortex and hippocampus of 

Stop-Nrg1*NEX-Cre and Stop-Nrg1*CKII-Cre mice. However, there was an increase 

in IBA1+ area in the hippocampus of NEX-Cre control mice (7.49 %  1.34) compared 

to CKII-Cre and Stop-Nrg1*CKII-Cre mice (CKII-Cre: 3.03 %  0.56; Stop-Nrg1*CKII-

Cre: 3.23 %  0.35; *p < 0.05), and Stop-Nrg1 mice (2.95 %  0.29; *p < 0.01), but 

not to Stop-Nrg1*NEX-Cre mice (Mean: 4.46 %  1.62), indicating an effect of NEX 

haploinsufficiency (Fig. 19D). 

Taken together, chronically elevated HA-NRG1 expression has no potent 

neurodegenerative or -inflammatory effects when overexpression starts at postnatal 

or even embryonic stages. However, NEX (NeuroD6) haploinsufficiency in 

heterozygous NEX-Cre driver mice is associated with mildly increased microgliosis in 

the hippocampus of aged mice. HA-NRG1 overexpression in Stop-Nrg1*NEX-Cre 

mice seemed to be beneficial and counteracted this effect. 
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Fig. 18: Stop-Nrg1*NEX-Cre and Stop-Nrg1*CKII-Cre mice show no signs of 
astrogliosis. (A) Chromogenic immunostaining for astrocytes (GFAP) on coronal paraffin 
sections from 4 months old Stop-Nrg1*NEX-Cre, Stop-Nrg1*CKII-Cre and control mice 
(bregma -1.7). Dashed lines mark quantified areas. Square indicates position of high 
magnification image. Fim, fimbria; Hipp, hippocampus. Scale bars, 500 µm. (B) Semi-
automated quantification of GFAP

+ 
area in hippocampus and fimbria of Stop-Nrg1*NEX-Cre, 

Stop-Nrg1*CKII-Cre and control mice at 4 months of age reveals a significant increase in 
GFAP

+
 area in the fimbria of Stop-Nrg1*NEX-Cre

 
mice compared to Stop-Nrg1*CKII-Cre 

mice, that, however, does not differ significantly from control mice. (*p < 0.05, one-way 
ANOVA; Bonferroni’s multiple comparison test; n.s., not significant; n-numbers indicated in 
the graphs). (C) Semi-automated quantification of GFAP

+
 area in hippocampus and fimbria of 

Stop-Nrg1*NEX-Cre, Stop-Nrg1*CKII-Cre and control mice at 1 year of age confirms absence 
of astrogliosis. (One-way ANOVA with Bonferroni’s multiple comparison test; n.s., not 
significant; n-numbers indicated in the graphs). 



Results 

 

 58 

 



Results 

 

 59 

Fig. 19: Stop-Nrg1*NEX-Cre and Stop-Nrg1*CKII-Cre mice show no signs of 
microgliosis. (A) Chromogenic immunostaining for microglia (IBA1) on coronal paraffin 
sections from 4 months old Stop-Nrg1*NEX-Cre, Stop-Nrg1*CKII-Cre and control mice 
(bregma -1.7). Dashed lines mark quantified areas. Dashed square in thresholded black/white 
image indicates position of high magnification images (Asterisk). Cc, corpus callosum; Cx, 
cortex; Hipp, hippocampus. Scale bars, 500 µm (overvies), 100 µm (high magnifications). (B) 
Semi-automated quantification of IBA1

+
 area in cortex, hippocampus and corpus callosum of 

Stop-Nrg1*NEX-Cre, Stop-Nrg1*CKII-Cre and control mice at 4 months of age reveals 
absence of microgliosis. (One-way ANOVA; Bonferroni’s multiple comparison test; n.s., not 
significant. n-numbers indicated in the graphs). (C) Chromogenic immunostaining for IBA1 on 
1 year old animals as in (A). Scale bars, 500 µm (overviews), 100 µm (high magnifications). 
(D) Semi-automated quantification of IBA1

+
 area in 1 year old animals as in (B), reveals 

significantly increased IBA1
+
 area in the hippocampus of NEX-Cre

 
mice. Note the moderate 

increase of IBA1
+ 

area in Stop-Nrg1*NEX-Cre mice, indicating an effect of NEX 
haploinsufficiency. (One-way ANOVA with Bonferroni’s multiple comparison test; n.s., not 
significant; n-numbers indicated in the graphs). 

 

3.8 Conditional CRD-NRG1 overexpression has no effect on 

interneuronal migration and maintenance 

NRG1 signaling via ErbB4 has been implicated in the migration of cortical 

interneurons (Flames et al., 2004). Interneuron numbers and cortical layering are 

normal in Emx-Cre*Nrg1f/f mice (Fig. 8B-E), but mildly altered in Nrg1-tg mice (Fig. 

9C, E). In addition, the NRG1-ICD has been shown to influence cell survival by 

regulating genes associated with apoptosis (Bao et al., 2003).  

To determine possible effects of chronic CRD-NRG1 overexpression beginning at 

embryonic and postnatal stages on the migration and maintenance of cortical 

neurons, a large-scale quantification of neurons in Stop-Nrg1*NEX-Cre and Stop-

Nrg1*CKII-Cre mice was conducted. Chromogenic immunostainings were performed 

on coronal paraffin sections (bregma -1.7) of 4 months and 1 year old Stop-

Nrg1*NEX-Cre, Stop-Nrg1*CKII-Cre, and parental control mice. Brain sections were 

stained for the pan neuronal marker NeuN and the interneuronal markers GAD67 

and parvalbumin and quantified in the cortex and hippocampus. 

A semi-automated quantification method was employed for counting NeuN+ neuron 

numbers, based on thresholded images, including watershed-based rendering of 

positive signals (Fig. 20A, C). Quantification of NeuN+ neurons in the cortex of 4 

month old Stop-Nrg1*NEX-Cre and Stop-Nrg1*CKII-Cre mice showed no differences 

compared to parental controls, except for a minor difference between Stop-

Nrg1*NEX-Cre mice and CKII-Cre controls, which harbored significantly less NeuN+ 

neurons (*p < 0.05), however, due to small group size (n=3), this finding requires 

cautious interpretation (Fig. 20A, B). At 1 year of age NEX-Cre controls and Stop-

Nrg1*NEX-Cre mice showed significantly reduced numbers of NeuN+ neurons  
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Fig. 20: NEX-Cre and Stop-Nrg1*NEX-Cre mice have reduced numbers of neurons in 
the cortex at 1 year of age. (A and C) Chromogenic immunostaining for the pan-neuronal 
marker NeuN on coronal paraffin sections from 4 months and 1 year old Stop-Nrg1*NEX-Cre, 
Stop-Nrg1*CKII-Cre and control mice (bregma -1.7), and watershed thresholded images used 
for semi-autoated quantification of NeuN

+
 neurons. Scale bars, 50 µm. (B) Semi-automated 

quantification of 500 µm wide columns of the somato-sensory cortex using watershed 
thresholded images at 4 months of age revealed a slight decrease in neuronal numbers in 
CKII-Cre

 
mice compared to Stop-Nrg1*NEX-Cre mice (*p < 0.05, one-way ANOVA; 

Bonferroni’s multiple comparison test; n-numbers indicated in the graph). (D) Semi-automated 
quantification of NeuN

+
 neurons, as in (B), at 1 year of age revealed a ~20 % reduction of 

neurons in the cortex of NEX-Cre and Stop-Nrg1*NEX-Cre mice, indicating an effect of NEX 
haploinsufficiency (*p < 0.05, **p < 0.01, ***p < 0.001; one-way ANOVA; Bonferroni’s multiple 
comparison test; n-numbers indicated in the graph). 

 

compared to other genotypes (Fig. 20C, D). However, this finding emerged from a 

combination of slightly increased cortical size and reduced numbers of NeuN+ cells in 

mice harboring the NEX-Cre allele (data not shown), resulting in a significant 

reduction in cell density. Individually, the number of NeuN+ cells and cortical size 

were not significantly different compared to other genotypes. As above, the 

(modestly) reduced density of NeuN+ neurons was associated with NEX 

haploinsufficiency in NEX-Cre ‘knock-in’ driver mice, rather than Cre expression per 

se or HA-NRG1 overexpression, since this effect was not observed in Stop-Nrg1* 
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Fig. 21: NEX-Cre mice show reduced numbers of GAD67
+
 interneurons in the cortex 

and hippocampus at 1 year of age. (A) Chromogenic immunostaining for GAD67 on 
coronal paraffin sections from 4 months old Stop-Nrg1*NEX-Cre, Stop-Nrg1*CKII-Cre and 
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control mice (bregma -1.7). Dashed lines indicate quantified areas. Boxes show location of 
high magnification images. Scale bars, 500 µm (overview), 100 µm (high magnifications). (B) 
Quantification of GAD67

+
 interneurons in the cortex and hippocampus of 4 months old Stop-

Nrg1*NEX-Cre, Stop-Nrg1*CKII-Cre and controls showed no significant differences in 
interneuron numbers (One-way ANOVA; Bonferroni’s multiple comparison test; n.s., not 
significant; n-numbers indicated in the graph). (C and D) A similar analysis of GAD67

+
 

interneurons, as in (A and B), was performed at 1 year of age. (C) Exemplary images of 
GAD67 immunostainings and quantified areas. Scale bars, 500 µm (overview), 100 µm (high 
magnifications). (D) Quantification of GAD67

+
 cells revealed reduced interneuronal numbers 

in the cortex and hippocampus of NEX-Cre mice. Stop-Nrg1*NEX-Cre mice as well showed a 
trend to reduced interneuron numbers. (*p < 0.05, **p < 0.01; one-way ANOVA with 
Bonferroni’s multiple comparison test; n-numbers indicated in the graph). 

 

CKII-Cre or CKII-Cre mice (Fig. 20D). Since the NEX-Cre driver line is a widely used 

tool in neurobiology, possible neuropathological effects of NEX (NeuroD6) 

haploinsufficiency must be carefully considered. 

Next, interneuronal numbers in the somatosensory cortex and hippocampus (bregma 

-1.7) were quantified at 4 months and 1 year of age following immunostaining of 

coronal paraffin sections for GAD67 (Fig. 21A, C, dashed lines mark quantified 

areas). Counting was performed manually, since GAD67 not only stained cell 

somata, but also dendritic and axonal arborizations (Fig. 21A, C, note background 

staining). Again, the results represent cell density (cells/mm2) to normalize the cell 

number to the quantified area. No changes in the number of GAD67+ interneurons 

were observed at 4 months of age (Fig. 21A, B). At 1 year of age a significant 

reduction in the density of GAD67+ interneurons was present in the cortex and 

hippocampus of NEX-Cre controls compared to other genotypes (Fig. 21D). Similar 

as above, increased cortical and hippocampal size, without concomitant increase in 

cell numbers (data not shown), resulted in reduced GAD67+ cell density in NEX-Cre 

controls. In contrast, embryonic (Stop-Nrg1*NEX-Cre) or postnatal (Stop-Nrg1*CKII-

Cre) HA-NRG1 overexpression showed no major effect on interneuron density in the 

cortex or hippocampus (Fig. 21D).  

PV+ interneurons present the largest group of ErbB4 expressing interneurons 

(Neddens and Buonanno, 2009; Vullhorst et al., 2009; Fazzari et al., 2010). To 

specifically examine these cells, coronal paraffin sections were immunostained for 

parvalbumin. Similar to the GAD67 analysis, interneuron numbers were manually 

counted in the hippocampus and cortex (bregma -1.7) of Stop-Nrg1*NEX-Cre, Stop-

Nrg1*CKII-Cre, and parental control mice at 4 months and 1 year of age (Fig. 22A, C, 

dashed lines indicate quantified areas). At 4 months no significant differences in the 

number of PV+ interneurons were observed in the cortex and hippocampus of Stop-

Nrg1*NEX-Cre or Stop-Nrg1*CKII-Cre mice compared to controls (Fig. 22A, B). 
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Fig. 22: NEX-Cre and Stop-Nrg1*NEX-Cre mice have reduced numbers of PV
+
 

interneurons in the cortex and hippocampus at one year of age. (A) Chromogenic 
immunostainings for PV on coronal paraffin sections from 4 months old Stop-Nrg1*NEX-Cre, 
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Stop-Nrg1*CKII-Cre and control mice (bregma -1.7). Dashed lines indicate quantified areas. 
Boxes highlight positions of high magnification images. Scale bars, 500 µm (overview), 100 
µm (high magnifications). (B) Quantification of PV

+ 
interneurons in the cortex and 

hippocampus at 4 months of age showed no difference between genotypes. (One-way 
ANOVA; Bonferroni’s multiple comparison test; n.s., not significant; n-numbers indicated in 
the graph). (C) Similar chromogenic immunostaining for PV as in (A) for 1 year old mice. 
Dashed line indicates the area quantified in the hippocampus. Boxes indicate positions of 
high magnification images shown in the lower panel (Asterisk). Scale bars, 500 µm 
(overview), 100 µm (high magnification). (D) Quantification of PV

+
 interneurons at 1 year of 

age in the cortex and hippocampus of NEX-Cre
 
mice revealed reduced numbers of PV

+ 

interneurons. A similar effect in the cortex and a trend in the hippocampus were also 
observed in Stop-Nrg1*NEX-Cre mice, arguing for an effect of NEX haploinsufficiency. Note 
that in the cortex of 1 year old mice only a 500 µm wide column of the somato-sensory cortex 
was quantified. (*p < 0.05, **p < 0.01, ***p < 0.001; one-way ANOVA with Bonferroni’s 
multiple comparison test; n-numbers indicated in the graph). 

 

At 1 year of age a significantly reduced density of PV+ interneurons was detected in 

NEX-Cre controls and Stop-Nrg1*NEX-Cre mice (Fig. 22C, D). As above, a 

combination of increased cortical and hippocampal sizes and mildly reduced 

numbers of PV+ interneurons (data not shown) resulted in a significant reduction of 

cell density. Again, this effect was associated with NEX haploinsufficiency, as it was 

also present in Stop-Nrg1*NEX-Cre mice, but not CamKII-Cre driver mice (Fig. 22D). 

Taken together, HA-NRG1 overexpression in cortical projection neurons (with early 

embryonic or postnatal onset) caused no major abnormalities in cortical interneuron 

migration and/or maintenance. 

At 1 year of age a significantly reduced density of PV+ interneurons was detected in 

NEX-Cre controls and Stop-Nrg1*NEX-Cre mice (Fig. 22C, D). As above, a 

combination of increased cortical and hippocampal sizes and mildly reduced 

numbers of PV+ interneurons (data not shown) resulted in a significant reduction of 

cell density. Again, this effect was associated with NEX haploinsufficiency, as it was 

also present in Stop-Nrg1*NEX-Cre mice, but not CamKII-Cre driver mice (Fig. 22D). 

Taken together, HA-NRG1 overexpression in cortical projection neurons (with early 

embryonic or postnatal onset) caused no major abnormalities in cortical interneuron 

migration and/or maintenance. 

 

3.9 Cortical-restricted HA-NRG1 overexpression is not linked to 

ventricular enlargement observed in Thy1.2 promoter-driven 

transgenic mice 

Ventricular enlargement is a robust and well replicated feature in SZ and Nrg1-tg 

mice with cortical and subcortical HA-NRG1 overexpression show enlarged lateral 

ventricles (Agarwal et al., 2014). 
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Fig. 23: Lateral ventricles are enlarged in HA-Nrg1-tg, but not in HA-Nrg1
GIEF

 or 
conditional HA-NRG1 overexpressing mice. (A) Representative images of third and lateral 
ventricles of Thy1.2 promoter-driven and conditional HA-Nrg1 transgenic mouse lines and 
controls. Chromogenic immunostaining for GFAP on coronal paraffin sections at bregma -1.7. 
Scale bars, 250 µm. (B) Because ventricles are three dimensional structures with changing 
cross section profile, ventricle sizes of Thy1.2 promoter-driven HA-Nrg1-tg and HA-Nrg1

GIEF
, 

as well as conditional Stop-Nrg1*NEX-Cre, Stop-Nrg1*CKII-Cre mice and controls were 
measured and averaged in at least three coronal paraffin sections per mouse, to increase the 
reliability of the analysis (bregma -1.7). HA-Nrg1-tg mice have enlarged lateral ventricle sizes 
and show a tendency to enlarged third ventricles. (*p < 0.05, **p < 0.01, ***p < 0.001; n.s., not 
significant; one-way ANOVA with Bonferroni’s multiple comparison test; n-numbers indicated 
in the graph). 
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To systematically compare ventricular sizes in different NRG1 transgenic mouse 

models, sizes of third and lateral ventricles were determined in Thy1.2-driven HA-

Nrg1-tg and HA-Nrg1GIEF mice, as well as in conditional Stop-Nrg1*NEX-Cre and 

Stop-Nrg1*CKII-Cre mice. HA-Nrg1GIEF mice express an HA epitope-tagged variant of 

CRD-NRG1, which mimicks proteolytic cleavage in the juxtamembrane stalk region 

by BASE-1, therefore lacks the CTF, and ends with the amino acid sequence: “GIEF” 

for (Glycine-Isoleucine-Glutamic Acid (E)-Phenylalanine (F)). Similar to HA-Nrg1-tg 

mice, these mice show hypermyelination of the CNS and PNS and express this 

NRG1 variant at high levels in neurons of the brain (Velanac et al., 2011). Ventricular 

size was determined on coronal paraffin sections (bregma -1.7). Representative 

images are shown in Fig. 23A, the dashed lines indicate measured areas. 

As expected, HA-Nrg1-tg mice showed enlarged ventricles, similar to Nrg1-tg mice 

(Agarwal et al., 2014), however the enlargement of the third ventricle was not 

significant, when compared to the other genotypes (Fig. 23B). Analysis of lateral 

ventricles (average of left and right lateral ventricle area) revealed that ventricle size 

in HA-Nrg1-tg mice was almost doubled compared to all other genotypes, however 

this result was not significant when compared to HA-Nrg1GIEF and Stop-Nrg1*CKII-

Cre mice (Fig. 23B). 

It appears that subcortical expression of full length CRD-NRG1 is required for 

ventricular enlargement. However, expression of HA-NRG1GIEF at high levels in 

subcortical regions does not affect ventricular sizes, indicating that the NRG1 CTF 

might be involved in the development of enlarged ventricles. 

 

3.10 Thy1.2-driven NRG1 transgenic mice have reduced body weight 

Intracerebroventricular injections of recombinant NRG1 cause decreased body 

weight in hamsters (Snodgrass-Belt et al., 2005). Furthermore, intraperitoneal 

administration of recombinant NRG1 has recently been shown to trigger decreased 

food intake and results in reduced weight gain in normal-weight mice, by affecting 

leptin levels (Ennequin et al., 2015). When handling our transgenic mice, we 

observed that Nrg1-tg and HA-Nrg1-tg mice were always leaner than their WT 

littermates. To analyze this observation in more detail, the body weight of adult males 

from several NRG1 overexpressing transgenic mouse lines at an age of 12 to 18 

weeks was determined. In line with previous observations, Thy1.2-driven Nrg1-tg and 

HA-Nrg1-tg mice were significantly leaner than controls and Stop-Nrg1*NEX-Cre 

mice, but not than CKII-Cre and Stop-Nrg1*CKII-Cre mice. In fact Stop-Nrg1*CKII-

Cre males were significantly leaner than Stop-Nrg1*NEX-Cre males (Fig. 24), 
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suggesting that subcortical overexpression of CRD-NRG1, for instance in thalamic 

and hypothalamic regions, is involved in the weight reduction, as Stop-Nrg1*CKII-Cre 

mice show more subcortical expression than Stop-Nrg1*NEX-Cre mice (compare 

Fig. 14, 16). 

 
 

Fig. 24: ‘Global’ Nrg1-tg and HA-Nrg1-tg mice have reduced body weight. Body weight of 
NRG1 transgenic mouse models was determined in male mice at an age of 12 to 18 weeks. 
Thy1.2 promoter-driven Nrg1-tg and HA-Nrg1-tg mice have significantly lower body weight 
than controls and conditional Stop-Nrg1*NEX-Cre mice. CKII-Cre and Stop-Nrg1*CKII-Cre 
were not significantly heavier than Thy1.2 promoter-driven models. Stop-Nrg1*CKII-Cre mice 
were significantly leaner than Stop-Nrg1*NEX-Cre mice. (*p < 0.05, **p < 0.01, ***p < 0.001; 
one-way ANOVA with Bonferroni’s multiple comparison test; n-numbers indicated in the 
graph). 

 

3.11 Stop-Nrg1*NEX-Cre mice show no signs of anxiety-like behavior, 

decreased PPI or cognitive impairments, but exhibit hyperactivity 

Overexpression of full length HA-CRD-NRG1 in HA-Nrg1-tg mice causes behavioral 

changes, such as anxiety-like behavior in the open field test (Fig. 10E) and PPI 

deficits (Fig. 10D). In these mice, pan-neuronal CRD-NRG1 overexpression in the 

brain starts at around E16 and persists at high levels throughout life. In Stop-

Nrg1*NEX-Cre mice moderate HA-CRD-NRG1 overexpression is restricted to 

projection neurons of the neocortex, hippocampus and amygdala, starting at E12.  

To test whether cortical restricted HA-NRG1 overexpression leads to abnormal 

behavior, adult (age 8-25 weeks) Stop-Nrg1*NEX-Cre mice (n = 20) and controls, 

including WT (n = 15), Stop-Nrg1 (n = 11) and NEX-Cre mice (n = 22), were 

examined in a battery of behavioral tests. To assess locomotor activity and anxiety,  
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Fig. 25: Stop-Nrg1*NEX-Cre mice exhibit novelty-induced hyperactivity and increased 
fighting behavior in the tail suspension test. (A) Stop-Nrg1*NEX-Cre mice are hyperactive 
in the open field test compared to parental controls and show increased time active, distance 
travelled and more corner visits. Distance travelled plotted in 1 min intervals over the length of 
the experiment reveals novelty-induced hyperactivity. No signs of altered anxiety behavior 
were observed. (B) Stop-Nrg1*NEX-Cre males are hyperactive in the hole board test, but 
show similar exploration times and hole visits as controls. Distance travelled plotted as 1 min 
intervals confirms novelty-induced hyperactivity. (C) Stop-Nrg1*NEX-Cre mice show normal 
behavior in the light-dark preference test compared to controls. No signs of altered anxiety 
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behavior were observed. (right) Image of the experimental setup. (D) Stop-Nrg1*NEX-Cre 
mice exhibit increased fighting behavior in the first, second and fifth minute of the tail 
suspension test compared to controls. NEX-Cre

 
mice fought more than WT in the first and 

second minute and more than Stop-Nrg1 mice in the second minute of the test. (right) Image 
of a mouse during the experiment. Male mice were tested at an age of 8-25 weeks. Stop-
Nrg1*NEX-Cre mice (n = 20), WT (n = 15), Stop-Nrg1 (n = 11), NEX-Cre

 
(n = 22). (*p < 0.05, 

**p < 0.01, ***p < 0.001; n.s., not significant; one-way ANOVA with Bonferroni’s multiple 
comparison test). 

 
mice were tested in the open field test. While signs for increased anxiety-like 

behavior were not observed (data not shown), Stop-Nrg1*NEX-Cre mice exhibited 

hyperactivity. Stop-Nrg1*NEX-Cre mice were more active (10 % increase) 

compared to WT and Stop-Nrg1 mice, but not to NEX-Cre mice (Fig. 25A). They 

travelled longer distances (30% increase) and visited more corners (44% increase) 

compared to all control groups (Fig. 25A). When the distance travelled was plotted as 

1 minute intervals over the 10 minutes duration of the experiment, Stop-Nrg1*NEX-

Cre mice travelled more distance over the entire course of the experiment (Fig. 25A). 

This effect was highly significant in the first half of the experiment, when compared to 

WT controls and significant in most of the 1 minute intervals compared to the two 

parental control strains (Stop-Nrg1 and NEX-Cre), suggesting novelty induced 

hyperactivity. 

To assess the exploratory drive and anxiety related behavior under different 

conditions, mice were tested in the hole board test. In this test mice explore an open 

arena equipped with holes, which trigger exploratory behavior, i.e. nose poking. 

While Stop-Nrg1*NEX-Cre mice showed no changes in exploratory behavior (Fig. 

