Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Unconditional entanglement interface for quantum networks

MPG-Autoren
/persons/resource/persons40490

Schnabel,  Roman
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

1510.00603.pdf
(Preprint), 655KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Baune, C., Gniesmer, J., Kocsis, S., Vollmer, C. E., Zell, P., Fiurasek, J., et al. (2016). Unconditional entanglement interface for quantum networks. Physical Review A, 93: 010302. doi:10.1103/PhysRevA.93.010302.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0029-7C83-0
Zusammenfassung
Entanglement drives nearly all proposed quantum information technologies. The suppression of the uncertainty in joint quadrature measurements below the level of vacuum fluctuations is a signature of non-classical correlations. Entangling frequency modes of optical fields has attracted increased attention in recent years, as a quantum network would rely on interfacing light at telecommunication wavelengths with matter-based quantum memories that are addressable at visible wavelengths. By up-converting part of a 1550 nm squeezed vacuum state to 532 nm, we demonstrate the generation and complete characterization of strong continuous-variable entanglement between widely separated frequencies. Non-classical correlations were observed in joint quadrature measurements of the 1550 nm and 532 nm fields, showing a maximum noise suppression 5.5 dB below vacuum. A spectrum was measured to demonstrate over 3 dB noise suppression up to 20 MHzmeasurement frequency. Our versatile technique combines strong non-classical correlations, large bandwidth and, in principle, the ability to entangle the telecommunication wavelength of 1550 nm with any optical wavelength, making this approach highly relevant to emerging proposals for quantum communication and computing.