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Abstract.

We consider a spin-1/2 fermionic ladder with spin-orbit coupling and a

perpendicular magnetic field, which shares important similarities with topological

superconducting wires. We fully characterize the symmetry-protected topological

phase of this ladder through the identification of fractionalized edge modes and non-

trivial spin winding numbers. We propose an experimental scheme to engineer such a

ladder system with cold atoms in optical lattices, and we present two protocols that can

be used to extract the topological signatures from density and momentum-distribution

measurements. We then consider the presence of interactions and discuss the effects

of a contact on-site repulsion on the topological phase. We find that such interactions

could enhance the extension of the topological phase in certain parameters regimes.
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1. Introduction

The experimental engineering of topological phases of matter in ultracold atomic

gases [1, 2, 3, 4, 5, 6] lays the foundations for a deeper understanding of phase

transitions that transcend the Landau paradigm of symmetry breaking. In these

experiments, models displaying non-local forms of order are realized in highly

controllable environments, where the parameters driving the system in and out

the topological phases can be tuned with wide freedom, and where observables

complementary to those of a typical solid-state experiment can be measured. These

experiments have already revealed interesting properties associated with 2D topological

Bloch bands: the anomalous (Hall-like) velocity, which was detected in response to

an external force [3, 4], the topologically invariant Chern number [4], and chiral edge

currents [2, 5, 6].

Following these advances, an important objective would be to probe the edge

modes of 1D topological systems, which typically appear at zero energy and exhibit

charge fractionalization. In particular, identifying an observable that unambiguously

signals their presence in experiments constitutes a remarkable challenge. Detecting

the properties of zero-energy edge modes would strongly complement the Zak-phase

measurement, recently demonstrated with bosonic atoms in a 1D optical superlattice

[1].

Several theoretical efforts have been devoted to the design of realistic platforms

hosting topological superconducting phases with ultracold fermions [7, 8, 9, 10, 11, 12,

13, 14], including number-conserving setups [13, 15, 16, 17, 18, 19, 20]. Here, we envision

an even simpler scenario, based on the fact that similar topological edge physics can

be accessed without pairing mechanisms. Indeed, it is a generally overlooked fact that

pairing interactions are not strictly necessary to mimic topological superconductors.

A fundamental example is offered by the Su-Schrieffer-Heeger model [21], which

presents particle-hole symmetry and belongs to a non-trivial topological class of chiral

Hamiltonians, namely the class BDI of the Altland-Zirnbauer classification [22, 23, 24,

25, 26]. Similar one-dimensional fermionic models without superconducting interactions

display topologically-protected edge modes localized at their boundary, which are Dirac-

like [27] and feature remarkable properties, such as charge fractionalization [28].

The goal of this article is twofold. First, we propose a route to mimic the physics of

topological superconductors using state-of-the-art ultracold fermionic experiments. We

exploit a simple idea: employing a two-leg ladder to double the fermionic species, in such

a way that the legs are respectively associated with effective holes and particles [29, 30],

see Fig. 1. This geometry is indeed well-suited for experiments on ultracold gases,

as it has already been realized for atoms trapped in optical lattices, either in

physical ladder geometries [2], or exploiting internal degrees of freedom as an artificial

dimension [5, 6, 31, 32, 33]. We characterize the topological properties of this model,

both in the absence and presence of interactions, finding several affinities with previous

studies of 1D topological interacting fermionic systems [33, 34, 35, 36, 37, 38, 39, 40].
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We argue that such systems constitute a useful playground, not only to examine the

appearance of symmetry-protected edge modes, but also to study the role of contact

interactions, which may be tuned to drive transitions between trivial and topological

phases. This analysis of the Hubbard repulsion extends to spin 1/2 fermions previous

studies about the effect of interaction in generalizations of the SSH model [41, 42].

As a second objective, we analyze in detail how topological signatures might be

directly observed in such interacting systems. Beside the detection of fractionalized

edge-modes, we also focus on the winding number associated with the expectation value

of the spin, which provides a good detection tool for topological phases also in the

presence of interactions. In this way, we extend to a one-dimensional model in the

topological class BDI the techniques developed to reveal the topology of cold-atom

realizations of the two-dimensional Haldane model [43, 44] and other two-dimensional

topological systems [45, 46, 47, 48]. For both these observables, we examine the effect

of a trapping potential, which sets soft boundaries to the system (usually considered to

alter the observation of edge physics). Our schemes are based on the direct observation

of the atomic cloud or on time-of-flight measurements: in both cases they are extremely

robust to such confinement.

This article is organized as follows. In Sec. 2 we introduce the model and provide an

intuitive description of its symmetries. In Sec. 3 we focus on the non-interacting model

at half-filling and thoroughly characterize the topological insulator that is reached for a

certain range of parameters. Furthermore, methods to detect unambiguous signatures of

the topological properties are proposed, based on the density profile and the momentum-

distribution of the gas. In Sec. 4 we study the role of interactions and characterize

the related interacting topological insulator. In Sec. 5 we describe a possible physical

realization of the model based on laser-assisted tunnelings and in Sec. 6 we present

our conclusions. Finally Appendix A presents a detailed analysis of the non-interacting

model, its order parameter and spin winding number.

2. The model

We consider a spinful fermionic ladder in the presence of external gauge potentials as

depicted in Fig. 1. Here the two legs of the ladder are associated with a pseudo-spin τz
and the lattice sites along the main axis (x direction) are labelled by r = 1, ..., L. We

introduce the 4-component fermionic operator âr, defined on the lattice site r, which

acts on both the pseudo-spin τz and the spin related to the two internal states of the

fermion σz (two commuting sets of Pauli matrices τα and σα are used to describe these

degrees of freedom). The Hamiltonian describing the ladder system is taken to be of

the form (~ = 1)

Ĥ0 =
∑
r

{
t
(
â†rτze

iB
2
σz âr+1 + h.c.

)
+ â†r (Ωσx + Jτx + µτz + µ0) âr

}
, (1)

and is schematically represented in Fig. 1. The first term in Eq. (1) describes the intra-

chain tunneling along the x direction, with hopping amplitude t and spin-dependent



Methods for detecting charge fractionalization and winding numbers... 4

Four species :

Figure 1. Schematic representation of the non-interacting model. The system is

engineered in such a way that the two chains in the ladder present opposite kinetic

energies. This is obtained through the introduction of a π flux in each ladder plaquette.

Here, the pseudo-spin τ refers to the two legs of the ladder, while the spin σ is associated

with the internal states (“spin”) of the atoms, see Eq. (1).

Peierls phase-factor exp(iBσz/2), which represents a “spin-orbit coupling” analogous to

those already realized in fermionic [5] and bosonic [6] chains. Note that, because of the

τz factor, the two chains have opposite kinetic energy; consequently, the motion around

each plaquette of the ladder acquires a π-phase independently of the σz-spin component.

The second term describes an on-site spin-flip term with amplitude Ω, the inter-chain

tunneling with amplitude J , the potential difference between the two chains µ, and the

overall chemical potential µ0.