25B), they travelled longer distances (35 %). When plotted as 1 minute intervals, 

Stop-Nrg1*NEX-Cre mice travelled longer distances during the first half of the test 

and showed higher activity during the entire experiment compared to controls, similar 

to the hyperactivity phenotype observed in the open field test (Fig. 25B). To examine 

anxiety-related behavior more specifically, the light-dark preference test was 

employed. This test measures the animal’s preference for dark, enclosed places over 

bright, exposed places. Mice that did not enter the dark compartment within 6 

minutes were excluded from the test (two WT and two NEX-Cre mice). Similar to 

open field and hole board tests, Stop-Nrg1*NEX-Cre mice showed no signs of 

increased anxiety (Fig. 25C). 

Next, the tail suspension test was employed, which was developed to assess mood 

levels and as a screening test for potential antidepressant drugs. In this test the mice 

are hung by the tail for 6 minutes and thereupon try to escape this aversive situation 

(Fig. 25D). Longer periods of immobility are considered as depressive-like 

behavior. When tested, Stop-Nrg1*NEX-Cre mice spent more time trying to avoid the 
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aversive situation compared to WT and Stop-Nrg1 mice (***p < 0.001) and NEX-Cre 

controls (*p < 0.05), thus displaying decreased depressive-like behavior (Fig. 25D). 

When plotted over time, Stop-Nrg1*NEX-Cre mice showed more activity than WT in 

the first, second, and fifth minute of the test (***p < 0.001), in minute 2 more activity 

than Stop-Nrg1 (***p < 0.001) and in minute 5 more activity than NEX-Cre controls 

(***p < 0.001) (Fig. 25D). However, NEX-Cre controls also struggled more than WT 

mice in the first (**p < 0.01) and second minute of the test (*p < 0.05), and in the 

second minute NEX-Cre controls showed more activity than Stop-Nrg1 controls (***p 

< 0.001) (Fig. 25D). This finding again supports the hypothesis that 

haploinsufficiency in NEX-Cre mice could affect brain functions, including behavior. 

NRG1/ErbB4 signaling is involved in both short-term and long-term neural plasticity 

(Li et al., 2007; Woo et al., 2007), CRD-NRG1 overexpression results in impaired 

LTP (Agarwal et al., 2014). In addition, HA-Nrg1-tg mice showed deficits in working 

memory (Wehr et al., in preparation). Ablation of NRG1 in projection neurons, using 

the CKII-Cre driver line caused reduction in contextual and cued fear memory. 

Together, these findings suggest that NRG1 plays a role in learning, memory and 

other cognitive processes. 

To test the influences of cortical restricted HA-NRG1 overexpression on 

hippocampus-dependent learning and memory, Stop-Nrg1*NEX-Cre mice were 

tested in contextual and cued fear conditioning. When mice were placed into the 

shocking chamber for 2 min on the first day, they showed normal baseline behavior 

(normal exploration with no freezing).  

Subsequently, mice were subjected to two pairings of the conditioned stimulus (CS, a 

tone of 80 db, for 30 sec), followed by the aversive unconditioned stimulus (US, mild 

electric foot shock, 0.4 mA for 2 sec) separated by 30 sec. Reaction to both the CS 

and US was comparable in all groups. 24 hours later, the retention of contextual fear 

conditioning was assessed by placing mice back into the fear conditioning context 

box for 2 min. Contextual fear response was scored by measuring the freezing 

response (steady suppression of locomotor or exploratory activity). All genotype 

groups showed comparable freezing behavior as a consequence of exposure to the 

context, however Stop-Nrg1*NEX-Cre mice showed a tendency to reduced freezing 

response (Fig. 26D). 24 hours later mice were placed in a novel context box with no 

similarities to the shocking chamber, and scored for freezing behavior in response to 

the new context for 2 min. All genotypes showed similar freezing responses to the 

new context that were slightly increased over the context baseline, but significantly 

lower than responses to the context (Fig. 26D). 



Results 

 

 71 

 
 

Fig. 26: Stop-Nrg1*NEX-Cre mice show no impairments in working memory and 
sensorimotor gating, but exhibit reduced cued fear memory. (A) Stop-Nrg1*NEX-Cre 
mice show no impairments of working memory in the first and second half, as well as the total 
% alternations compared to controls in the Y-maze spontaneous alternation test. (right) Image 
of the experimental setup. (B) Image of the SR-Lab startle response system used for the PPI 
test. Mice were placed into restraining tubes on a deflection sensitive platform. (C) (left) Stop-
Nrg1*NEX-Cre mice show no differences in the percentage of prepulse inhibition at prepulses 
of 70, 75 and 80 dB and no differences in the startle responses prior, during and after the 
conditioning (right). (D) Stop-Nrg1*NEX-Cre mice display reduced cued fear memory 
compared to WT and NEX-Cre controls. Stop-Nrg1 mice show increased context baseline 
freezing behavior due to two outliers (exclamation mark), illustrated in the scatter plot (right). 
Since these two mice performed normal in all other tasks, they were kept in the analysis. (E) 
Normal pain sensitivity in all genotypes in the hotplate test. (F) Ugo Basile fear conditioning 
system. The striped box on the left was used for contextual, and the clear cylinder on the right 
as novel context for cued fear memory. (G) Genotype color-code of the bargraphs. Male mice 
were tested at an age of 8-25 weeks. Stop-Nrg1*NEX-Cre mice (n = 20), WT (n = 15), Stop-
Nrg1 (n = 11), NEX-Cre

 
(n = 22). (*p < 0.05, **p < 0.01, ***p < 0.001; n.s., not significant; one-

way ANOVA with Bonferroni’s multiple comparison test). 

 

Next, mice were exposed for 2 min to the auditory CS (tone of 80 db), and while 
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control groups (WT, Stop-Nrg1 and NEX-Cre) showed similar freezing responses, 

Stop-Nrg1*NEX-Cre mice showed a significant reduction in freezing responses 

compared to WT and NEX-Cre controls, but not to Stop-Nrg1 controls (Fig. 26D). 

Impaired fear response in Stop-Nrg1*NEX-Cre mice could not be caused by a deficit 

in detecting auditory stimuli as these mice performed well in the prepulse inhibition 

(PPI) test (Fig. 26C).  

To investigate the effect of cortical HA-CRD-NRG1 overexpression on working 

memory, Stop-Nrg1*NEX-Cre mice were tested in the Y-maze spontaneous 

alternation test. Mice were allowed to explore the maze for 10 min and the number of 

choices and the percentage of alternations were scored. No difference was observed 

between Stop-Nrg1*NEX-cre mice and controls in the number of choices (data not 

shown) and in the percentage of alternations (Fig. 26A). Thus, Stop-Nrg1*NEX-Cre 

mice showed no deficits in working memory in the Y-maze, in contrast to HA-Nrg1-tg 

mice, 

Finally, assessment in the hotplate test (Fig. 26E) and sensorimotor gating by 

employing the PPI test, showed no changes in pain perception as well as normal 

startle responses and no difference in PPI in Stop-Nrg1*NEX-Cre mice (Fig. 26C), in 

contrast to HA-Nrg1-tg mice (Fig. 10, Agarwal et al., 2014).  

 

3.12 Postnatal cortical overexpression of HA-NRG1 in Stop-Nrg1*CKII-

Cre mice has only minor effects on behavior 

SZ is considered a developmental disease with first symptoms occurring in early 

adulthood (Sham et al., 1994). It was shown in previous studies that deletion of 

NRG1 from projection neurons starting at P5 in CKII-Cre*Nrg1f/f mice resulted in 

hypoactivity in the open field test in 3 months old mice and impaired contextual and 

cued fear conditioning in 12 months old mice (Agarwal et al., 2014). Stop-Nrg1*NEX-

Cre mice showed absence of anxiety-like behavior and no PPI impairment (Fig. 10D, 

E), but hyperactivity in the open field and hole board test, and increased fighting 

behavior in the tail suspension test (Fig. 25A, B, D). 

To distinguish embryonic from postnatal effects of NRG1 overexpression on 

behavioral functions, a cohort of Stop-Nrg1*CKII-Cre mice (n=7) and parental 

controls, Stop-Nrg1 (n=19), and CKII-Cre (n=11) was tested at 3 to 6 months of age 

in the same battery of behavioral tests as before. First, locomotor activity and anxiety 

was assessed in the open field test. Here, only minor hyperactivity was observed for 

the distance travelled and the number of corner visits in Stop-Nrg1*CKII-Cre mice  
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Fig. 27: Postnatal cortical overexpression of HA-NRG1 in Stop-Nrg1*CKII-Cre mice has 
only minor effects on activity. (A) Stop-Nrg1*CKII-Cre mice show increased distance 
travelled and corner visits in the open field test compared to Stop-Nrg1, but not to CKII-Cre 
controls. Distance travelled plotted as 1 min intervals revealed no novelty-induced 
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hyperactivity, as Stop-Nrg1*CKII-Cre mice show only a minor increase of distance travelled. 
(B) Normal behavior of Stop-Nrg1*CKII-Cre

 
mice in the hole board test. Only minor increases 

in the exploration time, distance travelled and hole visits were observed. When plotted as 1 
min intervals, no difference between genotypes was detected for the distance travelled. (C) 
Stop-Nrg1*CKII-Cre mice show normal behavior in the light-dark preference test. (right) 
Image of the experimental setup. (D) Only minor increase of fighting behavior in Stop-
Nrg1*CKII-Cre mice in the tail suspension test. Plotting the percentage of time active as 1 min 
intervals reveals only minor increases of activity in the second, fourth and last minute of the 
experiment. (right) Image of a mouse during the experiment. Male mice were tested at 3 to 6 
months of age. Stop-Nrg1*CKII-Cre (n = 7), Stop-Nrg1 (n = 19), CKII-Cre

 
(n = 11). (*p < 0.05; 

n.s., not significant; one-way ANOVA with Bonferroni’s multiple comparison test). 

 

compared to Stop-Nrg1 controls, but not to CKII-Cre controls (Fig. 27A). Similarly, 

Stop-Nrg1*CKII-Cre mice showed only tendencies of hyperactivity and increased 

exploratory behavior in the hole board test, but none of these tendencies was 

significant compared to parental controls (Fig. 27B). To more specifically test anxiety-

associated behavior, the light-dark preference test was performed. Both, the number 

of crossings and the time spend in one or the other compartment was unaltered in 

these mice (Fig. 27C), indicating normal exploratory behavior and anxiety levels in 

Stop-Nrg1*CKII-Cre mice. Finally, Stop-Nrg1*CKII-Cre mice showed a non-

significant increase in overall time active in the tail suspension test (Fig. 27D). Thus, 

Stop-Nrg1*CKII-Cre mice showed no signs of depressive-like states, but also no 

increase in motivation to escape the aversive situation. In summary, Stop-Nrg1*CKII-

Cre mice do not replicate the hyperactivity phenotype observed in Stop-Nrg1*NEX-

Cre mice.  

To assess hippocampus-dependent learning and memory, Stop-Nrg1*CKII-Cre mice 

were tested in contextual and cued fear conditioning. Following the same 

experimental procedure as above, Stop-Nrg1*CKII-Cre mice showed no deficits in 

contextual and cued fear memory (Fig. 28D).  

When tested also Stop-Nrg1*CKII-Cre mice and controls in the Y-maze spontaneous 

alternation test, Stop-Nrg1*CKII-Cre mice showed normal exploration behavior, and 

there was no significant difference between Stop-Nrg1*CKII-Cre mice and controls in 

the number of choices (data not shown) and the percentage of alternations (Fig. 

28A). Thus Stop-Nrg1*CKII-Cre mice showed no impairments of working memory in 

this test. 

Finally Stop-Nrg1*CKII-Cre mice and controls showed similar response to pain 

stimuli in the hotplate test (Fig. 28E), and no differences were observed in startle 

response and PPI (Fig. 28C). 

In summary, postnatal conditional overexpression of the same HA-CRD-NRG1 

variant as in HA-Nrg1-tg and Stop-Nrg1*NEX-Cre mice shows only minor effects on 

behavioral functions in Stop-Nrg1*CKII-Cre mice.  



Results 

 

 75 

 
 
Fig. 28: Stop-Nrg1*CKII-Cre mice exhibit normal learning and memory as well as 
sensorimotor gating. (A) Stop-Nrg1*CKII-Cre mice show no impairments of working 
memory in the Y-maze spontaneous alternation test compared to parental controls. (right) 
Image of the experimental setup. (B) Image of the SR-Lab startle response system used for 
the PPI test. Mice were placed into restraining tubes on a deflection sensitive platform. (C) 
(left) Stop-Nrg1*CKII-Cre mice show no differences in the percentage of prepulse inhibition at 
prepulses of 70, 75 and 80 dB and no differences in the startle responses prior, during and 
after the conditioning (right). (D) No impairments of learning and memory in Stop-Nrg1*CKII-
Cre mice in contextual and cued fear memory compared to controls. (right) TSE Systems fear 
conditioning setup. The box on the left was used for contextual fear conditioning and the 
triangular box on the right as a novel context for cued fear memory. (E) Normal pain 
sensitivity in all genotypes in the hotplate test. (F) Genotype color-code of the bargraphs. 
Male mice were tested at 3 to 6 months of age. Stop-Nrg1*CKII-Cre (n = 7), Stop-Nrg1 (n = 
19), CKII-Cre

 
(n = 11). (*p < 0.05; n.s., not significant; one-way ANOVA with Bonferroni’s 

multiple comparison test). 
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3.13 Stop-Nrg1*NEX-CreERT2 mice as a tool for acute overexpression of 

NRG1 in the adult mouse brain  

Acute changes in NRG1/ErbB4 signaling may provide better insight into ‘normal’ 

NRG1 functions in the brain. To model acute overexpression of HA-CRD-NRG1 in 

adult mice, we employed the NEX-CreERT2 driver mouse line (Agarwal et al., 2011). 

This mouse line allows tamoxifen induced, Cre-mediated recombination. Tamoxifen 

is a synthetic estrogen receptor (ER) ligand, which induces the dissociation of 

cytosolic CreERT2 from HSP90, nuclear import of CreERT2, and site-specific 

recombination of loxP-flanked target genes. 

To test the efficiency of different tamoxifen concentrations to induce Cre-

recombination in the brain, we crossbred NEX-CreERT2 mice to R26R-floxtdTomato 

reporter mice (Madisen et al., 2010). Double transgenic mice were injected 

intraperitoneally (IP) for 2 or 10 days with increasing tamoxifen concentrations, 

ranging from 25-100 mg/kg body weight. Tamoxifen injections at 100 mg/kg body 

weight for 10 days were defined as ‘full induction’ protocol. Four weeks after the last 

injection, mice were perfused with 4 % PFA and coronal vibratome sections of the 

brain were prepared. Mice injected for 2 days with tamoxifen at 25 mg/kg body 

weight showed only few recombined cells in the cortex, the hippocampal layers CA1 

and CA3, and the amygdala (Fig. 29A). Mice injected for 2 days with tamoxifen at 50 

mg/kg body weight showed an increased number of recombined cells in these areas, 

but still displayed a single cell recombination pattern (Fig. 29A). Tamoxifen injection 

for 2 days at 100 mg/kg resembled full induction, yet there were still markedly less 

cells recombined than after 10 days tamoxifen injection at 100 mg/kg body weight. 

(Fig. 29A). In summary, protocol 1 and 2 (25-50 mg/kg body weight of tamoxifen for 2 

days) appeared suitable for single cell genetics. 

For biochemical verification of tamoxifen-induced HA-NRG1 expression, Stop-

Nrg1*NEX-CreERT2 and Stop-Nrg1 control mice were injected for 10 days with 

tamoxifen (100 mg/kg body weight) and brain tissue was collected 1 month later. 

Western blot analysis of protein lysates from hippocampus and thalamus with an 

antibody directed against the C-terminus of NRG1 confirmed NRG1 overexpression 

in the hippocampus, but not thalamus (Fig. 29A, B), in line with absence of thalamic 

recombination in NEX-CreERT2 mice. However, NRG1 overexpression levels in 

Stop-Nrg1*NEX-CreERT2 mice did not match the levels of chronic overexpression in 

Stop-Nrg1*NEX-Cre mice (Fig. 29, B). In a similar experiment Stop-Nrg1*NEX-

CreERT2 and control mice were injected for 10 days with tamoxifen (100 mg/kg body 

weight) and analyzed by immunostaining 1 month later. Fluorescent immunostaining  
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Fig. 29: Stop-Nrg1*NEX-CreERT2 mice are a tool for tamoxifen-induced acute HA-NRG1 
overexpression in adult mice and in vivo single-cell genetics. (A) Vibratome sections 
(bregma -1.7) of NEX-CreERT2*R26R-floxtdTomato mice that were injected with inclining 
tamoxifen concentrations (ranging from 25-100 mg/kg body weight) for 2 or 10 days at an age 
of 12 weeks and tissue was collected 50 days later. Tamoxifen injection at 100 mg/kg body 
weight for 10 days is considered a full induction. TdTomato reporter fluorescence confirmed 
increasing recombination in perfusion fixed, ranging from single recombined cells to full 
recombination of cortical projection neurons. Higher magnification confocal images of 2 days 
50 mg/kg tamoxifen injected mice show single recombined pyramidal neurons of the cortex 
and hippocampus (locations marked by dashed boxes). Cx, cortex; Hipp, hippocampus. Scale 
bars, 30 µm. (B) Western blot analysis of hippocampus and thalamus protein lysates show 
HA-NRG1 overexpression in the hippocampus, but not in the thalamus of Stop-Nrg1*NEX-
CreERT2, resembling NEX expression pattern. 17 weeks old mice were injected with 
tamoxifen for 10 days at 100 mg/kg body weight and collected 31 days after the last injection. 

-Tubulin was used as a loading control. CTF, NRG1 C-terminal fragment; FL, full length; 
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kDa, kilodalton. (C) Fluorescent immunostaining for HA-NRG1 and PV on coronal paraffin 
section (bregma -1.7) of 3 months old Stop-Nrg1*NEX-CreERT2 mice, reveals projection 
neuron-specific HA-NRG1 overexpression. Mice were injected with tamoxifen for 10 days at 
100 mg/kg body weight and tissue was collected 1 month after the last injection. Cx, cortex. 
Scale bar, 20µm. (D) For in vivo single cell genetics, 4 months old Stop-Nrg1*tdTomato*NEX-
CreERT2 triple transgenic mice were injected with tamoxifen for 2 days at 50 mg/kg body 
weight and tissue was collected 3 weeks after the last injection. While layer V pyramidal 
neurons of the cortex loose their GFP fluorescence due to recombination of the GFP-Stop-
flox cassette and gain tdTomato fluorescence (asterisk), hippocampal CA1 pyramidal neurons 
only partially loose their GFP fluorescence (#). (E) Acute induction of HA-NRG1 
overexpression in Stop-Nrg1*NEX-CreERT2 mice and western blot analysis of hippocampal 
protein lysates reveals HA-NRG1 overexpression, ErbB4 hyperphosphorylation and activation 
of MAPK signaling. 4 months old mice were injected with tamoxifen for 5 days at 100 mg/kg 

body weight and brain tissue was collected on the day after the last injection. -actin was 
used as a loading control. CTF, NRG1 C-terminal fragment; FL, full length; kDa, kilodalton. 

for HA-NRG1 and cell type specific markers confirmed that HA-NRG1 

overexpression was restricted to cortical projection neurons (Fig. 29C). 

In a pilot experiment to determine parameters for ‘single cell genetics’, Stop-

Nrg1*NEX-CreERT2 mice were bred to R26R-floxtdTomato reporter mice. Triple 

transgenic mice and controls were injected with tamoxifen (2 days, 50 mg/kg), based 

on the assumption that limited numbers of NEX-CreERT2-positive projection neurons 

recombine both the Stop-Nrg1 transgene and the R26R-floxtdTomato reporter, 

resulting in tdTomato fluorescent neurons that were no longer GFP-positive, but 

instead express HA-NRG1. Analysis of vibratome sections 3 weeks after tamoxifen 

injection revealed tdTomato-positive, GFP-negative cortical projection neurons (Fig. 

29D). However, a subset of tdTomato-positive neurons of the hippocampal CA1 

region maintained GFP fluorescence (Fig. 29D). This either suggests incomplete 

Cre-recombination of only one of the floxed cassettes or residual GFP fluorescence 

due to its long half-life. 

To increase the ‘acuteness’ of the approach, western blot analysis was performed on 

protein lysates prepared one day after the last tamoxifen injection (5 days, 100 

mg/kg). Western blotting with the Nrg1 C-terminal antibody revealed overexpression 

of full length and processed NRG1 already at this early timepoint (Fig. 29E). Testing 

for ErbB4 hyperstimulation with the anti-phospho-ErbB4 (Tyr1284) antibody identified 

a weak increase in ErbB4 receptor phosphorylation (Fig. 29E). Next, as a proof of 

concept it was addressed whether this approach allows to identify changes in 

downstream signaling cascades not present in chronic overexpression models (data 

not shown and Fig. 29B). Western blot analysis of hippocampal protein lysates 

showed a small increase in the phosphorylation of Erk1/2 in Stop-Nrg1*NEX-

CreERT2 mice, suggesting activation of the Raf-MEK-ERK signaling cascade (Fig. 

29E). Thus, this ‘acute’ tamoxifen protocol could be suitable to investigate possible 

signaling cascades in the cortex downstream of NRG1/ErbB4 hyperstimulation. 
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3.14 Biochemical analysis of CRD-NRG1 signaling in NRG1 transgenic 

mice 

NRG1/ErbB4 signaling has been linked to SZ in numerous studies (Stefansson et al., 

2002, 2003; Yang et al., 2003; Hahn et al., 2006; Law et al., 2007; Chong et al., 

2008). The Icelandic at-risk haplotype (HapICE) (Stefansson et al., 2002) has 

recently been associated with increased CRD-NRG1 expression in postmortem brain 

tissue of SZ patients (Weickert et al., 2012). CRD-NRG1 overexpression leads to 

chronic ErbB4 receptor hyperstimultation, ventricular enlargement, altered E/I 

balance, disrupted LTP, reduced PPI, and abnormal dendritic spine growth in 

transgenic mice (Agarwal et al., 2014). However, the molecular mechanisms of 

neuronal network dysfunctions downstream of NRG1/ErbB4 hyperstimulation have 

not been studied in detail. 

Several mouse models of CRD-NRG1 overexpression based on Thy1.2 promoter-

driven (Fig. 9, 10 and Agarwal et al., 2014) and Cre-dependent conditional activation 

(Fig. 11-28) are available. These mouse models show different phenotypes and allow 

the investigation of different aspects of NRG1 overexpression in vivo. To compare 

the underlying molecular changes side by side, a biochemical analysis was 

performed using conditional Stop-Nrg1 mouse models for embryonic (NEX-Cre-), 

postnatal (CamKII-Cre-) and acute (NEX-CreERT2-mediated) overexpression as well 

as “global” Thy1.2-driven full length HA-Nrg1-tg and BACE1 processed HA-Nrg1GIEF 

mice (Fig. 30B). 

