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Abstract
Weconsider a spin-1/2 fermionic ladderwith spin–orbit coupling and a perpendicularmagneticfield,
which shares important similarities with topological superconductingwires.We fully characterize the
symmetry-protected topological phase of this ladder through the identification of fractionalized edge
modes and non-trivial spinwinding numbers.We propose an experimental scheme to engineer such a
ladder systemwith cold atoms in optical lattices, andwe present two protocols that can be used to
extract the topological signatures fromdensity andmomentum-distributionmeasurements.We then
consider the presence of interactions and discuss the effects of a contact on-site repulsion on the
topological phase.Wefind that such interactions could enhance the extension of the topological phase
in certain parameters regimes.

1. Introduction

The experimental engineering of topological phases ofmatter in ultracold atomic gases [1–6] lays the
foundations for a deeper understanding of phase transitions that transcend the Landau paradigmof symmetry
breaking. In these experiments,models displaying non-local forms of order are realized in highly controllable
environments, where the parameters driving the system in and out the topological phases can be tunedwithwide
freedom, andwhere observables complementary to those of a typical solid-state experiment can bemeasured.
These experiments have already revealed interesting properties associatedwith two-dimensional (2D)
topological Bloch bands: the anomalous (Hall-like) velocity, whichwas detected in response to an external force
[3, 4], the topologically invariant Chern number [4], and chiral edge currents [2, 5, 6].

Following these advances, an important objective would be to probe the edgemodes of one-dimensional
(1D) topological systems, which typically appear at zero energy and exhibit charge fractionalization. In
particular, identifying an observable that unambiguously signals their presence in experiments constitutes a
remarkable challenge. Detecting the properties of zero-energy edgemodeswould strongly complement the Zak-
phasemeasurement, recently demonstratedwith bosonic atoms in a 1Doptical superlattice [1].

Several theoretical efforts have been devoted to the design of realistic platforms hosting topological
superconducting phases with ultracold fermions [7–14], including number-conserving setups [13, 15–20].
Here, we envision an even simpler scenario, based on the fact that similar topological edge physics can be
accessedwithout pairingmechanisms. Indeed, it is a generally overlooked fact that pairing interactions are not
strictly necessary tomimic topological superconductors (TSCs). A fundamental example is offered by the
Su–Schrieffer–Heeger (SSH)model [21], which presents particle–hole symmetry and belongs to a non-trivial
topological class of chiral Hamiltonians, namely the class BDI of the Altland–Zirnbauer classification [22–26].
Similar 1D fermionicmodels without superconducting interactions display topologically protected edgemodes
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localized at their boundary, which areDirac-like [27] and feature remarkable properties, such as charge
fractionalization [28].

The goal of this article is twofold. First, we propose a route tomimic the physics of TSCs using state-of-the-
art ultracold fermionic experiments.We exploit a simple idea: employing a two-leg ladder to double the
fermionic species, in such away that the legs are respectively associatedwith effective holes and particles [29, 30],
see figure 1. This geometry is indeedwell-suited for experiments on ultracold gases, as it has already been
realized for atoms trapped in optical lattices, either in physical ladder geometries [2], or exploiting internal
degrees of freedom as an artificial dimension [5, 6, 31–33].We characterize the topological properties of this
model, both in the absence and presence of interactions,finding several affinities with previous studies of 1D
topological interacting fermionic systems [33–40].We argue that such systems constitute a useful playground,
not only to examine the appearance of symmetry-protected edgemodes, but also to study the role of contact
interactions, whichmay be tuned to drive transitions between trivial and topological phases. This analysis of the
Hubbard repulsion extends to spin 1/2 fermions previous studies about the effect of interaction in
generalizations of the SSHmodel [41, 42].

As a second objective, we analyze in detail how topological signaturesmight be directly observed in such
interacting systems. Beside the detection of fractionalized edge-modes, we also focus on thewinding number
associatedwith the expectation value of the spin, which provides a good detection tool for topological phases
also in the presence of interactions. In this way, we extend to a 1Dmodel in the topological class BDI the
techniques developed to reveal the topology of cold-atom realizations of the 2DHaldanemodel [43, 44] and
other 2D topological systems [45–48]. For both these observables, we examine the effect of a trapping potential,
which sets soft boundaries to the system (usually considered to alter the observation of edge physics). Our
schemes are based on the direct observation of the atomic cloud or on time-of-flightmeasurements: in both
cases they are extremely robust to such confinement.

This article is organized as follows. In section 2we introduce themodel and provide an intuitive description
of its symmetries. In section 3we focus on the non-interactingmodel at half-filling and thoroughly characterize
the topological insulator (TI) that is reached for a certain range of parameters. Furthermore,methods to detect
unambiguous signatures of the topological properties are proposed, based on the density profile and the
momentum-distribution of the gas. In section 4we study the role of interactions and characterize the related
interacting TI. In section 5we describe a possible physical realization of themodel based on laser-assisted
tunnelings and in section 6we present our conclusions. Finally appendix presents a detailed analysis of the non-
interactingmodel, its order parameter and spinwinding number.

2. Themodel

Weconsider a spinful fermionic ladder in the presence of external gauge potentials as depicted infigure 1.
Here the two legs of the ladder are associatedwith a pseudo-spin zt and the lattice sites along themain axis
(x direction) are labelled by r L1, , .= ¼ We introduce the four-component fermionic operator a ,rˆ defined on

Figure 1. Schematic representation of the non-interactingmodel. The system is engineered in such away that the two chains in the
ladder present opposite kinetic energies. This is obtained through the introduction of aπ flux in each ladder plaquette. Here, the
pseudo-spin τ refers to the two legs of the ladder, while the spinσ is associatedwith the internal states (‘spin’) of the atoms, see
equation (1).
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the lattice site r, which acts on both the pseudo-spin zt and the spin related to the two internal states of the
fermionσz (two commuting sets of Paulimatrices ta andσα are used to describe these degrees of freedom). The
Hamiltonian describing the ladder system is taken to be of the form ( 1 = )

H t a a a J ae h.c. , 1
r

r z r r x x z r0
i

1 0
B

z2{ }( ) ( )ˆ ˆ ˆ ˆ ˆ ( )† †å t s t mt m= + + W + + +s
+

and is schematically represented infigure 1. Thefirst term in equation (1) describes the intra-chain tunneling
along the x direction, with hopping amplitude t and spin-dependent Peierls phase-factor Bexp i 2 ,z( )s which
represents a ‘spin–orbit coupling’ analogous to those already realized in fermionic [5] and bosonic [6] chains.
Note that, because of the zt factor, the two chains have opposite kinetic energy; consequently, themotion
around each plaquette of the ladder acquires aπ-phase independently of theσz-spin component. The second
termdescribes an on-site spin-flip termwith amplitudeΩ, the inter-chain tunnelingwith amplitude J, the
potential difference between the two chainsμ, and the overall chemical potentialμ0.

