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REDUCTION ARGUMENTS FOR GEOMETRIC INEQUALITIES ASSOCIATED

WITH ASYMPTOTICALLY HYPERBOLOIDAL SLICES

YE SLE CHA, MARCUS KHURI, AND ANNA SAKOVICH

Abstract. We consider several geometric inequalities in general relativity involving mass, area,

charge, and angular momentum for asymptotically hyperboloidal initial data. We show how to

reduce each one to the known maximal (or time symmetric) case in the asymptotically flat setting,

whenever a geometrically motivated system of elliptic equations admits a solution.

1. Introduction

In [47], Schoen and Yau proved the spacetime version of the positive mass theorem for asymp-
totically flat initial data by utilizing a reduction procedure involving the so called Jang equation
[30]. For asymptotically hyperboloidal slices of asymptotically flat spacetimes, a similar reduction
argument was given [48] (see also [27]) in which solutions of the Jang equation are required to possess
hyperboloidal asymptotics. This type of solution to the Jang equation results in a deformation of the
initial data, which transforms the original asymptotically hyperbolic structure into an asymptotically
flat structure and preserves the mass up to multiplication by a positive constant. In addition, the
Jang equation imparts a positivity property to the scalar curvature of the deformed data. As in
[47] this yields a conformal change of metric to zero scalar curvature, from which one may conclude
nonnegativity of the mass as a consequence of the time symmetric case [46] of the positive mass
theorem in the asymptotically flat setting. The existence of solutions to the Jang equation with the
desired hyperboloidal asymptotics has recently been established in [45] (see also [44]).

In this paper we seek to generalize this strategy of transforming asymptotically hyperboloidal data
to asymptotically flat data, so that it may be applied to several geometric inequalities motivated by
the standard picture of gravitational collapse and the (weak) cosmic censorship conjecture [10, 42].
Namely, the inequalities that shall be treated here include the Penrose inequality [4, 28, 39], the
Penrose inequality with charge [31, 35, 36, 37], the positive mass theorem with charge [3, 15, 23],
the mass-angular momentum inequality [14, 20, 49], the mass-angular momentum-charge inequality
[12, 18, 34, 49], as well as a lower bound for the area of black holes in terms of mass, angular
momentum, and charge [21]. In the asymptotically flat setting, the general case of each of these
inequalities may be reduced to the known maximal (or time symmetric) case by solving a canonical
system of equations specific to each inequality [5, 6, 7, 8, 22, 33]. The main equation involved shares
a resemblance to the classical Jang equation, and the solution is chosen to vanish at spatial infinity.
In the setting of asymptotically hyperbolic data arising from asymptotically hyperboloidal slices, we
will show that these Jang-type equations may be solved with the hyperboloidal asymptotics produced
in [44, 45] for the classical Jang equation. Thus, with a similar procedure, all these inequalities for
asymptotically hyperboloidal slices are reduced to solving a canonical system of equations.

M. Khuri acknowledges the support of NSF Grant DMS-1308753.
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2. Notation and Definitions

Consider an initial data set (M,g, k) for the Einstein equations modeling an asymptotically hyper-
boloidal, spacelike hypersurface, in an asymptotically flat spacetime. This consists of a Riemannian
3-manifold M with asymptotically hyperbolic metric g, and asymptotically umbilic extrinsic curva-
ture k. We define such an initial data set to be asymptotically hyperboloidal if it possesses an end
which is diffeomorphic to S2 × [r0,∞), and in this region there are coordinates such that

(2.1) g = g0 + a, k = g0 + b,

where g0 = dr2

1+r2
+ r2σ is the hyperbolic metric with σ the round metric on S2, and

(2.2) arr =
mr

r5
+O3(r

−6), arα = O3(r
−3), aαβ =

m
g
αβ

r
+O3(r

−2),

(2.3) brr = O2(r
−5), brα = O2(r

−3), bαβ =
mk

αβ

r
+O2(r

−2),

with Greek letters denoting indices for coordinates on S2. Here mg, mk are tensors and mr is a
function, all on S2 and independent of r. The notation h = Ol(r

−n) asserts that rn+i|∂ir∂γh| ≤ C for
all i+ |γ| ≤ l, and also for later use h = ol(r

−n) asserts that limr→∞ rn+i∂ir∂
γh = 0 for all i+ |γ| ≤ l.

We note that these assumptions can be reformulated, and even weakened in the context of Sections
3-5 below, by using weighted Hölder spaces, see e.g. [19].

The quantities mg, mk and mr encode mass through the formula

(2.4) m =
1

16π

∫

S2

[
Trσ

(
mg + 2mk

)
+ 2mr

]
,

where the integrand is the so called mass aspect function. Note that in referring tom as mass this is a
slight abuse of terminology, as this quantity is physically the total energy, that is, the first component
of the energy-momentum vector (see [9, Definition 1.4]). Definitions of the energy-momentum vector
in the case of asymptotically hyperboloidal initial data with more general asymptotic behavior at
infinity can be found in [13], [40].

Remark 2.1. Clearly, the quantity m defined by (2.4) allows interpretation as mass, that is length
of energy-momentum vector, provided that the coordinate chart at infinity is such that the linear
momentum vanishes. Such a coordinate chart at infinity is called balanced. Note that if the energy-
momentum vector is timelike with respect to a given chart Φ at infinity then there is an isometry
I of the hyperbolic space (H3, g0) such that the chart I ◦ Φ is balanced. This is a consequence of
the fact that the energy-momentum vector transforms equivariantly with respect to Lorentz boosts
which in turn restrict to (nonlinear) isometries of the hyperbolic space.

The initial data also satisfy the constraint equations

(2.5) 2µ = R+ (Trgk)
2 − |k|2g, J = divg(k − (Trgk)g),

where µ and J are the energy and momentum density of the matter fields, and R is scalar curvature.
Moreover, the dominant energy condition is given by

(2.6) µ ≥ |J |g.
For geometric inequalities involving electromagnetic charge, we will make use of initial data for

the Einstein-Maxwell equations (M,g, k,E,B). Here E and B are vector fields representing the
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induced electric and magnetic field on the slice. Such data will also be referred to as asymptotically
hyperboloidal, if in addition to the requirements above the electromagnetic field satisfies

(2.7) Er, Br = O(r−3), Eα, Bα = O(r−1) ⇒ |E|g + |B|g = O(r−2).

The energy and momentum density of the non-electromagnetic matter fields is given by

(2.8) 2µEM = R+ (Trgk)
2 − |k|2g − 2(|E|2g + |B|2g), JEM = divg(k − (Trgk)g) + 2E ×B,

where (E ×B)i = ǫijlE
jBl is the cross product with ǫ the volume form of g. The quantities divg E

and divg B are interpreted as the electric and magnetic charge density, and the following inequality
will be referred to as the charged dominant energy condition

(2.9) µEM ≥ |JEM |g +
1

2
(|divg E|+ |divg B|) .

Note that

(2.10) Qe =
1

4π

∫

S∞

g(E, νg) , Qb =
1

4π

∫

S∞

g(B, νg) ,

are well-defined in light of the fall-off conditions (2.7), where S∞ indicates the limit as r → ∞
of integrals over coordinate spheres Sr, with unit outer normal νg. Here Qe and Qb denote the
total electric and magnetic charge respectively, and we denote the square of the total charge by
Q2 = Q2

e +Q2
b .

When the initial data have a boundary ∂M , it will consist of an outermost apparent horizon.
That is, each boundary component S ⊂ ∂M satisfies θ+(S) := HS + TrSk = 0 (future horizon)
or θ−(S) := HS − TrSk = 0 (past horizon), where H denotes mean curvature with respect to the
normal pointing towards null infinity, and no other apparent horizons are present. Furthermore, in
some cases the initial data will have ends which are not asymptotically hyperboloidal, but are rather
asymptotically flat or asymptotically cylindrical. We say that an end is asymptotically flat if it is
diffeomorphic to R

3 \ Ball, and in the Cartesian coordinates xi given by this diffeomorphism the
following fall-off conditions hold

(2.11) |gij − δij |+ |x||∂gij |+ |x|2|∂∂gij | = O(|x|−1), |kij |+ |Ei|+ |Bi| = O(|x|−2) as |x| → ∞.

For such an end, the ADM mass is well-defined and given by

(2.12) madm =
1

16π

∫

S∞

(∂igij − ∂jgii)ν
j,

where again we abuse terminology as this is physically the energy. The asymptotics of cylindrical
ends is most conveniently described in Brill coordinates, see Section 6.

In each section that follows, we will detail a reduction argument for a different geometric inequality
associated with asymptotically hyperboloidal initial data. Hence, each inequality will be reduced to
solving a canonical system of equations. Moreover, we will show that the primary (or Jang-type)
equation in each system may be solved independently with the desired asymptotics needed for the
procedure.