In previous experiments overexpression of CRD-NRG1 was shown to induce chronic 

ErbB4 hyperphosphorylation in several transgenic mouse models (Fig. 9B, 14B, 

29E). To test the hypothesis that the amount of CRD-NRG1 overexpression 

determines the level of ErbB4 stimulation (Fig. 30A) hippocampal protein lysates 

from these mouse models were analyzed side by side by western blotting. This 

analysis revealed major differences in the level of HA-NRG1 overexpression, with the 

highest expression level observed in HA-Nrg1GIEF mice, followed by HA-Nrg1-tg mice, 

whereas NEX-Cre- and CKII-Cre-based conditional mouse models showed moderate 

HA-NRG1 overexpression (Fig. 30C). The processed NTF in lysates derived from full 

length HA-NRG1 overexpressing mouse models matched the size of the HA-NRG1 

variant expressed in HA-Nrg1GIEF mice, indicating in vivo processing in the stalk 

region by proteases, such as BACE1. Acute overexpression of HA-NRG1 in Stop-

Nrg1*NEX-CreERT2 mice after 5 days of tamoxifen injection at 100 mg/kg and 

collection one day after the last injection resulted in weak overexpression compared  



Results 

 

 80 

 
 

Fig. 30: NRG1 expression levels correlate with levels of ErbB4 hyperphosphorylation. 
(A) Our working hypothesis suggests that higher levels of NRG1 expression lead to higher 
ErbB4 receptor stimulation. P, phosphorylated tyrosine residues. (B) HA-NRG1 transgenic 
mouse models include conditional models that allow embryonic (NEX-Cre) and postnatal 
(CamKII-Cre) and tamoxifen-induced acute (Stop-Nrg1*NEX-CreERT2) activation of HA-Nrg1 
overexpression. ‘Global’ models use the Thy1.2 promoter expression cassette and show high 
levels of HA-CRD-NRG1 or HA-NRG1

GIEF
 overexpression. Schematic expression curves 

illustrate onset and level of HA-NRG1 overexpression (red curves) in relation to endogenous 
levels (black curve). (C) Western blot analysis of conditional and global HA-NRG1 transgenic 
models side by side reveal different levels of HA-NRG1 overexpression and confirms 
correlating levels of ErbB4 receptor phosphorylation. Note that in all transgenic models ErbB4 
total protein is reduced, indicating receptor internalization and degradation or gene regulation 

upon hyperstimulation. -actin was used as a loading control. FL, full length; kDa, kilodalton; 
N-Term, Nrg1 N-terminal fragment. 
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to the other models (Fig. 30C). 

In summary, conditional mouse models express HA-NRG1 at more physiological 

levels when compared to Thy1.2-driven “global” transgenic mice (Fig. 30C). In line 

with the hypothesis that ErbB4 receptor phosphorylation correlates with HA-NRG1 

expression (Fig. 30C), the highest ErbB4 phosphorylation level was observed in HA-

Nrg1GIEF mice followed by HA-Nrg1-tg mice. As expected, conditional NRG1 

transgenic models showed moderate ErbB4 phosphorylation levels, with the acute 

model displaying the lowest ErbB4 induction (Fig. 30C). Interestingly, concomitant 

with increased ErbB4 phosphorylation, a reduction in total ErbB4 protein (detected by 

a pan-ErbB4 antibody) was present in all transgenic mouse models, suggesting 

either internalization and degradation after receptor activation, or a downregulation of 

ErbB4 receptor expression upon hyperstimulation (Fig. 30C). 

In summary, NRG1 transgenic mouse models at hand model distinct levels and 

profiles of HA-NRG1 expression and ErbB4 receptor activation. 

 

3.15 NRG1 forward and backsignaling – differential recruitment of 

LIMK1? 

NRG1-mediated canonical forward signaling proceeds via ErbB receptors. In addition 

to canonical forward signaling, backsignaling via the NRG1-ICD has been described 

in cultured cells (Bao et al., 2003; Mei and Xiong, 2008; Talmage, 2008; Chen et al., 

2010; Fazzari et al., 2014; Mei and Nave, 2014). In addition to transcription factor 

functions after nuclear translocation (Bao et al., 2003), direct binding of the NRG-ICD 

to the serine/threonine kinase LIM kinase 1 (LIMK1) was observed (Wang et al., 

1998). LIMK1 phosphorylates the actin depolymerizing factor cofilin and serves as a 

key regulator of actin cytoskeleton dynamics (Arber et al., 1998; Yang et al., 1998). 

LIMK1 has been implicated in synaptic maturation (Huang et al., 2000) and shuttles 

between the cytoplasm and the nucleus (Yang and Mizuno, 1999). 

To further exploit transgenic mouse models, including backsignaling-deficient HA-

Nrg1GIEF mice, for the investigation of forward and backsignaling-associated 

mechanisms, a comparative western blot analysis was performed using conditional 

Stop-Nrg1*NEX-Cre as well as “global” HA-Nrg1-tg and HA-Nrg1GIEF mice. In 

agreement with previous findings, ErbB4 receptor phosphorylation correlated with the 

expression levels of different HA-NRG1 variants. As before, levels of total ErbB4 

protein were reduced in all transgenic samples (Fig. 31A). Western blot analysis of 

hippocampal protein lysates used to examine effects in two major signaling pathways 

(Raf–MEK–ERK and PI3K–AKT–S6K pathways) downstream of NRG1/ErbB4 
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forward signaling in cultured cells (Mei and Xiong, 2008; Mei and Nave, 2014), 

showed that in mice with chronic overexpression of full length HA-NRG1 (HA-Nrg1-tg 

and Stop-Nrg1*NEX-Cre mice) MAPK or PI3K signaling was not activated (Fig. 31B). 

However, both pathways were stimulated in HA-Nrg1GIEF mice (Fig. 31B). This finding 

suggests more potent forward signaling functions of NRG1 NTF in HA-Nrg1GIEF mice, 

even under chronic conditions. In line with this finding, the NRG1 NTF was localized 

to axons of projection neurons with a higher abundance than the full length CRD-

NRG1 (Fig. 31B), similar to findings in the PNS (Velanac et al., 2011). Thus, the 

NRG1 NTF more likely reaches presynapses to signal to postsynaptic ErbB4 in 

interneurons. 

Although the precise mechanisms are unknown, perturbed dendrite and axon growth 

of cortical neurons in CRD-NRG1 mouse mutants are thought to be mediated by 

NRG1-ICD backsignaling (Chen et al., 2008, 2010).  

Immunostaining of paraffin sections from Stop-Nrg1*NEX-Cre mice with the anti-HA 

antibody revealed that HA-NRG1 accumulated in the somatodendritic compartment, 

whereas transport into the axonal and presynaptic compartment seemed to be 

limited (Fig. 31C). This lead to the working hypothesis that abnormal accumulation of 

full length HA-NRG1 in the somatodendritic compartment could lead to abnormal 

NRG1-ICD mediated backsignaling (Fig. 24C), with LIMK1 and cofilin as possible 

targets. Thus, hippocampal protein lysates from conditional Stop-Nrg1*NEX-Cre, as 

well as “global” HA-Nrg1-tg and HA-Nrg1GIEF mice were tested for LIMK1 and cofilin 

phosphorylation.  

To verify the identity of the LIMK1 band, protein lysates from LIMK1-/- mice were 

included in the analysis. This analysis revealed that threonine residue 508 (important 

for the regulation of LIMK1 activity) was hypophosphorylated in Stop-Nrg1*NEX-Cre 

mice, indicating reduced LIMK1 activity (Fig. 31C). In contrast, the phosphorylation 

status of T508 was unaltered in HA-Nrg1-tg and HA-Nrg1GIEF mice. Expression of 

LIMK1 protein was unchanged in all transgenic NRG1 mouse models. As expected 

this band was absent in protein lysates from LIMK1-/- mice (Fig. 31C). Examination of 

the phosphorylation status of cofilin at serine 3 revealed increased Ser3 

phosphorylation in all NRG1 transgenic models analyzed (Fig. 31C). Conditional 

Stop-Nrg1*NEX-Cre mice showed stronger Ser3 phosphorylation than “global” HA-

Nrg1-tg mice, which expressed the same HA-NRG1 variant even at higher levels. 

Unexpectedly, backsignaling-deficient HA-Nrg1GIEF mice showed the strongest Ser3 

phosphorylation (Fig. 31C), implicating that NRG1 might regulate cofilin activity also 

via distinct forward directed signaling events. In none of the transgenic mouse 

models we did observe dysregulation of total cofilin protein (Fig. 31C). 
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Fig. 31: A comparative analysis of NRG1 transgenic mouse models reveals differences 
in forward and backsignaling. (A) (left) Western blot analysis of hippocampal protein 
lysates of WT, conditional Stop-Nrg1*NEX-Cre and global HA-Nrg1-tg and HA-Nrg1

GIEF
 mice 

reveals drastic differences in HA-CRD-NRG1 and HA-NRG1
GIEF

 expression levels that 
correlates with ErbB4 receptor hyperphosphorylation levels, in line with our working 
hypothesis (right). ErbB4 total protein is reduced in all NRG1 transgenic mouse models. (B) 
(left) Western blot analysis of hippocampal protein lysates (as in A) shows increased MAPK 
and AKT phosphorylation in HA-Nrg1

GIEF
 mice, but not in full length HA-CRD-NRG1 

transgenic models, suggesting that the processed N-terminal fragment of CRD-NRG1 
(containing the EGF-like domain) is the active part in canonical forward signaling. (Center) 
Illustration demonstration HA-NRG1

GIEF
-mediated canonical forward signaling. (right) In line 

with this hypothesis, the HA-NRG1
GIEF

 fragment was found in axonal structures in HA-
Nrg1

GIEF
 mice (Velanac et al., 2011). (C) (left) Western blot analysis of hippocampal protein 

lysates (as in A,B) reveals reduced LIMK1 phosphorylation in Stop-Nrg1*NEX-Cre mice, but 
not in ‘global’ models. LIMK1

-/-
 brain lysates were used to verify LIMK1 antibody reactivity. 

Cofilin phosphorylation is increased in all HA-NRG1 transgenic models. Total LIMK1 and 
cofilin protein levels are unaltered in HA-NRG1 transgenic models. (Center) LIMK1 is thought 
to mediate CRD-NRG1 backsignaling via the NRG1-ICD, potentially leading to altered 
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dendritic spine dynamics by regulating the actin depolymerization activity of cofilin. However, 
backsignaling-deficient HA-Nrg1

GIEF
 mice also show increased cofilin phosphorylation. (right) 

Fluorescent immunostaining for HA-NRG1 on a coronal paraffin section (bregma -1.7) of a 
Stop-Nrg1*NEX-Cre mouse shows accumulation of HA-CRD-NRG1 in the somatodendritic 

compartment and apical dendrites (arrow heads). -actin was used as a loading control in all 
western blot experiments. FL, full length; kDa, kilodalton; IN, interneuron; N-Term, Nrg1 N-
terminal fragment. 

3.16 HA-NRG1 is enriched in synaptosomes of Stop-Nrg1*NEX-Cre mice 

and regulates cofilin phosphorylation 

Chronically high levels of NRG1/ErbB4 hyperstimulation in Thy1.2-driven NRG1 

transgenic mouse models could trigger unphysiological side effects and activate 

compensatory mechanisms that shut down signaling cascades. To specifically 

examine synaptic signaling functions of NRG1 that could underlay pathomechanisms 

of NRG1/ErbB4 hyperstimulation, crude synaptosomal fractions were prepared from 

Stop-Nrg1*NEX-Cre mice at 4 months of age and tested for changes in the 

LIMK1/cofilin pathway. 

A synaptosomal purification method was adapted (Biesemann et al., 2014), which 

included homogenization of fresh tissue in 0.32 M sucrose buffer, followed by 

differential centrifugation and sucrose gradient ultracentrifugation to extract a crude 

synaptosomal fraction with intact resealed synaptic terminals (Fig. 32A, see Methods 

for details). Purification steps for the preparation of crude synaptic membranes were 

skipped. Instead, gradient purified synaptosomes were used (Biesemann et al., 

2014). An additional centrifugation step was applied to wash and pellet 

synaptosomes out of solution, to concentrate the solution, and redissolve in 0.32 M 

homogenization buffer. To confirm the purification of synaptosomes, samples from 

purification steps were tested by western blotting for synaptic (synaptophysin, 

VGluT1) and glial markers (GLT-1, MBP) (Fig. 32B). 

Synaptosomal preparations of Stop-Nrg1*NEX-Cre mice and controls were tested for 

enrichment of HA-NRG1 by western blotting using an anti-HA antibody. As expected, 

HA-NRG1 was present in synaptosomes of Stop-Nrg1*NEX-Cre mice but not in 

controls. Both full length and processed HA-NRG1 was detected in synaptosomes 

(Fig. 32C). Preliminary analyses failed to detect phosphorylated ErbB4 receptors 

(Tyr1284) and LIMK1 (Thr508) in the synaptosomal fraction of transgenic mice or 

controls (data not shown). In contrast, phosphorylated cofilin (Ser3) was present in 

synaptosomes and clearly reduced in Stop-Nrg1*NEX-Cre mice, in contrast to total 

protein lysates from hippocampus (see Fig. 31C). This indicates differences in the 

subcellular targeting of phosphorylated cofilin to synapses under conditions of 

chronic NRG1 overexpressing (Fig. 32D). 
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Fig. 32: HA-NRG1 is enriched in synaptosomes of Stop-Nrg1*NEX-Cre

 
mice and 

regulates cofilin phosphorylation. (A) Schematic illustration of synaptosomal preparation 
as described in the methods section 6.4.3. (B) Western blot analysis of fractions of the 
synaptosomal preparation reveals concentration of synaptosomes, indicated by 
synaptophysin and VGluT1 immunoreactivity, and reduction of myelin (myelin basic protein, 
MBP) contamination in final synaptosomes (Syn). Glial glutamate transporter (GLT)-1 is also 
enriched in synaptosomal fractions, in line with the tripartite synapse theory. GAPDH was 
used as a loading control. (C) Western blot analysis of synaptosomal preparations reveals 
enrichment of full length and N-terminal fragment (NTF) of HA-CRD-NRG1 in synaptosomes 

of Stop-Nrg1*NEX-Cre
 
mice. -actin was used as a loading control. (D) Western blot analysis 

of synaptosomes reveals HA-NRG1 enrichment and reduction of cofilin phosphorylation in 

Stop-Nrg1*NEX-Cre
 
mice compared to WT controls. -actin was used as a loading control. 

FL, full length; kDa, kilodalton; NTF, Nrg1 N-terminal fragment.  
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4. Discussion 

Human NRG1 and ErbB4 genes are possible genetic risk factors for schizophrenia 

(SZ) (Stefansson et al., 2002; Nicodemus et al., 2006; Silberberg et al., 2006; Law et 

al., 2007). NRG1/ErbB4 signaling regulates multiple aspects of nervous system 

development, including myelination, interneuronal migration and synaptic plasticity 

(Mei and Xiong, 2008). Most NRG1 at-risk haplotypes are located in the non-coding 

region of the gene (Stefansson et al., 2002; Weickert et al., 2012), suggesting that 

rather than disturbed protein function, altered NRG1 expression could underlay a 

pathomechanism with relevance for SZ. Indeed both increased and decreased NRG1 

expression has been observed in postmortem brain of SZ patients (Law et al., 2006; 

Bertram et al., 2007). The icelandic haplotype (HapICE) has been associated with 

increased expression of NRG1 type III (CRD-NRG1), the most abundant NRG1 

isoform in the human brain (Liu et al., 2011), and was correlated with an earlier onset 

of the disease (Weickert et al., 2012). However, the contribution of NRG1/ErbB4 

signaling to disease pathology and the precise pathomechanisms underlying SZ 

remain elusive. Together, these findings suggest a working hypothesis according to 

which NRG1/ErbB4 hyperstimulation causes neuronal network dysfunctions with 

relevance for SZ. 

The aim of this study was to address this working hypothesis by analyzing different 

loss- and gain-of-function mouse models of NRG1, with a special focus on 

interneuron development and behavioral functions. In addition, a novel conditional 

transgenic mouse line was employed, which allowed Cre-dependent stage- and cell 

type-specific activation of HA epitope-tagged CRD-NRG1. This mouse line was used 

to investigate the role of NRG1 in early embryonic versus postnatal development, 

and to model acute changes of NRG1/ErbB4 signaling in the adult brain. Histological, 

biochemical and behavioral experiments were performed to identify and compare the 

functional involvement of stage-specific NRG1 overexpression in the generation of 

schizophrenia-relevant phenotypes. Data derived from this Ph.D. project have 

recently been published in the journal Cell Reports (Agarwal et al., 2014). 

 

4.1 Embryonic NRG1 signaling is dispensable for interneuron migration 

Reduced numbers of GABAergic interneurons have been reported in the post 

mortem brain of SZ patients (Benes et al., 1991; Chance et al., 2005; Holt et al., 

2005; Levitt, 2005; Lewis et al., 2005; Heckers and Konradi, 2014), and the ErbB4 

null mutation in mice leads to impaired interneuron migration and a subsequent 
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reduction of GABAergic interneurons in the cortex (Neddens and Buonanno, 2009). 

This suggests that NRG1 (via signaling to ErbB4) serves a role in interneuron 

development and migration, and that diminished NRG1 signaling could contribute to 

inhibitory network dysfunctions in SZ. This hypothesis was tested by breeding 

conditional NRG1 knockout mice (Li et al., 2002) to Emx1-Cre driver mice (Gorski et 

al., 2002), which eliminate NRG1 from glutamatergic neurons, astrocyes and 

oligodendrocytes, but not interneurons, beginning at E10. Unexpectedly, these 

NRG1 mutants survived into adulthood and showed no difference in the number or 

cortical position of GAD67+ interneurons. Moreover, inhibitory neurotransmission in 

the adult hippocampus was increased, not diminished, in the absence of NRG1 

(Agarwal et al., 2014), in contrast to findings in ErbB4 mutants (Fazzari et al., 2010). 

Thus, NRG1 expression in the embryonic cortex is dispensable for the development 

and migration of GABAergic interneurons, but is required for the fine-tuning of 

excitatory and inhibitory (E/I) neurotransmission. The discrepancy to findings in 

ErbB4 mutants suggests compensatory functions by other ErbB4 ligands, such as 

NRG2 (Carraway et al., 1997) or NRG3 (Zhang et al., 1997) during the regulation of 

inhibitory circuits. This idea is supported by the absence of obvious brain 

abnormalities in NRG2 null mutants (Britto et al., 2004) and could be genetically 

addressed in compound mutants of NRG family members.  

 

4.2 CRD-NRG1 overexpression hyperstimulates ErbB4 receptors and 

alters inhibitory neurotransmission 

Elevated expression of CRD-NRG1 has been reported in a postmortem cohort of SZ 

patients carrying the HapICE haplotype (Weickert et al., 2012), associated with SZ 

(Stefansson et al. in 2002). To model chronically elevated CRD-NRG1 expression, 

Thy1.2 promoter-driven NRG1 transgenic mice (Nrg1-tg; Michailov et al., 2004) were 

examined, which express CRD-NRG1 in neurons of the neocortex and hippocampus, 

but also in subcortical regions and the PNS (Agarwal et al., 2014). ErbB4 

hyperphosphorylation has been observed in postmortem brain of SZ patients (Hahn 

et al., 2006). In line with this, we found sustained ErbB4 hyperphosphorylation at 

Tyr1284 in hippocampal protein lysates of CRD-NRG1 transgenic mice, making 

CRD-NRG1 transgenic mice a suitable tool to study the consequences of 

NRG1/ErbB4 hyperstimulation in vivo. 

CRD-NRG1 has been reported to serve as a permissive guidance signal for the 

migration of interneurons from the subpallium to the cortex (Flames et al., 2004). 
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However, total numbers of GAD67+ and PV+ interneurons were unaltered in the 

cortex and hippocampus of Nrg1-tg mice at P14, but when numbers of GAD67+ 

interneurons were assessed based on their position within cortical layers, a 

significant reduction in layer IV of Nrg1-tg mice was observed. Cortical layer IV (or 

internal granular layer of the cortex) receives its main input from thalamocortical and 

intra-hemispheric corticocortical afferents (Jones, 1998). Tangential migration of 

cortical interneurons and the outgrowth of thalamocortical axons functionally interact 

in the ventral telencephalon and are co-regulated by NRG1 signaling (López-Bendito 

et al., 2006). Thus, abnormal NRG1 signaling in the subcortical regions could alter 

thalamocortical axon pathfinding, thereby preferentially affecting interneuron 

migration into layer IV. Distinct from findings in postnatal brains, in vivo imaging of 

PV+ interneurons in adult Nrg1-tg*PV-GFP mice by 2P-LSM revealed a reduction of 

PV (GFP+) interneurons in layer II/III and V of the cortex. A similar reduction of PV 

(GFP+) interneurons was observed in a second mouse line (HA-Nrg1-tg*PV-GFP), 

strongly supporting the absence of transgene integration-associated effects. Taken 

together, overexpression of CRD-NRG1 impairs the normal intergration and/or 

maintenance of PV+ interneurons in the neocortex. However, in the absence of 

obvious neuroinflammation and -pathology (Brinkmann et al., 2008; Velanac et al., 

2011; Agarwal et al., 2014), it is currently unclear if the reduction of PV (GFP+) 

interneurons is due to reduced cell numbers, e.g. following apoptotic cell death, or 

changes in the expression of the PV promoter, as GFP expression was used for 

quantification. To address these questions and to establish a possible link between 

postnatal and adult findings, further studies, including immunostaining and 2P-LSM 

at different time points are required. 

Altered neurotransmission could contribute to dysregulation of calcium-binding 

proteins, such as PV, or a reduction in the expression of GAD67 (Akbarian et al., 

1995; Hashimoto et al., 2003; Ongür et al., 2010). This idea is supported by 

electrophysiological recordings of pyramidal neurons in Nrg1-tg mice, which showed 

disrupted plasticity (STP and LTP) at the Schaffer collateral-CA1 synapse and a shift 

of the excitatory/inhibitory (E/I) balance towards enhanced inhibition. This effect 

could be due to increased number of synaptic inputs from GABAergic interneurons or 

increased GABA release from inhibitory presynapses (Agarwal et al., 2014). These 

data suggest stage-specific deficits in GABAergic interneuron intergration and 

maintenance, and an imbalance of the E/I ratio. Impaired interneuron functions in 

cortical layers II/III and V could influence cortical connectivity and output to 

subcortical areas, such as basal ganglia, and thereby influence behavior of mice. 
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4.3 CRD-NRG1 transgenic mice show SZ-relevant behavioral 

dysfunctions 

CRD-NRG1 overexpression in the PNS severely compromises the neuromuscular 

junction in Nrg1-tg mice (W.J. Thompson, personal communication), which prevents 

behavioral analysis. Therefore, we examined instead a mouse line (HA-Nrg1-tg) in 

which HA epitope-tagged CRD-NRG1 is expressed under control of the same Thy1.2 

cassette as in Nrg1-tg mice. HA-Nrg1-tg mice displayed pronounced anxiety-like 

behavior in the open field test, indicating that NRG1 overexpression might change 

circuits involved in emotional states. In line with this assumption, increased CRD-

NRG1 expression was observed in the amygdala of HA-Nrg1-tg mice. Moreover, 

broad expression of ErbB4 receptors was reported in PV-negative cells of the 

amygdala, and ErbB4-/- mice, but not conditional PV-ErbB4-/- mice exhibit reduced 

anxiety (Shamir et al., 2012). The anxiogenic effect seems to be isoform-specific, as 

Ig-NRG1 transgenic mice show no increase in anxiety-like behavior in the open field 

test (Deakin et al., 2009). Prepulse inhibition (PPI) is an operational measure of 

sensorimotor gating and PPI deficits are frequently observed in neuropsychiatric 

disorders (Kohl et al., 2013), possibly reflecting abnormalities in frontal-cortical-

striatal circuitry (Swerdlow and Geyer, 1998; Young et al., 2010). When analyzed in 

the PPI test, HA-Nrg1-tg mice exhibited an increased startle response and reduced 

PPI. Reduced PPI was also observed in Ig-Nrg1 transgenic mice (Deakin et al., 

2009; Yin et al., 2013), indicating that Ig-NRG1 and CRD-NRG1 may serve similar 

roles in the regulation of PPI circuitry. Deficits in PPI (which were absent in 

conditional NRG1 mutants) are a hallmark for schizophrenia, further supporting the 

hypothesis that NRG1/ErbB4 hyperstimulation contributes to SZ pathology. 

Taken together, histological, physiological, and behavioral studies in NRG1 mutants 

and transgenic mice suggest that an “optimal” level of NRG1 signaling is required for 

efficient synaptic neurotransmission and possibly  higher brain functions, thereby 

extending an ‚inverted U-shaped’ model (Role and Talmage, 2007) to a ‚bell-shaped’ 

model (Agarwal et al., 2014). In addition, these data imply that human NRG1 at-risk 

polymorphisms exert a gain-of-function effect. 