In the followingwewill elaborate on the fact that this system effectively reproduces some of the physical
features of TSCswithout recurring to any physical pairingmechanism. This analogy is based on the idea that
atoms in thefirst chain ( 1zt = + ) can be identifiedwith conduction electrons of a generic 1D superconducting
model, a c r ,r; 1 electz

ˆ ˆ ( )† †ºt =+ whereas those in the second chain ( 1zt = - ) can be identifiedwith its holes,
a c r .r; 1 holez
ˆ ˆ ( )† †ºt =- In this picture any tunneling fromone chain to the other constitutes an effective pairing

interaction, i.e. a a c c c c ,r r; 1 ; 1 elect hole elect electz z
ˆ ˆ ˆ ˆ ˆ ˆ† † † †º »t t=+ =- where the last equality is justified by the Bogoliubov–

DeGennes treatment of the superconductor.Within this parallelismwe interpret the four-bandHamiltonian
(1) as a Bogoliubov–deGennesHamiltonian in the superconducting picture. Specifically, the particle–hole
symmetry, which plays a key role in the physics of TSCs, is here represented by a swap of the two chains,
C ,y yt s= which have opposite kinetic energy in the sameway as particles and holes do. Suchmapping, though,
must be seen only as an analogy, since the number of degrees of freedoms in the system (1) is doubledwith
respect to the superconducting wire and this has important physical consequences, as will be discussed in the
following. Finally, note thatHamiltonian (1) is unitarily related to those considered in the four-wire setup of
[29, 30] andmay have a relevance also for the study of electronic gases.

Themodel in equation (1) can be realized using cold atoms trapped in an optical lattice.We present here an
overview of the experimental proposal and refer the interested reader to section 5 for a detailed analysis of the
implementation of themodel. Let’s start considering a 2D setup. The realization of a spin-dependent intra-chain
tunneling, described by the first term in equation (1), is particularly challenging, as it requires a subtle control
over the hopping amplitudes. This effect could be engineered by exploiting the laser-induced-tunneling
methods implemented in recent experiments [2, 4, 49, 50]. Specifically, we propose to achieve this task by
combining a spin-dependent staggered potential with large energy offsetΔ between neighboring sites,
inhibiting the bare hopping along the x direction, togetherwith an onsite energymodulation set at the resonant
frequency .w = D The spin-dependent staggered potential is chosen to be opposite for the two internal states,
i.e.V r 1 2 ,r

zstag ( ) ( ) ( )s= - D which can be realized by considering an appropriate anti-magic wave-length [51];
this choice ismotivated by the fact that the resonantmodulationwill then generate effective tunnelingmatrix
elements of the desired form t r t rexp i ,zeff ( ) [ ( ) ]f s= see [49, 52, 53]. In order tomake the Peierls phase-
factors constant over thewhole lattice, i.e. r B 2,( )f = wepropose tomodulate the lattice with two pairs of
lasers; such a configuration allows to address individual links independently [4], hence realizing the desired
Peierls phase factors on all links, (see section 5). Using additionalfields resonant with the energy difference
between the two spin-states a tunable onsite spin-flip termΩσx can be realized. Finally, the two-leg ladder can be
isolated using an additional superlattice, or a light-intensitymask [54, 55].

3. Topological phases in the non-interacting system

Hamiltonian (1) is characterized by four energy bands; as shown infigure 2, by varying thefilling of the ladder,
and thus the chemical potentialμ0, the system is driven through a series ofmetallic and insulating quantum
phases (we consider in this article only the case of zero temperature). For halffilling, corresponding to the case
whereμ0= 0 and the particle density is N L 2r º = (N is the number of fermions), the single-particle
Hamiltonian shows both the particle–hole symmetry we sought for, defined by the operator C y yt s= and an
additional time-reversal symmetry,T ,xs= which bring the system into the topological class BDI (see appendix
formore details). This class includes, for example, the SSHmodel and, according to the periodic table of TIs and
superconductors [23, 24], itmay present topological phases with zero-energymodes. Specifically, ourmodel
displays a non-trivial topological insulating phase for ,c c,1 ,2W < W < W where c i,W are defined, for B ,p< as:

J B J B2 cos 2 ; 2 cos 2 . 2c c,1
2 2 2

,2
2 2 2( ( )) ( ( )) ( )m mW º + - W º + +
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Wefind that the topological phase is surrounded by two topologically trivial phases. Forμ0= 0, trivial and
topological phases are distinguished by a topological order parameter which takes the respective values of 1+
and 1- (see the appendix and in particular equation (A.7) for the definitionwhich is based on the technique
developed in [56]).

3.1. Fractionalized edgemodes
In the topological phase, two zero-energy fermionicmodes appear in ladders with open boundary conditions, as
showed infigure 2. Thesemodes are exponentially localized at the ends of the system and have important
consequences on the density distribution characterizing the topological insulating phasewhenN= 2L+ 1
fermions are introduced in the systemwith hard-wall boundary conditions, as displayed infigure 3.We observe
that suchmodes are described byDirac operators and they are notMajoranamodes as it would be expected in
the superconducting analogwire. Thefigure shows that the density in the bulk of the system indeed corresponds
to the expected value ρ= 2.Moreover, analogously to the SSHmodel, a charge 1/2 is exponentially localized at
each boundary. This important signature of charge fractionalization can be suitably identified through the

Figure 2.Phase diagramofHamiltonian (1). (Left): energy of the eigenmodes ofHamiltonian (1) for periodic boundary conditions
(red lower triangles) and open boundary conditions (blue upper triangles) for the parameters B 2,p= J/t= 1.0,Ω/t= 1.75,
μ/t= 0.5,μ0/t= 0; the system size is L= 200. The lower-right inset zooms into the zero-energy region and shows the existence of two
zero-energymodes for the open system. The upper-left inset shows the squaredmodulus of the wavefunctions of these twomodes,
which are localized at the edges. (Right): the phase diagram as a function ofμ0/t is derived from the previous spectrum: it alternates
between normal insulating phases (NI) andmetallic ones (M). For halffilling, thus at density ρ= 2 ( 00m = ), the system is in the
topological regime (BDI).

Figure 3.Charge fractionalization and spinwinding number in a systemwith hard-walls boundary conditions. (Left): density profile
of the systemwithN= 2L+ 1 particles. The simulation parameters are the same as in figure 2. The inset displays the expectation value
of n .jˆ* (Right): top andmiddle panels, kˆ ( )Sá ñ for a systemwith 2L fermions andwith L fermions; bottompanel, S k 22 ( ) for L
fermions artificially loaded into the second band, see equation (6). The value can be extracted only in the latter case.
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expectation value of the operator n n 2j m

j
m1

ˆ ( ˆ )* å= -=
where n a a ,m m mˆ ˆ ˆ†= which detects the excess density

with respect to the bulk value ρ= 2. As illustrated in the insets offigure 3, an overall excess density of 1/2 is
localizedwithin a few sites from the left and right edges of the sample.