3. The Penrose Inequality

Well known heuristic arguments of Penrose [42, 43] lead to the Penrose inequality for asymptot-
ically null slices in asymptotically flat spacetimes. Given asymptotically hyperboloidal initial data
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(M,g, k) satisfying the dominant energy condition, the Penrose inequality [39] states that

(3.1) m ≥
√

A

16π

where A is the minimum area required to enclose the outermost apparent horizon. We will denote

the region outside of the outermost minimal area enclosure of the horizon by M̃ , so that A = |∂M̃ |.
Consider a graph M = {t = f(x)} inside the warped product 4-manifold (M ×R, g+ u2dt2), then

the induced metric on M is given by g = g + u2df2. Here u is a nonnegative function to be chosen
appropriately. If the generalized Jang equation

(3.2)

(
gij − u2f if j

1 + u2|∇f |2g

)
u∇ijf + uifj + ujfi√

1 + u2|∇f |2g
− kij


 = 0

is satisfied, then M is referred to as the Jang surface and the Jang metric g obtains a desirable
positivity property for its scalar curvature. In particular, the scalar curvature of the Jang graph
[5, 6] is weakly nonnegative and given by

(3.3) R = 2(µ − J(w)) + |π − k|2g + 2|q|2g − 2u−1 divg(uq),

where π is the second fundamental form of M in the dual Lorentzian setting (M ×R, g−u2dt2), and
w and q are 1-forms given by

(3.4) πij =
u∇ijf + uifj + ujfi√

1 + u2|∇f |2g
, wi =

ufi√
1 + u2|∇f |2g

, qi =
uf j√

1 + u2|∇f |2g
(πij − kij).

The generalized Jang equation was introduced to study the (non-time-symmetric) Penrose inequality
in the asymptotically flat case. In this setting f vanishes at spatial infinity, and boundary conditions

are imposed on ∂M̃ to guarantee that the boundary of the Jang surface ∂Σ is minimal; these boundary
conditions often entail a blow-up of the Jang graph and are described in [6], [25]. The existence,
regularity, and blow-up behavior for the generalized Jang equation is studied at length in [24]. Also

in this setting, the warping function u is assumed to vanish on ∂M̃ , and to have an expansion in the
asymptotic end of the form

(3.5) u = 1 +
u0
r

+O2

(
1

r2−ε

)
,

where u0 is a constant.
In the asymptotically hyperboloidal setting addressed here, the boundary conditions on ∂M̃ and

the expansion (3.5) will remain unchanged, however the behavior of the Jang graph in the asymptotic
end will be completely different. Namely, in analogy with the approach to the positive mass theorem
[48], [45] we impose the following asymptotics at null infinity

(3.6) f(r, θ, φ) =
√

1 + r2 +A log r + B(θ, φ) + f̃(r, θ, φ),

where (θ, φ) are coordinates on S2,

(3.7) A = 2m, ∆σB =
1

2

[
Trσ(m

g + 2mk) + 2mr
]
− 1

8π

∫

S2

[
Trσ(m

g + 2mk) + 2mr
]
,

and

(3.8) f̃ = O3(r
−1+ε)

for any ε > 0.
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Lemma 3.1. If (M,g, k) is asymptotically hyperboloidal and (3.5)-(3.8) are satisfied then the Jang
metric g = g + u2df2 is asymptotically flat, and the mass of the Jang metric is given by madm =
2m+ u0.

Proof. It is clear that the manifold (M,g) has an end diffeomorphic to R3 \ Ball, with coordinates
y = (r, θ, φ) as in (2.2), (2.3). Let x denote the associated Cartesian coordinates, related to y through
the usual (spherical coordinates) transformation. In what follows, i, j are indices for x-coordinates
and a, b are indices for y-coordinates. It follows that

(3.9) gij = gij + u2fifj =
(
gab + u2fafb

) ∂ya
∂xi

∂yb

∂xj
.

From (2.2), (2.3), (3.5), (3.6), and (3.8) we have

(3.10) grr + u2f2r = 1 +O(r−1), grα + u2frfα = O(1), gαβ + u2fαfβ = r2σαβ +O(1),

which implies that

(3.11)
(
gab + u2fafb

) ∂ya
∂xi

∂yb

∂xj
= δij +O(r−1)

since ∂r
∂xi = O(1), and ∂yα

∂xi = O(r−1). Estimates on the derivatives of (3.9) may be obtained in a
similar fashion, from which (2.11) follows.

The mass madm of the Jang metric may be computed as in [45]. Note that we can write (2.12) in
a coordinate free form as

(3.12) madm =
1

16π

∫

S∞

(divδ g − dTrδg)(ν),

where δ is the Euclidean metric. It is convenient to compute this integral in the spherical coordinates
y. In this case we have

(3.13)
◦

Γr
rr =

◦

Γα
rr =

◦

Γr
αr = 0,

◦

Γr
αβ = −rσαβ,

◦

Γα
βr = r−1δαβ ,

◦

Γα
βγ = (Γσ)

α
βγ ,

where
◦

Γl
ij and (Γσ)

α
βγ are Christoffel symbols for the metrics δ and σ respectively, and hence

(divδ g)(ν) = (divδ g)(∂r)

=
◦

∇rgrr + r−2σαβ
◦

∇βgαr

= ∂rgrr − 2
◦

Γl
rrglr + r−2σαβ(∂βgαr −

◦

Γl
αβglr −

◦

Γl
βrgαl)

= −r−2σαβgαγ
◦

Γγ
βr +O(r−3)

= −2r−1 +O(r−3).

(3.14)

Furthermore

divδ(u
2df2)(ν) = divδ(u

2df2)(∂r)

=
◦

∇r(u
2f2r ) + r−2σαβ

◦

∇β(u
2fαfr)

= 2uurf
2
r + 2u2fr

◦

∇rrf + r−2σαβ(2uuβfαfr + u2fr
◦

∇αβf + u2fα
◦

∇βrf),

(3.15)

with

(3.16) 2uurf
2
r + 2u2fr

◦

∇rrf = −2(u0 +A)r−2 +O(r−3+ε),

(3.17) r−2σαβ(2uuβfαfr + u2fα
◦

∇βrf) = −u2r−2σαβfα
◦

Γγ
βrfγ +O(r−3) = O(r−3),
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and

u2r−2σαβfr
◦

∇αβf = u2r−2σαβfr
◦

∇αβB + u2r−2σαβfr
◦

∇αβ(f − B)
= u2r−2fr∆σB − u2r−2σαβfr

◦

Γr
αβ(f − B)r +O(r−3+ε)

= r−2∆σB + 2u2r−1(fr)
2 +O(r−3+ε)

= r−2∆σB + 2r−1 + 4(u0 +A)r−2 +O(r−3+ε).

(3.18)

Finally, we have

(dTrδg)(ν) = ∂r(grr + r−2σαβgαβ)

= ∂r(grr + u2f2r + r−2σαβ(gαβ + u2fαfβ))

= ∂r(u
2f2r ) +O(r−3)

= −2(u0 +A)r−2 +O(r−3+ε).

(3.19)

Summing up, we conclude that

(3.20) madm =
1

16π

∫

S∞

[
(∆σB + 4u0 + 4A)r−2 +O(r−3+ε)

]
= u0 +A = 2m+ u0.

�

Let {Sτ} be an inverse mean curvature flow (IMCF) inside the Jang graph starting at the minimal
boundary S0 = ∂M . If we choose

(3.21) u =

√
|Sτ |
16π

Hτ ,

where |Sτ | and Hτ denote area and mean curvature of Sτ , then the arguments in [5], [6] imply that

(3.22) MH(∞)−
√

A

16π
≥MH(∞)−MH(0) ≥ − 1

8π

∫

S0∪S∞

ug(q, νg)

where MH denotes Hawking mass and νg is the unit outer normal with respect to g. Notice that by
choosing u as in (3.21), the generalized Jang equation is coupled to the inverse mean curvature flow,
and we will refer to this set of equations as the Jang-IMCF system. All of this leads to the following
theorem, which generalizes the results of [5], [6] to the asymptotically hyperboloidal case.

Theorem 3.2. Let (M,g, k) be a 3-dimensional, asymptotically hyperboloidal initial data set with
a connected outermost apparent horizon boundary, and satisfying the dominant energy condition
µ ≥ |J |. If the coupled Jang-IMCF system of equations admits a solution satisfying the asymptotics
(3.6)-(3.8), with a weak IMCF (in the sense of [28]), and such that the boundary of the Jang surface
is minimal, then (3.1) holds and if equality is achieved then the initial data arise from an embedding
into the Schwarzschild spacetime.

Remark 3.3. This theorem may be generalized to the case of multiple black holes, by coupling
the generalized Jang equation to Bray’s conformal flow [4]. Such a procedure has been described in
detail for the asymptotically flat case in [25]. Moreover, the “only if” part of the case of equality is
not included in the statement above (or any of the theorems in later sections), as a consequence of
the difference between the mass and energy at null infinity.
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Proof. The (weak) IMCF becomes smooth for sufficiently large times, and approximates coordinate
spheres in the asymptotically flat end. This result was established by Huisken and Ilmanen [29]
for flows in Euclidean space, and they announced (in the same paper) that these results hold more
generally in the asymptotically flat setting. From this one may obtain asymptotic expansions for the
area and mean curvature of the flow surfaces to show that

(3.23) MH(∞) = madm,

and with the help of (3.5)

MH(∞) = lim
τ→∞

√
|Sτ |
16π

(
1− 1

16π

∫

Sτ

H
2
τ

)

= lim
τ→∞

√
|Sτ |
16π

(
1− 1

|Sτ |

∫

Sτ

u2
)

= lim
r→∞

(r
2
+O(1)

) [
1−

(
1 +

2u0
r

+O(r−2)

)]

= −u0.

(3.24)

By Lemma 3.1 madm = 2m+ u0 and so m = −u0, or rather MH(∞) = m.
We note that it is only necessary to establish MH(∞) ≤ m in order to achieve (3.1), and this

may be proven without (3.23). To see this, recall that from [28] we have MH(∞) ≤ madm, so
(3.24) implies that −u0 ≤ madm. Since madm = 2m + u0, it follows that −madm ≤ −m. Therefore
−u0 = 2m−madm ≤ m.