 

4.4 Conditional overexpression of CRD-NRG1 in transgenic mice 

The NRG1 gene encodes at least 30 different isoforms. NRG1 isoforms are 

differentially expressed during development, indicating distinct functions in the 
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developing and adult nervous system (Liu et al., 2011). Results obtained in Thy1.2 

promoter-driven NRG1 transgenic mice suggest that hyperstimulated NRG1/ErbB4 

signaling, rather than NRG1 hypofunction, could contribute to SZ pathology. SZ is 

believed to be a neurodevelopmental disorder (Harrison, 1999), but it is not clear 

how altered NRG1/ErbB4 signaling could increase susceptibility for SZ. To address 

the complexity of endogenous NRG1 signaling, a novel transgenic mouse line was 

generated, which allows conditional CRD-NRG1 overexpression based on the Cre-

loxP system. The transgene cassette (Stop-Nrg1) contained a fragment of the 

chicken -actin promoter, driving expression of CRD-NRG1 after Cre-mediated 

removal of a ‚floxed’ Stop-cassette encoding GFP. Virtually all tissues expressed 

GFP, including brain, spinal cord, muscles and heart. Thus, Stop-Nrg1 mice could 

serve as a genetic tool to study NRG1 functions also outside the nervous system, 

e.g. during heart development, or in Hirschsprung disease (HSCR), a congenital 

disorder of the gastrointestinal tract, characterized by the absence of intramural 

ganglion cells, for which increased NRG1 expression has been reported (Garcia-

Barcelo et al., 2009; Tang et al., 2011, 2012a, 2012b; Luzón-Toro et al., 2012; 

Phusantisampan et al., 2012; Gui et al., 2013). 

Fluorescent immunostainings for cell type-specific markers revealed that not all 

neural cell types in the brain expressed the Stop-Nrg1 transgene (based on GFP 

expression). The GFP cassette was predominantly expressed in pyramidal neurons 

and oligodendrocytes, but only by few interneurons, micro- and astroglia, similar to 

findings by others (M. Rossner, personal communication). Thus, the chicken -actin 

promoter fragment is not well suited for expression in interneurons, which prevented 

studies on NRG1 autocrine signaling in ErbB4+ interneurons. The main glial cell type 

expressing the transgene were oligodendrocytes (80-90 % GFP+), whereas only 

40-50 % of microglia and astrocytes were GFP+. Taken together, the chicken -

actin promoter fragment used for the generation of Stop-Nrg1 mice appears not to be 

suitable for studies in interneurons, astrocytes and microglia. A possible alternative 

approach would be to target the Rosa26 locus using homologous recombination, as 

in the case of the R26R-floxtdTomato reporter mouse line (Madisen et al., 2010). 

 

4.5 Modeling stage-specific CRD-NRG1 overexpression in cortical 

projection neurons 

Endogenous CRD-NRG1 is predominantly expressed by glutamatergic projection 

neurons in the brain, starting during embryonic stages (Liu et al., 2011). To model 
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cortical projection neuron-restricted overexpression of HA-NRG1 beginning at 

embryonic stages (E12), Stop-Nrg1 mice were bred to NEX-Cre driver mice 

(Goebbels et al., 2006). Fluorescent immunostaining confirmed projection neuron-

restricted HA-NRG1 expression, starting at early embryonic stages. Immunostaining 

for the N- (HA-tag) and C-terminus of HA-NRG1 showed overlapping signals, which 

accumulated inside and on the surface of the somatodendritic compartment and 

apical dendrites of projection neurons, indicating either trafficking of full length HA-

NRG1 or coordinated transport of the cleaved N- and C-terminus fragments to these 

subcellular domains. To which extend HA-NRG1 (or cleaved fragments) are 

transported to presynaptic sites is under current investigation, but preliminary results 

support limited axonal and presynaptic transport, similar to findings in the PNS 

(Velanac et al., 2011). Biochemical analysis by western blotting of hippocampal 

protein lysates from Stop-Nrg1*NEX-Cre mice confirmed expression of full length 

and proteolytically processed HA-NRG1, as two protein bands (140 kDa, 60 kDa) 

were detected, albeit at lower levels compared to Thy1.2 promoter-driven mouse 

lines. In line with our working hypothesis, conditional overexpression of HA-NRG1 

lead to increased steady state levels of ErbB4 phosphorylation. 

In a complementary approach CamKII-Cre driver mice (Minichiello et al., 1999) were 

used to direct HA-NRG1 overexpression to cortical projection neurons starting at 

postnatal stages (P5). This approach aimed at modeling a postnatal onset of 

hyperstimulated NRG1/ErbB4 signaling, according to the late neurodevelopmental 

onset hypothesis of SZ (Harrison, 1999). Similar to the NEX-Cre model, HA-NRG1 

expression was restricted to projection neurons of the cortex and hippocampus. 

However, Stop-Nrg1*CKII-Cre mice displayed additional recombination in subcortical 

regions, e.g. striatum, thalamus, and hypothalamus. Western blot analysis confirmed 

expression of full length and processed HA-NRG1 and ErbB4 hyperphosphorylation. 

Taken together, Stop-Nrg1 transgenic mice in combination with different Cre-driver 

lines allow stage- and cell type-specific CRD-NRG1 overexpression and ErbB4 

hyperstimulation. 

 

4.6 Embryonic and postnatal HA-NRG1 overexpression is not associated 

with neuropathology or –inflammation at adult stages 

NRG1 is a growth and differentiation factor involved in many neurodevelopmental 

processes, including neuronal migration and myelination, but has also been 

implicated in cancer (Talmage, 2008; Buac et al., 2009; McIntyre et al., 2010). 
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Transgenic overexpression of a growth factors could have pathological and 

neurotoxic effects. Stop-Nrg1 mice also permanently express GFP in most cells of 

their body, and GFP expression was shown to trigger pronounced hypomyelination 

and axonal pathology in transgenic mice, which express GFP under control of the 

CNP promoter (Millet et al., 2012). To identify possible signs of neuroinflammation or 

-degeneration, an immunohistochemical analysis was performed, which included a 

quantification of interneuron numbers in embryonic (Stop-Nrg1*NEX-Cre) and 

postnatal (Stop-Nrg1*CKII-Cre) models at four months and one year of age. 

Postnatal onset of HA-NRG1 overexpression in Stop-Nrg1*CKII-Cre mice had no 

effect on GAD67+ and PV+ interneuron numbers. 

When cell numbers were quantified in Stop-Nrg1*NEX-Cre mice, a tendency for 

reduced cell numbers was counted in Stop-Nrg1*NEX-Cre but also in NEX-Cre mice. 

In addition, a modestly increased cortical width was observed in both Stop-

Nrg1*NEX-Cre and NEX-Cre mice. Together, increased cortical width and slightly 

reduced cell numbers resulted in significantly reduced cell densities in Stop-

Nrg1*NEX-Cre and NEX-Cre mice. Thus, effects on interneuron numbers were not 

derived from CRD-NRG1 overexpression.  

Furthermore, a mildly increased area of IBA1+ microglia was noticed in the 

hippocampus of NEX-Cre mice at 1 year of age, suggesting microglial activation. 

This effect was significant when compared to the other genotypes, except for Stop-

Nrg1*NEX-Cre mice, which themselves were not significantly different from other 

controls, indicating that HA-NRG1 overexpression was even beneficial and may 

counteract microglia activation. Since microglia activation was not detected in CKII-

Cre mice, changes in IBA1+ microglia were not simply the result of Cre expression. It 

is currently unclear if the loss of one functional gene copy in NEX-Cre mice, which 

causes NEX haploinsufficiency, could effect cortical size, e.g. by reducing tissue 

stability during the processing of brain sections. Impaired neuronal development was 

not reported for the NEX null mutation (Schwab et al., 1998; Goebbels et al., 2006), 

however aged heterozygous and homozygous NEX-Cre mutants will be studied in 

more detail, as this is a widely used Cre driver line. 

These histological studies demonstrate absence of neurotoxic, inflammatory or 

mitogenic effects resulting from conditional CRD-NRG1 overexpression or 

permanent expression of GFP in conditional transgenic mice. This is consistent with 

findings in Thy1.2 promoter-based transgenic mice with much higher NRG1 

expression, which also lack signs of neuroinflammation or –degeneration. Different 

from Thy1.2 promoter-based transgenic mice, these studies have not shown 
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changes in the number or location of cortical interneurons in Stop-Nrg1*NEX-Cre or 

Stop-Nrg1*CKII-Cre mice, consistent with the finding that subcortical NRG1 

expression domains play an important role in mediating interneuron migration 

(Flames et al., 2004).  

In stark contrast to cortical neurons, overexpression of different NRG1 variants, 

including CRD-NRG1, in Schwann cells of the PNS causes severe Schwann cell 

hyperplasia (Huijbregts et al., 2003; R. Stassart, personal communication), possibly 

as a result of autocrine signaling to glial ErbB2/ErbB3 receptors. A comparable 

experiment of CRD-NRG1 overexpression in interneurons (with prominent ErbB4) is 

currently not possible due to limited expression of the conditional transgene in 

interneurons. 

 

4.7 Thy1.2-driven CRD-NRG1 mice have enlarged ventricles and reduced 

body weight 

Enlarged ventricles are the most replicated endophenotype in SZ (Harrison, 1999) 

and variants of the NRG1 gene have been associated with increased lateral ventricle 

volume (Mata et al., 2009). Alterations in ventricular sizes were observed in loss- and 

gain-of-function mouse models by MRI imaging, with Emx-Cre*Nrg1f/f mice having 

reduced, and Nrg1-tg mice enlarged lateral ventricles (Agarwal et al., 2014). 

Interestingly, ventricular enlargment seems to result from isoform-specific functions, 

as Ig-Nrg1 transgenic mice have normal ventricular sizes (P. Harrison, personal 

communication). A comparative histological examination of ventricular sizes in all 

available CRD-NRG1 transgenic mouse lines revealed enlarged lateral ventricles in 

HA-Nrg1-tg mice, similar to Nrg1-tg mice (Agarwal et al., 2014). Interestingly, HA-

Nrg1GIEF mice and conditional transgenic mice (Stop-Nrg1*NEX-Cre and Stop-

Nrg1*CKII-Cre mice) had normal lateral ventricles. This suggests that the 

backsignaling-deficient HA-Nrg1GIEF is not capable to trigger ventricular enlargement, 

even though it is expressed at even higher levels than full length HA-NRG1 in HA-

Nrg1-tg mice. The finding that cortical-restricted HA-NRG1 overexpression had no 

effect on ventricular sizes, indicates that subcortical CRD-NRG1 overexpression is 

required to induce ventricular enlargement. The general overexpression level in 

conditional mice is lower than in Thy1.2-driven mice, however Stop-Nrg1*CKII-Cre 

mice, which show expression in striatal and thalamic regions, are not significantly 

different from HA-Nrg1-tg mice. Overexpression of CRD-NRG1 in cells of the choroid 

plexus could also directly affect liquor production. HA-NRG1 is not expressed in the 
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choroid plexus in conditional Stop-Nrg1*NEX-Cre and Stop-Nrg1*CKII-Cre mice, 

however HA-Nrg1-tg mice show positive signals in chromogenic immunostaining for 

the HA tag in the choroid plexus, and expression of the Thy1.2 promoter in the 

choroid plexus has been reported (Campsall et al., 2002). In addition, ErbB4 

expression has also been shown for large cells in the choroid plexus (Bean et al., 

2014). If CRD-NRG1 overexpression in the choroid plexus plays a role in regulating 

ventricular sizes requires further investigations. Taken together, subcortical or 

choroid plexus overexpression of NRG1 (via currently undefined signaling pathways) 

could lead to ventricular enlargement in Nrg1-tg and HA-Nrg1-tg mice. 

Since Nrg1-tg mice appeared to have reduced body weight, a comparative analysis 

of body weight was performed for all CRD-NRG1 mouse lines. Reduced body weight 

was observed in Nrg1-tg, HA-Nrg1-tg and Stop-Nrg1*CKII-Cre mice. However, Stop-

Nrg1*CKII-Cre mice were only significantly different from Stop-Nrg1*NEX-Cre mice, 

which showed normal body weight compared to controls. Again, subcortical 

overexpression of CRD-NRG1 seems to affect body weight. The mechanisms 

underlying these weight reductions could involve NRG1-mediated effects on leptin 

levels, as injection of the recombinant EGF-like domain of NRG1 was shown to affect 

leptin levels, food intake and body weight in normal-weight mice (Ennequin et al., 

2015). ErbB4 expression was found in the hypothalamus and the Raphe Nuclei 

(Bean et al., 2014), and reduced preweaning bodyweight has been reported in 

conditional Nestin-Cre*ErbB4null mice (Golub et al., 2004). The Raphe Nuclei regulate 

food intake, memory retention and anxiety (Carlini et al., 2004). Thus, Raphe Nuclei 

could be an important target for the regulation of body weight or the generation of 

anxiety-like behavior observed in HA-Nrg1-tg mice. The hypothalamus is also known 

to control metabolism, thermoregulation, and stress response. Expression of ErbB4 

in GAD67+ interneurons has been reported in the hypothalamus (Bean et al., 2014), 

and could serve as a link between altered body weight and stress levels in HA-Nrg1-

tg mice. However, whether hyperstimulated NRG1/ErbB4 signaling ultimately alters 

food intake in transgenic mice needs further evaluation. 

 

4.8 Embryonic HA-NRG1 overexpression induces hyperactivity, but no 

anxiety-like behavior or PPI deficits 

‘Global’ CRD-NRG1 overexpression in HA-Nrg1-tg mice lead to pronounced anxiety-

like behavior and impaired PPI (Agarwal et al., 2014), as well as working memory 

deficits in the Y-maze test (Wehr et al., in preparation). To examine specific effects of 
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the temporal and spatial aspects of NRG1 overexpression on behavior, Stop-

Nrg1*NEX-Cre and Stop-Nrg1*CKII-Cre mice were analyzed in the same set of 

behavior tests.  

Unexpectedly, no signs of anxiety-like behavior were found in both conditional 

models. Instead, both lines showed hyperactivity, which is thought to correspond to 

psychomotor agitation in schizophrenic patients and is considered a schizophrenia-

relevant behavior (Snyder, 1973; Yin et al., 2013a). Hyperactivity was found in the 

open field and the hole board test and was more pronounced in Stop-Nrg1*NEX-Cre 

mice. In the hole board test hyperactivity even seemed to prevent mice from 

exploring the new environment, as they showed tendencies to reduced exploration 

time and hole visits. Also in the tail suspension test Stop-Nrg1*NEX-Cre mice fought 

more against the aversive situation, in line with hyperactivity. Stop-Nrg1*NEX-Cre 

mice showed the strongest hyperactivity always at the beginning of a test, arguing for 

novelty-induced hyperactivity. In line with these findings, hypoactivity was observed 

in conditional CKII-Cre*Nrg1f/f (Agarwal et al., 2014) and Nestin-Cre*ErbB4null 

mutants (Golub et al., 2004). Hyperactivity was also described in conditional 

transgenic mice with modest Ig-NRG1 overexpression in the cortex (Yin et al., 

2013a), interestingly, these mice also show no anxiety-like behavior. However, 

transgenic mice with Thy1.2-driven strong cortical and subcortical Ig-NRG1 

overexpression show normal motor behavior with initial hypoactivity (Deakin et al., 

2009). These contrasting findings in transgenic mice expressing the same NRG1 

isoform. Indicate that differences in expression levels (and thereby ErbB4 

stimulation) or cortical versus subcortical functions play an important role in NRG1-

mediated regulation of motor behavior. NRG1 expression level differences might 

differentially regulate serotonine and/or dopamine signaling in the striatum and basal 

ganglia, including the Nucleus accumbens, thought to be involved in regulation 

hyperlocomotion (Taepavarapruk et al., 2000; Bishop and Walker, 2003; Brus et al., 

2004; Fadda et al., 2005). Interestingly, these circuits might also be involved in the 

regulation of anxiety levels in these mice (Scott et al., 2006; Jiang et al., 2015). 

No PPI impairments were observed in Stop-Nrg1*NEX-Cre and Stop-Nrg1*CKII-Cre 

mice, in contrast to HA-Nrg1-tg mice (Agarwal et al., 2014). In addition to unaltered 

PPI, both lines exhibited normal startle responses. Absence of PPI impairments 

could be related to lower cortical overexpression of HA-NRG1 in both lines compared 

to HA-Nrg1-tg mice, which is associated with a lower level of ErbB4 

hyperphosphorylation. This idea is supported by the finding that administration of 

spironolactone ameliorates the PPI deficits in HA-Nrg1-tg mice. Spironolactone is a 

novel modulator of ErbB4 activity, which restores normal levels of ErbB4 
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phosphorylation in the brain of HA-Nrg1-tg mice (Wehr et al., in preparation). In 

addition, absence of HA-NRG1 overexpression from subcortical regions in 

conditional mouse lines, notably the striatal, could explain normal PPI as striatal 

projections have been considered important for the generation of PPI (Baldan 

Ramsey et al., 2011). PPI deficits appear not to be NRG1 isoform-specific as both 

Thy1.2 promoter-driven (Deakin et al., 2009) and conditional transgenic mice with Ig-

Nrg1 overexpression exhibit impaired PPI (Yin et al., 2013). Finally, in line with a bell-

shaped model of NRG1-mediated regulation of sensorimotor gating, PPI deficits also 

occur in heterozygous CRD-NRG1 mutants (Chen et al., 2008). Stop-Nrg1*NEX-Cre 

and Stop-Nrg1*CKII-Cre mice also showed no deficits in working memory, as 

measured in the Y-maze test. This is in contrasts to reduced performance of HA-

Nrg1-tg mice in this test. Similar to PPI, administation of spironolactone to HA-Nrg1-

tg mice ameliorates this deficit (Wehr et al., in preparation), suggesting that the level 

of NRG1/ErbB4 hyperstimulation is critical for the magnitude of working memory 

deficits. 

Finally, deficits were observed in cued fear memory in Stop-Nrg1*NEX-Cre mice. A 

tendency to reduced contextual fear memory was also observed. Impaired contextual 

and cued fear conditioning was also found in CKII-Cre*Nrg1f/f mice (Agarwal et al., 

2014), again supporting a bell-shaped model of NRG1 functions in hippocampal 

learning. However, considering the hyperactivity observed in Stop-Nrg1*NEX-Cre 

mice, deficits in fear conditioning could be independent from hippocampal learning 

deficits, but simply linked to hyperactivity-mediated reduction in freezing behavior. 

In contrast to HA-Nrg1-tg mice (Wehr et al., in preparation), Stop-Nrg1*NEX-Cre and 

Stop-Nrg1*CKII-Cre mice showed normal pain sensitivity in the hotplate test, arguing 

for effects of Thy1.2 promoter-driven expression of HA-Nrg1 in the PNS. 

Similar to Stop-Nrg1*NEX-Cre mice, Stop-Nrg1*CKII-Cre mice displayed a tendency 

for hyperactivity in the open field and hole board test, but performance in all other 

tests was unaltered. Thus, postnatal overexpression of HA-NRG1 exerts only minor 

effects on mouse behavior. However, as the Stop-Nrg1*CKII-Cre sample was small 

(n=7 Stop-Nrg1*CKII-Cre mice), this experiment can only be considered as a pilot 

study, which requires replication in a larger cohort.  
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4.9 Stop-Nrg1*NEX-CreERT2 mice allow acute NRG1 overexpression in 

the adult brain 

Acute stimulation of NRG1/ErbB4 signaling may provide a better insight into 

‘physiological’ functions of NRG1 in the brain. To model acute stimulation of 

NRG1/ErbB4 signaling in the brain, NEX-CreERT2 driver mice were used, which 

allow tamoxifen-induced activation of Cre recombinase in cortical projection neurons 

(Agarwal et al., 2011). 

Tamoxifen injection (for 10 days at 100 mg/kg bodyweight, defined as the maximum 

recombination treatment) of Stop-Nrg1*NEX-CreERT2 mice and harvest of protein 

samples one month later resulted in approximately half of the HA-NRG1 expression 

observed in Stop-Nrg1*NEX-Cre mice. Reduced HA-NRG1 expression in Stop-

Nrg1*NEX-CreERT2 mice could be due to incomplete recombination in projection 

neurons and absent Cre activity in adult dentate gyrus granule cells (Agarwal et al., 

2011). In contrast to HA-Nrg1-tg and Stop-Nrg1*NEX-Cre mice, when Stop-

Nrg1*NEX-CreERT2 mice were tamoxifen injected for maximum recombination for 5 

days, and tissue was collected the day after the last injection, MAPK signaling 

(based on increased Erk1/2 phosphorylation) was induced. This is the first example 

for NRG1-mediated activation of a signaling pathway in a transgenic mouse model. 

Under conditions of chronic overexpression in HA-Nrg1-tg and Stop-Nrg1*NEX-Cre 

mice, feedback mechanisms seem to effectively downregulated activation of this 

signaling pathway. Subsequently, increased Erk1/2 phosphorylation was also found 

in HA-Nrg1GIEF mice, in line with the hypothesis that BACE1 processing activates 

NRG1, such that NRG1-mediated Erk1/2 activation overrides negative feedback 

mechanisms, even under chronic conditions. In summary, Stop-Nrg1*NEX-CreERT2 

mice open up a way to analyze acute NRG1/ErbB4 signaling in the adult brain and 

therefore could be used as a model to test late onset hyperstimulation of this 

signaling module in the development of SZ. A comparable approach of acute 

activation of Ig-NRG1 signaling has recently shown the development and regression 

of SZ-relevant phenotypes upon activation or inactivation of Ig-Nrg1 overexpression 

(Yin et al., 2013a). 

Using sensitive R26R-floxtdTomato Cre reporter mice, parameters were established 

for the production of small numbers of recombined cortical neurons based on limited 

tamoxifen administration. This should have provided the basis for single-cell 

genetics. Unexpectedly, administration of low doses of tamoxifen to Stop-Nrg1*NEX-

CreERT2*tdTomato mice to examine individual tdTomato+/HA-NRG1+ projection 

neurons resulted in activation of either one or the other transgene, but not both at the 
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same time. Similar observations were made in PLP-CreERT2 mice (A. Agarwal, 

personal communication), the reason for this, however, remains unclear. In addition, 

many tdTomato+ neurons in the hippocampus maintain GFP fluorescence, indicating 

insufficient concomitant recombination of the Stop-Nrg1 transgene. 

 

4.10 Possible roles of NRG1-mediated forward and backsignaling in 

cortical network dysfunction 

Several CRD-NRG1 transgenic mouse lines are available, which express different 

levels of CRD-NRG1 in the brain. Compared to Thy1.2-driven transgenic models, 

conditional Stop-Nrg1 mice show more physiological expression levels. Importantly, 

sustained ErbB4 hyperphosphorylation at Tyr1284 was detected in the cortex of all 

analyzed NRG1 transgenic mouse lines, and correlated with the level of NRG1 

overexpression over a wide range of expression levels. This shows that ErbB4 is not 

rate limiting for NRG1 signaling in the brain, consistent with findings in the PNS, 

where heterozygous NRG1 mutants, but not heterozygous ErbB2/ErbB3 mutants are 

hypomyelinated (Michailov et al., 2004). The finding of permanently increased 

steady-state levels of hyperphosphorylated ErbB4 in hippocampal protein lysates 

under conditions of chronic NRG1 overexpression also implies that mechanisms for 

the downregulation of ErbB receptor activity, e.g. dephosphorylation by 

phosphatases, including receptor phosphotyrosine phosphatase β (RPTPβ), or 

PTPN21, both of which have been associated with SZ (Buxbaum et al., 2008; Plani-

Lam et al., 2015), or receptor inactivation by proteolysis or internalization, are not 

sufficient to compensate for NRG1-mediated activation. In line with this, it was shown 

that ligand-mediated endocytosis of ErbB4 receptors via the clathrin pathway is slow 

compared to the EGF receptor, and that hippocampal interneurons predominantly 

express the TACE-mediated cleavage-resistant JMb ErbB4 receptor isoforms, and 

thus, maintain a high level of ErbB4 at the cell surface (Longart et al., 2007). 

However, we found reduced levels of total ErbB4 protein in hippocampus protein 

lysates of all analyzed NRG1 transgenic mouse lines. In line with this, it was shown 

that internalization of stimulated ErbB4 receptors is important and necessary for 

downstream signaling (Liu et al., 2007), and ErbB4 receptor levels can be regulated 

by ubiquitination by neuregulin receptor degradation protein-1 (Nrdp1), that was 

shown to suppress ErbB3 and ErbB4 receptor levels when coexpressed in COS7 

cells (Diamonti et al., 2002). 