Such a signature can be observed even in the presence of a harmonic confinement, described by the following
contribution to theHamiltonian: H w a a ,

r r r rtr
ˆ ˆ ˆ†å= with w w r L 2 .r

2¯ ( )= - The effect of an external potential

can be understood in a Thomas–Fermi approach as a space-dependent chemical potential r .0 ( )m Due to the four
energy bands, the systemhas three insulating phases for intermediate fillings, and, in the presence of a harmonic
trap, this yields a typical wedding-cake structure with integer density plateaus (see figure 4,first column).
Remarkably, even in the presence of the trapping it is possible to identify the fractionalizedmodes, as we see
next. These zero-energymodes extend in the intermediatemetallic region between one trivial plateau 1, 3( )r =
and the topological one 2 ,( )r = up to exponential corrections.

Infigure 4, second column, we show the expectation value of n n 1 ,j m

j
L m0 2ˆ ( ˆ )** å= -= + which is

particularly suited for the detection of fractionalized edgemodes in cases where the density in the center of the
trap is ρ= 2.Moving from the center of the trap to the next plateau (ρ= 1), this operatormeasures the excess
density with respect to the ρ= 1 value. One can obtain either an integer (no fractionalmodes) or an half-integer
value (presence of one fractionalmode). This is an unambiguous signature of the non-trivial topological phase
(third row): indeed, in this case, the quantity njˆ**á ñbecomes half-integer for values of j corresponding to the

distance of the ρ= 1 plateau from the center of the trap.
As a final remark, let us stress that the problemof detecting fractionalized edgemodes through a density

measurement wasfirst addressed in [57, 58], where this detectionmethod relies on the opticalmeasurement of
reflected light. The recent experimental advances, however, allow for the challengingmethod presented above,
since the feasibility of a single-atomdetection for ultracold fermions in optical lattices has indeed been
demonstrated [59–61]. In particular, a combination of laser cooling and fluorescence detection enables an
unambiguousmeasurement of the occupancy of single sites for both 40K [59, 60] and 6Li [61] gases. This is of
particular importance for the detection scheme thatwe are proposing, because it could suffer from the
experimental inability tofix the total number of atomswhich are used in themany experimental realizations
necessary to reconstruct the signal n .jˆá ñ The novel single-atommicroscopes will also allow a post-selection based
on the global number of particles of the system, necessary to obtain an accuratemeasurement.

Figure 4.Charge fractionalization andwinding number in a systemwith harmonic confinement for topological and non-topological
phases.We consider a trapwith w t 0.03¯ = forB=π /2, J/t= 1 andμ/t= 0.5, for whichΩc,1/t ; 1.35 and t 2.16.c,2W  Different
rows refer to different values of t ,W fromup to down, 0.85, 1.1, 1.75, 2.5. The number of particles is chosen to have a density ρ= 2 in
the center of the trap. The first column displays the density of the system n .jˆá ñ The second column displays n .jˆ**á ñ The third column
shows thewinding number relative to the second band S k2 ( ) computed for a systemwith trap (black) andwithout a trap (blue).
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3.2. Spinwinding number
Another interesting signature of the topological phase is offered by the expectation value of the spin operator:

k a a
1

2
, 3k k0( )ˆ ( ) ˆ ˆ ( )† s tS = Ä

where akˆ is the four-component annihilation operator inmomentum space. This approach is inspired by the
techniques presented for 2D systems in [43–47] and for ladders in [62], where it was shown that the expectation
value of the spin kˆ ( )Sá ñprovides a good observable to identify the topological invariant (winding number) of
certain TIs. In the following, we generalize this procedure to our quasi-1D laddermodel and show that also here
the topological invariant , which clearly identifies the non-trivial topological regime, can be extracted from

k .ˆ ( )Sá ñ This is thus another example of the interesting concept that a time-of-flightmeasurement can detect
topological order.

TheHamiltonian (1) can bewritten in a real form thanks to its symmetries; therefore k 0y
ˆ ( )áS ñ = for each

eigenstate of the system and kˆ ( )Sá ñalways lies in the x zˆ ˆ- plane. The ‘spinwinding number’  is defined as

the number of times the vector kˆ ( )Sá ñencircles the origin for k going from0 to 2p (the lattice spacing is set to 1).
Let us denote with S k 22 ( ) the expectation value of the spin operator (3) for a state of non-interacting fermions
filling completely and solely the second energy band. Remarkably, the parity of ,2 which is thewinding number
of S k ,2 ( ) coincides with the topological order parameter of themodel:

1 42( ) ( ) = -

(see appendix for a demonstration and for details on the analytical calculation of this topological index for this
specificmodel). Equation (4) is analogous to those derived for several other 2Dmodels [43–47]: it relates a
topological invariant to a quantity, ,2 to be extracted via time-of-flight imaging. A similar behaviorwas
discussed in [62] for a two-band generalizations of the SSHmodel. In our case, we stress that the second band of
themodel is the lowest-energy bandwith non-trivial topological order; this is also related to the fact that the
fractionalized edgemodes appear in the second bulk gap.

Wenowdescribe how tomeasure ,2 for realistic systems, even in the presence of a harmonic trap. Themain
problem is that the spinwinding number has to be probed for the second band of theHamiltonian only: in a
physical realization of the topological phase, both the first and the second band arefilled, and the acquired signal
includes information of both. The right columnoffigure 3 shows the expectation value of the spin kˆ ( )Sá ñ
obtainedwhen the systemwith hard-wall boundaries is filledwith 2L fermions (top panel) andwith only L
fermions (middle panel). Both signals are not particularly interesting. If we consider the artificial situationwhere
atoms populate the second band only (bottompanel), the spin expectation value is characterized by awinding
number that reproduces the behavior of and encircles the origin in the topological phase. In the ideal case of a
hard-wall confining potential, the required value of the second band can be extracted by repeating the
experiment twice, at densities ρ= 1 and ρ= 2: the difference of themeasured distributions returns the sought
information Sk k k .2 1

1

2 2
ˆ ( ) ˆ ( ) ( )S Sá ñ - á ñ =r r= =

In the presence of a harmonic trap, thewedding cake density profile suggests that themany-body
wavefunction can be roughly thought as a statewhere each energy bandα is uniformly populated byNα atoms
(N N N N 01 2 3 4    ). In this case themeasurement of the observable kˆ ( )Sá ñ returns:

Sk
N

k
1

2
, 5ˆ ( ) ( ) ( )


åSá ñ =
a

a
a

where S k( )a is the expectation value of the spin calculated in the thermodynamic limit for the single particle
eigenstate of the tha energy band (see appendix).  is the discretization adopted for the Brillouin zone in the
time-of-flight imaging (see, for example, [43, 46]).