Consider now the boundary terms of (3.22). As in [5], [6] the inner term vanishes since u = 0
on S0. Furthermore, it is shown in the Appendix B that the term at null infinity also vanishes as
a result of the asymptotics (3.5), (3.6), and with the help of (3.23). The desired inequality now
follows, and the case of equality may be treated in the same way as in [5], [6]. �

In order to lend further credence to the above procedure we show that solutions to the generalized
Jang equation exist with the desired asymptotics at the horizon and at null infinity. For this we
assume that (g, k) takes the form (2.1) with a and b as in (2.2) and (2.3) additionally satisfying arr =
arα = 0; in this case mr = 0. We note that given sufficiently regular asymptotically hyperboloidal
initial data (g, k) such that |g − g0|g0 = O(r−3) and |k − g0|g0 = O(r−3), one can perform a change
of coordinates at infinity as described in the Appendix A to achieve arr = arα = 0, and this change
of coordinates does not affect the mass aspect function.

Theorem 3.4. Given a smooth positive function u, vanishing on ∂M and satisfying (3.5), there
exists a smooth solution to the generalized Jang equation (3.2) which blows-up (down) at the future
(past) apparent horizon boundary components and also possesses the expansion (3.6). Moreover,
precise asymptotics at the horizon are given as in [24].

Proof. The blow-up (blow-down) and asymptotics at the horizon follow directly from the methods
of [24]. In order to obtain the expansion (3.6) one may essentially follow the proof in [45] (see also
[44]), which although was designed for the classical Jang equation (that is when u = 1), is still valid
in this more general case.

The construction of barriers remains essentially the same. The idea is to look for barriers of the
form f(r, θ, φ) = ζ(r) + B(θ, φ), where B(θ, φ) is defined by (3.7). In order to determine ζ, it is
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convenient to use the substitution

(3.25) p(r) =
ζ ′(r)

√
1 + r2√

1 + (1 + r2)ζ ′(r)2
,

so that −1 ≤ p ≤ 1, and p = ±1 when ζ ′ = ±∞. We remark that

β(r, θ, ϕ) =
1 + (1 + r2)ζ ′2

u−2 + |∇f |2g
=

1

1 + (1− p2)(u−2 − 1 + |∇B|2g)

= 1− 2madm

r
(1− p2) +O(r−2),

(3.26)

whereas the more simple expansion β = 1+O(r−2) holds in the setting of [44, 45]; in (3.26) the relation
u0 = −madm is used, which follows from (3.23) and (3.24). Nevertheless, a careful computation shows
that for f as above we have

F(f)

β3/2
√
1 + r2(u−2 + |∇B|2g)

=p′ +
2

r

(
p− r√

1 + r2

)
− 1− p2√

1 + r2
− A

√
1− p2

r2
√
1 + r2

+O(r−2)

(√
1− p2

1 + r2
− 3p

r2
+

2

r2

)
+O(r−2)

(√
1− p2

1 + r2
− 1

r2

)

+O(r−2)

(
p− r√

1 + r2

)
+O(r−3)(1− p2) +O(r−2)(1− p2)2

+O(r−4)
√

1− p2 +O(r−5),

(3.27)

where F(f) is the left-hand side of the generalized Jang equation (3.2) computed for f = f . Following
[44, 45], we define p+ and p− to be solutions of the boundary value problems

p′± +
2

r

(
p± − r√

1 + r2

)
− 1− p2±√

1 + r2
−

A
√

1− p2±

r2
√
1 + r2

± C1r
−2

∣∣∣∣∣∣

√
1− p2±
1 + r2

− 3p±
r2

+
2

r2

∣∣∣∣∣∣
± C2r

−2

∣∣∣∣∣∣

√
1− p2±
1 + r2

− 1

r2

∣∣∣∣∣∣
± C3r

−2

∣∣∣∣p± − r√
1 + r2

∣∣∣∣

± C4r
−3(1− p2±)± C5r

−2(1− p2±)
2 ±C6r

−4
√

1− p2± ± C7r
−5 = 0,

(3.28)

(3.29) p±(r0) = ∓1,

where Ci, i = 1, . . . , 7, are positive constants. The same analysis as in [44, 45] applies to this system,
the properties and the asymptotics of solutions remaining the same. This in turn gives rise to barriers
f± having the asymptotic expansion (3.6). The rest of the proof proceeds as in [44, 45].

�

Remark 3.5. Since scalar multiplication is not a homothety for the hyperbolic metric, the estimate
(3.8) cannot be obtained by applying the rescaling technique directly to the generalized Jang equation
(3.2). Instead, in order to show that Lemma 3.1 and Theorem 3.2 hold for the metric g = g + u2df2

one may argue as in [45] where the case u = 1 was considered. More specifically, from the proof of
Theorem 3.4 we know that outside of a compact set the Jang graph M lies between the graph M−
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of the lower barrier f− : M → R and the graph M+ of the upper barrier f+ : M → R, where f−
and f+ have the asymptotic expansions (3.6)-(3.8). Combining this with the C0 estimate for the
second fundamental form of M obtained in [24, Theorem 2.2] one may show that the asymptotic end
of M can be viewed as the graph of the function h : M− → R in the Gaussian normal coordinates
adapted to M− ⊂ M × R. Recall [5, 6] that the generalized Jang equation tells us that the mean
curvature of M is equal to the trace of a certain extension of k to M × R over M . Expressing this
in terms of h :M− → R will give a slightly more complicated equation than (3.2), since the ambient
metric will no longer have a warped product structure in the described coordinates. However, the
induced metric on M− is asymptotically Euclidean in the sense of (2.11), which allows one to apply
the rescaling technique to this equation and thereby derive the analogue of estimate (3.8) for the
function h. Translating this back to the setting in which M is expressed as the graph f : M → R

then yields the desired estimates.

4. The Penrose Inequality with Charge

Let (M,g, k,E) be an initial data set for the Einstein-Maxwell equations as described in Section 2,
with E divergence free. For simplicity in this section, we will assume that the magnetic field vanishes
B = 0. We seek a deformation of the initial data to (M,g,E) such that the charged dominant energy
condition holds weakly in the time symmetric case, that is R ≥ 2|E|2g when integrated against an
appropriate test function. Moreover, several other aspects of the geometry should be preserved,
namely

(4.1) madm = m, Qe = Qe, divg E = (1 + u2|∇f |2g)−1/2 divg E, |E|g ≥ |E|g.
This will be achieved by choosing g = g+u2df2 where f solves the generalized Jang equation having
the asymptotics and boundary behavior as in Section 3, and also with the same choice of warping
factor (3.21). In particular, combining the arguments in the previous section with ideas from [22] we
obtain madm = m. Furthermore, by choosing

(4.2) Ei =
Ei + u2fif

jEj√
1 + u2|∇f |2g

the last two properties of (4.1) are satisfied, as is shown in [22]. We will now show that Qe = Qe.
First observe that

(4.3) |∇f |2g ∼ r2, fr ∼ 1, f r ∼ r2, fα = O(r−2),

(4.4) νrg ∼ 1, ναg = O(r−2), νrg ∼ r, ναg = O(r−4),

and by (2.7)

(4.5) f jEj = f rEr +O(r−3) = O(r−1).

It follows that

Eiν
i
g = Erν

r
g + Eαν

α
g

= r−1(Er + u2frf
jEj) + r−3(Eα + u2fαf

jEj) +O(r−3)

= rEr +O(r−3)

= Eiν
i
g +O(r−3),

(4.6)

which yields the desired conclusion.
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Theorem 4.1. Let (M,g, k,E) be a 3-dimensional, asymptotically hyperboloidal initial data set for
the Einstein-Maxwell equations with a connected outermost apparent horizon boundary, and satisfying
the charged dominant energy condition µEM ≥ |JEM | as well as divg E = 0. If the coupled Jang-
IMCF system of equations admits a solution satisfying the asymptotics (3.6)-(3.8), with a weak IMCF
(in the sense of [28]), and such that the boundary of the Jang surface is minimal, then

(4.7) m ≥
√

A

16π
+

√
π

A
Q2,

and if equality is achieved then the initial data arise from an embedding into the Reissner-Nordström
spacetime.

Proof. Since (4.1) holds, the theorem follows directly from the arguments in the asymptotically flat
case [22]. �

Remark 4.2. Note that the Jang-IMCF system of equations is exactly the same as in Section 3.
Thus, the existence result Theorem 3.4 provides further credence to the above procedure. Moreover,
it should be possible to generalize this result to the case of multiple black holes if an additional area-
charge inequality is satisfied by the horizon as in [37]. This will require a coupling of the generalized
Jang equation to the charged conformal flow [37].

5. The Positive Mass Theorem with Charge

Let (M,g, k,E) be an initial data set for the Einstein-Maxwell equations as described in Section
2. We will assume for convenience, as in the previous section, that the magnetic field vanishes, but
here the electric field E need not be divergence free. Again we seek a deformation of the initial
data to (M,g,E), where g = g + u2df2 and E is given in (4.2). As before, f solves the generalized
Jang equation having the asymptotics as in Section 3, and boundary behavior (at the horizon) as
described in [33]. However, the warping factor is chosen differently, and this will be outlined below.