In the following we will elaborate on the fact that this system effectively reproduces

some of the physical features of topological superconductors (TSC) without recurring

to any physical pairing mechanism. This analogy is based on the idea that atoms

in the first chain (τz = +1) can be identified with conduction electrons of a generic

1D superconducting model, â†r; τz=+1 ≡ ĉ†elect(r), whereas those in the second chain

(τz = −1) can be identified with its holes, â†r; τz=−1 ≡ ĉ†hole(r). In this picture any

tunneling from one chain to the other constitutes an effective pairing interaction, i.e.

â†r; τz=+1âr; τz=−1 ≡ ĉ†electĉhole ≈ ĉ†electĉ
†
elect, where the last equality is justified by the

Bogoliubov-De Gennes treatment of the superconductor. Within this parallelism we

interpret the four-band Hamiltonian (1) as a Bogoliubov-de Gennes Hamiltonian in the

superconducting picture. Specifically, the particle-hole symmetry, which plays a key

role in the physics of TSCs, is here represented by a swap of the two chains, C = τyσy,

which have opposite kinetic energy in the same way as particles and holes do. Such

mapping, though, must be seen only as an analogy, since the number of degrees of

freedoms in the system (1) is doubled with respect to the superconducting wire and this

has important physical consequences, as will be discussed in the following. Finally, note

that Hamiltonian (1) is unitarily related to those considered in the four-wire setup of
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Refs. [29, 30] and may have a relevance also for the study of electronic gases.

The model in Eq. (1) can be realized using cold atoms trapped in an optical

lattice. We present here an overview of the experimental proposal and refer the

interested reader to Sec. 5 for a detailed analysis of the implementation of the

model. Let’s start considering a two-dimensional setup. The realization of a spin-

dependent intra-chain tunneling, described by the first term in Eq. (1), is particularly

challenging, as it requires a subtle control over the hopping amplitudes. This effect

could be engineered by exploiting the laser-induced-tunneling methods implemented

in recent experiments [4, 2, 49, 50]. Specifically, we propose to achieve this task by

combining a spin-dependent staggered potential with large energy offset ∆ between

neighboring sites, inhibiting the bare hopping along the x direction, together with an

onsite energy modulation set at the resonant frequency ω = ∆. The spin-dependent

staggered potential is chosen to be opposite for the two internal states, i.e. Vstag(r) =

(−1)r(∆/2)σz, which can be realized by considering an appropriate anti-magic wave-

length [51]; this choice is motivated by the fact that the resonant modulation will then

generate effective tunneling matrix elements of the desired form teff(r) = t exp[iφ(r)σz],

see Refs. [49, 52, 53]. In order to make the Peierls phase-factors constant over the

whole lattice, i.e. φ(r) = B/2, we propose to modulate the lattice with two pairs of

lasers; such a configuration allows to address individual links independently [4], hence

realizing the desired Peierls phase factors on all links, (see Section 5). Using additional

fields resonant with the energy difference between the two spin-states a tunable onsite

spin-flip term Ωσx can be realized. Finally, the two-leg ladder can be isolated using an

additional superlattice, or a light-intensity mask [54, 55].

3. Topological phases in the non-interacting system

Hamiltonian (1) is characterized by four energy bands; as shown in Fig. 2, by varying

the filling of the ladder, and thus the chemical potential µ0, the system is driven through

a series of metallic and insulating quantum phases (we consider in this article only the

case of zero temperature). For half filling, corresponding to the case where µ0 = 0

and the particle density is ρ ≡ N/L = 2 (N is the number of fermions), the single-

particle Hamiltonian shows both the particle-hole symmetry we sought for, defined by

the operator C = τyσy and an additional time-reversal symmetry, T = σx, which bring

the system into the topological class BDI (see Appendix A for more details). This

class includes, for example, the Su-Schrieffer-Heeger (SSH) model and, according to

the periodic table of topological insulators and superconductors [24, 23], it may present

topological phases with zero-energy modes. Specifically, our model displays a non-trivial

topological insulating phase for Ωc,1 < Ω < Ωc,2, where Ωc,i are defined, for B < π, as:

Ω2
c,1 ≡ J2 + (µ− 2 cos(B/2))2 ; Ω2

c,2 ≡ J2 + (µ+ 2 cos(B/2))2 . (2)

We find that the topological phase is surrounded by two topologically trivial phases. For

µ0 = 0, trivial and topological phases are distinguished by a topological order parameter
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Figure 2. Phase diagram of Hamiltonian (1). (Left): Energy of the eigenmodes

of Hamiltonian (1) for periodic boundary conditions (red lower triangles) and open

boundary conditions (blue upper triangles) for the parameters B = π/2, J/t = 1.0,

Ω/t = 1.75, µ/t = 0.5, µ0/t = 0; the system size is L = 200. The lower-right inset

zooms into the zero-energy region and shows the existence of two zero-energy modes for

the open system. The upper-left inset shows the squared modulus of the wavefunctions

of these two modes, which are localised at the edges. (Right): The phase diagram as a

function of µ0/t is derived from the previous spectrum: it alternates between normal

insulating phases (NI) and metallic ones (M). For half filling, thus at density ρ = 2

(µ0 = 0), the system is in the topological regime (BDI).

W which takes the respective values of +1 and −1 (see the Appendix and in particular

Eq. (A.7) for the definition which is based on the technique developed in [56]).

3.1. Fractionalized edge modes

In the topological phase, two zero-energy fermionic modes appear in ladders with open

boundary conditions, as showed in Fig. 2. These modes are exponentially localized

at the ends of the system and have important consequences on the density distribution

characterizing the topological insulating phase when N = 2L+1 fermions are introduced

in the system with hard-wall boundary conditions, as displayed in Fig. 3. We observe

that such modes are described by Dirac operators and they are not Majorana modes

as it would be expected in the superconducting analog wire. The figure shows that

the density in the bulk of the system indeed corresponds to the expected value ρ = 2.

Moreover, analogously to the SSH model, a charge 1/2 is exponentially localized at

each boundary. This important signature of charge fractionalization can be suitably

identified through the expectation value of the operator n̂∗j =
∑j

m=1(n̂m − 2) where

n̂m = â†mâm, which detects the excess density with respect to the bulk value ρ = 2. As

illustrated in the insets of Fig. 3, an overall excess density of 1/2 is localised within a

few sites from the left and right edges of the sample.

Such a signature can be observed even in the presence of a harmonic confinement,
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Figure 3. Charge fractionalization and spin winding number in a system with hard-

walls boundary conditions. (Left): Density profile of the system with N = 2L + 1

particles. The simulation parameters are the same as in Fig. 2. The inset displays the

expectation value of n̂∗j . (Right): top and middle panels, 〈Σ̂(k)〉 for a system with 2L

fermions and with L fermions; bottom panel, S2(k)/2 for L fermions artificially loaded

into the second band, see Eq. (6). The value W can be extracted only in the latter

case.

described by the following contribution to the Hamiltonian: Ĥtr =
∑

r wrâ
†
râr, with

wr = w̄(r − L/2)2. The effect of an external potential can be understood in a Thomas-

Fermi approach as a space-dependent chemical potential µ0(r). Due to the four energy

bands, the system has three insulating phases for intermediate fillings, and, in the

presence of a harmonic trap, this yields a typical wedding-cake structure with integer

density plateaus (see Fig. 4, first column). Remarkably, even in the presence of the

trapping it is possible to identify the fractionalized modes, as we see next. These zero-

energy modes extend in the intermediate metallic region between one trivial plateau

(ρ = 1, 3) and the topological one (ρ = 2), up to exponential corrections.