If we consider the case inwhich the density profile shows only two plateaus, the value of S k2 ( ) can be
estimated by comparing the observed k 2

ˆ ( )Sá ñr= with that of a realizationwith a single plateau only, k :1
ˆ ( )Sá ñr=

S k
N

k
N

N
k

2
, 62

2 2

1

1
1

( ) ˆ ( ) ˆ ( ) ( )
⎛
⎝⎜

⎞
⎠⎟

 S S= -
¢r r= =

whereN1 andN2 are the occupations of the two bands for the statewith two plateaus, and N1¢ is the total number
of atoms in the reference state with a single plateau. All the quantitiesN1,N2 and N1¢ can be experimentally
accessed andwe report in the right columnoffigure 4 the comparison of the data obtained for hardwall and
harmonic potentials. Our numerical simulations confirm that even in the presence of the trap 2 is equal to±1
in the topological phase, whereas in the trivial phases, it is either 0 or±2 (seefigure 4).

Let us concludewith some information on how tomeasure kˆ ( )Sá ñ through spin-resolved time-of-flight
imaging [43–47] in our setup. Special care is required in time-modulated systemswith spin-dependent features
[63], as considered in the specific proposal detailed in section 5 because spin-dependent observables can
potentially undergo large and complicatedmicro-motion (rapidmotionwith a time-scale of the order of the
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driving period 2p w), which typically alters the accuracy ofmeasurements. In such schemes, stroboscopic
measurements performed at specific times, n2p w ´ , where n is integer, are generally required to extract
relevant information relative to the spin-dependent quantities [63]. For the scheme detailed in section 5, the
micro-motion can be estimated from the unitary operators K t( ) andR(t)defined in that section, through the
method of [53].Wefind that kz

ˆ ( )áS ñ is unaffected by themicro-motion; in contrast, an accurate analysis of x
ˆáS ñ

does require a stroboscopicmeasurement.Moreover, we note thatmeasuring the expectation value of xŜ also
necessitates a 2p pulse, which has to be short compared to the driving period in order to probe the system
stroboscopically.

4. Interacting system

Let us now consider the role of interactions, with a special emphasis on the robustness of symmetry-protected
topological order. It is experimentally relevant to consider an on-siteHubbard interaction in each leg:

H U n n , 7
r

r rint
,

, , , ,

z

z z z z
ˆ ˆ ˆ ( )å=

t
t s t s= =

and to analyze the phase diagramof H H0 int
ˆ ˆ+ at halffilling, 2,r = which is characterized by the competition

between the TI andMott insulator (MI) occurring in the presence of a strong contact repulsion.We employ a
density-matrix renormalization group algorithmbased on amatrix-product state (MPS) ansatz [64, 65].Wewill
consider systemswith open-boundary conditionswith L= 72 andmaximal bond dimensionD= 200.

The transition between TI andMI can be located via the analysis of the charge gap atN= 2L. In particular,
the single-particle gap is defined as:

N E N E N E N1 1 2 , 81( ) ( ) ( ) ( ) ( )D = + + - -

where E(N) is the ground-state energy of the systemwithN fermions. Clearly, N 01( )D > for theMI because the
systemhas a thermodynamic gap. On the other hand, the TI has zero-energymodeswhich ensure that
E N E N E N1 1( ) ( ) ( )- = = + and thus N 0.1( )D = Unfortunately, themere calculation ofΔ1 does not
permit to discriminate the TI from a generic gapless phase, for which N 01( )D = too.We thus consider also the
two-particle gap:

N E N E N E N2 2 2 . 92( ) ( ) ( ) ( ) ( )D = + + - -

Whereas for a gapless phase N2( )D is also equal to zero, for a TI it is larger than zero, signaling the gapwhich is
protecting the phase.

Based on this discussion, we now consider a systematic study of theHamiltonian, focusing on the
competition of the two termswhich are responsible for a gap opening, namely, the interaction term
proportional toU responsible for theMI, and the interchain tunneling proportional to J. Roughly speaking, we
identify the pairing term as the one inducing the TI, since atU= 0 the system is in a topological phase for

J J B0 2 cos 2c
2

,1
2 2 2( ( ) )m< < º W - - (see appendix formore detail) and the two chains decouple at J= 0.

Figure 5 presents the numerical results for L21( )D and L22( )D in the parameter space spanned byU/t and
J t.The other parameters are chosen such that atU= 0 there is a TI, and are listed here for completeness:

t 1.8,W = B L

L2 1
= p

+
andμ/t= 1. Calculations are limited to the size L= 72 and a systematic scaling to the

thermodynamic limit, as well as the exact evaluation of the properties of the critical lines, is beyond our

Figure 5.Phase diagramof the interactingmodel at half-filling in theU/t and J/t plane. (Left): single-particle gap t .1D (Right): two-
particle gap t .2D The topological region is characterized by 01D = (dark blue region in the left panel) and it is delimited by gapless
regions defined byΔ2= 0 (dark blue regions in the right panel) as represented schematically infigure 6. The calculations are

performed for t 1.8,W = B L

L2 1
= p

+
andμ/t= 1 at L= 72with bond dimensionD= 200.
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numerical possibilities; additionally, the 2D space is studiedwith a grid of 0.2 along both axis. Despite these
limitations, the qualitative nature of the phase diagram emerges quite clearly. Indeed, through the study ofΔ1

andΔ2 we are able to identify the TI, theMI and the critical regionswhich separate them, resulting in the
schematic phase diagrampresented infigure 6. The topological region is identifiedwith the large regionwhere
Δ1= 0 butΔ2> 0whereas for theMI bothΔ1 andΔ2 are larger than zero. Critical regionswithΔ1=Δ2= 0
separate the two insulators. The schematic phase diagramdiscriminates theMI, whose appearance is driven by
the on-site repulsion, from the trivial band insulator (BI), which appears instead also atU= 0.Our investigation
did not identify a phase transition between these two trivial insulating phases, which are adiabatically connected.

To better analyze the transition betweenTI andMI, in figure 7we focus on the line at J t 1,= which entails
a phase transition forU t u 1.9.cr= ~ We show the behavior of the chemical potentials
E L E L2 2 1( ) ( )a a+ - + - for 2, 1, 0, 1a = + + - as a function ofU. Two qualitatively different
behaviors are separated by ucr. ForU t ucr> the energy cost for adding one particle to the states withN= 2L or
N= 2L+ 1 is approximatelyU (especially for large values ofU/t). Conversely, subtracting one particle from the
states withN= 2L orN= 2L− 1 does not yield any energy gain. Thus, N L21( )D = and N L22( )D = are larger
than zero and are approximately equal toU and 2U, respectively: these are typical signatures of aMI.