In order to choose u, we must describe the appropriate spinors on the Jang surface. Dirac spinors
[41] are sections of the (vector) spinor bundle S over M with structure group SL(2,C). The (Jang)
metric compatible connection on S is given by

(5.1) ∇ei = ei +
1

4
ωijl ej · el·

where ωijl = g(∇eiej , el) are connection coefficients associated with an orthonormal frame field
(e1, e2, e3), and · indicates Clifford multiplication. The Einstein-Maxwell spin connection on S,
which is relevant for the positive mass theorem with charge [23], then has the form

(5.2) ∇ei = ∇ei −
1

2
E · ei · e0·

where e0 is the unit normal toM in the (Lorentzian) warped product 4-manifold described in Section
3. Observe that this connection is not metric compatible due to the contribution of the electric field.
Let Γ(S) be the space of cross-sections, then the Einstein-Maxwell Dirac operator /D : Γ(S) → Γ(S)
is defined by

(5.3) /Dψ =

3∑

i=1

ei · ∇eiψ,

and a spinor ψ on M is called harmonic if it satisfies the Dirac equation

(5.4) /Dψ = 0.
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The Dirac equation is coupled to the generalized Jang equation through the choice

(5.5) u = |ψ|2.

Lemma 5.1. Fix a complete asymptotically flat initial data set (M,g,E), with asymptotically cylin-
drical ends, and satisfying |R| + |divg E| = o(r−3) as r → ∞. Let ψ solve the Dirac equation (5.4)
with ψ → ψ0 in the asymptotic end, where ψ0 is a constant spinor of modulus 1. Then u as defined
by (5.5) has the asymptotic expansion

(5.6) u = 1 +
u0
r

+O2

(
1

r2−ǫ

)
,

for any ǫ > 0. Moreover u0 = −2madm −Qe〈ψ0, e0 · ψ0〉.

Proof. Observe that

(5.7) ∆g|ψ|2 = ∇ei∇ei |ψ|2 −∇
∇ei

ei
|ψ|2 = 〈∇2

ei,eiψ,ψ〉 + 〈ψ,∇2
ei,eiψ〉+ 2|∇ψ|2,

where ∇2
ei,ei = ∇ei∇ei − ∇

∇ei
ei

is the connection Laplacian. In what follows, calculations will be

performed at a point where the orthonormal frame has been chosen such that ∇eiej = 0; note that

we also have ∇eie0 = 0 as the t = 0 slice is totally geodesic in the Lorentzian setting of the Jang
deformation. Moreover, for simplicity ∇ei will be denoted by ∇i. If Ai =

1
2E · ei · e0 then

0 = /D
2
ψ =ei ·

(
∇i −Ai·

)
ej ·

(
∇j −Aj ·

)
ψ

=ei · ∇i

(
ej · ∇jψ

)
− ei · ∇i (ej · Aj · ψ)− ei ·Ai · ej · ∇jψ + ei · Ai · ej ·Aj · ψ

=−∇i∇iψ +
1

4
Rψ − ei · ej ·Aj · ∇iψ − 1

2
ei · ej · ∇iE · ej · e0 · ψ,

(5.8)

after applying the Lichnerowicz-Weitzenböck formula. It follows that

〈∇i∇iψ,ψ〉 + 〈ψ,∇i∇iψ〉 =
1

2
R|ψ|2 − 〈ei · ej · Aj · ∇iψ,ψ〉 − 〈ψ, ei · ej · Aj · ∇iψ〉

− 1

2
(〈ei · ej · ∇iE · ej · e0 · ψ,ψ〉 + 〈ψ, ei · ej · ∇iE · ej · e0 · ψ〉).

(5.9)

Moreover a computation shows that

(5.10) 〈ei · ej · ∇iE · ej · e0 · ψ,ψ〉 + 〈ψ, ei · ej · ∇iE · ej · e0 · ψ〉 = −2(divg E)〈ψ, e0 · ψ〉,

and hence

(5.11) ∆g|ψ|2 = 2|∇ψ|2 + 1

2
R|ψ|2 − 〈ei · ej ·Aj · ∇iψ,ψ〉 − 〈ψ, ei · ej ·Aj · ∇iψ〉+ (divg E)〈ψ, e0 ·ψ〉.

According to [41], in the asymptotically flat end ψ = ψ0 +O(r−1+ǫ/2) and |∇ψ| = O(r−2+ǫ/2) for
all ǫ > 0. This, combined with the assumption |R|+ |divg E| = o(r−3) implies that

(5.12) ∆g|ψ|2 = o(r−3).

It follows that u has the desired expansion (see for instance [50]).
Lastly, we compute the value of u0. Observe that (5.7) may be rewritten as

(5.13) ∆gu = divg
(
〈∇•ψ,ψ〉

)
+ divg

(
〈ψ,∇•ψ〉

)
.
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Integrating by parts produces

−4πu0 =

∫

S∞

〈∇νgψ,ψ〉 + 〈ψ,∇νgψ〉

=

∫

S∞

〈∇νgψ + νg · /Dψ,ψ〉 + 〈ψ,∇νgψ + νg · /Dψ〉

−
∫

S∞

(
〈νg · /Dψ,ψ〉 + 〈ψ, νg · /Dψ〉

)

=8πmadm −
∫

S∞

(
〈νg · /Dψ,ψ〉 + 〈ψ, νg · /Dψ〉

)
.

(5.14)

Note that the asymptotically cylindrical ends do not contribute to a boundary integral, since in these
regions u decays exponentially. Furthermore

(5.15) /Dψ = ei · ∇iψ = ei · (∇i +Ai·)ψ = ei ·Ai · ψ,
so that

(5.16) 〈νg · /Dψ,ψ〉 + 〈ψ, νg · /Dψ〉 = −g(E, νg)〈ψ, e0 · ψ〉.
The desired result follows by combining (5.14) and (5.16). �

Theorem 5.2. Let (M,g, k,E) be a 3-dimensional, asymptotically hyperboloidal initial data set for
the Einstein-Maxwell equations with an outermost apparent horizon boundary, and satisfying the
charged dominant energy condition (2.9). If the coupled Dirac-Jang system of equations admits a
solution satisfying the asymptotics (3.6)-(3.8), (5.6), and such that the Jang surface possesses an
asymptotically cylindrical neck over the horizon, then

(5.17) m ≥ |Q|,
and if equality is achieved then the initial data arise from an embedding into the Majumdar-Papapetrou
spacetime.

Proof. We have that (4.1) is valid, except for the equality of masses. Thus, we may follow the
arguments in [33] and use the Lichnerowicz-Weitzenböck formula to obtain

(5.18) − 1

2

∫

S∞

ug(q, νg) ≤
∫

M
|∇ψ|2 + 1

4
〈ψ,R · ψ〉 = 4π(madm +Qe〈ψ0, e0 · ψ0〉),

where R = R− 2|E|2g − (divg E)e0. Note that there is no interior boundary integral on the left-hand

side of (5.18); as in Lemma 5.1 this is due to the fact that the Jang surface has asymptotically
cylindrical ends, which yields exponential decay of u in these regions. By Lemma 10.1 and Qe = Qe,
(5.18) becomes

(5.19) u0 +m ≤ madm − |Qe|.
This produces the desired result, since madm = 2m+u0 according to Lemma 3.1. Lastly, the case of
equality is treated the same way as in [33]. �

Remark 5.3. It should be pointed out that slices of the Majumdar-Papapetrou spacetime which
agree with a t = const slice near the horizon do not fall under the hypotheses of this theorem, as such
initial data possess asymptotically cylindrical ends. This is related to the fact that in order to obtain
asymptotically cylindrical ends in the Jang surface, when the initial data have an apparent horizon
boundary, use of blow-up solutions of the generalized Jang equation is required. Thus, more general
types of boundary behavior for the generalized Jang equation are needed, if this theorem is to allow
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initial data with asymptotically cylindrical ends. Note also that the existence result Theorem 3.4
holds in this setting, and provides further credence to the above procedure.

In order to satisfy the hypotheses of Lemma 5.1 concerning the fall-off of the scalar curvature and
divergence of the electric field, it may be necessary to assume µ + |J |g = O(r−3−ε) for ε > 0. This
extra condition together with the charged dominant energy condition (2.9) and the relation between
divergences in (4.1) implies that |divg E| = O(r−3−ε). Moreover, this condition also guarantees that

|R| = O(r−3−ε) modulo a divergence term in light of the formula (3.3). Due to the fall-off of the
divergence term, u0 in the expansion (5.6) may be a nonconstant function on the 2-sphere. This
function can be determined from asymptotic expansions as follows. A computation shows that

(5.20) R =
2∆σ(B − u0)

r3
+O(r−3−ε)

where B is given in (3.7), and so from (5.11)

(5.21) ∆gu =
∆σ(B − u0)

r3
+O(r−3−ε).

It now follows from the expansion (5.6) that

(5.22) ∆σu0 = ∆σ(B − u0),

and hence 2u0 = B + const. Lastly, it should be added that all the arguments of the current section
go through with this version of u0 after making suitable modifications. Ultimately, the validity of the
expansions will only be determined once the coupled system is solved. Here we are simply pointing
out that the canonical expansions are consistent with one another.

6. The Mass-Angular Momentum Inequality

Let (M,g, k) be an initial data set as described in Section 2 with

(6.1) brr =
b
(5)
rr (θ, φ)

r5
+O2(r

−6)

where b
(5)
rr (θ, φ) is a function on S2. In this section we assume further that M is simply connected

and that there are two ends, one denoted M+
end which is asymptotically hyperboloidal, and the other

M−

end which is either asymptotically flat or asymptotically cylindrical. It is also assumed that the
initial data are axisymmetric; without this assumption the mass-angular momentum inequality is no
longer generally valid [26]. By this we mean that there is a subgroup isomorphic to U(1) contained
within the group of isometries of the Riemannian manifold (M,g), and that all quantities associated
with the initial data are invariant under the U(1) action. In particular, if η = ∂φ denotes the Killing
field which generates the symmetry, then

(6.2) Lηg = Lηk = 0,

where Lη is Lie differentiation. In the current setting, simple connectivity and axial symmetry
imply [11] that M is diffeomorphic to R

3 \ {0}, where the origin represents a black hole and the
neighboring geometry has the structure of an asymptotically flat or cylindrical end. The mass of
the asymptotically hyperboloidal end will be denoted by m as usual, and the angular momentum is
defined by

(6.3) J =
1

8π

∫

S
(kij − (Trgk)gij)ν

i
gη

j ,
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where S is any surface enclosing the origin, with unit outer normal νg. In order for this to be
well-defined (independent of the choice of S), it is assumed that

(6.4) Jiη
i = 0,

which yields conservation of angular momentum [21]; observe that (6.3) is equivalent to the limit
definition which is also valid in the asymptotically flat setting

(6.5) J =
1

8π

∫

S∞

(kij − (Trgk)gij)ν
i
gη

j .