Robust ErbB4 hyperphosphorylation was identified at Tyr1284, which is implicated as 
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a SHC1 adapter protein binding site, involved in MAPK signaling (Schulze et al., 

2005). Whether other tyrosine residues are also hyperphosphorylated, e.g. Tyr984 

(STAT5-binding) or Tyr1056 (PI3K-p85 binding) (Schulze et al., 2005; Kaushansky et 

al., 2008), remains to be analyzed in future studies and could reveal activation of 

additional signaling pathways. 

Previous histological studies in HA-Nrg1-tg and HA-Nrg1GIEF mice revealed 

differential subcellular localization of full length and BACE1-processed CRD-NRG1 

(HA-NRG1GIEF). While full length CRD-NRG1 was observed mainly in the somato-

dendritic compartment, HA-Nrg1GIEF was also found in distal dendritic processes and 

in axons (see also Velanac et al., 2011). Moreover, whereas full length CRD-NRG1 

can mediate forward and backsignaling, HA-NRG1GIEF lacks backsignaling activity. In 

combination with different subcellular localization, full length CRD-NRG1 and HA-

NRG1GIEF might exhibit different signaling properties. Based on these findings a 

comparative biochemical analysis of several NRG1 transgenic lines was performed 

to examine whether distinct CRD-NRG1 variants, associated with different levels of 

NRG1/ErbB4 hyperstimulation, recruit different signaling pathways. 

Western blot analysis of HA-Nrg1-tg, Stop-Nrg1*NEX-Cre and HA-Nrg1GIEF mice 

revealed that only in HA-Nrg1GIEF mice MAPK and PI3K signaling pathways were 

hyperactivated, supporting the hypothesis that BACE1 processing activates NRG1 

and is a limiting factor for NRG1 signaling in the brain. As aforementioned, in acute 

Stop-NRG1*NEX-CreERT2 mice that were collected directly the day after the last 

tamoxifen injection, activated MAPK signaling was also found, indicating that under 

acute stimulation of NRG1 signaling the activation of forward signaling by proteolytic 

cleavage might be different than under chronic conditions, and in addition, 

downregulation of signaling pathways via feedback mechanisms might be involved 

under chronic full length CRD-NRG1 overexpression conditions. To further address 

this hypothesis and to rule out signaling effects simply due to higher HA-NRGGIEF 

expression, homozygous HA-Nrg1-tg mice with very high HA-CRD-NRG1 expression 

could be produced and tested for activated MAPK and PI3K signaling. It is however 

interesting that HA-NRGGIEF induces these pathways even under chronic 

overexpression, which could also be due to the differential trafficking of the two 

variants. To which extend differential activation of these signaling pathways has 

further morphological or functional (physiological and behavioral) consequences in 

HA-NRGGIEF mice requires further investigations. Accordingly, examination of 

dendritic spines by STED microscopy and electrophysiological analysis of synaptic 

plasticity in the hippocampus of HA-Nrg1GIEF mice have been initiated. In summary, 

HA-NRGGIEF mice provide the opportunity to analyze specific functions of NRG1-
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mediated forward signaling. 

In addition to canonical forward signaling, backsignaling mediated by the ICD of 

NRG1 was already described more than 10 years ago (Bao et al., 2003), however 

not much is known about its role in the regulation of cortical development. Similar to 

ErbB4, -secretase-mediated cleavage in the intramembrane region of NRG1 

releases the NRG1-ICD, which can translocate into the nucleus, where it has been 

implicated in the regulation of neuronal survival (Bao et al., 2003), oligodendroglial 

differentiation (Pirotte et al., 2010), and PSD95 expression in the mouse cochlea 

(Bao et al., 2004). In line with this, it was shown that a substitution at the 

intramembranous valine 321 to leucine, that was previously linked to SZ (Walss-Bass 

et al., 2006), disrupted intramembranous proteolytic cleavage by -secretase and 

abolished ICD signaling of CRD-NRG1, which resulted in defects of growth and 

branching of dendrites. This function was shown to be even independent of ErbB 

kinase activity (Chen et al., 2010). In addition, loss of the -secretase subunit Aph1B 

was shown to impair synaptic neurotransmission and plasticity, and dendritic spine 

development, and this effect was rescued by co-expression of NRG1-ICD in a cell-

autonomous fashion (Fazzari et al., 2014). In addition to the proposed transcription 

factor-like functions of the NRG1-ICD, a direct interaction of the NRG1-ICD with 

LIMK1 was reported in a yeast two-hybrid screen (Wang et al., 1998). LIMK1 is a 

major regulator of cytoskeleton remodeling (Arber et al., 1998; Yang et al., 1998) and 

spine dynamics (Meng et al., 2002, 2003; Sarmiere and Bamburg, 2002). 

Overexpression of Ig-Nrg1 in transgenic mice was shown to recruit LIMK1 into 

synaptosomes, to enhance cofilin phosphorylation, and to impair glutamatergic 

neurotransmission (Yin et al., 2013a). We found dysregulated expression of 

cytoskeleton remodeling proteins and abnormal spine growth in Thy1.2 promoter-

driven CRD-NRG1 mice (Agarwal et al., 2014). Together, this suggested a possible 

interaction of CRD-NRG1 backsignaling with LIMK1. Biochemical analysis showed a 

reduction in LIMK1 phosphorylation in hippocampal lysates of Stop-Nrg1*NEX-Cre 

mice, but not in HA-Nrg1-tg and HA-Nrg1GIEF mice. Levels of total LIMK1 protein 

were similar in all groups. In addition, increased levels of cofilin phosphorylation were 

observed in all of these transgenic mice. HA-Nrg1GIEF mice showed the strongest 

induction of cofilin phosphorylation, whereas HA-Nrg1-tg mice displayed only a 

modest increase. These results are currently difficult to interpret as the textbook 

knowledge claims that phosphorylation activates LIMK1, which leads to increased 

cofilin phosphorylation, thereby inhibiting cofilin and stabilizing filamentous actin 

(Scott and Olson, 2007; Mizuno, 2012; Sparrow et al., 2012). Nevertheless, reduced 
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LIMK1 phosphorylation in Stop-Nrg1*NEX-Cre mice is consistent with the idea that 

selective accumulation of full length CRD-NRG1 in the (postsynaptic) 

somatodendritic compartment may trigger abnormal backsignaling to LIMK1, thereby 

affecting its phosphorylation status. Importantly, western blot analysis of 

synaptosomal fractions showed a decrease of phosphorylated cofilin in Stop-

Nrg1*NEX-Cre mice compared to controls. This finding is in contrast to our 

observations in total hippocampal lysates, but indicates subcellular 

compartmentalization with regard to NRG1 regulated downstream signaling. Thus, 

upregulation of CRD-NRG1 under disease conditions may alter subcellular trafficking 

(and processing) of the full length protein, resulting in accumulation in the 

somatodendritic compartment and abnormal backsignaling. This could include local 

reduction in LIMK1 and cofilin phosphorylation. In line with this, it has been shown 

that other actin-binding proteins, including debrin, profiling II and N-catenin are 

recruited into dendritic spines upon synaptic activity. Accumulation of profilin II in 

dendritic spines for instance, was shown to persist for hours beyond initial 

stimulation, depends on postsynaptic Ca2+ levels, and stabilizes spine morphology in 

a mature state (Ackermann and Matus, 2003). To further address the potential 

subcellular differences in LIMK1 and cofilin localization, primary neuronal cell 

cultures of NRG1 transgenic mice will be used in future studies. 

Increased cofilin phosphorylation in backsignaling-deficient HA-Nrg1GIEF mice in the 

absence of altered LIMK1 phosphorylation strongly suggests that forward signaling in 

HA-Nrg1GIEF mice triggers mechanisms that ultimately regulate cofilin 

phosphorylation via distinct mechanisms, for instance inhibition of slingshot 

phosphatases (Niwa et al., 2002; Spratley et al., 2011; Mizuno, 2012). In addition, 

the Ras family GTPases and their downstream MAP kinase signaling pathways are 

known to also regulate dendritic spine morphology (Wu et al., 2001; Gärtner et al., 

2005), thus, in HA-Nrg1GIEF mice with enhanced MAPK signaling cofilin 

phosphorylation could be regulated via MAPK signaling (with low expression of 

ErbB4 in projection neurons). Differential stimulation of cofilin phosphorylation in 

Stop-Nrg1*NEX-Cre and HA-Nrg1-tg mice indicates that different levels of CRD-

NRG1 overexpression might trigger distinct signaling pathways or differentially 

activate distinct feedback-loops. In the future, it will be important to further analyze if 

direct interactions of the NRG1-ICD and LIMK1 indeed take place, thereby bypassing 

upstream members of the signaling cascade, e.g. p21-activated kinase 1 (PAK1) or 

Myosin light chain 2 (MLC2) (Scott and Olson, 2007; Barnes and Polleux, 2009). A 

direct interaction of the NRG1-ICD with LIMK1, depended or independent of ErbB4, 

in the regulation of dendritic spines and synaptic plasticity could be an important 
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pathomechanism underlying SZ pathogenesis and would underline the importance of 

multimodal NRG1 signaling properties.  

Taken together, the current working model suggests that NRG1 forward signaling is 

executed by the N-terminal product (NRG1GIEF) of BACE1 cleavage, which activates 

ErbB4 receptors mainly in GABAergic interneurons to modulate inhibitory 

neurotransmission. Backsignaling via the NRG1-ICD, partly independent from ErbB4, 

regulates gene expression and morphological changes in pyramidal cells, including 

dendritic spines. This could influence synaptic plasticity and integrity, and potentially 

involve interactions with LIMK1, but also other interaction partners, for instance 

microtubule-associated serine/threonine kinases (MAST) and syntrophin-associated 

serine/threonine kinase (SAST) kinases (Cary Lai, unpublished data). Other data 

suggest an ErbB4-independent mechanism regulating spine dynamics via kalirin-7, a 

key regulator of spine remodeling (Cahill et al., 2013). In line with this, loss of kalirin-

7 was also shown to influence locomotor activity and PPI in kalirin-7 mutant mice 

(Cahill et al., 2009). Kalirin-7 is a brain-specific GEF for Rho-like small GTPases, and 

by directly activating Rac1, and subsequent regulation of PAK1 activity it can be 

linked to LIMK1/cofilin signaling (Scott and Olson, 2007; Penzes and Jones, 2008). 

However, by direct interaction with LIMK1, NRG1 could directly impact on the actin 

cytoskeleton and spine dynamics. 

In summary, considering the complexity of NRG1 signaling further studies of NRG1 

isoforms under chronic and acute situations, as well as in different cortical areas and 

cell types, will be of great importance for the understanding of pathomechanisms of 

SZ. In this sense, Thy1.2-driven HA-Nrg1-tg mice serve as an „easy access“ model 

for hyperstimulated NRG1/ErbB4 signaling, which is suitable for drug screening 

(Wehr et al., in preparation). Stop-Nrg1 mice on the other hand, allow the 

investigation of specific pathomechanisms associated with Cre-mediated stage- and 

cell type-specific HA-NRG1 overexpression. Thus, ‚global’ and conditional NRG1 

transgenic mice are valuable research tools for a better understanding of the 

pathomechanisms involved in neuropsychiatric disorders, such as schizophrenia. 
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5. Materials 

5.1 Kits and chemicals 

All chemicals were purchased from Sigma-Aldrich and Merck unless stated 

otherwise. All molecular biology and DNA purification kits were purchased from 

Qiagen, Invitek, BIORAD, Applied Biosystems, Promega, Stratagene, Sigma-Aldrich, 

Macherey-Nagel and nexttecTM. General laboratory materials were purchased from 

Gilson, Sarstedt, Molecular Bio Products, Greiner Bio One, Falcon and Eppendorf. 

 

5.2 Websites referred for online protocols 

Neuroscience             http://mrw.interscience.wiley.com/emrw/9780471142300/home/  

Molecular biology  http://mrw.interscience.wiley.com/emrw/9780471142720/home/  

Protein  http://mrw.interscience.wiley.com/emrw/9780471140863/home/ 

 

5.3 Equipment 

Lab water systems 

Sartorius Arium 611 

Pipettes 

Hirschmann Laborgeräte pipetus-akku 

Gilson Pipetman (2 μl, 10 μl, 20 μl, 100 μl, 200μl, 1000 μl) 

Deep-freeze storage 

New Brunswick Scientific Co. UltraLow Temperature Freezer U725 

DNA preparation and analysis 

Advanced Biotechnologies Ltd. CombiThermosealer 

Biometra Thermocycler T3 

Biometra TGradient 96-well 

Eppendorf Centrifuge 5415 R 

Eppendorf Thermomixer T3 

Heraeus Biofuge Pico 

INTAS UV-system with Camera and printer 

Memmert waterbath 

ÖTTI waterbath 

New Brunswick Scientific Innova 4000 Inkubator Shaker 

Heidolph Titramax 1000 T-shaker with Incubator 1000 

Sartorius Extend finebalance 

http://mrw.interscience.wiley.com/emrw/9780471142300/home/
http://mrw.interscience.wiley.com/emrw/9780471142720/home/
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Scientific Industries Inc. G-560E Vortex Genie-2 

Sharp R-202 microwave 

Qiagen Sigma 4K15C centrifuge 

Proteinbiochemistry  

Beckman Ultra Centrifuge 

Bertin Technologies Precellys 24 Lysis & Homogenization with Peqlab Tubes  

BIORAD PowerPac 300 Powersupply 

BIORAD Mini Protean 3 electrophoresis chamber 

BIORAD Mini Trans-Blot cell  

Beckman Centrifuge Tubes 

Hecht Assistant 348 RM5 Rotating mixer  

IKA KS 260 basic shaker 

Intas ChemoCam Imager ECL HR-16-3200 

New Brunswick Scientific Co. TC-7 Tissue culture roller 

Pharmacia LKB-EPS 500/400 Powersupply 

Sartorius S 5ml Glas-Teflon Potter and B.Braun Potters Homogenisator 

Sorvall Centrifuge 

Sorvall Rotor SS-34  

SW-41Ti swing out bucket rotor 

ThermoMax Molecular Devises Microplate Reader 

Perfusion of mice 

Heidolph Pump Drive PD 5101 Peristaltic Pump 

In-house made preparation platform with drainage 

ÖTTI waterbath 

Pharmacia Fine Chemicals Peristaltic Pump P-1 

Histology 

Daewoo microwave 

Inolab wtw Series pH720 pH-meter 

Leica Jung Cryocut CM3000 

Leica Mikrotom VT1000S vibratome 

Microm AP280-1/-2/-3 paraffin embedding centre 

Microm HM400 sliding microtome 

Microm HMP110 embedding station 

PFM waterbath 1000 

Polyscience Inc. tissue cassettes IV 
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Microscope and binoculars 

Leica Confocal AOBS SP2 inverted CLSM 

Leica MZ16F fluorescent stereomicroscope 

Zeiss Imager.Z1 with Power Supply 231, XBO 75W HBO 100W lamp,  

AxioCam MRc camera and Zeiss Zen 2012 (blue edition) software 

Zeiss Observer.Z1 AX10, HXP120 UV-lamp, Power Supply 23, SMC 2009  

stage control, ApoTome.2, AxioCam MRm camera and Zeiss Zen 2012 (blue 

edition) software  

2P-LSM custom-made, equipped with an fs-pulsed titanium-sapphire laser  

(Chameleon Ultra II, Coherent, Glasgow, UK) and a long-distance 20x/1.0 NA 

water immersion objective (Zeiss, Jena, Germany) 

Mouse behaviour 

Digital video camcorder (Sony) 

Fear conditioning setup (TSE Systems, Bad Homburg, Germany) 

Light dark preference test chamber - inhouse build 

Open field test Plexiglas arena with hole board inserts and ActiMot Software   

 (TSE Systems, Bad Homburg, Germany) 

San Diego Instruments’ SR-Lab startle response system 

Ugo Basile Series 46000 Fear Conditioning System 

Y-maze continuous alteration test – inhouse build 

Panasonic Lumix DMC-TZ31 digital camera 

Computers and Softwares 

Apple MacBook 13“, 2.4 GHz Intel Core 2 Duo with Mac OS X Version 10.6.8 

Adobe Illustrator CS3, Version 13.0.2 

Adobe Photoshop CS3, Version 10.0.1 

(FIJI Is Just) ImageJ, Version 1.0 

GraphPad Prism 5 for Mac OS X, Version 5.0b 

Mekentosj Papers, Version 1.9.3 

Microsoft Excel 2008 (Version 12.3.6) and 2011 (Version 14.0.0) for Mac 

Microsoft Word 2011 for Mac, Version 14.0.0 
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5.4 Molecular biology buffers and stock solutions 

 
50x Tris-Acetat EDTA (TAE) buffer 

 2.0 M    Tris-Acetate, pH 8.0  

 50 mM    EDTA 

 57.1 ml    Glacial acetic acid 

Adjust volume to 1000 ml with H2O. 

 

1x Tris-EDTA (TE) buffer 

10 mM   Tris-HCl, pH 8.0  

1 mM   EDTA 

 

10x modified Gitschier buffer (MGB) 

6.7 ml   1 M Tris-HCl, pH 8.8   

1.66 ml   1 M (NH4)2SO4  

650 μl   1 M MgCl2 

Adjust final volume to 10 ml with H2O. 

 

1x MGB buffer (Working solution) 

 1 ml    10x MGB  

 500 μl    10 % Triton X-100  

 8.4 ml   H2O 

 

Proteinase K (Stock 10 mg/ml in ddH2O) 

 

10 mM dNTP (50x Stock) 

2.5 mM each Nucleotide (dATP, dCTP, dGTP, dTTP) (Boehringer) 

200 μM Final concentration per PCR-reaction (50 μM each Nucleotide) 

 

 

5.5 Protein biochemistry buffers and solutions 

Phosphatase inhibitors 

 1 Tablet     PhosStop phosphatase inhibitor cocktail (Roche) 

Added freshly to 10 ml of protein lysis buffer before use. 
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Protease inhibitors 

 1 Tablet    Complete Mini protease inhibitor (Roche)  

Added freshly to 10 ml of protein lysis buffer before use. 

 

Modified Ripa buffer (protein lysis buffer) 

 50 mM    Tris-HCl (pH 7.4) 

 150 mM   NaCl 

 1.0 mM    EDTA 

 0,1 %    SDS 

 1,0 %    Sodium deoxycholate 

 1,0 %    Triton X-100 

Phosphatase and protease inhibitors were added freshly to the buffer before use. 

 

Sucrose homogenization buffer (protein lysis buffer) 

 0.32 M  Sucrose 

0.01 M   Tris-HCl (pH 7.4) 

0.01 M   NaHCO3 

0.01 M   MgCl2 

Phosphatase and protease inhibitors were added freshly to the buffer before use. 

 

0.32 M Sucrose homogenization buffer (synaptosomal extraction buffer) 

 0.32 M   Sucrose  

4.0 mM   HEPES/NaOH (pH 7.4) 

Phosphatase and protease inhibitors were added freshly to the buffer before use. 

Steril filtered and stored at 4 °C up to 4 weeks. 

 

0.8 M Sucrose gradient solution 

 0.8 M   Sucrose  

4.0 mM   HEPES/NaOH (pH 7.4) 

Phosphatase and protease inhibitors were added freshly to the buffer before use. 

Steril filtered and stored at 4 °C up to 4 weeks. 

 

1.2 M Sucrose gradient solution 

 1.2 M   Sucrose  

4.0 mM   HEPES/NaOH (pH 7.4) 

Phosphatase and protease inhibitors were added freshly to the buffer before use. 

Steril filtered and stored at 4 °C up to 4 weeks. 
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5.6 SDS PAGE and Western Blotting 

5x SDS sample buffer 

 100 mM  Tris, pH 6.8  

 5 % (w/v)   SDS 

 10 % (v/v)   0.4 % Bromphenolblue (in EtOH) 

 50 % (v/v)   Glycerol 

 

4x LDS sample buffer (NuPAGE) 

4.0 ml   100 % Glycerol (f.c. 40 %) 

0.682 g  Tris base (f.c. 564 mM) 

0.666 g  Tris-HCl (f.c. 424 mM) 

0.8 g  LDS (Lithium dodecyl sulfate) 

250 µl  1 % Phenol red solution (f.c. 2.5  % (v/v)) 

750 µl  1 % Serva Blue G250 solution (f.c. 7.5 % (v/v)) 

0.006 g  EDTA (f.c. 2 mM) 

Filled up to 10 ml with ddH2O. 1x buffer had a pH of 8.5. No pH adjustment 

necessary. For working solution added 20 µl of 1 M DTT to 50 ml 4x LDS sample 

buffer. 

 

1 M Dithiothreitol (DTT) 

1.5425 g  DTT 

Filled up to 10 ml with ddH2O. 

 

4x Tris-HCl (Separation gel buffer) 

 1.5 M  Tris-HCl pH 8.8 

 

4x Tris-HCl (Stacking gel buffer) 

1.0 M  Tris-HCl pH 6.8  

 

20x Tris buffered saline (TBS) 

1.0 M  Tris base 

3.0 M  NaCl 

Adjusted to pH 7.4 with 37 % HCl. 
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1x TBS with Tween-20 (TBST) 

50 mM  Tris-HCl (pH 7.4) 

0.05 %  Tween-20 

 

Blocking Buffer 

5 %  Non-fat dry milk-powder in 1x TBST 

Not stored longer than one week at 4 °C. 

 

Western blot stripping buffer 

0.2 M  Glycine-HCl (pH 2.5) 

0.1 %  Tween-20 

Alternatively used 0.5 M NaOH solution to strip western blots. 

 

8.0 % Polyacrylamide separating gel (4 gels of 0.75 mm thickness)  

 9.3 ml   ddH2O 

 5.3 ml   30 % Acrylamide/bis-acrylamide (29:1) - Sigma  

 5.0 ml   1.5 M Tris Separation gel buffer 

 0.2 ml   10 % Sodium dodecyl sulfate (SDS)  

 0.2 ml   10 % Ammonium persulphate (APS) 

 0.012 ml   TEMED (Biorad) 

  

12 % Polyacrylamide separating gel (4 gels of 0.75 mm thickness)  

 6.6 ml   ddH2O 

 8.0 ml   30 % Acrylamide/bis-acrylamide (29:1) - Sigma  

 5.0 ml   1.5 M Tris Separation gel buffer 

 0.2 ml   10 % Sodium dodecyl sulfate (SDS)  

 0.2 ml   10 % Ammonium persulphate (APS) 

 0.008 ml   TEMED (Biorad) 

 

15 % Polyacrylamide separating gel (4 gels of 0.75 mm thickness)  

 4.6 ml   ddH2O 

 10.0 ml   30 % Acrylamide/bis-acrylamide (29:1) - Sigma  

 5.0 ml   1.5 M Tris Separation gel buffer 

 0.2 ml   10 % Sodium dodecyl sulfate (SDS)  

 0.2 ml   10 % Ammonium persulphate (APS) 

 0.008 ml   TEMED (Biorad) 
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Polyacrylamide stacking gel (4 gels of 0.75 mm thickness) 

 5.5 ml   ddH2O  

 1.3 μl   30 % Acrylamide/bis-acrylamide (29:1) - Sigma  

 1 ml    1 M Tris Stacking gel buffer 

 0.08 ml   10 % Sodium dodecyl sulfate (SDS)  

 0.08 ml   10 % Ammonium persulphate (APS)  

 0.008 ml   TEMED (Biorad) 

 

5x Trisglycine electrophoresis buffer 

 125 mM  Tris base 

1.25 mM  Glycine 

0.5 %  Sodium dodecyl sulfate (SDS) 

Working solution (1x)  

200 ml  5x Trisglycine electrophoresis buffer 

800 ml  ddH2O. 

 

10x Trisglycine transfer buffer 

250 mM  Tris base 

1.92 M  Glycine 

Working solution (1x with 20 % methanol) 

100 ml  10x Trisglycine transfer buffer 

200 ml  100 % Methanol 

700 ml  ddH2O 

 

Coomassie blue (Staining solution) 

2 g  Coomassie brilliant blue (G-250)  

1 l  100 % Methanol 

200 ml  Acetic acid 

800 ml  ddH2O 

Stirred overnight and filtered through Whatman paper. 

 

Enhanced Chemiluminescence (ECL) Western-blot detection kit  

 Western LightningTM Plus-ECL, Oxidizing reagent plus and Enhanced  

 luminol reagent plus (Perkin Elmer Life Sciences, Inc.) 