ForU t ucr< the energy cost and gain for adding and removing one particle to/from the state withN= 2L
are both equal toU/2.We interpret this as a signature of the fractionalization of the zero-energymodes of the TI:
the charge excess n 1 2~ on top of the density plateau ρ= 2 (one particle per site) does cost a repulsive energy
Un. Since the zero-energymodes have fermionic nature, they cannot accommodatemore than one particle: the
energy cost for adding one additional particle to the state with N L2 1= + becomes significantly larger than
U/2 (vice versa for removing one particle from the state withN= 2L− 1). Thus, N L2 01( )D = = but

N L2 0,2( )D = > signaling a TI forU t u .cr<

Figure 6. Schematic structure of the phase diagram at halffilling as a function of J andU. (Left): the blue region represents the
topological region as extracted from the numerical results presented infigure 5 (note that strictly speaking our numerics could not
access the thermodynamic limit). (Right): qualitative extrapolation of the phase diagram. Three gapped phases can be detected:
topological insulator (TI), trivial band insulator (BI) andMott insulator (MI). Blue lines represent the phase transitions. Our
numerical results suggest that theMI andBI phases are adiabatically connected. The exact nature of the phase diagram in the dotted
region cannot be established due to numerical limitations.

Figure 7.Energy differences of the ground states of the system for several fillings aroundN= 2L. The same data are plotted as a

function ofU/t (left) and t/U (right). TheHamiltonian parameters are J/t= 1,Ω/t= 1.8 , B ,L

L2 1
= p

+
so that the cut corresponds to

the line J t 1= in the phase diagramof figure 5. L= 72 and themaximalMPS bond dimension isD= 150.
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TheMI extends forU t 1, where a perturbative expansion shows that the system can be described by a
spinmodel in a paramagnetic phase: under the assumptionsU J t, and 2,r = one atom is trapped in each
site of the two legs.We thus introduce the Pauli operators r

i
,ĥ t (i= x, y, z) acting on the local effectiveHilbert

space spanned by the two spin states 1s =  of the atom located at the site r of the chain 1.t =  Weobtain the
following second-order perturbative spinHamiltonian:

H J J B

J B K

cos
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r
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r
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r
y

r
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r
x

r j
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j

r
j
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h h h h h h h

h h h h h h

= W + + +

+ - +
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t t t t t t t

t t t t t t

+ + +

+ + = =-

where J t Ueff
2µ and K J U .eff

2µ In this regime, the termproportional toΩ dominates and the ground state
of Hpert is close to a trivial product state inwhich all the spins are oriented in the x̂ direction.We expect that such
state, characterizing theMI phase,might be adiabatically connected to the trivial BI atU= 0 and J J .c,1> Our
numerics does not suggest the existence of a further phase transition between theMott and the trivial band
insulating phases.

The phase diagram infigure 5 shows that the topological region appears clearly as a thermodynamic region,
within awell defined parameter regime.We emphasize that, for J1.8 2.2,  the system is in a topologically
trivial phase forU= 0, and enters the symmetry-protected topological phasewhen the interaction parameterU
is increased. Therefore the interaction is not necessarily obnoxious to the purpose of experimentally obtaining
the topological phase but, on the contrary, it can also drive the system into it by shifting the position of the
critical point. This has been verified also in the corresponding TSC systems [35–37], where the addition of
repulsive interactions is proven to expand the topological phase for certain ranges of the physical parameters (see
also [39, 40] for relatedmodels in terms ofMajoranamodes). Thismeans that, for some particular value of
J Jc,1> the presence of a repulsive interaction allows the formation of edgemodes otherwise absent. A similar
behavior is also observed in 2D systemswith time-reversal invariance [66]. Let us stress, however, that this has
nothing to dowith the physics of fractional Chern insulators, where interactions drive the system into distinct
(strongly correlated) topological phases. As the phase diagram clearly shows, there is only one TI phase, which is
strictly equivalent to that of the non-interacting system. Importantly, the phase diagram infigure 5 shows that
interactions have a non-trivial role in tuning the system in and out the TI phase.

Figure 8.Properties of the interacting topological phase for J/t= 1, t 1.8,W = B :L

L2 1
= p

+
all the analyzed systems are on the line

J/t= 1 in the phase diagram infigure 5. L= 72 andMPS bond dimensionD= 200. (Top, left): density profiles njˆá ñand njˆ*á ñof the gas
withU t 1= forN= 2L andN= 2L± 1. The data clearly show the presence of localized and fractionalized edgemodes. (Top, right):
the plot of n 2j∣ ˆ ∣á ñ - highlights the localization of the edgemodes. (Bottom, left): spin winding associated to the second band of the
model S2 for several values of the interaction, within andwithout the TI. (Bottom, right): entanglement spectrum (60 largest
eigenvalues) forN= 2L andU/t= 1.
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In order to further clarify this last point, we now investigate inmore detail the properties of the topological
phase in the interacting system.Numerical investigations reported infigure 8 show that the signatures of the
non-interacting TI persist in the presence of interactions. First, the density profile of the gas allows for a clear
identification of the presence of fractionalized edgemodes located at the boundaries of the ladder via the
computation of njˆá ñand n .jˆ*á ñ Indeed, forU t u ,cr figure 8 shows that njˆ*á ñ saturates to 0.5within few sites,

which is strongly different from the behavior forU t u .cr It is interesting to observe that within the
topological region the localization length of the edgemodes has aweak dependence onU t. Second, the system
displays alsowithin the interacting region a non-zerowinding number associatedwith the second band of the
system. As in an interacting systembands are notwell defined, thewinding number is computed by subtraction
of the data relative to 1r = to those relative to 2r = (see similar discussion in section 3). This robustness of the
spinwinding number against local interaction is consistent with similar results in 2D systems [48]. Finally, on a
more abstract side, the analysis of the Schmidt spectrumpresents the robust two-fold degeneracy of symmetry-
protected topological phases [67].

5. Physical realization of themodel

The physical realization of the ladder system in equation (1) can be obtained by extending the 2D setup
elaborated and realized in [4]. The present proposal builds on a 2Doptical superlattice subjected to awell-
designed time-modulation as displayed infigure 9. Along the y direction a superlattice potential is used to
partition the lattice into a 1D array of isolated ladders. Hopping between the two legs of the ladder corresponds
to transitions 1 1,zt̂ = - « + see figure 1. Themain challenge in realizing theHamiltonian in equation (1)
consists in engineering the spin-dependent complexmatrix elements for tunneling processes taking place along
the legs of the ladder. In the following, wewill show that this can be achieved by combining a spin-dependent
superlattice potential x (figure 9), which introduces a spin-dependent energy offsetΔ between neighboring sites,
togetherwith the space-dependent time-modulation of the lattice discussed in [4].