The mass-angular momentum inequality states that m ≥
√

|J |.
We seek a deformation of the initial data (M,g, k) → (M,g, k) such that the manifolds are

diffeomorphic M ∼= M , the geometry of the end M−

end is preserved while the end M+
end becomes

asymptotically flat, and

(6.6) madm = m, J = J , J(η) = 0, T rgk = 0, R ≥ |k|2g weakly.

Here J and J are the momentum density and angular momentum of the new data; the later is
well-defined as in (6.3) since (6.4) holds after the deformation. With intuition from other Jang-type
reduction procedures, and the fact that the Kerr spacetime is stationary, we search for a graph inside
a stationary 4-manifold

(6.7) M = {t = f(x)} ⊂ (M × R, g + 2Yidx
idt+ (u2 − |Y |2g)dt2),

where all quantities are independent of t and are axisymmetric

(6.8) Lηf = Lηu = LηY = 0.

Let g be the induced metric on the graph and k be the second fundamental form of the t = 0 slice
in the dual Lorentzian setting [7], that is

(6.9) gij = gij + fiYj + fjYi + (u2 − |Y |2g)fifj , kij =
1

2u

(
∇iYj +∇jYi

)
,

where ∇ is the Levi-Civita connection with respect to g. Moreover, the structure of the Kerr
spacetime suggests that we make the following simplifying ansatz that Y has a single component

(6.10) Y
i
∂i := gijYj∂i = Y φ∂φ.

Thus, the deformation is defined by three functions (u, Y φ, f). In addition, (6.10) implies [7] that g
is Riemannian and Trgk = 0.

We will now show how to choose the three functions (u, Y φ, f). First, in order to have a well-
defined angular momentum, and the existence of a twist potential which is needed to apply techniques
from the maximal case [20], (6.4) must hold for the new data, or equivalently

(6.11) divg k(η) = 0.

As is shown in [7], this is a linear elliptic equation for Y φ (if u is independent of Y φ), which has a
unique bounded solution if the r−3-fall-off rate is prescribed at M+

end. Therefore we will require the
expansion

(6.12) Y φ = −2J
r3

+ o2(r
−

7

2 ) as r → ∞,
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which also ensures that J = J . Requiring the solution to be bounded implies the following asymp-
totics at the other end

(6.13) Y φ = Y +O1(r
5) in asymptotically flat M−

end,

(6.14) Y φ = Y +O1(r) in asymptotically cylindrical M−

end,

where Y is a constant determined by the data. Here r =
√
ρ2 + z2 is the ‘Euclidean distance’ from

the origin in a Brill (or cylindrical) coordinate system (ρ, φ, z) in this end [11].
Next we choose f to satisfy the Jang-type equation

(6.15) gij


u∇ijf + uifj + ujfi√

1 + u2|∇f |2g
− kij


 = 0 ⇔ divg(u

2∇f) = u(Trgk)
√

1 + u2|∇f |2g.

As with the deformations of previous sections, the purpose of this equation is to impart positivity
properties to the scalar curvature. In particular, it is shown in [7] that

(6.16) R− |k|2g = 2(µ − J(v)) + |k − π|2g + 2u−1 divg(uQ),

where

(6.17) πij =
u∇ijf + uifj + ujfi +

1
2 (giφY

φ
,j + gjφY

φ
,i )√

1 + u2|∇f |2g
is the second fundamental form of the graph in the Lorentzian setting,

(6.18) vi =
uf i√

1 + u2|∇f |2g
, wi =

uf i + u−1Y
i

√
1 + u2|∇f |2g

,

and

(6.19) Qi = Y
j∇ijf − ugjlflkij + wj(k − π)ij + ufiw

lwj(k − π)lj

√
1 + u2|∇f |2g.

If the dominant energy condition is valid, it follows that R ≥ |k|2g weakly in the sense that this

inequality holds after multiplying by u and integrating by parts (it will be shown in Appendix B
that the boundary terms vanish).

Before explaining how to choose u, we will record the asymptotics which allow an appropriate
solution of the equation (6.15), namely

(6.20) u = 1 +
C1
r

+
C2(θ, φ)
r2

+
C3(θ, φ)
r3

+O2(r
−4) as r → ∞ in M+

end,

where C1 = −madm and C2, C3 are functions on the sphere S2. At the other endM−

end the asymptotics
are required to be

(6.21) u = r2 + o1(r
5

2 ) as r → 0 in asymptotically flat M−

end,

(6.22) u = r + o1(r
3

2 ) as r → 0 in asymptotically cylindrical M−

end.

In order to facilitate the construction of sub and supersolutions for equation (6.15), asymptotics
for f will be imposed which are more detailed than those in (3.6)-(3.8). In particular

(6.23) f(r, θ, φ) =
√

1 + r2+A log r+B(θ, φ)+D1(θ, φ)

r
+
D2(θ, φ)

r2
+f̃(r, θ, φ) as r → ∞ in M+

end,
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where A, B are given in (3.7) and D1, D2 functions on S2 such that

D1(θ, φ) =AC1 − C2
1 + 2C2

6D2(θ, φ) =b
(5)
rr − 2mr +

1

8π

∫

S2

[
Trσ(m

g + 2mk) + 2mr
]

+ 6C3 − 2C1D1 + 4AC2 − 2AC2
1 − 6C1C2 + 2C3

1

(6.24)

and

(6.25) f̃ = O2(r
−3).

On the other end the following asymptotics will be imposed

(6.26) r−1|∇f |g + r−2|∇2f |g ≤ C in asymptotically flat M−

end,

(6.27) |∇f |g + |∇2f |g ≤ Cr
1

2 in asymptotically cylindrical M−

end.

Lemma 6.1. If M+
end is asymptotically hyperboloidal and (6.12), (6.20), (6.23), and (6.25) are

satisfied then the data set (M
+
end, g, k) is asymptotically flat. Furthermore, the mass is given by

madm = 2m+ C1.

Proof. Asymptotic flatness follows from Lemma 3.1 and the fact that Y φ = O(r−3). More precisely,
the computations from Lemma 2.1 of [7] yield

(6.28) Yφ = gφφY
φ, Yi = gijY

j = giφY
φ = (giφ + fiYφ)Y

φ = (giφ + figφφY
φ)Y φ,

and

(6.29) gij = gij + (figjφ + fjgiφ)Y
φ + (u2 + gφφ(Y

φ)2)fifj,

so that

(6.30) gij = gij + u2fifj +O(r−2) = δij +O(r−1), kij = O(r−2).

Estimates on the derivatives of gij may be obtained in a straightforward way. Moreover, the formula
for the mass follows from the expansion (6.20) and a similar computation to that in the proof of
Lemma 3.1. �

We now show how to choose u. In light of Lemma 6.1, and the fact that the deformed data are
simply connected and axially symmetric, the results of [11] (see also [32]) apply to yield a global
Brill coordinate system (ρ, φ, z) such that

(6.31) g = e−2U+2γ(dρ2 + dz2) + ρ2e−2U (dφ+Aρdρ+Azdz)
2.

Note that for this one may need to assume some additional regularity of the initial data. The

asymptotics of the asymptotically flat end M
+
end are given by

(6.32) U = O1(r
−1), γ = o1(r

−1), Aρ = ρo1(r
−

5

2 ), Az = o1(r
−

3

2 ),

and the asymptotics for the other end M
−

end depend on whether it is asymptotically flat or asymp-
totically cylindrical in the following way

(6.33) U = 2 log r + o1(r
1

2 ), γ = o1(r
1

2 ), Aρ = ρo1(r
1

2 ), Az = o1(r
3

2 ),

(6.34) U = log r + o1(r
1

2 ), γ = o1(r
1

2 ), Aρ = ρo1(r
1

2 ), Az = o1(r
3

2 ),
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respectively. By following the arguments in [7] we find

(6.35) madm −M(U,ω) ≥ 1

8π

∫

M

eU

u
divg(uQ),

where ω is the so-called twist potential function and

(6.36) M(U,ω) =
1

32π

∫

R3

4|∂U |2 + e4U

ρ4
|∂ω|2.

This suggests that we choose

(6.37) u = eU .

Moreover, if u has an expansion of the form (6.20) then it must hold that C1 = −madm as desired,
since with the asymptotics (6.32) the mass is given by (see [11])

(6.38) madm =
1

4π

∫

S∞

∂rU.

Theorem 6.2. Let (M,g, k) be a smooth, simply connected, axially symmetric initial data set satis-
fying the dominant energy condition µ ≥ |J | and condition (6.4), and with two ends, one designated
asymptotically hyperboloidal and the other either asymptotically flat or asymptotically cylindrical.
If the system of equations (6.11), (6.15), (6.37) admits a smooth solution (u, Y φ, f) satisfying the
asymptotics described above, then

(6.39) m ≥
√

|J |

and if equality is achieved then the initial data arise from an embedding into the extreme Kerr
spacetime.