In Fig. 4, second column, we show the expectation value of n̂∗∗j =
∑j

m=0(n̂L/2+m−1),

which is particularly suited for the detection of fractionalized edge modes in cases where

the density in the center of the trap is ρ = 2. Moving from the center of the trap to

the next plateau (ρ = 1), this operator measures the excess density with respect to the

ρ = 1 value. One can obtain either an integer (no fractional modes) or an half-integer

value (presence of one fractional mode). This is an unambiguous signature of the non-

trivial topological phase (third row): indeed, in this case, the quantity 〈n̂∗∗j 〉 becomes

half-integer for values of j corresponding to the distance of the ρ = 1 plateau from the

center of the trap.

As a final remark, let us stress that the problem of detecting fractionalized edge
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Figure 4. Charge fractionalization and winding number in a system with harmonic

confinement for topological and non-topological phases. We consider a trap with

w̄/t = 0.03 for B = π/2, J/t = 1 and µ/t = 0.5, for which Ωc,1/t ' 1.35 and

Ωc,2/t ' 2.16. Different rows refer to different values of Ω/t, from up to down, 0.85,

1.1, 1.75, 2.5. The number of particles is chosen to have a density ρ = 2 in the center of

the trap. The first column displays the density of the system 〈n̂j〉. The second column

displays 〈n̂∗∗j 〉. The third column shows the winding number relative to the second

band S2(k) computed for a system with trap (black) and without a trap (blue).

modes through a density measurement was first addressed in Ref. [57, 58], where this

detection method relies on the optical measurement of reflected light. The recent

experimental advances, however, allow for the challenging method presented above, since

the feasibility of a single-atom detection for ultracold fermions in optical lattices has

indeed been demonstrated [59, 60, 61]. In particular, a combination of laser cooling and

fluorescence detection enables an unambiguous measurement of the occupancy of single

sites for both 40K [59, 60] and 6Li [61] gases. This is of particular importance for the

detection scheme that we are proposing, because it could suffer from the experimental

inability to fix the total number of atoms which are used in the many experimental

realizations necessary to reconstruct the signal 〈n̂j〉. The novel single-atom microscopes

will also allow a post-selection based on the global number of particles of the system,

necessary to obtain an accurate measurement.
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3.2. Spin winding number

Another interesting signature of the topological phase is offered by the expectation value

of the spin operator:

Σ̂(k) =
1

2
â†k (σ ⊗ τ0) âk (3)

where âk is the four-component annihilation operator in momentum space. This

approach is inspired by the techniques presented for two-dimensional systems in

Refs. [43, 44, 46, 45, 47] and for ladders in Ref. [62], where it was shown that

the expectation value of the spin 〈Σ̂(k)〉 provides a good observable to identify

the topological invariant (winding number) of certain topological insulators. In the

following, we generalize this procedure to our quasi-one-dimensional ladder model and

show that also here the topological invariant W , which clearly identifies the non-trivial

topological regime, can be extracted from 〈Σ̂(k)〉. This is thus another example of the

interesting concept that a time-of-flight measurement can detect topological order.

The Hamiltonian (1) can be written in a real form thanks to its symmetries;

therefore 〈Σ̂y(k)〉 = 0 for each eigenstate of the system and 〈Σ̂(k)〉 always lies in the

x̂− ẑ plane. The “spin winding number” S is defined as the number of times the vector

〈Σ̂(k)〉 encircles the origin for k going from 0 to 2π (the lattice spacing is set to 1). Let

us denote with S2(k)/2 the expectation value of the spin operator (3) for a state of non-

interacting fermions filling completely and solely the second energy band. Remarkably,

the parity of S2, which is the winding number of S2(k), coincides with the topological

order parameter of the model:

W = (−1)S2 (4)

(see Appendix A for a demonstration and for details on the analytical calculation of

this topological index for this specific model). Eq. (4) is analogous to those derived for

several other two-dimensional models [43, 44, 45, 46, 47]: it relates a topological invariant

to a quantity, S2, to be extracted via time-of-flight imaging. A similar behavior was

discussed in Ref. [62] for a two-band generalizations of the SSH model. In our case,

we stress that the second band of the model is the lowest-energy band with non-trivial

topological order; this is also related to the fact that the fractionalized edge modes

appear in the second bulk gap.

We now describe how to measure S2, for realistic systems, even in the presence of

a harmonic trap. The main problem is that the spin winding number has to be probed

for the second band of the Hamiltonian only: in a physical realization of the topological

phase, both the first and the second band are filled, and the acquired signal includes

information of both. The right column of Fig. 3 shows the expectation value of the spin

〈Σ̂(k)〉 obtained when the system with hard-wall boundaries is filled with 2L fermions

(top panel) and with only L fermions (middle panel). Both signals are not particularly

interesting. If we consider the artificial situation where atoms populate the second

band only (bottom panel), the spin expectation value is characterized by a winding

number that reproduces the behavior of W and encircles the origin in the topological
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phase. In the ideal case of a hard-wall confining potential, the required value of the

second band can be extracted by repeating the experiment twice, at densities ρ = 1

and ρ = 2: the difference of the measured distributions returns the sought information

〈Σ̂(k)〉ρ=2 − 〈Σ̂(k)〉ρ=1 = 1
2
S2(k).

In the presence of a harmonic trap, the wedding cake density profile suggests that

the many-body wavefunction can be roughly thought as a state where each energy band

α is uniformly populated by Nα atoms (N1 ≥ N2 ≥ N3 ≥ N4 ≥ 0). In this case the

measurement of the observable 〈Σ̂(k)〉 returns:

〈Σ̂(k)〉 =
1

2

∑
α

Nα

L Sα(k) (5)

where Sα(k) is the expectation value of the spin calculated in the thermodynamic

limit for the single particle eigenstate of the αth energy band (see Appendix A). L
is the discretization adopted for the Brillouin zone in the time-of-flight imaging (see, for

example, [43, 46]).

If we consider the case in which the density profile shows only two plateaus, the

value of S2(k) can be estimated by comparing the observed 〈Σ̂(k)〉ρ=2 with that of a

realization with a single plateau only, 〈Σ̂(k)〉ρ=1:

S2(k) =
2L
N2

(
〈Σ̂(k)〉ρ=2 −

N1

N ′1
〈Σ̂(k)〉ρ=1

)
(6)

where N1 and N2 are the occupations of the two bands for the state with two plateaus,

and N ′1 is the total number of atoms in the reference state with a single plateau. All

the quantities N1, N2 and N ′1 can be experimentally accessed and we report in the

right column of Fig. 4 the comparison of the data obtained for hard wall and harmonic

potentials. Our numerical simulations confirm that even in the presence of the trap S2

is equal to ±1 in the topological phase, whereas in the trivial phases, it is either 0 or

±2 (see Fig. 4).