We start by considering the time-independent part of the system, which can be described by the 2D tight-
bindingHamiltonian

Figure 9. Schematic drawing of the proposed experimental setup. The 2D lattice configuration consists of a spin-independent
superlattice along y to isolate individual ladders from each other and a superlattice potential along x, which creates a spin-dependent
energy offset zsD between neighboring sites in order to inhibit tunneling. Tunneling is then restored resonantly with two pairs of
beams denoted as r and b following the scheme introduced in [4]. Each of the pairs consists of a standingwave along x and a running-
wave along y. For r b r b r b1, 2,w w w= - = D and aq k k 1, 1 2r b r b r b1, 2, ( ) · ( )p= - = an effective flux pF = is realized
with spin-dependent complex tunneling-matrix elements, here a is the lattice constant of the potential along x.
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wherem and n label the horizontal and vertical integer coordinates. The spin-dependent staggered potential
could be realized, for instance, by considering an appropriate anti-magic wavelength, for which the polarizability
is opposite for the two spin species [51]. In order to keep the bare tunneling processes of strength Jx, y spin-
independent the remaining lattice potentials need to be created using amagicwavelength, for which the
polarizability is the same for the two spin-species.

The bare tunneling is suppressed along the legs due to the offset J ,x y,D  which allows for a complete
control over induced-tunneling-matrix elements, such as those realized bymodulating the lattice resonantly
[53]. Following [4], themodulation is taken to be produced by two pairs of laser beamswith frequency
difference r bw = D (figure 9) in order to restore resonant tunneling. The corresponding time-dependent
potential defined by these four lasers is then of the form

V t a a v m n v m n, e , e , 12
m n

m n m n
t t

,
, ,

i iˆ ( ) ˆ ˆ ( ) ( ) ( )† ⎡⎣ ⎤⎦*åk= +w w-

with the resonance conditionω=Δ, andwe choose the laser phases in such away that

v m n m m,
1

2
cos

2
4 e cos

2
4 e . 13n B n Bi i 2 i i 2( ) ( )⎜ ⎟ ⎜ ⎟

⎧⎨⎩
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎫⎬⎭
p

p
p
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This requires a stabilization of the phase of themodulation relative to the static lattice potential, which is
challenging andwas not yet demonstrated in previous realizations [2, 4, 49, 50]. This specific choice of the
potential v m n,( ) ismade in order to independently address successive hopping terms along the x direction,
which is generally requiredwhen engineering Peierls phase-factors in superlattice structures, see [4, 53] and
below.

The time-evolution of the system is ruled by the Schrödinger equation H ti ,t
ˆ ( )y y¶ = where

H t H V t0
ˆ ( ) ˆ ˆ ( )= + is defined by equations (11) and (12). The long-time dynamics of the system can be suitably
described by an effective-Hamiltonian approach [53], which is valid in the high-frequency regime .w  ¥
Since the staticHamiltonianH0 contains a staggered-potential term that explicitly diverges linearly withΔ=ω,
wefirst apply the unitary transformation [53]

R t Wt W a aexp i ,
2

1 , 14
m n

m
m n z m n

,
, ,( )ˆ ( ) ˜ ˆ ˜ ˆ ( ) ˆ ˆ ( )†åy y y s= = - =

D
-

which removes the diverging term. The effectiveHamiltonian can then be derived in thismoving frame, using
themethod of [53, 63] (see also [68]).

For the sake of simplicity, let usfirst consider the dynamics associatedwith the speciesσz=+1. For these
atoms, the transformedHamiltonian reads:

H t R t H V t R t W V Ve e , 15t t
0

i i˜ ( ) ˆ ( ) ˆ ˆ ( ) ˆ ( ) ˆ ˆ ˆ ( )† ⎡⎣ ⎤⎦= + - = +w w+ - -
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Wedescribe the time-evolution of the systemdictated by H t˜ ( ) through the evolution operator, whichwe
partition as

U t e e e , 17K t tH Ki i i 0eff˜ ( ) ( )ˆ ( ) ˆ ˆ ( )= - -

where the effectiveHamiltonian Heff
ˆ describes the long-time dynamics, andwhere the operator K tˆ ( ) captures

themicro-motion. Following [63], wefind that the effectiveHamiltonian associatedwith the general time-
dependentHamiltonian in equation (15) is given by:
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The irrelevant sign change in the tunnelingmatrix elements (i.e. in the last line of equation (18)), can be removed
by applying an additional gauge transformation

G a a G Gexp i , 1, 19
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which indeed reverses the sign of the tunneling terms a am n m n2 1, 2 ,ˆ ˆ†
+ and a am n m n2 , 2 1,ˆ ˆ†

- form odd only. In this
way, thefinal effectiveHamiltonian describing the dynamics of theσz=+1 species yields

H GH G
J

a a
2

e h.c. 20x

m n
m n m n

n B
eff eff

,
1, ,

i i 2ˆ ˆ ˆ ˆ ˆ ˆ ( )†åk
w

 = +p
+

+

which is indeed the tunneling term in equation (A.1) for 1zs = + atoms. In the case of the 1zs = - species, the
staggered potential is reversed, so that the even and odd sitesmust be inverted. This results in thefinal effective
Hamiltonian:
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where 1 n( )- is equivalent to the operator zt in equation (A.1).
The Zeeman termΩσx present in theHamiltonian (1) can be directly generated by two resonant coupling

potentialsV t t a a2 cos .i m n i m n x m n
RC

, , ,
ˆ ( ) ( ) ˆå n s= W Indeed, considering the bare atomic frequency zw D

between the two sublevels, they are effectively separated by the position dependent energy offset 1z
m( )w + - D

created by the spin-dependent potential in equation (11). Under the transformation R t ,ˆ ( ) the effect of the
coupling becomes

R t V t R t t a a2 e cos h.c., 22i
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i m n m n
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,

i 1
, ,

mt ( )ˆ ( ) ˆ ( ) ˆ ( ) ˆ ˆ ( )† ( ) †å n s= W +- D -
+

where i 2.x y( )s s s= ++ This terms commutewith the gauge-transformation operator Ĝ and, by choosing the
frequencies ,z1,2n w=  D we recover the required Zeeman term xsW in equation (1), both for even and odd
sites, through the standard rotating-wave approximation.

Wenote that the effectiveHamiltonian (1)was derived atfirst order in ,1w- in a basis provided by two
commuting unitary operators: R tˆ ( ) and G.ˆ It is important to notice that these latter operators commutewith the
τ operators, so that they neither affect the static hopping term J ,xt nor the static potential difference :zmt this
indicates that these static terms can be directly included in the (effective)Hamiltonian (1). The latter remark is
also valid for the spin-independent potentialμ0. Therefore, we conclude that the application of two pairs of
Raman lasers and a radio-frequency field, combinedwith the spin-dependent staggered potential directed along
the ladder, allows one to generate all the spin-dependent terms in the ladderHamiltonian (1).