Proof. In light of (6.37), an application of the divergence theorem yields boundary terms on the right-
hand side of (6.35). It is shown in [7] that the inner boundary integral vanishes as a consequence
of J = J , and in Appendix B it is shown that the outer (at spatial infinity) boundary integral
vanishes. Therefore madm ≥ M(U,ω). Furthermore, Dain [20] as well as Schoen and Zhou [49] have

shown that M(U,ω) ≥
√

|J |. Thus, according to (6.6) the desired inequality holds. Also, the case

of equality may be treated directly from the arguments in [7]. �

In order to lend further credence to the above procedure we show that solutions to equation (6.15)
exist with the desired asymptotics. Note that the equation (6.11), for Y φ, has already been shown
to be uniquely solvable with the desired asymptotics (6.12) in [7], given u and f .

Theorem 6.3. Given a smooth positive function u satisfying (6.20)-(6.22), and smooth function Y φ

satisfying (6.12)-(6.14), there exists a smooth solution f to equation (6.15) satisfying (6.23), (6.24),
(6.26), and (6.27).

Proof. This result may be proven in the same fashion as the analogous result [7] in the asymptotically
flat case, once suitable sub and supersolutions of (6.15) are constructed.

Let f0 be a smooth function defined on M such that

(6.40) f0 =
√
1 + r2 +A log r + B(θ, φ) + D1(θ, φ)

r
+

D2(θ, φ)

r2
in M+

end,
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where A, B, D1, and D2 are given in (3.7) and (6.24), and such that f0 = 0 on M−

end. If f is a
solution of (6.15) and h = f − f0 then

∆gh+ 2

〈∇u
u
,∇h

〉
− (Trgk)

(√
u−2 + |∇f0 +∇h|2g −

√
u−2 + |∇f0|2g

)

+

(
∆gf0 + 2

〈∇u
u
,∇f0

〉
− (Trgk)

√
u−2 + |∇f0|2g

)
= 0.

(6.41)

The expressions for the coefficients of (6.41) in M−

end can be found in [7]. As for M+
end, with the

help of

grr = (1 + r2)− mr

r
+O(r−2), grα = −arασαα

(
1 +

1

r2

)
+O(r−6),

gαα = σαα
(

1

r2
− σααmg

αα

r5

)
+O(r−6), gαβ = O(r−5), α 6= β,

(6.42)

and

(6.43) Γα
rr = O(r−5), Γr

rα = O(r−2), Γβ
rα = O(r−1), Γγ

αβ = (Γσ)
γ
αβ +O(r−3),

the asymptotics for the terms in the second line of (6.41) may be computed as follows

∆gf0 =g
rr
(
∂2rf0 − Γr

rr∂rf0
)
− gαβΓr

αβ∂rf0 +
∆σB
r2

+O(r−3)

=grr∂2rf0 +
grr∂rf0

2

(
2r

1 + r2
+

4

r
− 3Trσm

g

r4
+

3mr

r4

)

+
1

2r2

([
Trσ

(
mg + 2mk

)
+ 2mr

]
− 1

4π

∫

S2

[
Trσ

(
mg + 2mk

)
+ 2mr

])
+O(r−3)

=3
√

1 + r2 + 2A− D1

r
+

A
r2

− Trσm
g

r2
+
Trσm

k

r2
− mr

2r2

− 1

8πr2

∫

S2

[
Trσ

(
mg + 2mk

)
+ 2mr

]
+O(r−3),

(6.44)

2

〈∇u
u
,∇f0

〉
=
2grr

u
∂ru∂rf0 +O(r−3)

=− 2C1 +
2C2

1 − 4C2 − 2AC1
r

+
2C1D1 − C1 + 6C1C2 − 6C3 − 4AC2 + 2AC2

1 − 2C3
1

r2
+O(r−3).

(6.45)

Moreover

√
u−2 + |∇f0|2 =

(
grr(∂rf0)

2 +

(
1− 2C1

r

)
+O(r−2)

)1/2

=

(
r +A+

1− 2D1

2r
− 2C1 + 4D2 +mr

2r2
+O(r−3)

)
,

(6.46)
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so that

(Trgk)
√
u−2 + |∇f0|2

=

(
3 +

b
(5)
rr + Trσ

(
mk −mg

)
−mr

r3
+O(r−4)

)

·
(
r +A+

1− 2D1

2r
− 2C1 + 4D2 +mr

2r2
+O(r−3)

)

=3r + 3A+
3− 6D1

2r
+
b
(5)
rr + Trσ

(
mk −mg

)
− 5

2m
r − 3C1 − 6D2

r2
+O(r−3).

(6.47)

Therefore, by definition of A, C1, D1, D2 it follows that

(6.48) ∆gf0 + 2

〈∇u
u
,∇f0

〉
− (Trgk)

√
u−2 + |∇f0|2g = O(r−3).

Observe also that

∣∣∣
√
u−2 + |∇f0 +∇h|2g −

√
u−2 + |∇f0|2g

∣∣∣ =
∣∣|∇f0 +∇h|2g − |∇f0|2g

∣∣
√
u−2 + |∇f0 +∇h|2g +

√
u−2 + |∇f0|2g

≤ |〈∇h, 2∇f0 +∇h〉|
|∇f0 +∇h|g + |∇f0|g

≤ |2∇f0 +∇h|g|∇h|g
|2∇f0 +∇h|g

= |∇h|g.

(6.49)

In order to construct radial sub and supersolutions of (6.41), we first note that if h0 = h0(r), then

∆gh0 + 2

〈∇u
u
,∇h0

〉

=grrh′′0 − grr
(
Γr
rr + 2(grr)−1grαΓr

rα + (grr)−1gαβΓr
αβ − 2∂ru

u
− 2grα∂αu

ugrr

)
h′0

=
grr√
1 + r2

[
ζ ′ −

(
r

1 + r2
+ Γr

rr + 2(grr)−1grαΓr
rα + (grr)−1gαβΓr

αβ − 2∂ru

u
− 2grα∂αu

ugrr

)
ζ

]
,

(6.50)

where ζ =
√
1 + r2h′0. Further let Θ(r), Λ(r) > 0, Υ (r) > 0 be bounded radial functions such that

(6.51)

√
1 + r2

∣∣∣∆gf0 + 2
〈
∇u
u ,∇f0

〉
− (Trgk)

√
u−2 + |∇f0|2g

∣∣∣
grr

≤ Υ,

and
(6.52)∣∣∣∣

(
r

1 + r2
+ Γr

rr + 2(grr)−1grαΓr
rα + (grr)−1gαβΓr

αβ − 2∂ru

u
− 2grα∂αu

ugrr

)
+

|Trgk|√
grr

+Θ

∣∣∣∣ ≤ Λ,

where

(6.53) Θ(r) = −1

r
+

2madm

r2
+O(r−3), Λ(r) = O(r−3), Υ (r) = O(r−4) in M+

end.
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Similar to [7], we (radially) extend these functions to M \M+
end in an appropriate way and define a

supersolution h+ of (6.41) by

(6.54) h+(r) = −
∫

∞

r

ζ+(s)√
1 + s2

ds,

where

(6.55) ζ+(r) = −e−
∫ r

0
(Θ(s)−Λ(s))ds

∫ r

0
Υ (s)e

∫ s

0
(Θ(t)−Λ(t))dtds ≤ 0

is the solution of the ordinary differential equation

(6.56) ζ ′+ + (Θ − Λ)ζ+ + Υ = 0.

It is straightforward to check that h+ has the desired asymptotics. Furthermore, since ζ+ ≤ 0 it
follows that

∆gh+ + 2

〈∇u
u
,∇h+

〉
− (Trgk)

(√
u−2 + |∇f0 +∇h+|2g −

√
u−2 + |∇f0|2g

)

+

(
∆gf0 + 2

〈∇u
u
, f0

〉
− (Trgk)

√
u−2 + |∇f0|2g

)

≤∆gh+ + 2

〈∇u
u
,∇h+

〉
+ |Trgk||∇h+|g +

grrΥ√
1 + r2

=
grr√
1 + r2

[
ζ ′+ −

(
r

1 + r2
+ Γr

rr + 2(grr)−1grαΓr
rα

)
ζ+

]

− grr√
1 + r2

[(
(grr)−1gαβΓr

αβ − 2∂ru

u
− 2grα∂αu

ugrr
+

|Trgk|√
grr

)
ζ+ − Υ

]

≤ grr√
1 + r2

(ζ ′+ + (Θ − Λ)ζ+ + Υ )

=0.

(6.57)

Consequently, f+ = f0+h+ is a supersolution of (6.15) which possesses the expansion (6.23). Finally,
since ζ− = −ζ+ is a solution of the ordinary differential equation

(6.58) η′− + (Θ − Λ)η− − Υ = 0,

one may similarly check that f− = f0 − h+ is a subsolution of (6.15), with the desired asymptotic
behavior in M+

end, and such that f− ≤ f+. �

Remark 6.4. It should be the case that the solutions produced in Theorem 6.3 also satisfy (6.25),
which is important when applying the results of [11] to obtain Brill coordinates for the deformed
data. However, the estimates needed for (6.25) are not clearly derived from the typical rescaling
argument found in [7]. Rather, it is likely that these estimates may be derived from the techniques
in [45] (see Remark 3.5).