Let us conclude with some information on how to measure 〈Σ̂(k)〉 through spin-

resolved time-of-flight imaging [43, 44, 46, 45, 47] in our setup. Special care is required in

time-modulated systems with spin-dependent features [63], as considered in the specific

proposal detailed in Sec. 5 because spin-dependent observables can potentially undergo

large and complicated micro-motion (rapid motion with a time-scale of the order of the

driving period 2π/ω), which typically alters the accuracy of measurements. In such

schemes, stroboscopic measurements performed at specific times, 2π/ω × n where n

is integer, are generally required to extract relevant information relative to the spin-

dependent quantities [63]. For the scheme detailed in Sec. 5, the micro-motion can be

estimated from the unitary operators K(t) and R(t) defined in that Section, through the

method of Ref. [53]. We find that 〈Σ̂z(k)〉 is unaffected by the micro-motion; in contrast,

an accurate analysis of 〈Σ̂x〉 does require a stroboscopic measurement. Moreover, we

note that measuring the expectation value of Σ̂x also necessitates a π/2 pulse, which has

to be short compared to the driving period in order to probe the system stroboscopically.
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Figure 5. Phase diagram of the interacting model at half-filling in the U/t and

J/t plane. (Left) Single-particle gap ∆1/t. (right) Two-particle gap ∆2/t. The

topological region is characterized by ∆1 = 0 (dark blue region in the left panel)

and it is delimited by gapless regions defined by ∆2 = 0 (dark blue regions in the

right panel) as represented schematically in Fig. 6. The calculations are performed for

Ω/t = 1.8, B = π
2

L
L+1 and µ/t = 1 at L = 72 with bond dimension D = 200.

4. Interacting system

Let us now consider the role of interactions, with a special emphasis on the robustness

of symmetry-protected topological order. It is experimentally relevant to consider an

on-site Hubbard interaction in each leg:

Ĥint = U
∑
r,τz

n̂r,τz ,σz=↑n̂r,τz ,σz=↓. (7)

and to analyze the phase diagram of Ĥ0+Ĥint at half filling, ρ = 2, which is characterized

by the competition between the topological insulator (TI) and Mott insulator (MI)

occurring in the presence of a strong contact repulsion. We employ a density-matrix

renormalization group algorithm based on a Matrix-Product State (MPS) ansatz [64, 65].

We will consider systems with open-boundary conditions with L = 72 and maximal bond

dimension D = 200.

The transition between TI and MI can be located via the analysis of the charge

gap at N = 2L. In particular, the single-particle gap is defined as:

∆1(N) = E(N + 1) + E(N − 1)− 2E(N), (8)

where E(N) is the ground-state energy of the system with N fermions. Clearly,

∆1(N) > 0 for the MI because the system has a thermodynamic gap. On the other

hand, the TI has zero-energy modes which ensure that E(N − 1) = E(N) = E(N + 1)

and thus ∆1(N) = 0. Unfortunately, the mere calculation of ∆1 does not permit to

discriminate the TI from a generic gapless phase, for which ∆1(N) = 0 too. We thus
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Figure 6. Schematic structure of the phase diagram at half filling as a function of J

and U . (Left) The blue region represents the topological region as extracted from the

numerical results presented in Fig. 5 (note that strictly speaking our numerics could

not access the thermodynamic limit). (Right) Qualitative extrapolation of the phase

diagram. Three gapped phases can be detected: topological insulator (TI), trivial band

insulator (BI) and Mott insulator (MI). Blue lines represent the phase transitions. Our

numerical results suggest that the MI and BI phases are adiabatically connected. The

exact nature of the phase diagram in the dotted region cannot be established due to

numerical limitations.

consider also the two-particle gap:

∆2(N) = E(N + 2) + E(N − 2)− 2E(N). (9)

Whereas for a gapless phase ∆2(N) is also equal to zero, for a TI it is larger than zero,

signaling the gap which is protecting the phase.

Based on this discussion, we now consider a systematic study of the Hamiltonian,

focusing on the competition of the two terms which are responsible for a gap opening,

namely, the interaction term proportional to U responsible for the MI, and the interchain

tunneling proportional to J . Roughly speaking, we identify the pairing term as

the one inducing the TI, since at U = 0 the system is in a topological phase for

0 < J2 < J2
c,1 ≡ Ω2 − (2 cos(B/2) − µ)2 (see Appendix A for more detail) and the

two chains decouple at J = 0.

Fig. 5 presents the numerical results for ∆1(2L) and ∆2(2L) in the parameter space

spanned by U/t and J/t. The other parameters are chosen such that at U = 0 there is a

TI, and are listed here for completeness: Ω/t = 1.8, B = π
2

L
L+1

and µ/t = 1. Calculations

are limited to the size L = 72 and a systematic scaling to the thermodynamic limit,

as well as the exact evaluation of the properties of the critical lines, is beyond our

numerical possibilities; additionally, the two-dimensional space is studied with a grid

of 0.2 along both axis. Despite these limitations, the qualitative nature of the phase

diagram emerges quite clearly. Indeed, through the study of ∆1 and ∆2 we are able

to identify the TI, the MI and the critical regions which separate them, resulting in

the schematic phase diagram presented in Fig. 6. The topological region is identified

with the large region where ∆1 = 0 but ∆2 > 0 whereas for the MI both ∆1 and ∆2
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Figure 7. Energy differences of the ground states of the system for several fillings

around N = 2L. The same data are plotted as a function of U/t (left) and t/U (right).

The Hamiltonian parameters are J/t = 1, Ω/t = 1.8, B = π
2

L
L+1 , so that the cut

corresponds to the line J/t = 1 in the phase diagram of Fig. 5. L = 72 and the

maximal MPS bond dimension is D = 150

are larger than zero. Critical regions with ∆1 = ∆2 = 0 separate the two insulators.

The schematic phase diagram discriminates the MI, whose appearance is driven by the

on-site repulsion, from the trivial band insulator (BI), which appears instead also at

U = 0. Our investigation did not identify a phase transition between these two trivial

insulating phases, which are adiabatically connected.

To better analyze the transition between TI and MI, in Fig. 7 we focus on the line

at J/t = 1, which entails a phase transition for U/t = ucr ∼ 1.9. We show the behaviour

of the chemical potentials E(2L+α)−E(2L+α−1) for α = +2,+1, 0,−1 as a function

of U . Two qualitatively different behaviours are separated by ucr. For U/t > ucr
the energy cost for adding one particle to the states with N = 2L or N = 2L + 1

is approximately U (especially for large values of U/t). Conversely, subtracting one

particle from the states with N = 2L or N = 2L − 1 does not yield any energy gain.

Thus, ∆1(N = 2L) and ∆2(N = 2L) are larger than zero and are approximately equal

to U and 2U , respectively: these are typical signatures of a MI.