Importantly, we emphasize that theHubbard interactions are also unaffected by the aforementioned
transformations Ĝ and R t .ˆ ( ) Thus, the effects of interactions can be directly incorporated into the effective
Hamiltonian (1), atfirst order inω−1.

Finally, the time-evolution operator in equation (17) is then completely determined by computing the kick
operator K t ,ˆ ( ) which is readily calculated using the expression [53, 63]
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wherewe assumed that Jxk  andwe defined v m narg , .m n, [ ( )]q =

6. Conclusions

In this workwe presented a ladder setup for ultracold fermions subject to both the presence of an artificialπ-flux
magnetic potential and a spin–orbit coupling. Such amodelmay be seen as the synthesis of two accessible
experimental techniques to realize synthetic gauge fields in optical lattices: on one side, the realization of
complex tunnelingmatrix elements using time-modulated optical lattice [2–4, 49, 50], and, on the other, the
implementation of spin–orbit terms through the control over internal atomic degrees of freedom [5, 6].
Analogously tomodels already discussed in the context of nanowires [29, 30], the combination of these two
elements gives rise to a particle–hole symmetry which protects non-trivial topological phaseswithin the
Bogoliubov–deGennes and chiral classes of TIs and superconductors. As themodel conserves the number of
particles and can be realizedwith state-of-the-art experimental techniques, our resultsmight give a substantial
advance towards the observation of topologically protected zero-energymodes in fermionic systemswith and
without interactions. In particular the physical realization that we present does not require the engineering of
any pairingmechanism, neither the coupling to externalmolecular gases or superfluids, as, for example in
[9, 11, 12, 14], nor an interchain pair-hopping, as exploited in the laddermodel presented in [13].

No interaction is indeed necessary for the appearance of the symmetry-protected topological phase.
Consequently, the realization of the particle–hole symmetry through the ladder geometry is not as robust as its
counterpart in TIs due to the absence of a true superconducting gap, thus it should be considered an extrinsic
feature.However, due to the absence of disorder and to the high degree of isolation in ultracold atom setups, we
expect the topological features of the system to be experimentally detectable. For example, the introduction of a
trapping potential does not spoil the observation of edgemodes, despite breaking the particle–hole symmetry.

We analyzed two experimentally relevant signatures of the appearance of topological phases: the presence
of fractionalized edgemodes, detectable through site-resolved densitymeasurements (as recently reported in
[59–61]), and thewinding behavior of the spin degree of freedom,which can be observed through spin-resolved
time-of-flight imaging. In particular, we have shownhow to detect these observables even in the presence of a
trapping potential, which induces soft boundaries, often believed to be particularly disruptive for the detection
of topological signatures.

Our study has also considered the effect of a contact repulsive interaction; this is possible thanks to the
presence of the spin degree of freedom that differentiate themain features of ourmodel from its spinless
counterparts as the SSH and its interacting generalizations (see for example [41, 42]). Apart frommapping out
the phase-diagramof themodel, which entails two gapped phases, with andwithout topological properties, we
have found that aHubbard interaction can enhance the extension of the topological phase, instead of being
detrimental. Furthermore, the spinwinding number introduced in the article provides a good topological
parameter also in the interacting case, where the usual order parameters based on single-particle
wavefunctions fail.

Concluding, wemention that themodel under scrutinymay be an interesting platform for the study of
further fractionalization effects, based on a particular fine tuning of the parameters, which can be reminiscent of
the physics of parafermionic zero-energymodes (see [69] for a recent review) in the spirit of [30].
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Appendix. Symmetries of themodel, order parameter and spinwinding number

In this appendixwe examine the non-interacting laddermodel andwe discuss, in particular, the relation
between the order parameter , that distinguishes trivial and topological phases, and the observed spinwinding
number.
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TheHamiltonian (1) is translationally invariant and can be also expressed inmomentum space as
H a k a

k k k
ˆ ˆ ( ) ˆ†å= where:

k t B k t B k J2 cos 2 cos 2 sin 2 sin . A.1z z z x x z 0( ) ( ) ( ) ( ) t t s s t mt m= - + W + + +

Weobserve that its kinetic term corresponds to a Peierls substitution k k .B

2
z + s

Its spectrum is symmetric for a tranformationmapping B B 2p + and t t. - Therefore, even if the
Hamiltonian is periodic inBwith period 4 ,p we can restrict our study to the case B0 2 . p< Besides, we can
consider only positive values ofΩ and J because their sign trivially depends on the chosen basis for the spin and
pseudospin. In particular k k, ,z z( ) ( ) s s-W = W and k J k J, , .z z( ) ( ) t t- = Analogously we consider
only t 0,> because of the symmetry between the two chains k t k t, , , , .x x( ) ( ) m t m t- - = Hereafter we
rescale all the energies in units of t in such away that, below, wewill always consider t= 1. Finally we observe that
the expectation value of ys is always null because theHamiltonian (A.1) is real.

The system is characterized by an anti-unitary time-reversal-like symmetryT ,xs=

T k T k , A.2( ) ( ) ( )† * = -

and, for 00m = (the system is exactly at halffilling), we obtain the particle–hole symmetry C :y yt s=

C k C k . A.3( ) ( ) ( )† * = - -

These non-unitary symmetries characterize the topological symmetry class BDI (see, for example, [23, 24]),
which is also characterized by the unitary chiral symmetry P TC .y zt s= =

Additional terms in theHamiltonianmay break theC symmetry which is indeed fragile, due to the lack of a
physical pairing interaction; we emphasize however that such perturbations become significant only if their
magnitude is comparable with the energy gap. To this concern, in a cold atomgas, the presence of noise and
defects are negligible and themain effect wemust consider is the trapping potential bringing to a space
dependent chemical potential .0m As discussed in section 3, however, the local shift in energy provided by the
trapping allows in general to isolate topological regions of the chainwith the effect of binding fractionalized
modes at the interface between these regions and the trivial ones.

An additional Zeeman termproportional toσz, which breaks only the time reversal symmetry, brings instead
the system in the symmetry classD, which is still topologically non-trivial in one dimensions. Therefore, this sort
of termdoes not alter in a fundamental way the properties of the system.