7. The Mass-Angular Momentum-Charge Inequality

Let (M,g, k,E,B) be an axisymmetric initial data set for the Einstein-Maxwell equations, with
the same assumptions on (M,g, k) as in Section 6, except that (6.4) is replaced by

(7.1) J i
EMηi = 0.
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Axisymmetry entails that LηE = LηB = 0, and in addition it will be required that E, B are diver-
gence free. The asymptotics for (E,B) in the asymptotically hyperboloidal end M+

end are given in

(2.7), whereas the asymptotics in M−

end are given separately in the asymptotically flat and asymp-
totically cylindrical cases by

(7.2) Ei = O1(1), Eφ = O1(r), Bi = O1(1), Bφ = O1(r), i = ρ, z,

and

(7.3) Ei = O1(r
−1), Eφ = Ol(1), Bi = O1(r

−1), Bφ = O1(1), i = ρ, z,

where (ρ, φ, z) are Brill coordinates in this end with r =
√
ρ2 + z2. In this setting the angular

momentum is defined to be

(7.4) J =
1

8π

∫

S
(kij − (Trgk)gij)ν

i
gη

j − 1

4π

∫

S
ψBEiν

i
g,

where S is any surface enclosing the origin with unit outer normal νg, and ψB is the potential for the
magnetic field (see [21] and [34]). The condition (7.1) ensures that this is well-defined [21]. Moreover
since ψB = O(r−1) as r → ∞ we have that

(7.5)

∫

S∞

ψBEiν
i
g = 0,

and hence (7.4) agrees with the limit definition in (6.5). The mass-angular momentum-charge in-
equality states that

(7.6) m2 ≥ Q2 +
√
Q4 + 4J 2

2
.

We seek a deformation of the initial data (M,g, k,E,B) → (M,g, k,E,B) such that M ∼= M ,

M
+
end is asymptotically flat, and

(7.7) madm = m, J = J , T rgk = 0, R ≥ |k|2g + 2(|E|2g + |B|2g) weakly,

(7.8) divg E = divg B = 0, JEM (η) = 0, Qe = Qe, Qb = Qb,

where JEM is the momentum density minus the electromagnetic contribution of the new data. The
structure of the deformation will be the same as that in the previous section. In particular, g and k
are given by (6.9) and Y satisfies (6.10). It follows that the new data are again determined by three
functions (u, Y φ, f), and Trgk = 0. The functions u and f are chosen according to (6.37) and (6.15),

with the asymptotics (6.20)-(6.22) and (6.23)-(6.27). The function Y φ is chosen here to satisfy a
slightly different equation, namely

(7.9) divgk(η) + 2E ×B(η) = 0,

but will keep the same asymptotics (6.12)-(6.14). This equation is equivalent to JEM (η) = 0,
and guarantees the existence of a charged twist potential [8] in addition to a well-defined angular
momentum by (7.4). As in the previous section, we then have madm = m and J = J .

The deformation of the electromagnetic field will follow the construction in [8]. Let (e1, e2, e3 =
|η|−1η) be an orthonormal frame for (M,g), and set

(7.10) E(ei) =
E(ei)√

1 + u2|∇f |2g
, B(ei) =

B(ei)√
1 + u2|∇f |2g

for i = 1, 2, E(e3) = B(e3) = 0.
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Then it follows from [8] that

R− |k|2g − 2(|E|2g + |B|2g) =2(µEM − JEM (v)) + |k − π|2g + 2u−1 divg(uQ)

+ 2 (E(e3)− v ×B(e3))
2 + 2 (B(e3) + v × E(e3))

2 ,
(7.11)

and

(7.12) divg E =
divg E√

1 + u2|∇f |2g
= 0, divg B =

divg B√
1 + u2|∇f |2g

= 0.

Moreover a similar computation as in (4.6) shows that

(7.13) Eiν
i
g = Eiν

i
g +O(r−3),

which ensures that Qe = Qe and Qb = Qb.

Theorem 7.1. Let (M,g, k,E,B) be a smooth, simply connected, axially symmetric initial data
set satisfying the charged dominant energy condition µEM ≥ |JEM | and condition (7.1), and with
two ends, one designated asymptotically hyperboloidal and the other either asymptotically flat or
asymptotically cylindrical. If the system of equations (7.9), (6.15), (6.37) admits a smooth solution
(u, Y φ, f) satisfying the asymptotics described above, then

(7.14) m2 ≥ Q2 +
√
Q4 + 4J 2

2
,

and if equality is achieved then the initial data arise from an embedding into the extreme Kerr-
Newman spacetime.

Proof. As in the proof of Theorem 6.2, we can apply the arguments from the asymptotically flat case
[8] with only minor modifications, in light of (7.7) and (7.8). The only difference arises from the
boundary integral at null infinity, which is shown to vanish in Appendix B. �

Remark 7.2. Note that the system of equations associated with Theorem 7.1 is exactly the same
as that of Theorem 6.2, save for a minor (lower order) modification in the equation for Y φ (7.9).
Thus, each equation may be solved independently with the appropriate asymptotics, lending further
support to the above procedure.

8. Lower Bounds for Area in Terms of Mass, Angular Momentum, and Charge

Here we point out another application of the reduction procedure presented in the previous section.
Let (M,g, k,E,B) be as in Theorem 7.1, then heuristic physical arguments [21] lead to the inequality

(8.1)
Amin

8π
≥ m2 − Q2

2
−

√(
m2 − Q2

2

)2

− Q4

4
− J 2

whereAmin is the minimum area required to encloseM−

end. In [21] this has been proven in the maximal

case when M+
end is asymptotically flat and m represents the ADM mass. The proof follows directly

from the mass-angular momentum-charge inequality [12], and the area-angular momentum-charge
inequality [16]. In the general (non-maximal) case, the area-angular momentum-charge inequality
has been established when Amin is replaced by the area of a stable, axisymmetric, marginally outer
trapped surface [16]. For the mass-angular momentum-charge inequality, we have shown how to
reduce the case of an asymptotically hyperboloidal end to that of an asymptotically flat end, modulo
the problem of solving a coupled system of elliptic equations. Therefore a lower bound for area
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analogous to (8.1) may also be reduced to the same problem, by combining Theorem 7.1 above with
the proof of a Theorem 2.5 in [21].

Theorem 8.1. Let (M,g, k,E,B) be a smooth, simply connected, axially symmetric initial data
set satisfying the charged dominant energy condition µEM ≥ |JEM | and condition (7.1), and with
two ends, one designated asymptotically hyperboloidal and the other either asymptotically flat or
asymptotically cylindrical. If the data possesses a stable axially symmetric marginally outer trapped
surface with area A, and the system of equations (7.9), (6.15), (6.37) admits a smooth solution
(u, Y φ, f) satisfying the asymptotics (6.12)-(6.14), (6.20)-(6.22), and (6.23)-(6.27) then

(8.2)
A

8π
≥ m2 − Q2

2
−

√(
m2 − Q2

2

)2

− Q4

4
−J 2,

and if equality is achieved then the initial data arise from an embedding into the extreme Kerr-
Newman spacetime.

9. Appendix A: Adjustment of Asymptotically Hyperboloidal Initial Data

In this appendix we will show that given asymptotically hyperboloidal initial data (M,g, k) as
described in Section 2, one can perform a change of coordinates at infinity to achieve arr = arα = 0
without affecting the mass aspect function. Following [17] we refer to this change of coordinates as
an ‘adjustment’. We note that adjustment is a standard procedure which becomes relevant when
considering deformations of asymptotically hyperbolic conformally compact metrics or their evolution
under geometric flows, see for example the two references mentioned below.

Let g be as in Section 2, so that it takes the asymptotics form
(9.1)(

1

1 + r2
+

mr

r5
+O(r−6)

)
dr2 +

(
2aα
r3

+O(r−4)

)
drdyα +

(
r2σαβ +

m
g
αβ

r
+O(r−2)

)
dyαdyβ ,

where a is an r-independent 1-form on S2. Using the substitution

(9.2) r = sinh−1 ̺,

we bring g to the conformally compact form
(9.3)

sinh−2̺
[
(1 +mr̺3+O(̺4))d̺2+

(
2aα̺

3+O(̺4)
)
d̺dyα+

(
σαβ +m

g
αβ̺

3+O(̺4)
)
dyαdyβ

]
.

Now, similar to [2, Section III], we apply the coordinate transformation

(9.4) xα = yα +
̺

4
σαβaβ

to obtain

(9.5) sinh−2 ̺
[
(1 +mr̺3 +O(̺4))d̺2 +O(̺4)d̺dxα +

(
σαβ +m

g
αβ̺

3 +O(̺4)
)
dxαdxβ

]
.

A further substitution

(9.6) ̺′ = ̺+
mr

6
̺3

yields

(9.7) sinh−2̺′
[
(1 +O(̺′4))d̺2+O(̺′4)d̺′dxα+

(
σαβ +

(
m

g
αβ+

1
3m

rσαβ

)
̺′3+O(̺′4)

)
dxαdxβ

]
.
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We are now in a position to change the conformal gauge as described in [1, Section 3.2.1]. This gives

(9.8) g = sinh−2 ˜̺
[
d ˜̺2 +

(
σαβ +

(
m

g
αβ + 1

3m
rσαβ

)
˜̺3 +O(˜̺4)

)
dxαdxβ

]
,

for ˜̺ = ̺′ +O(̺′5).
To bring g back to the initial form we set r̃ = sinh−1 ρ̃, thereby obtaining

(9.9) g =
dr̃2

1 + r̃2
+

(
r̃2σαβ +

m
g
αβ + 1

3m
rσαβ

r̃
+O(r̃−2)

)
dxαdxβ.