For U/t < ucr the energy cost and gain for adding and removing one particle

to/from the state with N = 2L are both equal to U/2. We interpret this as a signature

of the fractionalization of the zero-energy modes of the TI: the charge excess n ∼ 1/2

on top of the density plateau ρ = 2 (one particle per site) does cost a repulsive energy

Un. Since the zero-energy modes have fermionic nature, they cannot accommodate

more than one particle: the energy cost for adding one additional particle to the state

with N = 2L + 1 becomes significantly larger than U/2 (vice versa for removing one

particle from the state with N = 2L−1). Thus, ∆1(N = 2L) = 0 but ∆2(N = 2L) > 0,

signaling a TI for U/t < ucr.

The MI extends for U/t� 1, where a perturbative expansion shows that the system

can be described by a spin model in a paramagnetic phase: under the assumptions

U � J, t and ρ = 2, one atom is trapped in each site of the two legs. We thus introduce

the Pauli operators η̂ir,τ (i = x, y, z) acting on the local effective Hilbert space spanned
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by the two spin states σ = ±1 of the atom located at the site r of the chain τ = ±1.

We obtain the following second-order perturbative spin Hamiltonian:

Ĥpert =
∑
r,τ

[
Ωη̂xr,τ + Jeff η̂

z
r,τ η̂

z
r+1,τ + Jeff cosB

(
η̂xr,τ η̂

x
r+1,τ + η̂yr,τ η̂

y
r+1,τ

)
+Jeff sinB

(
η̂xr,τ η̂

y
r+1,τ − η̂yr,τ η̂xr+1,τ

)]
+
∑
r,j

Keff η̂
j
r,τ=1η̂

j
r,τ=−1 (10)

where Jeff ∝ t2/U and Keff ∝ J2/U . In this regime, the term proportional to Ω

dominates and the ground state of Hpert is close to a trivial product state in which

all the spins are oriented in the x̂ direction. We expect that such state, characterizing

the MI phase, might be adiabatically connected to the trivial band insulator at U = 0

and J > Jc,1. Our numerics does not suggest the existence of a further phase transition

between the Mott and the trivial band insulating phases.

The phase diagram in Fig. 5 shows that the topological region appears clearly as a

thermodynamic region, within a well defined parameter regime. We emphasize that, for

1.8 . J . 2.2, the system is in a topologically trivial phase for U = 0, and enters the

symmetry-protected topological phase when the interaction parameter U is increased.

Therefore the interaction is not necessarily obnoxious to the purpose of experimentally

obtaining the topological phase but, on the contrary, it can also drive the system into

it by shifting the position of the critical point. This has been verified also in the

corresponding topological superconductor systems [35, 36, 37], where the addition of

repulsive interactions is proven to expand the topological phase for certain ranges of the

physical parameters (see also [39, 40] for related models in terms of Majorana modes).

This means that, for some particular value of J > Jc,1 the presence of a repulsive

interaction allows the formation of edge modes otherwise absent. A similar behavior is

also observed in 2D systems with time-reversal invariance [66]. Let us stress, however,

that this has nothing to do with the physics of fractional Chern insulators, where

interactions drive the system into distinct (strongly-correlated) topological phases. As

the phase diagram clearly shows, there is only one TI phase, which is strictly equivalent

to that of the non-interacting system. Importantly, the phase diagram in Fig. 5 shows

that interactions have a non-trivial role in tuning the system in and out the TI phase.

In order to further clarify this last point, we now investigate in more detail the

properties of the topological phase in the interacting system. Numerical investigations

reported in Fig. 8 show that the signatures of the non-interacting TI persist in the

presence of interactions. First, the density profile of the gas allows for a clear

identification of the presence of fractionalized edge modes located at the boundaries

of the ladder via the computation of 〈n̂j〉 and 〈n̂∗j〉. Indeed, for U/t ≤ ucr, Fig. 8

shows that 〈n̂∗j〉 saturates to 0.5 within few sites, which is strongly different from the

behaviour for U/t ≥ ucr. It is interesting to observe that within the topological region

the localisation length of the edge modes has a weak dependence on U/t. Second, the

system displays also within the interacting region a non-zero winding number associated

with the second band of the system. As in an interacting system bands are not well
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Figure 8. Properties of the interacting topological phase for J/t = 1, Ω/t = 1.8,

B = π
2

L
L+1 : all the analyzed systems are on the line J/t = 1 in the phase diagram in

Fig. 5. L = 72 and MPS bond dimension D = 200. (top, left) Density profiles 〈n̂j〉 and

〈n̂∗j 〉 of the gas with U/t = 1 for N = 2L and N = 2L± 1. The data clearly show the

presence of localised and fractionalised edge modes. (top, right) The plot of |〈n̂j〉 − 2|
highlights the localisation of the edge modes. (bottom, left) Spin winding associated

to the second band of the model S2 for several values of the interaction, within and

without the TI. (bottom, right) Entanglement spectrum (60 largest eigenvalues) for

N = 2L and U/t = 1.

defined, the winding number is computed by subtraction of the data relative to ρ = 1

to those relative to ρ = 2 (see similar discussion in Sec. 3). This robustness of the

spin winding number against local interaction is consistent with similar results in two-

dimensional systems [48]. Finally, on a more abstract side, the analysis of the Schmidt

spectrum presents the robust two-fold degeneracy of symmetry-protected topological

phases [67].

5. Physical realization of the model

The physical realization of the ladder system in Eq. (1) can be obtained by extending

the 2D setup elaborated and realized in Ref. [4]. The present proposal builds on a 2D

optical superlattice subjected to a well-designed time-modulation as displayed in Fig. 9.

Along the y direction a superlattice potential is used to partition the lattice into a 1D

array of isolated ladders. Hopping between the two legs of the ladder corresponds to

transitions τ̂z = −1↔ +1, see Fig. 1. The main challenge in realizing the Hamiltonian in
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Figure 9. Schematic drawing of the proposed experimental setup. The 2D lattice

configuration consists of a spin-independent superlattice along y to isolate individual

ladders from each other and a superlattice potential along x, which creates a spin-

dependent energy offset ∆σz between neighboring sites in order to inhibit tunneling.

Tunneling is then restored resonantly with two pairs of beams denoted as r and b

following the scheme introduced in Ref. [4]. Each of the pairs consists of a standing

wave along x and a running-wave along y. For ωr/b = ω1,r/b − ω2,r/b = ±∆ and

qr/b = k1,r/b − k2,r/b = (1, 1) · π/(2a) an effective flux Φ = π is realized with spin-

dependent complex tunneling-matrix elements, here a is the lattice constant of the

potential along x.

Eq. (1) consists in engineering the spin-dependent complex matrix elements for tunneling

processes taking place along the legs of the ladder. In the following, we will show that

this can be achieved by combining a spin-dependent superlattice potential x (Fig. 9),

which introduces a spin-dependent energy offset ∆ between neighboring sites, together

with the space-dependent time-modulation of the lattice discussed in Ref. [4].

We start by considering the time-independent part of the system, which can be

described by the 2D tight-binding Hamiltonian

Ĥ0 =− Jx
∑
m,n

(
â†m+1,nâm,n + H.c.

)
+ (11)

− Jy
∑
m,n

(
â†m,n+1âm,n + H.c.