 

Roche PVDF Western Blotting Membrane pore size 0.2 µm 
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5.7 DNA and Protein markers 

GeneRuler 1 kb DNA ladder       Fermentas 

GeneRuler 100 bp DNA ladder      Fermentas 

LabAid PageRuler Prestained Protein Ladder 10-170 kDa   Fermentas 

 

 

5.8 Immunohistochemistry buffers and solutions 

Avertin (Anesthetic) 

1 g  Tribromethanol (2,2,2-Tribromethanol, 99 %) 

0.81 ml  Amyl alcohol 

71.49 ml  ddH2O 

Heated ddH2O up to 40 °C and added to the tribromethanol and amylalcohol and 

stirred for 10 min. Sterilefiltered, aliquotted and frozen at -20 °C. Protected from light. 

Mice were intraperitoneal (IP) injected with 0.2 ml per 10 g of body weight. 

 

Phosphate buffer (Stock Solutions)  

 0.2 M   Sodiumdihydrogenphosphate (NaH2PO4)  

 0.2 M   Di-Sodiumhydrogenphosphate (Na2HPO4)  

Working Solution (pH 7.4) 

 20 ml   0.2 M Sodiumdihydrogenphosphate (NaH2PO4) 

 80 ml     0.2 M Di-Sodiumhydrogenphosphate (Na2HPO4) 

 100 ml    ddH2O 

 

10x Phosphate buffered saline (PBS) 

 1.7 M    NaCl 

 34 mM    KCl 

 40 mM    Na2HPO4*2H2O 

 18 mM    K2HPO4 

pH adjusted to 7.2 with 1 N NaOH. 

 

1x PBS (Working solution) 

 100 ml   10x PBS 

 900 ml   ddH2O 
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Bovine Serum Albumin (PBS/BSA) 

 20 ml    0.2 M Sodiumdihydrogenphosphate (NaH2PO4)  

 80 ml    0.2 M Di-Sodiumhydrogenphosphate (Na2HPO4) 

 1.8 g    NaCl   

 1.0 g    Bovines Serum Albumin (BSA) 

 100 ml   ddH2O 

 

16% Paraformaldehyde (PFA, Stock solution) 

 80 g   Paraformaldehyde 

 450 ml   ddH2O 

Heated up to 65 °C while stirring and then stirred for another 20 min. Droplets of 5 N 

NaOH added until solution turned clear. Filled up to a final volume of 500 ml with 

ddH2O and left to cool down. Filtered through 500 ml Nalgene sterile filter unit. 

Aliquotted and frozen at -20 °C. 

 

4% Paraformaldehyde (PFA) 

 100 ml    0.2 M Sodiumdihydrogenphosphate (NaH2PO4) 

 400 ml    0.2 M Di-Sodiumhydrogenphosphate (Na2HPO4)  

 250 ml    16 % PFA 

 8.0 g    NaCl  

 250 ml    ddH2O 

 

Citrate Buffer (Stock Solutions)  

 0.1 M   Citric acid (C6H8O7*H2O)  

 0.1 M   Sodium citrate (C6H5O7Na3*2H2O)  

Stored at 4°C.  

Working Solution (0.01 M pH 6.0) 

 9.0 ml    0.1 M Citric acid (C6H8O7*H2O)  

 41 ml    0.1 M Sodium citrate (C6H5O7Na3*2H2O)  

 450 ml    ddH2O 

Always prepared freshly. 

 

Tris-buffer (Stock Solution)  

 0.5 M   Tris base  

pH adjusted to 7.6 with 37 % HCl. Stored at 4 °C.  
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Working Solution  

 100 ml   0.5 M Tris base (pH 7.6)  

 9.0 g    NaCl  

Filled up to a final volume of 1000 ml with ddH2O. Always prepared freshly. 

 

2% Milk-powder in Tris-buffer  

 20 g    Non-fat dry milk-powder 

Filled up to a final volume of 1000 ml with Tris-buffer working solution. 

 

 

5.9 Buffers for immunohistochemisty of vibrotome and cryo sections 

0.1 % Triton X-100 in 1x PBS 

40 µl   4 % Triton X-100 

960 µl   1x PBS 

 

4 % Horse-Serum, 0.1 % Triton X-100 in 1x PBS 

40 µl   Horse Serum 

960 µl   0.1 % Triton X-100 in 1x PBS 

 

1 % Horse-Serum, 0.1 % Triton X-100 in 1x PBS 

10 µl   Horse Serum 

990 µl   0.1 % Triton X-100 in 1x PBS 

 

1.5 % Horse Serum in 1x PBS 

15 µl   Horse Serum 

 985 µl    1x PBS 

 

 

5.10 Mounting media 

Eukit     (Kindler) 

Aqua polymount   (Polyscience) 

Shandon Cryomatrix  (Thermo Scientific) 
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5.11 Histological stains and reagents 

Mayer’s Haematoxylin solution 

 1 g    Haematoxylin  

Dissolved in 1000 ml ddH2O, then added:  

 0.2 g    Sodium iodate  

 50 g    Potassium aluminium sulphate  

under constant shaking. Then added:  

 50 g    Chloralhydrate  

 1 g    Citric acid  

Filtered before use. 

 

Eosin Stock solution (10x)  

 10 g    Eosin 

Dissolved in 100 ml of ddH2O and left to mature. 

Eosin working solution 

 2.5 ml   Eosin Stock solution  

Filled up to 250 ml with ddH2O and finished by adding 12 drops of glacial acetic acid. 

 

Scott’s solution 

 2 g  KHCO3  

 20 g  MgSO4 

Filled up to a final volume of 1000 ml with ddH2O. 

 

HCl-Alcohol 

 1.25 ml   Conc. HCl  

 350 ml   100 % Ethanol  

 150 ml   ddH2O 

 

-Gal Staining buffer (stock solutions) 

500 mM  Potassium ferricyanid (in PBS) 

500 mM  Potassium ferrocyanid (in PBS) 

2 mM  MgCl2 

20 mg/ml  X-Gal (in DMSO) 
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Working solution 

5 mM  Potassium ferricyanid 

5 mM  Potassium ferrocyanid 

2 mM  MgCl2 

600 μl  X-Gal (f.c. 1.2 mg/ml) 

Filled up to a final volume of 10 ml with 1x PBS. 

 

 

5.12 Oligonucleotids 

All oligonucleotides (primers) were synthesized at “Oligo Syntesys Lab” of the Max 

Planck Institute of Experimental Medicine. They were provided at 50 pM stock 

concentrations. In house identification numbers are displayed in brackets. 

 

 

5.13 Genotyping primer 

CKII-Cre               In house No. 

Forward: 5'-CGAGTGGCCCCTAGTTCTGGGGGCAGC-3'  (7964) 

Reverse: 5’-CGTTGCATCGACCGGTAATGCAGGC-3’  (7963) 

 

Emx1-Cre 

Forward: 5’-CAGGGTGTTATAAGCAATCCC-3’   (4192) 

Reverse: 5'-CCTGGAAAATGCTTCTGTCCG-3'    (4193) 

 

Nrg1f/f 

Forward: 5’-TCCTTTTGTGTGTGTTCAGCACCGG-3’  (6744) 

Reverse: 5'-GCACCAAGTGGTTGCGATTGTTGCT-3'  (6743) 

 

NEX-Cre and NEX-CreERT2 

Forward: 5'-GAGTCCTGGAATCAGTCTTTTTC-3'   (3131) 

Reverse: 5'-CCGCATAACCAGTGAAACAG-3'   (2409) 

Reverse: 5'-AGAATGTGGAGTAGGGTGAC-3'   (3132) 

 

PV-GFP 

Forward: 5’-GACACTGCAGCGCTGGTCAT-3’   (6895) 

Reverse: 5'-CCAGCTTGTGCCCCAGGATGT-3'   (4749) 
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R26R-floxtdTomato 

Forward: 5’-TACGGCATGGACGAGCTGTACAAGTAA-3’  (21027) 

Reverse: 5'-CAGGCGAGCAGCCAAGGAAA-3'   (21028) 

 

R26R-floxLacZ 

Forward: 5'-AAAGTCGCTCTGAGTTGTTAT -3'   (3735) 

Reverse: 5'-GCGAAGAGTTTGTCCTCAACC -3'   (3736) 

Reverse: 5'-GGAGCGGGAGAAATGGATATG -3'   (3737) 

 

Stop-Nrg1 

Forward: 5’-GTCCACAAATACCCACTTTAGGCCAGC-3’  (11980) 

Reverse: 5’-GGTGGCTATAAAGAGGTCATCAG-3’   (15762) 

 

Thy1.2-driven Nrg1-tg, HA-Nrg1-tg and HA-Nrg1GIEF  

Forward: 5’-GTCCACAAATACCCACTTTAGGCCAGC-3’  (11980) 

Reverse: 5’-GGCTTTCTCTGAGTGGCAAAGGACC-3’  (6467) 

 

 

5.14 Enzymes 

REDTaq DNA Polymerase Sigma-Aldrich 

GoTaq Polymerase Promega 

 

 

5.15 Antibodies 

5.15.1 Primary Antibodies 

Antibody Cat. No. Species Company Dilution Purpose 

Actin MAB1501 mono-ms Millipore 1000 WB 

AKT #9272 poly-rb Cell Signaling 5000 WB 

AKT #4691 poly-rb Cell Signaling 5000 WB 

phospho-AKT (Ser473) 
(D9E) 

#4060 poly-rb Cell Signaling 5000 WB 

phospho-AKT (Ser473) 
(736E11) 

#3787 poly-rb Cell Signaling 5000 WB 

Cofilin #3312 poly-rb Cell Signaling 1000 WB 

phospho-Cofilin 1 (hSer 3)-
R 

sc-12912-R poly-rb Santa Cruz 1000 WB 

Cre PRB-106C poly-rb Covance 1000 IHC 
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Antibody Cat. No. Species Company Dilution Purpose 

ErbB4 mAb10 mono-rb A. Buonanno 1 µg/ml WB 

ErbB4 (E200) ab32375 mono-rb abcam 1000 WB 

GAD67 MAB5406 mono-ms Chemicon 100 IHC 

GFAP Z 0334 poly-rb Dako 500 IHC 

GFP 
600-101-

215 
mono-
goat 

Rockland 500 IHC 

GLT-1 AB1783 poly-gp Chemicon 20000 WB 

HA ab9110 poly-rb abcam 500 IHC, WB 

HA.11 MMS-101P mono-ms Covance 250 IHC, WB 

IBA1 019-19741 poly-rb Wako 700 IHC 

Krox-20 PRB-236P poly-rb Covance 100 IHC 

LIMK1 #3842 poly-rb Cell Signaling 1000 WB 

phospho-LIMK1 (Thr508) ab38508 poly-rb abcam 500 WB 

phospho-LIMK1 
(Thr508)/LIMK2 (Thr505) 

#3841 poly-rb Cell Signaling 1000 WB 

MBP A0623 poly-rb Dako 500 WB 

NeuN MAB377 mono-ms Chemicon 100 IHC 

Neuregulin-1a/b1/2 (C-20) SC-348 poly-rb Santa Cruz 100 / 500 IHC, WB 

Neurogranin AB1763 poly-rb Chemicon 1000 IHC 

Olig2 DF308 poly-rb 
John Alberta, 

Harvard 
200 IHC 

p-HER4/ErbB4 (Tyr1284) 
(21A9) 

#4757 mono-rb Cell Signaling 1000 WB 

p44/42 MAPK (Erk1/2) 
(137F5) 

#4695 poly-rb Cell Signaling 5000 WB 

phospho-p44/42 MAPK 
(Erk1/2) (Thr202/Tyr204) 

(20G11) 
#4376 poly-rb Cell Signaling 5000 WB 

Parvalbumin 28 PV-28 poly-rb Swant 200 IHC 

Synaptophysin 101 011 mono-ms 
Synaptic 
Systems 

1000 WB 

Tubulin T 5168 mono-ms Sigma 1000000 WB 

 

 

5.15.2 Secondary Antibodies 

    Species Company Dilution Purpose 

-goat-Alexa488   donkey  Dianova  1:500   IHC 

-guinea pig-cy3   goat   Dianova 1:500   IHC 

-guinea pig-cy5   goat   Dianova 1:500   IHC 

-guinea pig-HRP   goat   Dianova  1:5000  WB 
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-mouse-AF555   donkey  Dianova  1:1000  IHC 

-mouse-Biotin   goat   Acris   1:100   IHC 

-mouse-cy2    goat   Dianova  1:100   IHC 

-mouse-cy3    goat   Dianova  1:1000  IHC 

-mouse-cy5    donkey  Dianova  1:500   IHC 

-mouse-DL488   goat   Dianova  1:100   IHC 

-mouse-DL633  goat   Dianova  1:250   IHC 

-mouse-HRP   goat   Dianova  1:5000  WB 

-rabbit-Alexa488   goat   Dianova  1:100   IHC 

-rabbit-Alexa555   donkey  Dianova  1:500   IHC 

-rabbit-Biotin   goat   Novus-Bio  1:100   IHC 

-rabbit-cy2    goat   Dianova  1:100   IHC 

-rabbit-cy3    goat   Dianova  1:1000  IHC 

-rabbit-cy5    donkey  Dianova  1:500   IHC 

-rabbit-DL488   goat   Dianova  1:100   IHC 

-rabbit-HRP    goat   Promega  1:5000  WB 

 

 

5.16 Mouse lines 

Stop-Nrg1 

conditional -actin eGFP-Stop-flox 2HA-Nrg1 type III1a transgenic mouse 

(Unterbarnscheidt et al., in preparation) 

Nrg1-tg 

Thy1.2 promtor-driven Nrg1 type III1a transgenic mouse  

(Wolpowitz et al., 2000) 

HA-Nrg1-tg 

Thy1.2 2HA-Nrg1 type III1a transgenic mouse  

(Velanac et al., 2011) 

HA-Nrg1GIEF  

Thy1.2 2HA-Nrg1GIEF transgenic mouse 

(Velanac et al., 2011) 

Nrg1f/f 

Conditional floxed NRG1 knockout mouse (Li et al., 2002) 
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NEX-Cre  

Cre driver mouse line, generated by homologous recombination of Cre into 

the NEX locus (Goebbels et al., 2006) 

NEX-CreERT2  

Cre driver mouse line, generated by homologous recombination of Tamoxifen 

inducible CreERT2 into the NEX locus (Agarwal et al., 2011) 

CKII-Cre  

Cre driver mouse line, expressing Cre as a transgene under control of 

CamKII promoter (Minichiello et al., 1999) 

Emx1-Cre  

Cre driver mouse line, generated by homologous recombination of IREScre 

into the exon encoding the 3’ untranslated region of the mouse Emx1 gene 

(Gorski et al., 2002) 

R26R-floxtdTomato 

Rosa26 knock-in floxed tdTomato Cre-reporter mouse line  

(Madisen et al., 2010) 

R26R-floxLacZ 

Rosa26 knock-in floxed LacZ Cre-reporter mouse line  

(Soriano, 1999) 

PV-GFP  

Bac-transgenic mouse expression eGFP under regulatory elements of the 

parvalbumin gene (Meyer et al., 2002) 
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6. Methods 

6.1 Animal maintenance, handling and treatment 

6.1.1 Generation of conditional Stop-Nrg1 transgenic mice 

Stop-Nrg1 mice were generated by cloning the HA-NRG1FL cDNA used for the 

generation of HA-Nrg1-tg mice (Velanac et al., 2011) via SpeI and XhoI restriction 

digest into the polylinker of the -actin Stop-eGFP-flox cassette in a pBluescriptKS 

vector. The vector backbone harbored a fragment of a chicken -actin promoter, an 

eGFP-Stop cassette flanked by two loxP sites, and a bovin growth hormone polyA 

site. The transgene cassette was excised from the plasmid via SalI and injected into 

C57bl6n oocytes. Initial cloning of the vector backbone was performed by Maike 

Gummert and HA-NRG1FL cDNA insertion and linearization was conducted by 

Viktorija Velanac at the Max-Planck-Institute of Experimental Medicine in Göttingen. 

One positive founder was born. The transgenic line was maintained on a C57/Bl6N 

background. 

 

6.1.2 Breeding of mouse mutants 

Mice mutants were bred starting at 8 weeks of age. To maintain and expand the 

mutant lines, mutant mice were bred to WT mice of the C57/Bl6N strain. 

 

6.1.3 Animal maintenance and handling 

All mouse mutants used in this study were maintained and bred in the animal facility 

of the Max-Planck-Institute of Experimental Medicine. Animals were kept and 

handled in compliance with animal policies of the Max-Planck-Institute of 

Experimental Medicine and approved by the German Federal State of Lower Saxony. 

 

6.1.4 Tamoxifen injection 

For the acute activation of NRG1 overexpression, the NEX-CreERT2 mouse line was 

used. The CreERT2 sequence in this mouse line is an improved version of the 

original tamoxifen-inducible Cre recombinase (Feil et al., 1997; Metzger and 

Chambon, 2001), which is fused to a mutated human oestrogen receptor (ER) 

ligand-binding domain (LBD) (Feil et al., 1997). In the absence of tamoxifen, a 

synthetic ligand of the ER, the CreERT2 variant is located in the cytoplasm and is 

inactive. Addition of tamoxifen induces nuclear transfer and site-specific 

recombination of loxP-flanked genomic DNA (Feil et al., 1997). Tamoxifen was 

administered to adult mice at different ages by intraperitoneal injection (IP) or 
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postnatally by IP injection of the mother and transmission of tamoxifen via milk. 

Concentrations used ranged from 25 to 100 mg/kg of body weight and from 2 to 10 

consecutive days of injection (full induction = 10 days of 100 mg/kg body weight). 

 

6.1.5 Phenotyping of tail biopsies of Stop-Nrg1 mice 

For routine genotyping of Stop-Nrg1 mice the fluorescence of the loxP sites-flanked 

eGFP-Stop-cassette of the transgene cassette was used. In unrecombined cells, e.g. 

in the tailbiopsie it can be used to genotype mice. For fluorescent phenotyping of 

transgenic mice, tail biopsies were examined under fluorescent light of 488 nm 

excitation under a fluorescent microscope (Leica), prior to DNA extraction and 

genotyping for Cre recombinase transgenes by PCR (see section: Preparation of 

mouse genomic DNA, below). 

 

 

6.2 Preparation of mouse genomic DNA 

6.2.1 Standard method of genomic DNA isolation 

Routine genotyping of transgenic mouse lines was performed on genomic DNA 

isolated from 5 mm pieces of tail biopsies. Each tail was lysed in a tightly closed tube 

with 200 µl of lysis buffer, that contained 180 µl of 1x MGB (working solution) and 20 

µl of proteinase K (10 mg/ml). Lysis was carried out over night (ON) at 52 °C and 

vigorous shaking. Digested tails where centrifuged 5 min at 5000 rpm followed by 

heat inactivation of the proteinase K at 95 °C for 10 min. Lysates were then mixed by 

shaking and centrifuged at 5000 rpm for 10 min at room temperature (RT). 1 μl of 

supernatant was used in genotyping PCR reactions (see below). Alternatively 

surface phase of the supernatant was diluted with ddH2O (1:5) for increased purity of 

PCR results. 

 

6.2.2 nexttecTM Tissue & Cells kit-based genomic DNA isolation 

The standard method was used to isolate genomic DNA from mouse tail biopsies in 

the beginning of this study. Meanwhile, a kit-based isolation method was aquired and 

established in the lab. Routine genomic DNA extraction was from then on performed 

by using nexttecTM’s 1-Step Tissue & Cells kit. The DNA isolation was performed 

according to the manufactures protocol. Briefly, tail biopsies were lysed in 300 µl 

lysis buffer, containing 265 µl of buffer G1, 10 µl buffer G2 and 25 µl buffer G3, by 

vigorous shaking for 30 min at 12.000 rpm and 62 °C. Meanwhile nexttecTM 

cleanPlate96 were equilibrated with 350 µl of prep buffer for 5 min at RT and 
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centrifuged for 1 min at 350 xg. 120 µl of the tail lysate were then loaded onto 

columns and incubated for 3 min at RT before eluation by centrifugation at 750 xg for 

1 min into fresh tail tubes. Lysate were diluted 1:5 in ddH2O. 1 µl of the lysate was 

used in genotyping PCR reactions (see below). 

 

 

6.3 DNA modification and analysis 

6.3.1 DNA amplification in vitro by polymerase chain reaction (PCR) 

The polymerase chain reaction (PCR), originally reported by (Mullis et al., 1986), is a 

standard method that enables in vitro enzymatic amplification of selected DNA 

sequence. The reaction requires a thermostable DNA polymerase from the 

termophilic bacterium Thermus aquaticus (Taq Polymerase), that is stable at the 

melting temperature of the double stranded DNA and has an optimal activity at 72 

°C. In the reaction a template sequence for amplification is defined by primers, single 

stranded oligonucleotides that complementary bind to the sense and antisense 

strands on the opposite ends of the template. The DNA amplification is carried out in 

a thermocycler (Thermocycler T3, Biometra) through multiple repetitions of three step 

PCR cycles. In the first step of the PCR reaction the double stranded DNA template 

is broken up at 95 °C. In the second step the primers anneal to the complementary 

sequences of the template DNA at their specific annealing temperature. In the last 

step each strand of the template is replicated by elongation of the primer sequence 

by the Taq Polymerase, which adds nucleotides complementary to the template. 

In this study standard PCR master mix were setup with RedTaq polymerase (Sigma) 

as follows: 

   1μl   DNA (100 pg-100 ng)  

   1μl   sense primer (10 pM) 

   1μl   antisense primer (10 pM) 

   2μl   dNTP mix (2 mM) 

   2μl   10x RedTaq buffer 

   1μl   RedTaq polymerase (1 U/μl)  

   12μl   ddH2O 

PCR products were then separated on agarose gels for visualization. 

 

6.3.2 Primer design 

All primers were designed manually, based on the template sequence information 

using the DNAStar (EditSeq) software, BLAST at NCBI, and oligocalculator 
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(http://mbcf.dfci.harvard.edu/docs/oligocalc.html). They where designed to have at 

least 20 bp overlap with the template sequence, and a melting temperature of ~60 

°C. Oligonucleotides were synthesized in-house at the ‘Oligo Synthesis Lab’ of the 

Max-Planck-Institute of Experimental Medicine at a stock concentration of 50 pM and 

diluted 1:5 in ddH2O before use. 

 

6.3.3 Agarose gel electorphoresis for the size separation of DNA 

fragments 

To separate DNA fragments, resulting from genotyping PCRs, based on their size 

agarose gel electrophoresis was used (Voytas, 2001). For the separation, gels of 1 

% - 2 % agarose in 1x TAE buffer were used. For DNA visualization 2 to 3 µl of 10x 

GelREDTM (Biotium) were added to 20 µl DNA sample. Gels were placed into the 

electrophoresis chambers and filled with 1x TAE buffer until the gel surface was 

covered by buffer and the wells were filled. Standard DNA marker (100 bp or 1 kb 

ladder) and DNA samples (containing glycerol and tracking dye) were loaded into the 

wells. The chamber was then connected to a power supply and voltage was set to 70 

V for the first run-in of the samples. Negatively charged DNA migrates to the 

positively charged cathode and smaller DNA fragments migrate faster through the 

gel than bigger fragments. When probes had successfully entered the gel, the 

voltage was increased to 100 V. The gel was run until the desired fragment 

separation was achieved. For documentation, snapshots of UV-trans-illuminated gels 

were taken. 