1D systems in the BDI class possess topological phases labelled by a topological invariant in  [23]. This
topological invariant, can be evaluated by exploiting the chiral basis defined by the symmetry P [56]. In this basis
theHamiltonian assumes the simple form:

k
A k

A k

A

J
B

k

J
B

k

0

0
;

i 2icos
2
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i i 2icos
2

. A.4
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⎝
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⎝

⎞
⎠

⎞

⎠

⎟⎟⎟⎟



m

m

=

=
+ + + W

W - + -

If A kdet 0( ( )) ¹ for all k then the system is gapped. In this case, A k A kdet det e ki( ) ∣ ( )∣ ( )= x and the
winding number of k( )x constitutes the topological invariant which distinguish topological and non-
topological phases [56]. In thismodel, this winding numbermay assume only the values 0 or±1 characterizing
trivial and topological phases respectively. Inmore detail, one obtains:

A k J B k

cos B k J B k

det 2 cos 2 cos 2

4 2 cos 4i sin 2 sin . A.5

2 2 2( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

m
m

=- - + W - -
+ - +

This determinant is purely real for k 0, p= or forB= 0. ForB= 0, its phase k( )x cannot change its value from0
toπ unless Adet crosses zero and the gap closes; thus the caseB= 0 is either trivial or gapless.

In all the other cases, for B0 2 ,p< < the topological invariant is evaluated by considering the behavior
of ξ between k= 0 and k=π. In particular, the tangent of the phase ξ is given by:

k
J

B
k

B
k B J k

tan
4 sin

2
sin

4 cos
2

cos 2 cos 2 cos 2
A.6

2 2 2
[ ( )]

( )
( )x

m m
=

W - - - - -

where the numerator is always positive for B 0, 2( )pÎ and k 0, ,( )pÎ and always negative for B 0, 2( )pÎ and
k , 2 .( )p pÎ Therefore, going from k= 0 to k ,p= k( )x must be always included in 0,( )p since sin 0( )x > in
this regime, whereas for kwhich goes fromπ to 2 ,p k( )x must be either in , 0( )p- (if k 0( )x p= = ), such that
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its winding number vanishes for k 2 ,p or k , 2( ) ( )x p pÎ which implies afinal winding number equal to one
(see figure A1 ). Thus the parity of thewinding number results:

J B B

J B B
sign

2 4 cos 2 2 cos

2 4 cos 2 2 cos
. A.7

2 2 2

2 2 2
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( ) ( )

( )
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⎤
⎦⎥

m m
m m

=
W - - - - -
W - - - + -

1 = when thewinding number is 0, whereas 1 = - for thewinding number being±1. Therefore, in
terms of the parameterΩ, two phase transitions appear at:
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The system is in a topological phase 1( ) = - for c c,1
2 2

,2
2W < W < W whereas for c

2
,1

2W < W and c
2

,1
2W > W we

obtain trivial phases 1 .( ) = At the transition points , ,c c
2

,1
2

,2
2W = W W the gap closes respectively for k , 0,p=

consistently with the results in [30, 70]. The corresponding critical values for J are given by:

J B2 cos 2 A.101,2
2 2 2( ( )) ( )m= W - 

Depending on , mW andB there can be 0, 1 or 2 phase transitions as a function of J.
In order to evaluate the spin expectation value in the plane x z,ˆ ˆ- it is useful to adopt theHamiltonian form

in equation (A.4)which allows a simple diagonalization. In this basis the components of the physical spin, S x and
S z, become:

S S, , A.11x
x y

z
z 0 ( )s t s t= Ä = Ä

whereσi and it are Paulimatrices in this basis. To obtain the eigenstates of theHamiltonianwe consider:
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A k A k
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†

†
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where, AA A A( )† † *= since A A .T= Therefore the generic formof the eigenstates in this basis is:

e
, A.13

i
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⎛
⎝⎜

⎞
⎠⎟*

y
y

Y =
 a

whereψ are the two eigenvectors of AA .† In particular, we are interested in the eigenvector corresponding to the
lowest eigenvalue of AA ,† since it determines the second and the third bands ofHwhich are topologically non-
trivial. The value ofα is fixed by the equation:

A e , A.14i ( )† *y y e=  a-

where e are the energies of the two intermediate bands of the system.

Figure A1.Different behavior of the phase ξ as a function of themomentum k for a trivial phase (red dashed line) and the topological
phase (blue line). In the trivial case the values of ξ at k= 0,π,2π are equal and thewinding number parity is 1; = for the topological
phase, instead, k 0( )x = and k 2( )x p= differ by 2π. The phases were calculated for J 1m = = and B 4 3p= for 1.2W = in the
topological region andΩ= 2.3 in one of the trivial regions. The shaded regions are forbidden for B 0, 2 .( )pÎ
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The expectation value of S z in the second band does not depend on the phaseα and it is easily evaluated. It
results:

S k S

k B k
B

N k

2 sin sin cos sin
2

, A.15z z
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º =
+

whereN(k) is a positive quantity. In particular wemust distinguish two cases: Bcos 2 .∣ ∣ ∣ ∣m
For B2 cos 2 ,∣ ∣m > S 0z

2 > for k 0, ,( )pÎ thus S z2 behaves like the imaginary component of the phase
kexp i[ ( )]x and it can be showed that the sign of S x2 at k= 0 and k p= is equal to the sign of the denominator of

equation (A.6), therefore the spinwinding number of the second band and thewinding number of the phase
k( )x coincide.
For B0 2 cos 2 ,∣ ∣m< < S kz

2 ( ) has a further zero between k= 0 and k ,p= therefore the spin vector is
aligned along x̂ in three different points in the interval k 0, .[ ]pÎ This can be seen in the last columnoffigure 4
(obtained for 0.5m = and B 2p= ), where the blue line, representing the average value of the spin in a system
without the trapping, always crosses the horizontal axis three times. The spinwinding number 2 is null if and
only if S kx

2 ( ) has the same sign in these three points (first and last rows). However if S kx
2 ( ) assumes the same sign

for k= 0 and k ,p= then the total spinwinding number for k going from0 to 2p is even, due to the time-
reversal symmetryT. Otherwise it is odd. At k= 0 and k p= the sign of S kx

2 ( ) assumes, respectively, the same
value of the signs of the numerator and denominator of in equation (A.7). Therefore the parity of the spin
winding number, 1 ,2( )- always coincides with .

Concerning the behavior at the intermediate zero of S ,z
2

k B Barccos sin 2 sin , A.16c ( ( ) ( )) ( )m= -

one has S k k Jcos ,x
c c2 ( ) [ ( )]a= µ W - therefore in the trivial regionwhere c

2
,2

2W > W the spinwinding
number is trivial. The other trivial region, ,c

2
,1

2W < W is instead divided into two subregimes characterized by a
spinwinding number 02 = or 22 = separated in J .= W This is shown in the last columnoffigure 4where
the blue lines either does notwind around the origin (first row, corresponding to J c,1W < < W ) orwinds twice
around it (second row, Jc,1W > W > ).

Similar conclusions hold for negative values ofμ and it can be shown that the behavior of the spinwinding
number is not affected by open or periodic boundary conditions.
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