)
+

∆

2

∑
m,n

(−1)mâ†m,nσzâm,n,

where m and n label the horizontal and vertical integer coordinates. The spin-dependent

staggered potential could be realized, for instance, by considering an appropriate anti-

magic wavelength, for which the polarizability is opposite for the two spin species [51].

In order to keep the bare tunneling processes of strength Jx,y spin-independent the

remaining lattice potentials need to be created using a magic wavelength, for which the
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polarizability is the same for the two spin-species.

The bare tunneling is suppressed along the legs due to the offset ∆ � Jx,y, which

allows for a complete control over induced-tunneling-matrix elements, such as those

realized by modulating the lattice resonantly [53]. Following Ref. [4], the modulation is

taken to be produced by two pairs of laser beams with frequency difference ωr/b = ±∆

(Fig. 9) in order to restore resonant tunneling. The corresponding time-dependent

potential defined by these four lasers is then of the form

V̂ (t) = κ
∑
m,n

â†m,nâm,n
[
v(m,n)eiωt + v∗(m,n)e−iωt

]
, (12)

with the resonance condition ω = ∆, and we choose the laser phases in such a way that

v(m,n) =
1

2

{
cos
(
m
π

2
− π/4

)
e−iπn−iB/2 + cos

(
m
π

2
+ π/4

)
eiπn+iB/2

}
. (13)

This requires a stabilization of the phase of the modulation relative to the static

lattice potential, which is challenging and was not yet demonstrated in previous

realizations [49, 50, 2, 4]. This specific choice of the potential v(m,n) is made in

order to independently address successive hopping terms along the x direction, which is

generally required when engineering Peierls phase-factors in superlattice structures, see

Refs. [53, 4] and below.

The time-evolution of the system is ruled by the Schrödinger equation i∂tψ =

Ĥ(t)ψ, where Ĥ(t) = Ĥ0+V̂ (t) is defined by Eqs. (11) and (12). The long-time dynamics

of the system can be suitably described by an effective-Hamiltonian approach [53], which

is valid in the high-frequency regime ω →∞. Since the static Hamiltonian H0 contains

a staggered-potential term that explicitly diverges linearly with ∆ = ω, we first apply

the unitary transformation [53]

ψ = R̂(t)ψ̃ = exp
(
−iŴ t

)
ψ̃, Ŵ =

∆

2

∑
m,n

(−1)mâ†m,nσzâm,n , (14)

which removes the diverging term. The effective Hamiltonian can then be derived in

this moving frame, using the method of Refs. [53, 63] (see also Ref. [68]).

For the sake of simplicity, let us first consider the dynamics associated with the

species σz = +1. For these atoms, the transformed Hamiltonian reads:

H̃(t) = R̂†(t)
[
Ĥ0 + V̂ (t)

]
R̂(t)− Ŵ = V̂ +eiωt + V̂ −e−iωt, (15)

where

V̂ + = κ
∑
m,n

n̂m,nv(m,n)− Jx
∑

m odd,n

(
â†m+1,nâm,n + â†m−1,nâm,n

)
,

V̂ − = κ
∑
m,n

n̂m,nv
∗(m,n)− Jx

∑
m even,n

(
â†m+1,nâm,n + â†m−1,nâm,n

)
. (16)
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We describe the time-evolution of the system dictated by H̃(t) through the evolution

operator, which we partition as

Ũ(t) = e−iK̂(t)e−itĤeffeiK̂(0), (17)

where the effective Hamiltonian Ĥeff describes the long-time dynamics, and where the

operator K̂(t) captures the micro-motion. Following Ref. [63], we find that the effective

Hamiltonian associated with the general time-dependent Hamiltonian in Eq. (15) is

given by:

Ĥeff =
1

ω
[V̂ (+1), V̂ (−1)] +O(1/ω2) (18)

= −Jxκ
ω

[ ∑
m even, n

â†m+1,nâm,n (v(m+ 1, n)− v(m,n)) +

+ â†m−1,nâm,n (v(m− 1, n)− v(m,n))

]
+ H.c.

=
Jxκ√

2ω

[ ∑
m even, n

â†m+1,nâm,n cos
mπ

2
einπ+iB/2 + â†m−1,nâm,n cos

mπ

2
e−inπ−iB/2

]
+ H.c.

=
Jxκ√

2ω

∑
n

einπ+iB/2

[ ∑
m even

(
â†2m+1,nâ2m,n + â†2m,nâ2m−1,n

)
+
∑
m odd

(
−â†2m+1,nâ2m,n − â†2m,nâ2m−1,n

)]
+ H.c.

The irrelevant sign change in the tunneling matrix elements (i.e. in the last line of

Eq. (18)), can be removed by applying an additional gauge transformation

Ĝ = exp

[
iπ

∑
m odd,n

â†2m,nâ2m,n

]
= Ĝ†, Ĝ2 = 1 , (19)

which indeed reverses the sign of the tunneling terms â†2m+1,nâ2m,n and â†2m,nâ2m−1,n for

m odd only. In this way, the final effective Hamiltonian describing the dynamics of the

σz = +1 species yields

Ĥeff → ĜĤeffĜ =
Jxκ√

2ω

∑
m,n

â†m+1,nâm,ne
inπ+iB/2 + H.c. (20)

which is indeed the tunneling term in Eq. (A.1) for σz = +1 atoms. In the case of the

σz = −1 species, the staggered potential is reversed, so that the even and odd sites must

be inverted. This results in the final effective Hamiltonian:

Ĥeff =
Jxκ

ω

∑
m,n

(
(−1)nâ†m+1,ne

iBσz/2âm,n + H.c.
)
, (21)
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where (−1)n is equivalent to the operator τz in Eq. (A.1).

The Zeeman term Ωσx present in the Hamiltonian (1) can be directly generated

by two resonant coupling potentials V̂ RC
i (t) =

∑
m,n 2Ω cos(νit)âm,nσxam,n. Indeed,

considering the bare atomic frequency ωz � ∆ between the two sublevels, they are

effectively separated by the position dependent energy offset ωz + (−1)m∆ created by

the spin-dependent potential in Eq. (11). Under the transformation R̂(t), the effect of

the coupling becomes

R̂†(t)V̂ RC
i (t)R̂(t) =

∑
m,n

2Ωe−i∆(−1)mt cos (νit) â
†
m,nσ+âm,n + H.c. (22)

where σ+ = (σx + iσy)/2. This terms commute with the gauge-transformation operator

Ĝ and, by choosing the frequencies ν1,2 = ωz ± ∆, we recover the required Zeeman

term Ωσx in Eq. (1), both for even and odd sites, through the standard rotating-wave

approximation.

We note that the effective Hamiltonian (1) was derived at first order in ω−1, in a

basis provided by two commuting unitary operators: R̂(t) and Ĝ. It is important to

notice that these latter operators commute with the τ operators, so that they neither

affect the static hopping term Jτx, nor the static potential difference µτz: this indicates

that these static terms can be directly included in the (effective) Hamiltonian (1). The

latter remark is also valid for the spin-independent potential µ0. Therefore, we conclude

that the application of two pairs of Raman lasers and a radio-frequency field, combined

with the spin-dependent staggered potential directed along the ladder, allows one to

generate all the spin-dependent terms in the ladder Hamiltonian (1).