Finally, it is straightforward to check that the described change of coordinates results in

(9.10) k =

(
1

1 + r̃2
+O(r̃−5)

)
dr̃2+O(r̃−3)dr̃dxα+

(
r̃2σαβ +

mk
αβ + 1

3m
rσαβ

r̃
+O(r̃−2)

)
dxαdxβ ,

thus the mass aspect function remains unchanged.

Remark 9.1. Note that in [1, Section 3.2.1] it is assumed that the metric has smooth conformal
compactification. In general, the application of the conformal gauge change will result in loss of
regularity of the initial data by one derivative, see e.g. [38, Lemma 5.1].

10. Appendix B: Boundary Integrals

In this section we will show that boundary integrals arising from (3.22) and (6.35) vanish.

Lemma 10.1. Under the hypotheses and notation of Theorem 3.2

(10.1) lim
τ→∞

∫

Sτ

ug(q, νg) = −4π(2u0 +A).

In particular, this vanishes when m = madm.

Proof. As explained in the proof of Theorem 3.2, the results in [29] allow for an approximation by
coordinate spheres Sr in the asymptotically flat end of (M,g), so that

(10.2) lim
τ→∞

∫

Sτ

ug(q, νg) = lim
r→∞

∫

Sr

ug(q, νg).

Let Sr be coordinate spheres and (er, eθ, eφ) be an orthonormal frame (associated with cylindrical
coordinates) in the asymptotic end of (M,g). Then calculations in Appendix C of [7] yield

(10.3) νg =

√
1 + u2|∇Sf |2
1 + u2|∇f |2g

(
er −

u2er(f)eθ(f)

1 + u2|∇Sf |2
eθ −

u2er(f)eφ(f)

1 + u2|∇Sf |2
eφ

)
,

where ∇S denotes covariant differentiation on Sr. Since the area forms of Sr and Sr differ by a factor
of
√

1 + u2|∇Sf |2, it follows that

(10.4)

∫

Sr

ug(q, νg) =

∫

Sr

u(1 + u2|∇Sf |2)√
1 + u2|∇f |2g

(
q(er)−

u2er(f)

1 + u2|∇Sf |2
q(∇Sf)

)
.
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We will now compute the asymptotics for each term in (10.4). Recall the definition of q in (3.4),
and observe that

πrr =
u∇rrf + 2∂ru∂rf√

1 + u2|∇f |2g

=

(
1√

1 + r2
− u0

r
√
1 + r2

+O(r−3+ε)

)(
1

r
− u0 +A

r2
+O(r−3+ε)

)

=
1

r2
− 2u0 +A

r3
+O(r−4+ε),

(10.5)

(10.6) πrα =
u∇rαf + ∂ru∂αf + ∂αu∂rf√

1 + u2|∇f |2g
= o(1)

(
1

r
− u0 +A

r2
+O(r−3+ε)

)
= o(r−1),

and

παβ = =
u∇αβf + ∂βu∂αf + ∂αu∂βf√

1 + u2|∇f |2g

=
1

2
(ugrr∂rf∂rgαβ +O(1))

(
1

r
− u0 +A

r2
+O(r−3+ε)

)

= r2σαβ +O(rε).

(10.7)

Substituting (10.5), (10.6), and (10.7) into the expression for q yields

q(er) =q(
√

1 + r2∂r) + o(r−1)

=
uf r(πrr − krr)

√
1 + r2 + ufα(πrα − krα)

√
1 + r2√

1 + u2|∇f |2g
+ o(r−1)

=
√

1 + r2
(
r2 + r(u0 +A) +O(rε)

)(
−2u0 +A

r3
+O(r−4+ε)

)

·
(
1

r
− u0 +A

r2
+O(r−3+ε)

)
+ o(r−1)

=− 2u0 +A
r

+ o(r−1),

(10.8)

and

(10.9) q(∇Sf) =
∑

α,β=θ,φ

ugαβfαf
j(πβj − kβj)√

1 + u2|∇f |2g
= o(r−2).

The desired result now follows, and (10.1) vanishes when m = madm since A = 2m and by Lemma
3.1, madm = 2m+ u0. �

Lemma 10.2. Under the hypotheses and notation of Theorem 6.2

(10.10) lim
r→∞

∫

Sr

ug(Q, νg) = 0.

This relies on the fact that m = madm.
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Proof. Recall that

Q(·) = (Hessg f)(Y , ·)− k(u∇f, ·) + (k − π)(w, ·) + (k − π)(w,w)
udf√

1− u2|∇f |2g
,

πij =
u∇ijf + uifj + ujfi +

1
2 (giφY

φ
,j + gjφY

φ
,i )√

1 + u2|∇f |2g
,

w =
u∇f + u−1Y φ

√
1− u2|∇f |2g

=
u∇f + u−1Y φ

√
1 + u2|∇f |2g

.

(10.11)

Therefore (10.3) implies

∫

S∞

ug(Q, νg)

=

∫

S∞

u(Hessg f)(Y , νg)− k(u2∇f, νg)

+

∫

S∞

u(1 + u2|∇Sf |2)√
1 + u2|∇f |2g

(
Q̃(er)−

u2er(f)

1 + u2|∇Sf |2
Q̃(∇Sf)−

er(f)

1 + u2|∇Sf |2
Q̃(Y )

)
(10.12)

where

(10.13) Q̃ = (k − π)(w, ·) +
√

1 + u2|∇f |2g(k − π)(w,w)udf.

Since νg is the unit normal for an axisymmetric surface we have that k(u2∇f, νg) = 0, and since

Y φ = O(r−3) we have that (Hessg f)(Y , νg) = O(r−3). It follows that the first integral on the
right-hand side of (10.12) vanishes. Furthermore, the integrand of the second integral simplifies to

(1 + u2|∇Sf |2)√
1 + u2|∇f |2g

(
Q̃(er)−

u2er(f)

1 + u2|∇Sf |2
Q̃(∇Sf)−

er(f)

1 + u2|∇Sf |2
Q̃(Y )

)

=
(1 + u2|∇Sf |2)√

1 + u2|∇f |2g
(k − π)(w, er)− (k − π)


w, u

2er(f)∇Sf + er(f)Y√
1 + u2|∇f |2g


+ u(k − π)(w,w)er(f)

=
(1 + u2|∇Sf |2)√

1 + u2|∇f |2g
(k − π)(w, er) + (k − π)


w, u2er(f)

2er√
1 + u2|∇f |2g




=
√

1 + u2|∇f |2g(k − π)(w, er).

(10.14)

Hence
∫

S∞

ug(Q, νg) =

∫

S∞

u
√

1 + u2|∇f |2g(k − π)(w, er).(10.15)
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We now compute asymptotics of the tensor π. Using (6.12), (6.20), (6.23), and (6.25) produces

πrα =

(
∇rαf +

∂ru∂αf

u
+
∂αu∂rf

u
+

1

2u
(gαφ∂rY

φ + grφ∂αY
φ)

)(
u−2 + |∇f |2g

)−1/2

=

(
∂αu− 1

2
gβγ∂βf∂rgγα +O(r−2)

)(
1

r
+O(r−2))

)

= O(r−2),

(10.16)

and

παβ =

(
∇αβf +

∂βu∂αf

u
+
∂αu∂βf

u
+

1

2u
(gαφ∂βY

φ + gβφ∂αY
φ)

)(
u−2 + |∇f |2g

)−1/2

=

(
1

2
grr∂rf∂rgαβ +O(1)

)(
1

r
+O(r−2)

)

= r2σαβ +O(r−1).

(10.17)

Thus with the help of

(10.18) er =
(√

1 + r2 +O(r−2)
)
∂r +O(r−5)∂θ +O(r−5)∂φ,

(10.19) eθ =

(
1

r
+O(r−4)

)
∂θ +O(r−5)∂φ, eφ =

(
1

r sin θ
+O(r−4)

)
∂φ,

it follows that ∫

S∞

ug(Q, νg) =

∫

S∞

u
√

1 + u2|∇f |2g(k − π)(w(er)er, er)

=

∫

S∞

u2er(f)(r
2 +O(1))(k − π)rr.

(10.20)

It is straightforward to check that (10.20) vanishes if (k − π)rr = o(r−5). To see that this is the
case, observe that

(10.21) ∇rrf = ∂2rf − Γr
rr∂rf +O(r−5) =

1

r
+

2D1 − 1

2r3
+

3mr − 2A+ 8D2

2r4
+O(r−5),

2∂ru∂rf

u
=− 2C1

r2
− 4C2 + 2AC1 − 2C2

1

r3

+
C1 − 6C3 − 4AC2 + 6C1C2 + 2C1D1 + 2AC2

1 − 2C3
1

r4
+O(r−5),

(10.22)

and

(
u−2 + |∇gf |2

)−1/2
=
1

r
− A
r2

+
2D1 + 2A2 − 1

2r3

+
1
2m

r +A+ C1 − 2AD1 + 2D2 −A3

r4
+O(r−5).

(10.23)

Definitions of the coefficients in (6.24) then imply that

πrr =

(
∇rrf + 2

∂ru∂rf

u
+ grφ∂rY

φ

)(
u−2 + |∇gf |2

)−1/2

=
1

r2
− 1

r4
+
b
(5)
rr

r5
+O(r−6),

(10.24)
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Moreover

(10.25) krr =
1

1 + r2
+
b
(5)
rr

r5
+ o(r−5),

which leads to the desired conclusion. �
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[14] P. Chruściel, Y. Li, and G. Weinstein, Mass and angular-momentum inequalities for axi-symmetric initial data

sets. II. Angular Momentum, Ann. Phys., 323 (2008), 2591-2613. arXiv:0712.4064
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