 

6.3.4 Genotyping of mouse mutants 

At 3 weeks of age a tail biopsy was taken from mutant mice. DNA for genotyping was 

prepared with either the standard procedure or the nexttecTM Tissue & Cells kit. The 

genotype was determined by performing genotyping PCRs with mutant specific 

genotyping primers described in the material section (Section 5.13). An example for 

a PCR master mix is given in the section above. PCRs were incubated in the 

thermocycler with following programs. 
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6.3.5 PCR programs: 

Stop-Nrg1  

1. 95 °C  5 min 

2. 95 °C  45 sec 

3. 56 °C  30 sec  

4. 72 °C  1 min 

 2 to 4 for 36 cycles 

5. 56 °C  1 min 

6. 72 °C  10 min 

7. 4 °C  pause 

 

Nrg1-tg, HA-Nrg1-tg and HA-Nrg1GIEF 

1. 95 °C  3 min 

2. 95 °C  45 sec 

3. 58 °C  30 sec  

4. 72 °C  1 min 

 2 to 4 for 35 cycles 

5. 72 °C  10 min 

6. 4 °C  pause 

 

Nrg1f/f 

1. 94 °C  3 min 

2. 60 °C  30 sec 

3. 72 °C  50 sec  

4. 94 °C  45 sec 

 2 to 4 for 39 cycles 

5. 60 °C  1 min 

6. 72 °C  10 min 

7. 4 °C  pause 

 

NEX-Cre and NEX-CreERT2  

1. 94 °C  3 min 

2. 54 °C  30 sec 

3. 72 °C  1 min  

4. 94 °C  30 sec 

 2 to 4 for 39 cycles 

5. 54 °C  1 min 

6. 72 °C  5 min 

7. 4 °C  pause 
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CKII-Cre  

1. 95 °C  3 min 

2. 94 °C  30 sec 

3. 58 °C  30 sec  

4. 72 °C  30 sec 

 2 to 4 for 35 cycles 

5. 58 °C  1 min 

6. 72 °C  5 min 

7. 4 °C  pause 

 

Emx1-Cre  

1. 94 °C  3 min 

2. 55 °C  30 sec 

3. 72 °C  30 sec  

4. 94 °C  30 sec 

 2 to 4 for 35 cycles 

5. 55 °C  1 min 

6. 72 °C  5 min 

7. 4 °C  pause 

 

R26R-floxtdTomato 

1. 95 °C  3 min 

2. 60 °C  30 sec 

3. 72 °C  1.5 min 

4. 95 °C  30 sec 

 2 to 4 for 45 cycles 

5. 60 °C  1 min 

6. 72 °C  10 min 

7. 4 °C  pause 

 

R26R-floxLacZ 

1. 95 °C  3 min 

2. 56 °C  30 sec 

3. 72 °C  1 min  

4. 95 °C  30 sec 

 2 to 4 for 36 cycles 

5. 56 °C  1 min 

6. 72 °C  10 min 

7. 4 °C  pause 
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PV-GFP 

1. 95 °C  3 min 

2. 57 °C  40 sec 

3. 72 °C  45 sec  

4. 95 °C  30 sec 

 2 to 4 for 40 cycles 

5. 56 °C  1 min 

6. 72 °C 10 min 

7. 4 °C  pause 

 

 

6.4 Protein biochemistry methods 

6.4.1 Radioimmunoprecipitation assay (RIPA) buffer protein extraction 

For the analysis of proteins of mouse nervous system tissue, brains of mice at 

different ages were dissected and cortices (Cx), prefrontal cortices (PFC), 

hippocampi (Hipp) and thalamus (Thal) were micro-dissected on ice and afterwards 

frozen on dry ice and stored at -80 °C. To prepare protein samples, the frozen tissue 

was homogenized in 900 μl (Cx) or 200 μl (PFC, Hipp, Thal) RIPA buffer with 

protease and phosphatase inhibitors (Roche), respectively. Homogenization was 

carried out with the Precellys homogenizer (5500 rpm, 2x10 sec, Bertin 

Technologies), followed by lyses on ice for 20 min. Lysed tissue was centrifuged for 

10 min at 8000 rpm at 4 °C in order to spin down the beads and unlysed material. 

The supernatant was transferred into a new Eppendorf cup and centrifuged for 30 

min at maximum speed at 4 °C. The supernatant containing the soluble proteins was 

transferred to a new Eppendorf cup. Supernatant and pellets were kept at –80 °C 

until use. Protein concentration measurement was performed on dilutions (1:1 up to 

1:20 in RIPA buffer) of the supernatant fraction. 

 

6.4.2 Sucrose buffer protein extraction 

To analyze the phosphorylation status of ErbB receptors and downstream effectors, 

and to improve the western blot quality for transmembrane proteins, sucrose buffer-

based protein extraction was used. Micro-dissected frozen mouse brain material from 

one hemisphere (Cx, PFC, Hipp, Thal) was homogenized in 900 µl (Cx) or 200 µl 

(PFC, Hipp, Thal) sucrose homogenization buffer with protease and phosphatase 

inhibitors (Roche), respectively. Homogenization was carried out with the Precellys 

homogenizer (5500 rpm, 2x10 sec, Bertin Technologies). 130 µl of the resulting 

homogenate were added to 70 µl of 4x LDS sample buffer (NuPAGE) working 

solution including DTT. The samples were immediately denatured at 70 °C for 10 min 
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and frozen and stored at -80 °C. The leftovers of the homogenates were frozen and 

stored at -80 °C. Protein concentration measurement was performed on dilutions (1:1 

up to 1:20 in sucrose homogenization buffer) of these leftovers.  

 

6.4.3 Synaptosomal preparation 

Many different protocols for the isolation of synaptosomes have been developed 

since its first description in 1958 (HEBB and WHITTAKER, 1958). Synaptosomes are 

resealed nerve terminals separated from axons and dendrites (Whittaker, 1993), they 

are very small (50 nm in diameter) and homogeneous in shape and size, and can be 

isolated by size fractionation techniques. The protocol used in this study was 

adapted from protocols described by Hell and Jahn (2006), Huttner et al. (1983) and 

Biesemann et al. (2014).  

To isolated synaptosomes the tissue was prepared freshly. Mice were sacrificed by 

cervical dislocation followed by decapitation. The brain was immediately removed 

from the skull and the forebrain was dissected on ice. The cerebellum and olfactory 

bulb were removed and after separation of the two hemispheres, the midbrain was 

pinched out using a pair of bend tweezers and a dissection spatula. White matter 

was removed and the forebrains were transferred into ice-cold 0.32 M sucrose 

homogenization buffer (synaptosomal extraction buffer) with protease and 

phosphatase inhibitors (Roche) and kept on ice. All used solutions were prepared 

with protease and phosphatase inhibitors (Roche) to ensure phospho-specificity for 

later analyses (Fig. 33).  

The two forebrain hemispheres of each mouse were homogenized in 4 ml of fresh 

ice-cold homogenization buffer with 12 gentle up and down strokes at 900 rpm using 

a loosely fitting 5 ml glass-Teflon potter in the 4 °C cold room. After transfer of the 

homogenate to a centrifuge tube the potter was rinsed with additional 4 ml of 

homogenization buffer in 9 up and down strokes. These 8 ml of homogenate (H) 

were centrifuged for 10 min at 1000 xg at 4 °C in the SS-34 rotor (with adaptors) in 

the Sorvall centrifuge. This centrifugation step removed large cell fragments and 

nuclei from the solution. The supernatant (S1) was removed carefully from the pellet 

(P1). P1 was carefully resuspended in 4 ml of homogenization buffer and centrifuged 

again for 10 min at 1000 xg at 4 °C in the SS-34 rotor (with adaptors) in the Sorvall 

centrifuge. The supernatant (S1.2) was added to S1 and centrifuged for 15 min at 

12.500 xg at 4 °C in the SS-34 rotor (with adaptors). The supernatant (S2) was 

removed completely and the synaptosome-enriched pellet (P2) was resuspended in 

1 ml of homogenization buffer. The P2 fraction was then carefully layered on top of a 

two-step sucrose density gradient consisting of 5 ml of 1.2 M and 5 ml of 0.8 M 
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sucrose gradient solutions. After carefully balancing the tubes, the gradient was 

centrifuged for 2 h at ~50.000 xg (18.000 rpm) at 4 °C in a SW-41Ti swing-out bucket 

rotor in the Beckman ultracentrifuge with accel: 5 and deccel: 5 settings. The 

resulting gradient consisted of the three sucrose gradient steps (0.32 M, 0.8 M and 

1.2 M sucrose solutions) containing low amounts of protein, two interfaces and a 

pellet. A myelin-containing fraction ‘A’ was enriched at the border of 0.32 M to 0.8 M 

sucrose. Synaptosomes were enriched in the interface ‘B’ of 1.2 M and 0.8 M 

sucrose and recovered by carefully removing the layers of the gradient step by step. 

The resulting fraction was referred to as synaptosome fraction or gradient-purified 

synaptosomes. 900 µl of fraction B were then diluted with 900 µl of 0.32 M sucrose 

homogenization buffer and centrifuged for 20 min at 20.000 xg (10.800 rpm) at 4 °C 

in the SW-41Ti swing-out bucket rotor in the Beckman ultracentrifuge, to wash and 

concentrate the synaptosomal fraction. The pellet (P3) was resuspended in 200 µl of 

0.32 M sucrose homogenization buffer and referred to as final synaptosomes. 

Aliquots of all fractions were frozen and stored at -80 °C. The pellet fractions P1.2 

and the gradient pellet were resuspended in 800 µl and 200 µl 0.32 M sucrose 

homogenization buffer, respectively, for protein concentration measurement and 

western blot analyses. 

 

 

Fig. 33: Preparation of crude synaptosomal fractions 
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6.4.4 Protein concentration measurement with the Lowry assay 

To determine the protein concentration of samples the Bio-Rad DC Protein Assay kit 

was used. The working principal of this kit is based on the Lowry assay described in 

1951 (LOWRY et al., 1951). The two step assay is based on the reaction between 

protein and an alkaline copper tartrate solution, followed by the reduction of Folin 

reagent that produces several reduced species of characteristic blue color with a 

maximum absorbance at 750 nm. Hereby the color development is primarily due to 

oxidation of the amino acids tyrosine and tryptophan, and to a lesser extent cystine, 

cysteine, and histidine (LOWRY et al., 1951; Peterson, 1979). The assay was 

performed in a 96-well plate (flat bottom) according to the manufacturer’s “micro 

plate” assay protocol and absorbance was measured at 650 nm with a microtitre 

plate reader (ThermoMax Molecular Devises). A standard curve, using dilutions of 

bovine serum albumine (BSA), was used to estimate protein concentrations. Protein 

samples were pre-diluted before measurement and concentrations were calculated 

with regard to the dilution factor. 

 

6.4.5 Preparation of protein samples for SDS electrophoresis 

6.4.5.1 RIPA buffer protein samples 

RIPA buffer extracted protein samples were set up with final concentrations ranging 

between 2.5 to 5 µg/µl in 5x SDS sample buffer with 1 % -mercaptoethanol. 

Volumes of the samples were equalized with RIPA buffer. Samples were mixed 

carefully by pipetting up and down and afterwards denatured at 95 °C for 10 min. For 

storage samples were kept at -80 °C. 

 

6.4.5.2 Sucrose buffer protein samples 

Since sucrose buffer extracted samples were set up and denatured in 4x LDS 

sample buffer directly after homogenization, the protein concentration measurement 

was carried out on the leftover of the homogenate. Using the measured 

concentrations, denatured samples were then diluted to equal concentrations 

(ranging between 1 and 3 µg/µl protein) using a similar mixture of 4x LDS samples 

buffer with DTT and sucrose homogenization buffer as used in the denatured 

sample. Diluted and undiluted samples were stored at  -80 °C until use. 

 

6.4.5.3 Synaptosomes 

Samples of the different fractions of the synaptosomal preparation were set up for 

western blot analyses in two different ways. In one approach samples were set up 
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using same volumes (20µl) of the fractions in 4x LDS sample buffer with DTT. In the 

second approach samples were set up in equal concentrations (1 µg/µl protein) in 4x 

LDS sample buffer with DTT. Volumes of samples were equalized with 0.32 M 

sucrose homogenization buffer. In both cases samples were denatured at 70 °C for 

10 min. 

 

6.4.6 Discontinous SDS polyacrylamide gel electrophoresis 

To separate proteins by size from a sample, discontinuous SDS polyacrylamide gel 

electrophoresis (SDS-PAGE) was performed (Laemmli, 1970). SDS polyacrylamide 

gels were casted between Bio-Rad glass plates and 0.75 mm or 1.75 mm spacer 

plates that were assembled according to the company’s instructions. The separation 

gel acrylamide solution of the desired percentage was poured between the glass 

plates, separated from air by a layer of isopropyl alcohol and left to polymerize for 30 

min at RT. After rinsing the isopropyl alcohol with ddH2O, the stacking gel solution 

was added onto the separation gel. A Teflon comb (10 or 15 teeth) was immediately 

inserted into the stacking gel solution and the gel was left to polymerize for 30 min. 

Polymerized gels were kept up to one week at 4 °C. The chamber for electrophoresis 

(Bio-Rad mini protean 3) was assembled according to the manufacturer’s manual 

and the inner gasket was filled with the electrophoresis buffer to check for leakiness 

of the chamber. The combs were carefully removed and the wells were washed with 

electrophoresis buffer by pipetting up and down. 3-30 μg of denatured protein 

samples and 10 μl of prestained protein marker (Fermentas) were loaded onto the 

gel. The chamber was filled with electrophoresis buffer and connected to a power 

supply (Bio-Rad). The gel was run under a constant voltage of 100 mV until samples 

aligned at the border of stacking and separation gel. The voltage was then increased 

to 150 mV and the gel was run until the tracking dye reached the end of the gel. The 

gel was carefully removed from the glass plates and proceeded with Coomassie 

staining or western blot analysis. 

 

6.4.7 Coomassie staining 

To verify the protein transfer, SDS-PAGE gels were stained with Coomassie solution. 

Briefly, the gel was covered with Coomassie solution and coocked in a microwave for 

30 sec. Afterwards gels were washed with ddH2O at RT under constant gentle 

shaking until the protein bands were clearly visible. 
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6.4.8 Western Blotting 

6.4.8.1 Electrophoretic transfer 

For immunological detection of proteins resolved by SDS-PAGE, proteins were 

transferred onto PVDF membranes by electrophoresis, as originally described by 

Towbin and colleagues (Towbin et al., 1979). By applying an electric current to the 

blotting module, the negatively charged proteins migrate from the cathode to the 

anode and are retained on a PVDF membrane by electrostatic and hydrophobic 

interactions. PVDF membranes (Roche, pore size 0.2 µm) were activated for 1 min in 

100 % methanol, washed twice in ddH2O and then placed into transfer buffer. 

Blotting pads and Whatman papers were pre-soaked in transfer buffer and the 

blotting sandwich was assembled in the following way: 

 

Fig. 34: Bio-Rad Mini Trans-Blot western blot sandwich 

 

The protein transfer was performed using Bio-Rad Mini Trans-Blot cells under a 

constant voltage of 38 V and a maximum current of 275 mA, for 90-180 min 

(depending on the size of the protein and the thickness of the gel) at 4 °C. 

 

6.4.8.2 Immunological detection of proteins on PVDF membranes 

After electrophoretic transfer of proteins to PVDF membranes, membranes were first 

blocked for 60 min at RT in blocking buffer and then placed into 50 ml falcons with 3 

ml of the primary antibody diluted in blocking buffer. Incubation was carried out ON at 

4 °C with constant rotation. On the next day membranes were washed four times for 

10 min TBST and incubated with the HRP-conjugated secondary antibody diluted in 

blocking buffer for 1 hr at RT. The membranes were again washed four times with 

TBST for 10 min at RT, followed by 1 min incubation with a 1:1 dilution of the two 

Enhanced Chemiluminescence Detection (ECL) solutions. After drying the 

membranes on tissue, they were placed into a transparent plastic foil and placed into 

the Intas ChemoCam Imager. The membranes were scanned for 20 min, the protein 

standard fotographed and the images saved digitally for later analyses and 

quantifications. 

To reprobe membranes with different antibodies, membranes were incubated in 
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stripping buffer for 1 hr at 60 °C or in 0.5 M NaOH for 15 min at RT with vigorous 

shaking. After washing in TBST and blocking, membranes were incubated in the next 

antibody. 

 

6.4.8.3 Densitometric quantification of band intensity 

For densitometric analyses of western blot bands, raw images acquired with the Intas 

ChemoCam Imager were opened with FIJI, converted to 8-Bit and inverted (to have 

black bands on white background). The densities of bands of interest were measured 

using FIJI’s gel analyzing function. Results were normalized to loading controls (e.g. 

-actin or -tubulin) and normalized values (±SEM) were analyzed for statistical 

significance using the GraphPad Prism software package. 

 

 

6.5 Histology and immunohistochemistry 

6.5.1 Analysis of fluorescent organs 

The transgene cassette of Stop-Nrg1 mice contains a loxP sites-flanked eGFP Stop-

cassette. This element allows for Cre-dependent stage-specific activation of the HA-

CRD-NRG1 overexpression, but can also be used to genotype mice and to visualize 

transgenic cells. To check which organs of the mice expressed the transgene 

cassette, different organs (brain, heart, liver, muscles, tailtips, spinal cord and sciatic 

nerves) were examined for eGFP fluorescence. Mice were sacrificed by cervical 

dislocation and decapitation, organs were dissected from the mice and after short 

rinsing in 1x PBS, they were examined with the Leica MZ16F fluorescent 

stereomicroscope. Images of brightfield and fluorescent light were taken and 

analyzed by FIJI software. 

 

6.5.2 Perfusion fixation of mouse tissue for histology 

To perform histology on mouse brain tissue, mice were perfusion fixed to better 

preserve the tissue for later processing. Mice were deeply anesthetize by IP injection 

of Avertin with a dose of 0.2 ml per 10 g of body weight. Once the mouse was 

anesthetized, it was fixed onto a preparation platform with drainage (ventral side up). 

Two pieces of tail were cut for later re-genotyping and the abdomen and the 

diaphragm were opened, and the rib cage was cut laterally on both sides to the top 

and above the sternum. It was then fully removed to expose the heart. A 27 gauge 

needle butterfly connected to a peristaltic pump was carefully inserted into the left 

ventricle, making sure not to pierce the septum, and the right atrium was opened by 
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a small cut to ensure the perfusion flow. The peristaltic pump was started and the 

blood was flushed out of the circulatory system with 20 ml of pre-warmed HBSS at a 

flow rate of 1 ml/min. Afterwards the mouse was perfused with 30-40 ml of ice-cold 

4% PFA fixative at a flow rate of 1 ml/min. After perfusion, fixed brains were 

dissected and placed into cold fixative for post-fixation. Post-fixation was carried out 

ON at 4 °C. Tissue for vibratome sectioning was sectioned directly after ON post 

fixation. For cryosectioning of brain tissue, post-fixed tissue was cryo protected in 

sucrose solutions (see section 6.5.4). Tissue for paraffin embedding was changed to 

1 % PFA, after post-fixation, for prolonged storage at 4 °C, or immediately proceeded 

for embedding (see section 6.5.5). 

 

6.5.3 Vibratome sectioning of tissue 

For vibratome sectioning, tissue was, after post-fixation, washed in 1x PBS and 

immediately sectioned at the vibratome. Therefore the brains were sliced coronally 

into 3 three pieces of 4 mm thickness, a PFC, a hippocampal and a cerebellar 

section. These pieces were glued onto the specimen holder of the vibratome using 

instant glue. The specimen holder was fixed onto the stage of the vibratome that was 

filled with ice cold 1x PBS. Coronal sections of 50 µm thickness were sectioned and 

collected in 24-well plates in 1x PBS. The sections were kept at 4 °C and were 

immediately proceeded with immunohistological stainings. 

 

6.5.4 Cryo protection, embedding and cryosectioning of tissue 

For cryo sectioning, mouse brains were cryo protected by incubations in a row of 

sucrose solutions with accending sucrose concentrations. First tissue was shortly 

rinsed in 1x PBS and then submersed in a 10 % (w/v), a 20 % (w/v) and finally a 30 

% (w/v) sucrose solution at 4 °C, until the tissue had sunk to the bottom of the tube in 

each solution. Brains were sectioned into three 4 mm thick coronal pieces (a PFC, 

hippocampal and cerebellar piece) using a brain slicer, and frozen on aluminum foil 

on dry ice, then wrapped in aluminum foil and stored until sectioning at -80 °C. 

Embryonic brains of Stop-Nrg1*NEX-Cre mice, that were used to determine the early 

embryonic onset of HA-Nrg1 overexpression, were, due to the tissue size, embedded 

in Shandon cryomatrix in aluminum foil molds. A layer of Shandon cryomatrix was 

filled into the labeled molds at RT and the cryo protected tissue was placed into the 

molds with the cutting surface facing to the bottom of the mold. Molds were carefully 

filled with Shandon cryomatrix and placed onto dry ice to freeze. For sectioning 

tissue was transferred from -80 °C to the cryostat (-21 °C) half an hour prior to 
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sectioning. Shandon cryomatrix-embedded embryonic tissue blocks were trimmed to 

size using razor blades. Afterwards brain pieces or cryomatrix blocks were glued 

onto a specimen holder with Shandon cryomatrix embedding medium and fixed into 

the cryostat. 14 µm to 20 µm thick sections were cut using a knife-angle of 4 °, a 

chamber temperature of -21 °C and an object temperature of -19 °C. Sections were 

either collected on positively charged ultrafrost microscope slides, dryed ON at RT in 

an exsiccator and used for „on slide“ immunohistochemistry, or collected in 1x PBS 

in multi-well plates and processed for stainings on free-floating cryo sections. 

 

6.5.5 Paraplast impregnation, embedding and sectioning of tissue 

For paraplast embedding, tissue was, after ON post-fixation, shortly rinsed in 1x PBS 

and sliced into three 4 mm thick pieces (a PFC, hippocampal and cerebellar section). 

The three pieces were given into tissue cassettes and using the paraplast 

embedding station (see embedding scheme below), dehydrated and infiltrated with 

paraplast, and then embedded into paraplast blocks, using the paraplast embedding 

centre and metall molds. After cooling down harden the fresh paraplast, blocks were 

removed from the molds and stored at RT until sectioning. 

Paraplast blocks were sectioned using a sliding microtome and the 5 µm thick 

sections were collected on ice-cold destilled water. After transfer to a 42 °C 

waterbath and straigthening, sections were mounted onto charged microscope 

slides. For parallel processing, sections of multiple genotypes were mounted per 

slide (for instance Cre and Stop-Nrg1 parental controls next to a Stop-Nrg1*Cre 

double transgenic mouse). Sections were dried at RT between each animal, and 

after the last section, slides were dried ON at 37 °C and then stored at RT or 

proceeded with fluorescent and chromogenic immunohistological stainings. 

Embedding scheme of the paraplast embedding centre: 

           Solution        Incubation time 

EtOH 50 %  1 hour  

EtOH 70 %  2 hours 

EtOH 70 %  2 hours  

EtOH 96 %  1 hour  

EtOH 96 %  1 hour  

EtOH 100 %  1 hour  

EtOH 100 %  1 hour  

Isopropanol  1 hour  

Xylol   2 hours  

Xylol   2 hours 

Paraplast  2 hours 

Paraplast  2 hours 
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6.5.6 Histological staining procedures 

6.5.6.1 Haematoxylin-Eosin (H+E) staining 

Haematoxylin-Eosin (H+E) staining is widely used as a histological staining method 

that gives information of the overall tissue structure. Haematoxylin stains basophilic 

nuclei in dark purple and Eosin stains eosinophilic cytoplasm pink.  

For the H+E staining, paraffin sections were deparaffinised by two 10 min 

incubations in Xylol and one for 10 min in Xylol/Isopropanol (1:1), followed by 

rehydratation in descending ethanol dilutions (100 %, 90 %, 70 %, and 50 %) for 5 

min each. After washing for 5 min in ddH2O, sections were stained with 0.1 % 

Haematoxylin for 5 min and washed with ddH2O. The dark purple color was 

differentiated by a short wash in HCl-Alcohol solution. To stop the differentiation 

process and properly develop the color, sections were incubated for 5 min in Scott’s 

solution. After a short rinse in ddH2O, sections were counterstained in 0.1 % Eosin 

for 3-5 min. Excess dye was washed off with ddH2O. After dehydration in an 

ascending row of ethanol dilution (50 %, 70 %, 90 %, and 100 %) by short incubation 

steps (10-30 sec, depending on the stability of the Eosin stain), sections were 

incubated once for 10 min in Xylol/Isopropanol (1:1) and twice for 10 min in Xylol, 

and finally mounted with the Xylol based mounting medium Eukitt and dried at RT. 