Importantly, we emphasize that the Hubbard interactions are also unaffected by

the aforementioned transformations Ĝ and R̂(t). Thus, the effects of interactions can

be directly incorporated into the effective Hamiltonian (1), at first order in ω−1.

Finally, the time-evolution operator in Eq. (17) is then completely determined by

computing the kick operator K̂(t), which is readily calculated using the expression

[63, 53]

K̂(t) =
1

iω

[
V̂ +eiωt − V̂ −e−iωt

]
≈ 2κ

ω

∑
m,n

n̂m,n |v(m,n)| sin(ωt+ θm,n), (23)

where we assumed that κ� Jx and we defined θm,n = arg[v(m,n)].

6. Conclusions

In this work we presented a ladder setup for ultracold fermions subject to both the

presence of an artificial π-flux magnetic potential and a spin-orbit coupling. Such a

model may be seen as the synthesis of two accessible experimental techniques to realize

synthetic gauge fields in optical lattices: on one side, the realization of complex tunneling

matrix elements using time-modulated optical lattice [3, 4, 2, 49, 50], and, on the other,

the implementation of spin-orbit terms through the control over internal atomic degrees
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of freedom [5, 6]. Analogously to models already discussed in the context of nanowires

[29, 30], the combination of these two elements gives rise to a particle-hole symmetry

which protects non-trivial topological phases within the Bogoliubov-de Gennes and

chiral classes of topological insulators and superconductors. As the model conserves the

number of particles and can be realized with state-of-the-art experimental techniques,

our results might give a substantial advance towards the observation of topologically-

protected zero-energy modes in fermionic systems with and without interactions. In

particular the physical realization that we present does not require the engineering of

any pairing mechanism, neither the coupling to external molecular gases or superfluids,

as, for example in [9, 11, 12, 14], nor an interchain pair-hopping, as exploited in the

ladder model presented in [13].

No interaction is indeed necessary for the appearance of the symmetry-protected

topological phase. Consequently, the realization of the particle-hole symmetry through

the ladder geometry is not as robust as its counterpart in topological superconductors

due to the absence of a true superconducting gap, thus it should be considered an

extrinsic feature. However, due to the absence of disorder and to the high degree of

isolation in ultracold atom setups, we expect the topological features of the system to

be experimentally detectable. For example, the introduction of a trapping potential does

not spoil the observation of edge modes, despite breaking the particle-hole symmetry.

We analyzed two experimentally relevant signatures of the appearance of topological

phases: the presence of fractionalized edge modes, detectable through site-resolved

density measurements (as recently reported in Refs. [59, 60, 61]), and the winding

behavior of the spin degree of freedom, which can be observed through spin-resolved

time-of-flight imaging. In particular, we have shown how to detect these observables even

in the presence of a trapping potential, which induces soft boundaries, often believed to

be particularly disruptive for the detection of topological signatures.

Our study has also considered the effect of a contact repulsive interaction; this

is possible thanks to the presence of the spin degree of freedom that differentiate the

main features of our model from its spinless counterparts as the SSH and its interacting

generalizations (see for example [41, 42]). Apart from mapping out the phase-diagram

of the model, which entails two gapped phases, with and without topological properties,

we have found that a Hubbard interaction can enhance the extension of the topological

phase, instead of being detrimental. Furthermore, the spin winding number introduced

in the article provides a good topological parameter also in the interacting case, where

the usual order parameters based on single-particle wavefunctions fail.

Concluding, we mention that the model under scrutiny may be an interesting

platform for the study of further fractionalization effects, based on a particular fine

tuning of the parameters, which can be reminiscent of the physics of parafermionic

zero-energy modes (see Ref. [69] for a recent review) in the spirit of Ref. [30].
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Appendix A. Symmetries of the model, order parameter and spin winding

number

In this Appendix we examine the non-interacting ladder model and we discuss, in

particular, the relation between the order parameter W , that distinguishes trivial and

topological phases, and the observed spin winding number.

The Hamiltonian (1) is translationally invariant and can be also expressed in

momentum space as Ĥ =
∑

k â
†
kH(k)âk where:

H(k) = 2tτz cos(B/2) cos k − 2tτzσz sin(B/2) sin k + Ωσx + Jτx + µτz + µ0. (A.1)

We observe that its kinetic term corresponds to a Peierls substitution k → k + Bσz
2

.

Its spectrum is symmetric for a tranformation mapping B → B + 2π and t→ −t.
Therefore, even if the Hamiltonian is periodic in B with period 4π, we can restrict

our study to the case 0 ≤ B < 2π. Besides, we can consider only positive values of

Ω and J because their sign trivially depends on the chosen basis for the spin and

pseudospin. In particular H(k,−Ω) = σzH(k,Ω)σz and H(k,−J) = τzH(k, J)τz.

Analogously we consider only t > 0, because of the symmetry between the two chains

H(k,−t,−µ) = τxH(k, t, µ)τx. Hereafter we rescale all the energies in units of t in such a

way that, below, we will always consider t = 1. Finally we observe that the expectation

value of σy is always null because the Hamiltonian (A.1) is real.

The system is characterized by an anti-unitary time-reversal-like symmetry T = σx,

TH(k)T † = H∗(−k) , (A.2)

and, for µ0 = 0 (the system is exactly at half filling), we obtain the particle-hole

symmetry C = τyσy:

CH(k)C† = −H∗(−k). (A.3)

These non-unitary symmetries characterize the topological symmetry class BDI (see,

for example, [24, 23]), which is also characterized by the unitary chiral symmetry

P = TC = τyσz.

Additional terms in the Hamiltonian may break the C symmetry which is indeed

fragile, due to the lack of a physical pairing interaction; we emphasize however that
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such perturbations become significant only if their magnitude is comparable with the

energy gap. To this concern, in a cold atom gas, the presence of noise and defects are

negligible and the main effect we must consider is the trapping potential bringing to a

space dependent chemical potential µ0. As discussed in Sec. 3, however, the local shift

in energy provided by the trapping allows in general to isolate topological regions of

the chain with the effect of binding fractionalized modes at the interface between these

regions and the trivial ones.

An additional Zeeman term proportional to σz, which breaks only the time

reversal symmetry, brings instead the system in the symmetry class D, which is still

topologically non-trivial in one dimensions. Therefore, this sort of term does not alter

in a fundamental way the properties of the system.

One-dimensional systems in the BDI class possess topological phases labelled by a

topological invariant in Z [23]. This topological invariant, can be evaluated by exploiting

the chiral basis defined by the symmetry P [56]. In this basis the Hamiltonian assumes

the simple form:

H(k) =

(
0 A(k)

A†(k) 0

)
; A =

(
iµ+ J + 2i cos

(
B
2

+ k
)

iΩ

iΩ iµ− J + 2i cos
(
B
2
− k
)) .
(A.4)

If det(A(k)) 6= 0 for all k then the system is gapped. In this case, detA(k) =

|detA(k)| eiξ(k) and the winding number of ξ(k) constitutes the topological invariant

which distinguish topological and non-topological phases [56]. In this model, this

winding number may assume only the values 0 or ±1 characterizing trivial and

topological phases respectively. In more detail, one obtains:

detA(k) = −J2 − µ2 + Ω2 − 2 cos(B)− 2 cos(2k)+

− 4µ cos(B/2) cos(k) + 4iJ sin(B/2) sin(k) . (A.5)

This determinant is purely real for k = 0, π or for B = 0. For B = 0, its phase ξ(k)

cannot change its value from 0 to π unless detA crosses zero and the gap closes; thus

the case B = 0 is either trivial or gapless.

In all the other cases, for 0 < B < 2π, the topological invariant W is evaluated by

considering the behavior of ξ between k = 0 and k = π. In particular, the tangent of

the phase ξ is given by:

tan [ξ(k)] =
4J sin B

2
sin k

Ω2 − 4µ cos B
2

cos k − 2 cosB − J2 − 2 cos(2k)− µ2
(A.6)

where the numerator is always positive for B ∈ (0, 2π) and k ∈ (0, π), and always

negative for B ∈ (0, 2π) and k ∈ (π, 2π). Therefore, going from k = 0 to k = π, ξ(k)

must be always included in (0, π) since sin(ξ) > 0 in this regime, whereas for k which

goes from π to 2π, ξ(k) must be either in (−π, 0) (if ξ(k = π) = 0), such that its winding

number vanishes for k → 2π, or ξ(k) ∈ (π, 2π) which implies a final winding number
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Figure A1. Different behavior of the phase ξ as a function of the momentum k for

a trivial phase (red dashed line) and the topological phase (blue line). In the trivial

case the values of ξ at k = 0, π, 2π are equal and the winding number parity is W = 1;

for the topological phase, instead, ξ(k = 0) and ξ(k = 2π) differ by 2π. The phases

were calculated for µ = J = 1 and B = 4π/3 for Ω = 1.2 in the topological region and

Ω = 2.3 in one of the trivial regions. The shaded regions are forbidden for B ∈ (0, 2π).

equal to one (see Fig. A1). Thus the parity of the winding number results:

W = sign

[
Ω2 − 2− J2 − µ2 − 4µ cos(B/2)− 2 cos(B)

Ω2 − 2− J2 − µ2 + 4µ cos(B/2)− 2 cos(B)

]
. (A.7)

W = 1 when the winding number is 0, whereas W = −1 for the winding number

being ±1. Therefore, in terms of the parameter Ω, two phase transitions appear at:

Ω2
c,1 ≡ J2 + min

[(
µ− 2 cos

B

2

)2

,

(
µ+ 2 cos

B

2

)2
]

(A.8)

and

Ω2
c,2 ≡ J2 + max

[(
µ− 2 cos

B

2

)2

,

(
µ+ 2 cos

B

2

)2
]
. (A.9)

The system is in a topological phase (W = −1) for Ω2
c,1 < Ω2 < Ω2

c,2 whereas for

Ω2 < Ω2
c,1 and Ω2 > Ω2

c,1 we obtain trivial phases (W = 1). At the transition points

Ω2 = Ω2
c,1,Ω

2
c,2, the gap closes respectively for k = π, 0, consistently with the results in

[30, 70]. The corresponding critical values for J are given by:

J2
1,2 = Ω2 − (µ∓ 2 cos(B/2))2 (A.10)

Depending on Ω, µ and B there can be 0,1 or 2 phase transitions as a function of J .

In order to evaluate the spin expectation value in the plane x̂ − ẑ, it is useful to

adopt the Hamiltonian form in Eq. (A.4) which allows a simple diagonalization. In this

basis the components of the physical spin, Sx and Sz, become:

Sx = σx ⊗ τy , Sz = σz ⊗ τ0. (A.11)
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where σi and τi are Pauli matrices in this basis. To obtain the eigenstates of the

Hamiltonian we consider:

H2(k) =

(
A(k)A†(k) 0

0 A†(k)A(k)

)
(A.12)

where, AA† = (A†A)∗ since A = AT . Therefore the generic form of the eigenstates in

this basis is:

Ψ =

(
ψ

±eiαψ∗

)
(A.13)

where ψ are the two eigenvectors of AA†. In particular, we are interested in the

eigenvector corresponding to the lowest eigenvalue of AA†, since it determines the second

and the third bands of H which are topologically non-trivial. The value of α is fixed by

the equation:

ψ†Aψ∗ = ±εe−iα (A.14)

where ±ε are the energies of the two intermediate bands of the system.

The expectation value of Sz in the second band does not depend on the phase α

and it is easily evaluated. It results:

Sz2(k) ≡ 〈Sz〉 =
2 sin(k)

(
sin(B) cos(k) + µ sin

(
B
2

))
N(k)

(A.15)

where N(k) is a positive quantity. In particular we must distinguish two cases:

|µ| ≷ |cosB/2|.
For µ > 2 |cosB/2|, Sz2 > 0 for k ∈ (0, π), thus Sz2 behaves like the imaginary

component of the phase exp[iξ(k)] and it can be showed that the sign of Sx2 at k = 0

and k = π is equal to the sign of the denominator of Eq. (A.6), therefore the spin

winding number of the second band and the winding number of the phase ξ(k) coincide.

For 0 < µ < 2 |cosB/2|, Sz2(k) has a further zero between k = 0 and k = π, therefore

the spin vector is aligned along x̂ in three different points in the interval k ∈ [0, π]. This

can be seen in the last column of Fig 4 (obtained for µ = 0.5 and B = π/2), where the

blue line, representing the average value of the spin in a system without the trapping,

always crosses the horizontal axis three times. The spin winding number S2 is null if

and only if Sx2 (k) has the same sign in these three points (first and last rows). However

if Sx2 (k) assumes the same sign for k = 0 and k = π, then the total spin winding number

for k going from 0 to 2π is even, due to the time-reversal symmetry T . Otherwise it is

odd. At k = 0 and k = π the sign of Sx2 (k) assumes, respectively, the same value of the

signs of the numerator and denominator of W in Eq. (A.7). Therefore the parity of the

spin winding number, (−1)S2 , always coincides with W .

Concerning the behavior at the intermediate zero of Sz2 ,

kc = arccos (−µ sin(B/2)/ sin(B)) , (A.16)
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one has Sx2 (kc) = cos [α(kc)] ∝ Ω−J , therefore in the trivial region where Ω2 > Ω2
c,2 the

spin winding number is trivial. The other trivial region, Ω2 < Ω2
c,1, is instead divided

into two subregimes characterized by a spin winding number S2 = 0 or S2 = 2 separated

in J = Ω. This is shown in the last column of Fig. 4 where the blue lines either does

not wind around the origin (first row, corresponding to Ω < J < Ωc,1) or winds twice

around it (second row, Ωc,1 > Ω > J).

Similar conclusions hold for negative values of µ and it can be shown that the

behavior of the spin winding number is not affected by open or periodic boundary

conditions.
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