 

6.5.6.2 DAB immunostaining of paraffin sections 

DAB immunostaining is based on the enzymatic reaction of horseradish peroxidase 

(HRP) attached to a secondary antibody with DAB substrate, which forms a stable 

brown precipitate that can be visualized by light microscopy (Harlow and Lane, 

1988). 5 µm thick paraffin sections were incubated at 60 °C for 10 min and 

deparaffinized and dehydrated as for the H+E staining. Afterwards, sections were 

incubated for 5 min in ddH2O followed by 5 min incubation in citrate buffer. 

Meanwhile citrate buffer was heated up in a microwave. Sections were cooked for 10 

min in boiling citrate buffer at 650 W in the microwave for antigen retrieval. Eventual 

evaporation was replenished with ddH2O, to maintain the buffer molarity. After a cool 

down at RT for 20 min or longer, sections were washed for 5 min in Tris-buffer with 2 

% milk powder and then mounted with plastic cover-plates for the following steps of 

the protocol. To test if cover-plates were mounted properly and the flowrate was 

optimal, sections were washed with Tris-buffer with 2 % milk powder. Then 

endogenous peroxidases were inactivated by 5 min incubation with 100 μl of 3 % 

hydrogen peroxide followed by blocking with 100 μl of blocking buffer for 20 min at 

RT. Then 100 μl of the primary antibody in PBS/BSA were applied to the slides and 
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incubated ON at 4 °C. On the next day, sections were washed with Tris-buffer with 2 

% milk-powder, followed by incubation with 100 μl of the biotinylated secondary 

antibody (Dako LSAB2, yellow bottle solution A) for 10 min at RT. After washing in 

Tris-buffer with 2 % milk-powder, 100 μl of Steptavidine conjugated to Horseradish 

Peroxidase (Dako LSAB2, red bottle solution B) were added to the sections and 

incubated for another 10 min at RT. After washing with Tris-buffer without milk-

powder for 10 min at RT, plastic cover-plates were removed and slides were placed 

into a box for staining with 100 μl of DAB substrate solution (1 ml Dako Substrate 

buffer with two drops of DAB) for 10 min, followed by washing twice in ddH2O for 5 

min. Depending on the purpose of the staining, sections were either counterstained 

with Haematoxylin for 30 sec and then washed once in ddH2O for 5 min, or sections 

were, without counterstaining, directly proceeded with dehydration in the ascending 

alcohol row and mounting in Eukitt, as for the H+E staining. 

 

6.5.6.3 DAB immunostaining of paraffin sections using the Ventana 

staining machine 

For quantification of neuronal numbers, paraffin sections were stained 

chromogenically using the Ventana Discovery XT Staining Module for standardized, 

automated stainings, that provide higher comparability between different sections. In 

addition, the staining procedure in an oil-based medium at 37 °C also speed up the 

staining process. First, microscope slides were labeled with a barcode sticker, 

encoding staining informations. Staining was carried out using the Research IHC 

DAB Map XT protocol with the Research IHC DAB Map XT kit according to the 

manufacturer’s informations. Primary antibodies and biotin-conjugated bridging 

antibodies were titrated by hand. Primary antibodies were incubated for 60 min, 

secondary biotin-conjugated antibodies for 20 min at 37 °C. Afterwards, sections 

were collected from the machine and rinsed with soapy water in a glas cuvette, to 

remove the residual oil from the slides. After dehydration by short incubations in an 

ascending row of alcohol solutions, followed by one incubation for 10 min in 

Xylol/Isopropanol (1:1) and twice for 10 min in Xylol, sections were mounted with 

Eukitt mounting medium and dried at RT. 

 

6.5.6.4 Fluorescent immunostaining of paraffin sections 

The protocol for fluorescent immunostaining of paraffin sections is similar to the DAB 

staining protocol until the steps after antigen retrieval. After cooling down, sections 

were washed 3x for 5 min in Tris-buffer with 2 % milk-powder, and placed into a 
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humidified chamber. 150 μl of blocking buffer were pipetted onto each slide and 

slides were covered with a piece of parafilm to ensure equal distribution of the 

blocking solution, allowing application of low (as low as 100 μl) volumes to the slides. 

Blocking was carried out for 20 min at RT. After decanting the blocking buffer, 150 μl 

of primary antibody were applied, slides were again covered with parafilm and 

incubated ON at 4 °C in the humidified chamber. On the next day, slides were 

washed 3x for 5 min in Tris-buffer with 2 % milk-powder, followed by application of 

150 μl dilution of fluorescent secondary antibody (incl. DAPI) in PBS/BSA and 

covering with parafilm. Incubation was carried out for 1 hour at RT in the humidified 

chamber, followed by 3x washing in Tris-buffer without milk-powder for 5 min, 

mounting with AquaPolymount, and storage at 4 °C. 

 

6.5.6.5 Fluorescent staining of vibratome sections 

Free floating vibratome sections were stained in a 24-well plate, starting with a 30 

min permeabilization in 200 µl of 0.4 % Triton X-100 in 1x PBS at RT. Afterwards, 

solution was carefully removed with a pipette and 200 µl of blocking solution were 

applied (4 % Horse-Serum, 0.1 % Triton X-100 in 1x PBS) for 30 min at RT. Primary 

antibodies (150 µl per slide) were diluted in 1 % Horse-Serum, 0.1 % Triton X-100 in 

1x PBS and incubated ON at 4 °C. On the next day sections were washed 3x for 5 

min in 1x PBS (500 µl), before application of 150 µl of the fluorescent secondary 

antibodies and Dapi (1 mg/ml), diluted in 1.5 % Horse-Serum in 1x PBS, and 

incubation for 2 hours at RT. From this step on slides had to be protected from light. 

After three more washing steps with 1x PBS, sections were carefully transferred with 

a soft brush to a deep petridish filled with tap water and pulled onto charged 

microscope slides. After a short first drying, sections were mounted with 

AquaPolymount and stored at 4 °C. 

 

6.5.6.6 Fluorescent staining of cryo sections 

Free floating cryo sections were stained, using the similar protocol as for free floating 

vibratome sections. Staining of slide-mounted cryo sections, was carried out on lying 

slides in a humidified box. Shandon cryomatrix was washed off by 10 min incubation 

in 1x PBS at RT in a cuvette, prior to permeabilization and blocking. Slides were 

placed into a humidified chamber and 200 µl of 4 % Horse-Serum, 0.1 % Triton X-

100 in 1x PBS were applied onto the slides for combined permeabilization and 

blocking for 30 min at RT. Afterwards 150 µl of the primary antibodies (diluted in 1 % 

Horse-Serum, 0.1 % Triton X-100 in 1x PBS) were applied and, after covering with 
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parafilm, incubation was carried out ON at 4 °C. On the next day the staining was 

proceeded with three washing steps of 10 min in 1x PBS at RT in a cuvette, followed 

by application of 150 µl of the secondary antibodies and Dapi diluted in 1.5 % Horse-

Serum in 1x PBS, covering with parafilm, and incubation for two hours at RT in the 

humidified chamber. Afterwards, slides were washed 3x in 1x PBS in a cuvette, 

protected from light, then mounted in AquaPolymount and stored at 4 °C. 

 

6.5.6.7 Detection of β-galactosidase in tissue sections (X-Gal staining) 

The X-Gal staining method is based on the bacterial enzyme β-galactosidase’s (β-

gal) catalytic cleavage β-galactosides into monosaccharides. The enzyme has a 

broad substrate specificity and can thus also be used to cleave organic compounds 

such as 5-bromo4-chloro-3-indolyl-β-D-galactoside (X-Gal), resulting in a colorful 

indigo-colored precipitate (5-bromo-4-chloro-3-hydroxyindole) under oxidizing buffer 

conditions. Placed under the appropriate regulatory elements, the enzyme can 

furthermore be expressed in mammalian cells and is usually well tolerated. In 

transgenic mice this property of the enzyme allows the use of β-gal as a reporter to 

detect transgene or promoter activity of endogenous genes in ‘knock-in’ approaches 

(Goring et al., 1987; Sanes, 1994). 

To visualize β-gal activity in transgenic reporter mice, 50 μm vibratome brain sections 

were incubated in 'β-gal staining buffer' for 10 min to 24 hours at 37 °C in the dark. 

Sections were washed 3x for 10 min in 1x PBS at RT, to stop the X-Gal reaction. 

Sections were mounted onto charged microscope slides, shortly dried, then mounted 

with AquaPolymount and stored at 4 °C. 

 

6.5.7 Imaging and image analysis 

6.5.7.1 Cell counting of chromogenic stainings 

To quantify neuron numbers in the cortex and hippocampus of transgenic mice, 5 µm 

thick coronal paraffin sections (bregma -1.7) were stained chromogenically (see 

section 6.5.6.2-3) for neuronal markers and then imaged as tiles overviews at 10x 

magnification using a Zeiss Imager.Z1 microscope. Cortical and hippocampal cell 

numbers were blindly counted using the cell counter plugin for FIJI software 

(http://fiji.sc/Cell_Counter). Counted cell numbers were expressed as cell densities 

(cells per area counted (mm2)). Cell numbers of both hemispheres were averaged 

and the data was analyzed using Excel and GraphPad Prism software. 
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6.5.7.2 Quantification of GFAP+ and IBA1+ areas in chromogenic 

stainings 

To determine the GFAP+ or IBA1+ area in chromogenically stained coronal brain 

sections of transgenic mice, a semi-automatic analysis, using a plug-in for the FIJI 

software (available online at http://www1.em.mpg.de/gfap), was conducted. Briefly, 

10x overview pictures, acquired with the Zeiss Imager.Z1 microscope, were blindly 

loaded into the software. Regions of interest (cortex, hippocampal grey matter, 

fimbria and the corpus callosum) were marked in both hemispheres and the software 

analyzed the DAB-positive area over the total area quantified. Area fractions of both 

hemispheres were averaged and the data was analyzed using Excel and GraphPad 

Prism software. 

 

6.5.7.3 Two-Photon laser scanning microscopy 

For 2P-LSM, transgenic mice of 6-8 weeks of age were anesthetized using a gas 

mixture of O2:N2O (1:1) loaded with 5 % isoflurane in a closed box (flow rate: 1000 

ml/min). After initial sedation, anesthesia was maintained by a mask, on a heated 

plate and reduced flow rate (N2O: 100-200 ml/min; O2: 200-300 ml/min; 1.5-2 % 

isoflurane). The respiration rate was kept below 2 per second by adjusting the 

isoflurane dosage and the body temperature was kept constant (36-38 °C) 

throughout the experiment. The skull was attached to a custom-made ring using 

cement to reduce respiratory-induced movements. A cranial window close to the 

sagittal suture through the parietal bone was opened using a small dentist drill. The 

exposed cortex was covered by a glass coverslip.  

With a custom-made 2P-LSM equipped with an fs-pulsed titanium-sapphire laser 

(Chameleon Ultra II, Coherent, Glasgow, UK) and a long-distance 203/1.0 NA water 

immersion objective (Zeiss, Jena, Germany), in vivo imaging was performed. For 

excitation, the laser was set at 925 ± 5 nm. The fluorescence signal of PV-GFP+ 

interneurons was collected by a photomultiplier tube (Hamamatsu, Japan) through a 

510 ± 42 nm band-pass filter (Semrock). Uniformly spaced (0.8 µm) planes of 500 x 

500 µm2 regions of the cerebral cortex were recorded and processed to obtain z-

stacks of images (512 x 512 or 1024 x 1024 pixels in size). Image processing and 3D 

cell counting was performed using ImageJ (NIH; http://rsbweb.nih.gov/ij). For 3D 

visualization of image stacks as volumes, Java-based ImageJ 3D viewer plugin 

developed by Benjamin Schmid (Biozentrum) was used. 

 

 

http://www1.em.mpg.de/gfap
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6.5.7.4 Data analysis and statistics 

Data organization, processing and analysis was performed using Microsoft Excel for 

Mac 2008 software. Statistical analyses were performed using GraphPad Prism 

software. Quantified values were grouped by animals and genotypes and averages 

with standard deviations (SD) and SEM (Standard error of the mean) were 

calculated. Statistical significance was analyzed with GraphPad Prism software using 

Mann-Whitney U-test and One-way ANOVA with Bonferroni post-test (for multiple 

group comparisons). 

 

 

6.6 Behavioral experiments 

Mice were brought to the behavioral unit at least one week before the experiments, 

to allow them to adapt to the new environment. Mice were kept group housed with 

their littermates, with feed and water ad libitum, air ventilation and under a constant 

12 hour light-dark-cycle. Cage maintenance was done before and after the 

experimental phase, to reduce stress and handling during this phase. Animals were 

weighted before and after the experimental phase. Behavioral experiments were 

carried out during the light phase, with mice labeled only with default numbers to 

ensure blinding of the experimentator (blind to genotype). Animals were decoded and 

sorted into their respective groups only at the end of the study. Data was analyzed 

with Microsoft Excel for Mac 2008 and GraphPad Prism software. The majority of 

experiments performed in this study were performed according to standard protocols 

(Crawley, 2007). Unless stated otherwise, behavioral test apparatuses of TSE 

Systems (Bad Homburg) were used. Test chambers and apparatuses were cleaned 

with 70 % Ethanol p.A. prior to the experiment and between each trial, to minimize 

olfactory cues and ensure equal conditions for every mouse. 

 

6.6.1 Open field test 

The open field test is a widely used test to monitor spontanious locomotoric activity 

and anxiety in rodents (Hall, 1934; Broadhurst, 1961). Animals were allowed to 

explore an open field arena (size: 45 x 45 x 55 cm), with transparent walls and grey 

PVC floor (Fig. 35), for 10 min with automatic tracking by an x-y-z infrared 

observation system. Data was recorded using ActiMot software of TSE Systems. The 

following parameters were recorded: distance travelled in m, time spend in the center 

(70 % of the area) or the periphery (30 % of the area) of the arena, travel speed, time 

active, corner visits and rearings. 
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6.6.2 Hole board test 

To analyze the curiosity of mice, the hole board test (Bradley et al., 1968) was used. 

Holes in the floor of the experimental chambre triggered exploratory behavior, e.g. 

nos poking. The test was performed in the same apparatus as the open field test, 

only a second floor with 16 holes (diameter: 2 cm) was inserted into the arena (Fig. 

35). In this case, the x-y-z detectors of the system monitored nose pokes. Again the 

mice had 10 min to explore the arena. The system automatically tracked the distance 

travelled, number of nose pokes, and exploration time. 

 

 

Fig. 35: TSE Systems open field and hole board system. (A) Arena with infrared detector 
system. (B) Arena in open field test mode and (C) with hole board inserts. (Pictures in B and 
C were kindly provided by M. Brzózka). 

 

6.6.3 Hot plate test 

The hot plate test (O’Callaghan and Holtzman, 1975) was used to monitor the pain 

sensitivity of mice. Similar pain sensitivity in transgenic and control mice is crucial for 

certain learning tests, such as the fear conditioning test. 

Pain sensitivity was analyzed by placing mice onto a 55 °C hot plate surrounded by a 

plexiglass cylinder (Fig. 36) and measuring the time until they started licking their 

hindpaws (‚latency to lick the hindpaws (s)’). As soon as mice started to show this 

reaction, they were removed from the hot plate and placed onto a cool metal surface 

to cool down and were then transferred back into their homecages. Animals that 

managed to jump out of the cylinder were excluded from the analysis. 
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Fig. 36: Hot plate test setup. 55 °C hot plate and a plexiglass cylinder to prevent mice from 
escaping. 

 

6.6.4 Light-Dark preference test 

The conflict between the drive to explore a novel environment and the aversion 

toward a light room was used for the light-dark preference test (Crawley and 

Goodwin, 1980). The in-house build experimental chamber consisted of two parts, a 

light compartment (LC) that was surrounded by transparent walls and a dark 

compartment (DC), with dark walls (Fig. 37). Both compartments were connected by 

a small open door. The test started by placing a mouse into the light compartment, 

facing towards the outside wall. The time until the mouse first entered the dark 

compartment was stopped (‚latency to enter the dark compartment’). From this point 

on, the time spend in either one of the compartments and the number of crossings 

was measured over a period of 5 min. 

 

 

Fig. 37: Light-Dark preference test setup. Light (LC) and dark compartment (DC) are 
connected by a small door. 
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6.6.5 Y-maze spontaneous alternation test 

The Y-maze spontaneous alternation test was used to measure working memory 

deficits in transgenic mice. Because of the inate drive of a rodent to investigate a 

new enviroment, mice will explore a new arm of the Y-maze rather than returning to 

one that was previously visited. Thus, over the course of multiple arm entries, normal 

mice show a tendency to more likely enter a less recently visited arm. Many parts of 

the brain, including the hippocampus, septum, basal forebrain, and prefrontal cortex, 

are involved in this task.  

The test apparatus consisted of a three armed Y-shaped maze (at an angle of 120°) 

(Fig. 38). A mouse was introduced into the starting arm and was allowed to freely 

explore the maze for 10 min. The experiment was recorded with an overhead video 

camera and the number of arm entries and their order was scored to calculate the 

percentage of alternation. An entry to an arm was counted when all four limbs were 

within the arm. 

 

 

Fig. 38: Y-maze spontaneous alternation test setup. Mize were introduced into the starting 
arm and were allowed to freely explore the maze for 10 min with overhead video recording. 

 

6.6.6 Tail suspension test 

The tail suspension test is used assess moot levels and motivational behavior in 

rodents. Mice were hung by the tail for 6 min (Fig. 39) and the time in which they 

actively tried to get free or hung passively was quantified. Mice with high motivation 

were expected to fight longer to escape the uncomfortable situation. Mice, which 

managed to climb up their tail were excluded from the analysis. 
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Fig. 39: Tail suspension test. Mice are hung by the tail for 6 min to access motivational 
states. 

 

6.6.7 Prepulse inhibition test 

Prepulse inhibition is phenomenon in which under normal conditions a weaker pre-

stimulus inhibits the reaction to a subsequent strong startling stimulus. The reduction 

of the amplitude of startle reflects the ability of the nervous system to temporarily 

adapt to a strong sensory stimulus when a preceeding weaker signal is given to warn 

the organism. Deficits in prepulse inhibition manifest in the inability to filter out the 

unnecessary information, have been linked to abnormalities of sensorimotor gating 

and are well described in schizophrenia (Geyer and Braff, 1982; Braff et al., 1992). 

The startle response was measured using San Diego Instruments’ SR-Lab startle 

response system. Mice were placed into a tubular enclosure on a detector platform in 

the test chamber, recording vertical movements of the enclosure (Fig. 40). The 

startle reaction to an acoustic stimulus (body muscles contraction, jumping) evoking 

a movement of the platform and a transient force, was recorded with a computer 

during a time window of 100 ms (beginning with the onset of the acoustic stimulus) 

and stored for further evaluation. Since restraining is stressful for mice and could 

influence the read-out, animals were habituated with similar enclosures for at least 5 

days prior to the experiment. With two experimental setups, always two mice were 

recorded at a time. It was ensured that genotypes always altered between the 

recorded pairs and setups. The protocol used was based on the protocol published in 

Brzózka et al. (2010). Briefly, the test started with an initial two minutes habituation 

phase to 65 dB background white noise (continuous throughout the session), 

followed by baseline recording for 1 min. Startle reflexes were evoked by acoustic 

stimuli delivered from a loudspeaker. After the baseline recordings, six pulse-alone 

trials using startle stimuli of 120 dB intensity and 40 ms duration were applied to 
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decrease influence of within-session habituation and scale down the initial startle 

response to a stable plateau. For tests of prepulse inhibition, the 120 dB startle pulse 

of 40 ms duration was applied either alone or preceeded by a non-startling prepulse 

stimulus of 70, 75 or 80 dB intensity and 20 ms duration. An interval of 100 ms with 

background white noise was employed between each prepulse and pulse stimulus. 

The trials were presented in a pseudorandom order with inter-trial intervals ranging 

from 8 to 22 s. The amplitude of the startle response (expressed in arbitrary units, 

AUs) was defined as the difference between the maximum force detected during a 

recording window and the force measured immediately before the stimulus onset. 

Maximum amplitudes were averaged for each individual animal, separately for all 

types of trials (i.e. stimulus alone or stimulus preceded by a prepulse). Prepulse 

inhibition (expressed in %) was calculated as the percentage of the startle response 

using the following formula: 

 

Prepulse inhibition (%)  =  100   –   (startle amplitude after prepulse and pulse)  

            startle amplitude after pulse only) × 100 

 

 

Fig. 40: San Diego Instruments’ SR-Lab startle response system. Mice were placed into 
plastic restrainers on a detector platform recording vertical movements of the enclosure. 

 

6.6.8 Fear conditioning 

In this study two cohorts of conditional NRG1 transgenic mice were tested 

individually in the fear conditioning paradigm. In between these two tests a new fear 

conditioning setup was aquired, hence the Stop-Nrg1*CKII-Cre cohort was tested in 
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the old TSE Systems setup, while the Stop-Nrg1*NEX-Cre cohort was tested in the 

new Ugo Basile Series 46000 Fear Conditioning System. The basic principle of the 

experiment was similar for both setups, the differences between the two will be 

explained as follows. 

In this experiment the freezing behavior, defined as a lack of movement (excluding 

respiratory movements of the chest), is considered as a measure of memory. The 

experiment consists of three experimental trials, conducted over the course of three 

consecutive days. On the first day the mice were conditioned in the conditioning 

chamber. In the TSE Sytems setup the conditioning took place in a plexiglas 

conditioning chamber (36 x 20 x 20 cm) with a loudspeaker, a lamp (12 V) and a 

removable shock grid floor made of stainless rods (4 mm diameter, spaced 6 mm 

apart). The grid was connected to the shock-scrambler unit applying an electrical 

shock of defined intensity and duration. The system had an overhead video camera 

connected to a monitor (Fig. 41C). The Ugo Basile setup, had a square conditioning 

box with a 15 x 15 cm grid floor. In contrast to the TSE Systems setup, the walls of 

the chamber were covered with black and white striped pannels and the chamber 

was placed in a soundproof box with an infrared overhead camera (Fig. 41A). In the 

TSE System only one mouse was tested at a time, while in the Ugo Basile setup, two 

mice were tested at a time, in two setups. Here a white noise tone was played during 

the experiment. 

The training for the contextual and cued fear memory took place at the same time. A 

mouse was placed into the conditioning box and its behavior (freezing rate) was 

observed as an initial baseline phase of 2 min. In the TSE System setup, freezing 

was scored every 4 s during 2 min (context baseline) by the blind to genotype 

experimenter, while in the Ugo Basile setup the freezing events and durations were 

scored by the software, in both experiments the whole session was recorded by a 

camera for later rescoring. After the 2 min pre-exposure time (= context baseline) a 

tone was played for 30 sec (conditioned stimulus (CS); 10 kHz, 75 dB). Directly after 

the tone a mild electrical foot shock was applied (0.4 mA, 2 s duration). After a 30 

sec pause the tone and shock were repeated with same intensity and duration. After 

the second foot shock each mouse was allowed to stay in the conditioning box for 30 

sec to avoid the association of aversive stimuli with the experimenter. Afterwards 

animals were placed back into their home cages. The conditioning box was cleaned 

with 70 % ethanol p.A. between trials. On the second day, contextual fear memory 

was assessed by scoring the freezing response for 2 min in the conditioning box in 

the absence of tone and shock. Another 24 h later mice were placed into a new 

(‘non-context’) box. In the TSE Systems experiment this box was a triangular grey 
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plastic chamber (36 x 20 x 20 x 20 cm) that was placed onto a different table, while 

the conditioning chamber was covered by white sheets (Fig. 41D). In the Ugo Basile 

experiment a transparent plastic cylinder (36 x 20 cm) was placed onto a grey plastic 

floor into the soundproof box (Fig. 41B). Baseline freezing behavior was scored for 2 

min, followed by 2 min of the cue tone (CS) and scoring of freezing response as a 

measure of cued fear memory. The ‘cue’ box was cleaned with water between trials 

to avoid olfactory cues resembling conditioning. In both cases the whole experiment 

was video recorded for second rescoring. 

 

 

Fig. 41: Ugo Basile Series 46000 and TSE Systems fear conditioning setups. The Ugo 
Basile system used a conditioning and contextual fear memory box with grid and striped walls 
(A) and a round plastic cylinder on a grey floor for cued fear memory (B) inside a soundproof 
test apparatus. In the TSE Systems setup a bigger gridded box was used for conditioning and 
assessment of contextual fear memory (C), while the cued fear memory was measured in a 
triangular box on a separat table (D). 
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